
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

PERFORMANCE TESTING OF LINUX KERNEL 
SCHEDULER 
VÝKONNOSTNÍ TESTOVÁNÍ PLÁNOVAČE LINUXOVÉHO KERNELU 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR 
AUTOR PRÁCE 

SUPERVISOR 
VEDOUCÍ PRÁCE 

JIRI VOZAR 

Ing. VIKTOR MALÍK 

BRNO 2019 



Brno University of Technology 
Faculty of Information Technology 

Department of Intelligent Systems (DITS) Academic year 2018/2019 

Bachelor's Thesis Specification ||||||||||||||||||||||||| 
21469 

Student: Vozár Jiř í 
Programme: Information Technology 
Title: Per fo rmance Tes t ing of L inux Kerne l Schedu le r 
Category: Software analysis and testing 
Assignment: 

1. Get acquainted with the existing methods for measuring performance of the Linux kernel scheduler and 
with means of storing of benchmarks results for further processing. 

2. Study possible ways of processing these results with a focus on graphic interpretation and on methods for 
detection of performance degradation. 

3. Design and implement a method for efficient graphic interpretation of long-term measurements. 
4. Design and implement a method for automatic detection of performance regression. 
5. Demonstrate the functionality of your implementation on at least two versions of the Linux kernel. 
6. Evaluate the obtained results and discuss possibilities of further development of the project, especially of 

the automatic detection of performance regression. 
Recommended literature: 

• Lozi, Jean-Pierre, et al. "The Linux scheduler: a decade of wasted cores." Proceedings of the Eleventh 
European Conference on Computer Systems. ACM, 2016. 

• Daniel, P., and Cesati Marco. "Understanding the Linux kernel." (2007). 
• Bailey, David H., et al. "The NAS parallel benchmarks." The International Journal of Supercomputing 

Applications 5.3 (1991): 63-73. 
Requirements for the first semester: 

• Items 1 and 2 of the assignment. 
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/ 
Supervisor: Mal ik Vik tor , Ing. 
Consultant: Tišnovský Pavel, Ing., Ph.D., RedHatCZ 
Head of Department: Hanáček Petr, doc. Dr. Ing. 
Beginning of work: November 1, 2018 
Submission deadline: May 15, 2019 
Approval date: November 1, 2018 

Bachelor's Thesis Specification/21469/2018/xvozar04 Strana 1 z 1 

http://www.fit.vutbr.cz/info/szz/


Abstract 
Performance of process scheduler in a kernel of an operating system significantly influences 
throughput and latency of all applications running above it. Any performance drop can 
have critical consequences on the applications. Wi th the arrival of every new technology 
(e.g. symetric multiprocesing) the code of the scheduler evolves and grows. This requires 
not only functional, but also performance regression testing. This work presents methods of 
performance testing used in the Red Hat, Inc. company. It describes how one can measure 
performance of the Linux process scheduler in the Linux kernel, collect statistics about its 
behavior, store the collected data, and visualize them. The goal of this work is to design and 
implement a new technique of visualization of long-term measurements and utilization of 
machine learning for automatic classification of performance degradation between different 
results. 

Abstrakt 
Výkon plánovače procesů v jádře operačního systému značně ovlivňuje rychlost a odezvu 
všech aplikací, které na něm běží. Jakýkoli propad výkonu pak může mít kritické důsledky 
na běhu aplikací. S příchodem každé nové technologie (např. symetrický multiprocesing) se 
kód plánovače vyvíjí a rozšiřuje. Proto jsou potřeba regresní testy nejen na jeho fukčnost, 
ale i výkon. Tato práce mapuje metody testování plánovače operačního systému Linux 
ve firmě Red Hat. Popisuje způsoby měření výkonu plánovače, sbírání informací o jeho 
chování, ukládání sesbíraných dat a jejich vizualizaci. Hlavním cílem práce je pak návrh a 
implementace nového způsobu vizualizace dlouhodobých měření a využití strojového učení 
pro automatické rozpoznání degradace výkonu mezi dvěma výsledky. 

Keywords 
Linux, kernel, task scheduler, CFS , testing, performance measurement, visualization, ma­
chine learning 

Klíčová slova 
Linux, jádro, plánovač úloh, CFS, testování, měření výkonu, vizualiace, strojové učení 

Reference 
V O Z A R , Jiří. Performance Testing of Linux Kernel Scheduler. Brno, 2019. Bachelor's 
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Ing. 
Viktor Malik 



Rozšířený abstrakt 
Plánovač procesů v operačním systému se stará o přidělování procesorového času běžícím 
procesům a jejich rovnoměrné rozložení mezi procesorové jádra. Výkon plánovače procesů 
pak silně ovlivňuje i výkon samotných aplikací běžících na daném operačním systému. 
Jakýkoli propad výkonu pak může mít v komerční sféře za následky vysoké finanční ztráty. 

Plánovač procesů funguje velmi jednoduše pro systémy s jedním jádrem, ovšem s přícho­
dem vícejádrových procesorů se plánování zkomplikovalo vyvažováním front procesů mezi 
jádry a trvalo, než se všechny problémy vyladily. Nové komplikace plánování pak přinesly 
víceprocesorové systémy s neuniformní dobou přístupu do paměti. Plánování na této ar­
chitektuře je stále ve vývoji a tím i náchylné k chybám způsobujícím propad výkonu. Proto 
je potřeba regresní testování výkonu nových verzí jádra pro včasné odhalení těchto chyb. 

Na rozdíl od funkčního testování není výkonové testování není jednoznačný výsledek, 
jestli test doběhl. Pro zjištění změny výkonu je potřeba relativní porovnání naměřených 
hodnot s referenčním výsledkem z předchozí verze nebo jiné konfigurace a určení prahu 
mezi odchylkou měření a skutečným propadem výkonu. Propady výkonu plánovače navíc 
nejsou způsobeny pomalým kódem, ale chybným přemisťováním procesů a jejich dat mezi 
jádry a fyzickými procesory. 

Tato práce popisuje výkonové testování plánovače procesů Red Hat Enterprise Linuxu 
ve společnosti Red Hat, Inc. Běžný způsob zjišťování výkonu plánovače je měření bench-
markem, který simuluje reálnou zátěž. Benchmarků je více s různými způsoby zátěže, přede­
vším však pomocí většího množství procesů nebo vláken s vnitřní komunikací. Výsledky 
jsou pak systematicky ukládány pro snazší tvorbu porovnání výkonu. Pro efektivní analýzu 
výkonu je pak nutná volba správné vizualizace pro rychlé odhalení zdroje problému. 

Práce navrhuje a implementuje novou metodu zobrazování dlouhodobých výsledků měření 
výkonu nazvanou timelines. Výstupem je pak H T M L stránka obsahující krabicové (box 
plot) grafy a shrnující tabulky znázorňující změnu výkonu a přesnost měření v průběhu verzí 
jádra operačního systému. Tento výstup již pomohl s redukcí nestabilních částí benchmarků 
a průběžně slouží pro sledování změn výkonu a dohledávání verzí, kde výkon změnil. 

Dále práce navrhuje použití strojového učení pro automatickou klasifikaci porovnání 
dvou výsledků, zda se mezi nimi i přes nepřesnost měření a šum projevuje propad výkonu. 
Práce navrhuje předzpracování výsledků měření pro učení klasifikátorů a porovnává různé 
klasifikátory pro budoucí začlenění do generátoru zpráv s porovnáním nových výsledků pro 
urychlení jejich analýzy. 



Performance Testing of L inux Kerne l Scheduler 

Declaration 
Hereby I declare that this bachelor's thesis was prepared as an original author's work under 
the supervision of Ing. Viktor Malik. The supplementary information was provided by Ing. 
Pavel Tisnovsky, Ph.D.from Red Hat Czech s.r.o. and Ing. Tomas Fiedor. A l l the relevant 
information sources, which were used during preparation of this thesis, are properly cited 
and included in the list of references. 

Jiří Vozár 
May 14, 2019 

Acknowledgements 
I would like to thank to my supervisor Ing. Viktor Malik and consultants Ing. Pavel 
Tisnovsky, Ph.D.from Red Hat Czech s.r.o. and Ing. Tomáš Fiedor for for guidance, useful 
revisions of the text and consultations. Also I would like to thank my manager RNDr . Jiří 
Hladký and collegue Be. Kamil Kolakowski for insight to scheduler testing and ideas for 
proposed work. 



Contents 

1 Introduction 3 

2 Linux process scheduling 5 
2.1 Completely Fair Scheduler 5 
2.2 Scheduling on S M P systems 6 

2.2.1 Uniform memory access 6 
2.2.2 Non-uniform memory access 7 

3 Performance measurement 9 
3.1 Performance metrics 9 
3.2 Benchmarks 10 

3.2.1 NAS Parallel Benchmarks 10 
3.2.2 SPECjbb2005 11 
3.2.3 SPECjvm2008 11 
3.2.4 L I N P A C K benchmark 12 
3.2.5 S T R E A M benchmark 12 

3.3 Performance analysis tools 12 
3.3.1 time 12 
3.3.2 ps 13 
3.3.3 mpstat 13 
3.3.4 turbostat 13 
3.3.5 perf 13 

4 Processing of results 15 
4.1 Storage of the results 15 

4.1.1 X M L files 15 
4.1.2 Relational database 16 

4.2 Visualization the results 18 
4.2.1 Line graphs 18 
4.2.2 Heat maps 18 
4.2.3 Box plots 20 

5 Visualization using timelines 22 
5.1 Design 22 
5.2 Implementation 23 

5.2.1 Comparison rules 23 
5.2.2 Reading of results 24 
5.2.3 Plotting of timelines 24 

1 



5.2.4 Generator parallelization 24 
5.3 Generated output 25 

6 Automatic evaluation 27 
6.1 Human classification of results 27 
6.2 Used technologies 28 
6.3 Reading the labeled results 28 
6.4 Labeling of results 28 
6.5 Preprocessing of the data for learning 29 
6.6 Comparison of classifiers 30 

6.6.1 Validation and metrics 32 
6.6.2 k-nearest neighbors classifier 32 
6.6.3 Linear logistic regression classifier 32 
6.6.4 Decision tree classifier 33 
6.6.5 Forest of randomized trees classifiers 33 

6.7 Evaluation of classifiers 35 

7 Conclusion 37 

Bibliography 38 

A Content of attached C D 39 

2 



Chapter 1 

Introduction 

Performance of an operating system is crucial as any triggered degradation can significantly 
affect the performance of all applications running above it. Moreover, when a new version 
is released and it introduces a performance regression, it can break the stability of e.g. 
business applications leading to great financial losses. A n important part of operating 
system and the main influence on its performance is the implementation and strategy of 
a process scheduler, which manages processes and their processor time. 

