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Abstract
Performance of process scheduler in a kernel of an operating system significantly influences
throughput and latency of all applications running above it. Any performance drop can
have critical consequences on the applications. With the arrival of every new technology
(e.g. symetric multiprocesing) the code of the scheduler evolves and grows. This requires
not only functional, but also performance regression testing. This work presents methods of
performance testing used in the Red Hat, Inc. company. It describes how one can measure
performance of the Linux process scheduler in the Linux kernel, collect statistics about its
behavior, store the collected data, and visualize them. The goal of this work is to design and
implement a new technique of visualization of long-term measurements and utilization of
machine learning for automatic classification of performance degradation between different
results.

Abstrakt
Výkon plánovače procesů v jádře operačního systému značně ovlivňuje rychlost a odezvu
všech aplikací, které na něm běží. Jakýkoli propad výkonu pak může mít kritické důsledky
na běhu aplikací. S příchodem každé nové technologie (např. symetrický multiprocesing) se
kód plánovače vyvíjí a rozšiřuje. Proto jsou potřeba regresní testy nejen na jeho fukčnost,
ale i výkon. Tato práce mapuje metody testování plánovače operačního systému Linux
ve firmě Red Hat. Popisuje způsoby měření výkonu plánovače, sbírání informací o jeho
chování, ukládání sesbíraných dat a jejich vizualizaci. Hlavním cílem práce je pak návrh a
implementace nového způsobu vizualizace dlouhodobých měření a využití strojového učení
pro automatické rozpoznání degradace výkonu mezi dvěma výsledky.
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Rozšířený abstrakt
Plánovač procesů v operačním systému se stará o přidělování procesorového času běžícím
procesům a jejich rovnoměrné rozložení mezi procesorové jádra. Výkon plánovače procesů
pak silně ovlivňuje i výkon samotných aplikací běžících na daném operačním systému.
Jakýkoli propad výkonu pak může mít v komerční sféře za následky vysoké finanční ztráty.

Plánovač procesů funguje velmi jednoduše pro systémy s jedním jádrem, ovšem s přícho-
dem vícejádrových procesorů se plánování zkomplikovalo vyvažováním front procesů mezi
jádry a trvalo, než se všechny problémy vyladily. Nové komplikace plánování pak přinesly
víceprocesorové systémy s neuniformní dobou přístupu do paměti. Plánování na této ar-
chitektuře je stále ve vývoji a tím i náchylné k chybám způsobujícím propad výkonu. Proto
je potřeba regresní testování výkonu nových verzí jádra pro včasné odhalení těchto chyb.

Na rozdíl od funkčního testování není výkonové testování není jednoznačný výsledek,
jestli test doběhl. Pro zjištění změny výkonu je potřeba relativní porovnání naměřených
hodnot s referenčním výsledkem z předchozí verze nebo jiné konfigurace a určení prahu
mezi odchylkou měření a skutečným propadem výkonu. Propady výkonu plánovače navíc
nejsou způsobeny pomalým kódem, ale chybným přemisťováním procesů a jejich dat mezi
jádry a fyzickými procesory.

Tato práce popisuje výkonové testování plánovače procesů Red Hat Enterprise Linuxu
ve společnosti Red Hat, Inc. Běžný způsob zjišťování výkonu plánovače je měření bench-
markem, který simuluje reálnou zátěž. Benchmarků je více s různými způsoby zátěže, přede-
vším však pomocí většího množství procesů nebo vláken s vnitřní komunikací. Výsledky
jsou pak systematicky ukládány pro snažší tvorbu porovnání výkonu. Pro efektivní analýzu
výkonu je pak nutná volba správné vizualizace pro rychlé odhalení zdroje problému.

Práce navrhuje a implementuje novou metodu zobrazování dlouhodobých výsledků měření
výkonu nazvanou timelines. Výstupem je pak HTML stránka obsahující krabicové (box
plot) grafy a shrnující tabulky znázorňující změnu výkonu a přesnost měření v průběhu verzí
jádra operačního systému. Tento výstup již pomohl s redukcí nestabilních částí benchmarků
a průběžně slouží pro sledování změn výkonu a dohledávání verzí, kde výkon změnil.

Dále práce navrhuje použití strojového učení pro automatickou klasifikaci porovnání
dvou výsledků, zda se mezi nimi i přes nepřesnost měření a šum projevuje propad výkonu.
Práce navrhuje předzpracování výsledků měření pro učení klasifikátorů a porovnává různé
klasifikátory pro budoucí začlenění do generátoru zpráv s porovnáním nových výsledků pro
urychlení jejich analýzy.
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Chapter 1

Introduction

Performance of an operating system is crucial as any triggered degradation can significantly
affect the performance of all applications running above it. Moreover, when a new version
is released and it introduces a performance regression, it can break the stability of e.g.
business applications leading to great financial losses. An important part of operating
system and the main influence on its performance is the implementation and strategy of
a process scheduler, which manages processes and their processor time.

In the Linux kernel, scheduler used to be simple, but with an introduction of multi-core
CPUs achieving stable performance required adapting multiple runqueues for each core and
their balancing. This lead to complex code and it took some time to eliminate the bugs and
tune the scheduler’s behavior. Another change came with symmetric multiprocessing tech-
nology bringing to market machines with multiple CPU sockets and non-uniform memory
organization and access [8]. Scheduling on such systems is still under an active development
and therefore it is even more prone to performance degradation bugs. In order to discover
these bugs and to keep the performance of the operating system stable, using performance
testing was essential. Due to this fact, the performance of the scheduler has to be evaluated
before each release.

Compared to functional testing, performance cannot be evaluated as just true and false
results. It is more challenging as we have to (1) compare it relatively with previous versions
or measurements, and (2) choose a suitable threshold when reporting the performance re-
gression. Due to complexity of the scheduler, the common tools for inspecting performance
may often yield unsatisfying results. Moreover, the biggest performance regressions of the
scheduler do not dwell in an inefficient code, but instead in an inefficient assignment of
processes to the CPU cores and their queues.

This thesis focuses on performance testing of the Red Hat Enterprise Linux (RHEL)
kernel scheduler managed by the Red Hat, Inc. company. The usual performance testing
method of the scheduler is to simulate load similar to the real usage. Currently, there
are many benchmarks targeting different types of load, usually spawning many parallel
process, sometimes even communicating between each other. The results of measurements
of the performance must be stored systematically and effectively for later comparisons. So
in order to effectively interpret the collected results and their comparisons, their effective
visualization is essential.

In this thesis, we propose a new interpretation of long-term results of the benchmarks
using box plot graphs in order to enhance the process of data analysis. This visualization
should help with inspecting the measurement stability of benchmarks and with finding
versions where performance degradations appeared or were fixed.

3



Moreover, to reduce time one has to spend analyzing these comparisons, we propose an
utilization of machine learning methods that will automatically check for possible degra-
dations in the Linux kernel scheduler. We will describe how to create the dataset for
classification, compare different classifiers, and evaluate their accuracy on the dataset.

This thesis is structured as follows. In Chapter 2 we describe Completely Fair Scheduler
– the current process scheduler of the Linux kernel, architecture of symmetric multiprocess-
ing systems, and how the scheduler handles them. In Chapter 3, we describe the perfor-
mance measurement of the Linux process scheduler. First we introduce benchmarks used in
Red Hat for load testing of the scheduler performance and then we describe complementary
tools for analysis of behavior of the scheduler and of the system. Ways of storage of the
collected data and their visualization for comparison are described in Chapter 4.

We propose a new way of visualization of long-term results comparison called Time-
lines in Chapter 5. In Chapter 6, we propose utilization of machine learning methods for
automatic classification of comparison of two results to recognize a performance regression.
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Chapter 2

Linux process scheduling

Process scheduler is a part of an operating system which assigns the processor time to tasks.
Its main goal is to maximize effectivity of the CPU usage and to ensure fairness of the CPU
time assigned to each task.

