
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV I N F O R M A Č N Í C H SYSTÉMŮ

OFFLINE MODE SUPPORT IN MOBILE APPLICATIONS
PODPORA OFFLINE REŽIMU V MOBILNÍCH APLIKACÍCH

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MAREK MUSIL
AUTOR PRÁCE

SUPERVISOR Ing. RADEK BÜRGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2020/2021

Bachelor's Thesis Specification |||||||||||||||||||||||||
23907

Student: Musil Marek
Programme: Information Technology
Title: Offline Mode Support in Mobile Applications
Category: Information Systems
Assignment:

1. Get acquainted with the available tools and libraries for creating mobile applications using
web technologies. Focus especially on the React Native platform.

2. Study existing libraries for synchronizing mobile applications with the ability to work offline,
such as Offix.

3. After consulting with the supervisor, design a general solution enabling the creation of mobile
applications with the possibility of working in offline mode and delayed synchronization,
including the resolution of possible conflicts.

4. Implement the proposed solution using appropriate technologies. Also implement a suitable
sample application demonstrating the use of the proposed solution.

5. Test the resulting application.
6. Evaluate the achieved results.

Recommended literature:
• Anderson, N. J.: Getting Started with NativeScript. Birmingham: Packt Publishing, 2016
• React Native: https://facebook.github.io/react-native/
• Offix: https://offix.dev/

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Bürget Radek, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: May 19, 2021

Bachelor's Thesis Specification/23907/2020/xmusil65 Page 1/1

https://facebook.github.io/react-native/
https://offix.dev/
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to research different approaches to mobile application development
with a focus on the use of web technologies. Next, research and comparison of technologies
that can be used to achieve offline support in mobile applications is done. As a later stage
of the work, a showcase mobile application is designed and implemented with the use of
researched technologies.

Abstrakt
Jedním z cílů této práce je průzkum různých přístupů k vývoji mobilních aplikací se za­
měřením na využití webových technologií. Následně jsou zkoumány a porovnány existující
řešení pro podporu offline režimu s opožděnou synchronizací dat u mobilních aplikací. Závěr
této práce tvoří návrh a implementace mobilní aplikace, která využije zkoumané technolo­
gie.

Keywords
mobile applications, offline mode, offline first, React-Native, react native, Android, data
synchronization

Klíčová slova
mobilní aplikace, offline režim, React-Native, react native, Android, synchronizace dat

Reference
MUSIL, Marek. Offline Mode Support in Mobile Applications. Brno, 2021. Bachelor's
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Radek Bürget, Ph.D.

Offline M o d e Support in Mobi le Applicat ions

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Radek Burget, Ph.D. The supplementary information was
provided by Gianluca Zuccarelli and Wojciech Trocki from Red Hat. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

Marek Musil
May 19, 2021

Acknowledgements
I would like to thank Gianluca Zuccarelli and Wojciech Trocki for their technical mentorship
and for answering my questions even in the late-night hours.

Contents

1 Introduction 3

2 Mobile application development 4
2.1 Native 4
2.2 Hybrid 5
2.3 Web-based 6
2.4 React Native 7
2.5 Flutter 8

3 Data synchronization technologies 9
3.1 Basic concepts 9
3.2 Database systems 11

3.2.1 SQL database 11
3.2.2 NoSQL database 11
3.2.3 Which type to choose 13

3.3 GraphQL 13
3.3.1 Data schema 14
3.3.2 Queries 14
3.3.3 Mutations 14
3.3.4 Subscriptions 15
3.3.5 Apollo GraphQL 15

3.4 Graphback 15
3.4.1 Data model 16

3.5 Offix 17
3.5.1 Offix Client 17
3.5.2 Offix DataStore 18

4 Implementation 20
4.1 Back-end 20

4.1.1 Application Data model 21
4.2 Mobile application 22

4.2.1 User Interface 22
4.2.2 End state of the application 25

5 Research into alternative libraries to Aerogear and Offix 26
5.1 IndexedDB 28

6 Conclusion 30

1

Bibliography 31

2

Chapter 1

Introduction

The goals of this thesis are to discuss different approaches to mobile application develop­
ment with a focus on the use of web technologies and on options of how to handle data
synchronization with offline mode support. After research into background topics, the end
goal is to create an application with the tools that were researched, that would support
offline mode and has conflict resolution implemented.

The initial motivation for the thesis was an open source Aerogear community project
backed by Red Hat Inc. named Offix, and its need of a better quality example application
that would showcase its capabilities using the React Native framework. The Aerogear
community was formed around projects that were planned to be part of a Red Hat Inc.
product called Red Hat Managed Integration, which was created partially as a successor
to the Red Hat Mobile Application Platform. This initiative was later abandoned due to
market changes and the work transformed into other projects and products.

The content of this thesis is divided into several chapters. In Chapter 2 can be found
a brief introduction to mobile application development and how web technologies can be
used. Chapter 3 describes the technologies used for data synchronization and the technolo­
gies by which the offline mode support is achieved. The following Chapter 4 contains the
initial markups for the app and explains the actual implementation. Afterwards, Chap­
ter 5 focuses on research into alternative technologies to the Offix library and in the last
Chapter 6, a conclusion can be found.

3

Chapter 2

Mobile application development

Over the past few years, mobile applications became more prominent and generally, peo­
ple tend to use mobile phones instead of a desktop P C for Internet use. Various sources
indicate that more than a half of all Internet traffic is generated by mobile users [12]. The
growth of the mobile market has led to creation of many frameworks that make the overall
development process easier, for example by sharing one code base for both major mobile
platforms (Google's Android and Apple's iOS). Such frameworks usually use web technolo­
gies like H T M L , CSS, JavaScript, or any other of their derived programming languages,
such as TypeScript, for building the applications, instead of a native programming language
for each platform.

As hinted in the previous paragraph, several approaches to mobile application devel­
opment exist. Such approaches are based on the type of the application that is being
developed. It is common that mobile applications are classified into Native, Hybrid and
Web-based. Each type of application is suitable for a different scenario and has its advan­
tages and disadvantages.

2.1 Native

Native applications are written in programming languages specific to the targeted platforms.
For Android, the native language was Java, but since Google's announcement at Google
I /O 2019, Kotl in has become the primary language to use. For Apple devices, there are
two options. The older Objective-C is being pushed more into the background by the more
modern Swift.

