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Bibliografická identifikace
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Poděkováńı
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Introduction

Particle accelerators range from fairly simple devices to highly complex ones. One of
the simple accelerators are present in classic vacuum screens of older televisions, where
static electric field accelerates electrons. However, energies achieved this way are very
low compared to accelerators with oscillating magnetic field.

There are two general designs of accelerators: linear and circular. They are suitable
for accelerating different types of particles, generally circular accelerators are better
for accelerating heavier particles, but light ones suffer a lot of energy loss due to syn-
chrotron radiation. I will focus on particle transport in the LHC1 circular accelerator
when the particles are already accelerated. The interaction point used as a starting
point for my simulation will be the one inside the ATLAS detector.

Figure 1: The ATLAS detector

The LHC is currently the largest circular accelerator in the world. Its circumference
is 27 km and is capable of reaching energies up to 7 TeV per proton, that is 14 TeV per
collision.

There are many types of elements in the beamline, but given some conditions (that
will be discussed later), it is enough to implement only quadrupole magnets, dipole
magnets, drift space (vacuum with no field) and apertures. I expect all other elements
to exactly compensate for any energy loss caused by synchrotron radiation and other
inaccuracies, therefore I consider them to behave like free drift space.

1Large Hadron Collider in CERN

7



My goal is to create a computer simulation with interactive visualization of particles
and twiss file2 import capabilities. Currently, no other software offers direct visualisa-
tion capabilities with realtime simulation as user changes beamline parameters. Final
verification of the simulation software will be done with beamline setup of the LHC
and data from the MAD-X simulation software3, but any other accelerator geometry
can be imported when corresponding twiss files are provided.

2twiss file is a file describing beamline geometry and magnet settings
3See http://frs.web.cern.ch/frs/Xdoc/mad-X.html or [3]
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Chapter 1

The theory of accelerator optics

The fundamental principle of particle movement in accelerator field is described by the
Lorentz force. When a particle with electric charge q moves through the magnetic field
~B with velocity ~v, the resulting force is

~F = q( ~E + ~v × ~B). (1.1)

As the velocity approaches c, the magnetic field gets much more effective at generating
force on the particle than achievable electric field. The electric field ~E is neglected and
we only consider the transverse magnetic field component.

To keep particles circulating in the accelerator, we need bending forces to keep the
particles on a closed circular trajectory and restoring forces that keep the particles
near the design orbit. Based on how strong field is applied, we can use weak or strong
focusing.

1.1 Weak and strong focusing

1.1.1 Weak focusing

When the magnetic field is not depending on the azimuthal angle, we obtain weak
focusing. The design orbit has radius

ρ =
mv

eB
[1].

In an accelerator with weak focusing, the magnetic field creates angle independent
restoring forces. For small deviations, those forces rise linearly with the horizontal or
vertical deviation from the design orbit. The restoring forces therefore cause harmonic
oscillations around the design orbit, called betatron oscillations. However, with the
weak focusing the betatron oscillation frequency is lower than the revolution frequency.
This way, the wavelength of the oscillations is larger than the circumference of the orbit
and there are large deviations from the design orbit. [1].
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1.1.2 Strong focusing

Strong focusing is based on a different principle than the weak focusing. Instead of
continuous magnetic field, series of focusing and defocusing elements are used. This
leads to overall focusing, because the particles enter the focusing elements generally
further from the ideal orbit than they enter the defocusing ones. This principle is
illustrated on the Figure 1.1.

There are two ways to achieve strong focusing. The first is to use combined function
magnets, which do both bending and focusing/defocusing. The other is to separate
those functions in standalone focusing and bending elements. In large modern accel-
erators, magnets with separated functions are usually used.

Figure 1.1: The effect of alternating focusing and defocusing elements of the same
field strength realized on my simulation software

1.2 Magnet types

There are several types of magnets used in particle accelerators with strong focusing.
An ideal dipole magnet (Figure 1.2) has homogeneous field in the gap, which causes
the particle to run along an arc in the horizontal plane. In the ideal case, there are no
effects on the movement in the vertical plane.