There are two opposing targets for a scheduler: either maximizing the throughput or
minimizing the latency. Lower amount of context switches leaves more CPU time for
tasks, but raises the response time on system events. While users’ workstations aims for
a low response time, computational servers require high throughput. Scheduler can then
be usually tuned to fit the intended purpose.

In this chapter we describe basic behavior of Linux process scheduler. Then we compare
uniform and non-uniform memory access on multiprocessor architectures and how scheduler
handles them.

2.1 Completely Fair Scheduler
Completely Fair Scheduler (CFS) is the current Linux process scheduler, which was merged
into the version 2.6.23 of the Linux kernel in 2007. Its author is Ingo Molnár, who is the
author of the previous O(1) scheduler as well.

CFS features queuing tasks in a red-black tree structure ordered by time spent running
on the CPU so far. Red-black tree is a binary search tree with self-balancing mechanism
based on marking nodes with either red or black color. When the scheduler needs to choose
the next task to run, it takes the leftmost node with the lowest execution time.

The time complexity of the CFS scheduling is O(log N), where N is the number of
running tasks. Taking the leftmost node with the next scheduled task can be done in
a constant time, but queuing the task requires O(log N) operations to insert it back into
the red-black tree. Even with a higher scheduling complexity, the CFS scheduler has a better
fairness and responsiveness than the previous O(1) scheduler, which used a simple queue
to choose the next task.

On multi-core systems, the scheduler uses a separate queue for each core. In order to
effectively use the processing power, the scheduler must regularly balance those queues by
moving processes from the most busy cores to idle ones.

When moving processes between cores, scheduler takes in the account a topology of
the system. Losing data from caches after the migration can have a bigger impact on
performance than leaving the process on the busy core.
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Figure 2.1: Hierarchy of scheduling domains[3]

CFS solves this problem by using scheduling domains [2]. Scheduling domain is a set
of CPUs that should be balanced between themselves. CPUs in a scheduling domain are
divided into groups. Scheduler then checks the load of the whole groups to decide if there
is a need to migrate processes between them.

There are multiple levels of scheduling domains with different parameters such as how
often is the load difference checked or how big the load difference between groups must be
to migrate tasks to balance the queues. The lowest level is between hyper-threaded logical
cores where there are almost no losses of cached data and rebalancing can be done quite
often. A higher level is between physical processor cores where cache losses can have bigger
impact on the decision to migrate the task. Above those cores can be processor sockets on
machines with multiple physical processors with different access speed to different memory
sections.

Scheduling domains are regularly rebalanced by going up from bottom of the scheduling
domain hierarchy (illustrated by Figure 2.1) and by checking balance of the groups on each
level.

2.2 Scheduling on SMP systems
Symmetric multiprocessing (SMP) is an architecture of computers with multiple physical
processors that have a single shared memory, a shared access to all IO devices, and that run
on the same instance of operating system. This allows the machine to offer more processing
power with a little overhead caused by memory sharing.

Each processor has still its own high speed cache, but due to memory sharing, cache
coherence must be maintained – the data shared between processors in their caches must
be uniform.

There are two ways of accessing the shared memory from multiple processors: uniform
(UMA) and non-uniform (NUMA) memory access. When correctly used, the NUMA tech-
nology has higher performance capability with similar configuration compared to UMA
systems. In our experience most paying customers of Red Hat use the NUMA technology
and we will primarily focus on scheduler behavior on this SMP architecture.

2.2.1 Uniform memory access

In the UMA architecture, all processors share a single memory controller that they use to
access the shared memory. Therefore, each processor has the same speed of memory access
and the same latency. They share a common access route to the memory, which brings
more simplicity at the cost of a lower bandwidth and speed.

In this architecture it is easier for the scheduler to balance processes between the physical
processors. The time to access the shared memory is the same on all of the cores and
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Figure 2.2: Architecture of NUMA communication on HP ProLiant DL980 [6]. Each pro-
cessor connected with its own local memory makes up a NUMA node. Each pair of nodes
have dedicated interconnect bus for faster data transfer between them. Communication
with other nodes is realized through node controllers. The topology of the interconnect
buses shows there will be 4 different access speeds depending on the distance between
nodes. The local access is the fastest, then follow the access to the neighbor node and the
access through one controller, and the slowest is the access through both controllers. The
interconnect buses are doubled to avoid overloading one of them.

therefore there is no need to move the memory associated with a process to any other place
for faster access.

2.2.2 Non-uniform memory access

The NUMA architecture tries to solve the problem with low bandwidth. It arranges physical
processors or cores into nodes, where each node has its own separate memory and a bus for
faster access. This significantly improves overall memory throughput of the system when
used correctly.

Nodes also have to be connected to each other to access memory of other nodes. That is
achieved using either interconnecting buses or controllers. Each manufacturer has its own
technology implementing the interconnection: Intel uses Ultra Path Interconnect which
replaced its QuickPath Interconnect from older machines. On the contrary, AMD uses
Infinity Fabric supersetting the older HyperTransport.

On bigger machines with a large amount of processors, not every two processors are
necessarily connected. Instead, they may access the data through a path of connected
nodes. This can be seen in Figure 2.2 showing an 8 NUMA node machine with an advanced
structure of interconnect buses and controllers.

Consequence of interconnection between NUMA nodes is the different latency between
nodes which must be taken into account when balancing tasks between nodes. Difference
in the access latency between a pair of NUMA nodes for the machine from Figure 2.2 can
be seen in the following part of output from a command numactl --hardware:
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node distances:
node 0 1 2 3 4 5 6 7
0: 10 12 17 17 19 19 19 19
1: 12 10 17 17 19 19 19 19
2: 17 17 10 12 19 19 19 19
3: 17 17 12 10 19 19 19 19
4: 19 19 19 19 10 12 17 17
5: 19 19 19 19 12 10 17 17
6: 19 19 19 19 17 17 10 12
7: 19 19 19 19 17 17 12 10

The numactl utility also provides possibility of pinning processes to a specific NUMA
node to ensure the process and its memory will stay on the intended node. This allows user
to arrange processes manually in a way considered as the best for maximum performance.

Balancing tasks between NUMA nodes is difficult for the scheduler since it needs to take
into account an expensive memory movement or access to different nodes. With a wrong
approach the performance of a NUMA system can drop even below the performance of
a similar UMA system1.

Balancing processes between NUMA nodes is still in active development, which brings
many changes. These usually improve performance, however, there are cases when a change
can cause a performance regression. Therefore, it is essential to carry out a thorough
performance testing of the scheduling.

1http://highscalability.com/blog/2013/5/30/google-finds-numa-up-to-20-slower-for-gmail-and-
websearch.html
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Chapter 3

Performance measurement

Performance testing is examination of the system behavior under a workload and of its
effectivity of resource usage. For many systems, the time they are able to respond in is
crucial and this property affects the usability of the system.

Compared to functional testing, performance testing does not produce an exact true or
false result. It produces a set of numerical values which must be compared to presumed
values or values from an other version to make a conclusion.

After the performance measurement, the next step is inspection of behavior of the
system to understand the measured values and to determine the causes of the difference
from the expected values.

In order to measure the performance of a scheduler, we use benchmarks. Benchmarks
generate artificial load imitating the load in real environment. While stress testing the
system, they also measure its performance. The benchmarks typically return a value rep-
resenting the performance of the system. The value is usually in the form of the time that
the task needed to finish or of the amount of the operations that the system could perform
per a unit of time.