Generally, native applications are suitable where performance plays a big role, for ex­
ample mobile games. The user experience is usually better, since the used components fit
into the UI style of the whole operating system and that makes it easier for users to get
familiar with the application. Native applications, unlike the other types, are not limited
by the capabilities of the frameworks, which provide functions that can be used on multiple
devices, but can fully use all of the built-in functions of the device.

However, native applications come with a few disadvantages for development. The most
significant is the fact that the code base can be used only for one platform and, if there's
a need for the application to work on more than one platform, the whole code base has
to be re-written in a different language. This comes with a higher cost in both time and
money. Native programming languages require more knowledge, because there are not only
differences in the used programming language, but also in the A P I of the functionality

4

commonly available on mobile devices and platforms. A lot can be achieved with the use of
external libraries, but then, a library used for one platform may be missing an equivalent
library for the other platform.

2.2 Hybr id

Hybrid applications most commonly use a mix of native and web technologies. Generally,
hybrid applications have a shorter development process, because of the use of web technolo­
gies, and they have the ability to reuse the same code base for multiple platforms. Also,
they do not require that big of an expertise in the mobile development area. One set of
technologies can be used for both iOS and Android and also one team of developers can
create both mobile and web applications, resulting in cheaper development and shorter time
to market. That is especially important, because of how quickly the market evolves and
it is important to get the application to the market before the competition does. Hybrid
apps can access native functions like camera, GPS, microphone to some extent, however
this depends on the framework used and its capabilities.

Of course, the hybrid approach comes with disadvantages just like the native approach.

• The most significant is performance. Hybrid applications are generally slower as they
have to render Web View with the content. Web View acts as a browser window inside
the application.

• It is quite challenging to debug the application thanks to the extra layer created by
the framework. For example, during my React Native development, I have spent
hours on debugging, and when I finally gave up and wrote the code as a React web
application, I instantly saw error messages that were actually saying something useful
and were easy to understand.

• User experience, as previously mentioned in Subsection 2.1, is much better in case of
native applications. For Hybrid applications it is not as easy to maintain the balance
of user experience for both platforms at the same time.

• Framework developers need time to catch up and implement support for features in­
troduced by mobile phone manufacturers the platform operating system itself. Which
means that hybrid frameworks are always a little behind. For example, I was not able
to find out how a hybrid application can use a multi-camera system which is very
popular on the market today.

One of the most well-known hybrid frameworks is Adobe PhoneGap (which was recently
discontinued [1]) and its open source fork, Apache Cordova. Apache Cordova allows a very
easy way to create a multi-platform application using H T M L , CSS and JavaScript. It pro­
vides a way to access native functionality through plugins. The whole Cordova ecosystem
is quite extensive and includes many other tools and frameworks. One tool worth mention­
ing here is Ionic for its popularity. Ionic is a front-end S D K (Software Development Ki t)
designed for a better user experience which allows developers to use front-end frameworks
such as Vue.js, Angular or React 1. Even though Ionic is very popular with more than
44 thousands stars on Github 2 and more than 44 thousands Weekly Downloads of Ionic

1Ionic - https://ionicframework.com/
2 GitHub repository of Ionic Framework - https://github.com/ionic-team/ionic-framework

5

https://ionicframework.com/
https://github.com/ionic-team/ionic-framework

CLI from npmjs.com , according to Google Trends, it is being more and more overshadowed
by React Native and rising Flutter 1 .

2.3 Web-based

Web-based applications are web sites written in H T M L , CSS or JavaScript, accessed from
the web browser. Their biggest advantage is the short development time, low cost and ease
of updates, because they do not need to go through the publishing process to the platform
specific app store. That means that users cannot choose whether they want to update
the application or not, which solves the problem that users keep delaying the updates for
some reasons, because of previous negative s with updating their applications on desktop
computers [6].

However, the disadvantages are often quite significant: web applications are usually too
simple due to lower investments in them and do not provide many features in the way
that native or hybrid applications can, for example access to camera, N F C , biometrics like
fingerprint reader, etc. And the user experience is not as good either. The disadvantages
are partially solved by Progressive Web Apps (PWA).

Progressive Web Apps

Progressive Web Apps (PWA), are web applications that can be bundled and installed
like native or hybrid applications, except they use some variant of a web browser to show
their content. Most often, they are distributed directly from the website with one press of
a button. This could be a little bit problematic though, because users might not trust the
developer website to add anything to their device.

PWAs for Android can be distributed via Google Play Store as well, thanks to Trusted
Web Activi ty(TWA). T W A displays a full screen Chrome browser wrapped in Android
application without the full UI (User Interface) of the browser. More detail can be found
in the Chrome Developers Documentation 0.

The important part of P W A is the service worker. A service worker is a separate script
running in the background that enables some features which are not available for a classic
web page, such as offline access and push notifications. Caching is used to reduce load times,
provide offline access by storing responses to requests and data . Since the applications
are using the installed web browsers on the device for rendering the content with Web View
or other alternatives like T W A , they can be very small.

The Twitter Lite application is a good example of this. In comparison to the full native
version, its A P K ' file is significantly smaller (26.24MB vs 1.09MB). In the case of Instagram
by Facebook, the difference is even more significant. The native application for Android

3Ionic CLI is command line interface for creation of Ionic applications - https: //www.npmj s.com/package/
@ionic /c l i

4Google Trends statistics comparing popularity of React Native, Flutter and Ionic - https:
//trends, google.com/trends/explore ?date=2019-01-017.202021-04-01&q=7.2Fg7„2Fllh03gfxy9,7.2Fg7.
2Fllf03_rzbg,7.2Fg7.2Flq61_n0n0

5Trusted Web Activity on Chrome Developers - https://developer.chrome.com/docs/android/
trusted-web-activity/overview/

Progressive web apps (PWAs) - https://developer.mozilla.org/en-US/docs/Web/
Progressive_web_apps

7 A P K is the Android Package Kit . It is the file format for software packages that Android-based systems
use for app distribution and installation.

G

http://npmjs.com
http://www.npmj
http://google.com/trends/explore
https://developer.chrome.com/docs/android/
https://developer.mozilla.org/en-US/docs/Web/

uses 93.24 M B on the device, while the P W A variant uses only 246kB and the overall usage
for user data is also significantly lower, although the features are significantly reduced too.
For example, it is not possible to send videos in messages in the P W A version.

Limitations here are quite similar to web applications. Hardware sensors cannot be
used at all, Bluetooth or biometrics are not available. Also their ability to use more data
storage is both a disadvantage and at the same time an advantage. Limiting the storage
limits even its capabilities, for example, for offline usage.

