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Summary 
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Abstrakt 
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1 Introduction 
Oscillation is one of the basic properties of solutions of ordinary differential equations 

(ODEs). Harmonic oscillations are a basic prototype of oscillations. By adding more 
forces to the system, one can obtain damped oscillations and driven oscillations. A l l these 
systems can be solved analytically with a basic knowledge of ODEs. Problems appear 
in the case of controlled systems involving the factor of a time delay. Such systems are 
modelled by delay differential equations (DDEs). In this case, there are no analytical 
methods of solving and thus we need to discuss basic qualitative properties of solutions, 
like stability and oscillation. 

One of the basic controls that use this delay factor is the time delay feedback control 
involving the state variable at a past time. This delay symbolises the time necessary 
for data processing of a machine. Thus, systems with delays are more realistic and can 
be used in many branches, for example robotics, flight and fluid dynamics or intelligent 
houses (very popular nowadays). The aim of this thesis is to apply some stability results 
of DDEs to control of mechanical oscillators or systems of mechanical oscillators. 

Several types of delay feedback controls are known nowadays. The basic one consists of 
just one element which is proportional to a delayed state of the system itself. This creates 
an additional force influencing the motion of the system. The second widely used delay 
feedback control is Pyragas control. This control is based on an idea of a stabilisation of 
periodic solutions. If the delay is well chosen, the control vanishes. The same happens 
also for large times in case of a stable system. Such a type of control is also called a 
non-invasive control. 

DDEs are a powerful branch of mathematics for controlling of systems. A widely 
studied problem is that of stability of DDEs. Since all the roots of the characteristic 
equation cannot be obtained as easily as in the case of ODEs, this problem is much more 
difficult than in systems without a delay part. Also an analytical solution cannot be 
computed in general cases of DDEs and so the equations have to be solved numerically. 

There exist some methods of deciding whether the system is stable or not. Some of 
these ideas come from the second half of the nineteenth century when control theory was 
first conceived by the Russian mathematician Lev Pontryagin. The methods are based on 
recognising signs of roots' real parts without the explicit knowledge of the roots or even 
the total number of roots. 

The real parts of the roots depend on constants which characterise the system itself. 
Since some types of oscillators will be studied, one of the constants is definitely the 
frequency of the system. If more complicated systems are considered, other constants 
of the systems, for example friction, also influence the stability of the systems. Other 
constants are added to be the control. The first necessary constant is the delay. As it has 
been said, the feedback element is multiplied by a constant. This can also build or break 
the stability of the system. 

The methods for solving DDEs give the solution as a system of inequalities. When 
visualising the results, diagrams often provide useful insights. A problem can be that 
a dependency of just two parameters can be visualised in a standard two-dimensional 
diagram. One way to create the diagram is to consider a fixed system which shall be 
controlled. In this case, the diagram shows the dependency of the time delay and the 
constant multiplying the feedback element. The second possibility is to fix one of the 
constants defining the controller. Typically, this fixed constant is the time delay. In this 
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1 INTRODUCTION 

case, the control is just partly defined, but also the controlled system is not fully defined. 
So the aim is to find a combination of the controller and the system that will be stable. 
Here, the diagram shows the dependency of the missing parameters. 

The thesis is divided into seven main chapters. In chapter 2, we begin with the 
mathematical background of uncontrolled oscillators. Basic mechanical oscillators with a 
delay feedback control are introduced. We also explain how to understand the concept of 
asymptotic stability for oscillations. 

Chapter 3 discusses a harmonic oscillator and a damped oscillator which are taken as 
the fundamental part of the discussed models. To these systems, two types of a controller 
are added, namely that with just one feedback element, and Pyragas control. Also, 
we state here Pontryagin's theorem on stability of DDEs and apply it to the controlled 
oscillators' systems. In some cases, this theorem yields general necessary and sufficient 
stability conditions for the studied systems. On the other hand, the existing literature 
does not answer all stability issues connected with controlled oscillations. In such a case, 
only necessary or sufficient conditions are known. To verify the quality of obtained results, 
we visualise them for some fixed and some varying parameters. 

The results of chapter 4 originate from the well known fact that linear higher-order 
ordinary differential equations can be easily transformed to systems of ODEs of the first 
order. The same procedure may be done for DDEs as well. If the system of equations is 
split into an uncontrolled part and a controlled part, two system matrices are obtained. 
Thus, we are able to convert our problem to a matrix form. Discussing this form, we 
present a stability theorem which gives necessary and sufficient conditions in terms of 
matrices' eigenvalues. This theorem is also simplified in some particular cases. The 
controls discussed above are used as the delay feedback control. 

In the next chapter, basic notions connected with synchronisation are introduced. 
Synchronising objects are coupled by use of states of objects involved in the system. In 
this thesis, we consider the coupled parts in delayed forms. The system is synchronised 
if an auxiliary D D E is stabilised. Three different ways of synchronisation are shown. In 
each of the cases, the algorithm for solving is based on the conversion of the model to a 
form involving simpler harmonic oscillators, possibly with a delay. Various illustrations 
are shown as well. 

Chapter 6 focuses on numerical solutions of DDEs. A solver in M A T L A B is fully intro
duced. Using this solver, two systems from the previous chapter are solved numerically. 
These numerical solutions and corresponding graphs are also compared to the obtained 
theoretical results. 

Final remarks commenting on the results and possible future research conclude the 
thesis. 
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2 Some essentials on oscillator's 
controls and stability 

This section introduces the basic form of the studied problems. We focus on the 
motion of the system and its related mathematical apparatus, in particular stability. 

Since we consider linear homogeneous differential models only, the notion of asymp
totic stability or stability is defined for any linear homogeneous differential equation by 
the requirement that any its solution is tending to the zero solution, or its bounded, 
respectively. Due to linearity, the notion of asymptotic stability or stability is usually 
related to the zero solution, to any other solution or to the equation itself. If there exists 
an unbounded solution of the equation, then we say that the solution (or the equation 
itself) is unstable. 

2.1 The mechanical oscillator and its control 
A mechanical oscillator is a system of a point mass moving in time repetitively. During 
this movement, position, velocity (the first derivation of position) and acceleration (the 
second derivation of position) are changing. The modelling of such equations is one of a 
typical application of ODEs. 

If we consider the simplest model of an one-dimensional mechanical oscillator, the 
only force in the system is the force created by the spring. We describe this system by 
the equation 

my(t) + ky{t) = 0 

where m is the mass of the point mass and k is the stiffness of the spring in the system. 
Both m, k are real and positive. The equation can be equivalently modified to the form 

k 
y(t) + u2y(t) = 0, u2 = — > 0. (2.1) 

m 
This mechanical system is called the harmonic oscillator. Further, we can consider more 
forces acting to the mass point. If a frictional force is added to (2.1), we get a damped 
oscillator given by 

y(t)+2by(t)+u2y(t) = 0, u2 = - , b=^-. (2.2) 
m 2m 

In case of a driven oscillator, a periodic external force is added to the system (2.1). 
This model is described as 

P k 
y(t) + u2y(t) = — sm(ujt), u2 = — > 0. 

m m 
where P is a real amplitude of the external force. It is also possible to create a damped 
driven oscillator. A l l of these models can be solved analytically, so we get a general 
solution and, together with initial conditions, we can get a particular solution (see [1]). 

If we consider a controller of an oscillator, it is an external force depending on time 
and acting on the mass point for getting the system to a required motion. In general, the 
controlled harmonic oscillator's differential equation is 

y{t) + u2y{t) + u{t) = 0 

14 



2 SOME ESSENTIALS ON OSCILLATOR'S CONTROLS AND STABILITY 

where u(t) is a general function depending on time. 
In a feedback controller case, the external force depends on the motion of the point 

mass. So now the control function is u(y(t)). This means that the controller reacts to 
the actual motion of the mass point and drives the mass point at the same time. The 
problem is that the controller of this type can not be produced in practise because we 
would get an external mechanism which is able to drive the mass point without any data 
processing. 

For solving this problem, we consider a feedback (time) delay controller u(y(t — r)) 
where r > 0 is called the delay of the control. This form of the control means that 
the external mechanism receives some information about the motion of the point mass, 
has some time r to data processing and drives the point mass with respect to these 
information from past. The equation with this type of the controller is call the delay 
differential equation (DDE). However, even the simplest form of DDEs can not be solved 
analytically and numerical methods are used for solving only. Similarly, it is possible to 
control a damped oscillator, a driven oscillator and a damped driven oscillator. 

In the next chapters, we will consider the feedback delay control in the forms 

u(y(t)) = cy(t - r ) , or u(y(t)) = c(y(t) - y(t - r)) 

where r > 0, c G M.. These controls will be added to different types of mechanical 
oscillators and we will study stability of each system depending on coefficients. 

We shall note that stability of the system depends just on the homogeneous part of 
the (delay) differential equation. The non-homogeneous part does not break (asymptotic) 
stability and also it can not make the system stable. Thus, the case of the driven os
cillator and the damped driven oscillator will not be studied because the results would 
be equivalent to the results from the cases of the harmonic oscillator and the damped 
oscillator, respectively. 

2.2 Basics of stability of harmonic oscillators and their 
delay feedback control 

We briefly recall the algorithm for studying of stability of higher order linear ODEs. This 
problem will be solved similarly in the case of DDEs. 

We consider an autonomous linear O D E of n-th order (n > 2). These differential 
equations are solved by the characteristic equation which is obtained by the assumption 
that the solution has the form 

y(t) = ext. 

If we substitute this assumption into the linear O D E (including its derivatives), then we 
obtain the characteristic equation where A is called the root of the characteristic equation. 
The characteristic equation of linear ODEs of n-th order is a polynomial of order n. We 
solve this polynomial analytically or by numerical methods and we get n complex roots 
A. It is well known that the studied linear O D E is asymptotically stable if and only if all 
characteristics roots A have negative real parts, and unstable if at least one characteristics 
root has a positive real part. The equation is stable if all characteristic roots have non-
positive real parts and those with zero real parts are simple. See [2] for more details, 
proofs and examples. 
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2.2 BASICS OF STABILITY OF OSCILLATOR AND ITS CONTROL 

In a particular case of the harmonic oscillator, the O D E describing the system is given 
by (2.1) where u is called the frequency of the mechanical system. The corresponding 
characteristics equation is 

A 2 + u ; 2 = 0. 

Thus, we obtain the polynomial of the second order which may be solved easily. The 
roots are 

A = ±ioj. 

Since the roots are simple and their real parts are zero, this equation is stable. Similarly, 
the damped oscillator's asymptotic stability would be determined using its characteristic 
equation. 

The system of the harmonic oscillator with the simple feedback delayed control has 
the form 

y\t) + u2y(t) + cy{t - r) = 0, t > 0. 

Similarly as for ODE, we need a initial condition of the system. The motion at the initial 
time t — 0 is not sufficient because the function y(t) is defined for time t > 0, so the 
component y(t — r) would be undefined in the whole time interval t G (—r; 0). In case of 
DDEs, we need a continuous function which defines the behaviour of the system at time 
t G (—T; 0). The system is not controlled on this time interval and the controller does not 
act on the system. Hence, the fully defined harmonic oscillator with the feedback delay 
control is given by 

y(t)+u2y(t) + cy(t-T) = 0, £ > 0 

y(t) = 4>(t), - r < t < 0 , 

where ip(t) G C ((—r; 0); M.) is an initial function. 

As for the linear ODEs, we assume that the solution of the system is 

y(t) = ext 

with A G C, so clearly 

y(t-r) = e x ^ \ 

Substituting these assumptions in the differential equation (2.3) gives 

equivalently, 
A 2 + u 2 + ce~XT = 0. (2.4) 

This equation is called the characteristic equation of the system (2.3). Similarly to the 
linear non-delayed case, the equation's asymptotic stability can be equivalently expressed 
by the requirement that all the roots of (2.4) have negative real parts. See [3]. 

Now we would find the roots of the characteristic equation in the linear ODEs case. 
However, in our case, the equation is not a polynomial and we do not know neither the 
exact number of the roots in general or the signs of their real parts. 

16 



3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

3 The application of the 
Pontryagin's method 

In this chapter, one of the most widely used method for the determination of stabil
ity will be stated and used. First, we give one necessary definition. Monic real-rooted 
polynomials f(x) of degree n with roots an < • • • < a.\ and g(x) of degree n — 1 
or n with roots fin-\ < • • • < Pi (possibly (3n < (3n-i) are said to be interlacing if 
Oin < Pn-i < a n _ i < • • • < «1 < (3o < «0 (possibly (3n < an). We also say that g(x) 
interlaces f(x). 

For using Pontryagin's method, the exponential polynomial H(X) must be stated. 
This function is defined as the left-hand side of the characteristic equation where the 
right-hand side is zero. Computing this function in the critical point A = iy, H{iy) may 
be split into the real and the complex part as 

H(iy) = F(y)+iG(y). 

The following properties show when all roots of (2.4) have negative real part. The 
theory goes from Pontryagin's theorem which can be seen with its proof in [4]. The 
theorem needs some conditions on H(y), G(y) and F(y). These functions for delay controls 
of mechanical oscillators satisfy all of the conditions. Now we must define the function 

A(y):=G'(y)F(y)-G(y)F'(y). 

The most important part of Pontryagin's theorem for our problem says that all the zeros 
of the function H(X) are in the open left half plane if and only if one of the following 
holds: 

(i) A l l the zeros of the functions F(y),G(y) are real, F(y),G(y) are interlace and 
A(y) > 0 for at least one value of y. 

(ii) A l l the zeros of the function F(y) are real and for each of these zeros y = y^ is 
A M > o. 

(iii) A l l the zeros of the function G(y) are real and for each of these zeros y — yo is 
A M > o. 

3.1 Harmonic oscillator 
Let's apply the theorem in our system. Multiplying eXr on both sides of the characteristic 
equation (2.4), the exponential polynomial 

H{\) := A V T + u V r + c = 0 

for the system (2.3) is obtained. 
For applying Pontryagin's theorem, the functions F(y) and G(y) are needed. Thus, 

we calculate H(A) at the value A = iy, i.e. at the critical point where asymptotic stability 
becomes instability and vice versa. The function H{iy) is 

H{iy) = (iy)2eiyT + u)2eiyT + c = —y2 (cos(yr) + isin(|/r)) + u2 (cos(yr) + ism(yr)) + c. 

17 



3.1 HARMONIC OSCILLATOR 

The functions F(y),G(y) are 

F(y) = —y2 cos(yr) + u2 cos(yr) + c 
= - y 2 sin(yr) + u2 sin(yr), 

with their derivatives 

^'(y) = -2ycos(yr) + (y 2 - o;2)r sin(yr) 
= -2ysin(yr) + (a;2 - y2)r cos(yr). 

The computation of these functions at y = 0 gives 

F(0) = a;2 + c, G(0) = 0, F'{0) = 0, G'(0) = rw 2 . 

So 
A(0) = ro;2(a;2 + c). 

The statement (iii) of Pontryagin's theorem says that if the zero solution of the system 
(2.3) is asymptotically stable, then A(0) > 0. That implies 

c > -u2 (3.1) 

because the coefficients u2 and r must be positive. 

3.1.1 Negative constant of the controller 
The case c < 0 will be studied now. We want to find zeros of G(y): 

G(y) =0 =>- — y2 sin(yr) + u2 sin(yr) = 0 
nn 

y0 = ±UJ, y0 = —, n E Z . 
r 

A l l zeros of G(y) are real. The condition A(y 0 ) > 0 must be satisfied for all y0. Due to 
G(y 0) = 0, A(y0) is 

A(y 0 ) = F(yQ)G'(yQ). 

First take yo = u: 

F(u)G\u) > 0, i.e. 

(—a;2 cos(a;r) + u2 cos(a;r) + c) (—2a; sin(a;r) + (a;2 — OJ2)T cos(a;r)) > 0. 
— 2OJ sin(a;r) > 0. 

Recall, u is always positive and c is negative in this case. The inequality holds if 

2kir < OJT < (2k + 1)TT, & e N U { 0 } . 

Similarly for y0 = —u: 

F(-UJ)G'(-UJ) > 0, i.e. 

(—a;2 cos(—OJT) + UJ2 cos(—OJT) + c) (2a; sin(—OJT) + (OJ2 — OJ2)T COS(-OJT)) > 0, 

2ca; sin(—OJT) > 0, 

— 2ca; sin(a;r) > 0. 