In the previous chapter, we have introduced the current state of task scheduling in the
Linux kernel. Effectivity of the scheduling and of task migration between processors affects
the amount of the tasks that the system can handle and the time that a task spends before
finishing.

Although the available benchmarks generate values that are suitable for comparison,
they do not provide any more detailed information about how the system achieved the
measured performance or where the possible bottlenecks could be [5].

To get a better insight into the behavior of the system, there are many tools to collect
performance records about the system behavior. Useful information about the scheduler
include assignment of tasks to the processor cores, the time that the tasks spent out of the
CPU in queues, load of each processor core, or the location of memory of the processes on
NUMA systems.

3.1 Performance metrics
We now present typical metrics used in performance measurement.

Throughput These metrics represents the amount of operations per time unit. The
operations can be, e.g., floating point operations, or operation as specific tasks defined by
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a benchmark (e.g. SPEC Java benchmarks). Time units are usually seconds. Higher values
mean better performance.

Run time This metric is simply the real time that the benchmark needed to finish the
execution. It is mostly presented in seconds, but longer runs can be presented in a more
human-friendly format, converting the time to hours, minutes, and seconds. The lower the
run time is, the better performance it represents.

Time out of CPU This metric represents the time that the benchmark spent in process
queue waiting for execution. This metric can be calculated from user, kernel, and real time
provided by the time utility and from the number of threads, that the application used:

Tout_of_cpu = (Treal × used_threads)− (Tuser + Tkernel)

The lower this value is, the better behavior of the scheduler it represents.

3.2 Benchmarks
In the following section we will describe the benchmarks that are currently used to eval-
uate performance of the latest kernel versions. The benchmarks are usually based on real
applications used both in scientific and in business environments and are meant to stress
test the system.

The benchmarks run in many threads or processes and feature communication between
them to utilize communication between processors. A bad distribution of processes and
threads by the scheduler increases their time of waiting in the queue to rise and the perfor-
mance of the system naturally goes down. Moreover, on NUMA systems, the performance
depends also on placement of data in the memory.

3.2.1 NAS Parallel Benchmarks

NAS Parallel Benchmarks [1] is a set of programs focused on performance of highly parallel
computations on supercomputers. In addition to floating point computations, it targets
communication and data movement among computation nodes. The performed algorithms
are based on large scale computational fluid dynamics at the Numerical Aerodynamic Sim-
ulation (NAS) Program which is based at NASA Ames Research Center.

Benchmarks are written in Fortran-90 or in C language, as these were the most com-
monly used programming languages in scientific parallel computing community at the time
when the benchmarks were created. They can be compiled with different classes of problem
sizes to suit machines with different amount of memory and of computational power.

The main output value of the benchmark is the throughput measured in units called
Mop/s (millions of operations per second) representing the amount of floating-point oper-
ations per unit of time.

The benchmark also offers a few parameters that can be passed to the benchmark before
the execution. One of them is the number of computation threads, which in a lower amount
slows down the run time, but allows one to measure behavior of the system without full
usage. Figure 3.1 shows an example of a throughput with different number of threads on
a machine with 24 physical cores and hyper-threading.
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Figure 3.1: Example of Scalar Penta-diagonal solver results from the NAS Parallel bench-
mark with different number of computational threads. The size of the boxes represent the
inaccuracy of measurement caused by noise and by non-deterministic behavior of scheduler.

The downside of this benchmark is it can only run with a fixed dataset, but not for
a fixed time period. This constraint makes the run time of the benchmark with less threads
longer.

3.2.2 SPECjbb2005

Java Business Benchmark [11] created by Standard Performance Evaluation Corporation
(SPEC) behaves as a server-side Java application. It is primarily focused on measuring
performance of Java core implementation, but it also reflects a performance of operating
system and of the CPU itself. It models a system of a wholesale company as a multitier
application. The benchmark itself creates the load, measures the throughput, and also
generates a simple report in HTML and raw text formats.

The main output value is throughput measured in units called SPECjbb2005 bops 1. In
case we use more JVM2 instances, there is a second unit called SPECjbb2005 bops/JVM
representing an average throughput of a single JVM instance. The collected metric is
memory consumption, which is not that important for scheduler performance monitoring.

3.2.3 SPECjvm2008

Java Virtual Machine Benchmark [12] is another benchmark from SPEC focused on Java
Virtual Machine and Java Runtime Environment, but reflecting also behavior of process
scheduler and memory management.

It consists of separate operations using real life applications (e.g. Sunflow rendering,
Java compiler) or stressing specific part of Java implementation (e.g. cryptography algo-

1Business operations per second
2Java virtual machine
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rithms, working with XML documents, Scimark floating point benchmark). The operations
run in multiple threads sharing data both on application level and in common JVM instance.

Output of the benchmark uses ops/m unit describing number of executed operations
per minute.

3.2.4 LINPACK benchmark

LINPACK Benchmark[4] comes from the LINPACK package, which was used to solve sys-
tems of linear equations. It is primarily used to measure floating point computation power
of large machines at both single and double precision. It is used also by the TOP500 project
for building list of 500 most powerful computers.

Main measured value from the benchmark is the number of floating point operations
per second (flops), but the benchmark output provides more information such as run time,
page faults, context switches, or location on which core or NUMA node it ran.

3.2.5 STREAM benchmark

The STREAM benchmark [9] is a simple benchmark aimed for measuring memory band-
width and also computation speed of simple vector kernels. Its motivation is a slow grow of
memory performance compared to CPU, which makes speed of this component also crucial
for the performance of the whole system.

Output metric of the benchmark is memory bandwidth in MB/s, but it provides the
same statistics as the Linpack benchmark: run time, page faults, context switches, or
location on which core or NUMA node it ran.

3.3 Performance analysis tools
Although benchmarks create workload on tested system and collect some metric of its
performance, tools for performance analysis are needed to get better insight to behavior of
the system. To the interesting information belong utilization of processor cores, migration
of benchmark process and its memory between NUMA nodes, or the time the process spent
in queue out of CPU. This section describes utilities used to collect data to get the insight
to system behavior.

3.3.1 time

Time is a simple command for measuring the time that an application spends running.
The most common numbers it reports are the total real time that the application needed
to finish, the time that it spent in the user mode, and the time spent in the kernel mode.

Many benchmarks provide the execution time themselves which can make this utility
unnecessary. However, the interesting metric is the time that the application spent out
of the CPU waiting in queue. This value is not provided directly, but time provides user,
kernel and real time from which the metric can be calculated as described in Section 3.1.

It can be confused with the Bash builtin command time, which provides similar output,
but the real binary can provide more verbose information with the possibility of custom
formatting of output. It can be usually called from /usr/bin/time.
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3.3.2 ps

Ps is a Linux command, which is used to display information about active processes. Its
name stands for “processes status”. It can provide various information obtainable from the
virtual files in the /proc directory. The most common information include the process
PID, time spent on processor, state of the process, used memory, associated terminal, the
command that started the process, and more.

Especially useful are the optional columns PSR and NUMA. They show the number of the
processor and the number of the NUMA node where the process is running. Continuous
monitoring of those values can provide view on migration of the process during its run time.

Output of the command can be filtered in many ways. By default, it shows only pro-
cesses for the current user and for the current terminal, but it can list all the processes
on the system. The listing can be filtered using parameters by most of the columns of
information it provides. The listing can be limited for instance by a specific terminal, by an
effective user, by children of a specified process, or by a PID to a single intended process.

3.3.3 mpstat

This Linux command provides continuous information about utilization of CPUs. It can
show utilization of processor cores, of NUMA nodes, or of the whole system dependent
on passed argument. Some of the provided values are utilization in user space, utilization
in kernel space, percentage of waiting for IO operations, percentage of handling interrupt
requests and the idle percentage, when system is idle and does not wait for any IO operation.