Figure 1.2: Dipole magnet cross section [1]

The quadrupole magnet (Figure 1.3) is used for focusing and defocusing. It has
hyperbolically shaped inner contour. The intensity of the horizontal and vertical mag-
netic field components produced increases linearly for small horizontal and vertical
deviations respectively. This causes the quadrupole to behave as a focusing element in
the horizontal plane and defocusing in the vertical plane, and vice versa for reversed
electric current or particle charge.

The combined function magnet is combining the dipole and quadrupole role. It can
be viewed as a quadrupole with an offset from the center, as shown on the Figure 1.4.
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Figure 1.3: Quadrupole magnet cross section [1]

Figure 1.4: Combined function magnet cross section [1]

There are some other beamline element types, such as the sextupole, collimators,
acceleration cavities etc., but they are not important for my simulation, at least in
the part of the beamline I am focused on. I expect those elements to compensate
for any energy loss caused by synchrotron radiation, imperfections of some elements
realization and other inaccuracies, so I consider them to behave like a free drift space1

in my simulation.

1.3 Matrix representation

Under certain considerations, one can represent particles by vectors and magnets by
matrices applied to them. This approach makes use of the so called nominal particle
and nominal trajectory2, all computations are relative to them.

The general formula for transporting particle through a magnet in two dimensions
takes the form  x

x′
∆p
p0


S

=

Mx︷ ︸︸ ︷C S D
C ′ S ′ D′

0 0 1

 x
x′
∆p
p0


S0

, (1.2)

1Drift space is a section, where no field affects the particles
2Trajectory of the nominal particle is the design trajectory with no oscillations
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where x is the transverse distance from the nominal particle trajectory, x′ is the rate
at which x is changing along the trajectory (change of transverse position per meter)
and ∆p

p0
is relative deviation of the particle momentum p from the considered nominal

particle momentum p0 (where ∆p = p − p0). S0 and S are the starting and ending
points of the transport through the element described by the matrix. The x′ can be
viewed as a deviation angle, because x′ = tan(θ) ≈ θ for |θ| � 1.

1.3.1 Limitations and advantages

In order to be able to use the matrix representation, one must consider some lim-
itations. The most important one is that the nominal trajectory must go exactly
through the center of all beamline elements and be perpendicular to them (except for
rectangular dipole, but the trajectory must be symmetrical in respect to the dipole).
Without information about the nominal trajectory, we cannot use dipoles, only set of
quadrupoles, where we know the nominal trajectory is a straight line. When dipoles
are being used, we must make sure the trajectory goes through the centers of used
elements in other ways; matrix optics cannot be used without the nominal trajectory
being precomputed. Here we also consider the perpendicular movements along the x
and the y axes as mutually independent.

The coordinate system used is shown on Figure 1.5. It is a local coordinate system
bound with the nominal particle, where x, s is the horizontal plane and y, s is the
vertical plane.

s
y

x design
orbit

actual
orbit

Figure 1.5: Local coordinate system used

Given those constraints, some advantages arise. We need not to know the exact
parameters of the particle, like its charge or mass. Knowing that it is identical to
the nominal particle (and its parameters can be unknown as well) is enough. In case
of a different momentum, all we need to know is the relative deviation ∆p

p0
from the

momentum of the nominal particle. Apart from that, we of course need to know its
relative position x and the angle x′.
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1.3.2 Transformation matrices of various beamline elements

Drift space

Drift space is an area without any field, where all particles travel along straight lines.
The transformation matrices here have a very simple form.

Mx = My =

1 l 0
0 1 0
0 0 1

 (1.3)

As seen in the Equation 1.3, the drift space representation is not much different from
an identity matrix. The only difference here is the l in the first row and second column,
describing the length of the drift space. Based on rules of matrix multiplication, it is
easy to see that when fitted into Equation 1.2, the only change is xS = xS0 + l · x′S0

,
which corresponds to the way x′ is defined.

Quadrupole

Quadrupole magnets are used for their focusing and defocusing capabilities. We in-
troduce the momentum independent quadrupole coefficient k [m−2] and define the
quadrupole to be horizontally focusing and vertically defocusing for k > 0. The coeffi-
cient ϕ is defined as ϕ = l

√
|k|, where l is the length of the quadrupole.

For k > 0 the matrices are:

Mx =

 cos(ϕ) 1√
|k|

sin(ϕ) 0

− 1√
|k|

sin(ϕ) cos(ϕ) 0

0 0 1

 ,

My =

 cosh(ϕ) 1√
|k|

sinh(ϕ) 0

1√
|k|

sinh(ϕ) cosh(ϕ) 0

0 0 1

 .