2.4 React Native

React Native is an open source framework developed and maintained by Facebook since
its initial release in 2015. It enables mobile developers to create native-like applications
with the use of JavaScript and React components. React is a JavaScript framework for
building User Interfaces with the use of encapsulated components. UI (User Interface)
and its behaviour are described in J S X (XML-like extension for JavaScript). React Native
is difficult to categorize properly as either native or hybrid, because just like any hybrid
framework, one programming language is used to create applications for both Android and
iOS and some parts of the code base could be shared, but in the resulting application,
components are rendered with the native code and interact with the native APIs.

React Native requires Node.js 8 and npm 9 , which could be replaced by yarn 1 0 . The
basic concept of React Native is that the JavaScript engine renders native components and
communicates with the Native A P I through React Native Bridge. Communication between
the JavaScript engine and the native platform's A P I is done by batched asynchronous calls
for performance purposes[2]. The whole concept is visualized in Figure 2.1.

React Native Component

JavaScriptCore JavaScriptCore

Batched Async Calls

r

iOS API

Batched Async Calls

I
Android API

Figure 2.1: Visualization of React Native communication with native A P I . Figure from [2]
8Node.js - JavaScript runtime https://nodejs.org
'npm - package manager for Node.js https://www.npmjs.com

1 0 Yarn - alternative package manager https://yarnpkg.com/

7

https://nodejs.org
https://www.npmjs.com
https://yarnpkg.com/

The application and its components are bundled and sent to the device with Metro .
Expo is a framework for building React and React Native applications and similarly to
Metro it bundles the application, but also it handles more. Wi th Expo, Xcode is no longer
necessary for building iOS applications, so a developer does not need to own an Apple device
to be able to build the application. It allows quick Over The Ai r updates for applications,
so updates do not need to go through app store approvals. On top of that, Expo also
simplifies the use of native libraries and linking them during a build. Expo is not a silver
bullet though, because some native functionality are not available in applications created
with it. For example Bluetooth, N F C or background location tracking.

2.5 Flutter

Flutter is another option for building cross-platform apps. It is an UI toolkit developed by
Google Inc. and it was released in December 2018.

The programming language that is used is the strictly-typed Dart language. It is a rel­
atively new language from Google, but is quite close to Java or C # , which makes it a little
bit easier for developers to learn.

Originally, it was possible to create only Android and iOS applications, but with the
recent Announcement of Flutter 2, the target platforms were hugely expanded with stable
versions of Flutter Web, Desktop applications for macOS, Windows and Linux and also
embedded systems in cars. Toyota has announced that they are planning to use Flutter
2 for their infotainment systems in cars, so it is safe to say that Flutter's popularity will
only grow. Furthermore, some of Google's applications were migrated from native code to
Flutter as well, for example Google Pay [3].

1 1Metro - JavaScript bundler for React Native https://facebook.github.io/metro/

8

https://facebook.github.io/metro/

Chapter 3

Data synchronization technologies

In this chapter, I will focus on technologies that are used for data synchronization in mobile
applications, the existing solutions and a brief explanation how they work, to which I will
also refer in Chapter 4 Implementation.

3.1 Basic concepts

The typical model for Data Synchronization involves having a local projection of the data
that clients will consume independently of their network state. Client applications interact
only with a local database that needs to be replicated to the server.

This approach brings a number of challenges. For example:

• Using a local database forces developers to consume all their data the same way even
if the data itself is not going to be required when offline.

• As the data grows, the client side needs to perform more operations to replicate data
that might not be even needed

• Even when online, clients can still be affected by the time required to replicate changes
to the server and resolve possible conflicts that could be easily avoided when proper
interaction with the server will be enabled.

Local
projection of

the data

Server
Data

Figure 3.1: Basic model of Data Synchronization.

The modern approach to Data Synchronization gives developers ability to interact with
the server and gives them access to the business logic. For example, instead of increasing

9

the number of likes on Facebook post on the client and replicating it to the server (possibly
causing conflicts) developers can execute business logic directly on the server to increment
the counter.

What is important here is that application can work directly with the server by request­
ing both differences (diffs) as well as the entire dataset, while falling back to the local data
in cases of network connectivity loss or of long latencies. This approach allows seamless
interaction with the server while always keeping a local copy of the data.

Local Server
projection of Data

the data

Figure 3.2: Modern model of Data Synchronization.

This model can be even extended to bring live updates straight into the application and
store them in the local store. Developers can still request data directly from the server but
they will also benefit from the separate client-side store.

Local updates Server
projection of Data

the data

Figure 3.3: Model of Data Synchronization with realtime updates.

Basic functionalities of data synchronization solutions should include basic C R U D 1 oper­
ations, caching of changes while offline and execution of cached operations once the internet
access becomes available, along with the ability to resolve potential conflicts which could
occur once the device gets back online.

1 C R U D operations - Create, Read, Update, Delete

10

3.2 Database systems

This section will be dedicated to the database systems which could be used with mobile
applications and the differences between them. First, it is important to understand the
basics of SQL and NoSQL databases and their main differences.

3.2.1 S Q L database

SQL databases (or relational databases) are based on the relational model of data, which
means that data are stored as relations. From the mathematical definition, we know that
a relation is a set of n-tuples of values. In practice, it means that data are represented
by tables with rows and columns, where rows represent tuples, and columns represent
attributes. Attributes should contain only atomic values. The values are not complex
values, but are simple ones and cannot be split any further.

Multiple tables are usually linked together by data common to both tables. Such data
are known as candidate keys. The value of the attribute must be unique and cannot be
reduced to a less complex form. As an example, we can imagine a table Bank Account and
a table Person with a candidate key National Identifier Number. This candidate key
is used as a foreign key in the Bank Account table, and uniquely links the bank account to
its owner therefore together forming meaningful data.

The benefits of relational databases are mainly their maturity, their reduced redundancy
of data and their simplicity of disaster recovery. They are also transactional, so at any given
moment the data are consistent. In case some operation fails to complete, the transaction
is canceled and the state of the system is as it was before the start of the transaction. Any
reader of the data will never see the in-progress transaction, only the consistent previous or
new states. This data consistency is of critical importance in some industries, for example in
finance. There are a few disadvantages though. Relational databases could be a little slower
with searching through huge amounts of data, and horizontal scaling could be complicated.
Horizontal scaling is the ability to add more machines to the processing pool and therefore
enable parallel execution.2

Typical SQL database systems are Oracle Database, M y S Q L and ProstgreSQL.

