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Abstract 

This works focuses on the Hough transform (HT). The H T is 
mostly used for the detection of lines or curves, but was also 
generalized for detection of arbitrary shapes. 

The main theme of this work are line parameterizations, es­
pecially the Point-to-Line mappings. These parameterizations 
share the property, that a point in the image maps onto a line 
in the parameter space. This work presents proofs of some 
properties of P T L M s , notably the existence of a practical pair 
of P T L M s for line detection and the effect of a convolution in 
the image space on the contents of the parameter space. 

Two realtime implementations of H T are presented in this 
work. Both accelerate H T using graphical hardware. One 
uses G P G P U A P I C U D A and the other the rendering A P I 
OpenGL. As an application of the line detection, this work 
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describes part of the detection of checkerboard marker usable 
for the augmented reality. 

1 Introduction 

This doctoral thesis focuses on line detection using H T , but it 
mostly deals with one aspect of the detection - the parameteri­
zation of a straight line. Although the mathematical desription 
of a straight line or a line segment is simple and straightfor­
ward, many radically different parameterizations with various 
properties exist. 

This work examines in detail a subset of line parameter­
izations - the Point to Line Mappings (PTLMs) . These pa­
rameterizations have an interesting property, that the set of 
lines that pass through a given point map to a set of points in 
the parameter space, that form a straight line. This property 
can significantly simplify the Hough transform implementa­
tion. Also lines are a common graphical primitive, so many 
fast rasterization algorithms exist and comodity GPUs can ac­
celerate line rasterization. 

This work introduces methods usable for fast line detec­
tion. The implementations presented in this thesis achieve 
realtime detection rates even for full H D input video. 

This work can allow for uses of H T in atypical manners. 
It examines several corner cases of the P T L M s . These are 
probably not useful for some ordinary line detection. They 
however provide some insights and deeper understanding to 
the behavior of H T . A n example may be the construction of 
a line parameterization that is most precise for a specific line 
orientation. 
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Also researchers, that want to detect perspectively dis­
torted checkerboard-like patterns in picture may be interested 
in this work. The line detection is an important part of the 
detection of checkerboard patterns. This work also sketches 
out the basic principles of the detection of a projected chcker-
board. Wi th my colleagues, we are bulding on these principles 
and we are developing algorithms for fast and reliable detec­
tion of chessboard-like structures. [10, 18] 

2 Objectives 

The first objective of this work was to extend the theoreti­
cal knowledge about Point-to-Line Mappings. The chapter 4 
of my dissertation deals with usability of various P T L M s for 
line detection and with its relationship to connvolution. This 
theoretical work provided an basis for the real-time line and 
marker detection. 

The second objective was to provide a fast way to perform 
line detection. Because the line detection is only one part 
of some interresting machine vision algorithms, the detection 
must be performed in real time with a performance reserve. 
The new line parameterization PClines and the G P G P U im­
plementations of Hough transform do fulfill this objective. 

3 Hough Transform 

The Hough Transform (HT) [11] is sometimes understood not 
as a specific algorithm for object detection but as a wide 
class of algorithms that share a common structure. Princen 

3 



et al. [17] formalized H T as a hypothesis testing process. The 
structure of H T when described as generically as possible is: 

I. Some evidence is extracted from the input. 

II. For each piece of the evidence, accumulators correspond­
ing to the hypotheses that are supported by that evidence 
are incremented. Possible hypotheses are represented by 
an N-dimensional parameter space of accumulators. 

III. Probable hypotheses are detected as peaks in the param­
eter space. 

H T is typically used for detecting curves with an analytical 
description. In that case, the evidence are edge points detected 
in the input raster image. Such edge points can typically be 
detected by gradient operators such as Sobel or Prewitt. The 
hypotheses are the possible curves of a given class in the im­
age. For example, a line has two and a circle three degrees of 
freedom in a 2D space, but H T can be used for detection of 
objects such as hyperspheres or hyperplanes in spaces of arbi­
trary dimensionality. Algorithm 1 shows the detection of an 
implicit curve by the H T . 