In the Linux kernel, scheduler used to be simple, but with an introduction of multi-core 
CPUs achieving stable performance required adapting multiple runqueues for each core and 
their balancing. This lead to complex code and it took some time to eliminate the bugs and 
tune the scheduler's behavior. Another change came with symmetric multiprocessing tech­
nology bringing to market machines with multiple C P U sockets and non-uniform memory 
organization and access [8]. Scheduling on such systems is still under an active development 
and therefore it is even more prone to performance degradation bugs. In order to discover 
these bugs and to keep the performance of the operating system stable, using performance 
testing was essential. Due to this fact, the performance of the scheduler has to be evaluated 
before each release. 

Compared to functional testing, performance cannot be evaluated as just true and false 
results. It is more challenging as we have to (1) compare it relatively with previous versions 
or measurements, and (2) choose a suitable threshold when reporting the performance re­
gression. Due to complexity of the scheduler, the common tools for inspecting performance 
may often yield unsatisfying results. Moreover, the biggest performance regressions of the 
scheduler do not dwell in an inefficient code, but instead in an inefficient assignment of 
processes to the C P U cores and their queues. 

This thesis focuses on performance testing of the Red Hat Enterprise Linux (RHEL) 
kernel scheduler managed by the Red Hat, Inc. company. The usual performance testing 
method of the scheduler is to simulate load similar to the real usage. Currently, there 
are many benchmarks targeting different types of load, usually spawning many parallel 
process, sometimes even communicating between each other. The results of measurements 
of the performance must be stored systematically and effectively for later comparisons. So 
in order to effectively interpret the collected results and their comparisons, their effective 
visualization is essential. 

In this thesis, we propose a new interpretation of long-term results of the benchmarks 
using box plot graphs in order to enhance the process of data analysis. This visualization 
should help with inspecting the measurement stability of benchmarks and with finding 
versions where performance degradations appeared or were fixed. 

3 



Moreover, to reduce time one has to spend analyzing these comparisons, we propose an 
utilization of machine learning methods that will automatically check for possible degra­
dations in the Linux kernel scheduler. We will describe how to create the dataset for 
classification, compare different classifiers, and evaluate their accuracy on the dataset. 

This thesis is structured as follows. In Chapter 2 we describe Completely Fair Scheduler 
- the current process scheduler of the Linux kernel, architecture of symmetric multiprocess­
ing systems, and how the scheduler handles them. In Chapter 3, we describe the perfor­
mance measurement of the Linux process scheduler. First we introduce benchmarks used in 
Red Hat for load testing of the scheduler performance and then we describe complementary 
tools for analysis of behavior of the scheduler and of the system. Ways of storage of the 
collected data and their visualization for comparison are described in Chapter 4. 

We propose a new way of visualization of long-term results comparison called Time­
lines in Chapter 5. In Chapter 6, we propose utilization of machine learning methods for 
automatic classification of comparison of two results to recognize a performance regression. 

4 



Chapter 2 

Linux process scheduling 

Process scheduler is a part of an operating system which assigns the processor time to tasks. 
Its main goal is to maximize effectivity of the C P U usage and to ensure fairness of the C P U 
time assigned to each task. 

There are two opposing targets for a scheduler: either maximizing the throughput or 
minimizing the latency. Lower amount of context switches leaves more C P U time for 
tasks, but raises the response time on system events. While users' workstations aims for 
a low response time, computational servers require high throughput. Scheduler can then 
be usually tuned to fit the intended purpose. 

In this chapter we describe basic behavior of Linux process scheduler. Then we compare 
uniform and non-uniform memory access on multiprocessor architectures and how scheduler 
handles them. 

2.1 Completely Fair Scheduler 

Completely Fair Scheduler (CFS) is the current Linux process scheduler, which was merged 
into the version 2.6.23 of the Linux kernel in 2007. Its author is Ingo Molnar, who is the 
author of the previous 0(1) scheduler as well. 

CFS features queuing tasks in a red-black tree structure ordered by time spent running 
on the C P U so far. Red-black tree is a binary search tree with self-balancing mechanism 
based on marking nodes with either red or black color. When the scheduler needs to choose 
the next task to run, it takes the leftmost node with the lowest execution time. 

The time complexity of the C F S scheduling is 0(log N), where N is the number of 
running tasks. Taking the leftmost node with the next scheduled task can be done in 
a constant time, but queuing the task requires 0(log N) operations to insert it back into 
the red-black tree. Even with a higher scheduling complexity, the C F S scheduler has a better 
fairness and responsiveness than the previous 0(1) scheduler, which used a simple queue 
to choose the next task. 

On multi-core systems, the scheduler uses a separate queue for each core. In order to 
effectively use the processing power, the scheduler must regularly balance those queues by 
moving processes from the most busy cores to idle ones. 

When moving processes between cores, scheduler takes in the account a topology of 
the system. Losing data from caches after the migration can have a bigger impact on 
performance than leaving the process on the busy core. 

5 



Figure 2.1: Hierarchy of scheduling domains[ ] 

CFS solves this problem by using scheduling domains [ ]. Scheduling domain is a set 
of CPUs that should be balanced between themselves. CPUs in a scheduling domain are 
divided into groups. Scheduler then checks the load of the whole groups to decide if there 
is a need to migrate processes between them. 

There are multiple levels of scheduling domains with different parameters such as how 
often is the load difference checked or how big the load difference between groups must be 
to migrate tasks to balance the queues. The lowest level is between hyper-threaded logical 
cores where there are almost no losses of cached data and rebalancing can be done quite 
often. A higher level is between physical processor cores where cache losses can have bigger 
impact on the decision to migrate the task. Above those cores can be processor sockets on 
machines with multiple physical processors with different access speed to different memory 
sections. 

Scheduling domains are regularly rebalanced by going up from bottom of the scheduling 
domain hierarchy (illustrated by Figure 2.1) and by checking balance of the groups on each 
level. 

2.2 Scheduling on S M P systems 

Symmetric multiprocessing (SMP) is an architecture of computers with multiple physical 
processors that have a single shared memory, a shared access to all 10 devices, and that run 
on the same instance of operating system. This allows the machine to offer more processing 
power with a little overhead caused by memory sharing. 

Each processor has still its own high speed cache, but due to memory sharing, cache 
coherence must be maintained - the data shared between processors in their caches must 
be uniform. 

There are two ways of accessing the shared memory from multiple processors: uniform 
(UMA) and non-uniform (NUMA) memory access. When correctly used, the N U M A tech­
nology has higher performance capability with similar configuration compared to U M A 
systems. In our experience most paying customers of Red Hat use the N U M A technology 
and we will primarily focus on scheduler behavior on this S M P architecture. 

2.2.1 Uniform memory access 

In the U M A architecture, all processors share a single memory controller that they use to 
access the shared memory. Therefore, each processor has the same speed of memory access 
and the same latency. They share a common access route to the memory, which brings 
more simplicity at the cost of a lower bandwidth and speed. 

In this architecture it is easier for the scheduler to balance processes between the physical 
processors. The time to access the shared memory is the same on all of the cores and 

G 



lOH Slots 7-11 Optional 
Slots 1-6 IOH 

Optional LP 
Slots 12-16 

[Hi­
l f 

CPU CPU 
0 1 

CPU 
2 

CPU 
3 

CPU 
2 

CPU 
3 

m 
m 

CPU 
4 

CPU 
5 

CPU 
4 

CPU 
5 

CPU 
6 

CPU 
7 

CPU 
6 

CPU 
7 

m 

Socket Local 
rj_rj_ Memory 

CPU 
0 

I/O Hub (Boxboro) XNC Node Controller 

Figure 2.2: Architecture of N U M A communication on H P ProLiant DL980 [ ]. Each pro­
cessor connected with its own local memory makes up a N U M A node. Each pair of nodes 
have dedicated interconnect bus for faster data transfer between them. Communication 
with other nodes is realized through node controllers. The topology of the interconnect 
buses shows there will be 4 different access speeds depending on the distance between 
nodes. The local access is the fastest, then follow the access to the neighbor node and the 
access through one controller, and the slowest is the access through both controllers. The 
interconnect buses are doubled to avoid overloading one of them. 

therefore there is no need to move the memory associated with a process to any other place 
for faster access. 

2.2.2 Non-uniform memory access 

The N U M A architecture tries to solve the problem with low bandwidth. It arranges physical 
processors or cores into nodes, where each node has its own separate memory and a bus for 
faster access. This significantly improves overall memory throughput of the system when 
used correctly. 

Nodes also have to be connected to each other to access memory of other nodes. That is 
achieved using either interconnecting buses or controllers. Each manufacturer has its own 
technology implementing the interconnection: Intel uses Ultra Path Interconnect which 
replaced its QuickPath Interconnect from older machines. On the contrary, A M D uses 
Infinity Fabric supersetting the older Hyper Transport. 

On bigger machines with a large amount of processors, not every two processors are 
necessarily connected. Instead, they may access the data through a path of connected 
nodes. This can be seen in Figure 2.2 showing an 8 N U M A node machine with an advanced 
structure of interconnect buses and controllers. 

Consequence of interconnection between N U M A nodes is the different latency between 
nodes which must be taken into account when balancing tasks between nodes. Difference 
in the access latency between a pair of N U M A nodes for the machine from Figure 2.2 can 
be seen in the following part of output from a command n u m a c t l —hardware : 

7 



node d i s t a n c e s : 
node 0 1 2 3 4 5 6 7 
0 10 12 17 17 19 19 19 19 
1 12 10 17 17 19 19 19 19 
2 17 17 10 12 19 19 19 19 
3 17 17 12 10 19 19 19 19 
4 19 19 19 19 10 12 17 17 
5 19 19 19 19 12 10 17 17 
6 19 19 19 19 17 17 10 12 
7 19 19 19 19 17 17 12 10 
The n u m a c t l utility also provides possibility of pinning processes to a specific N U M A 

node to ensure the process and its memory will stay on the intended node. This allows user 
to arrange processes manually in a way considered as the best for maximum performance. 