18 



3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

We obtain the same condition 

2kir < OJT < (2k + 1)TT, & e N U { 0 } . 

The third case, namely yo = nir/r: 

We rewrite the inequality for the future work in the form 

Clearly, there exists fceNU {0}, for which the inequalities 

2kir < OJT < (2k + 1)TT (3.3) 

hold. Two cases must be studied. 
First, assume 0 < n < 2k. Multiply the inequality by n and consider (3.3): 

0 < nn < 2kn < OJT 

A l l terms are non-negative, so we may square them without any changes of the directions 
of the inequalities. Thus 

0 < (wr) 2 < (2kTi)2 < (OJT)2 (—) 2 - OJ2 < 0. 

The inequality (3.2) under conditions above holds always for an odd n. For an even n, 
(3.2) is satisfied if 

{-) ~" < C -
This holds for all even n such that 0 < n < 2k. We may take n = 2k for the maximization 
of the interval. 

Second, assume 2k < n. Recall that both n, k are natural here. Hence, also 2k +1 < n 
holds. We multiply the inequality by n and consider (3.3): 

2kir <OJT < (2k + l)ir < mi. 

A l l terms are non-negative, so we may square them without any changes of the directions 
of the inequalities. Thus 

(2kn)2 < (OJT)2 < (2k + 1 ) V < (rrnf OJ2- < 0. 
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3.1 HARMONIC OSCILLATOR 

Now the inequality (3.2) holds always for even n and it is satisfied for odd n if 

This holds for all odd n such that 2k < n. The interval is maximal if n — 2k + 1. 
It follows from these two cases that 

2kir\ 2

 2 2 ((2k + l ) ^ r 

c > max < I ] — co ,co 

With this constant c and cor such that 2kn < cor < (2k + fceNU {0}, the function 
G(y) has all roots y0 with negative real parts and A(y 0 ) > 0 for these roots. Since we 
have used expressions odd and even n which are defined for non-negative integers only, 
we should study the case of negative n. It follows from the even function A(y). Hence, 
the case of negative n is trivial. As the consequence of these computations, every root of 
the function H(y) has negative a real part by Pontryagin's theorem if 

2kn (2k + 1)TT , R T R „ , 
<r<- —, fceNU{0}; 

CO 

S(2k + 1)^2^ ^ 
co2, co1 

and the system (2.3) is asymptotically stable. 

3.1.2 Positive constant of the controller 
Now we consider c > 0. The whole algorithm will be similar to the computations before. 
First, zeros of G(y) have to be found. The zeros are 

nn 
y0 = ±co, y0 = —, n E Z 

r 

and they are real. Recall that we need 

A(y 0 ) = F(yQ)G'(yQ) > 0 

for all discovered zeros. 
For y0 = —co the condition is 

F(-co)G'(-co) > 0, i.e. 

(-co2 COS(-COT) + co2 COS(-COT) + c) (2co sin(— cor) + (co2 — co2r cos(-cor)) > 0, 
2cco sin(—COT) > 0, 
2cco sin(o;r) < 0. 

Since both co,c are positive now, the inequality holds for 

(2k + 1)TT <COT < (2k + 2)n. 

20 



3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

If Vo = w 

F(u)G'(u) > 0, i.e. 

(—a;2 cos(arr) + co2 cos(arr) + c) (—2a; sin(a;r) + (a;2 — CO2T cos(a;r)) > 0. 
— 2ca; sin(a;r) > 0. 
2cco sin(a;r) < 0. 

We obtain the same condition 

(2k + 1)TT <COT < (2k + 2)n. 

Now the case y0 = mi/T is studied. The computations are analogous as in the section 
3.1.1. The final result of this case is the inequality (3.2), i.e. 

" 2 - ( t ) T > ( ( t v 

j - ^ j c r ( - l ) " (3.2) 

Clearly, there exists fceNU {0} such that the inequalities 

(2k + 1)TT < COT < (2k + 2)TT (3.5) 

hold. The next work has to be split into two parts. 
First, consider 0 < n < 2k + 1. We multiply it by n and, together with (3.5), we 

obtain 

0 < mr < (2k + l)ir < OUT. 

A l l terms are positive, so we may square them. Hence 

0 < (mr)2 < (2k + l)27r2 < (cor)2 - u 2 < 0. 

The inequality (3.2) under conditions above holds for even n. For odd n, (3.2) is satisfied 
if 

/ m r \ 2 

" - { - ) > a 

This holds for all odd n such that 0 < n < 2k + 1. We may take the maximal value of 
the interval, namely n — 2k + 1. 

Now we consider 2k + 1 < n. Since both n, k are natural, also 2k + 2 < n holds. 
Similarly, the inequality is multiplied by n and together with (3.5) 

(2k + l)7r <OOT < (2k + 2)TT < mr. 

Since the terms are positive, they may be squared without a change of the inequality 
signs. Hence 

(2k + 1) 2TT2 < (cor)2 < (2k + 2 ) V < (TITT)2 (^)2 - co2 > 0. 

For n odd, (3.2) is always satisfied. For n even, it holds if 

/ w r \ 2 2 

V7J 
00 > c. 
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3.1 HARMONIC OSCILLATOR 

The value of even n maximising the interval is n = 2k + 2. 
The final conclusion is that c must be 

2 , (2A; + 1 ) T T \ 2 /(2Jfe + 2)7r \ 2

 2 

C < 111111 < LC~ — I J , ^ :— 1 — LC 

Under this condition on c and (2k + l)n < ur < 2(k + 1)71, k G N U {0}, the function G(y) 
has all zeros y0 with negative real parts and the inequality A(y0) > 0 holds for all these 
zeros. Again, the condition for negative n follows from the even function A(y). Our final 
result of this section is that every zero of H(y) has a negative real part by Pontryagin's 
theorem if 

( » + ! ) * < T < 2 ( f c + l ) < r , £ N U { 0 } . 

o < c < m j n < M » - i ( 2 * + i " V . r 2 ( * + i " V - j 
(3.6) 

and the system (2.3) is asymptotically stable. 

3.1.3 Stability region 
We have to note that some values of u, c have not been studied. The case u < 0 is not 
determined because a; is a frequency of the mechanical oscillator (2.3) and the frequency 
cannot be non-positive. The case c = 0 is not studied in the theme of controlled systems 
either. The controller would vanish in this case and we would get the standard harmonic 
oscillator. Clearly, if one would assume r = 0, the D D E system would become an ODE 
system and its stability would be solved by a standard method by checking the negativity 
of the real parts of all roots of the characteristic equation. 

The graphical representation of the stability of the system may be done in two ways. 
The first possibility is to consider couples (u, c) for some r; the second possibility is to 
consider couples (r, c), for some u. For the (co,c) representation, we consider r as an 
unchangeable variable defining the main character of the controller for which c represents 
an acting force. The following graphs of the asymptotic stability depending on ou, c will 
be shown for some chosen values of r. 

The asymptotic stability region is given by the computations in the section 3.1.1 and 
3.1.2 for the lower half plane and the upper half plane, respectively. This region consists 
of infinitely many triangles A^, each for one particular k G N U {0}. The union of these 
triangles is called the asymptotic stability region denoted by S = [J^L0Ak. It follows 
from Pontryagin's theorem that if (ou,c) G S, the solution y = 0 of the system (2.3) 
is asymptotically stable. The triangles alternate around the axis c = 0 and grow as 
u —> +oo. 

The boundaries of the region S are curves given by 

= 0. (3.7) 

In the figure 3.1, the curves show the dependence of c on u and we obtain a collection of 
parabolas. In the figure 3.2, the curves show the dependence of c on u2. Here, the curves 
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3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

Figure 3.1: The region of asymptotic stability for the (u, c) couples and r = 1 (light grey), 
r = \/2 (dark grey) 

Figure 3.2: The region of asymptotic stability for the (cu2,c) couples and r = 1 (light 
grey), r = \/2 (dark grey) 

are straight lines. The whole theory up until now describes the system with roots with 
negative real parts and so the discovered region S is the asymptotically stable region. 

Now suppose that at least one root of the system is purely imaginary. The system can 
not be asymptotically stable. We substitute this root A = iw, w 6 R into the characteristic 
equation (2.4) and we obtain 

-w2 +u2 + ce~iWT = 0. 

This may be split into the real and the imaginary part 

Re: —w + u + ccos(—wr) = — w + u + C C O S ( W T ) = 0 
Im : csin(—wr) = —csin(wr) = 0. 

Recall that c ^ O . For satisfying the imaginary part, 

kn 
w = — , fceZ 

r 
is needed. Substituting this form of w into the real part of the characteristic equation 
gives 

- ( ^ y + c 2 + C ( - i ) f c = o 
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3.1 HARMONIC OSCILLATOR 

which can be rewritten as 

These are the boundaries (3.7) of the region S. If A = iw is known to be a purely imaginary 
root of the system, we may study its complex conjugate A as well. Substituting A into 
the characteristic equation, we obtain 

(A) 2 +oo + ce-~XT = 0. 

Recall that u, r and c are real constants. From basic formulas from complex analysis, we 
obtain 

(A)2 + u2 + = 0 

and 
A 2 + UJ2 + e~Xr = 0. 

Because the term 
\2+u2 + e~XT 

with a purely imaginary A is a solution of the characteristic equation, we get a trivial 
equation 0 = 0, which holds. Thus, if a purely imaginary term is a solution of (2.4), its 
complex conjugate is a solution as well. 

The conclusion is that the system has at least two purely imaginary roots if u, c are 
taken such that (3.7) is satisfied. We denote these curves as 

oo oo ( 
B=\jBk = \jl(x,y)eR:y = (-l)k 

k=0 fc=0 I 

Note that B is not just the boundary of S, it is the set of all the curves in the half plane. 
However, this statement does not tell us any information about the stability or insta

bility of the system with (u,c) G B. A partial result is given by Theorem 3.9. in [5], 
which states and proves the behaviour of the system for (u, c) G dS \ {(0,0)} where dS is 
the boundary of S and also is a particular subset of B. The solution y = 0 for the system 
(2.3) with (u, c)edS\ {(0, 0)} is stable. 

Further, a characterisation of the region U = M.2 \ (S U B) can be given. Recall that if 
we take (u, c) G S, every root of the system has a negative real part. If we take (u, c) G B, 
there exist at least two purely imaginary roots, i.e. roots with their real parts equal to 
zero. Hence, if we take (u, c) G U, there are no purely imaginary roots and there exists 
at least one root with a non-negative real part. This implies that the system has at least 
one root with a positive real part. Clearly, this system is unstable. 

The last missing undetermined region is B \ dS. Until this day no theorem about the 
behaviour of the system in this region has been given. The most probable hypothesis is 
that the system is unstable. This tip comes from numerical methods, but no proof of this 
claim has been given. 

The second possibility of showing the stability region in the 2D-plane is to consider 
the couples (r, c). This interpretation gives all combinations for designing a control of the 
form 

u(y(t)) = cy(t - T) 
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3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

for a given harmonic oscillator, i.e. given frequency u. The boundaries of the stable 
region are 

k e N U {0}. 

Figure 3.3: The region of asymptotic stability for the (r, c) couples and UJ — 1 (dark grey), 
u = y/2 (light grey) 

The regions have shapes similar to triangles. Different to triangles in figures 3.1, 3.2, 
the triangles become smaller with growing values of r on the rc-axis. It means that one 
has fewer options for choosing the control constant c with a large time delay r. 

The stability region is bounded from below (see the leftmost constant lines c = — 1 
and c = — 2 for u = 1 and u = y/2, respectively in the figure 3.3). These boundaries 
are given by the condition (3.1) from Pontryagin's theorem. This inequality also holds 
for representations shown in figures 3.1, 3.2 but it does not provide any limitation of the 
region because the condition is contained in the derived boundaries of the region. The 
regions similar to triangles are higher and denser for growing frequency u. 

At the end of this section, we should note that a substitution of the delay r is used in 
some bibliographies. The substitution is s — t/r. Then the initial problem is defined by 

y(t) = mt)) 

and its derivatives are 

y(t) = Ty(s(t))-s(t) = -y(s) 

ds dt T 

r ds dt TZ 

The transformed delayed term is 

y(t - T) = j 

Thus, the D D E (2.3) is transformed into 

t - T 

T 
y(s-i) 

i ••, 
y(s) + ooy(s) + cy(s - 1) = 0, s > 0. 

25 



3.1 HARMONIC OSCILLATOR 

(c)a; = l ; r = 4 ; c = - ( ( ^ ) 2 - a ; 2 ) 

Figure 3.4: Oscillation by (2.3) with initial conditions y(t) = l,y(t) = 0 for —r < t < 0 

Equivalent ly, 
jj(s) + 0J2T2y(s) + cr2y(s - 1) = 0, s > 0. 

The initial function ip is also transformed and it is given on the interval — 1 < s < 0. 
Substitutions a2 = u 2 r 2 and c = cr2 transform (2.3) to the final form 

§(s) + a2y(s) + cy(s - 1) = 0, s > 0. 

This form of the last D D E is similar to the D D E in (2.3). The computations are 
similar but they become easier now because r vanishes from all equations formally. In 
fact, all graphs are also easier to be drawn because the system depends on two constants 
a, c instead of u, c, r and a particular value of r does not have to be chosen before drawing 
a graph of the stability regions. Anyway, the delay r is still a part of the system and it 
is "hidden" inside the constants a, c. Hence, under the substitution above, all constants 
must be chosen carefully for (asymptotic) stability of the initial system. 
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3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

3.2 Damped oscillator 
The system of a damped oscillator is described as 

my{t) + ly{t) + ky(t) = 0. 

Compared to the case of the harmonic oscillator, a friction is considered now. The constant 
I is called the coefficient of friction and depends on touched materials and on surrounds. 
The equation can also be written as 

y(t) + by{t) + u2y(t) = 0, u2 = - > 0, b = - . 
m m 

The system becomes the harmonic oscillator if b = 0. It follows from [1], the system is 
asymptotically stable for any b > 0 (equivalently / > 0). What is going on if / < 0? This 
case is called an oscillator with a negative friction. The system with a negative friction 
without any control forces is unstable. This system can be seen as a reversed pendulum 
but it is not trivial to model a real mechanical oscillator as a point mass on a string with 
a negative friction. 

The system of a damped oscillator with a feedback delay control is given as 

y(t) + by(t) + u2y(t) + cy(t - r) = 0, * > 0 
y(t) = 4>(t), -r<t<0 

where ip(t) G C ((—r; 0); M) is an initial function. In the following, Pontryagin's theorem 
will be used to derive a stability region depending on u, r, c and b newly. 

3.2.1 Sufficient stability conditions 
A n intuitive way for solving the damped system is to use the algorithm described in the 
section 3.1. Note, there are no restrictions just on the harmonic oscillation case and 
Pontryagin's theorem works for any general problem. 

Begin with the exponential polynomial H(\) created by the substitution y(t) = ext 

into the D D E of the system (3.8): 

A V + b\ext + u2ext + cex{t~T) = 0. 

Equivalently, 

A 2 + b\ + UJ2 + ce~Xr = 0. 

Finally, the exponential polynomial is 

H{\) := X2eXr + b\eXr + u2eXr + c = 0. (3.9) 

Further, the function A(y) must be defined. For doing that, H{iy) has to be computed: 

H(iy) = -y2eiyT + ibyeiyT + oo2eiyT + c 
= —y2 (cos(yr) + isin(yr)) + iby (cos(yr) + isin(yr)) + UJ2 (cos(yr) + isin(yr)) + c. 
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3.2 DAMPED OSCILLATOR 

Now split it into real and complex part. 

H(iy) = F(y) + iG(y) 
F(y) = —y2 cos(yr) — bysm(yr) + OJ2 cos(yr) + c 
G(y) = —y2 sin(yr) + by cos(yr) + OJ2 sm(yr). 

The derivatives of both F(y), G(y) are required: 

F'(y) = ~ 2ycos(|/r) + y2r sm(yr) — bsm(yr) — byr cos(yr) — OJ2T sm(yr) 
G'{y) = ~ 2ysin(yr) — y2r cos(yr) + fccos(yr) — byrsm^yr) — OJ2T cos(yr). 

Recall, the function A(y) is defined as 

A(y):=G'(y)F(y)-G(y)F'(y). 

At first, A(y) at y = 0 has to be computed for Pontryagin's theorem. Since 

F (0 )=u ; 2 + c, G(0) = 0, F'(0) = 0, G'(0) = 6 + o;r, 

it implies 
A(0) = (UJ2 + c)(b + cor). 