Structured Query Language

Structured Query Language (SQL) is the language used to interact with the relational
database systems. The programmer forms queries, by which the user asks the server what
data matches a query or defines an action to be performed. As a response, the user gets
a table with requested data or information about the performed action. The queries and
actions can be quite complicated and involve multiple tables or parts of tables, when using
key attributes.

3.2.2 N o S Q L database

NoSQL (not only SQL) databases provide a flexible data schema in order to be more agile,
and generally do not use SQL for queries [5]. There are several approaches to how the data
are stored in a NoSQL database. The most common according to the official MongoDB
website [8] are the following:

2Horizontal scaling - https:/ /www.section.io/blog/scaling-horizontally-vs-vert ically/

11

https://www.section.io/blog/scaling-horizontally-vs-vertically/

• Document-based databases store data in a similar format to JSON (JavaScript Ob­
ject Notation) object, which is a pair of keys and values that could have multiple
types, such as numbers, strings, arrays, boolean or other objects. The most popular
Document-based database is MongoDB 3 .

• Key-value based databases use a simple approach to store data, each item is stored
as a key and value pair, which could contain only primitive data types like numbers,
booleans, strings, and arrays. The most popular key-value database is Redis'1.

• Wide Column-based databases store data like relational databases in tables with rows
and columns, with the biggest difference being that columns are dynamic. That means
that each row does not have to have the same columns. The most popular is Apache
Cassandra''.

• Graph databases store data as graphs with nodes and edges. Nodes store specific
information and edges represent relationships between the nodes. According to the
DB-Engines statistics, Neo4j b is the most popular Graph database and Microsoft
Azure Cosmos D B is right in second place [11].

A great advantage of NoSQL databases over relational databases is that they do support
horizontal scaling. MongoDB could serve as a good example, because there are two ap­
proaches that will be described in the next two paragraphs based on information from the
official website [7].

Sharding

Sharding is basically splitting the data and distributing them over multiple nodes so each
node stores only a part of the data. Sharding is very useful when we store big amounts
of data, as each operation could be performed on a different node, therefore sharing load
across the nodes. Such splitting could over time cause uneven distribution, but that is
automatically solved by a shard balancer.

Figure 3.4: Depiction of sharding [7].

Replica sets

Replica sets, on the other hand, are only mirrors of the original dataset on multiple nodes.
This is very useful in case one of the nodes fails, so data are backed up at any given
moment. Replication also contributes to faster read times, as the data can be read from
multiple machines at the same time, once again sharing load across the nodes.

3MongoDB - https://www.mongodb.com
4Redis - h t tps : / / red is . io /
5Apache Cassandra - https://cassandra.apache.org/
6Neo4j - https://neo4j.com/

12

https://www.mongodb.com
https://redis.io/
https://cassandra.apache.org/
https://neo4j.com/

Figure 3.5: Depiction of replication [7].

3.2.3 W h i c h type to choose

Since NoSQL databases are a better choice in cases when a more flexible data schema
is necessary, they are a better choice for mobile applications. We do not need relations
between the data for the resulting application and for simplicity, it will be much easier to
use MongoDB and its JSON-like document approach to data storage.

3.3 GraphQL

GraphQL is a query language for APIs, creating a simplified way to request data from
an endpoint. In case of a classic R E S T A P I , there are multiple endpoints, with specific
purposes. GraphQL takes a different approach, that merges all the endpoints into a single
one and the specific data that the client application needs is specified in the request. This
makes it easier in cases where the application needs to get data from multiple endpoints at
once.

Figure 3.6: Comparison of R E S T A P I and GraphQL A P I [9].

13

Figure 3.6 depicts the difference in an example where we have three different types of
data. For a R E S T A P I , three endpoints exist for each data type, while in case of GraphQL,
there is only one endpoint which accepts specification of the data type in the request.

It is important to understand what GraphQL is, as it is essential technology used by
many solutions for data synchronization.

3.3.1 Data schema

The basic building blocks in a GraphQL service are types and field on those types and
functions for each field on those types. Fields are strictly typed, so each field needs to have
specified data type of its content. The fields could be of various types, the classic scalar
types such as Int, Float, String, Boolean or ID, Enumeration types, lists and other objects.
It is even possible to use the abstract type Interface to use inheritance from another object.

3.3.2 Queries

GraphQL communicates with the client application with JSON or JSON-like objects. The
query is quite simple. The examples are from the official GraphQL website [13].

{

hero {

name

>
}

Listing 3.1: Query example.

{

"data": {

"hero": {

"name": "R2-D2"

>
}

}

Listing 3.2: Response example.

From Listing 3.1 we can see that the query reminds us of a JSON object, hero and name
are referenced as fields and hero is also an object. Wi th fields, we specify what data from
the object we want to receive. If we add an id field to the object, we also get id in addition
to the name of the object. The response from the A P I is a typical JSON object structured
in the same format as the query. This way, the format of a response is always a predictable
format, because it was already specified.

3.3.3 Mutations

A mutation is a method of writing data into the database. A l l write operations should
be implemented as mutations, even though a query can write data as well. Listing 3.3 is
an example mutation, which creates a review object in the database, and at the same time,
returns the nested fields starts and commentary that were previously stored.

14

mutation CreateReviewForEpisode($ep: Episode!, $review: Reviewlnput!) {

createReview(episode: $ep, review: $review) {

stars

commentary

>
}

Listing 3.3: Mutation example [13].

3.3.4 Subscriptions

A subscription is a third operation type of GraphQL. It is fairly similar to the query, but
unlike the query, subscription maintains the connection open for future updates and keeps
fetching the data. This is often realized with the use of web sockets. Subscriptions are
especially helpful when real time updates are needed in the application. A great example
would be a chat application, where instant updates are essential. In cases where this is not
as important, periodical polling and re-execution of the queries on a specific user action is
better approach, since it does not generate as much network traffic.

3.3.5 Apollo G r a p h Q L

Apollo GraphQL is a specific implementation of GraphQL providing both server and client
tools for the GraphQL A P I . Apollo server can be used as a stand-alone GraphQL server or as
an add-on to existing Node.js middleware'. Apollo client is available as a native Android
or as an iOS library as well as a JavaScript library. It provides tools for fetching data,
caching, and pagination. The JavaScript library is designed mainly to be used with React,
but support for additional frameworks is achieved with 3rd party libraries, for example,
Angular or Vue.js. Optimistic updates are supported as well.

Both Client and Server support File Uploads, although with Node 14 it gets a little
more complicated and additional setup is required.