Balancing tasks between N U M A nodes is difficult for the scheduler since it needs to take 
into account an expensive memory movement or access to different nodes. Wi th a wrong 
approach the performance of a N U M A system can drop even below the performance of 
a similar U M A system 1. 

Balancing processes between N U M A nodes is still in active development, which brings 
many changes. These usually improve performance, however, there are cases when a change 
can cause a performance regression. Therefore, it is essential to carry out a thorough 
performance testing of the scheduling. 

xhttp: //highscalab ility.com/blog/2013/5/30/google-finds-numa-up-to-20-slower-for-gmail-and-
websearch. html 

8 

http://ility.com/blog/20


Chapter 3 

Performance measurement 

Performance testing is examination of the system behavior under a workload and of its 
effectivity of resource usage. For many systems, the time they are able to respond in is 
crucial and this property affects the usability of the system. 

Compared to functional testing, performance testing does not produce an exact true or 
false result. It produces a set of numerical values which must be compared to presumed 
values or values from an other version to make a conclusion. 

After the performance measurement, the next step is inspection of behavior of the 
system to understand the measured values and to determine the causes of the difference 
from the expected values. 

In order to measure the performance of a scheduler, we use benchmarks. Benchmarks 
generate artificial load imitating the load in real environment. While stress testing the 
system, they also measure its performance. The benchmarks typically return a value rep­
resenting the performance of the system. The value is usually in the form of the time that 
the task needed to finish or of the amount of the operations that the system could perform 
per a unit of time. 

In the previous chapter, we have introduced the current state of task scheduling in the 
Linux kernel. Effectivity of the scheduling and of task migration between processors affects 
the amount of the tasks that the system can handle and the time that a task spends before 
finishing. 

Although the available benchmarks generate values that are suitable for comparison, 
they do not provide any more detailed information about how the system achieved the 
measured performance or where the possible bottlenecks could be [5]. 

To get a better insight into the behavior of the system, there are many tools to collect 
performance records about the system behavior. Useful information about the scheduler 
include assignment of tasks to the processor cores, the time that the tasks spent out of the 
C P U in queues, load of each processor core, or the location of memory of the processes on 
N U M A systems. 

3.1 Performance metrics 

We now present typical metrics used in performance measurement. 

Throughput These metrics represents the amount of operations per time unit. The 
operations can be, e.g., floating point operations, or operation as specific tasks defined by 

9 



a benchmark (e.g. S P E C Java benchmarks). Time units are usually seconds. Higher values 
mean better performance. 

Run time This metric is simply the real time that the benchmark needed to finish the 
execution. It is mostly presented in seconds, but longer runs can be presented in a more 
human-friendly format, converting the time to hours, minutes, and seconds. The lower the 
run time is, the better performance it represents. 

Time out of C P U This metric represents the time that the benchmark spent in process 
queue waiting for execution. This metric can be calculated from user, kernel, and real time 
provided by the time utility and from the number of threads, that the application used: 

Tout of cpu — 

(Treai x used_threads) - ( T u s e r + T k e r n e i ) 

The lower this value is, the better behavior of the scheduler it represents. 

3.2 Benchmarks 
In the following section we will describe the benchmarks that are currently used to eval­
uate performance of the latest kernel versions. The benchmarks are usually based on real 
applications used both in scientific and in business environments and are meant to stress 
test the system. 

The benchmarks run in many threads or processes and feature communication between 
them to utilize communication between processors. A bad distribution of processes and 
threads by the scheduler increases their time of waiting in the queue to rise and the perfor­
mance of the system naturally goes down. Moreover, on N U M A systems, the performance 
depends also on placement of data in the memory. 

3.2.1 N A S Parallel Benchmarks 

NAS Parallel Benchmarks [ ] is a set of programs focused on performance of highly parallel 
computations on supercomputers. In addition to floating point computations, it targets 
communication and data movement among computation nodes. The performed algorithms 
are based on large scale computational fluid dynamics at the Numerical Aerodynamic Sim­
ulation (NAS) Program which is based at N A S A Ames Research Center. 

Benchmarks are written in Fortran-90 or in C language, as these were the most com­
monly used programming languages in scientific parallel computing community at the time 
when the benchmarks were created. They can be compiled with different classes of problem 
sizes to suit machines with different amount of memory and of computational power. 

The main output value of the benchmark is the throughput measured in units called 
Mop/s (millions of operations per second) representing the amount of floating-point oper­
ations per unit of time. 

The benchmark also offers a few parameters that can be passed to the benchmark before 
the execution. One of them is the number of computation threads, which in a lower amount 
slows down the run time, but allows one to measure behavior of the system without full 
usage. Figure 3.1 shows an example of a throughput with different number of threads on 
a machine with 24 physical cores and hyper-threading. 

10 



Figure 3.1: Example of Scalar Penta-diagonal solver results from the N AS Parallel bench­
mark with different number of computational threads. The size of the boxes represent the 
inaccuracy of measurement caused by noise and by non-deterministic behavior of scheduler. 

The downside of this benchmark is it can only run with a fixed dataset, but not for 
a fixed time period. This constraint makes the run time of the benchmark with less threads 
longer. 

3.2.2 SPECjbb2005 

Java Business Benchmark [11] created by Standard Performance Evaluation Corporation 
(SPEC) behaves as a server-side Java application. It is primarily focused on measuring 
performance of Java core implementation, but it also reflects a performance of operating 
system and of the C P U itself. It models a system of a wholesale company as a multitier 
application. The benchmark itself creates the load, measures the throughput, and also 
generates a simple report in H T M L and raw text formats. 

The main output value is throughput measured in units called SPECjbb2005 bops 1 . In 
case we use more J V M 2 instances, there is a second unit called SPECjbb2005 b o p s / J V M 
representing an average throughput of a single J V M instance. The collected metric is 
memory consumption, which is not that important for scheduler performance monitoring. 

3.2.3 SPECjvm2008 

Java Virtual Machine Benchmark [12] is another benchmark from S P E C focused on Java 
Virtual Machine and Java Runtime Environment, but reflecting also behavior of process 
scheduler and memory management. 

It consists of separate operations using real life applications (e.g. Sunflow rendering, 
Java compiler) or stressing specific part of Java implementation (e.g. cryptography algo-

1 Business operations per second 
2 Java virtual machine 

11 



rithms, working with X M L documents, Scimark floating point benchmark). The operations 
run in multiple threads sharing data both on application level and in common J V M instance. 

Output of the benchmark uses ops/m unit describing number of executed operations 
per minute. 

3.2.4 L I N P A C K benchmark 

L I N P A C K Benchmark [1] comes from the L I N P A C K package, which was used to solve sys­
tems of linear equations. It is primarily used to measure floating point computation power 
of large machines at both single and double precision. It is used also by the TOP500 project 
for building list of 500 most powerful computers. 

Main measured value from the benchmark is the number of floating point operations 
per second (flops), but the benchmark output provides more information such as run time, 
page faults, context switches, or location on which core or N U M A node it ran. 

3.2.5 S T R E A M benchmark 

The S T R E A M benchmark [ ] is a simple benchmark aimed for measuring memory band­
width and also computation speed of simple vector kernels. Its motivation is a slow grow of 
memory performance compared to C P U , which makes speed of this component also crucial 
for the performance of the whole system. 

Output metric of the benchmark is memory bandwidth in MB/s, but it provides the 
same statistics as the Linpack benchmark: run time, page faults, context switches, or 
location on which core or N U M A node it ran. 

3.3 Performance analysis tools 

Although benchmarks create workload on tested system and collect some metric of its 
performance, tools for performance analysis are needed to get better insight to behavior of 
the system. To the interesting information belong utilization of processor cores, migration 
of benchmark process and its memory between N U M A nodes, or the time the process spent 
in queue out of C P U . This section describes utilities used to collect data to get the insight 
to system behavior. 

3.3.1 time 

Time is a simple command for measuring the time that an application spends running. 
The most common numbers it reports are the total real time that the application needed 
to finish, the time that it spent in the user mode, and the time spent in the kernel mode. 

Many benchmarks provide the execution time themselves which can make this utility 
unnecessary. However, the interesting metric is the time that the application spent out 
of the C P U waiting in queue. This value is not provided directly, but time provides user, 
kernel and real time from which the metric can be calculated as described in Section 3.1. 

It can be confused with the Bash builtin command t ime , which provides similar output, 
but the real binary can provide more verbose information with the possibility of custom 
formatting of output. It can be usually called from / u s r / b i n / t i m e . 

12 



3.3.2 ps 

Ps is a Linux command, which is used to display information about active processes. Its 
name stands for "processes status". It can provide various information obtainable from the 
virtual files in the / p r o c directory. The most common information include the process 
PID, time spent on processor, state of the process, used memory, associated terminal, the 
command that started the process, and more. 

Especially useful are the optional columns PSR and NUMA. They show the number of the 
processor and the number of the N U M A node where the process is running. Continuous 
monitoring of those values can provide view on migration of the process during its run time. 

Output of the command can be filtered in many ways. By default, it shows only pro­
cesses for the current user and for the current terminal, but it can list all the processes 
on the system. The listing can be filtered using parameters by most of the columns of 
information it provides. The listing can be limited for instance by a specific terminal, by an 
effective user, by children of a specified process, or by a PID to a single intended process. 

3.3.3 mpstat 

This Linux command provides continuous information about utilization of CPUs . It can 
show utilization of processor cores, of N U M A nodes, or of the whole system dependent 
on passed argument. Some of the provided values are utilization in user space, utilization 
in kernel space, percentage of waiting for 10 operations, percentage of handling interrupt 
requests and the idle percentage, when system is idle and does not wait for any 10 operation. 

Mpstat can collect those data once when executed or at regular time intervals. The 
regular collecting of utilization of the C P U cores or of the N U M A nodes is done through 
the run time of a benchmark. Wi th little processing of the data, it is easy to watch whether 
the distribution of load between the cores and the N U M A nodes is equal or not. 

3.3.4 turbostat 

This tool provides measuring of hardware properties of the CPUs with the x86 architecture. 
It reports for each core its usage, frequency, temperature, and percentage of time in different 
idle states. For each socket it reports its power consumption. 

There are two ways to run turbostat. It can be supplied with a command to run and it 
will return the average values from the run time of the command. Without the command 
it will collect the statistics at regular time intervals. 