The first statement of Pontryagin's theorem says that if the zero solution of the system 
(3.8) is asymptotically stable, then A(0) > 0. This holds if either 

c > -OJ2 Ab> -U2T 

or 
c < -OJ2 A b < -u2r. 

The result can be interpreted as following: If the coefficient of friction is "big enough", i.e. 
the case of positive friction or weak negative friction, the condition on control coefficient 
is the same as in the section 3.1. On the other hand, if the b is "too small", the only 
possibility to get a stable system is to choose a negative c. 

Following the algorithm from the section 3.1, the problem shall be split into cases of 
positive and negative coefficient c. A l l zeros of G(y) have to be computed in both cases. 
So we have to solve 

{OJ2 — y2) sin(yr) + by cos(yr) = 0. 

The equation can be solved numerically but it would not give general forms of all zeros of 
the function G(y). Thus, a substitution transforming the damped system to the harmonic 
oscillator case will be used. 

The aim is to find a substitution which eliminates the term y(t). The wanted substi
tution is 

y(t) = e-^z(t), (3.10) 

where z(t) is a smooth function. To prove this choice, the first and the second derivatives 
are required: 

V(t) = -^e-^z(t) + e-^z(t) 

b2 b b b 
y{t) = —e~^z{t) - be~^z{t) + e~^z{t). 
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Together with the original form of y(t), they give 

, . , , » . , . - , , - ) , „ „ ( ? - ? . . . ) , - , „ „ . : - , , „ - , , . . 

Clearly, the once derived term is vanishing. By multiplying ea* and a correction of the 
constants, the differential equation 

z(t) + (^u2 - z(t) + ceiTz{t - r) = 0 

is obtained. Now every term of the equation has a form of the function z(t) multiplied by 
a constant. The constants can be denoted as 

u2 - = a, ceiT = c. (3.11) 

These substitutions give a new form of the D D E describing the damped feedback oscillator 

z(t) + az(t) + czit - T) = 0. (3.12) 

This equation is similar to the harmonic oscillator case (2.3). 
The only difference comes if b2 > 4u2. In such a situation, the constant a is negative 

and a similar case have not been studied in the section 3.1. Fortunately, it is not a big 
deal to study this problem. 

Assume a < 0. Since the algorithm from the harmonic oscillator is followed, the expo
nential polynomial H(X) must be found and also the corresponding functions F(z), G(z). 
For now, just the function 

G(z) — (a — z2) sm(zr) 

is required. The zeros of G(z) with the negative real coefficient a are 
r— nn 

ZQ = ±iW\a\, zo = — , n G Z . 
r 

So there are complex zeros and Pontryagin's theorem says that the exponential polynomial 
H(\) has a root with a negative real part. This implies the system is not asymptotically 
stable whenever a < 0, i.e. b2 > 4u2. 

The next results may be obtained from the section 3.1. The solution has to be split 
into the cases of a negative and a positive c. By the previous results, the system of the 
damped oscillator described by (3.12) with (3.10) is asymptotically stable if and only if 

2kir (2k + l)ir , . . 
<T<- -jJ—, fceMU{0}; 

or 

a v a 
, ,'2kn\2

 A A f(2k + 1)TTX 2 ' 
0 > c > max < ( ) — a, a — ( 

(2k + l)-K 2(k + l)n , ^ , , 

v a 
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3.2 DAMPED OSCILLATOR 

Additional condition for both cases is a > 0. In terms of the original variables u, r, b, c 
given from (3.11), the inequalities, where u,b are chosen and r, c dependent, become 

2kir (2k+ 1)71 , ^T . . 

2 _ 6£ W -

, ,'2A;7r\ 2

 2 b2

 2 b2 /(2fc + 1 ) T T \ 2 I 6 , 
0 > r > max<; | — - J - u 2 + — ,u2 - — - f — ^ - 1 > e " 

or 

(2fc + 1)TT 2(k + l)ir , 

2 _ £ 2 _ 

0 < c < min < a; ;— 
(2A; + l )7 r \ 2 /2(fc + l)7r 

r 
- W Z + — > r f 

and for both cases also 4u > 62 must hold 

Figure 3.5: The (u, c) plane with the stability region of (3.8) for r = 1, b = 1 (light grey), 
r = 2,b = 1 (middle grey) and r = 1, b = 2 (dark grey) 

Figure 3.6: The (r, c) plane with the stability region of (3.8) for OJ 
grey), u> — 1, b — 1 (middle grey) and a; = 1, 6 = v 2 (dark grey) 

\/2, 6 = 1 (light 
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The solution is similar to the harmonic oscillator case. The region bounded by the 
conditions above can be drawn in both (UJ, c) and (r, c) planes. Choosing the parameters 
from this region, the function z(t) derived from (3.10) as 

z(t) = e^yit) 

is eventually tending to zero. The function z(t) is the product of two functions, namely 
ea' and y(t). Here, the discussion has to be split into two parts depending on the sign of 
b. 

If b > 0, the argument of e^1 is positive and the function itself is unbounded. Now 
suppose, the derived condition on r and c hold, i.e. z(t) is tending to zero. This means 
the product of the unbounded function e^1 and the searched function y(t) is tending to 
zero. A situation like this is possible if y(t) is tending to zero "more strongly" then e?1 is 
tending to infinity. This situation is described by the derived conditions. 

On the other hand, there are parameters for which y(t) is tending to zero but z(t) is 
not. These parameters are not determined by the conditions on r and c of z(t). In this 
situation, y(t) converges to zero but it is not "enough strong" to defeat the unboundness 
of ez*. 

The conclusion of this discussion is that the conditions derived in this section for b > 0 
are sufficient conditions only, not necessary. Under them, the function y(t) is tending to 
zero but there are other combinations of r and c making y(t) asymptotically stable. 

Now assume b < 0. The function ea* is tending to zero. Choosing parameters out 
of the stability region of z(t), the function y(t) is clearly unbounded, even so strongly 
unbounded that it is able to break the boundness of e^. In the case of bounded z(t). 
we do not know any sufficient information about y(t). The product of bounded ea* and 
unbounded y[t) may be bounded. Clearly, also the product of ea* and bounded y(t) is 
bounded. Since it is not possible to extract y(t) from z(t) analytically, we can not state 
any sufficient conclusion for b < 0 now. The conditions are only the necessary conditions. 

3.2.2 Necessary and sufficient stability conditions 
The aim of this section is to state necessary conditions for asymptotic stability of the 
system (3.8). We will use Pontryagin's theorem again, but the algorithm will be changed. 

The main difference comes right in the beginning in the exponential polynomial (3.9). 
Recall, H(X) in the section 3.2.1 has been considered as 

H{\) := A V R + b\eXr + u2eXr + c = 0. 

Now we will substitute terms in this function to simplify the argument of eXr. Set a new 
variable s as 

s = A T . 

Clearly, 
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3.2 DAMPED OSCILLATOR 

with positive constant r may be substituted as an argument of H(X). Multiplying by 
r 2 , we obtain a new function H(s) depending on the variable s and characteristics of the 
mechanical system. Step by step. 

H{\) = X2eXr + b\eXr + u2eXr + c = 0 

H(s) := T2H (^j = s2es + brses + oo2r2es + CT2 = 0. 

The function H(s) is also an exponential polynomial based on the characteristic equa
tion of the system (3.8). This means that Pontryagin's theorem may be applied with H(s). 
Before doing that, the real part and the complex part of the exponential polynomial at 
the critical value s = iy have to be computed: 

H(iy) = -y2eiy + ibryeiv + u?T2elv + c r 2 

= —y2(cos(y) + ism(y)) + ibTy(cos(y) + ism(y)) + uj2T2(cos(y) + isin(?/)) + cr 2 

= F(y) + iG(y) 

F(y) = —y2 cos(y) — bry sm(y) + UJ2T2 cos(y) + c r 2 (3.13) 
G(y) = —y2 sm(y) + bry cos(y) + UJ2T2 sm(y) (3-14) 

A similar delay system solved by Pontryagin's theorem has been discussed in [6]. 
Theorems here are done even for more general second-order delay problem. In this thesis, 
we still focus on controlled mechanical oscillations only. One of results from this paper 
may be used for our system (3.8). 

First, a conclusion of a theorem in [6] states necessary conditions for asymptotic 
stability of the controlled damped system satisfying b ̂  0 and u2c < 0. The necessary 
conditions are 

6 > 0 and u2 + c> 0. (3.15) 

Moreover, also necessary sufficient conditions have been stated here. It follows from 
them, the system (3.8) with the parameters b ̂  0 and u2c < 0 is asymptotically stable if 
and only if 

6 > 0 , UJ2 + C>0 (3.16) 

and 

(a) if u2>0, then F (r2k) > 0 k = 1,2,... 
(b) if u2<0, then F ( r 2 f c + i ) < 0 fc = 0,1,2, . . . ^ ' ' 

where the function F(y) is defined in (3.13) and are positive roots of the function G(y) 
defined in (3.14). The proofs of both statements may be seen in [6]. 

As it has been said, this thesis focuses on problems of mechanical oscillations. It 
restricts the work to cases of the positive real phase frequencies u. Thus, the case (3.17b) 
can not be used. Considering this fact, the assumptions of both necessary and necessary 
sufficient conditions are modified to b ̂  0 and c < 0. This also means, that the derived 
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necessary sufficient conditions may be used for case of the negative control constant c. 
The conditions (3.15), (3.16) may be equivalently written as 

b > 0, 0 > c > -u2. 

An important result of the theorem above is that the damped system (3.8) with c < 0 
can not be stabilised with a negative constant b. This rejects the idea of damped oscillators 
with negative frictions under this particular assumptions of this statement. 

Further, this expression of Pontryagin's theorem does not give any information about 
the system with a positive control constant c > 0. This case is not allowed by the essential 
of mechanical oscillations u2 > 0. Anyway the statement does not set the equation (3.8) 
with positive control constant to be unstable. Conditions for c > 0 have not been derived 
in this sections because this case does not fulfil our assumptions. Following the results 
from the section 3.2.1, there exist combinations of the parameter with c > 0 stabilising the 
equation (3.8). Unfortunately, we have not derived any necessary sufficient conditions. In 
a general D D E problem, it is not a big deal to consider a system described by an equation 
where would be a negative constant instead of our u2. In such a case, Pontryagin's 
theorem might state necessary sufficient conditions even for controls with positive control 
constants. 

The most difficult problem appears from the conditions (3.17). Since G(y) has, in 
general, infinitely many positive roots, it is not possible to check signs of F(ri) for each 
% G N . Fortunately, the paper [6] brings a solution. It has been proved there that if 

u2>0, F(r2k)>0, k = 1,2,...,n, 

where 
3 
-71 > [r2„] > 71 and (~r\n + UJ2T2) cos(r 2 n) + cr2 > 0, (3.18) 

then 
F(r2k) > 0 

for all k. The function [a] is defined as the residue modulo 2n of a real number a. Clearly, 
[a] is also real and 0 < [a] < 2n. Similar statement could be given also for (3.17b) if 
u2 < 0 but it is not needed for the system (3.8). This gives a significant simplification, 
because only finitely many positive roots of G(y) have to be considered. 

A big disadvantage of the algorithm described in this section is that stability regions 
in any plane cannot be drawn. If one wants to check the stability of the damped oscillator, 
all parameters must be chosen in advance. If the conditions (3.16) hold, roots of G(y) 
have to be computed and check the condition (3.17a). It is enough to consider the roots 
until the one satisfying (3.18). 

The case b < 0 cannot be stabilised using this control (by (3.16)). The case b > 0 
means that already uncontrolled system is asymptotically stable. Here, the control may 
be used for speeding up the convergence, or it can have a destabilising effect. 

A similar algorithm may be used for harmonic oscillators, too. Some results are given 
in [6]. In the beginning, the exponential polynomial have to be recomputed to the form 
of H(s) from the current section and the function F(y),G(y) as well. Results would be 
equivalent to the stability regions derived in the section 3.1. 
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3.3 Pyragas control 
A special case of controls are so called noninvasive controls. They can be used for a control 
of a periodic function. The characteristic of this method is that the control vanishes for 
a particular choice of the delay r. Since the aim of the control is to obtain a controlled 
stable periodic system , the noninvasive control vanishes for t —> oo, too. 

The well known type of the noninvasive control is Pyragas control. The control of this 
type has the form 

u(y(t)) = c(y(t)-y(t-r)). (3.19) 

This method was originally developed by physicist Kestutis Pyragas from the Russian 
Federation in 1992 [7]. Clearly, the function y(t) describing a movement of a point mass 
(oscillation) is a periodic function. The period of y(t) will be denoted as T. Recall, the 
period of a function is the least positive constant such that y(t) = y(t + T). If the time 
delay r is chosen properly, the controller (3.19) is identically equal zero. In this case, the 
proper choice is 

r = kT, fceN. 

It is easy to show 

u(y(t)) = c(y(t) - y(t - kT)) = c(y(t) - y(t)) = 0. 

Since this chapter's aim is to find conditions for asymptotic stability of y{t), the 
oscillation under these conditions shall tend to the zero state. Thus, we may consider 

lim y(t) ->• 0. 
t—>oo 

Clearly, also 
lim y(t - T) ->• 0. 

t—¥00 

It shows that the control also vanishes for any choice of r as the time increases and so 

lim u(y(t)) = lim c(y(t) - y(t - r)) c(0 - 0) = 0. 

. Note, this property does not hold in general, an asymptotic stable function is necessary. 

3.3.1 Pyragas control on harmonic oscillators 
A harmonic oscillator with Pyragas control is given by 

y(t)+u2y(t) + c(y(t)-y(t-r))=0, t>0 

y(t)=m, -r<t<0, 

where ip(t) G C ((—r; 0); M) is an initial function. In some references, the control has the 
form 

u(y(t)) = c(y(t-r)-y(t)). 

Since c G M, this control can be transform to the form from (3.20) by changing the sign 
of c. The results will be similar. 
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3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

To study asymptotic stability of the system, Pontryagin's theorem will be used. Hence, 
(3.20) must be converted to a form similar to (2.3). Thus, 

and do substitutions 

So the equation 

y\t) + (oo2 + c) y(t) - cy(t - r) = 0 

(oo2 + c)=a, -c = c. (3.21) 

y(t) + ay(t) + cy(t - r) = 0 (3.22) 

is obtained. This is a D D E similar to delay equation of the harmonic oscillator with the 
simple feedback control u(y(t)) = cy(t — r) which has been studied in the section 3.1. 
Final results for (3.20) are given briefly referring to the section 3.1 where the complete 
computations have been done. 

Following a partial result from the section 3.2, the system (3.20) (equivalently (3.22)) 
is not asymptotically stable if a < 0, i.e. c < —oo2. The condition A(0) > 0 following the 
notation from Pontryagin's theorem gives the condition 

ra(a + c) > 0. 

In the sense of the original constants, 

r (oo2 + c) (oo2 + c - c) > 0 

TOO2 (oo2 + c) > 0. 

Since both r and oo2 are positive constants and {oo2 + c) > 0 holds by the derivation above, 
the inequality is satisfied without any other restriction. By the final results from 3.1.1 
and 3.1.2, the system of a harmonic oscillator with Pyragas control (3.20), equivalent to 
(3.22) with (3.21), is asymptotically stable if and only if 

2kn (2k + l)?r , . . 
<T<- jJ—, fceMU{0}; 

or 
(2k + l)-K 2(k + l)7T , ^ , , 

v o 

0 < c < m i n < a - | ( a + 1 > V . P » + 1 > ' ) -a 

In both cases, also a > 0 must be satisfied. By the backward substitutions (3.21), the 
conditions become 

2kn (2k + 1)TT , . . 
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3.3 PYRAGAS CONTROL 

or 

Vw + c Vw + c 

0 > c > max <( ( — ] - or - c, OJz + c - I — — 

and also c > —a;2 must be satisfied in both cases. Note, inequalities' signs in the conditions 
for c and operations max, min are changed because the conditions are multiplied by a 
negative number. 

Since the searched constant c is in the both sides of the inequalities for c, the obtained 
conditions must by rewritten as following four conditions: 

2kir (2k + 1)71 , r . 

Vw + c Vw + c 

e < j + ( . f ^ ' < ( ^ ' ) ' ) ' ^ . t 

m 

I V 

c < 

2kir (2k + 1)71 , r . 