3.4 Graphback

Graphback is a tool created by the Aerogear community, which aims to significantly shorten
the overall development time of GraphQL applications by auto-generation of the C R U D
A P I and the use of back-end templates. It supports three different databases for storing
the data: PostgreSQL for the relational databases and document-based NoSQL database
MongoDB. The third one is SQLite, which is not a full-fledged database engine suitable for
a bigger applications 8 and is not recommended for a production use by Graphback authors9.

Graphback provides server side conflict resolution with a few build-in resolution strate­
gies.

• ClientSideWins is a strategy where conflict will be resolved to whatever the client
sent. If the object in conflict was deleted, it is restored to the state on the client. If

7Middleware is type of software that provides additional services and capabilities to applications that
are not provided by the operating system. Middleware can be described as a glue between the applications,
https://www.redhat.com/en/topics/middleware/what-is-middleware

8SQLite - more information can be found at https://www.sqlite.org/whentouse.html
9Using SQLite with Graphback - https://graphback.dev/docs/databases/overview

15

https://www.redhat.com/en/topics/middleware/what-is-middleware
https://www.sqlite.org/whentouse.html
https://graphback.dev/docs/databases/overview

the conflict arises with a delete mutation, the object is deleted no matter its state on
the server.

ServerSideWins ensures that in the event of a update conflict, the client's update
will never overwrite any field that has changed since the client last fetched it. If
the object has been deleted in the database, the client will be notified of it by way
of a Conf lictError. For delete conflicts, the client is informed of the conflict via
a ConflictError.

ThrowOnConf l i c t is strategy that throws Conf lictError every time a client tries to
change a field on an object that has been changed on the server while the client was
offline.

A custom Conf lictResolutionStrategy can be implemented as well. As an example,
we can use the ClientSideWins strategy from the Graphback library itself, as in
Listing 3.4.

export const ClientSideWins: ConflictResolutionStrategy = {

resolveUpdate(conflict: ConflictMetadata): any {

const {serverData, clientDiff }= conflict

const resolved = Object.assign(serverData, clientDiff);

if (serverData[DataSyncFieldNames.deleted] === true) {

resolved[DataSyncFieldNames.deleted] = false;

}

return resolved;

resolveDelete(conflict: ConflictMetadata): any {

const {serverData, clientData }= conflict;

if (serverData[DataSyncFieldNames.deleted] === true) {

throw new ConflictError(conflict);

}

const resolved = Object.assign({}, serverData, {[

DataSyncFieldNames.deleted]: true });

return resolved

Listing 3.4: Implementation of conflict resolution strategy.

3.4.1 Data model

As an input for Graphback we can use a GraphQL data model, represented as GraphQL
types, from which the GraphQL schema is generated, including the GraphQL C R U D
API(mutations and queries 3.3.2), resolvers, and client queries. To generate C R U D A P I for

16

1

2

3

1

5
6
7
8
9

10

11

12

13

11

a GraphQL type, it only needs to be properly annotated with Omodel showcased by
Listing 3.5, line 2. It is also possible to specify which C R U D A P I Graphback should create
for each type. Basic relationships like one-to-many, one-to-one and many-to-many between
GraphQL types are supported and to create them, field annotations are used.

©model
n n n

type Note {

id: ID!

text: String

description: String

}

Listing 3.5: Model example with annotation from Graphback website.

A more detailed description of a Data model with a more complex example can be found
as Listing 4.1 in Section 4.1.1.

3.5 Offix

Offix was originally created as an extension to Apollo GraphQL's client library to provide
offline support for applications. This approach was later abandoned and new approach was
adopted. The following sub-chapters are dedicated to these two approaches.

3.5.1 Offix Client

The original Offix, Offix Client, supports all GraphQL operations while offline. Queries are
targeted to the local cache of the data on the device, and mutations are stored in a queue.
The default behaviour is that all queries are considered as offline queries, and when they
are performed, the results are stored in the cache. To make sure mutations are performed
on the latest version of the data, before each mutation the data are re-fetched first with
either a cached query or a live query to the server. It is also possible to specify multiple
queries that should be performed before a mutation. This is accomplished with the cache
helpers and the offix-cache package.

import {CacheOperation]-from 'offix-cache';

import {findNotes]-from '. . /graphql/gql';

const options = {

updateQuery: findNotes,

returnType: 'Note',

};

export const add = {

. . .options,

mutationName: 'createNote',

operationType: CacheOperation.ADD,

};

17

15

16

17

18

19

20

21

22

23

21

25

export const edit = {

. . .options,

mutationName: 'updateNote',

operationType: CacheOperation.REFRESH,

};

export const remove = {

...options,

mutationName: 'deleteNote',

operationType: CacheOperation.DELETE,

};

Listing 3.6: Mutation helper example.

Listing 3.6 is an example of the mutation helper from the implementation of the Note-taking
application.

The Omx-cache package provides also subscription helpers for real time updates from
the cached data. The implementation of the helpers is quite similar to mutation helpers.
This means that a subscription is specified and also a query for updating the cached data.
More concrete examples can be found in Section 4 Implementation.

Since mutations are not necessarily performed immediately, for a better user experience,
the UI (User Interface) relies on Optimistic Responses. A n Optimistic Response is a way
to update the UI to reflect the performed changes even before the change was processed
by the server. This approach is optimistic, because it expects that the operation will be
performed successfully.

Caching and offline changes bring potential problems in terms of conflicting changes to
the data, as it is quite common that the data spread over multiple devices will eventually
become desynchronized and conflicting changes will start appearing. Offix provides tools
for both client- and server-side conflict resolution. To properly detect and resolve potential
conflicts, it is essential for the data to have additional information like version, timestamps
of creation or last update. Developers can create their own resolution strategies that will
be applied once the conflict is detected. By default, if not specified otherwise, the server
will just apply client changes on top of its own data.

The Offix-Client approach comes with some disadvantages that I ran into even during
my development. In case of more complex GraphQL schema with complex types, queries
and relationships, it is necessary to create custom cache update functions, which could be
highly difficult and requires a very good knowledge of Apollo GraphQL. This lead to a re-
evaluation of the whole project and a separate DataStore was created to solve some of the
main problems.

3.5.2 Offix DataStore

One of the main changes in Offix DataStore is that a local database is used for storing
all offline data that offix-client previously stored as a cache. As for the specific database
technology, for web browsers IndexedDB or WebSQL are supported and for mobile appli­
cations, SQLite is used. The database is based on the provided GraphQL model from the
very beginning as the main data storage.