Data from this tool can be used to analyze performance drop caused by the C P U itself. 
This can happen due to frequency drop because of overheating or of missing workload. 
The power consumption data can be used to roughly compare the power efficiency of both 
the scheduler and the physical CPUs, but the command only provides consumption of the 
CPUs and their R A M and not of the whole machine. 

3.3.5 perf 

Linux command p e r f , also known as p e r f _ e v e n t s , is a tool for profiling with perfor­
mance counters Linux subsystem. It provides counting of hardware events (e.g. cpu cycles, 
branch and cache misses), software events (e.g. context switches, page faults), or custom 
tracepoints (e.g. specific system calls, filesystem or network operations). 

It offers wide range of commands, from which the most used are: 

13 



p e r f s t a t The command counts selected events during an execution of a process or 
during a specified time period. It can observe events belonging to the process or system-
wide. The counted statistics are written at the end of the time interval or of the process 
execution. 

p e r f r e c o r d The command record the events to perf.data file for later analysis. 

p e r f r e p o r t The command reads the perf.data file created by perf record and displays 
the collected statistics. 

p e r f t o p The command provides live analysis of system by showing all observed function 
calls ordered by the number of cycles spent in them. 

14 



Chapter 4 

Processing of results 

Getting the output of benchmarks and tools for performance analysis is just a part of 
performance regression testing. To perform comparison of two results, it is essential to 
store the results in an efficient way for quick creation of a comparison report. The quality 
of the comparison report also affects the right choice and a use of visualization of the results 
and their comparison. 

This chapter is structured as follows. Section 4.1 describes ways of storing the results 
from benchmarks and Section 4.2 describes different visualization methods suitable for 
analysis of performance changes. 

4.1 Storage of the results 

Benchmarks sometimes generate long human-readable output in text or even H T M L format. 
This is useful when analyzing a single report. In the output there are details of the test 
run itself, a simple resource usage, or success of result validation. However, the amount of 
result starts to rise with repeated runs, with different amount of instances, and with new 
versions kernels. 

For the comparison of performance results, the number representing throughput or time 
of each benchmark run is usually enough. Those numbers can be preprocessed from the 
benchmark output files to a format more suitable for quick accessing of the required data. 

4.1.1 X M L files 

X M L is a markup language, that can store heterogeneous data in a tree structure. The 
tree structure can effectively represent the test scenario running each benchmark operation 
with different parameters and multiple repetitions. 

Another feature of X M L format is human-readability offering quick insight to stored 
data just with any text editor. This comes with a disadvantage of redundant data in the 
form of repeated names of tags and attributes which often take more space than the data 
itself. Parsing of the data also takes considerable amount of the C P U time prolonging the 
duration of analysis. 

In our team, we use the X M L format for storing result values from benchmark runs and 
their aggregated statistics for easier generation of performance comparison reports. Next 
to the results is also stored configuration of the benchmark run containing properties of 
the system that the benchmark ran on. The properties include hostname of the testing 
machine, version of kernel and of operating system, or configuration of the environment. 

15 



<?xml ve r s ion=" l .0"?> 
<beaker_run_result> 

<tes t_resul t> 
<nas_result benchma 

<threads number=" 
<resul t mops="5 
<resul t mops="5 
<resul t mops="5 
<resul t mops="5 
<resul t mops="5 

</threads> 
<threads number=" 

<resul t mops="l 
<resul t mops="l 
<resul t mops="l 
<resul t mops="l 
<resul t mops="l 

</threads> 

r k_n ame="mg_C_x"> 
2"> 
560.4" real_t ime=' 
411.4" r e a l time=' 
4 99.3" 
4 07.4" 

real_time= 
r e a l time= 

37 6.1" real_time= 

4"> 
0254 . 9 
0075.4 
0226. 6 
0250.2 
0227 . 7 

r ea l_ t ime : 

r ea l_ t ime : 

r ea l_ t ime : 

r ea l_ t ime : 

r e a l t ime : 

31. 0 
32 .2 
31.4 
31. 9 
32 . 0 

= "16. 
= "17 . 
= "16. 
= "16. 
= "17 . 

out_of_cpu_time="0.9"/> 
out_of_cpu_time="1.6"/> 
out_of_cpu_time="0.6"/> 
out_of_cpu_time="1.3"/> 
out_of_cpu_time="0.7"/> 

out_of_cpu_time="1.2"/> 
out_of_cpu_time="1.7"/> 
out_of_cpu_time="1.4"/> 
out_of_cpu_time="1.3"/> 
out_of_cpu_time="2.5"/> 

Figure 4.1: This example shows beginning of X M L file with important values from 
one N A S Parallel benchmark run scenario. The X M L file starts with root element 
< b e a k e r _ r u n _ r e s u l t > and <tes t_run> node which are wrapping < n a s _ r e s u l t > 
nodes representing results from each benchmark operation from N A S Parallel benchmark 
suite. Each benchmark operation is run with different amount of threads in few loops to 
lower the measurement inaccuracy. Nodes of results with the same number of threads are 
wrapped in <threads> node. A l l the values are stored as attributes of the corresponding 
node. 

Example of results from one run of the N A S Parallel benchmark scenario stored in the 
X M L format is in Figure 4.1. Example with aggregated data is in Figure 4.2. Example of 
an X M L file with properties of benchmark run result is shown in Figure 4.3. 

4.1.2 Relational database 

Relational database is a type of database using relational model. The relational model stores 
data in tables using rows for records and columns for their attributes. Each row represents 
a unique record with its attributes in columns. Columns store values of attributes with the 
same data type. Records in different tables can be connected in relationships. 

There are many database management systems implementing the relational database 
model available under various licenses. From the open-source we can name PostgreSQL, 
SQLite, MySQL, or its fork MariaDB. To the category with proprietary code belong im­
plementations from companies including Oracle, Microsoft, or I B M . 

Data in database are managed using SQL (Structured Query Language). It provides 
commands for storing, manipulating, and retrieving data. Wi th advanced joining of tables 
and filtering it provides wide possibilities of data processing just at the point of reading of 
the stored data. 

Database offers much faster access to data without complicated parsing of text files. 
Searching through the data can be much faster with indexing of the records by selected 

16 



<?xml ve r s ion=" l .0"?> 
<beaker_run_result> 

<tes t_resul t> 
<nas_result benchmark_name="mg_C_x"> 

<threads number="2"> 
<mops mean="5450.9" stdev="68.4" f i r s t_q="5407.4" 

median="5411.4" third_q="5499.3" max="5560.4" min="5376.1"/> 
<total_t ime mean="31.7" stdev="0.4" f i r s t_q="31 .4" 

median="31.9" thi rd_q="32.0" max="32.2" min="31.0"/> 
<out_of_cpu_time mean="l.0" stdev="0.4" f i r s t _q="0 .7" 

median="0.9" th i rd_q="1.3" max="1.6" min="0.6"/> 
</threads> 
<threads number="4"> 

<mops mean="10207.0" stdev="66.8" f i rs t_q="10226.6" 
median="10227.7" third_q="10250.2" max="10254.9" min="10075.4"/> 

<total_t ime mean="16.9" stdev="0.1" f i r s t_q="16 .8" 
median="16.8" thi rd_q="17.0" max="17.1" min="16.8"/> 

<out_of_cpu_time mean="1.6" stdev="0.5" f i r s t _ q = " 1 . 3 " 
median="l.4" th i rd_q="1.7" max="2.5" min="1.2"/> 

</threads> 

Figure 4.2: Another form of stored data shows this beginning of X M L file. Instead of 
all values obtained from the benchmark run scenario, here are only aggregated statistical 
values form the sets of collected values from each configuration. The aggregated values 
include minimum, maximum, mean, median, quartiles and standard deviation of metrics 
like throughput, run time, or time in queue for C P U . Those values are directly usable for 
plotting of comparison graph without any manipulation with them lowering the time for 
generation of reports. 

<?xml v e r s i o n = " l . 0 " ? > 
< b e a k e r _ r u n _ r e s u l t > 

< s e t t i n g s > 
<BenchmarkName v a l u e = " N A S P a r a l l e l " / > 
d i s t r i b u t i o n value="RHEL - 7 . 5 " / > 
<Kernel v a l u e = " k e r n e l - 3 . 1 0 . 0 - 8 62.e l7 .x86_64"/> 
< A r c h i t e c t u r e value="x86_64" /> 
< T u n e d P r o f i l e v a l u e = " t h r o u g h p u t - p e r f o r m a n c e " / > 
<SELinux v a l u e = " E n f o r c i n g " / > 

Figure 4.3: Example of X M L file with properties of a benchmark run. In a flat structure 
in node < s e t t i n g s > are key-value pairs stored as node name and attribute v a l u e with 
the actual value of the property. There are information including benchmark name, version 
of kernel and operating system, hostname and architecture of testing machine and various 
system and environment parameters that could affect the performance measurement results. 

17 



columns. Moreover, databases store data more space-efficiently directly in binary format 
to avoid unnecessary conversions. 

The efficiency of database comes with its disadvantages. Storing the data in binary 
form eliminates the possibility of quick insight to data like with X M L files. To access any 
data, it is required to write an SQL query to request specific information from the storage. 
More complications come with design of the database tables. Different benchmarks produce 
different type of result and the requirements for the stored data can change over time. This 
requires building universal complex structures or occasional changes in the database model. 

In our team we currently consider the option of storing results of benchmarks in a database, 
which would require a lot of work needed for migration from the current storing in X M L 
files. 

4.2 Visualization the results 

Effective analysis of results from a performance measurement requires delivering the com­
parison in a form in which a human can quickly see the differences in measured values and 
their severity. 

Visualization offers this advantage against raw text data collected from benchmarks and 
performance analysis tools. It allows us to much faster see important relations between the 
collected data utilizing often smaller display area than the raw data. 

Right visualization also allows us to deliver more easily understandable data even for 
people that do not work with performance analysis on their daily basis. 

4.2.1 Line graphs 

Line graphs are the simplest method of displaying a course of values of a variable dependent 
on a parameter in two dimensional space. It allows to easily spot nature of the plotted 
values - either increasing, decreasing, or constant. The data can be plotted as discrete 
values using points or as a continuous function using a line. Comparison of more variables 
from different datasets is done by plotting multiple lines to the same graph, one for each 
variable. In Figure 4.4 is an example of line graphs showing C P U utilization of system 
N U M A nodes and the ratio of access to memory of remote nodes. 