(1.4)

For vertical focusing and horizontal defocusing (k < 0), the matrices are simply
interchanged.

From the transformation matrices in the Equations 1.4, we can see that the last
column introduces no dependance on the momentum, the effects of an ideal quadrupole
are therefore momentum independent.

Sector dipole magnet

A sector dipole magnet is a magnet, where the nominal particle trajectory enters and
leaves the front and rear face in a perpendicular direction, as shown on the Figure 1.6.

The sector dipole magnet here has no effect in the vertical plane but bends the
nominal particle in the horizontal plane by the angle ϕ = l

ρ
, where l is the length of

the circular trajectory and % is the arc radius. It behaves as a drift space in the vertical
plane.

Mx =

 cos(ϕ) ρ sin(ϕ) ρ(1− cos(ϕ))
−1
ρ

sin(ϕ) cos(ϕ) sin(ϕ)

0 0 1

 My =

1 l 0
0 1 0
0 0 1

 (1.5)
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Figure 1.6: Sector dipole magnet [1]

We can see from the transformation matrices in the Equation 1.5 that the horizontal
one is identical to the drift space from the Equation 1.3. The sector dipole magnet has a
weak horizontal focusing effect, because the particles entering with larger radius travel
longer and those with smaller radius travel shorter distance through the magnetic field,
but their trajectories all have the same curvature radius, therefore the bending angle
varies.

Rectangle dipole magnet

A rectangle dipole magnet has a rectangular shape, which causes the particles to enter
and leave the magnetic field under an angle, as shown on the Figure 1.7.

Figure 1.7: Sector dipole magnet [1]

The rectangle dipole magnet has no horizontal focusing effect (all particles parallel
to the nominal trajectory travel the same distance through the field), but due to the
entering and leaving angle, we have to take some imperfections of the magnetic field at
the edges into account. The main reason is known as the “fringe fields”3, which cause a
weak vertical focusing. The My matrix for the rectangle dipole from the Equation 1.6
is therefore no longer equivalent to drift space.

Mx =

1 ρ sin(ϕ) ρ(1− cos(ϕ))
0 1 2 tan(ϕ/2)
0 0 1

 My =

 cos(ϕ) ρ sin(ϕ) 0
−1
ρ

sin(ϕ) cos(ϕ) 0

0 0 1

 (1.6)

As seen in the Mx matrices for both types of dipole magnets in the Equation 1.5
and Equation 1.6, the components in the third column describe how the dipole magnet
effect depends on the momentum of the particle.

3Fringe field is an area at the edges, where the field is no longer homogeneous. Due to the trajectory
not being perpendicular at the edges, a non-zero component affecting the behavior in the vertical plane
arises. [2]
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Chapter 2

Realization of the simulation
software

The implementation language was chosen to be C++ with the Qt framework1, using the
Qt Creator IDE. All development was focused on a 64-bit Linux platform and all testing
took place there. However, nothing should prevent the code from being successfully
compiled and run on the Microsoft WindowsTM platform or any other supported by
the Qt framework.

Before I started working on the final software product, I implemented some isolated
simulation cases to verify and evolve the overall design as well as learn C++ and Qt
well enough. The source code of all evolution stages mentioned together with binaries
are available in the appendix (CD).

2.1 Isolated single dipole implementation

Figure 2.1: Graphical output of the SingleDipole program

My first attempt to implement the matrix optics approximation simulation was
a single sector dipole magnet, able to transport only one particle at a time. The
internal design of the “SingleDipole” application is not very advanced and extending

1http://qt-project.org/
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the software to contain more than one element would be unnecessarily difficult. The
main focus here was to learn basics of Qt.

On the Figure 2.1 we can see an example of the graphical output, where the top part
is drawn relative to the nominal trajectory and the bottom one is using an absolute
coordinate system. The simulation covers only the horizontal plane, as in the vertical
plane the particle behaves just as in a drift space (see Equation 1.5).