18

The G r a p h Q L C R U D 1 0 specification is also supported, so the whole GraphQL schema
with all queries and mutations can be generated without the need to create custom cache
helpers, and so could be used out of the box with the Graphback server.

OfRx DataStore is still under development, and is currently on a Beta version 0.5.0.

GraphQLCRUD specification - https://graphqlcrud.org/docs/next/gettingstarted

19

https://graphqlcrud.org/docs/next/gettingstarted

Chapter 4

Implementation

For a showcase application, I have decided to create a simple Note-taking application that
would support simple text- and list-type notes. Initial work was done with a combination
of offix-client for the mobile, and a Graphback back-end.

4.1 Back-end

The back-end for the mobile application has been generated using Graphback from its
template, containing MongoDB, DataSync configuration and Apollo GraphQL Server1.

The generation process is depicted by Figure 4.1. The process is started with yarn
generate, which only points to specified Graphback command. Graphback then takes the
data model file stored in model/datamodel .graphql and generates the complete GraphQL
schema file schema.graphql with a definition of all necessary scalars, input types, muta­
tions, queries, type objects and subscriptions. Then with the use of a Codegen2 TypeScript
file generated-types .tsx with the schema is created in a representation that could be
used with the server.

yarn generate graphback generate graphql codegen

creates schema

uses schema to
create Typescript

types

Figure 4.1: Code generation diagram provided with the template.

1Graphback back-end template https://github.com/aerogear/graphback/tree/master/templates/
ts-apollo-mongodb-datasync-backend

2GraphQL Codegen is code generator for GraphQL schema https: //www.graphql-code-generator.com/

20

https://github.com/aerogear/graphback/tree/master/templates/
http://www.graphql-code-generator.com/

4.1.1 Application Data model

The Data model consists of two main models. Type Note and type Item.

1 M M II

2 ©model

3 Oversioned

4 Odatasync(

5 t t l : 5184000
6)

7 i i H i i

8 type Note {

9 _id: GraphbackObjectlD!

10 t i t l e : String

11 type: NoteTypes!

12 version: Int!

13 completed: Boolean

14

15 text: String

16

17 n n n

18 OoneToMany(field: 'item

19 n n n

20 l i s t : [Item]

21 >

Listing 4.1: Note type

Listing 4.1 is a data model for Note, it is annotated with ©model for auto-generation of
C R U D A P I , Oversioned, which adds fields with timestamps of creation and last update.
This Note type is constructed as a universal type for both List and Text type notes. The
text type will use text field for its content and List type note will use an array of Items
which are linked to the note with the relationship type one-to-many. The field type is of
NoteType data type, which is an enumeration with the set of values "Text" and "List",

n n n

2 ©model

3 Odatasync(

4 t t l : 5184000
5)
g n n n

7 type Item {
8 _id: GraphbackObjectlD!

9 position: Int

10 completed: Boolean

n text: String

12 }

Listing 4.2: Item type

From the models 4.1 and 4.2, it would appear, that in the actual database, Note would
contain an array l i s t with IDs of their nested Items. In reality though, Item records

21

contain IDs of its parent Note. This I found very confusing, since query a returns a field
l i s t with an array of nested items. Listing 4.3 shows the structure of a List note that is
returned by a query.

1 {

2 "_id": "6090582de4a05a3ef090ela7",

3 " t i t l e " : "List2",

4 "type": "List",

5 "version": 1,

6 "completed": false,

7

8

"createdAt": 1620072493688,

"updatedAt": 1620072493688,

9 "text": null,

10 " l i s t " : [{

11 "_id": "60905ecfe4a05a3ef090ela8

12 "text": "item 2-1",

13 "position": 1

14 },
15 {

16 "_id": "60905ed9e4a05a3ef090ela9

17 "text": "item 2-2",

18 "position": 2

19 },
20 {

21 "_id": "609b9ffe4a4d3b282a6af2bb

22 "text": "item 2-3",

23 "position": 2

21 }]

25 }

Listing 4.3: Item type

4.2 Mobile application

As noted above, the showcase mobile application is a Note-taking application that would
support two note types, Text Note and List type. As a starting point for the application,
I used the official example in the Offix Client library 3 for the necessary configuration to
learn how to use it in the first place. The rest was built on top of it with React-Native
components and the react-native-paper package1, which provides some basic Material
Design components.

4.2.1 User Interface

The User Interface of the application is inspired by the Material Design system, which is
recommended for Android applications. React-Native can render the native components,
but some more advanced components are distributed with external packages. After some

3Official Offix Client Example - https://github.com/aerogear/offix/tree/master/examples/react-
native

4React-native-paper package - https://callstack.github.io/react-native-paper/

22

https://github.com/aerogear/offix/tree/master/examples/react-
https://callstack.github.io/react-native-paper/

initial research, I discovered React-native-paper, which provides many components in
Material design.

In the beginning, a simple prototype of the application was created with online tool
FluidUI , which was a fast and easy way of prototyping the UI design.

Figure 4.2 is the prototype of the main page, which lists all notes as a list. This was
changed later on during the implementation to accommodate more notes in a single view.
The result is shown in Figure 4.3. The status bar was changed to a darker shade of orange
and the button for adding new notes was changed to secondary color, in order to reflect
more the color system of Material Design and elevate the button visually.

^ 1 12:30

— Notes

Title A

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore

Title B

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore

Title C

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore

Title A

] Lorem ipsum dolor sit amet
• Lorem ipsum dolor sit amet

Title B
I I Lorem ipsum dolor sit amet

] Lorem ipsum dolor sit amet

Title C
r j Lorem ipsum dolor sit amet
• Lorem ipsum dolor sit amet

Figure 4.2: Prototype for the example application.
5 FluidUI is online prototyping tool which provides an extensive library with UI components in the

design for multiple platforms, and it uses mainly Material Design and iOS. More information can be found
at https://www.fluidui.com/.

23

https://www.fluidui.com/

test3

this is test

test3

this is test

test5

this is test 5

test7
this is test 7

List2

f j item 2-1

• item 2-2

• item 2-3

test4

this is test

test6

this is test 6

test LONGLONGLON...

Lorem ipsum dolor sit
amet, consectetuer
adipiscing elit. Etiam
commodo dui eget wis...

test 1

test test 1

The note creation screen is shown in Figure 4.4. As a default, Text Note type is selected
and type can be changed with a press of the button with the title CHANGE NOTE TYPE.

24

Title

Text

Title
•

Figure 4.4: Modal window for creation of Note.