Mpstat can collect those data once when executed or at regular time intervals. The
regular collecting of utilization of the CPU cores or of the NUMA nodes is done through
the run time of a benchmark. With little processing of the data, it is easy to watch whether
the distribution of load between the cores and the NUMA nodes is equal or not.

3.3.4 turbostat

This tool provides measuring of hardware properties of the CPUs with the x86 architecture.
It reports for each core its usage, frequency, temperature, and percentage of time in different
idle states. For each socket it reports its power consumption.

There are two ways to run turbostat. It can be supplied with a command to run and it
will return the average values from the run time of the command. Without the command
it will collect the statistics at regular time intervals.

Data from this tool can be used to analyze performance drop caused by the CPU itself.
This can happen due to frequency drop because of overheating or of missing workload.
The power consumption data can be used to roughly compare the power efficiency of both
the scheduler and the physical CPUs, but the command only provides consumption of the
CPUs and their RAM and not of the whole machine.

3.3.5 perf

Linux command perf, also known as perf_events, is a tool for profiling with perfor-
mance counters Linux subsystem. It provides counting of hardware events (e.g. cpu cycles,
branch and cache misses), software events (e.g. context switches, page faults), or custom
tracepoints (e.g. specific system calls, filesystem or network operations).

It offers wide range of commands, from which the most used are:
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perf stat The command counts selected events during an execution of a process or
during a specified time period. It can observe events belonging to the process or system-
wide. The counted statistics are written at the end of the time interval or of the process
execution.

perf record The command record the events to perf.data file for later analysis.

perf report The command reads the perf.data file created by perf record and displays
the collected statistics.

perf top The command provides live analysis of system by showing all observed function
calls ordered by the number of cycles spent in them.
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Chapter 4

Processing of results

Getting the output of benchmarks and tools for performance analysis is just a part of
performance regression testing. To perform comparison of two results, it is essential to
store the results in an efficient way for quick creation of a comparison report. The quality
of the comparison report also affects the right choice and a use of visualization of the results
and their comparison.

This chapter is structured as follows. Section 4.1 describes ways of storing the results
from benchmarks and Section 4.2 describes different visualization methods suitable for
analysis of performance changes.

4.1 Storage of the results
Benchmarks sometimes generate long human-readable output in text or even HTML format.
This is useful when analyzing a single report. In the output there are details of the test
run itself, a simple resource usage, or success of result validation. However, the amount of
result starts to rise with repeated runs, with different amount of instances, and with new
versions kernels.

For the comparison of performance results, the number representing throughput or time
of each benchmark run is usually enough. Those numbers can be preprocessed from the
benchmark output files to a format more suitable for quick accessing of the required data.

4.1.1 XML files

XML is a markup language, that can store heterogeneous data in a tree structure. The
tree structure can effectively represent the test scenario running each benchmark operation
with different parameters and multiple repetitions.

Another feature of XML format is human-readability offering quick insight to stored
data just with any text editor. This comes with a disadvantage of redundant data in the
form of repeated names of tags and attributes which often take more space than the data
itself. Parsing of the data also takes considerable amount of the CPU time prolonging the
duration of analysis.

In our team, we use the XML format for storing result values from benchmark runs and
their aggregated statistics for easier generation of performance comparison reports. Next
to the results is also stored configuration of the benchmark run containing properties of
the system that the benchmark ran on. The properties include hostname of the testing
machine, version of kernel and of operating system, or configuration of the environment.
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<?xml version="1.0"?>
<beaker_run_result>

<test_result>
<nas_result benchmark_name="mg_C_x">
<threads number="2">

<result mops="5560.4" real_time="31.0" out_of_cpu_time="0.9"/>
<result mops="5411.4" real_time="32.2" out_of_cpu_time="1.6"/>
<result mops="5499.3" real_time="31.4" out_of_cpu_time="0.6"/>
<result mops="5407.4" real_time="31.9" out_of_cpu_time="1.3"/>
<result mops="5376.1" real_time="32.0" out_of_cpu_time="0.7"/>

</threads>
<threads number="4">

<result mops="10254.9" real_time="16.8" out_of_cpu_time="1.2"/>
<result mops="10075.4" real_time="17.1" out_of_cpu_time="1.7"/>
<result mops="10226.6" real_time="16.8" out_of_cpu_time="1.4"/>
<result mops="10250.2" real_time="16.8" out_of_cpu_time="1.3"/>
<result mops="10227.7" real_time="17.0" out_of_cpu_time="2.5"/>

</threads>
...

Figure 4.1: This example shows beginning of XML file with important values from
one NAS Parallel benchmark run scenario. The XML file starts with root element
<beaker_run_result> and <test_run> node which are wrapping <nas_result>
nodes representing results from each benchmark operation from NAS Parallel benchmark
suite. Each benchmark operation is run with different amount of threads in few loops to
lower the measurement inaccuracy. Nodes of results with the same number of threads are
wrapped in <threads> node. All the values are stored as attributes of the corresponding
node.

Example of results from one run of the NAS Parallel benchmark scenario stored in the
XML format is in Figure 4.1. Example with aggregated data is in Figure 4.2. Example of
an XML file with properties of benchmark run result is shown in Figure 4.3.

4.1.2 Relational database

Relational database is a type of database using relational model. The relational model stores
data in tables using rows for records and columns for their attributes. Each row represents
a unique record with its attributes in columns. Columns store values of attributes with the
same data type. Records in different tables can be connected in relationships.

There are many database management systems implementing the relational database
model available under various licenses. From the open-source we can name PostgreSQL,
SQLite, MySQL, or its fork MariaDB. To the category with proprietary code belong im-
plementations from companies including Oracle, Microsoft, or IBM.

Data in database are managed using SQL (Structured Query Language). It provides
commands for storing, manipulating, and retrieving data. With advanced joining of tables
and filtering it provides wide possibilities of data processing just at the point of reading of
the stored data.

Database offers much faster access to data without complicated parsing of text files.
Searching through the data can be much faster with indexing of the records by selected
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<?xml version="1.0"?>
<beaker_run_result>

<test_result>
<nas_result benchmark_name="mg_C_x">
<threads number="2">

<mops mean="5450.9" stdev="68.4" first_q="5407.4"
median="5411.4" third_q="5499.3" max="5560.4" min="5376.1"/>

<total_time mean="31.7" stdev="0.4" first_q="31.4"
median="31.9" third_q="32.0" max="32.2" min="31.0"/>

<out_of_cpu_time mean="1.0" stdev="0.4" first_q="0.7"
median="0.9" third_q="1.3" max="1.6" min="0.6"/>

</threads>
<threads number="4">

<mops mean="10207.0" stdev="66.8" first_q="10226.6"
median="10227.7" third_q="10250.2" max="10254.9" min="10075.4"/>

<total_time mean="16.9" stdev="0.1" first_q="16.8"
median="16.8" third_q="17.0" max="17.1" min="16.8"/>

<out_of_cpu_time mean="1.6" stdev="0.5" first_q="1.3"
median="1.4" third_q="1.7" max="2.5" min="1.2"/>

</threads>
...

Figure 4.2: Another form of stored data shows this beginning of XML file. Instead of
all values obtained from the benchmark run scenario, here are only aggregated statistical
values form the sets of collected values from each configuration. The aggregated values
include minimum, maximum, mean, median, quartiles and standard deviation of metrics
like throughput, run time, or time in queue for CPU. Those values are directly usable for
plotting of comparison graph without any manipulation with them lowering the time for
generation of reports.

<?xml version="1.0"?>
<beaker_run_result>

<settings>
<BenchmarkName value="NASParallel"/>
<Distribution value="RHEL-7.5"/>
<Kernel value="kernel-3.10.0-862.el7.x86_64"/>
<Architecture value="x86_64"/>
<TunedProfile value="throughput-performance"/>
<SELinux value="Enforcing"/>

...