2.2 Series of quadrupole magnets

The next step was to implement a beamline capable of containing many elements
instead of a hard-coded single matrix operation. I also made it possible to have elements
of various types in the beamline, even though only quadrupoles were used at this
stage of development. The “QuadSeries” application is not based on the SingleDipole
application, it is written from scratch instead.

Figure 2.2: Graphical output of the QuadSeries program

On the Figure 2.2 we can see a sample output of the QuadSeries application. There
is still only single projection of the particle to the horizontal or vertical plane, but more
magnets and more particles are already supported.

The internal design and implementation of the beamline containing the elements
proved to be good and robust, so I based the development of the final simulation
software on the QuadSeries code. The implementation details will not be discussed
here, because the basic structure is the same as in the final simulation software.
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2.3 The EasyTracker simulation software

The final version of my matrix optics simulation software is called “EasyTracker”. As
mentioned above, it is an evolution of the QuadSeries application. It includes many
improvements over the previous versions:

• renders both horizontal and vertical projection simultaneously,

• the nominal trajectory is automatically shown,

• completely redesigned user interface (especially regarding magnet settings) –
beamline elements can be now chosen by clicking and multiple can be edited
at once,

• improved visual appearance with anti-aliasing of particle tracks and better aper-
ture indication,

• longitudinal axis with labels,

• coordinates can now be obtained by clicking any point in the visualization,

• added support for both dipole and quadrupole magnets as well as a plain drift
space with apertures,

• a “terminal plane” element, which ends the simulation,

• correct circular and rectellipse2 aperture implementation,

• particle generator for easy generation of many particles with similar properties,

• twiss file import capability,

• export of generated image in the PNG format,

• export of particle data on the terminal plane or aperture hit in the CSV format.

However, only the positions relative to the nominal trajectory are displayed. The
absolute positions would be counterproductive anyway, now the user can have high
resolution in the transverse plane and see all the details close to the nominal trajectory
at once.

2.3.1 Basic structure and internal logic

The C++ language features object oriented capabilities and the internal logic of my
simulation software is based on them. Brief description of the most important classes
follows.

MainWindow

• class that handles the top level GUI3 window, implements slots connected to GUI
elements such as buttons and menus

• contains drawing area where beamline elements and particle tracks are rendered

2The “rectellipse” shape will be described later, see Figure 2.4
3Graphical User Interface
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Beamline

• class that contains beamline elements stored in a double linked list, this list is
kept in the correct order based on the positions of those elements

• contains public methods for adding/changing/removing/drawing beamline ele-
ments, reading information about elements and finding nearest element to given
position (for MagnetEditor)

Magnet

• class that represents general beamline element contained in the Beamline class

• contains public methods for setting and getting parameters of the element, draw-
ing it to given pixmap and transporting given particle through it

• is not used directly, but other classes are derived from it, thus they inherit its
public methods and are compatible with the beamline element container in the
Beamline class

QuadrupoleMagnet, DipoleRectMagnet, DriftSpace, TerminalPlane

• classes derived from the Magnet class

• they reimplement some virtual methods of the Magnet class, especially the ones
related to transport (some contain a matrix representing the element, constructed
based on their parameters)

• they are directly used in the Beamline class

Particles

• class containing a list of particles to be transported

• public methods for adding/changing/deleting particles and reading them

settings

• class for storing global settings, such as the size and scale of the drawing area
and colors

• public methods for reading and changing settings

Transporter

• class that reads the contents of the Beamline and the Particles classes

• performs transport and draws results on given pixmap provided by MainWindow

• contains a code for data export to the CSV format

ScaleSettings

• class for handling the “Scale settings” GUI dialog

18



MagnetEditor, ParticleGenerator

• classes for editing beamline elements and particles, they handle the related GUI
dialogs

TwissImporter

• class that handles the import of twiss files, containing beamline data

Block diagram

How the classes work together is described on Figure 2.3. Rectangle shapes are classes
bound with GUI, rounded rectangles are all other classes and ellipses are files. All
arrows indicate the data flow direction.

Figure 2.3: Block diagram describing internal relations of classes

2.3.2 Format of data in twiss files

Twiss files are data files containing formatted information about the beamline optical
properties and apertures. They are generated by the MAD-X simulation software4.