4.2.2 E n d state of the application

During the implementation, I have encountered a problem that I needed to discuss with my
technical mentor at Red Hat. Our conversations lead us to the conclusion that, technically,
my problem with caching of mutations is unsolvable with the current state of the Offix
Client library, which was at the time being deprecated in favour of a new approach in
development, which is described in Section 3.5.2. The problem was in the cache package
itself, that it works for only very specific GraphQL schema, and that more complicated
ones are not handled properly.

After further discussion on how to approach this we have decided that focusing on
the Data Synchronization technolog ies cts ci research and comparison would be the most
appropriate approach given the circumstances and state of the Offix library.

25

Chapter 5

Research into alternative libraries
to Aerogear and Offix

There are several other existing solutions on the market for data synchronization for mobile
applications, with both open source code and closed source code.

• Google Cloud Firestore is a cloud-hosted NoSQL database, which officially supports
both Android and iOS mobile platforms, and also web applications. The document-
oriented data model is used by Cloud Firestore and it also provides offline support
for the main platforms. It provides integration with other Firebase products, such as
Authentication or Cloud Functions [4]. It is also possible to use the Cloud Firestore
for free with some limitations. 1 There is also a React-Native library, which offers the
offline mode support as well. Nevertheless, the library is not officially supported by
Firebase and does not work with Expo 2 .

• R x D B is an alternative to Offix as it takes the GraphQL approach as well and provides
tools for a real-time synchronization with an offline first approach. R x D B supports
all major web browsers, Node.js, Electron 3 , React-Native, Cordova and frameworks
like Angular, Vue.js, React and Ionic. A very interesting feature is Multi-Window or
Multi-tab synchronization which works completely offline. This is achieved by broad­
casting state changes to all clients that are connected to the same storage engine. For
the storage engines, R x D B provides multiple adapters that define where the data are
stored. Both persistent and non-persistent options are available. A non-persistent op­
tion that can be used is JavaScript runtime memory, and there are multiple persistent
options for different platforms. Just like Offix DataStore, IndexedDB or WebSQL are
supported for web applications and for other platforms there are specific implemen­
tations of SQLite or React-Native's AsyncStorage [10].

• PouchDB is an in-browser database with the ability to save data locally to allow
users to use the application even when they're offline. It also provides tools for
synchronization between clients. PouchDB works with both web browsers and in
Node.js and can be used as a direct interface to CouchDB-compatible servers. The
A P I works the same way in every environment, so developers can spend less time

1Cloud Firestore pricing - https://firebase.google.com/pricing
2Expo - more on Expo in Section 2.4
3Electron is a framework for building cross-platform desktop applications with the use of JavaScript.

H T M L and CSS - more at https://www.electronjs.org/

26

https://firebase.google.com/pricing
https://www.electronjs.org/

worrying about browser differences, and spend more time on the actual application
development. PouchDB is a free open-source project, written in JavaScript, with
a quite huge community of 339 individual contributors. The project has more than
fourteen thousand stars on GitHub and is quite popular.

• urql is yet another GraphQL client which provides similar features to Apollo GraphQL.
What is more interesting is that it also provides offline support as part of its Graph-
Cache package. It is fairly similar to other technologies, except that there is no decent
documentation on how to use it properly in mobile applications. React is supported,
and from my research, it should be possible to use it in React-Native applications.
It is a project under active development, so more features and supported platforms
can be expected in the future. For offline operations, it uses Normalized Caching
instead of a database like IndexedDB or WebSQL. Normalized Caching is a process
where denormalized JSON data is normalized back to their original form as they were
stored in the database engine on the back-end. This way, the cache more resembles
the database. Normalized cache also stores information about the relations between
the types.

• AWS (Amazon Web Services) AppSync is a fully managed and paid service that pro­
vides GraphQL APIs and tools similar to the other projects, including offline support,
real time synchronization and caching. Key advantage is its integration with other
Amazon services such as Identity and Access Management, AWS Lambda 1 , AWS
DynamoDB and more. Also, AWS AppSync scales the GraphQL A P I engine auto­
matically according to current traffic. AWS AppSync comes hand-in-hand with the
Amplify Framework'' which provides libraries for the data synchronization capabili­
ties and more, for example, push notifications. The Framework supports all the main
platforms like Native Android and iOS, React Native, Flutter, Ionic and works with
other web frameworks too.

These previously mentioned solutions are very popular and a more complete comparison
is shows in Table 5.1 provides comparison between them. From the table, it becomes obvious
that although the libraries contain the necessary functionalities, it is quite challenging to
use them due to lack of user-friendly documentation and examples. In the case of R x D B
a React Native example application is available but is broken and non-functional, with
attempts to fix it not being successful.

4 AWS Lambda is a serverless compute service - https://aws.amazon.com/lambda/
5 Amplify Framework Documentation - https://docs.amplify.aws/

27

https://aws.amazon.com/lambda/
https://docs.amplify.aws/

Features urql R x D B PouchDB
Offix
DataStore

AWS
AppSync

GraphQL Yes Yes No Yes Yes
Schema
generate

No No No Yes Yes

Conflict
Resolution No Server Side

Server Side
CouchDB Server Side** Server Side

Offline
Storage

IndexedDB
IndexedDB
SQLite

IndexedDB
SQLite

IndexedDB
IndexedDB
SQLite

Relationships
models

Yes Yes
Yes
(CouchDB) Yes Yes

React support Yes Yes Yes Yes Yes
React Native No* Yes* Yes* Yes* Yes
R N Docs No Yes* No Yes Yes
Flutter No No No No Yes
Cordova No Yes Yes No Yes
Native apps No No No No Yes
Example
applications

Yes* Yes No Yes* Yes

Table 5.1: Table comparing different libraries and their Features.
*It may be possible to use, but there is no official documentation or Example on how.
**If used with the Graphback back-end.

So far, the best solution at the time of research seems to be AWS AppSync. Their
documentation is easy to read, many publicly accessible examples exist 6, and it supports
multiple platforms and frameworks. The biggest drawback though, is that it is not a self-
hosted solution and is tightly coupled to the AWS ecosystem, unable to be used without
it.

5.1 IndexedDB

A significant stepping stone in Data Synchronization is adoption of Indexed Database
API(commonly referred to as IndexedDB) as the main client storage for all data of the
application inside the browser.

The first version of IndexedDB became a W3C Recommendation' in 2015. Currently,
version 3.0 is in the stage of First Public Working Draft, as of March 11th, 2021, which
means that the specification was published for review by the community, W3C members
and other organizations.