Although line graphs are quick and simple to create and use, they fail to scale for 
larger amount of lines in a single graph. Larger amount of lines becomes too confusing 
and impossible to read. Graphs of C P U usage of each N U M A node in Figure 4.4 is still 
readable, but impossible to use for utilization of every C P U core. 

4.2.2 Heat maps 

Heat maps are three dimensional graphs which are using color as the third dimension for 
values. This allows to plot two dependencies of the values compared to line graphs, which 
must use multiple lines to plot the same data. Heat maps provide better scalability for 
larger data, where line graphs would be confusing with too many lines. It is also much 
easier to spot correlation with the additional dimensions compared to line graphs. 

In Figure 4.5 is a heat map showing utilization of all C P U cores over time under work­
load. The data was collected by the mpstat utility and processed to show the sum of user 
and kernel space utilization of each core. Plotting those data using line graph with a line 
for every core would be confusing even for this relatively small amount of CPUs. 

18 



NUMATOP g r a p h s w i t h u t i l i za t ion a n d access to r e m o t e m e m o r y . Total d i f f e ren t r u n s a re d isp layed. 
Top graph shows average CPU uti l ization on NUMA nodes. Bot tom graph represents rat io: Remote Memory Access / Local Memory Access [ lower is bet ter) 

0 10 20 30 JO 50 50 70 0 JO JO 50 ED 100 110 

Time in seconds Time in seconds 

Figure 4.4: A n example of line graphs showing statistics collected using the numatop utility. 
The graphs in the top row show C P U utilization of each N U M A node through time and in 
the graphs bottom row show ratio of access to local memory of the node and to memory 
of remote nodes. The graphs on the left show an expected behavior of a scheduler causing 
uniform utilization of each node and a minimal amount of access to memory of remote 
nodes. The utilization graphs use linear y axis and memory access graphs use logarithmic 
y axis. The plotted values were collected on 4 N U M A node machine under workload from 
the N A S Parallel benchmark running in 4 threads. 

Core usage of 16 th read run of NAS eg benchmark 

0 5 10 15 20 25 30 35 40 

Time (seconds) 

Figure 4.5: Example of a heat map showing C P U utilization over time. The machine with 
24 logical CPUs is under a workload from N A S Parallel benchmark running in 16 threads. 

19 



Figure 4.6: Example of a heat map showing thread migration between N U M A nodes. The 
expected result is not the highest value, but the minimum of color changes in each line. 
The shown result comes from a machine with 24 logical CPUs running the N A S Parallel 
benchmark on 16 and 24 threads in 5 loops. 

Another use of heat map is shown in Figure 4.6. It does not show utilization of threads, 
but their location on which N U M A node collected by ps utility. This heat map shows 
the migration of threads between N U M A nodes and the expected result is not the highest 
value, but minimum of color changes in each line. The shown data comes from N A S Parallel 
benchmark, which was run with 16 and 24 threads in 5 loops. The heat map shows better 
scheduler behavior on the 16 threads run than on the 24 threads run. 

4.2.3 Box plots 

Box plot is a method for displaying statistical properties of data from multiple measure­
ments. It extends the simple visualization of discrete values by adding to the median values 
also the minimum and the maximum measured values and the first and the third quartiles 
from the measurement. 

In some cases the whiskers for minimum and maximum value represent standard devi­
ation or the 2 n d and the 99 t h percentile. Data out of the range is displayed as standalone 
points above or below the whiskers. 

Box plots are great to illustrate dispersion and variation of the data that do not follow 
exact normal distribution. A l l of the displayed marks show accuracy and reliability of 
measurement. This insight helps to distinguish real performance regression from a noise 
caused by unpredictable behavior of the scheduler and measurement error. 

In Figure 4.7 is an example of a box plot showing throughput measured by the NAS 
benchmark with different number of threads. 

20 



ft_C_x M o p s t o t a l [Higher is better] 

% 15000 

X 

T 

Number of parallel workers 

1 Baseline # Sei_0 

Figure 4.7: Example of a box plot showing throughput measured by the N A S benchmark 
from multiple measurements with different number of threads. The last two boxes and their 
whiskers show us that the range of measured values is the same despite the big difference 
in medians. Therefore the plotted result is treated as passed (without any performance 
regression). 

21 



Chapter 5 

Visualization using timelines 

A common way to analyze performance reports is to compare two results measured for 
different versions or settings. Usually, these are called the baseline and the target results 
or profiles. The comparison of two results allows one to interpret the measurement and 
changes between versions, usually containing clues to the cause of possible performance 
changes, e.g. change in some value of parameter or new code functionality. 

However, sometimes it is not enough to compare just two strictly following versions. If, 
instead, we analyze a larger amount of results over a longer period of time, we can begin 
to see a whole new perspective. In that case there can be a much more visible difference 
between a deviation from a measurement error and a performance change. It is also easier 
to find versions where a performance degradation occurred and where it was fixed. 

Wi th larger amount of data, we can also detect creeping performance drops, which 
appeared continuously over a longer period of time and could not be detected, because 
they were within the tolerance due to the measurement deviation. 

This chapter proposes new kind of reports with comparison of multiple results of per­
formance measurement from benchmarks used by Red Hat Kernel Performance Quality 
Engineering team. The visualization of performance results helps to see the performance of 
Linux kernel scheduler in wider range of time as well as to determine stability and precision 
of different benchmarks. 

5.1 Design 

We mainly focus on performance of kernel versions on a specific testing machine. The 
timelines generator will output H T M L reports showing benchmark results of the desired 
kernel versions on a single machine. We describe the mockup of produced H T M L page in 
Figure 5.1. Displayed results are specified using rules for a base kernel as the first reference 
result and target kernels forming the actual timeline. 

We propose that the most suitable type of graph for displaying results with repeated 
runs are boxplots. Boxplots show important statistical values from the runs: the median, 
the minimum, the maximum, and the first and the third quartiles. Those values can quickly 
reveal stability of the plotted benchmark and noise in the measurement that can help to 
distinguish true performance degradations. 

Each graph of benchmark operation contains results from all thread configurations, but 
only one desired configuration is visible by default. The desired number of threads is the 

22 



Timelines 
Base rules Target rules 

kernel=4.19.0 kernel=4* 

Benchmark 1 
Benchmark 1, operation 1 

Kernel version Result date Operation 1 Operation 2 

kernel-4.19.0 2018-12-14 83903.1 56873.4 

kernel-4.20.0 2019-02-03 87465.9 57807.3 

Benchmark 2 

Figure 5.1: Mockup of timelines report page. The report contains results from a single 
testing machine fulfilling the specified rules. Below the table we display with the rules we 
display graphs of the available benchmarks. Each benchmark section will have a separate 
graph for each of its operations and a table below the graphs containing featured values 
from each operation for each benchmark with links to the results in our result database. 

point where performance regressions create the biggest difference, which is in most cases 
the highest number of threads. 

The graphs will also contain horizontal lines in background following median of the base 
result and its value increased and decreased by 5%. Those lines will allow more effective 
recognition of significant performance changes without looking at the absolute values of the 
measurements. 

Under the graphs of all operations of benchmark will be a table containing medians of 
featured thread runs for each benchmark operation of every displayed kernel for browsing 
of the absolute result values. Each record will also work as a link to result record in the 
database of benchmark results of Red Hat Kernel Performance Q E team. 

5.2 Implementation 

This section describes selected aspects of implementation of the timelines report generator. 
The generator is implemented in Python2 due to earlier origins of its implementation. 

5.2.1 Comparison rules 

For automatic report generation it is essential to allow defining rules, which will specify 
results, that can be used and in which role (i.e. whether they correspond baseline or 
target). We propose to use regular expressions to match properties of results. Regular 
expressions offer broad possibilities to describe shape of kernel version or the value of any 
environment configuration. E.g. to filter all builds of kernel 4.18 we can use simple pattern 
k e r n e l - 4 . 1 8 \ . . *. 

23 



We store the rules in an X M L file with the same node naming as in the X M L file with 
the result properties. The first level of X M L document contains three nodes representing 
the purpose of the rules. 

• Baseline rules specify the first result in the plotted set. These act as the main 
result that the others are compared to. In case of multiple results fitting the rule, the 
newest one will be used. 

• Target rules define the results to be plotted. 

• Starting rules (optional) are for the case, when base result is not from the set of 
target results and there is need of specifying the first target result would be hard with 
regex. 

5.2.2 Reading of results 

Benchmark results are in our case stored in the filesystem in directories. The generator 
has to go recursively through directory with results of benchmark runs with files containing 
desired data. From each result, it starts with file containing properties of given result. This 
file provides metadata from the benchmark run including the time, machine hostname, 
kernel and OS version, benchmark name, configuration of environment for selecting desired 
results using the comparison rules. Example of the X M L file with properties is in Figure 
4.3. 

After applying the rules the generator reads files from selected results with preprocessed 
data that are ready to use for drawing box plot graphs. Example of the file with preprocessed 
values is in Figure 4.2. Parsed data from this X M L file is all the generator needs to start 
drawing the timeline graphs. 

5.2.3 Plotting of timelines 

For displaying the data in graphs using box plots we use Highcharts JavaScript library [ ] 
for generating interactive SVG-based graphs for H T M L pages. It offers free license for 
non-commercial use with available source code, but also paid licenses for commercial use. 
It provides fast and easy creation of various types of graphs including box plots with wide 
possibilities of customization. 

On the H T M L page are the charts rendered by JavaScript function from the Highcharts 
library to specified d i v element by its id attribute as an S V G image. The rendering function 
takes parameters for the graph in JSON format including type of chart, axis parameters, 
horizontal lines for reference median, interactive tooltips, and the data series. 

5.2.4 Generator parallelization 

With multiple entered sets of rules for timeline reports the generator can create multiple 
reports, e.g. separate reports for Red Hat Enterprise Linux 7 and 8. The procedure of 
parsing results and generating graphs is more on C P U than 10 operations. 

To reduce time needed to generate all reports multiprocessing is used. There is no need 
of exclusive access to any shared resource, because all of them are used only for reading, not 
writing. For implementation Python2 provides m u l t i p r o c e s s i n g library with P r o c e s s 
class that creates child process by forking allowing true parallel generation of reports. Using 
only threads in Python does not lead to parallel computation because of Python's global 
interpreter lock is preventing multiple threads from executing code simultaneously. 