Vw + c Vw + c 
(2A; + l ) 7 r \ 2 „ _ „ f 2ku 

co C < CO + c 
T 

(2k + l)n 2(k 

V w 2 + c 
l k 

\foj2~+~C 
k e N U {0}, 

c > oo + c — 2(fc + 1)TT 
T 

> 
{2k+l)n 

-co — c 

(2k+ 1)TX 2(k + l)7r , 
< r < v ^ ^ , & e N U { 0 } , 

c > 

\foj2~+~c 
(2A; + 1)TT 

r 

\JOJ2 + c 

OJ — C > OJ + c 2(fc + 1)TT 

In the second step by splitting the c conditions' triple inequalities, these four pairs of the 
conditions become the following triples 
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2kix (2k + l)?r , . . 
Vw + c Vw + c 

{2kii\2 {(2k + l)n\2 , 

) 0 < c <w2 + c -
2fc7r\2 

2kir (2k + l)?r , r . 
Vw + c Vw + c 

(2fc + 1 ) T T \ 2 „ „ (2k^ 2 

' » - w 2 - c <w2 + c - ' 

,(2A; + l )7 r \ 2

 2 0 < c < — - w - c 

(2k+ 2(k + l)n , ^ , , 
V w 2 + c V w 2 + c 

^ - ( 2 ' * + 1 " ) ' > ( ' 2 * + 1 " ) ' - l ^ - c , 

2 
0 > c > w 2 + c 

(2fc + 2)7T 

r 

Vw + c Vw + c 
(2£; + l)7r\ 2

 2 2 /2(fc + 1)TT 

r 

„ > c > , g ± » V _ J _ , 

The second and the new third inequalities of cases (i) — (iv) can be simplified and so the 
final forms of the conditions is obtained as 

(i) 

2kn (2k + l)ir , . . 
Vw + c Vw + c 

2 , ^ (8A;2 + 4k + 1)TT2 

w z + c <- 2r 2 

2&7T 
r > 

w 
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2kir (2k + l)?r , . . 

a/ + c > 

yuP + c 
(8k2 + 4k + 1)TT2 

0 < c < -
2 

2r 2 

(2fc + 1)TT 

r 
— a; 

m 

(2fc + 1)TT 2(k + l)ir , ^ , , 

a/ + c > 

r < 

\ / C J 2 + c 
(8fc2 + 12Jfe + 5)TT2 

2 ^ :  

2(fc+ 1)TT 

I V 

(2k + l)n 2(k + l)ir , ^ , , 

0 > c>-

(8&2 + 12fc + 5)TT2 

2T2 ' 
(2/c + l)?r 

r 

In fact, not all of these inequalities are necessary. Look at the following figure 3.7. 
Here, the curves are 

Figure 3.7: The (r, c) plane with curves given by inequalities from (i) — (iv) for k — 0,1, 2 
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3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

(b) The region by (ii) 

(c) The region by (iii) (d) The region by (iv) 

Figure 3.8: The regions of asymptotic stability for (3.20) with UJ — 1 

(8k2 + 4k + l)n2 

ak: UJ + c 

bk : c — -
2 

cfc : UJ2 + c 

2r 2 

(2A; + 1)TT 
UJ 

{8k2 + 12k + 5)TT2 

2T~2 

with UJ — 1. 
The conditions (i) set the asymptotically stable region as the region bounded by 

from the left and by ak from the right on the upper half-plane. The condition (ii) r 2fc7T 

set the asymptotically stable region as the region bounded by ak from the left and by bk 
from the right on the upper half-plane. Similarly for the conditions (iii): by Ck from the 
left and by r = 2(-fc^1->7r from the right. Now the region is in the lower half-plane. Finally 
the region from the conditions (iv) is bounded by bk from the left, by c& form the right 
on the lower half-plane. See the figure 3.8. 

The final asymptotic stability region (presented in the figure 3.9) is an union of the 
four regions above. It is obvious that the four regions for each k become just two regions, 
one in the upper half-plane and one in the lower half-plane. Hence, the curves a^, Ck 
can be neglected as boundaries of the stability region. Even if it has been proved from 
the pictures for particular UJ — 1, this fact is true for arbitrary positive UJ and every 
k e N U {0}. 
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3.3 PYRAGAS CONTROL 

Figure 3.9: The union of the stability regions 

The conclusion is that the conditions (i) — (iv) can be simplified as the following: The 
system (3.20) is asymptotically stable if and only if 

2kn (2fc + l)vr 

or 

< r < 
to CO 

-, keNu{0}, 

0 < c < 
(2k + 1)TT 

LO 

+ < t < gCfc+iK , £ N U { 0 } _ 

LO 00 

0 > c > 
1 (2fc + 1)TT 

T 
CO 

(3.23) 

(3.24) 

Figure 3.10: The asymptotic stable region of (3.20) with to — 1 (light grey) and u; = \[2 
(dark grey) 

Note, the condition (3.1) is trivial in this case because 

c> -a -c > -co2 - c co2 > 0 

with a, c from (3.21) holds always. Also the condition c > -co2 is neglected because it is 
automatically satisfied by the inequalities above. 
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-0 2 ' 1 1 1 1 1 1 1 1 1 1 

0 5 10 15 20 25 30 35 40 45 50 

I 

(c)a; = l ; T = l ; c = i ( ( ^ ) 2 - a , 2 ) 

Figure 3.11: Oscillation by (3.20) with initial conditions y(t) = l,y(t) = 0 for —r < t < 0 

The regions of asymptotic stability are again similar to triangles. With growing u, 
they are higher and denser. 

3.3.2 Pyragas control on damped oscillators 
Pyragas control can be used in a system of damped oscillation as well. This general 
system has the form 

y(t) + by(t) + u2y(t) + c (y(t) - y(t - r)) = 0, t > 0 
y(t) = i>(t), -r<t<0, 

with ip(t) an initial function. We suppose b to be any real number except zero. The task 
of asymptotic stability will be answered by the algorithm from the section 3.2.2. Before 
its using, the delay differential equation of the damped oscillation with Pyragas control 
(3.25) must be converted to the form of (3.8). Thus, the equation 

yit) + byit) + {u2 + c)y(t) - cy{t - r) = 0 

is obtained. 
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3.3 PYRAGAS CONTROL 

This equation gives the characteristic equation 

A V + b\ext + (oo2 + c)ext + c e x ^ = 0. 

The corresponding exponential polynomial is 

H{\) := A V A + b\erX + (oo2 + c)erX + c = 0. 

Using the substitution 
A = * 

r 

as in the section 3.2.2, the exponential polynomial can be equivalently expressed by 

H(s) = s2es + brses + (oo2 + c)r2es - cr2 = 0. 

The functions F(y) and G(y) come from H(s) at the critical value s = iy: 

H(iy) = F(y) + iG(y) 
= {iy)2eiy + br{iy)eiy + {u2 + c)r2eiy - cr2 

= —y2(cos(y) + isin(y)) + ibry(cos(y) + isin(y)) + (UJ2 + c)r2(cos(y) + isin(y)) — cr2 

F(y) = —y2 cos(y) — fcrysin(y) + {oj2 + c)r2 cos(y) — c r 2 (3.26) 
G(y) = —y2 sin(y) + bry cos(y) + (UJ2 + c)r2 sin(y). (3.27) 

The above functions are necessary for using the results from [6]. A theorem from this 
paper states the necessary conditions for asymptotic stability of (3.25) with parameters 
satisfying 

6 ^ 0 , (OJ2 + c)c> 0 (3.28) 

as 

b > 0, to2 > 0. (3.29) 

The second inequality from the assumptions (3.28) holds if 

o;2 + c > 0 A c > 0 c > 0 

or 
o;2 + c < 0 A c < 0 = ^ c < -to2. 

The first inequality from (3.29) allows the case of positive damped constant b only. This 
means that the system with (3.28) and negative friction can not by stabilised. The second 
inequality from 3.29 holds automatically. 

The paper [6] gives the necessary sufficient conditions with proofs as well. The equa
tions (3.25) with (3.28) is asymptotically stable if and only if (3.29) hold and 

(a) if c > -u2, then F (r2k) > 0 = 1,2,... 
(b) if c<-to2, then F ( r 2 f c + i ) < 0 fc = 0,1,2, . . . 

where the function F(y) is defined in (3.26) and are positive roots of the function 
G(y) defined in (3.27). Considering the requirement (3.28), the statement (3.30a) shall 
be written as the following: 

if c > 0, then F (r2k) > 0 k = 1,2,... 
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3 THE APPLICATION OF THE PONTRYAGIN'S METHOD 

The conditions (3.30) expect to check all roots of G(y). A problem comes with infinite 
number of roots of G(y). This conditions may be weakened. It has been proved in [6] 
that if 

c > -u2, F(r2k) > 0, fc = l , 2 , . . . , n , 

where 
3 
-7r > [r2 n] > 7r and ( — + (u2 + c)r 2) cos(r 2 n) - cr2 > 0, (3.31) 

then 
F(r2k) > 0 

for all k. The function [a] is defined as the residue modulo 2-rr of a real number a 
(0 < [a] < 27r). Similarly for the statement (3.30b), if 

c < -a ; 2 , F(r2fc+i) < 0, fc = 1,2,..., m, 

where 
(-rL+i + + c)r 2) cos ( r 2 m + 1 ) - c r 2 > 0, (3.32) 

then 
F(r2k+1) < 0 

for all /c.This gives a significant simplification, because only finitely many positive roots 
of G(y) have to be considered. 

As in the section 3.2.2, stability regions can not be drawn in any plane. For designing 
an asymptotic stable damped oscillator under the conditions derived in this section, one 
have to choose the parameters satisfying the assumptions (3.28) and the necessary con
ditions (3.29). With this particular choice of u,b and c, the time delay r must be taken 
with respect to the conditions (3.30). It is enough to consider finitely many roots. It 
holds for (3.30a) and (3.30b) from (3.31) and (3.32), respectively. 

3.4 Comparison of used controls 
In the previous sections, we have considered two basic forms of oscillators, namely the 
harmonic oscillator and the damped oscillator. To each of these mechanical systems, some 
types of delay feedback controls have been added. First, the control of the form 

u(y(t)) = cy{t - T) (3.33) 

have been taken with the aim to find asymptotic stability's regions. Lately, the section 
3.3 have been fully denoted to Pyragas control 

u(y(t)) = c(y(t)-y(t-r)). (3.34) 

In the current section, we will put the results and see the difference of single controls. 
Considering harmonic oscillations (2.1), the control (3.33) gives the asymptotic stabil

ity conditions (3.4) and (3.6). Further, harmonic oscillations under the Pyragas control 
(3.34) is asymptotically stable if and only if (3.23) or (3.24) hold. A l l results are shown 
for particular choices of u in the figure 3.12. 

It is obvious from the figure, there are no common pairs r, c which stabilise the har
monic oscillator with both controls. If one of the control stabilises the mechanical system 
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(a) u = 1 (b) u = V2 

Figure 3.12: The regions of asymptotic stability for (2.1) with the controls (3.33) (dark 
grey) and (3.34) (light grey) 

I w w 
\ \ 
\ \ 
\ \ \ \ 

\ \ 

\ \ 
\ \ \ 

^ ^ ^ ^ ^ ^^^^^ — — ^ ^ ^ ^ ^ 

(a) u = 1 (b) u = V2 

Figure 3.13: The regions of asymptotic stability for (2.1) with the controls (3.35) (dark 
grey) and (3.34) (light grey) 

by positive control constant c in a particular interval of r, the second control might be 
stabilised by a negative control constant and vice versa. Thus, any comparing of effects 
of each control is not possible and controls with different parameters are incomparable. 

This might be managed by changing the sing of the control constant in one of con
troller. Doing it for (3.33), the controller becomes 

u(y(t)) = -cy(t T (3.35) 

The conditions on asymptotic stability of a harmonic oscillator with this control can be 
easily transformed from the results in the section 3.1, namely the conditions (3.4) and 
(3.6). Thus, the D D E is asymptotically stable if and only if 

2kn (2k + l)ir , . . 
<r<- —, keNU{0}, 

to 

0 < c < min < oo 
2kny £(2k + 1)TTX 2 

oo 

or 

( a + i > < T < 2 ( t + i ) , i 6 N U { 0 } i 

oo 

0 > c > max 
(2A; + 1)TT 

00 

i'2(k + l)irs 

-oo\ooz - ' 
T 
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Looking at the figure 3.13, there is an intersection of the stability regions of the controls 
on the interval r G (kir/cu, (k + 1)TT/UJ) for every k G N U {0}. The intersected region is 
given by the inequalities 

2kir (2k + l)n 

UJ UJ 
k G N U {0}, 

0 < c < min < UJ — 
2kir\ 

r • ' 2 
(2A; + 1)TT 

— UJ 

union 
(2* + l ) , r < T < 2 ( * + l ) , fc£Nu{0}_ 

UJ 

0 > c > max < uj2 

UJ 

2(k + l)ir\2 1 
r J ' 2 

{2k + 1)TT 

The boundary curves 
2&TT 

r 
come from the boundary of the system controlled by (3.35) and the boundaries 

ck = -
{2k + 1)TT 

r 
— a; 

(3.36) 

(3.37) 

come from asymptotic stability of the harmonic oscillator with the control (3.34). 
An intuitive question is which control is better (in sense of asymptotic stabilisation's 

speed) in the region where both systems are tending to zero. The answer strictly depends 
on the particular choice of the control parameters r and c. The following breakdown holds 
on every interval r G (kn/u, (k + 1)TT/UJ). 

Fix the control constant c such that there exist some f for which the systems with dif
ferent controls are asymptotically stable. These f are subintervals of some r G (kn/u, (k + 
1)111OJ) and each of the subintervals is bounded by values satisfying either (3.36) or (3.37). 
If one chooses f close to the boundary (3.36), the system with the control (3.35) tends to 
the zero slowly since it is close to the r's value when the system would be (just) stable, 
i.e. the value on the curve (3.36). With this particular choice of f and c, the Pyragas 
control (3.34) is more effective. See the figure 3.14. 

On the other hand, if f is chosen close to the boundary (3.37) with the same fixed 
c, the system with the control (3.34) tends to the zero slowly. This is going on because 
the chosen f is close to the r's value when the system is controlled as a stable system. 
However, the system with the control (3.35) is farther from its boundary. Hence, the 
control (3.35) acts on the system more strongly. This situation is drawn in the figure 
3.15. 

If f is chosen from the middle of a subinterval, both controls are equivalent approx
imately (see the figure 3.16). Shifting f to the boundary (3.36), the system with (3.35) 
gets weaker. Similarly, f shifted to the boundary (3.37) makes the system with (3.34) 
weaker. 

Now fix the delay r such that r ^ kir/uj for k — 0,1, 2, Clearly, there is an interval 
of c asymptotically stabilising the harmonic oscillator with both the controls. The effects 
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0 10 20 30 40 50 SO 70 80 00 100 0 10 20 30 40 50 60 70 30 90 100 
t t 

(a) Oscillations under (3.35) and (3.34) (b) The difference of oscillations 

Figure 3.14: The comparison of harmonic oscillations with u = 1, c = —0.2, r = 5.6 and 
initial conditions y(t) — 1, y(t) — 0 for —r < t < 0 

(a) Oscillations under (3.35) and (3.34) (b) The difference of oscillations 

Figure 3.15: The comparison of harmonic oscillations with u = 1, c = —0.2, r = 4.2 and 
initial conditions y(t) — 1, y(t) — 0 for —r < t < 0 

of the controls will be described by the use of the paragraph above. Choosing a particular 
c from the asymptotic stable interval, we look at the fixed r. If r is closer to (3.36) than 
to (3.37), the control (3.34) is more effective and vice versa. 

Suppose r and c are chosen at the intersection of the boundary curves (3.36) and 
(3.37). Both controls make the system stable (see 3.17a). In general, the oscillations have 
different amplitudes. Also the frequencies and periods are different but the frequency of 
one system is a rational multiple of the second one. The same holds for the periods, too. 
Both facts are visible in 3.17b. 

Considering the damped oscillator (2.2) and the same controls (3.33) and (3.34), the 
comparison is not easy as in the harmonic case. Any stability regions for the necessary 
sufficient conditions have not been obtained. Even if we would find some parameters 
asymptotically stabilising the system for both controls, we will not be able to see how far 
are these parameters from states of stability. 