Considered my needs, there are many redundant information in the twiss files. In
the import routine implemented in the TwissImporter class, I consider all unknown
beamline elements (other than quadrupole, dipole and drift space) to be a drift space.
Error message is printed to stderr if the parameters describing the effect of those
elements are not zero. Except for some initial information, there is total of 30 columns.
I’m interested only in those labeled KEYWORD, S, L, K0L, K1L, APERTYPE, APER 1, APER 2,
APER 3, APER 4.

Meaning of those labels is explained in the Table 2.1.

4See http://frs.web.cern.ch/frs/Xdoc/mad-X.html or [3]
5Interaction Point
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label explanation
KEYWORD type of the element
S distance of the rear end of the element from the IP5

L length of the element
K0L dipole bending angle
K1L k · L (for quadrupole)
APERTYPE type of the aperture
APER 1 parameter of the aperture
APER 2 parameter of the aperture
APER 3 parameter of the aperture
APER 4 parameter of the aperture

Table 2.1: Explanation of twiss file column labels

If the aperture type is NONE, the aperture parameters are not important. If it is
CIRCLE, only the first parameter is important and describes the radius of the circle.
But the RECTELLIPSE aperture type is slightly more complicated.

Rectellipse aperture

The rectellipse is a special type of aperture which is shaped as an intersection of a
rectangle and an ellipse. Mapping of the parameters is shown on the Figure 2.4.

APER_1

APER_2

APER_3

APER_4

Figure 2.4: The rectellipse shape

This way, simple rectangular or elliptical shapes can be described (if the other shape
is large enough that the ellipse or rectangle fits in it) as well as apertures, where the
elliptical and rectangular shapes really intersect.
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2.3.3 Short usage guide

The main window of the EasyTracker simulation software has two main parts: the side
panel and the draw area. The main window can be seen on the Figure 2.5.

Figure 2.5: Overview of the main window

The side panel of the main window contains buttons to open particles editor, add
beamline elements, clear the whole beamline and to export either the image or the
particle data. On the bottom is a button which calls simulation and redrawing to be
run and a checkbox which forces the same action after any change of input.

In the draw area, beamline elements together with the particle tracks are shown.
They are displayed in two cross sections, on the top the horizontal plane (along axes
x, s) is shown, while on the bottom is the vertical one (y, s). Colors can be customized,
on default dipoles are green, quadrupoles are blue and drift spaces with apertures are
gray. Clicking any point in the draw area causes the coordinates of the point to be
shown in the statusbar. Clicking while holding down the Ctrl key opens the editing
dialog for a nearest magnet, which becomes highlighted (by red color on default). The
editing window can be seen on the right side just behind the terminal plane.

When the EasyTracker software is started, there are basically two ways to go.
One is to start adding beamline elements manually, the other is to import a twiss file
contents. Particles can be added through the Edit particles menu or button, both open
the particle generator. Particles can be generated in sets or added/edited one by one.
The current particle layout is graphically illustrated, as can be seen on the Figure 2.6.
If the particle has non-zero transverse speed, the direction vector is indicated as well.
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Figure 2.6: Demonstration of use of the particle generator

The visualization range and scale can be edited through the Edit menu, as can be
all coloring settings. Twiss files can be imported through the File menu.

When transporting large numbers of particles, it can be useful to untick the “Redraw
automatically” checkbox, as it will prevent from brief freezing while parameters are
changed. The simulation is quite fast thanks to the relatively simple representation by
matrix operations, but transporting more than 10000 particles can take a few seconds
to be simulated and rendered.

On the other hand, using several hundred particles and setting higher transparency
of particle tracks often results in nice images and helps to see behavior of specific groups
of particles very well, just as in the vertical plane on the Figure 2.5.

Known issues

The software is not ideal yet and has a few shortcomings. One of them is that when
the zoom is too large, particles from the top part (x, s plane) can run through the axis
area and be drawn at the bottom part (y, s plane) and vice versa. This is a known
issue and will be fixed in future, as the development of the software will continue.
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Chapter 3

Results and verification

3.1 Verifying basic properties

I started with just a simple visual verification at first.

Single quadrupole

The quadrupole magnet should focus in one and defocus in the other axis.

Figure 3.1: Effect of a single quadrupole

On the Figure 3.1, we can see that for k = 0.009 m−2 and the beam diameter of
30 mm, the quadrupole behaves as expected. It corresponds to the way k > 0 was
defined as vertically defocusing and horizontally focusing. For negative k the effects in
the horizontal and vertical plane are interchanged.