Shapes that do not have a simple analytical description 
can be detected by using the Generalized Hough Transform by 
Ballard [1]. In G H T , the object is not described by an equation 
but by a set of contour elements (edge points). Each contour 
element is described by its position with respect to the object 
reference point and the edge orientation. The parameter space 
has a dimension from two to four (object position, orientation 
and scale), but the representation of the detected object is 
complex even for simple shapes. 
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Algorithm 1 Implicit curve detection by Hough Transform. 
Require: Input image / , size of parameter space H 
Ensure: Detected curves C 

Pi — {(x,y) | (x,y) are coordinates of a pixel in /} 
PH = {(pi-, • • • ,PN) I (pi, • • • ,PN) are coordinates in H} 
H(x) <- 0,Vx G PH 

for all x G Pi do 
if at x is an edge in / then 

for all {p G PH \ f(x,p) = 0} do 
H(p) <- H(p) + 1 

end for 
end if 

end for 
C = {p G PH I at p is a high local maximum in H} 

PClines 

In [5], together with Markéta Dubská and Adam Herout, I 
have used parallel coordinates as a line parameterization for 
the Hough transform. A similar parameterization was inde­
pendently proposed by Mejdani et. al. [15]. 

Parallel coordinates [13] are mostly used for vizualization 
of multidimensional data in two dimensions without the pro­
jection of the data to the 2D space. The parallel coordinate 
system represents a given vector space by axes which are mu­
tually parallel. Each TV-dimensional vector is then represented 
by N — 1 lines connecting the axes. To define the position of 
points in the space of parallel coordinates, this space will also 
have a 2D cartesian coordinate system u-v, and homogeneous 
cordinates (u,v,w). 
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In the two-dimensional case, points in the x-y space are 
represented as lines in the space of parallel coordinates. Rep­
resentations of collinear points intersect at one point - the 
representation of a line (see Fig. 1). Based on this relation, 
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Figure 1: Three collinear points in parallel coordinates: (left) 
Cartesian space, (right) space of parallel coordinates. Line £ 
is represented by point £ in parallel coordinates. 

it is possible to define a point-to-line mapping between these 
spaces. For some cases, such as line £: y — x, the correspond­
ing point £ lies in infinity (it is an ideal point). 

Because for some lines (e.g. £ : y — x) the image in the 
space of parallel coordinates lies in infinity, it is necessary to 
construct a pair of parameter spaces to detect lines of all an­
gles. Mejdani et. al. [15] and we in our paper [5] used slightly 
different approaches. In our approach, the P C based represen­
tation of line £ : y — mx+b in the u-v space is I = (d, b, 1 — m), 
where d is the distance between the parallel axes x ' and y'. The 
line's representation 1 lies between the axes x and y' if and 
only if —oo < m < 0. For m — 1, I is an ideal point (a point 
in infinity). For m — 0, I lies on the y' axis, for vertical lines 
(m = ±oo) , I lies on the x' axis. 
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Besides this space of parallel coordinates x' ,y' (further re­
ferred to as straight, S), we proposed a twisted (T) system 
x', —y', which is identical to the straight space, except that 
the y axis is inverted. In the twisted space, I lies between the 
axes x and —y' if and only if 0 < m < oo. By combining the 
straight and the twisted spaces, the whole TS plane can be 
constructed, as shown in Fig. 2. 
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Figure 2: (left) Original x-y space and (right) its PClines rep­
resentation - the corresponding TS space. 

Consequently, any line £ has exactly one image I in the TS 
space; except for cases that m = 0 and m = ±oo, when £ lies 
in both spaces on y' or x', respectively. That allows the T and 
S spaces to be "attached" one to another. Figure 2 illustrates 
the spaces attached along the x' axis. Attaching also the y' 
and — y' axes results in an enclosed Möbius strip. 

C o m p a r i s o n 

In [5], we compared TS (with (—y, x, y) arrangement), 9-g and 
slope-intercept parameterizations in terms of precision. 
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In this evaluation, automatically generated data (similar to 
the data used in [12]) were used. The black-and-white image 
(sized W x H) were genereated by first rasterizing L lines 
directly from the line equation in its normal form; 8-connected 
neighborhood of pixels was used. Then, P noise pixel positions 
were randomly generated pi G { 0 , . . . , W — 1} x { 0 , . . . , H — 1}, 
and the corresponding pixels were inverted in the image. 

Two errors of the detections were evaluated: SQ and eg 

which are the differences from the ground truth in degrees or 
pixels, respectively. To obtain one error metric, a combined 
error 

' (1) 

is used, with weights UJQ — ue — 1. The accumulator space 
had the same dimensions for all three methods: for 512 x 512 
images, accumulator space 768 x 724 was used. 
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Figure 3: Line localization error as it depends on the lines' 
slope. For x on the horizontal scale, the lines' slope in degrees 
is at interval [x,x + 5[. Red: PClines; Green: 9-g; Blue: m-b. 
Left: average error over all lines; right: average error of the 5 
least accurate lines, i.e. a pessimistic error estimation. 