The next problem comes right from the assumptions in the sections 3.2.2 and 3.3.2. 
Recall, one the assumptions for the damped oscillations with (3.33) has been c < 0. 
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0 10 20 30 40 50 SO 70 30 90 100 0 10 20 30 40 50 60 70 30 SO 100 
t t 

(a) Oscillations under (3.35) and (3.34) (b) The difference of oscillations 

Figure 3.16: The comparison of harmonic oscillations with u = 1, c = —0.2, r = 4.9 and 
initial conditions y(t) — 1, y(t) — 0 for —r < t < 0 

initial conditions y(t) — 1, y(t) — 0 for —r < t < 0 

Moreover, one of the conditions has limited this interval to 0 > c > —u2. On the other 
hand, the results from the section 3.3.2 give the condition for c > 0 or c < —u2. Clearly, 
there is no intersection of control constants' possible intervals for our controls. One 
would get over this problem by a "smart substitution" as in the similar situation with the 
harmonic oscillator above in the current section. 

The next parts of the results deal with the functions F(y),G(y) where we may not 
compare the system. The functions are different and they also give different sings for 
some particular values. Thus, if we would set damped controlled systems with intersecting 
assumptions and conditions on the control constant, we will not be able to compare the 
control effect without a numerical solution. 

In both sections 3.2.2 and 3.3.2, the case of the negative friction b < 0 remains as an 
open problem. We know that the damped system where b < 0 with the control (3.33) can 
not be stabilised with c < 0, and with the control (3.34), it can not be stabilised with 
c > 0 or c < —u2. 
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This problem could not be solved even by the algorithm from the section 3.2.1. Here, 
only necessary conditions for b < 0 have been obtained. Similar results might be obtained 
for the damped oscillator with the control (3.34). One has to eliminate the element of 
the friction by a similar substitution as in the section 3.2.1. Using the algorithm from the 
section 3.3.1, stability regions for the substituting function would be obtained. As it has 
been discussed in the end of the section 3.2.1, this does not guarantee necessary sufficient 
conditions on our original equation. 
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4 Feedback delay control for systems 
in matrix forms 

In the following two chapters, systems of feedback DDEs will be studied. The system 
may be considered from the different point of view. The first is a mathematical point and 
the second is a mechanical. 

The base of the mathematical system of the oscillation is the fact that every linear 
O D E of order n can be written as a system of n ODEs of order 1. The same may be done 
with DDEs, too. Clearly, if the same types of oscillators would be considered, the result 
will be equivalent to those from the chapter 3. Thus, different types of the control will 
be shown. Although the whole control will be different from the already studied cases, 
controls considered in a single equation of the system will be similar to the known controls 
form chapter 3. 

The system of oscillators from a mechanical point of view is a group of, in general, n 
connected oscillators. This connection is called coupling. A coupled oscillator typically 
influences other oscillators in the system. This will be studied in the chapter 5. 

For a transformation of delay systems to matrix forms, the wildly used trick from 
the control theory will be introduce. Most of theorems and conclusions from the control 
theory need systems in shape of first derivatives to each changing state [8]. In general, 
these systems have a form 

y(t) = Ay(t) + Bu(t) (4.1) 

where A e fljnxn shows how a state of the oscillator depends on other states, B e fljnxn 

is a gain matrix showing how the states are controlled. The symbol y(t) denotes a vector 
of the first derivative of each state Ui(t),i = 1,..., n, with respect to time t. 

In case of the feedback delay control of the harmonic oscillator as in the section 3.1, 
the original equation 

y(t) + u2y(t) + cyit - r) = 0 

may be rewritten in the system form as 

yi(t) = V2(t) 
y2(t) = -u2yi{t) - cyi(* - r) 

where yi{t) is the position of the point mass and y2(t) its velocity. If the notation from 
(4.1) is kept, 2 dimensional case is obtained with 

This particular system has been completely studied in the previous chapter. The aim of 
this chapter is to find conditions on A, B of harmonic oscillations with feedback delay 
controls to stabilise the system. 
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4.1 Conditions on stability of controlled harmonic os
cillators in matrix forms 

Consider the general system (4.1). Conditions for asymptotic stability are similar to the 
case of linear DDEs. The zero solution is asymptotically stable if and only if all roots A 
of the characteristic equation (exponential polynomial) 

det (XI - A- Be~TX) = 0 (4.2) 

have negative real parts. This problem is very complicated in general. However, it 
becomes easier if matrices A, B are in some special forms. 

First, we introduce an auxiliary motion. Matrices are said to be simultaneously tri-
angularizable if there exists a basis which transfers matrices to an upper triangular form. 
So A and B are simultaneously triangularizable if there exists a matrix P e fljnxn such 
that both PAP-1 and PBP~X are upper triangular matrices. 

If A, B are simultaneously triangularizable, the problem of determining all real parts 
of roots of (4.2) turns to determine roots A of 

n 

H (A - at - (3te-TX) = 0 
i=l 

where ai and Pi are ordered diagonal elements of PAP-1 and PBP~X, respectively, for 
some P such that both PAP-1 and PBP~X are upper triangular matrices. Coefficients ai 
and Pi are also equal to eigenvalues of A and B but the order of pairs (aiy Pi),i = 1,..., n 
is important here. Roots with negative real parts of this equation are still required for 
stability. In other words, roots of 

A - a - Pe~rX = 0 (4.3) 

must have a negative real part for all pairs (a, P). 
Conditions for negative real parts of all roots A of (4.3) are given in [9]. Before stating 

these conditions, some additional quantities have to be set. They are 

—7i + | arg(/3) | + arccos ( W(a) 

D 

\X(a)\ + ^\P\2-(n(a))2 

(2j + l)ir + sgn(I(a)) arg((5) ± arccos W(a) 

(4.4) 
\I{a)\±^W-{n{a)Y 

\X{a) | arccos (jg) s g n ( j ( a ) ) a r g ( / g) i 

2K^/W-{n{a)f 2TT 2 

The proposition (with a proof) from [9] giving conditions for negative real parts of all 
roots of (4.3) says that all roots have a negative real part if and only if at least one of the 
following holds: 

(i) lZ(a) + \P\ < 0,r arbitrary 
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4 FEEDBACK DELAY CONTROL FOR SYSTEMS IN MATRIX FORMS 

(ii) 11(a) + | / 3 | = O A / 3 ^ 0 A rX(a) - arg(/3) ^ 21%, I G Z 

(iii) \ll(a)\ - \p\ < 0 A K(a) + 1Z((3) < 0 A 1(a) arg(/3) > 0 A 
A (0 < r < r* V (L> > 0 A TJ < T < r+, j = 0 , 1 , . . . , \D] - 1)) 

(iv) \lZ(a)\ - \P\ < 0 AlZ(a) + 1l((3) < 0 A 1(a) arg(/3) < 0 A - l < Z) < 0 AO < r < r 0" 

(v) |ft(a)| - < 0 A % ) + ? 1 ( ^ < 0 A 1(a) arg(/3) < 0 A £> > 0 A 
A (0 < r < r+ V (D > 1 A r " < r < r+, j = 1, 2,..., \D] - 1)) 

(vi) \n(a)\-\(3\ <0All(a)+11(13) >0AD>0Ar~ < r < r+, j = 0 , 1 , . . . , \D] - 1 . 

In this thesis, it will be enough to consider commutative matrices. Recall, A and 
B are commutative matrices if AB = BA. As a connection between simultaneously 
triangularizable matrices and commuting matrices, a theorem from [10] is used saying 
that commuting matrices are also simultaneously triangularizable. 

A special case of commuting matrices A, B is when B is a diagonal matrix with a 
constant on the diagonal, i,e. 

B = kl 

where I G R n x n in the identity matrix and fcel. It is easy to show that these A, B are 
commuting, since 

AB = AkI = kAI = kA = IkA = BA. 

The matrices are also commutative if A = kl. 
With such a gain matrix, the above conditions can be simplified. The reason is that 

B = kl has n real eigenvalues (3 = k. Also fc ^ 0 for controlling the system. The 
simplifications come from facts that for relations 

|/3| = -f3, arg(/3) = TT for f3 < 0 

and 
\(3\ = (3, arg(/3) = 0 for (3 > 0 

and also some relations between a and (3 can be simplified in the conditions with this 
particular choice of the gain matrix. 

Thus, the conditions for negativity of real parts of all roots of (4.3) with the gain 
matrix B = kl are the following: 

(i) K(a) + < 0,rarbitrary 
(ii) K(a) + \(3\ = 0 A rX(a) - arg(/3) ^ 21%, I G Z 

(iii) (3 < 0 A \lZ(a)\ + (3 < 0 A l ( a ) > 0 A (0 < r < r* V (D > 0 A TJ < r < r+, 

J = 0 , 1 , . . . , | - £ > 1 - 1 ) ) 

(iv) /3 < 0 A |ft(a)| +/3 < 0 A 1(a) < 0 A -1 < D < 0 AO < r < r0~ 
(v) /3 < 0 A |ft(a)| +/3 < 0 A 1(a) < 0 A D > 0 A ( 0 < r < T + V 

V (.D > 1 A r~ < T < TJ~,J = 1,2,..., \D] - 1)) 

(vi) (3 > 0 A |ft(a)| - / 3 < 0 A D > 0 A rj<r< T+,j = 0 , 1 , . . . , \D] — 1. 
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4.2 TWO-DIMENSIONAL SYSTEM WITH A CONSTANT DIAGONAL GAIN MATRIX 

If one of these conditions denoted by (*) holds for a pair (a,/3), then (4.3) for this pair 
(a, j3) has all root with negative real parts. 

Moreover, the conditions may be more simplified for a particular system of (4.1). As 
the particular system, we take 

y\(t) = ay2(t) - 72/1 (£ - r) 

ih(t) = hi(t)-iy2(t-T), 
(4.5) 

where a, (3,7 are real constants. Equivalently in the matrix form, 

It has been proved in [11] that the system (4.5) is asymptotically stable if and only if 
any of the following holds: 

(i) J a (3 < 7 A 0 < r < 
\/-f2 - aft 

arccos 
a/3 

7 

-a/3 < 47 A 0 < r < 
7T 

2 (7 + 
k 

(iii) 0 < 4 7 < \j-aft A r e (0,n, 0) U Q^.i-i, n. 

[irk) 

i=l 

(iv) - a / 9 < 2 7 < 0 A T G | J ( T M , T 2 . 

where 

r i , ' 
(4n + l)7r 

2 (i + ^a~/3 
T2, 

(An + 3)TT 

2 ( - 7 + v / 3 ^ 
n = 0,1,2, 

yj-a(3 

47 
V - a ^ 1 

47 

Denote this conditions by (•*-*•). Considering the system (4.5), the conditions (*) are 
equivalent to the conditions (•*-*•) since [9] takes (*) as a generalisation of (•*-*•) from [11]. 

4.2 Two-dimensional system with a constant diagonal 
gain matrix 

Consider the system 

y\(t) = yi(t) + cyi(t - T) 

2/2(0 = -u2Vi(t) + cy2(t - r) 
(4.6) 
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4 FEEDBACK DELAY CONTROL FOR SYSTEMS IN MATRIX FORMS 

where u,r G M + and c e l . In sense of (4.1), we set 

-u2 o y v° c / ' w t - T 

There are two possibilities to determine asymptotic stability. Since B = cl, matrices 
A and B are commuting, and also simultaneously triangularizable, the conditions (*) can 
be used. The eigenvalues of both A and B are required. The eigenvalues of A are 

a = ±iu). 

For B, eigenvalues are equivalent and both are 

f3 = c. 

Now every combination of a and (3 would be studied. The system will be asymptotically 
stable for some parameters if some conditions from (*) hold for every pair (a, 0) with the 
chosen parameters. It is necessary to split the solution into cases with a positive and a 
negative c. 

The easier solution is to use conditions (**). One can simply check that the system 
(4.6) is equivalent to (4.5) with 

a — 1, ft = —OJ2, 7 = —c. 

Note, the product of a and J3 is negative. This means, the condition (i) from (**) may 
not be used for the system (4.6). 

Computation of r^n and T 2 , n is necessary: 

_ (An + l)7r _ (An + 3)TT _ 
Ti,n — -̂ 77 r , T"2,n — "777 : r , n — 0, 1,2,. . . 

2 (u — c) 2 (u + c) 

Consider the negative control constant c < 0. The parts (ii) and (iii) from (**) can 
be used. 

Taking (ii), the system (4.6) is asymptotically stable if and only if 

u 
C ^ " 4 

0 < T < " 
2(UJ - c) 

For any c satisfying the first condition, there exist a time delay such that (4.6) is stable. 
The interval of possible choices for r gets smaller with decreasing c. 

Taking (iii), the system (4.6) is asymptotically stable if and only if 

u 
0 > c > - -

4 
7r (A(i - 1) + 3W (Ai + 1W f w 

0 < r < — or v v

o /

 ; . ; < r < V> i = 1, 2 , . . . , — -
2 ( w - c ) 2(c + w) 2 ( w - c ) ' - 4c 

Here for greater c, there are more possibilities for r because more indexes % may be 
chosen. Anyway for any c satisfying the first condition, there are some r such that (4.6) 
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4.3 TWO-DIMENSIONAL SYSTEM WITH PYRAGAS CONTROL 

20 30 40 50 60 70 20 30 40 50 SO 70 30 90 100 20 30 40 50 60 70 30 90 100 

(a) (jj = 1; T = 0.7; c = —1 (b) u = 1; T = 6.1; c -0.2 (c) w = 1; T = 6.8; c -0.2 

Figure 4.1: Oscillation by (4.6) with a negative control constant and initial conditions 
y(t) = 1, = 0 for - r < £ < 0 

is asymptotically stable. Together with conclusions from (ii), we may find a delay time r. 
possibly very small, such that the system (4.6) is asymptotically stable for any negative 
c < 0. 

For the positive control constant c > 0, there is just one possible statement from (**), 
namely the statement (iv). This gives the conditions 

0 < c < -

(4i + l)7T (4i + 3)7T 
2(u; — c 2 w + c 

üü 1 
4T ~ 2 

There are always some rs for which the system (4.6) is asymptotically stable with any 
positive control constant c > 0 satisfying the first condition. For smaller c, there are more 
possibilities for r stabilising the controlled system. 

Putting together both negative and positive cases, the system (4.6) may be asymp
totically stable for any c < | except c = 0. The control's time delay must satisfy any 
condition derived above for a particular choice of c. 

As a brief remark, the conditions (*) applied on the system (4.6) give the same results. 
For a positive control constant c > 0, the statement (ii) from (*) the conditions on r and 
c. The case of a negative c < 0 would be more complicated, because one will have to 
compose results by statements (iii) (v) from (*). 

4.3 Two-dimensional system with Pyragas control 
Recall, Pyragas control has the form 

u(t) = c(y(t)-y(t-T)). 

To make the procedure easier, the controller will be designed to be as similar as possible 
to the diagonal gain matrix from the previous section. 

Consider the system 

y\(t)=y2(t) + c(y1(t)-y1(t-T)) 
y2(t) = - u 2

V l (t) + c(y2(t)-y2(t-r)). 
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4 FEEDBACK DELAY CONTROL FOR SYSTEMS IN MATRIX FORMS 

(a) u = 1;T = 3.8; c = 0.2 (b) w = 1;T = 4.1; c = 0.2 

Figure 4.2: Oscillation by (4.6) with a positive control constant and initial conditions 
y(t) = 1, = 0 for - r < t < 0 

This may be equivalently rewritten as 

2/i (0 = 2/2(t) + q/i(£) - q/i(£ - r) 
2/2(0 = -w 22/i(t) + cy2(t) - cy2(t - r ) . 

From this formulation, it can be written in the matrix form as (4.1). Thus, 

A 
—u c 

B -c 0 
0 - c 

u(t) yi(t-r, 
V2(t-T] 

The conditions (**) may not be used because it is not possible convert this system to 
the form of (4.5). However, the matrix B may be written as B = —cl. This means that 
the matrices A and B are commuting. Thus, the conditions (*) may be used. 

For doing this, the eigenvalues of both A and B must be computed. The eigenvalues 
of A are 

a = c ± iu. 

The matrix B has the double eigenvalue 

P = -c. 

Surprisingly, the case of the positive control constant c > 0 does not fit to any partial 
conditions (*). This case will be considered as unstable for any choice u,r. Also the 
case c = 0 will not be considered because there would be no control and the system (4.7) 
would become the harmonic oscillator. 