Set of quadrupoles

When a series of quadrupole magnets with alternating focusing and defocusing effect
are used, the beam should be focused both in the horizontal and vertical axis.
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Figure 3.2: Effect of a quadrupole series

The Figure 3.2 shows how the beam is focused in both the horizontal and the
vertical plane. All quadrupoles have the |k| = 0.012 m−2, the sign alternates. Beam
diameter 30 mm is the same as in the previous case.

Single dipole

When the beam goes through a rectangular dipole, the effect should be exactly the
same as for the nominal particle in the horizontal plane, however in the vertical plane
a weak focusing effect should show up.

Figure 3.3: Weak focusing effect of a dipole

The Figure 3.3 shows that the beam is focused only in the vertical plane. The
bending angle is set to ϕ = 0.15 rad to make the focusing easily visible. Beam diameter
is still 30 mm.
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A dipole bending particles with different momentum

The bending effect of the dipole depends on the momentum of the particle. Trajectory
of the particle with a higher momentum is bent less than the nominal particle.

Figure 3.4: Effect of a dipole on a beam with higher energy than the nominal particle

Figure 3.4 shows the effect for ∆p
p0

= 0.05 and the bending angle ϕ = 5 mrad. It
causes the beam to deviate by approximately 16 mm on a 62 m distance. Figure 3.5
shows how the effect can be compensated by another dipole bending the opposite angle
ϕ = −5 mrad, but she offset gained between them remains. We can get rid of the offset
by using more than two dipoles, as shown on the Figure 3.6. However, by compensating
the deviation angle, we get back to the original nominal trajectory direction as well.

Figure 3.5: Compensation of the deviation angle by another dipole

Figure 3.6: Complete elimination of the effect by two other dipoles

Apertures

Apertures are expected to block parts of the beam that are too far away from the
nominal trajectory.
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Figure 3.7: Apertures cutting parts of the beam envelope away

On the Figure 3.7 we can see that apertures work as expected. They stop parts of
the beam envelope, which do not fit into the circular or rectellipse shape.

Importing twiss file

After importing the twiss file, I expect to see the beamline profile made of various
magnets and apertures.

Figure 3.8: The EasyTracker software after a twiss file was imported

The imported beamline is shown on the Figure 3.8. Currently, the import is
hardcoded to stop at 300 m by the #define STOPPOSITION 300.0 statemnet in the
TwissImporter class.

Transporting particles through the imported beamline

I tried to transport some particles just for the first check that everything works fine.
The results are shown on the Figure 3.9, with a transverse range ±25 mm. The beam
is focused horizontally near the terminal plane, but vertically it is not to aid forward
detectors located there. The particles range up to ±0.1 mm and ±0.05 mrad deviation
from the nominal particle in the interaction point.
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Figure 3.9: Transport of particles through the imported beamline

3.2 Comparison of data with the MAD-X software

I received a set of precomputed data obtained by the MAD-X simulation software. I
chose some particles with different parameters for correctness evaluation of my simu-
lation software. The comparison will be done for a terminal plane at s = 236.888 m.

In all cases, the alfaTwiss1.txt file is used. The file is contained in the appendix.

3.2.1 Particles with the same momentum as the nominal par-
ticle

As the first case, I verified transport of particles with the ∆p
p0

being zero. θ is here the
deviation angle from the nominal particle trajectory and ϕ is the angle of direction of
the particle in the transverse plane, as explained on the Figure 3.10.

φ

Figure 3.10: Explanation of the ϕ parameter (shown in the particle generator)

Simulation for ϕ = 0 rad

Table 3.1 shows the first comparison. The first particle is identical to the nominal
particle, the rest has an increasing deviation angle θ. Visualization of this simulation
run is shown on the Figure 3.11.
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EasyTracker MAD-X
θ x0[ m] y0[ m] x[ m] y[ m]

0.0 0 0 0.0000000791 0
0.2 -0.000199161 0 -0.0001990806 0
0.5 -0.000497901 0 -0.0004978202 0
0.8 -0.000796642 0 -0.0007965597 0

Table 3.1: Particles with ∆p
p0

= 0 and ϕ = 0 rad

Figure 3.11: Visualisation of the simulation data in Table 3.1

Simulation for ϕ = 0.52358 rad = 30 ◦

Table 3.2 shows the second comparison. Visualization of this simulation is shown on
the Figure 3.12.