24 



Figure 5.2: Example of very unstable benchmark which was removed from the run scenario 
because of irrelevant results. The yellow and orange lines show median of base result and 
5% differences which are usually threshold for suspected performance regression. 

5.3 Generated output 

Output of the timeline generator is H T M L report containing graphs of different benchmark 
operations with summary tables as described in mockup in Figure 5.1. 

The graphs use box plot method which shows the measurement accuracy. This feature 
helped to eliminate unstable benchmark operations from run scenarios. One of the unstable 
operation is shown in Figure 5.2. 

Thanks to wide range of displayed results it is easy to find version where a performance 
regression occurred, or was fixed. This case is captured in Figure 5.3, where is also shown 
part of the summary table. The cause of the degradation is change in memory migration 
rules between N U M A nodes. However, this change was not pure regression, because other 
benchmark shown significant gain displayed in Figure 5.4. 

25 



SPECjvm2008 mpegaurjjo 

_ 

t: 

K e r n e l v e r s i o n Date compress mpegaudio 
k e r n e l - 4 . 1 6 . 9 - 1 9 . e l 8 + 5 . ) ( 8 6 64 2018-JUI1-24 17ll01lll37s 812.0 483.0 

k 6 r n 6 l - 4 . 1 7 . 8 - 8 . e l r d y . t 6 S t . n u i n a _ 5 e r i e . x a 6 _ 6 4 201B-Jun -22_23ll 1511157S 812.0 479.5 

2018- Jun-26 10h57inl7s 808. G 480.G 

2018-JU1-12 04ll03lll01s 813.6 4 7 7 . D 

2018-JU1-17 21ll41lll51s 892.0 482 .0 

k e r n e l - 4 . 1 B . 0 - 0 . r c 4 . 1 . e l r d y . x 3 6 _ 6 4 2018-JU1-17 03111711106s 811.5 480.0 

2 0 1 8 - J u l - l B 19I156IJ130S 815.0 480.5 

2018-JU1-25 Q3ll40[tl36s 813.5 4 8 1 . 5 

2018-JU1-27 19hl7ni25s 809.0 483.5 

k e r n e l - 4 . 1 8 . 0 - 0 . r c 7 . 1 . e l r c i y . x 8 6 64 2 0 1 8 - J u l - 3 1 _ 2 3 l l 42H101S 808.5 479.0 

Figure 5.3: Generated box plot timeline graph of mpegaudio operation from SPECjvm2008 
benchmark with part of table showing numeric results of the SPECjvm2008 operations. The 
table shows medians from benchmark runs with featured number of threads and the kernel 
names are links to our team database of results. It displays performance results of upstream 
kernels for Red Hat Enterprise Linux 8. The performance degradation is consequence of 
changes in memory placement and migration behavior. 

f T n M T T T 1 U i 
M,«,,n-5« 

Figure 5.4: Timeline box plot from the same report as Figure 5.3 showing results of Em­
barrassingly Parallel operation from N A S Parallel benchmark. This benchmark got perfor­
mance gain in the same version as the SPECjvm2008 benchmark registered performance 
degradation. Fortunately, this performance gain in N A S Parallel benchmark operation did 
not disappeared after fixing the degradation at SPECjvm2008 benchmark. 

26 



Chapter 6 

Automatic evaluation 

With every new release of regular kernel and its testing the amount of produced results 
rises. Number of results can rise with every new kernel version even by hundreds with more 
testing machines, with different configurations, with benchmarks with different focus, or 
with baselines from different supported versions. 

In this thesis we attempt to automate the repetitive classification and labeling of results 
as passed (without any performance regression) or failed (containing performance regres­
sion). This allows us to skip the results without any significant change. Instead, more time 
is left for focusing on the results with performance regressions. 

In this chapter we will describe the way of obtaining data from results and their pro­
cessing for the evaluation. We will describe different classification models suitable for given 
dataset and compare their success rate. 

6.1 Human classification of results 

There are quite many results to check with every new tested kernel. The test suite with 
the Linpack, Stream, N A S Parellel and S P E C benchmarks are run on more than eight 
machines with different amount of N U M A nodes and processor models. Quality engineer 
has to go through the reports and check the results of all the benchmarks with different 
configurations manually. 

When looking at results of benchmark operation, the most important values are medians 
from the runs with the different amount of threads. Unfortunately, due to the noise in 
measurement and limited amount of repeated runs the medians can be significantly affected 
by the noise. This complication brings the need of more detailed inspection of results than 
just checking the difference in medians of results. 

Another useful metrics are the minimum, the maximum and the quartile values from 
each measurement. They reveal the stability of the benchmark and the measurement noise. 
Wi th those values it is much easier and more accurate to tell the measurement noise from 
performance regression. Wi th similar minimum, maximum and quartile values the perfor­
mance can be the same even with the difference in median values. 

The threshold between noise and performance regression is considered as 5 % difference 
between base and target measurement but varies by the stability of each benchmark and 
complexity of the machine it was run on. 

27 



< c o m p a r i s o n _ r e s u l t s base_uuid="..." r e p o r t _ u u i d = " . . . " t a r g e t _ u u i d = " . . . " > 
< c o m p a r i s o n _ r e s u l t benchmark_name="NASParallel" 

operation_name="bt_C_x" r e s u l t _ s t a t u s = " p a s s " > 
< r e s u l t m e d i a n _ d i f f = " 1 " threads_no="4"> 

< b a s e _ r e s u l t f i r s t _ q = " 7 4 0 9 . 2 " max="7507.0" mean="7451.7" 
median="7456.5" min="7406.4" stdev="39.2" t h i r d _ q = " 7 4 7 9 . 3 " /> 

< t a r g e t _ r e s u l t f i r s t _ q = " 7 5 0 3 . 0 " max="7597.5" mean="7513.1" 
median="7522.2" min="7404.8" stdev="62.7" t h i r d _ q = " 7 5 3 7 . 8 " /> 

</ r e s u l t > 
< r e s u l t m e d i a n _ d i f f = " 0 " threads_no="8"> 

< b a s e _ r e s u l t f i r s t _ q = " 1 4 3 3 0 . 8 " max="14740.1" mean="14476.6" 
median="14469.1" min="14325.9" stdev="151.7" t h i r d _ q = " 1 4 5 1 7 . 2 " /> 

< t a r g e t _ r e s u l t f i r s t _ q = " 1 4 4 9 4 . 5 " max="14619.3" mean="14481.1" 
median="14521.6" min="14233.7" stdev="130.5" t h i r d _ q = " 1 4 5 3 6 . 5 " /> 

</ r e s u l t > 

Figure 6.1: Part of X M L file with labeled data for classification. 

6.2 Used technologies 

For classification we use the scikit-learn library [10] with Python3. Scikit-learn is a library 
for data analysis and machine learning distributed under BSD open source license. It is 
easy to use with fast learning curve and well documented. It is a good choice for small and 
medium sized projects that do not need massive scalability. It provides various algorithms 
for classification, regression and clustering built on NumPy and SciPy Python libraries. 

Unlike other machine learning libraries like PyTorch and TensorFlow, the scikit-learn 
library does not focus on deep neural networks for larger and advanced problems. It provides 
more simple classifiers for easier problems with smaller datasets where advanced methods 
would not have enough training data. 

6.3 Reading the labeled results 

Data used for learning are passed as an X M L file containing preprocessed data from the 
base and the target run of the benchmark which are labeled as passed or failed. 

Record of each benchmark operation is labeled as pass or fail and contains records of runs 
with different amount of threads or processes. Those records contain median, minimum, 
maximum and quartiles form the repeated runs of the configuration. The root element then 
contains UUIDs of the comparison and its base and target results for easier tracing in case 
of suspicious values. The example of X M L file with data for the teaching of classifiers is 
shown in Figure 6.1. 

6.4 Labeling of results 

To teach the automatic classifier we need large amount of data for training. To reduce the 
time spent on labeling of the passed and failed results we included a H T M L form to report 
page with comparison of two results to speed up this process. The design of the form is 
shown in Figure 6.2. 

28 



Comparison ol medians 

Operations 
Compared instances 

Status Operations 
1 16 32 48 

Status 

co_ sunt tow • 0 1 0 0 ® P OF 
c o m press 2 -1 -1 1 ® P OF 

cr_5fcjnverify 0 1 -1 0 -1 OP OF 
mpegaudio 1 -1 2 1 0 ® P OF 

sc_monte_cark> 0 0 O p ® F 
5c_Bor_5mal l 0 0 0 0 0 ® P OF 

Figure 6.2: Form from H T M L comparison report page of SPECjvm2008 benchmark to label 
data for machine learning. The last column contains form manual labeling of the results 
which are sent using the button on the top. The Status column next to it displays the 
actual labels stored in the X M L file with data for classification. 

Request from 
comparison page 
with labeling data Modification of tile 

Web browser 

comparison page 
with labeling data 

Server Flask app 
managing the 

labeling 

with the labels 
Storage with XML 

result files Web browser ^ 
Server Flask app 

managing the 
labeling 

with the labels 
Storage with XML 

result files Web browser ^ 
Server Flask app 

managing the 
labeling 

Storage with XML 
result files Web browser 

Redirection back 

Server Flask app 
managing the 

labeling 

Storage with XML 
result files 

to comparison 
page 

Figure 6.3: Form from H T M L comparison report page to label data for machine learning 

For processing of the requests from this H T M L form we built a simple H T T P simple 
server application using Flask framework for Python3. It is wrapped in the Docker container 
which runs on machine which stores the performance results and comparison reports. It 
receives a H T T P request with P O S T data containing the type of benchmark, path to 
directory with the report page and labels for results of each benchmark operation. Using 
this data the application modifies the X M L file with labels described in Section 6.3 and 
returns H T T P redirect header back to the comparison report. This process is shown in 
diagram in Figure 6.3. 

6.5 Preprocessing of the data for learning 

We want to classify results of each benchmark operation with different thread configurations 
which is represented by < c o m p a r i s o n _ r e s u l t > node in the example in Figure 6.1. The 
number of threads configurations represented by t h r e a d s _ n o attribute in each < r e s u l t > 
is not always the same and varies on the number of C P U cores on the testing machine. 

The important values that we focus on are the statistical data from runs with different 
amount of threads, that one uses to label the data manually. From each of the runs we take 
minimum, median, maximum and first and third quartile from the repeated measurements 
of the same run configuration. 

To avoid absolute values from measurements that are different on each machine, we use 
relative proportions. Difference of target and base medians are divided by base median and 
the rest of target statistical values are divided by the target median. 