Figure 4.3: Example of XML file with properties of a benchmark run. In a flat structure
in node <settings> are key-value pairs stored as node name and attribute value with
the actual value of the property. There are information including benchmark name, version
of kernel and operating system, hostname and architecture of testing machine and various
system and environment parameters that could affect the performance measurement results.
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columns. Moreover, databases store data more space-efficiently directly in binary format
to avoid unnecessary conversions.

The efficiency of database comes with its disadvantages. Storing the data in binary
form eliminates the possibility of quick insight to data like with XML files. To access any
data, it is required to write an SQL query to request specific information from the storage.
More complications come with design of the database tables. Different benchmarks produce
different type of result and the requirements for the stored data can change over time. This
requires building universal complex structures or occasional changes in the database model.

In our team we currently consider the option of storing results of benchmarks in a database,
which would require a lot of work needed for migration from the current storing in XML
files.

4.2 Visualization the results
Effective analysis of results from a performance measurement requires delivering the com-
parison in a form in which a human can quickly see the differences in measured values and
their severity.

Visualization offers this advantage against raw text data collected from benchmarks and
performance analysis tools. It allows us to much faster see important relations between the
collected data utilizing often smaller display area than the raw data.

Right visualization also allows us to deliver more easily understandable data even for
people that do not work with performance analysis on their daily basis.

4.2.1 Line graphs

Line graphs are the simplest method of displaying a course of values of a variable dependent
on a parameter in two dimensional space. It allows to easily spot nature of the plotted
values – either increasing, decreasing, or constant. The data can be plotted as discrete
values using points or as a continuous function using a line. Comparison of more variables
from different datasets is done by plotting multiple lines to the same graph, one for each
variable. In Figure 4.4 is an example of line graphs showing CPU utilization of system
NUMA nodes and the ratio of access to memory of remote nodes.

Although line graphs are quick and simple to create and use, they fail to scale for
larger amount of lines in a single graph. Larger amount of lines becomes too confusing
and impossible to read. Graphs of CPU usage of each NUMA node in Figure 4.4 is still
readable, but impossible to use for utilization of every CPU core.

4.2.2 Heat maps

Heat maps are three dimensional graphs which are using color as the third dimension for
values. This allows to plot two dependencies of the values compared to line graphs, which
must use multiple lines to plot the same data. Heat maps provide better scalability for
larger data, where line graphs would be confusing with too many lines. It is also much
easier to spot correlation with the additional dimensions compared to line graphs.

In Figure 4.5 is a heat map showing utilization of all CPU cores over time under work-
load. The data was collected by the mpstat utility and processed to show the sum of user
and kernel space utilization of each core. Plotting those data using line graph with a line
for every core would be confusing even for this relatively small amount of CPUs.
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Figure 4.4: An example of line graphs showing statistics collected using the numatop utility.
The graphs in the top row show CPU utilization of each NUMA node through time and in
the graphs bottom row show ratio of access to local memory of the node and to memory
of remote nodes. The graphs on the left show an expected behavior of a scheduler causing
uniform utilization of each node and a minimal amount of access to memory of remote
nodes. The utilization graphs use linear y axis and memory access graphs use logarithmic
y axis. The plotted values were collected on 4 NUMA node machine under workload from
the NAS Parallel benchmark running in 4 threads.

Figure 4.5: Example of a heat map showing CPU utilization over time. The machine with
24 logical CPUs is under a workload from NAS Parallel benchmark running in 16 threads.
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Figure 4.6: Example of a heat map showing thread migration between NUMA nodes. The
expected result is not the highest value, but the minimum of color changes in each line.
The shown result comes from a machine with 24 logical CPUs running the NAS Parallel
benchmark on 16 and 24 threads in 5 loops.

Another use of heat map is shown in Figure 4.6. It does not show utilization of threads,
but their location on which NUMA node collected by ps utility. This heat map shows
the migration of threads between NUMA nodes and the expected result is not the highest
value, but minimum of color changes in each line. The shown data comes from NAS Parallel
benchmark, which was run with 16 and 24 threads in 5 loops. The heat map shows better
scheduler behavior on the 16 threads run than on the 24 threads run.

4.2.3 Box plots

Box plot is a method for displaying statistical properties of data from multiple measure-
ments. It extends the simple visualization of discrete values by adding to the median values
also the minimum and the maximum measured values and the first and the third quartiles
from the measurement.

In some cases the whiskers for minimum and maximum value represent standard devi-
ation or the 2nd and the 99th percentile. Data out of the range is displayed as standalone
points above or below the whiskers.

Box plots are great to illustrate dispersion and variation of the data that do not follow
exact normal distribution. All of the displayed marks show accuracy and reliability of
measurement. This insight helps to distinguish real performance regression from a noise
caused by unpredictable behavior of the scheduler and measurement error.

In Figure 4.7 is an example of a box plot showing throughput measured by the NAS
benchmark with different number of threads.
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Figure 4.7: Example of a box plot showing throughput measured by the NAS benchmark
from multiple measurements with different number of threads. The last two boxes and their
whiskers show us that the range of measured values is the same despite the big difference
in medians. Therefore the plotted result is treated as passed (without any performance
regression).
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Chapter 5

Visualization using timelines

A common way to analyze performance reports is to compare two results measured for
different versions or settings. Usually, these are called the baseline and the target results
or profiles. The comparison of two results allows one to interpret the measurement and
changes between versions, usually containing clues to the cause of possible performance
changes, e.g. change in some value of parameter or new code functionality.

However, sometimes it is not enough to compare just two strictly following versions. If,
instead, we analyze a larger amount of results over a longer period of time, we can begin
to see a whole new perspective. In that case there can be a much more visible difference
between a deviation from a measurement error and a performance change. It is also easier
to find versions where a performance degradation occurred and where it was fixed.

With larger amount of data, we can also detect creeping performance drops, which
appeared continuously over a longer period of time and could not be detected, because
they were within the tolerance due to the measurement deviation.

This chapter proposes new kind of reports with comparison of multiple results of per-
formance measurement from benchmarks used by Red Hat Kernel Performance Quality
Engineering team. The visualization of performance results helps to see the performance of
Linux kernel scheduler in wider range of time as well as to determine stability and precision
of different benchmarks.

5.1 Design
We mainly focus on performance of kernel versions on a specific testing machine. The
timelines generator will output HTML reports showing benchmark results of the desired
kernel versions on a single machine. We describe the mockup of produced HTML page in
Figure 5.1. Displayed results are specified using rules for a base kernel as the first reference
result and target kernels forming the actual timeline.

We propose that the most suitable type of graph for displaying results with repeated
runs are boxplots. Boxplots show important statistical values from the runs: the median,
the minimum, the maximum, and the first and the third quartiles. Those values can quickly
reveal stability of the plotted benchmark and noise in the measurement that can help to
distinguish true performance degradations.

Each graph of benchmark operation contains results from all thread configurations, but
only one desired configuration is visible by default. The desired number of threads is the
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Figure 5.1: Mockup of timelines report page. The report contains results from a single
testing machine fulfilling the specified rules. Below the table we display with the rules we
display graphs of the available benchmarks. Each benchmark section will have a separate
graph for each of its operations and a table below the graphs containing featured values
from each operation for each benchmark with links to the results in our result database.

point where performance regressions create the biggest difference, which is in most cases
the highest number of threads.

The graphs will also contain horizontal lines in background following median of the base
result and its value increased and decreased by 5%. Those lines will allow more effective
recognition of significant performance changes without looking at the absolute values of the
measurements.