In this measurement, PClines seem the most accurate, while 
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the m-b the least. I am convinced, this is caused by the fact 
that both 9-Q and m-b parameterizations do not use some por­
tions of the parameter space, while the PClines completely 
utilize the assigned memory. 

4 Point to Line Mappings 

Figure 4: Detail of a parameter space before (left) and after 
(right) smoothing by vertical convolution. The maxima is no 
longer broken to separate intersections. 

Point-to-line mappings (PTLMs) are a special case of line 
parameterizations that map points (or precisely all lines that 
pass though this point) in the x-y space to a line in the 
parameter space. Parametrizations that fall into this class 
are the slope-intercept, 7-0; and parallel coordinates based 
parametrization. Some properties of these mappings are dis­
cussed and proven by Bhattacharya et al. [2]. M y work [9] 
extends it. Figure 4 illustrates smoothing of the parameter 
space by a technique described in this section. 
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To be useful in Hough transform, the P T L M s must be 
bijective and map collinear points (points that lie on a line) to 
concurrent lines (lines that intersect at a single point). 

Theorem 4.1 (Bhattacharya 1). A 1-1 PTLM takes collinear 
points into concurrent lines iff it is linear. 

The proof comes from the Fundamental Theorem of Pro­
jective Geometry as shown in [2]. In other words, this theorem 
means, that P T L M s can be represented by matrix multiplica­
tion. 

The second Bhattacharya theorem generalizes the issue 
with the original Hough's parameterization m-b, y = mx + b 
that the parameter m of vertical lines is infinite. 

Theorem 4.2 (Bhattacharya 2). A 1-1 PTLM cannot map 
all the sets of collinear points that lie in a bounded region into 
sets of concurrent lines whose intersections lie in a bounded 
region. 

Bhattacharya et al. [2] mention a solution of this prob­
lem by using a parameter space that is composed of two fi­
nite parts. A l l commonly used P T L M s such as m-b or the 
PClines form such pairs. However, Bhattacharya's paper does 
not present any proof that a second mapping exists for ev­
ery linear 1-1 P T L M or if some additional conditions must be 
fulfilled for existence of such a pair. 

A pair of P T L M s / and g that can be used for line detec­
tions will be called a Complementary PTLM Pair. Also, g is 
the complementary mapping for / and vice versa. It should 
be noted in advance, that some P T L M s have complementary 
mappings only for some bounded regions in the image space. 
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The necessary condition for an P T L M pair / and g to be 
usable for line detection is that for any bounded region R in 
the image space, there must exist a bounded region for both 
of the parameter spaces, that images of all lines through R lie 
at least in one of those bounded regions. It is not necessary 
for those regions to be identical. 

Since every two P T L M s share a common problematic line, 
this line must not intersect the bounded region R. Ideally, this 
line does not intersect any bounded region, which means it is 
the ideal line in infinity. 

Theorem 4.3. A linear 1-1 PTLM /(x) = F x T has at least 
one complementary mapping g for a circular region with radius 
r around the origin iff the third row (u,v,w) of F~T has the 
property that 

y/u2 + v'A 

w 
> r. (2) 

Two special cases of ^ exist : 

, v, 0) This P T L M has a complementary mapping for every r. 
When the (G'3 * also lies in the ah plane, their common 
problematic line intersects the cylinder at infinity. Any 
pair of such P T L M s has the problematic line outside of 
every bounded region. 

0, w) This mapping maps lines passing through the origin to 
the ideal line. It does not have a complementary map­
ping because no single matrix can map all lines passing 
through the origin to a bounded region. At least two 
additional mappings are required. 
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Corollary 4.4. For a linear 1-1 PTLM f with ( F - T ) 3 j 3 = 
0 exists a complementary PTLM for every finite size of the 
image space region. 

A l l commonly used P T L M s such as m-b [11, 15], Tuytelars 
C H T [19] or the PAT/PCl ines [5, 15] do have this property. 
The third mapping in the Tuytelaars parameterization is the 
second special case = (0,0,1)). 