Figure 3.12: Visualisation of the simulation data in Table 3.2

Simulation for ϕ = 1.83253 rad = 105 ◦

Table 3.3 shows the last comparison for ∆p
p0

= 0. For θ = 0.8 the particle hit an
aperture at s = 225.8 m. Both EasyTracker and MAD-X detected the hit and reported
shorter final distance, but MAD-X reports coordinates −99,−99 in such cases. My
software does not throw away that information and writes the coordinates of the hit.
Visualization of this simulation run is shown on the Figure 3.13.

1−99,−99 coordinates are returned by MAD-X on aperture hit
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EasyTracker MAD-X
θ x0[ m] y0[ m] x[ m] y[ m]

0.0 0 0 0.0000000791 0
0.2 -0.00017248 0.00279370 -0.0001724002 0.002793722
0.5 -0.00043120 0.00698424 -0.0004311191 0.006984304
0.8 -0.00068992 0.01117480 -0.0006898379 0.011174890

Table 3.2: Particles with ∆p
p0

= 0 and ϕ = 0.52358 rad

EasyTracker MAD-X
θ x0[ m] y0[ m] x[ m] y[ m]

0.0 0 0 0.0000000791 0
0.2 0.0000515339 0.00539728 0.0000516 0.005397326
0.5 0.0001288350 0.01349320 0.0001289131 0.01349332
0.8 0.0000620255 0.02265560 -99 -991

Table 3.3: Particles with ∆p
p0

= 0 and ϕ = 1.83253 rad

Conclusion of the first part of the simulation verification

All simulation cases for ∆p
p0

= 0 proved the EasyTracker software to simulate correctly.

The relative error was in most cases under 0.05%, the absolute error was usually about
0.1µm. Based on this, I consider the EasyTracker as a precise simulation tool given
the condition ∆p

p0
= 0.

3.2.2 Particles with different momentum compared to the nom-
inal particle

In the second part of the verification process, I checked particles with a lower momen-
tum than the one of the nominal particle, ∆p

p0
< 0.

The nominal particle in the twiss file used has the energy E = 3.5 TeV. Here I will
use particles with energy E = 3.3 TeV, therefore ∆p

p0
= −0.057142857.

Simulation for ϕ = 1.83253 rad = 105 ◦ and ∆p
p0

= −0.057142857

EasyTracker MAD-X
θ x0[ m] y0[ m] x[ m] y[ m]

0.0 -0.000335568 0 0.0000609 0
0.2 -0.000284034 0.00539728 0.0001355152 0.004954171
0.5 -0.000206733 0.01349320 0.0002474828 0.01238543
0.8 -0.001573690 0.02265560 0.0003594503 0.01981668

Table 3.4: Particles with ∆p
p0

= −0.057142857 and ϕ = 1.83253 rad

Table 3.4 shows the simulation results for particles, which have different momentum
than the nominal particle has. It is easy to see that the results are precise in the vertical

29



Figure 3.13: Visualisation of the simulation data in Table 3.3

plane, but completely wrong in the horizontal plane. Moreover for the θ = 0.8, the
EasyTracker made an aperture hit at s = 225.8 m, where the MAD-X did not (it does
for θ = 0.9).

Figure 3.14: Visualisation of the simulation data in Table 3.4

Conclusion of the second part of the simulation verification

After long searches for the source of the problem I failed to find one. It could be caused
by incorrect implementation of the dipole magnet, incorrect parsing or wrong under-
standing of the dipole strength parameter from twiss files, or even by me having wrong
twiss files (not corresponding to the beamline with which the MAD-X simulations were
run). Anyway, the inaccuracies are most likely caused by dipoles, because they are the
only elements included that have momentum dependent effect. The only other option
would be that some other elements I ignore can no longer be neglected when simulating
with variable momentum.

The EasyTracker is therefore currently not usable for tracking particles with differ-
ent momentum than the nominal particle momentum.
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Summary

During the work on my thesis, I studied the matrix optics approximation describing
movement of particles in the magnetic field of a particle accelerator. Elements inter-
acting with the particle (as well as drift space) can be described by a matrix, which
operates on a vector describing the particle at a given point in space. Despite its
shortcomings, it provides a powerful and very fast way to simulate particle movement.