Now set the control constant c negative. In this case, 

/3 >0, n(a) + \(3\ = 0 and \K{a)\- 0 = 0. 

Thus, the only possibility how to use the conditions (*) is to take the statement (ii). 
This says that the equation (4.3) for the eigenvalues pair (—iu, —c) have all roots with a 
negative real part if and only if 

2Ln 
I- e z. 
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4.3 TWO-DIMENSIONAL SYSTEM WITH PYRAGAS CONTROL 

25 30 

(a) u = 1;T = l;c = -0.1 (b) w = 1; r = 1; c = 0.1 (c) w = - 1 ; T = 1; c = -0.1 

Figure 4.3: Oscillation by (4.7) with initial conditions y(t) = l,y(t) = 0 for —r < t < 0 

Similarly, it holds for the pair (ioj, —c) if and only if 

T ^ l+ e z. 
U! 

(4.9) 

Clearly, if we set /_ = —1+, the conditions (4.8) and (4.9) become identical as 

, 2/TT , „ 
r ^ , / e Z 

a; 

for both eigenvalues pairs (—io;, r) and (IUJ,T). 

There are no other restrictions on u and c except the basic assumption u > 0. More
over, the positiveness of u is not necessary here. With UJ < 0, the system (4.7) would 
lose the character of a mechanical oscillator, but the conditions (*) set such a system as a 
asymptotically stable system. The only restriction on u is u ^ 0 because no statements 
of the conditions (*) would be fulfilled for any r. As the conclusion of this section, the 
system (4.7) is asymptotically stable if and only if 

u ^ 0, c < 0 

and r > 0 except countably many values 

2/TT 
I e z. 

UJ 

In the end of this section, consider a general system of n differential equations con
trolled by Pyragas controller, i.e. 

y(t) = {(y(t)) + B(y(t)-y(t-r)) (4.10) 

The uncontrolled system has the form 

y(t) = f(y(t)) = A(t)y(t) 

where A(t) is a general matrix of continuous functions. This system is widely studied in 
Floquet theory. One can compute monodromy matrix's characteristic multipliers of the 
matrix A(t). This also deals with a fundamental matrix of the system (see [12]). They 
are called Floquet multipliers. 

Although the system (4.10) is too general and complicated to be solved, there exist 
a powerful theorem helping to determine a particular case. The theorem called "Odd 
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4 FEEDBACK DELAY CONTROL FOR SYSTEMS IN MATRIX FORMS 

Number Limitation Theorem" has been stated in [13] by Japanese engineer Hiroyuki 
Nakajima. It says that if the uncontrolled system (4.10) with K = 0 has an odd number 
of real Floquet multipliers greater than unity, the unstable periodic orbit can never be 
stabilised by a time-delay feedback control of Pyragas form with any values of the gain 
matrix [13]. 

This statement gives at least a particular case when the system (4.10) can not be 
stabilised for any combinations c, r . The described system has been studied in [14] as 
well. Here has been proved, that Odd Number Limitation Theorem does not hold in 
general. For states close to a bifurcation point, the system can by stabilised by a proper 
type of Pyragas control. Furthermore, it is possible to stabilise the system by other types 
of controllers. 
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5 Synchronisation by feedback delay 
controls 

The system of oscillators from a mechanical point of view is a group of, in general, n 
connected oscillators. Every oscillator is connected with at least one other element of the 
system. This connection is called coupling. The coupled oscillator influences, and also 
is influenced, by other coupled oscillators of the system. Since this thesis focuses on a 
delay control, the coupling will be done by at least one delayed state. The controls will 
be shown for coupled harmonic oscillators. 

The D D E of the general z-th element of the system can be written as 

ijiit) +uj2yi(t) + ui(y1(t-T1),y2(t-T2),...,yn(t-Tn)) = 0 

where U{ is a delayed control function which does not have to depend on all elements of 
the system. In general, delays r3- may be different. If a particular delay would be zero, the 
corresponding state will influence the system by its motion in actual time. We simplify 
the following problem by the assumption that the delays are equal, i.e. Tj = r > 0 for 
each j = 1,2,... ,n. 

We say that elements are synchronised if there is a common behaviour of elements' 
characteristics. Mathematically, the goal of the synchronisation for mechanical oscillators 
by [15] is 

lim \Vi(t) - y3{t)\ = 0, lim \yt(t) - y3(t)\ = 0 
t^fOO ' t—too 

for all i,j = 1,2,... ,n. Thus, coupled oscillators are synchronised if the differences 
between positions and velocities of coupled elements become zero for time t goes to infinity. 

In the following sections, three types of controllers will be studied. Two coupled 
oscillators will create the synchronising system. Note, the design of partial elements will 
be simplified in sense of constants. We will assume that the frequency OJ, the control 
constant c and also the time delay r are equal for both partials of the synchronised 
system. In general, the constants may be different but things become more complicated. 
Due to these simplifications, the results from the previous chapters can be used. 

5.1 Control by a difference of delayed states 
For a general control by a difference of delayed states in a system of n oscillators, the i-th 
controller Ui is designed as 

n 
ui(t) = ^2 °ik {yi{t - r) - yk(t - r ) ) . 

k=l 

It has been said that the case of two coupled oscillators will be considered, i.e. 

y\(t) + u2

yi(t) + ci (yi(t - r) - y2(t - rj) = 0 
y2(t) + u2

2y2(t) + c2 (y2(t - r) - Vl(t - rj) = 0 

58 



5 SYNCHRONISATION BY FEEDBACK DELAY CONTROLS 

is the general studied system of this section. This system will be more simplified by the 
identity of the constants u)\ = OJ2 — OJ and c\ = c2 = c. Thus, the system being worked 
on is 

y\(t) + u2

Vl{t) + c (yi(t - r) - y2(t - r)) = 0 (5.1) 
mit) + u2y2(t) + c (y2(t - T ) - y i ( t - rj) = 0. (5.2) 

Our way in this chapter is to find a smart substitution for some combinations of (5.1), 
(5.2) and convert the system to some known expressions. 

First, the sum and the difference of (5.1) and (5.2) is done: 

(5.1)+ (5.2): y1(t)+y2(t)+oo2(y1(t)+y2(t)) = 0 (5.3) 
(5.1) - (5.2) : y\(t) - y2{t) + UJ2 (yi(t) - y2(t)) + 2c (yi(t - r) - y2{t - r)) = 0. (5.4) 

Now substitute 

z1{t)=y1{t)+y2{t), z2{t)=yi{t)-y2{t), K = 2c. (5.5) 

Under these substitutions, the equations (5.3), (5.4) become 

z\{t) +uj2z1(t) = 0 (5.6) 
z2(t) + u2z2(t) + Kz2(t - r) = 0. (5.7) 

Two autonomous equations are obtained. Equation (5.7) is clearly similar to (2.3) 
which has been solved in the section 3.1. Following the results from this section, the 
(c,r) stability region, where the function z2(t) is asymptotically stable, is given by the 
inequalities 

2kn (2k + 1)TT , . . 
<T<- —, kenu{0}. 

2 , ,2 , ,2 

0 > c > max 
2fc7ry oj2 oj2 /(2fc + l ) 7 T 
V 2 r ) 2 ' 2 \ V2 

or 
(2k+ 1)71 2(k + l)ir , ^ r , 

<T<- —, fceMU{0}; 

0 < c < min 
u2 f{2k + l)7r\2 f2(k + l)7r\2 u2 

IT V2T ) ' V V2 

If these conditions hold, the zero solution of the function z2(t) is asymptotically stable. 
Recall from (5.5), z2(t) is the difference between y\(t) and y2(t) which should be syn
chronised. If z2(t) goes to the zero for large t, also the difference between y\(t) and y2(t) 
decreases and so the oscillations yi(t),y2(t) go closer to the other. Thus, the system of 
coupled oscillators (5.1), (5.2) with a given u can be synchronised for c ,r such that the 
above conditions hold. 

The equation (5.6) gives an interesting result as well. This equation has a form of a 
(uncontrolled) harmonic oscillator. Since it is an ordinary differential equation of order 
two, it is easy to obtain a general analytical solution. By [1], the solution is 

z\(t) = C\ cos(atf) + C2 sin(atf) 
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5.2 CONTROL BY A DIFFERENCE OF A CURRENT STATE AND DELAYED STATES 

Figure 5.1: The synchronisation region of the equations (5.1), (5.2) with ou — 1 (light 
grey) and ui = \ / 2 (dark grey) 

where constants Ci,C2 e l are given by initial conditions. 
Recall from (5.5), Z\(t) is the sum of 2/i(0 and y2(t). The first important result 

of this fact it that the sum of yi(t),y2(t) is predictable and periodic with zero in its 
codomain. This also means, there are infinitely many time moments i j , i G N such that 
yi{U) = -2/2(U) or even y^U) = y2(ti) = 0. 

If the above results for zi(t) and z2(t) are put together, yi(t) and y2(t) are very close 
(approximately identical) for large t. Their sum is a periodic function with a constant 
amplitude. This holds for large t, too. Consequentially, 

2 / 1 ( 0 - 2 / 2 ( 0 - ^ 

for large time t. Since the analytic solution of z\(t) is known, the analytic solutions of 
both yi(t) and y2(t) can by derived. Namely 

1 

2/i (0 ~ 2/2(0 ~ 2 (Cl C 0 S M ) + ^ 2 sin(o;t)) 

for large t and C i , C 2 constants given by initial conditions. 

5.2 Control by a difference of a current state and other 
states with a delay 

Consider now the controller 

u (*) = cik(yi(t) -yk(t-T)) 
k=l 

of the i-th element in a system of n coupled oscillator. This control seems to be close to 
Pyragas control. For the case of two coupled oscillators, the whole system is given by 

2/1 it) + u2

iyi{t) + ci (yi(0 - y2(t - r)) = 0 

2/2(0 + ^22/2(0 + c 2 (2/2(0 - 2/i (t ~ T)) = 0. 
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5 SYNCHRONISATION BY FEEDBACK DELAY CONTROLS 

(a) üj = 1; T = 1; c = —0.1 (b) w = 1;T = l ;c = 0.1 

(c) The difference of yi(t),y2(t) with UJ = 1: 
T= l ; c - 0 . 1 

Figure 5.2: Oscillation by (5.1), (5.2) with initial conditions yi(0 = l ,y ' i(0 = 0, y 2 (0 = 

-0.5,2/2 (t) = 0 for - r < t < 0 

Under the simplifications mentioned in the beginning of the current chapter, the system 
becomes 

y\ (t) + u2y1(t) + c(y1(t)-y2(t-r)) = 0 

Mt) + u2y2(t) + c (y2(t) - Vl{t - r)) = 0, 

(5.8) 
(5.9) 

The algorithm for solving this problem will be similar to the previous one. At first, the 
sum and the difference of (5.8) and (5.9): 

(5.8) + (5.9) : 
yi(t)+y2(t) + uj2(yi(t) + y2(t)) + c(yi(t) + y2(t) - Vl(t - r) - y2(t - r)) = 0 

(5.8) - (5.9) : 

Vi(0-2/2(0 + oo2(yi(t) - y2{t)) + c(yi(t) - y2{t) + Vl(t - r) - y2(t - r)) = 0. 

Now the substitutions are added: 

z1(t)=y1(t)+y2(t), z2 (0 =yi{t)-y2{t). 

61 
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With them, the system has the form 

z\{t) + u2

Zl(t) + c(Zl(t) - Zl{t - r)) = 0 (5.10) 

z2(t) + u2z2(t) + c(z2(t) + z2(t - r)) = 0. (5.11) 

Two autonomous DDEs are obtained. They are similar to each other (not equal) and 
both of them have forms close to a system with the Pyragas control. The idea of using 
results, which have been already obtained, is destroyed by the sing inside the control part 
in (5.11). This is the equation which we have to manage at first. The function z2(t) is 
the difference of yi(t) and y2(t) and the goal of synchronisation is to make this difference 
zero, i.e. to determine parameters for which z2(t) is asymptotically stable. 

Due to the sign inside the control part in (5.11), any results from the section 3.3 may 
not be used. Fortunately, the algorithm will be very similar. It begins by converting to a 
form similar to the harmonic system from the section 3.1. 

The equations (5.11) may be equivalently written as 

z2(t) + (UJ2 + c)z2(t) + cz2(t - r) = 0. 

Considering the substitution a = u2 + c, 

z2(t) +az2(t) + cz2(t-r) = 0. (5.12) 

This form is similar to the equation (2.3). It is more useful to see this equation equivalently 
to (3.22) because from now, we will copy the algorithm shown in the section 3.3. 

First, the condition A(0) > 0 following from the Pontryagin's theorem turns into 

Td(a + c) > 0. 

Equivalently, 

T(OJ2 + C)(UJ2 + 2C) > 0. 

This inequality holds if both brackets are either positive or negative. This is true if 

c > -\^J2 or c < -u2. (5.13) 

By the final results from 3.1.1 and 3.1.2, the function z2(t) given by the equation (5.11) 
equivalent to (5.12) is asymptotically stable if and only if 

2&7T (2k + 1)TT , R T R „ , 
< r < - •=-!—, fceMU{0}; 

or 

a \i a 

. , '2A;7r\ 2 _ _ /(2fc + 1)TTX 2 ' 
(J > c > max < I ) — (i.d — I 

(2k+ 1)71 2(k + l)7T , ^ , , 

0 < e < m l n ^ - l < 2 ^ V , f 2 ^ V - a 
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5 SYNCHRONISATION BY FEEDBACK DELAY CONTROLS 

Using the backward substitution a = u2 + c, the results above are equivalent to 
2kir (2k + 1)TT , . . 

fceNu {0}, 

or 
(2A; + 1)TT 

< T < 
2(k + l)n 

k e N U {0}, 

0 < c < min < oj + c 
(2k + l)ir\2 /2(fc + l ) 7 T 

r r 

Since we consider a real positive r , a new condition c > —u2 comes from the results. 
This mutes the second inequality in (5.13) but it is weaker then the first condition in 
(5.13). 

As in the section 3.3, there appears a problem because the control constant c is on 
both left-hand and right-hand sides of some inequalities. To solve this problem, the two 
inequalities with max and min operators will be replaced by four triple inequalities so 
the results are now split into four parts. After that, the inequalities in each part will be 
simplified as much as possible with the goal to find out conditions on r and c. The whole 
algorithm is fully described in the section 3.3. Some inequalities may be neglected which 
is evident after drawing regions in the (r, c) plane. 

Skipping a proper derivation, we write the final conditions on r and c as 
2kn 

< T < 
[2k + 1)TT 

k e N U {0}, 

0 >c> 
2kn 

T 
— üü 

or 
( » + ! )» < r < 2 ( * + l)x , e N u { 0 } _ 

0 < c < 
2(k + l)-K 

T 
CO 

Under these conditions, the function z2(t) is asymptotically stable. In other words, the 
difference of y\(t) and y2(t) is converging, i.e. y\(t) and y2(t) are synchronised. 

Also the function z\(t) must not be forgotten. As we have seen in the section 5.1, the 
sum of yi(t) and y2(t) decides the behaviour of the synchronised functions. 

The equation (5.10) is a D D E with the Pyragas control, it is equivalent to the D D E 
(3.20), even no substitutions are needed here. This system has been fully solved in the 
section 3.3. Taking the results from this section, the function Z\(t) is asymptotically stable 
if 

2kn 
<T < 

{2k + 1)TT 
üü 

k e N U {0}, 

0 < c < 
{2k + 1)TT 

— ÜÜ 
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Figure 5.3: The stability regions of Z\(t) (light grey) and z2(t) (dark grey) for to 

or 

( » + ! ) * < T < 2 ( * + i ) < r t t e N U { 0 } , 
U! 

0 > c > -
2 

U! 

{2k + 1)TT 
— CO 

Under these conditions, the sum of the functions yi(t) and y2(t) converges. This happens 
when either both functions are converging to the zero function or the function are in 
antiphase. 

If stability regions of z\{t) and zi(t) are drawn in the (r, c) plane, one can see that 
there is no combination of r and c where both z\(t) and ̂ (t) are asymptotically stable. 
See the figure 5.3. This fact goes from the sign of c in the conditions for each function. 
The first parts of the conditions set particular active intervals of r . The intervals are 
equivalent for both functions. However, if c must be positive on a particular interval of r 
for one function, c is negative on the same r interval for the other and vice versa. 