Next task is to reduce the provided data with variable number of threaded results 
to fixed size vector. We will take minimum, median and maximum from values of each 
statistical property: of minimums, medians, maximums and first and third quartiles. Each 
reduction will keep important values form the benchmark operation results in reasonably 
small vector. 

29 



Training vectors reduced to 3 best dimensions 

Figure 6.4: Plotted vectors from the training dataset reduced to 3 dimensions, which are 
the best for classification. The reduction was done by S e l e c t K B e s t class from scikit-learn 
library by choosing the dimensions with the biggest variability between classes. The plot 
on the left shows scatter of vectors from dataset with unmodified values. The plot on the 
right shows the vectors from dataset modified by applying square root on their values. This 
modification and naming of the axis is explained in Section 6.5 

The last operation with these vector values is applying square root. This operation 
reduces distances of vectors with exceptionally high values, which helps the k -NN and 
linear classifier to get better results. Scatter of the vectors plotted in 3 best dimensions is 
shown in Figure 6.4. 

For later use, we will name the vector component like m e d i a n s m i n (minimum value 
of all medians in results with different number of threads). The whole preprocessing of 
a single result of benchmark operation shows the Figure 6.5 with Python code snippet. 

6.6 Comparison of classifiers 

The classification is a procedure of assigning category to new observation based on training 
set of observations with specified category. Because of the availability of already classified 
data it belongs to supervised learning part of machine learning. 

Data for classification are represented by set of vectors with fixed element count. Vector 
is an ordered set of numbers where each one represents a value in separate dimension of 
the source data. For supervised learning vectors from training set have assigned categories 
(also called classes). In our case we will have 2 classes: pass and fail. 

For the following training and evaluation of the models we used roughly 250 labeled 
vectors. This should be enough to train different simple classifiers with sufficient accuracy 
on other unlabeled vectors. 

30 



1 mins = [] 
2 medians = [] 
3 maxes = [] 
4 q l s = [] 
5 q3s = [] 
6 
7 # I t e r a t e o ver t h e t h r e a d r e s u l t XML nodes of s i n g l e benchmark o p e r a t i o n 
8 f o r r e s i n c p r e s u l t : 
9 f o r b a s e t a r g e t i n r e s : 

10 i f b a s e t a r g e t . t a g == " b a s e _ r e s u l t " : 
11 b _ a t t r = b a s e t a r g e t . a t t r i b 
12 i f b a s e t a r g e t . t a g == " t a r g e t _ r e s u l t " : 
13 t _ a t t r = b a s e t a r g e t . a t t r i b 
14 t r y : 
15 # Compute r e l a t i v e d i f f e r e n c e s between base and t a r g e t r e s u l t s 
16 m e d i a n s . a p p e n d ( ( f l o a t ( t _ a t t r [ " m e d i a n " ] ) - f l o a t ( b _ a t t r [ " m e d i a n " ] ) ) 
17 / f l o a t ( b _ a t t r [ " m e d i a n " ] ) ) 
18 m i n s . a p p e n d ( ( f l o a t ( t _ a t t r [ " m e d i a n " ] ) - f l o a t ( t _ a t t r [ " m i n " ] ) ) 
19 / f l o a t ( t _ a t t r [ " m e d i a n " ] ) ) 
20 m a x e s . a p p e n d ( ( f l o a t ( t _ a t t r [ " m e d i a n " ] ) - f l o a t ( t _ a t t r [ " m a x " ] ) ) 
21 / f l o a t ( t _ a t t r [ " m e d i a n " ] ) ) 
22 q l s . a p p e n d ( ( f l o a t ( t _ a t t r [ " m e d i a n " ] ) - f l o a t ( t _ a t t r [ " f i r s t _ q " ] ) ) 
23 / f l o a t ( t _ a t t r [ " m e d i a n " ] ) ) 
24 q 3 s . a p p e n d ( ( f l o a t ( t _ a t t r [ " m e d i a n " ] ) - f l o a t ( t _ a t t r [ " t h i r d _ q " ] ) ) 
25 / f l o a t ( t _ a t t r [ " m e d i a n " ] ) ) 
26 e x c e p t : 
27 p r i n t ( " E R R O R i n v a l u e s i n " + path) 
28 
29 v e c t o r = [] 
30 # Add min, med and max v a l u e from each a r r a y o f d i f f e r e n c e s 
31 f o r a ~ i n [medians, mins, maxes, q l s , q 3 s ] : 
32 v e c t o r . a p p e n d ( m i n ( a ) ) 
33 v e c t o r . a p p e n d ( m e d i a n ( a ) ) 
34 v e c t o r . a p p e n d ( m a x ( a ) ) 
35 
36 # Square r o o t a l l element 
37 v e c t o r = l i s t ( m a p ( l a m b d a x: m a t h . s q r t ( f l o a t ( x ) ) 
38 i f f l o a t ( x ) > 0 
39 e l s e - m a t h . s q r t ( a b s ( f l o a t ( x ) ) ) , v e c t o r ) ) ) 

Figure 6.5: Python code showing reading and preprocessing of a vector from single com­
parison node parsed by E l e m e n t T r e e library for working with X M L files. On the line 8 
is iteration through comparisons of benchmark operations. On the line 9 the code looks 
for child nodes with base and target results. In the t r y block starting on the line 14 are 
computed relative differences of the statistical values. On the line 29 is are added minimum, 
median and maximum values from each array of relative differences of statistical values. 
The last operation on the line 34 applies square root on each element of the vector. 

31 



6.6.1 Validation and metrics 

To compare success rate of different classification models we need a method to evaluate 
accuracy of predicting new data. Testing the model on data that we used for learning can 
lead to overfitting. Overfitting means that the model precisely predicts data it has already 
seen, but fails to predict any new data it has not seen yet. To avoid overfitting we use 
cross-validation method to test the model. It removes part of data from training set and 
uses them as testing set for evaluating the prediction. 

For splitting the training data we use k-fold method. This method splits the original 
dataset to k groups. One of groups is used as testing set and the rest k — 1 groups are left 
for training. This way we get k different dataset for evaluation of our classifiers. 

As implementation of k-fold cross-validation we use R e p e a t e d S t r a t i f i e d K F o l d 
class from scikit-learn library with the parameter k set to 4. It will split the original 
dataset to 4 groups with same ratio of pass and fail labels repeating this process with dif­
ferently shuffled data. Setting number of folds to 4 gives us enough data both for training 
and for the evaluation. 

As metric for rating of predicted values we use accuracy scoring. Predicted results are 
evaluated as 1 or 0 if the predicted class is the same as the reference class from manual 
labeling or not. Averaging those scores from the whole testing set will give us ratio of 
correctly predicted vectors. In the following we will describe each tested classifier. 

6.6.2 k-nearest neighbors classifier 

This classifier does not construct any generalized model, but works with the whole training 
data. The decision is then made by voting of the k nearest neighbors. 

The learning process consists only of building data structure for more efficient search 
through the dataset. More computations come with the prediction when the algorithm 
must go through the learning dataset and find k nearest vectors. 

Accuracy of the model highly depends on the parameter k. Higher values suppress noise 
in dataset, but can smoothen the boundaries of classes too much. This behavior can be 
seen in Figure 6.6. 

Scikit-learn implements k -NN classifier in K N e i g h b o r s C l a s s i f i e r class. Next to 
setting the k number it provides parameter for weighting votes. First option is uniform 
voting where each of the k neighbors have the same weight of the vote. The second option 
weights votes based on the distance from queried vector. The weighted option provides 
better results for our dataset as can be seen in Figure 6.6. 

6.6.3 Linear logistic regression classifier 

Linear model tries to separate vectors of two different classes to two spaces using a line, 
plane, hyperplane, etc. depending on the dimensionality of the vectors. It works by multi­
plying queried feature vector by learned set of weights. Thanks to this simplicity it scales 
very well for large amount of vectors and features. 

The linear logistic regression classifier is implemented by scikit-learn in L o g i s t i c -
R e g r e s s i o n class. We will use it with c l a s s _ w e i g h t parameter set to balanced, because 
the linear classifier keeps the probabilities of classes favoring the by count of vectors it got 
for learning. 

In Figure 6.4 we can see that our data are linearly separable and the linear logistic 
regression should be able to fit our dataset with good results. 

32 



Accuracy of k-NN classifiers 
1.00 -, 

0.95 -

u 

H 

0.85 - Uniform weight score 
- X - Uniform weight best: 3 (0.93751 

Distance weight score 
- * - Distance weight best: 6 (0.9436507936507936) 

0.80 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Neighbors 

Figure 6.6: Accuracy of k-nearest neighbors classifier on available training data with dif­
ferent parameters. On x axis is number of k-nearest neighbors that vote for the class of 
queried vector. The two plotted lines differ in weighting of the votes. The first takes all 
votes with uniform weight and the second weights the votes by distance of the neighbors 
from the queried vector. 

6.6.4 Decision tree classifier 

Decision of this classifier is based on decision tree built on training data. In each node 
the tree looks on one component of the queried vector and by comparison with learned 
threshold the tree decides to which branch it will continue. Each leaf of the tree contains 
label that is returned for the queried vector which led to the leaf. 

Learning of the model involves the construction of the decision tree. The construction 
looks for the best component of vector for splitting the dataset by classes. It creates 
a decision node and splits the training dataset based on the selected component to the 
decision branches. This process is recursively repeated with each part of the split dataset 
until the split contains vectors of single class (purity of the node is 1) or any additional 
restrictive condition is met. 

Main advantage of the decision tree is its transparency and easy visualization of the 
model. In Figure 6.7 is an example visualization of the decision tree constrained by depth 
and samples count in leaf nodes built with our dataset of performance comparisons. 

Disadvantage of the decision tree is sensitivity to noisy data and high chance of overfit-
ting, because the tree tries to fit the whole dataset and has 100% prediction accuracy on 
already seen data. This issue can be suppressed by reducing maximum depth of the tree, 
setting minimal amount of samples required to split impure node into another decision. 

6.6.5 Forest of randomized trees classifiers 

The forest of randomized trees classifier extends the decision tree classification by creating 
a set of decision tree classifiers with small portion of randomness introduced in the creation 
of the decision trees. Output of the classifier is decided by voting of the decision tree 
classifiers. This modification compensates the overfitting of single decision tree classifiers. 
Although the amount of trees slightly increases the accuracy of the prediction, the duration 
of learning of the model and prediction rises linearly with the amount of trees. 