I designed and implemented a simulation software based on this approximation and
evolved it through several stages of development, while learning how to use the Qt
framework on the way. The first stage was an isolated dipole, meant to test the very
basic concept of the matrix optics. This implementation was abandoned, as it did not
provided needed scalability. Instead, new software implementing series of quadrupoles
was written from scratch. This concept proved to be well designed and served as a
base for the final piece of simulation software.

The software is capable of importing twiss files, data files describing the beamline
optical properties. The most important feature of the software is the user’s ability to
change properties of magnets and see how the trajectories change right away. Called
EasyTracker, it is meant to provide an intuitive graphical interface for the simulations.
Beamline elements can be selected for editing by clicking them while holding down the
Ctrl key.

For verification of the simulation, I used data from the MAD-X simulation software.
The simulation was successfully verified for particles with the same momentum as the
nominal particle. The results in this case are very precise. However, I failed to verify
simulation of particles with different momentum. I suspect that it is caused by some
issue with dipoles, whether it would be wrong implementation of the transport routine,
wrong understanding of twiss files or mismatch between the MAD-X data and the twiss
file used.

The simulation software is currently suitable for visualization of particles with the
same momentum as the nominal particle. The development of the software will continue
with the future goal of stepping out of the matrix optics approximation and hopefully
providing a complete transport simulation capability.
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List of used symbols

~B magnetic induction
~v velocity
~F force
~E electric field
E particle energy
q electric charge
c speed of light
ρ trajectory radius
m mass
e elementary charge
x, y transverse coordinates
x′, y′ change of transverse coordinates per meter/approximated deviation angle
p momentum of particle
p0 momentum of nominal particle
∆p
p0

relative momentum difference

Mx matrix describing an element in the horizontal plane
My matrix describing an element in the vertical plane
S0 point before transport
S point after transport
s longitudinal coordinate
θ deviation angle
l length of beamline element
k quadrupole strength coefficient
ϕ dipole bending angle, later particle direction in the transverse plane
IP Interaction Point
GUI Graphical User Interface

33



Appendix

Contents of enclosed CD-ROM

alfaTwiss1.txt

alfaTwiss2.txt

Binaries-Linux-x86_64

Bp_Komarek.pdf

EasyTracker_Source

QuadSeries_Source

SampleImage_1.png

SampleImage_2.png

SampleImage_3.png

SingleDipole_Source

./Binaries-Linux-x86_64:

EasyTracker

QuadSeries

SingleDipole

./EasyTracker_Source:

beamline.cpp

beamline.h

constants.h

dipolerectmagnet.cpp

dipolerectmagnet.h

driftspace.cpp

driftspace.h

EasyTracker.pro

EasyTracker.pro.user

icon.png

images.qrc

magnet.cpp

magneteditor.cpp

magneteditor.h

magneteditor.ui

magnet.h

main.cpp

mainwindow.cpp

mainwindow.h

mainwindow.ui

Makefile

particlegenerator.cpp

particlegenerator.h

particlegenerator.ui

particles.cpp

particles.h

quadrupolemagnet.cpp

quadrupolemagnet.h

scalesettings.cpp

scalesettings.h

scalesettings.ui

settings.cpp

settings.h

terminalplane.cpp

terminalplane.h

transporter.cpp

transporter.h

twissimporter.cpp

twissimporter.h

./QuadSeries_Source:

beamline.cpp

beamline.h

constants.h

magnet.cpp

magnet.h

main.cpp

mainwindow.cpp

mainwindow.h

mainwindow.ui

particles.cpp

particles.h

quadrupolemagnet.cpp

quadrupolemagnet.h

QuadSeries.pro
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QuadSeries.pro.user

scalesettings.cpp

scalesettings.h

scalesettings.ui

settings.cpp

settings.h

transporter.cpp

transporter.h

./SingleDipole_Source:

main.cpp

mainwindow.cpp

mainwindow.h

mainwindow.ui

paintjob.cpp

paintjob.h

SingleDipole.pro

SingleDipole.pro.user

transport.cpp

transport.h
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