Under the graphs of all operations of benchmark will be a table containing medians of
featured thread runs for each benchmark operation of every displayed kernel for browsing
of the absolute result values. Each record will also work as a link to result record in the
database of benchmark results of Red Hat Kernel Performance QE team.

5.2 Implementation
This section describes selected aspects of implementation of the timelines report generator.
The generator is implemented in Python2 due to earlier origins of its implementation.

5.2.1 Comparison rules

For automatic report generation it is essential to allow defining rules, which will specify
results, that can be used and in which role (i.e. whether they correspond baseline or
target). We propose to use regular expressions to match properties of results. Regular
expressions offer broad possibilities to describe shape of kernel version or the value of any
environment configuration. E.g. to filter all builds of kernel 4.18 we can use simple pattern
kernel-4.18\..*.
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We store the rules in an XML file with the same node naming as in the XML file with
the result properties. The first level of XML document contains three nodes representing
the purpose of the rules.

• Baseline rules specify the first result in the plotted set. These act as the main
result that the others are compared to. In case of multiple results fitting the rule, the
newest one will be used.

• Target rules define the results to be plotted.

• Starting rules (optional) are for the case, when base result is not from the set of
target results and there is need of specifying the first target result would be hard with
regex.

5.2.2 Reading of results

Benchmark results are in our case stored in the filesystem in directories. The generator
has to go recursively through directory with results of benchmark runs with files containing
desired data. From each result, it starts with file containing properties of given result. This
file provides metadata from the benchmark run including the time, machine hostname,
kernel and OS version, benchmark name, configuration of environment for selecting desired
results using the comparison rules. Example of the XML file with properties is in Figure
4.3.

After applying the rules the generator reads files from selected results with preprocessed
data that are ready to use for drawing box plot graphs. Example of the file with preprocessed
values is in Figure 4.2. Parsed data from this XML file is all the generator needs to start
drawing the timeline graphs.

5.2.3 Plotting of timelines

For displaying the data in graphs using box plots we use Highcharts JavaScript library [7]
for generating interactive SVG-based graphs for HTML pages. It offers free license for
non-commercial use with available source code, but also paid licenses for commercial use.
It provides fast and easy creation of various types of graphs including box plots with wide
possibilities of customization.

On the HTML page are the charts rendered by JavaScript function from the Highcharts
library to specified div element by its id attribute as an SVG image. The rendering function
takes parameters for the graph in JSON format including type of chart, axis parameters,
horizontal lines for reference median, interactive tooltips, and the data series.

5.2.4 Generator parallelization

With multiple entered sets of rules for timeline reports the generator can create multiple
reports, e.g. separate reports for Red Hat Enterprise Linux 7 and 8. The procedure of
parsing results and generating graphs is more on CPU than IO operations.

To reduce time needed to generate all reports multiprocessing is used. There is no need
of exclusive access to any shared resource, because all of them are used only for reading, not
writing. For implementation Python2 provides multiprocessing library with Process
class that creates child process by forking allowing true parallel generation of reports. Using
only threads in Python does not lead to parallel computation because of Python’s global
interpreter lock is preventing multiple threads from executing code simultaneously.
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Figure 5.2: Example of very unstable benchmark which was removed from the run scenario
because of irrelevant results. The yellow and orange lines show median of base result and
5% differences which are usually threshold for suspected performance regression.

5.3 Generated output
Output of the timeline generator is HTML report containing graphs of different benchmark
operations with summary tables as described in mockup in Figure 5.1.

The graphs use box plot method which shows the measurement accuracy. This feature
helped to eliminate unstable benchmark operations from run scenarios. One of the unstable
operation is shown in Figure 5.2.

Thanks to wide range of displayed results it is easy to find version where a performance
regression occurred, or was fixed. This case is captured in Figure 5.3, where is also shown
part of the summary table. The cause of the degradation is change in memory migration
rules between NUMA nodes. However, this change was not pure regression, because other
benchmark shown significant gain displayed in Figure 5.4.
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Figure 5.3: Generated box plot timeline graph of mpegaudio operation from SPECjvm2008
benchmark with part of table showing numeric results of the SPECjvm2008 operations. The
table shows medians from benchmark runs with featured number of threads and the kernel
names are links to our team database of results. It displays performance results of upstream
kernels for Red Hat Enterprise Linux 8. The performance degradation is consequence of
changes in memory placement and migration behavior.

Figure 5.4: Timeline box plot from the same report as Figure 5.3 showing results of Em-
barrassingly Parallel operation from NAS Parallel benchmark. This benchmark got perfor-
mance gain in the same version as the SPECjvm2008 benchmark registered performance
degradation. Fortunately, this performance gain in NAS Parallel benchmark operation did
not disappeared after fixing the degradation at SPECjvm2008 benchmark.

26



Chapter 6

Automatic evaluation

With every new release of regular kernel and its testing the amount of produced results
rises. Number of results can rise with every new kernel version even by hundreds with more
testing machines, with different configurations, with benchmarks with different focus, or
with baselines from different supported versions.

In this thesis we attempt to automate the repetitive classification and labeling of results
as passed (without any performance regression) or failed (containing performance regres-
sion). This allows us to skip the results without any significant change. Instead, more time
is left for focusing on the results with performance regressions.

In this chapter we will describe the way of obtaining data from results and their pro-
cessing for the evaluation. We will describe different classification models suitable for given
dataset and compare their success rate.

6.1 Human classification of results
There are quite many results to check with every new tested kernel. The test suite with
the Linpack, Stream, NAS Parellel and SPEC benchmarks are run on more than eight
machines with different amount of NUMA nodes and processor models. Quality engineer
has to go through the reports and check the results of all the benchmarks with different
configurations manually.

When looking at results of benchmark operation, the most important values are medians
from the runs with the different amount of threads. Unfortunately, due to the noise in
measurement and limited amount of repeated runs the medians can be significantly affected
by the noise. This complication brings the need of more detailed inspection of results than
just checking the difference in medians of results.

Another useful metrics are the minimum, the maximum and the quartile values from
each measurement. They reveal the stability of the benchmark and the measurement noise.
With those values it is much easier and more accurate to tell the measurement noise from
performance regression. With similar minimum, maximum and quartile values the perfor-
mance can be the same even with the difference in median values.

The threshold between noise and performance regression is considered as 5% difference
between base and target measurement but varies by the stability of each benchmark and
complexity of the machine it was run on.
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<comparison_results base_uuid="..." report_uuid="..." target_uuid="...">
<comparison_result benchmark_name="NASParallel"

operation_name="bt_C_x" result_status="pass">
<result median_diff="1" threads_no="4">

<base_result first_q="7409.2" max="7507.0" mean="7451.7"
median="7456.5" min="7406.4" stdev="39.2" third_q="7479.3" />

<target_result first_q="7503.0" max="7597.5" mean="7513.1"
median="7522.2" min="7404.8" stdev="62.7" third_q="7537.8" />

</result>
<result median_diff="0" threads_no="8">

<base_result first_q="14330.8" max="14740.1" mean="14476.6"
median="14469.1" min="14325.9" stdev="151.7" third_q="14517.2" />

<target_result first_q="14494.5" max="14619.3" mean="14481.1"
median="14521.6" min="14233.7" stdev="130.5" third_q="14536.5" />

</result>
...

Figure 6.1: Part of XML file with labeled data for classification.

6.2 Used technologies
For classification we use the scikit-learn library [10] with Python3. Scikit-learn is a library
for data analysis and machine learning distributed under BSD open source license. It is
easy to use with fast learning curve and well documented. It is a good choice for small and
medium sized projects that do not need massive scalability. It provides various algorithms
for classification, regression and clustering built on NumPy and SciPy Python libraries.