For every two P T L M s exists at least one line, that is mapped 
to infinity by both of them. To represent all lines in R P 2 , three 
P T L M s are necessary. C H T by Tuytelaars et. al. is an exam­
ple. 

Corollary 4.5. Three linearly-independent 1-1 PTLMs map 
every set of collinear points onto a set of concurrent lines 
whose intersection lies inside a bounded region for at least one 
of those mappings. 

Convolution 

The projection-slice theorem is easily applicable on Hough 
transform using 9-g parametrization as 

ne[f*g}(Q) = (He[f}*He[g})(Q). (3) 

In the case of P T L M s , the necessary conditions are more stricter 
than mapping collinear points onto concurrent lines. 

Lemma 4.6. The convolution in the image space can be trans­
formed to the convolution in the parameter space if PTLM h 
has 

(a b 0N 

H = 0 0 c I , (4) 
\d e 0, 
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with 

0, and 

ae 7̂  bd, 

(5a) 

(5b) 

because of the invertibility of H. 

These conditions are sufficient but might not be necessary. 
The conditions (5) come directly from the determinant of the 
matrix H. 

Theorem 4.7. For an convolvable PTLM h, the 2D convolu­
tion in the image space can be expressed as a ID convolution 
in the parameter space as 

nu[f*g](v) = 
y/(e + ub)2 + (d + ua)2 

where a..., e are values from H according to Lemma 4-6. 

nu[f](s)Hu[g}(v-t 

(6) 

5 Grids and Markers 

This section presents an application of the various line param-
eterizations, mostly PClines. It was used for the detection of 
checkerboard-like pattern for the camera localization in aug­
mented reality. This section describes a relevant subset of pa­
pers [10, 18]. The papers introduce uniform and fractal marker 
fields that are usable for camera localization and augmented 
reality. Figure 5 illustrates these marker fields. 

Due to problems such as nonuniform lighting, edges are 
easier to detect, than the uniformly colored squares. The edges 
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Figure 5: Illustration of checkerboard-like marker fields. Left: 
Fractal Marker Field; Right: Uniform Marker Field. 

of the checkerboard squares form two perpendicular sets of 
equidistantly spaced parallel lines. The conditions for perpen­
dicularity and equidistant spacing are not necessary. 

Points on a set of parallel lines in R 3 can be expressed as 

P = Po + su + tv. (7) 

Both u and v can be used as the line direction. One of s and 
t does belong to R and the other is generates by some step 
function 

step { t i j t 7 } : Z R . (8) 

For description of checkerboards Q R codes and similar pat­
terns or our uniform markers [18], two types of the step func­
tion are usefull. 

The first has the form 

s t e P { ^ } W = k{UiVyi, for some k{lLjV} G R + . (9) 

This is T H E step function for checkerboards and all other uni­
form grids. The size S{UjVy of the grid square in R 3 is 

s u = fcu||u|| sv = kv\\v\\. (10) 
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Even more useful is a slight modification of the step func­
tion (9) to the form 

s t e P { ^ } W = k{urti+0{uM' f o r s o m e k{uM £ ^+,q{u,v} tR-
(11) 

The step function (11) allows to base the grid on an ar­
bitrary point or line. The function (9) requires that po and 

are members of the grid. Using the function (11), it is 
no longer necessary. 

In R 3 it may be usefull to place an origin of the grid in 
the center of one square and use the origin also for po, but it 
does not simplify the situation much. However it significantly 
simplifies the situation in M P 2 . It is possible to use completely 
arbitrary point such as center of the screen for po-

The homogeneous coordinates of the lines of the grid are 
described by equation (12). The line is a weighted sum of two 
lines. The "first" line \u(0) that connects po and the vanishing 
point v and the line h, that connects both vanishing points. 

l«W = 4 0 )+stepM(i)h, (12a) 

luii) = ]W + 8tepv(i)h. (12b) 

Line h is common for both directions of the grid edges and 
is called the horizon. It is the intersection of the plane in 
which the lines lie with the image plane. The lines of both 
the sets approach the horizon as the value of the step function 
approaches infinity. 

6 Grid Detection 

The main problem in the grid detection is finding of the pa­
rameters of the whole grid from a set of imprecisely detected 
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lines. The line detection step can be done by many methods, 
not only by the Hough transform. The grid parameters can be 
found in the parameter space of the H T or from the parameters 
of the detected lines. 