The conclusion of this section is that the system given by (5.8) and (5.9) may be 
synchronised. However, if the system is synchronised, then the sum of yi(t) and y2(t) is, 
up to some specific cases, unbounded. On the other hand, if the parameters are chosen 
such that the sum of yi(t) and y2(t) is tending to the zero, the difference of these functions 
is unbounded. The only possibility is that the functions yi(t) and y2(t) are in antiphase. 
If one would choose the parameters such that they would be neither in the stability region 
of z\(t) nor Z2(t), the system will be strongly unbounded. 

5.3 Control by a difference of a current state and all 
states with a delay 

The last studied control has a general form 
n 

i(t) = J2c* (vi(t)-yk(t-r)). U; 

k=l 
This control may be seen as a sum of differences between the current state and every 
delayed coupled states. Each difference is also multiplied by a constant c^. 
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5 SYNCHRONISATION BY FEEDBACK DELAY CONTROLS 

(c) c = -0.2 (d) The sum of yi(t),y2(t) with c = -0.2 

Figure 5.4: Oscillation by (5.8), (5.9) with UJ — 1, r = 4.5 and initial conditions yi(t) = 
(t) = 0, y2(t) = -0.5, y2(t) = 0 for - r < t < 0 

A system of two elements with this controller is given by 

y\(t) + 0J2

yi(t) + en - Vl(t - r)) + c i 2 (2/1 (t) - y 2(t - r)) = 0 
y2(t) + uly2(t) + cai (y2(t) - yx(* - r)) + c 2 2 (y2(t) - y 2(t - r)) = 0. 

As in the previous sections, the simplifications are considered. Namely, 

UJ\ = U)2 = CO, C n = C\2 = C 2 i = c 2 2 = c. 

The system is now represented as 

y\(t) + u2

yi{t) +c(2Vl(t) - Vl(t - T) - y2(t - r)) = 0 (5.14) 
2/2(*) + w 2|/ 2(t) + c (2y2(t) - - r) - y 2(t - r)) = 0. (5.15) 

Similarly as in the previous systems, the sum and the difference of (5.14) and (5.15) 
have to be done, 

(5.14) + (5.15) : 

y\(t)+y2(t) + uj2(yi(t) + y2(t)) + 2c(yi(t) + y2(t) - Vl(t - r) - y2(t - r)) = 0 
(5.14) - (5.15) : 

y\{t)-y2{t) + u2(yi(t) - y2(t)) + 2c(yi(t) - y2(t)) = 0. 
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5.3 CONTROL BY A DIFFERENCE OF A CURRENT AND ALL DELAYED STATES 

Figure 5.5: The synchronisation region of the equations (5.14), (5.15) with to — 1 (light 
grey) and to = \f2 (dark grey) 

Considering the known substitutions 

zi(t) =yi(t)+y2(t), z2(t) = yi(t) - y2(t), 

the system may be equivalently written as 

K = 2c, 

z\(t) + u2

Zl{t) + K(Zl(t) - Zl{t - r)) = 0 
z2(t)+uj2z2(t) + Kz2(t) = 0. 

(5.16) 
(5.17) 

Now the equation (5.16) representing the sum of (5.14), (5.15) has the form of harmonic 
oscillation with Pyragas control. Stability anallysis of (5.16) implies the conditions 

2kiT 
< r < 

to 

0 < c < 
1 

0 < c < — 
4 

{2k + 1)TT 

CO 
k e N U {0}, 

(2k+ 

T 
CO 

or 

(2k + l)n 2(k + l)7r , ^T r , 

CO CO 

0 > c > 
4 

[2k + l)-K 
CO' 

and the necessary condition 2c > -co2 must be satisfied. 
Under these conditions, the zero state of z\[t) is asymptotically stable and so the sum 

of yi(t) and y2(t) tends to the zero. This can be seen as yi(t) ~ —y2(t) (this admits also 
the particular case yi(t) ~ y2(t) ~ 0) for large t. 

What does the equation (5.17) mean? The difference of yi(t) and y2(t) is a harmonic 
function (we still assume that 2c > -co2). Moreover, there are infinitely many time 
moments t when yi(t) — y2(t) = 0. This implies that the above mentioned particular 
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t 

(c) The sum of yi(i), y2(t) with 
(a) u = 1;T = 0.8;C = 0.1 (b) u = 1; T = 0.8; c = -0.1 w = 1; r = 0.8; c = 0.1 

Figure 5.6: Oscillations by (5.14), (5.15) with initial conditions yi(t) = l,y\(t) = 0, 
y2(t) = 0, y2(t) = 0 for - r < t < 0 

case ?/i (t) ~ 2/2(0 ~ 0 can not occur (except a system with a specific choice of initial 
functions). 

The clarification above indicates that solutions of (5.14) and (5.15) oscillate and appear 
in antiphase, i.e. they oscillate (harmonically for large time t) but in opposite half-planes. 
So the oscillations are not synchronised. However, it gives an interesting result about 
behaviours of yi(t) and y2(t) interacting to each other. 
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6 Numerical methods for solving 
DDEs in M A T L A B 

Numerical methods create a powerful apparatus in many branches of mathematics. In 
particular, their use in ODEs and DDEs is necessary when no analytical methods of their 
solving are known. Clearly, using numerical methods in the industry is more suitable than 
computing solutions one by one. 

The problem of numerical methods for ODEs is one of the most widely studied 
branches. There are many algorithms for solving ODEs or systems of ODEs. Each 
method can be described by its order, some types of errors and numerical stability. How
ever, we are not going to deal with these characteristics, they are significant if the exact 
solution is needed. This thesis is based solely on the stability of differential equations. 

Recall some of the well known numerical methods for ODEs from [16]. Euler's method 
is probably the easiest one. Further, it can be used in the form of the forward method or 
the backward method. Derivatives are substituted by the formula of forward or backward 
substitution with a chosen step size. The next method is the Runge - Kutta method. 
Here, some additional coefficients must be computed. This method has a higher order 
than Euler's methods. The last noted method is the multistep method. In particular, 
Adams - Bashforth methods and Adams - Moulton methods are usually presented. 

In general, the input for numerical methods for ODEs consists of the size of the time 
step, the size of the space step, boundary or initial conditions, space limitations, the initial 
time, the final time and the right-hand side function itself, of course. During the method's 
computation, some coefficients are calculated if they are needed and the derivatives are 
substituted. By doing that, the next space step is computed. When the whole space 
is fulfilled, the computations are repeated for the next time step until the final time is 
reached. Now an important question of this chapter is coming. Is it possible to use a 
similar algorithm also in the case of DDEs? 

The answer is yes! Most of the numerical methods for ODEs can be modified for the 
DDEs case. Clearly, something more has to be added and the methods are not as problem 
free as the methods for ODEs. One simply must be more careful with the inputs. For 
more details, see [17]. 

The first difference in the inputs consists in the form of the initial conditions. For 
the O D E case, the initial condition is the value of the function and its derivatives in the 
initial time to. Note that they are just values here. On the other hand, in the case of 
DDEs, the initial function is needed as well. It has also been stated in the section 2.2 that 
the initial function ipit) must be defined on the interval —r < t < 0 and that it must also 
be smooth enough on this interval. By this function, all initial data are obtained and the 
numerical method can be used. 

Another different part of the input is the delay factor which is in the numerical case 
often called lag. This is an unchanged constant value in the whole studied interval. In 
the previous chapters, systems have been stated with one delay only. But this is not 
the only possibility. In general, there can be a finite series of positive delays {TJ}J. In 
the process of solving, the method takes the information from different past moments 
which have been given or already computed. However, the initial function is stated on 
the interval bounded by just one of the delays Tj, call this the specific delay f. Then the 
initial function -̂ >(£) is defined on —f < r < 0. The user must choose f so that all initial 
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6 NUMERICAL METHODS FOR SOLVING DDES IN MATLAB 

values are well defined, i.e. all needed values before the initial time must be well defined. 
Intuitively, this holds if 

f = maxT;. 
i 

If ip(t) were defined on an interval bounded by a different value, i.e. f 7̂  maxjTj, at 
minimum, the initial values for the delay r = maxj Tj would be missing. 

6.1 The predefined M A T L A B function for solving DDEs 
In the beginning, it is useful to say something about the M A T L A B function ode23. This 
is a one-step method for solving ODEs by explicit Runge-Kutta. Following [18], it can be 
called in M A T L A B by 

[t ,y] = ode23(odefun,tspan,y0,options). 

The function odefun is the differential system which shall be solved. If the original 
differential equation has a higher order, it must be rewritten to a system of ODEs of 
order one. The vector tspan usually given as [to, t/] is a time interval. On this interval, 
the equation is solved. The initial conditions are given by yO. This is a vector with the 
same length as the number of ODEs in odefun. By options, one can set some special 
modifications to the solution. 

The outputs are arrays t and y representing the time mesh and values of the solution 
evaluated at time values of t, respectively. The array y has as many rows as there are 
ODEs of order one in the original system odefun. Each of the rows of y has the same 
length as the vector t. From these outputs, a plot of the solution can be generated. 

The solver dde23 is used with a similar syntax. Following [19], the predefined function 
in M A T L A B is called by 

s o l = dde23(ddefun,lags.history, tspan,options) . 

The input ddefun keeps the same function as odefun in the solver ode23. In the 
case of a higher order equation, it must be written as a system of DDEs of order one. 
Furthermore, there is no change in tspan and options for the functions ode23 and dde23. 
The inputs lags and h i s to ry are more interesting. The constant vector lags represents 
the delays in the system. There can by finitely many delays and all of them must be 
positive. The input h i s to ry gives the initial conditions of the system. It can be a 
constant or a function of time t. In the case of a constant, h i s to ry is a column vector of 
the same number of columns as there are DDEs of order one in the system ddefun. The 
length of the initial function is taken by the solver automatically. As it has been said, it 
depends on the largest time delay, i.e. the highest value in lags. 

The output s o l includes both the time mesh and the evaluations of the solution y(t). 
By using the command s o l . x , the time mesh is obtained. The y(t) values are called 
by s o l . y . If ddefun is a system of DDEs, then s o l . y has as many columns and, in 
particular, the column % can be obtained by the command s o l . y ( i , :) 

To complete this classification, something more should be said about the function 
ddefun. It has been said already that the function is, in general, a system of DDEs of 
order one. One crucial problem is that of defining the delayed part of the system. 
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6.2 HARMONIC OSCILLATOR WITH A FEEDBACK DELAY CONTROL IN MATLAB 

Probably the best way of doing this is to create the solved system by a function 
declaration, for example, as following, 

yp = f ( t , y , y l a g , c o n s t s ) . 

Here, the inputs of the function f are time t, the motion y, some constants shown by 
consts. The delayed part is represented by ylag. This is an array of dimension n x m. 
where n is the number of DDEs in the system, i.e. number of rows of yp. Further, m 
is the number of different delays in the system. Clearly, it is also the dimension of the 
input lags from the solver dde23. The output is a system of n equations yp which will 
be solved by the solver. 

As an example, if the user calls y l a g ( i , j ) in the M A T L A B function, the solver will 
work with the z-th variable. Its first derivative is described by the i-th equation of the 
system. This will be delayed by the j - t h value of the vector lags. 

In the following examples, this problem of defining delay will be reduced because the 
systems in this thesis only deal with problems of one delay. The following sections show 
in particular the use of the solver dde23 in M A T L A B . 

6.2 Harmonic oscillator with a feedback delay control 
in M A T L A B 

The focus of this section is the numerical solution of the harmonic oscillator controlled 
by the standard feedback delay control. This system is described by (2.3), recall, 

y(t)+u2y(t) + cy(t-T) = 0, £ > 0 

y(t) = i>(t), -r<t<0, 

where ip(t) G C ((—r; 0); M.) is an initial function. 
The solver dde23 needs the problem in the form of a system of DDEs of order one. 

To do this, (2.3) becomes 

y\{t) = y2{t) 

2/2(0 = ~u2yi(t) - cyxit - r ) . 

This shall be added to the M A T L A B script as a function declaration. One way of doing 
this is 

function yp = f ( t ,y ,y lag,omega,c) 

y P " [ y < 2 > (6.1) 
-omega~2*y(l)-c*ylag(l ,1)] ; 

end 

where omega and c are constants which can be declared in the script itself. A n interesting 
feature of this declaration is that the delay r is not yet present in the system. 

The solver is called by 

s o l = dde23(@f, tau , y _ i n i t i a l , [0, 300], [ ] , omega, c). 
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0 50 1O0 150 200 250 300 0 50 100 1 50 200 250 3O0 0 50 1O0 150 200 250 3O0 

(a)c=-0.1 (b)c=-0.5 (c)c=-0.9 

Figure 6.1: Oscillation by (2.3) with u = 1, r = 1 and initial conditions y(t) = l,y(t) = 0 
for - r < t < 0 

The input Of calls the function (6.1). The input tau represents the delays. In this case, 
the delay is one positive real value. The initial conditions are represented by y _ i n i t i a l . 
A smooth initial function does not influence the stability of the system. For simplicity, it 
is chosen as 

y _ i n i t i a l = [ l , 0 ] 

for all following cases. This means that the point mass has the constant position y(t) = 1 
and velocity y(t) = 0 for —r <t<0. The system is solved for the time interval [0, 300]. 
The next [] means that no additional options are considered, just the same constants 
omega, c as in (6.1) must be added to the solver. 

The constant inputs of the script are omega, tau and c. They will be chosen with 
respect to the figures 3.1 and 3.3. By doing this, the correctness of the results from section 
3.1 will be verified. 

Take, for example, to — 1, r = 1 and observe the influence of constant c. It is clear 
from the figure 3.3 that the system is asymptotically stable for c G (—1,0). This also 
holds for the numerical solution (see figure 6.1). The speed of the stabilisation depends 
on the value of the constant c. It can be seen that the power of the control increases with 
a decreasing value of c. 

With the same values of u and r , the system becomes unstable i f c > 0 o r c < — 1 . 
Graphs with such a choice can be seen in 6.2. Even if the graphs seem to be constant for 
"small t", they oscillate in the whole interval. The reason for this almost constant curve 
is the huge scale of y-axis in comparison with the x-axis. 

For c = —1, the solution is an "approximately constant" curve. This constant curve 
is influenced by the initial conditions. Anyway, if c were chosen to be slightly greater, 
the solution y = 0 would become asymptotically stable. On the other, if c were slightly 
smaller, the system would be unstable. Both of these cases can be seen in 6.3. So the 
system with c = — 1 is not stable. 

To be illustrative, choose u = 1, c = —0.25 and change values of r around the 
boundary of the stability region. For such u and c, the system should be asymptotically 
stable for r G (0,7r/vL25)- If T is chosen close to 0, the curve approaches the stable 
position slowly. The same situation is for r close to the boundary curve. The stabilisation 
is the fastest somewhere in the middle of the interval. A l l graphs may be seen in 6.4. 

If values around the boundary 
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50 100 150 200 250 300 

(a) c = 0.5 (b)c -1.5 

Figure 6.2: Oscillation by (2.3) with uu — 1, r = 1 and initial conditions y(t) 
for - r < t < 0 

1,2/(0 = 0 

50 100 150 203 250 300 50 100 150 200 250 300 50 100 150 200 250 300 

(a) c -1 (b)c -1.001 (c)c -0.999 

Figure 6.3: Oscillation by (2.3) with uu — 1, r = 1 and initial conditions y(0 = 1,2/(0 = 0 
for - r < £ < 0 

(a) r = 0.01 (b) r = 1.4 (c) r = 2.8 

Figure 6.4: Oscillation by (2.3) with u = 1, c = —0.25 and initial conditions y(0 = 
l,y(t) = 0 for - r < t < 0 

are considered, the numerical solution's behaviour is not like it has been predicted. In 
the case of r = IT/\/l.25, the curve goes asymptotically to the state y = 0. On the other 
hand, if r is slightly greater, the system becomes unstable. In the opposite direction, the 
prediction holds, so the system is asymptotically stable. The reason for the behaviour for 

/\/L~25 could be some relative errors in the M A T L A B computations. 
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Figure 6.5: Oscillation by (2.3) with u = 1, c = —0.25 and initial conditions y(t) = 
l,y(t) = 0 for - r < t < 0 

For this choice of u> and c, the system is also asymptotically stable if r G ( 2 7 T /V0.75. 
37r/\/l.25). The behaviour of the system is similar to the interval above. Around the 
boundaries 

2TT , 3TT 
r = — = = and r = , 

V w 2 + c V w 2 — c 
the curve does not have the predicted shape either. 