33 



medians med < = -0.162 
gini = 0.313 

samples — 252 
value = [203, 49] 

class = pass 

True, \Fa Ise 

q l s min < = 0.083 
gini = 0.269 

samples = 50 
value = [8, 42] 

class = fail 

medians med < — -0.222 
gini = 0.095 

samples = 40 
value = [2, 38] 

class = fail 

<3 
gini = 0.48 

samples = 10 
value = [6, 4] 
class = pass 

gini = 0.0 
samples — 30 
value = [0, 30] 

class = fail 

' gini = 0 .32~^ 
samples — 10 
value = [2, 8] 

class = fail 

medians min < = -0.412 
gini = 0.067 

samples = 202 
value = [195, 7] 

class = pass 

gini = 0.49 
samples = 7 
value = [3, 4] 

class = fail 

' 'medians min < — -0.286^ 
gini = 0.03 

samples = 195 
value = [192, 3] 

class = pass 
J 

ini = 0.278 
samples — 18 
value = [15, 3] 

class = pass 

gini = 0.0 
samples — 177 
value = [177, 0] 

class = pass 

Figure 6.7: Decision tree created by Decision tree classifier and rendered by Graphviz 
library. It shows decision tree generated on our performance comparison data constrained 
by depth and samples count in leaf node. First line of non-leaf node shows the condition for 
choosing the next decision branch, gini property of node shows its impurity - proportion 
of training data not fitting the class of the node. Leaf nodes have 0 impurity because they 
contain vectors of single class. Parameters samples and value show the amount of training 
vectors for the subtree and their division to pass and fail classes. 

34 



Figure 6.8: Accuracy of randomized forests classifiers on available training dataset with 
different parameters. On x axis is number of trees that vote for the class of queried vector. 
The first plotted line represents the Random forest method and the second the Extra trees 
method of building the trees. 

The scikit-learn library provides two implementation of classifiers based on randomized 
trees. The first is R a n d o m F o r e s t C l a s s i f i e r class. The dataset for each tree is re-
sampled with replacement creating slightly reduced and different dataset. When building 
a decision tree, the component used for comparison in the node is not the best for splitting, 
but randomly chosen. 

The second is extremely randomized trees method implemented in E x t r a T r e e s C l a s s i f i e r 
class. This implementation extends the randomness by choosing more thresholds for de­
cision randomly and selecting the best instead of computing the most discriminative one. 
This method helps to reduce variance of the model at the cost of higher bias. 

Comparison of these two implementations is in Figure 6.8. The RandomForestClassifier 
has slightly better accuracy than ExtraTreesClassifier. The accuracy also rises much slower 
compared to number of the trees in the model. 

6.7 Evaluation of classifiers 

For the evaluation and comparison of proposed classifiers we will use these configurations: 

• k-nearest neighbors with k = 3 and uniform vote weight. 

• k-nearest neighbors with k = 6 and vote weight based on distance. 

• Linear regression with balanced weight of the classes. 

• Decision tree with minimum of 16 samples in each leaf node. 

• Random forest with 100 trees. 

• Extra trees with 100 trees. 

Precision of the classifiers will be evaluated using k-fold cross-validation described in 
Subsection 6.6.1. 

35 



A c c u r a c y o f d i f f e r e n t c lass i f ie rs 

l . o o -

0.95 

g 0.90 

0.85 • 

0.80 • 
k-NN 

(unifo rm) 
k-NN 

(d is tance) 
Logist ic 

regress ion 
Decis ion 

t ree 
Random 

forest 
Extra 
t rees 

Classi f ier 

Figure 6.9: Comparison of accuracy of different implemented classifiers listed in Section 
6.6. The results come from repeated k-fold cross-validation by splitting the dataset to train 
and test sets using ratio 3:1. The exact results are listed in Section 6.7 

Results of the classifiers evaluation are visualized in Figure 6.9. Exact median values of 
classification precision on testing datasets with deviation of measurement are listed below: 

k-NN ( u n i f o r m ) : 
a c c u r a c y : 9 3 . 6 3 % (+/- 4.96%) 

k-NN ( d i s t a n c e ) : 
a c c u r a c y : 94.29% (+/- 4.66%) 

L o g i s t i c r e g r e s s i o n : 
a c c u r a c y : 9 2 . 0 5 % (+/- 5.72%) 

D e c i s i o n t r e e : 
a c c u r a c y : 92.97% (+/- 5.82%) 

Random f o r e s t : 
a c c u r a c y : 9 3 . 1 3 % (+/- 5.66%) 

E x t r a t r e e s : 
a c c u r a c y : 9 1 . 8 5 % (+/- 5.59%) 

As the best classifiers seems to be k-nearest neighbors classifiers and random forest clas­
sifiers. Now any of these classifiers is fine to use for the automatic detection of performance 
regression, but with more manually labeled data will be the evaluation repeated and the 
selection of classifier reconsidered. 

36 



Chapter 7 

Conclusion 

In this work we described the performance testing of Linux kernel scheduler in Red Hat, Inc. 
company. The process of checking for performance regressions in new versions of kernels 
for Red Hat Enterprise Linux consist of measuring the performance of the kernel using 
benchmarks, storage of the results and visualization of performance comparisons between 
the targeted kernel version and reference the base version. 

This work proposes a new way of visualization of performance results called Timelines 
focused on long-term performance development of multiple Linux kernels. The timelines 
were already used to compare the stability of operations from used benchmarks to create re­
duced test scenario with the more stable operations for less important tests with shorter run 
time. Compared to original scenario with estimated run time of 24 hours the shorter variant 
took only one third of the time. Besides the generated timelines, reports are continuously 
used to examine kernel performance through longer period of time. 

Furthermore, this thesis proposed an utilization of machine learning for automatic clas­
sification of performance measurement comparisons to reduce time one has to spend to look 
for performance regressions. The trained model is going to be integrated in the generator of 
performance comparison reports to mark the comparison as passed or failed (i.e. containing 
performance regression). This will reduce time of examining dozens of reports from each 
new tested kernel and allow more time to work on new features of the generator. Wi th 
more manually labeled data for learning the classifiers will be reevaluated and compared 
again. In case of better results the original model will be replaced with the better trained 
one. 

Although the proposed timeline graphs reports and automatic detection of performance 
degradation push the effectivity of working with performance results forward, their po­
tential is not depleted yet. Future addition of Jinja2 1 template system to timeline report 
generator will make the code much cleaner. The performance degradation classifiers will 
be reevaluated after obtaining larger manually labeled dataset and the automatic classifi­
cation will be included to timeline reports to highlight performance regressions and watch 
precision of classification on new real data. 

1 h t t p : / / jinja.pocoo.org 

37 

http://jinja.pocoo.org


Bibliography 

[1] Bailey, D. H . ; Barszcz, E. ; Barton, J . T.; et al.: The nas parallel benchmarks. 
Technical report. The International Journal of Supercomputer Applications. 1991. 

[2] Bovet, D.; Cesati, M . : Understanding The Linux Kernel. Oreilly & Associates Inc. 
2005. ISBN 0596005652. 

[3] Corbet, J. : Coscheduling: simultaneous scheduling in control groups. LWN.net. 
Retrieved from: h t t p s : / / l w n . n e t / A r t i c l e s / 7 6 4 4 8 2 / 

[4] Dongarra, J . J.; Luszczek, P.; Petitet, A . : The L I N P A C K benchmark: Past, present, 
and future. 2002. 

[5] Gregg, B. : Active Benchmarking. 
h t t p : / / w w w . b r e n d a n g r e g g . c o m / a c t i v e b e n c h m a r k i n g . h t m l . accessed: 
2019-01-23. 

[6] Hewlett-Packard: Best Practices When DeployingLinux on the H P ProLiant DL980. 
h t t p s : / / l w n . n e t / A r t i c l e s / 7 64482/. accessed: 2019-04-24. 

[7] Highsoft AS : Highcharts General Documentation. 
h t t p s : / / w w w . h i g h c h a r t s . c o m / d o c s / . accessed: 2019-05-08. 

[8] Lozi, J.-P.; Lepers, B.; Funston, J.; et al.: The Linux Scheduler: A Decade of Wasted 
Cores. In Proceedings of the Eleventh European Conference on Computer Systems. 
EuroSys '16. New York, N Y , USA: A C M . 2016. ISBN 978-1-4503-4240-7. pp. 
1:1-1:16. doi:10.1145/2901318.2901326. 
Retrieved from: h t t p : / / d o i . a c m . o r g / 1 0 . 1 1 4 5 / 2 9 0 1 3 1 8 . 2 9 0 1 3 2 6 

[9] McCalpin, Ph.D., J . D. : S T R E A M : Sustainable Memory Bandwidth in High 
Performance Computers, h t t p s : / / w w w . c s . v i r g i n i a . e d u / s t r e a m / . accessed: 
2019-01-23. 

[10] Pedregosa, F.; Varoquaux, G. ; Gramfort, A . ; et al.: Scikit-learn: Machine Learning in 
Python. Journal of Machine Learning Research, vol. 12. 2011: pp. 2825-2830. 

[11] Standard Performance Evaluation Corporation: SPECjbb2005 User's Guide. 
h t t p s : //www.spec.org/ j b b 2 0 0 5 / d o c s / U s e r G u i d e . h t m l . accessed: 
2019-01-23. 

[12] Standard Performance Evaluation Corporation: SPECjvm2008 User's Guide. 
h t t p s : //www.spec.org/ j v m 2 0 0 8 / d o c s / U s e r G u i d e . h t m l . accessed: 
2019-01-23. 

38 

http://LWN.net
http://www.brendangregg.com/activebenchmarking.html
https://lwn.net/Articles/7
http://64482/
https://www.highcharts.com/docs/
http://doi.acm.org/10.1145/2901318.2901326
https://www.cs.virginia.edu/stream/
http://www.spec.org/
http://www.spec.org/


Append i x A 

Content of attached C D 

• timelines/ directory contains Python source code of timeline reports generator with 
several examples of results. 

• classification/ directory contains Python scripts used for preprocessing of data for 
machine learning and for plotting of the graphs in Chapter 6. 

• text/ directory contains DTgXsource code of this thesis. 

• R E A D M E file contains description of the content of this C D . 

• L I C E N S E file contains license of the source code on this C D . 

39 