IndexedDB at its core is a transactional database system, like many SQL database
engines. However, IndexedDB is a JavaScript-based object-oriented database. IndexedDB
stores and retrieves objects that are indexed with a key. Operations on the IndexedDB are
performed asynchronously, to not keep blocking the applications while waiting for data to
be fetched.

6 AWS AppSync examples on Github - https://github.com/aws-samples
7 W3C (World Wide Web Consortium) Recommendation is a stage of development where W3C can

recommend the wide deployment of the specification in question and the specification becomes standard
web technology, https: //www.w3.org/2004/02/Process-20040205/tr.html

28

https://github.com/aws-samples
http://www.w3.org/2004/02/Process-20040205/tr.html

[J] Elements Console Sources Network Performance Memory Application Security Lighthouse Adblock Plus 1 O • x
Application c | ^ • Start from key <S> x

h Manifest

ijl Service Workers

Total entries: 2 h Manifest

ijl Service Workers 1 Key (Key path: ' taskT i t l . . . Value
§ Storage 0 "42" T{ taskTit le: "42", hours: "04", minutes: "02", t ay: "04", month: "February", _}

Storage
day: "04"
hours: "94M

>• ™ Local Storage

* SB Session Storage

T g IndexedDB

minutes: "02"
month: "February"
notif ied: "no"
taskTitle: "42"

T g toDoList - https://mdni.githJb.io year: "2021"

T ss to Do-List 1 "•test" T{tas kTitte: "test" r hours: "1", minutes: "0", t ay: "01", month: "Janua ry", _}

day

hours

minutes

day: "01"
hours: "1"
minutes: "0"
month: "January"

month notif ied: "no"

year

notified

taskTit le: "test"
year: "2025"

g Web SQL

• Cookies

Figure 5.1: IndexedDB data structure example from example application by M D N Web
Docs.

Figure 5.1 is an example of the structure in which IndexedDB stores data. In this
example, the key is the name of the task and value is a JavaScript object containing all the
details. A web pages could have multiple databases for different purposes.

29

https://mdni.githJb.io

Chapter 6

Conclusion

As part of this work, we have discovered that there are multiple libraries for Data Synchro­
nization with both opened and closed source code, and that could be self-hosted or managed.
But when it comes to the self-hosted part of the market, the libraries are no silver bullet
solutions because they all come with their own specific problems and limitations.

Offix DataStore is quite a promising project, but given the early stages of development,
it will still take some time before it is possible to use it in some more complex scenarios.

Among all the researched options, only AWS AppSync and Offix DataStore work well
with some schema and code generators, which is also a very important aspect to consider.
A developer should not be required to manually change the schema and code every time
a small change is made to the data model.

For future development, the example application could be refactored to use the Offix
DataStore instead of the deprecated Offix Client, but only when the library is in a state
that would allow me to do so. The library shows a real potential in the self-hosted space,
which with the rising interests in user data privacy will become more important for users
with concerns about their data.

30

Bibliography

[1] A D O B E I / O . Update for Customers Using PhoneGap and PhoneGap Build [online].
Medium.com, 2020 [cit. 2021-03-02]. Available at:
https: //blog.phonegap.com/cc701c77502c.

[2] B O D U C H , A . and D E R K S , R. React and React Native: A complete hands-on guide to
modern web and mobile development with React.js. 3rd ed. Packt Publishing, 2020.
ISBN 978-1-83921-114-0.

[3] G O O G L E D E V E L O P E R S . Announcing Flutter 2 [online]. Google Developers, 2021 [cit.
2021-03-03]. Available at:
https: //developers.googleblog.com/2021/03/announcing-f lutter-2.html.

[4] G O O G L E D E V E L O P E R S . Cloud Firestore [online]. Google Developers, 2021 [cit.
2021-03-04]. Available at: https://firebase.google.com/docs/firestore.

[5] I B M C L O U D E D U C A T I O N . NOSQL Databases [online]. I B M Cloud Education, 2019
[cit. 2021-03-03]. Available at: https://www.ibm.com/cloud/learn/nosql-databases.

[6] M A T H U R , A . and C H E T T Y , M . Impact of User Characteristics on Attitudes
TowardsAutomatic Mobile Application Updates. In: [online]. U S E N I X Association,
2017. Available at:
https://www.usenix.org/system/files/conference/soups2017/soups2017-mathur.pdf.

[7] M O N G O D B I N C . . HOW to Scale MongoDB [online]. MongoDB Inc., 2021 [cit.
2021-03-03]. Available at: https://www.mongodb.com/basics/scaling.

[8] M O N G O D B I N C . . NOSQL Explained [online]. MongoDB Inc., 2021 [cit. 2021-03-03].
Available at: https://www.mongodb.com/nosql-explained.

[9] P O I R I E R G I N T E R , M . Using Node.js Express to Quickly Build a GraphQL Server
[online]. Snipcart inc., 2019 [cit. 2021-03-04]. Available at:
https: / / snipcart.com/blog/graphql-nodej s-express-tutorial.

[10] R x B D C O M M U N I T Y . A realtime Database for JavaScript Applications [online].
R x B D Community, 2021 [cit. 2021-03-09]. Available at: https://rxdb.info.

[11] S O L I D IT G M B H . Trend of Graph DBMS Popularity [online]. Solid IT GmbH, 2021
[cit. 2021-03-03]. Available at: https://db-engines.com/en/ranking_trend/graph+dbms.

[12] S T A T C O U N T E R . Desktop vs Mobile Market Share Worldwide [online]. Statcounter,
2021 [cit. 2021-03-02]. Available at: https://gs.statcounter.com/platform-market-
share/desktop-mobile/worldwide/#yearly-2010-2021.

31

http://Medium.com
http://googleblog.com/2021/03/announcing-f
https://firebase.google.com/docs/firestore
https://www.ibm.com/cloud/learn/nosql-databases
https://www.usenix.org/system/files/conference/soups2017/soups2017-mathur.pdf
https://www.mongodb.com/basics/scaling
https://www.mongodb.com/nosql-explained
http://snipcart.com/blog/graphql-nodej
https://rxdb.info
https://db-engines.com/en/ranking_trend/graph+dbms
https://gs.statcounter.com/platform-market-

[13] T H E G R A P H Q L F O U N D A T I O N . Queries and Mutations [online]. The GraphQL
Foundation, 2021 [cit. 2021-03-04]. Available at: https://graphql.org/learn/queries/.

32

https://graphql.org/learn/queries/