Unlike other machine learning libraries like PyTorch and TensorFlow, the scikit-learn
library does not focus on deep neural networks for larger and advanced problems. It provides
more simple classifiers for easier problems with smaller datasets where advanced methods
would not have enough training data.

6.3 Reading the labeled results
Data used for learning are passed as an XML file containing preprocessed data from the
base and the target run of the benchmark which are labeled as passed or failed.

Record of each benchmark operation is labeled as pass or fail and contains records of runs
with different amount of threads or processes. Those records contain median, minimum,
maximum and quartiles form the repeated runs of the configuration. The root element then
contains UUIDs of the comparison and its base and target results for easier tracing in case
of suspicious values. The example of XML file with data for the teaching of classifiers is
shown in Figure 6.1.

6.4 Labeling of results
To teach the automatic classifier we need large amount of data for training. To reduce the
time spent on labeling of the passed and failed results we included a HTML form to report
page with comparison of two results to speed up this process. The design of the form is
shown in Figure 6.2.
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Figure 6.2: Form from HTML comparison report page of SPECjvm2008 benchmark to label
data for machine learning. The last column contains form manual labeling of the results
which are sent using the button on the top. The Status column next to it displays the
actual labels stored in the XML file with data for classification.

Figure 6.3: Form from HTML comparison report page to label data for machine learning

For processing of the requests from this HTML form we built a simple HTTP simple
server application using Flask framework for Python3. It is wrapped in the Docker container
which runs on machine which stores the performance results and comparison reports. It
receives a HTTP request with POST data containing the type of benchmark, path to
directory with the report page and labels for results of each benchmark operation. Using
this data the application modifies the XML file with labels described in Section 6.3 and
returns HTTP redirect header back to the comparison report. This process is shown in
diagram in Figure 6.3.

6.5 Preprocessing of the data for learning
We want to classify results of each benchmark operation with different thread configurations
which is represented by <comparison_result> node in the example in Figure 6.1. The
number of threads configurations represented by threads_no attribute in each <result>
is not always the same and varies on the number of CPU cores on the testing machine.

The important values that we focus on are the statistical data from runs with different
amount of threads, that one uses to label the data manually. From each of the runs we take
minimum, median, maximum and first and third quartile from the repeated measurements
of the same run configuration.

To avoid absolute values from measurements that are different on each machine, we use
relative proportions. Difference of target and base medians are divided by base median and
the rest of target statistical values are divided by the target median.

Next task is to reduce the provided data with variable number of threaded results
to fixed size vector. We will take minimum, median and maximum from values of each
statistical property: of minimums, medians, maximums and first and third quartiles. Each
reduction will keep important values form the benchmark operation results in reasonably
small vector.
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Figure 6.4: Plotted vectors from the training dataset reduced to 3 dimensions, which are
the best for classification. The reduction was done by SelectKBest class from scikit-learn
library by choosing the dimensions with the biggest variability between classes. The plot
on the left shows scatter of vectors from dataset with unmodified values. The plot on the
right shows the vectors from dataset modified by applying square root on their values. This
modification and naming of the axis is explained in Section 6.5

The last operation with these vector values is applying square root. This operation
reduces distances of vectors with exceptionally high values, which helps the k-NN and
linear classifier to get better results. Scatter of the vectors plotted in 3 best dimensions is
shown in Figure 6.4.

For later use, we will name the vector component like medians min (minimum value
of all medians in results with different number of threads). The whole preprocessing of
a single result of benchmark operation shows the Figure 6.5 with Python code snippet.

6.6 Comparison of classifiers
The classification is a procedure of assigning category to new observation based on training
set of observations with specified category. Because of the availability of already classified
data it belongs to supervised learning part of machine learning.

Data for classification are represented by set of vectors with fixed element count. Vector
is an ordered set of numbers where each one represents a value in separate dimension of
the source data. For supervised learning vectors from training set have assigned categories
(also called classes). In our case we will have 2 classes: pass and fail.

For the following training and evaluation of the models we used roughly 250 labeled
vectors. This should be enough to train different simple classifiers with sufficient accuracy
on other unlabeled vectors.
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1 mins = []
2 medians = []
3 maxes = []
4 q1s = []
5 q3s = []
6
7 # Iterate over the thread result XML nodes of single benchmark operation
8 for res in cpresult:
9 for basetarget in res:

10 if basetarget.tag == "base_result":
11 b_attr = basetarget.attrib
12 if basetarget.tag == "target_result":
13 t_attr = basetarget.attrib
14 try:
15 # Compute relative differences between base and target results
16 medians.append((float(t_attr["median"]) - float(b_attr["median"]))
17 / float(b_attr["median"]))
18 mins.append((float(t_attr["median"]) - float(t_attr["min"]))
19 / float(t_attr["median"]))
20 maxes.append((float(t_attr["median"]) - float(t_attr["max"]))
21 / float(t_attr["median"]))
22 q1s.append((float(t_attr["median"]) - float(t_attr["first_q"]))
23 / float(t_attr["median"]))
24 q3s.append((float(t_attr["median"]) - float(t_attr["third_q"]))
25 / float(t_attr["median"]))
26 except:
27 print("ERROR in values in " + path)
28
29 vector = []
30 # Add min, med and max value from each array of differences
31 for a~in [medians, mins, maxes, q1s, q3s]:
32 vector.append(min(a))
33 vector.append(median(a))
34 vector.append(max(a))
35
36 # Square root all element
37 vector = list(map(lambda x: math.sqrt(float(x))
38 if float(x) > 0
39 else -math.sqrt(abs(float(x))), vector)))

Figure 6.5: Python code showing reading and preprocessing of a vector from single com-
parison node parsed by ElementTree library for working with XML files. On the line 8
is iteration through comparisons of benchmark operations. On the line 9 the code looks
for child nodes with base and target results. In the try block starting on the line 14 are
computed relative differences of the statistical values. On the line 29 is are added minimum,
median and maximum values from each array of relative differences of statistical values.
The last operation on the line 34 applies square root on each element of the vector.
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6.6.1 Validation and metrics

To compare success rate of different classification models we need a method to evaluate
accuracy of predicting new data. Testing the model on data that we used for learning can
lead to overfitting. Overfitting means that the model precisely predicts data it has already
seen, but fails to predict any new data it has not seen yet. To avoid overfitting we use
cross-validation method to test the model. It removes part of data from training set and
uses them as testing set for evaluating the prediction.

For splitting the training data we use k-fold method. This method splits the original
dataset to k groups. One of groups is used as testing set and the rest k − 1 groups are left
for training. This way we get k different dataset for evaluation of our classifiers.

As implementation of k-fold cross-validation we use RepeatedStratifiedKFold
class from scikit-learn library with the parameter k set to 4. It will split the original
dataset to 4 groups with same ratio of pass and fail labels repeating this process with dif-
ferently shuffled data. Setting number of folds to 4 gives us enough data both for training
and for the evaluation.

As metric for rating of predicted values we use accuracy scoring. Predicted results are
evaluated as 1 or 0 if the predicted class is the same as the reference class from manual
labeling or not. Averaging those scores from the whole testing set will give us ratio of
correctly predicted vectors. In the following we will describe each tested classifier.

6.6.2 k-nearest neighbors classifier

This classifier does not construct any generalized model, but works with the whole training
data. The decision is then made by voting of the k nearest neighbors.

The learning process consists only of building data structure for more efficient search
through the dataset. More computations come with the prediction when the algorithm
must go through the learning dataset and find k nearest vectors.

Accuracy of the model highly depends on the parameter k. Higher values suppress noise
in dataset, but can smoothen the boundaries of classes too much. This behavior can be
seen in Figure 6.6.