Following the algorithm above, the remaining problems from the chapter 3 can be 
considered. The M A T L A B scripts would be easily rewritten to the case of a damped 
oscillator from the section 3.2 or the cases of oscillators controlled by the Pyragas con
trol from 3.3. The next discussion would also be about possible different choices of the 
constants in the system. 

6.3 Synchronisation of a system by a difference of de
layed states in M A T L A B 

The results from the section 5.1 will be studied now. Namely, the equations 

y1{t)+u2y1{t) + c{y1{t-r)-y2{t-T)) = 0 (5.1) 

y2(t)+ou2y2(t) + c(y2(t-T)-yi(t-T)) = 0 (5.2) 

are considered. Since the system shall be solved numerically, initial functions must be 
added. The system is fully defined with initial functions 

2 / i (t) = i>i(t) and y2(t) = ip2(t) 

for —r < t < 0. Clearly, these functions have to satisfy 4>i(t), ip2(t) G C ((—r; 0); M) 
For using the M A T L A B solver dde23, the system must be rewritten into the form of 

a system of DDEs of the order one: 

y\{t) = v1{t) 
= -u2

yi{t) - c{yi{t -r)-y2{t-r)) 

m(t) = v2(t) 
v2{t) = -u2y2(t) - c(y2(t - r ) - y i { t - r ) ) . 
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This system is typed into the M A T L A B script as a fuction declaration 

function yp = f ( t ,y ,ylag,omega,c) 

yp = Ey(2) 
- o m e g a - 2 * y ( l ) - c * ( y l a g ( l , l ) - y l a g ( 3 , l ) 

y(4) 1 ' ' 
- o m e g a - 2 * y ( 3 ) - c * ( y l a g ( 3 , i ) - y l a g ( l , l ) ] ; 

end 

The solver is called by 

s o l = dde23(@f, tau , y _ i n i t i a l , [0, 300], [ ] , omega, c). 

The input Of calls the function (6.2). As before, the input tau represents the delays. The 
initial conditions are represented by y _ i n i t i a l . Smooth initial functions do not influence 
the stability of the system. For simplicity, they are chosen as 

y _ i n i t i a l = [ 1 , 0 , - 0 . 5 , 0 ] 

for all following cases. This means that the oscillation y\(t) has a constant position 
yi{t) = 1 and a velocity y\(t) = 0 for —r < t < 0. The oscillation y2it) has a constant 
position y2it) = —0.5 and a velocity y2(t) = 0 for —r < t < 0. Recall that the controller 
acts if t > 0, so the partial systems do not influence each other for —r < t < 0 and also 
the initial functions are independent. The system is solved for the time interval [0, 300]. 
No additional options are considered, which is represented by the next []. Nevertheless, 
the constants omega, c must be added to the solver just like in (6.2). 

Now, the results from the section 5.1 will be checked. The stability region is shown in 
the figure 5.1. As in the section before, the goal is to take different values of the constants 
u, T and c, especially the boundary cases, and to observe the behaviour of the system. 

In the first part, fix oo = 1 and r = 1 and study the system with different values of c. 
It shall be synchronised for c G (—0.5, 0). This hypothesis holds but the behaviour inside 
the interval is different than in the section 6.2. For the system (6.2), the synchronisation 
is the fastest for a value in the middle of the interval. Near the boundary values of 
the interval, the synchronisation is significantly slower. See the figure 6.7. Also note 
that the behaviour is different for a chosen c near the left or the right boundary of the 
interval. If c ~ 0, the maximal amplitude of both partial system is synchronised in time. 
If c ~ —0.5, the amplitudes are set immediately and the positions of the partial systems 
are synchronised in time. See the figure 6.6. 

On the boundaries of the interval, the graphs more or less copy the results from the 
chapter 6.2. For c = —0.5, i.e. on the lower boundary, no synchronisation is going on, 
both the partial systems oscillate with a constant difference. The system is asymptotically 
stable for c slightly greater than —0.5 (see figures 6.6c, 6.7c) and it is unstable for c slightly 
smaller than —0.5. The system is also unstable for any c > 0. 

Now fix UJ = 1 and c = —0.25. The system should be synchronised for r G (0, %/Vl~~5). 
After doing the numerical tests, the computations are confirmed. The slowest synchroni
sation comes with a positive r close to zero. A bit faster case is obtained for r slightly 
smaller than 7 r / \ / l . 5 . With r in the middle of the interval, the synchronisation is the 
fastest. 
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6 NUMERICAL METHODS FOR SOLVING DDES IN MATLAB 
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Figure 6.6: Oscillation by (5.1), (5.2) with UJ — 1, r = 1 and initial conditions yi(t) 
l,y\{t) = 0,y2(t) = -0.5,y2(t) = 0 for - r < t < 0 
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(a) c -0.001 (b)c -0.25 (c)c -0.449 

Figure 6.7: The difference of y\(t),y2(t) from oscillation by (5.1), (5.2) with UJ — 1, r 
and initial conditions yi(t) = l,y\(t) = 0,y2(t) = —0.5,y2(t) = 0 for —r < t < 0 
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(a) c -0.5 (b)c -0.501 (c) c = 0.001 

Figure 6.8: Oscillation by (5.1), (5.2) with UJ — 1, r = 1 and initial conditions |/i(t) = 
= 0,y2(t) = -0.5, y2(t) = 0 for - r < t < 0 

The situation near the boundary r = T T / V I T S is also similar to the analysis in the 
section before. From the theory in the section 5.1, the system should be stable, and for 
greater r , the system should be unstable. By doing a numerical test, the system is still 
stable for r on the boundary. Moreover, it is stable for some values greater than %/\/l.5, 
too. The instability comes somewhere between ir/^/hE + 0.001 and IT/Vh5 + 0.002. For 
higher values of r , the system is unstable. There is no other interval of r where the system 
is stable with the constants u = 1 and c = —0.25. 

The reason for how the numerical results near the boundary turned out may be a 
numerical inaccuracy of the M A T L A B solver. Similar results are also obtained around 
the boundaries for a different choice of u and c. 
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6.3 SYNCHRONISATION OF A SYSTEM BY DELAYED STATES IN MATLAB 

(a) c = -0.5 (b) c = -0.501 (c) c = 0.001 
Figure 6.9: The difference of y\(t),y2(t) from oscillation by (5.1), (5.2) with cu — 1, r = 1 
and initial conditions yi(t) = l,y\(t) = 0,y2(t) = — 0.5,y2(t) = 0 for —r < t < 0 

(a) r = 0.001 (b) yi(t) - y2(t) for r = 0.001 (c) r = 1.2 
Figure 6.10: Oscillation by (5.1), (5.2) with u = 1, c = —0.25 and initial conditions 
Vl(t) = l,y\(t) = 0,y2(t) = -0.5,y2(t) = 0 for - r < t < 0 

( a) r = vfs " ° - 0 0 1 ( b ) r = 7 b ( c ) r = v f 5 + 0 - 0 1 

Figure 6.11: Oscillation by (5.1), (5.2) with u = 1, c = —0.25 and initial conditions 
yi(t) = (t) = 0,2/2(t) = -0.5,2/2(t) = 0 for - r < t < 0 

^ T = 7T5 " 0 - 0 0 1 ( b ) T = v T 5 ( C ) T = v f 5 + 0 - 0 1 

Figure 6.12: The difference of yi(t),y2(t) from oscillation by (5.1), (5.2) with cu — 1, c 
—0.25 and initial conditions j/i(t) = l,y\(t) = 0,y2(t) = — 0.5,y2(t) = 0 for —r < t < 0 
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7 CONCLUSION 

7 Conclusion 
In this thesis, dynamical systems with feedback delay controls were studied. As a 

representative of dynamical systems, oscillators have been chosen. The main aim was to 
discussed stability and controllability of the chosen systems. Since we have used DDEs, 
it was not possible to simply check the real parts of all roots of the system. Recall that 
the characteristic equation was an exponential polynomial. This equation has, in general, 
infinitely many roots. 

The thesis has been divided into seven chapters. In the chapter 2, we have recalled 
some basics of mechanical oscillators. The background of controls has also been intro
duced, especially the feedback delay control. We have also discussed stability of ODEs 
and DDEs. 

Stability of DDEs has been studied in the chapter 3. The exponential polynomial 
has been introduced as a consequence of the characteristic polynomial from the theory of 
ODEs. This is necessary for determining the systems' stability. We have stated Pontrya-
gin's theorem. The theorem gives conditions under which all the roots of the exponential 
polynomial have a negative real part. The theorem has been used in the following sections 
with different combinations of oscillators and controls. 

First, harmonic oscillation has been controlled by a simple control u(y(t)) = cy(t — r). 
This resulted into inequalities defining the stability region. This region has also been visu
alised in diagrams. The process has been split into two parts, one with negative constant 
c, and the other with positive constant c. In fact, the lower and the upper half-plane of 
the diagrams have been studied separately. Two options of diagrams have been shown. 
In the first, time delay r is fixed. The diagram shows a dependency of the frequency u 
on the control constant c. The stability region consists of areas similar to triangles. The 

exactly triangles in the case of dependency of u2 on c. These triangles become 
taller with increasing to. By Pontryagin's theorem, the system is asymptotically stable 
for the parameters lying inside the triangles. For the constants on the boundary of the 
region, the system is stable. If the values from the curves creating the boundary of the 
region but not exactly the boundary values of the region are taken, the stability has not 
been determined. There has been no proof confirming any hypothesis until now. Finally, 
the system is unstable for any other combination of to and c. The second option of the 
diagram was the case with a fixed to. This diagram showing the dependency of r and c 
was significantly different. Here, the partial regions became smaller with increasing values 
on the x-axis, i.e. r values. The discussion about chosen parts of the diagram, especially 
the case of the boundary curves, would be similar to the one done for the diagram with 
the fixed delay r. 

A damped oscillator is obtained by adding friction to the system. Its control by the 
basic control has been studied in the section 3.2. As before, Pontryagin's theorem has 
been used for this mechanical system with two forms of the exponential polynomial. We 
converted the damped system to the harmonic system by a substitution. Hence, the 
results from the section of the harmonic oscillator might be used. By this algorithm, 
sufficient conditions have been obtained. These conditions have been projected to a 
stability diagram. Since our aim was to state necessary and sufficient conditions, the 
original exponential polynomial has been recomputed. Pontryagin's theorem has been 
used as well but the results have been taken as already derived statements. It follows 
from the resource that if the mechanical system is under some parameters' assumptions, 
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the necessary and sufficient conditions have been stated. Unfortunately, the method 
requests the computation of roots and signs of a function for particular values and so it 
was not possible to make stability diagrams. 

The next part of the chapter 3 deals with the Pyragas control u(y(t)) = c(y(t) — 
y(t ~ r ))- The stability problem has been solved by converting it to already studied 
problems. For harmonic oscillations with this non-invasive controller, we substituted 
some constants. Thus, the system was similar to the harmonic oscillator with the basic 
control and also the result might be taken from that section. Due to the union of the 
particular stability regions, the final boundary curves could be simplified. The Pyragas 
control has been applied to the damped oscillator, too. By a substitution, we obtained 
a D D E similar to the damped system with the basic control. The next work has been 
reduced to the question of necessary and sufficient conditions. The system's constants had 
to be limited by some assumptions. For such a system, necessary and sufficient conditions 
have been obtained. These conditions depend on the roots of a function following from 
the exponential polynomial and so the stability diagrams could not have been drawn. 

The last part of the chapter 3 shows comparisons of the basic control and Pyragas 
control. For harmonic oscillators, there are no combinations of r and c stabilising the 
systems with both controls. Considering the control u(y(t)) = cy(t — r) and Pyragas 
control, we have shown and compared the effects of these controls. This discussion followed 
mostly from the stability diagrams. Similar diagrams could not be stated for damped 
problems. 

The next chapter was dedicated to systems in a matrix form. Such systems are de
scribed by two matrices and the stability of the system depends on their eigenvalues. We 
have stated general conditions for stabilising the systems which required systems' matri
ces to be commutative. This theorem might be simplified with an assumption of gain 
matrices' real roots. Moreover, another simplification of the theorem has been stated 
for a particular version of the matrix system. In this form, the theorem does not work 
with matrices' eigenvalues, but the stability conditions follow right from the systems' 
parameters. 

A possible use of the theorem has been shown for a system which was derived by 
conversion of the model of harmonic oscillations into a system of ODEs of the first order. 
To both of the equations, the simple control u(y(t)) = cy(t — r) was added. Due to the 
theorem, the problem had to be split into parts with a positive control constant and a 
negative control constant. As before, a set of conditions for the constants in the system 
has been obtained. The conditions for r were similar in both parts of the algorithm. 

The theorem has been used for the next system, too. Here, Pyragas control has been 
applied. It has been stated that there is no asymptotically stable solution for a positive 
control constant. On the other hand, the system has, say, a lot of solutions for a negative 
control constant. For a fixed frequency, there exist only countably many values of the 
time delay for which the system is unstable. 

The chapter 5 shows some ways of synchronising two mechanical systems by delayed 
controls. The algorithms are based on converting the systems into two autonomous dif
ferential equations. These equations are either ODEs which can be solved analytically by 
well known methods, or DDEs already solved in the chapter 3. 

The first system has been controlled by the difference of delayed states. By converting 
it, an O D E for the harmonic oscillator and a D D E for the harmonic oscillator with the 
basic control have been obtained. The stability region has been created by the already 
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7 CONCLUSION 

obtained results. The system is synchronised if the D D E is asymptotically stable, i.e. 
constants are taken from the stability region. The synchronised partial systems oscillations 
are approximated by the harmonic motion. 

In the next example, the systems have been controlled by the difference of a current 
state and other states with a delay. Using the same trick as before, two independent DDEs 
have been obtained with Pyragas controls. We have derived stability regions for both the 
equations, but in fact these regions do not intersect. Taking parameters from one of the 
regions, the coupled system was synchronised, but the oscillations became unbounded. On 
the other hand, if parameters were taken from the second stability region, the oscillations 
became unbounded and they appeared in antiphase. 

The last system in the chapter 5 presents a hybrid form of the controller. With this 
control, the synchronisation in the usual meaning has not been achieved. Anyway, one 
can use this control to set the motions of the partial system dependently on each other. 
For large time t, the systems are in antiphase. 

Since DDEs cannot be solved analytically, numerical methods play an essential part 
in the feedback delay control. The solver dde23 is a predefined function in M A T L A B 
designed for these problems. In the last part of this thesis, the solver dde23 has been 
introduced. Its background and use have been shown. Further, the solver has been 
used for two systems theoretically derived before, namely the harmonic oscillator with 
the basic control, and the synchronisation controlled by the difference of delayed states. 
The theoretical results for these systems have been checked numerically. They have been 
mostly confirmed, moreover, some additional information about the power of the control 
has been given. There were cases which did not precisely fit the theory. Since the non-
fitting part was in order of a thousandth, it has been accounted as a numerical inaccuracy. 

A l l graphs in the thesis have been created in M A T L A B by dde23. The diagram have 
been created by the software Geogebra. 

The thesis can be extended by considering more complex problems. In chapter 3, some 
other types of control could be added to the systems (for example a combination of states 
from different time delays or some other non-invasive controls). Also, the control of the 
damped oscillator with negative friction is still an open problem. A n extension of the 
results of chapter 4 could be done by considering more general matrix systems, especially 
those where gain matrices may also have imaginary eigenvalues. When studying the 
synchronisation of a system, a natural extension consists of the discussion of systems 
with different frequencies or control constants. Another possibility is to create controllers 
with states in different delay times. 
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8 List of Symbols 
K. set of real numbers 

C set of complex numbers 

Z set of integers 

N set of natural numbers 

C set of continuous functions 

lZ(a) real part of a complex number a 

X(a) imaginary part of a complex number a 

arg(a) argument of a complex number a 

\a] ceiling function of a real number a; the least integer greater than or 
equal to a 

c control constant 

/ identity matrix 

k stiffness of a spring 

I viscous damping coefficient 

m mass 

T period 

u(t) control function 

u(y(t)) feedback control function 

r time delay 

?/>(£) initial function 

OJ frequency 

O D E ordinary differential equation 

D D E delay differential equation 
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