The grid has 8 degrees of freedom plus the number of DoF 
from the step function, whether it is described by equation (7) 
or (12). This is caused by the fact that the resulting points or 
lines can be scaled arbitrarily, but only as a whole equation. 

Although it is possible to solve the whole system of equa­
tions for all unknowns, the problem can be split to much sim­
pler parts. First of all, the two vanishing points and the cor­
responding fans (or more precisely pencils) of lines can be de­
tected almost independently. Second, it is possible to find the 
vanishing points first and then search for the 1(0). 

From the fact that all lines of the fan pass through the van­
ishing point, it is clear that the vanishing point can be detected 
directly from the line parameters. Theoretically only two lines 
are required for the localization of the vanishing point, but 
due to the errors and imprecisions (imprecisely detected lines 
and false detections) the lines of the fan do not intersect in 
one point. Aditionally, small error in the angle of the detected 
lines can lead to a large error in the vanishing point location, 
because when the projective distortion is small, the vanishing 
points lie almost in infinity. 

It is possible to use R A N S A C to find the best pair of lines, 
or at least to remove the most significant outliers. The vanish­
ing point can be found from all lines as a solution of an over-
specified system of equations. Given a set of lines { l i , . . . , 1/v}, 
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the vanishing point v can be found by solving equation 

Lv1 = 

\INJ 

(13) 

which just means that every line passes through the point v. 
When there are more than two lines, the system is overspecified 
(has more equations than unknowns). Of course, because of 
imprecisely detected lines, no accurate solution exists. The 
vanishing point must be found as a least square error solution 
or in a similar manner. 

The vanishing points correspond to the hyperplanes through 
the origin. This is the geometrical meaning of equation (13). 
The vanishing point can therefore be found by hyperplane fit­
ting, for example by uncentered P C A . By eigendecomposition 
of the correlation matrix 

C = ( l f . . . l £ ) 

\}NJ 

(14) 

three principal components are found. The component with 
the least variance (eigenvalue) is the hyperplane normal and a 
good approximation of the desired vanishing point. 

If the step function has the form 

step(z) = f(i) + q, (15) 

such as (11) it is possible to use that is not actually a 
line of the fan. Almost any line through the vanishng point 
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is usable. A line through the center of the image is a possible 
choice. Using step function (11), a fan of an uniform grid is 

l{uvy(i) = normalize(o x {v, u}) + (ki + g)normalize(u x v) 
(16) 

The normalization again uses an £2 norm of the underlying 
vector space. 

For each imprecisely detected line \(i) it is possible to solve 
this overspecified system to find the value of (ki + q). The 
values k and q can be then found by linear regression after 
clustering of the detected lines to get its indices i. 

7 H W Implementation 

The classical 9-g Hough transform was implemented on graph­
ical hardware by Diard [3] and Fung et. al. [7, 6], but the com­
mon graphical APIs can not directly rasterize sinusoid curves. 
Fung's implementation rasterizes the sinusoid curve as a poly­
line and Diards implementation rasterizes several quads, that 
span larger portion of the parameter space. 

The family of point-to-line mappings seems therefore to be 
suitable for hardware accelerated Hough transform, because 
rasterization of lines is a widely supported graphical opera­
tion. Another way could be through the G P G P U capabilities 
of modern graphical hardware that allows acceleration of al­
most any parallel algorithm. 

Wi th my colleagues, I tried and compared both ways. We 
used OpenGL to accelerate our parallel coordinate based Hough 
transform [4]. Using G P G P U A P I C U D A , we accelerated the 
Hough transform with PClines and classical 9-g parameteri­
zation and compared the results [14, 8]. The implementation 
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details can be found in my thesis or papers, here I will shortly 
summarize the measured performance. 

140 

120 

-a 100 a 
o 
o 
o> 80 

PClines-CUDA-GTX280 
ThetaRho-CUDA-GTX280 
PClines-OpenGL-GTX280 

PClines-OpenGL-HD5970-1 
PClines-OpenGL-GTX480 

PClines-OpenGL-HD5970-2 
ThetaRho-CUDA-GTX480 

PClines-CUDA-GTX480 

w u u u w o > o > o > O i 
o o o o o o o o o 

r r r r r 
\Q NO NO NO NO 
O O O O O -a -a -o 

ON NO 
_ hj -a 
to — • -a 

O ON NO — o -a 
ON 

-a 
O — O <J-> 

to 

"T3 h3 hj 
ON NO H -

tO 
7̂* 

to to 
o o 

-a *v 
o OJ 

IO U l U l 

o o o o o 

number of lines / inverted points 

U> ON 

Figure 6: Performance evaluation on generated data. 