Scikit-learn implements k-NN classifier in KNeighborsClassifier class. Next to
setting the k number it provides parameter for weighting votes. First option is uniform
voting where each of the k neighbors have the same weight of the vote. The second option
weights votes based on the distance from queried vector. The weighted option provides
better results for our dataset as can be seen in Figure 6.6.

6.6.3 Linear logistic regression classifier

Linear model tries to separate vectors of two different classes to two spaces using a line,
plane, hyperplane, etc. depending on the dimensionality of the vectors. It works by multi-
plying queried feature vector by learned set of weights. Thanks to this simplicity it scales
very well for large amount of vectors and features.

The linear logistic regression classifier is implemented by scikit-learn in Logistic-
Regression class. We will use it with class_weight parameter set to balanced, because
the linear classifier keeps the probabilities of classes favoring the by count of vectors it got
for learning.

In Figure 6.4 we can see that our data are linearly separable and the linear logistic
regression should be able to fit our dataset with good results.
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Figure 6.6: Accuracy of k-nearest neighbors classifier on available training data with dif-
ferent parameters. On x axis is number of k-nearest neighbors that vote for the class of
queried vector. The two plotted lines differ in weighting of the votes. The first takes all
votes with uniform weight and the second weights the votes by distance of the neighbors
from the queried vector.

6.6.4 Decision tree classifier

Decision of this classifier is based on decision tree built on training data. In each node
the tree looks on one component of the queried vector and by comparison with learned
threshold the tree decides to which branch it will continue. Each leaf of the tree contains
label that is returned for the queried vector which led to the leaf.

Learning of the model involves the construction of the decision tree. The construction
looks for the best component of vector for splitting the dataset by classes. It creates
a decision node and splits the training dataset based on the selected component to the
decision branches. This process is recursively repeated with each part of the split dataset
until the split contains vectors of single class (purity of the node is 1) or any additional
restrictive condition is met.

Main advantage of the decision tree is its transparency and easy visualization of the
model. In Figure 6.7 is an example visualization of the decision tree constrained by depth
and samples count in leaf nodes built with our dataset of performance comparisons.

Disadvantage of the decision tree is sensitivity to noisy data and high chance of overfit-
ting, because the tree tries to fit the whole dataset and has 100% prediction accuracy on
already seen data. This issue can be suppressed by reducing maximum depth of the tree,
setting minimal amount of samples required to split impure node into another decision.

6.6.5 Forest of randomized trees classifiers

The forest of randomized trees classifier extends the decision tree classification by creating
a set of decision tree classifiers with small portion of randomness introduced in the creation
of the decision trees. Output of the classifier is decided by voting of the decision tree
classifiers. This modification compensates the overfitting of single decision tree classifiers.
Although the amount of trees slightly increases the accuracy of the prediction, the duration
of learning of the model and prediction rises linearly with the amount of trees.
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Figure 6.7: Decision tree created by Decision tree classifier and rendered by Graphviz
library. It shows decision tree generated on our performance comparison data constrained
by depth and samples count in leaf node. First line of non-leaf node shows the condition for
choosing the next decision branch. gini property of node shows its impurity – proportion
of training data not fitting the class of the node. Leaf nodes have 0 impurity because they
contain vectors of single class. Parameters samples and value show the amount of training
vectors for the subtree and their division to pass and fail classes.
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Figure 6.8: Accuracy of randomized forests classifiers on available training dataset with
different parameters. On x axis is number of trees that vote for the class of queried vector.
The first plotted line represents the Random forest method and the second the Extra trees
method of building the trees.

The scikit-learn library provides two implementation of classifiers based on randomized
trees. The first is RandomForestClassifier class. The dataset for each tree is re-
sampled with replacement creating slightly reduced and different dataset. When building
a decision tree, the component used for comparison in the node is not the best for splitting,
but randomly chosen.

The second is extremely randomized trees method implemented in ExtraTreesClassifier
class. This implementation extends the randomness by choosing more thresholds for de-
cision randomly and selecting the best instead of computing the most discriminative one.
This method helps to reduce variance of the model at the cost of higher bias.

Comparison of these two implementations is in Figure 6.8. The RandomForestClassifier
has slightly better accuracy than ExtraTreesClassifier. The accuracy also rises much slower
compared to number of the trees in the model.

6.7 Evaluation of classifiers
For the evaluation and comparison of proposed classifiers we will use these configurations:

• k-nearest neighbors with k = 3 and uniform vote weight.

• k-nearest neighbors with k = 6 and vote weight based on distance.

• Linear regression with balanced weight of the classes.

• Decision tree with minimum of 16 samples in each leaf node.

• Random forest with 100 trees.

• Extra trees with 100 trees.

Precision of the classifiers will be evaluated using k-fold cross-validation described in
Subsection 6.6.1.
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Figure 6.9: Comparison of accuracy of different implemented classifiers listed in Section
6.6. The results come from repeated k-fold cross-validation by splitting the dataset to train
and test sets using ratio 3:1. The exact results are listed in Section 6.7

Results of the classifiers evaluation are visualized in Figure 6.9. Exact median values of
classification precision on testing datasets with deviation of measurement are listed below:

k-NN (uniform):
accuracy: 93.63% (+/- 4.96%)

k-NN (distance):
accuracy: 94.29% (+/- 4.66%)

Logistic regression:
accuracy: 92.05% (+/- 5.72%)

Decision tree:
accuracy: 92.97% (+/- 5.82%)

Random forest:
accuracy: 93.13% (+/- 5.66%)

Extra trees:
accuracy: 91.85% (+/- 5.59%)

As the best classifiers seems to be k-nearest neighbors classifiers and random forest clas-
sifiers. Now any of these classifiers is fine to use for the automatic detection of performance
regression, but with more manually labeled data will be the evaluation repeated and the
selection of classifier reconsidered.
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Chapter 7

Conclusion

In this work we described the performance testing of Linux kernel scheduler in Red Hat, Inc.
company. The process of checking for performance regressions in new versions of kernels
for Red Hat Enterprise Linux consist of measuring the performance of the kernel using
benchmarks, storage of the results and visualization of performance comparisons between
the targeted kernel version and reference the base version.

This work proposes a new way of visualization of performance results called Timelines
focused on long-term performance development of multiple Linux kernels. The timelines
were already used to compare the stability of operations from used benchmarks to create re-
duced test scenario with the more stable operations for less important tests with shorter run
time. Compared to original scenario with estimated run time of 24 hours the shorter variant
took only one third of the time. Besides the generated timelines, reports are continuously
used to examine kernel performance through longer period of time.

Furthermore, this thesis proposed an utilization of machine learning for automatic clas-
sification of performance measurement comparisons to reduce time one has to spend to look
for performance regressions. The trained model is going to be integrated in the generator of
performance comparison reports to mark the comparison as passed or failed (i.e. containing
performance regression). This will reduce time of examining dozens of reports from each
new tested kernel and allow more time to work on new features of the generator. With
more manually labeled data for learning the classifiers will be reevaluated and compared
again. In case of better results the original model will be replaced with the better trained
one.

Although the proposed timeline graphs reports and automatic detection of performance
degradation push the effectivity of working with performance results forward, their po-
tential is not depleted yet. Future addition of Jinja21 template system to timeline report
generator will make the code much cleaner. The performance degradation classifiers will
be reevaluated after obtaining larger manually labeled dataset and the automatic classifi-
cation will be included to timeline reports to highlight performance regressions and watch
precision of classification on new real data.

1http://jinja.pocoo.org
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Appendix A

Content of attached CD

• timelines/ directory contains Python source code of timeline reports generator with
several examples of results.

• classification/ directory contains Python scripts used for preprocessing of data for
machine learning and for plotting of the graphs in Chapter 6.

• text/ directory contains LATEXsource code of this thesis.

• README file contains description of the content of this CD.

• LICENSE file contains license of the source code on this CD.
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