Figure 6 shows the performance os sythetic images. These 
images were generated by rasterization of several random lines 
and the images were then distorted by a random noise. 

Figure 7 shows the performance on real-life images. 
On current graphics chips the performance of the sliding 

window algorithm perform equally fast for both 9 — g and 
the PClines line parameterization (it should be noted that in 
Figures 7 and 6 their curves totally overlap). On special, em­
bedded, and low-power architectures the PClines-based ver­
sion may perform much better or can be the only feasible one. 
That is because it requires no floating-point computations and 
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Figure 7: Performance evaluation on real-world images. 

no goniometric functions (which are cheaply available on the 
GPUs) . The only advantages of the PClines-based algorithm 
on G P U is, therefore, its better accuracy [5] and its ability to 
directly detect parallel lines and sets of lines coincident with 
one point. 

Figures 7 and 6 show that on the pre-Fermi N V I D I A card 
(GTX280), the OpenGL version of the PClines-based Hough 
transform performs better than C U D A . That is because the 
atomic increment operation (atomiclnc) in the shared mem­
ory is not optimized on this generation of the graphics chips. 
Very good results also come from recent Radeon graphics chips 
(with the OpenGL version). 

The Fermi architecture (compared to the previous genera­
tion) speeded up the algorithm in the OpenGL version just the 
amount which can be expected from the increase in the number 
of the streaming multiprocessors. However, the C U D A ver-
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sion presented in this paper speeded up notably more (about 
4 times) on the Fermi architecture. This can be explained by 
the improved atomic operations in the shared memory, involv­
ing the new design of the L2 cache on the GTX480 [16]. At­
tribution of the performance boost between the GTX280 and 
GTX480 to the atomic instructions was verified by running 
the algorithm with the non-atomic equivalents of the incre­
ment/add instructions. Such a modified program achieved a 
speedup corresponding to the number of processing cores on 
the graphics boards. The atomic instructions are used in both 
the edge extraction and sorting phase and in the phase of accu­
mulation into the Hough space. Therefore, the implementation 
of our algorithm uses the atomic instructions heavily and the 
improvement present in the Fermi architecture is beneficial. 

8 Conclusion 

In my thesis, I summarized the Hough transform and its us­
age for detection of straight lines. The main theme were the 
line parameterizations with focus on their subset - the Point 
to Line Mappings. A new parameterization (PClines), that 
belongs to this group was introduced. 

The hough transform was described as a modified integral 
transform and the relationships with other common integral 
transforms were analyzed. The most important integral trans­
forms, that relate to the Hough transform are the Radon and 
Fourier transform. 

I summarized most of the line parameterizations used with 
the Hough transform. Selected parameterizations were com­
pared with respect to the precision of the detection. In this 
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comparison, the new PClines parameterization seems to be the 
most precise one. For some line slopes, it is similarly precise 
to the most commonly used 9-g parameterization and outper­
forms it for the rest. 

For the P T L M s , I extended Bhattacharya's work by find­
ing conditions under which the P T L M s can be used for line 
detection, i.e. the conditions under which a pair of P T L M s 
can describe all lines in an image. I also found the subset of 
P T L M s for which a 2D convolution in an image space can be 
transformed to a ID convolution in the parameter space. 

Wi th colleagues, I provided a realtime line detector that 
uses G P U implementation of the H T . Two variations were 
implemented. One uses the renderig A P I OpenGL and its 
geometry shaders. This implementation is very simple and 
straightforward, due to the convenience of P T L M s . The other 
uses G P G P U A P I C U D A . While it is more complex, it allows 
the use of n o n - P T L M parameterizations. The performance 
of both implementations was tested on synthetic and real-life 
images. Both implementations allow realtime detection in full 
H D images on common graphical hardware. The C U D A im­
plementation is slightly faster on the same hardware, but more 
complex. 

As an application of the line detection, this work describes 
the detection of checkerboard-like patterns. Two aspects of 
this detection are examined in detail. First, the mathematical 
description of a perspectively projected checkerboard or more 
specifically its edge lines, was derived. Second, the behavior 
of the checkerboard lines was examined, when the lines were 
detecter using H T with P T L M line parameterization. This 
work is a part of a marker detection code that will be used for 
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the applications of augmented reality. 
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