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Abstrakt

Cyklin-dependentni kinasy (CDK) jsou serin/threavi@ proteinkinasy, které hraji vyznamnou
roli vregulaci bugcného cyklu, transkripce, posttrankiipch modifikacich, bu&né
diferenciaci a butné smrti. Inhibice CDK nizkomolekularnimi inhibijorje povaZovéana
za vhodnou strategii 6y mnoha tyf onemocgini etrg rakoviny. Molekula purinu se stala
jednou z prvnich, systematicky studovanych sketeivych inhibitofi CDK, ktera vedla az
k objeveni roskovitinu, nejzn&isiho purinového inhibitoru CDK. Diky roskovitintasledr
z&talo intenzivni hledani novych inhibioiICDK odvozenych od purinu. Tato doktorské prace
je zangtena na charakterizaci nového pyrazolo[d@yrimidinového bioisosteru roskovitinu
a hodnoceni jeho biologickycheiaki (kinasovéa selektivita, defosforylace retinoblasteého
proteinu, bua¢nd proliferace, akumulace nadorového supresoru [pa@kce apoptosy,
inhibice homologni rekombinace) v porovnani s regtkeem jako refereéni sloweninou.
Nékteré inhibitory CDK jsou schopny blokovat kigny cyklus a potléovat viabilitu parazita
leishmanie, proto byla analyzovana knihovna 6,@HsBsituovanych purih a isomernich
3,7-disubstituovanych pyraz¢iy3-d]pyrimidini pro svoji potenciélni anti-leishmanialni
aktivitu a inhibici CRK3 (cdc-2 related kinase). dRalni ¢ast prace se zabyva potencialni

farmakologickou inhibici CDK9 ve spojitosti se stdiehypertrofii a nddorovou angiogenezi.
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2. Cile disertatni prace

Cilem disertani prace bylo vypracovani literarni reSerSe tykajge vyvoje,
charakterizace a terapeutické vyuzitelnosti inbifiit cyklin-dependentnich kinas
(CDK) se zamsienim na purinové inhibitory a jejich derivaty. DaiScilem pak byla
biologicka a biochemicka charakterizace pyrazo®Mpyrimidinového bioisosteru
roskovitinu a popséani potencialni aplikace puriratvg pyrazolo[4,2f]pyrimidinovych
inhibitori CDK jako antileishmaniélnich sléenin.



3. Cyklin-dependentni kinasy

3.1.Biologické funkce CDK

Cyklin-dependentni kinasy (CDK) jsou serin/thremvi@ proteinkinasy, které hraji
vyznamnou roli pedevSim v regulaci bétného cyklu, p transkripci a post-
transkrignich modifikacich, ale také v procesech &uné diferenciaceéi bunééné smrti
(Knockaert et al., 2002; Malumbres & Barbacid, 200Bro jejich aktivaci je
vyZzadovana fitomnost vazebného partnera, kterym je v@Siwe pripadi cyklin.
Analyzou lidského genomu byla zgga existence 11 gérkodujicich CDK, dalSich
9 kddujicich kinasy fibuzné CDK a dale 29 génkteré mohou byt ozgavany jako
cykliny (diky pfitomnosti cyklinové domény),ipstoze funkce gkterych z nich zatim
zastava nevyjasima (Malumbres & Barbacid, 2005).

Regulace buftného cyklu je zaji®vanactyimi hlavnimi kinasami CDK4/6/2/1
spolené s cykliny D/E/A/B, utitou roli (prfechod GO/G1) hraje i CDK3/cyklin C (Ren
& Rollins, 2004). CDK7/cyklin H/MAT1 se zapojuje jem do regulace bwtiného
cyklu (fosforylace CDK1/2), ale spales s kinasami CDK8/9 s cykliny C/K/T také
do kontroly transkripce (fosforylace RNA polymerally (Fisher, 2005; Marshall &
Grana, 2006; Galbraith et al., 2010). CDK5 v kompls proteiny p35/p39 séqvazri
podili na vyvoji a diferenciaci neurdrfMaccioni et al., 2001; Cicero & Herrup, 2005).
Mén¢ prostudované kinasy CDK10 a CDK11/cyklin L séastni rkterych proces
béhem mitosy a transkripce RNA (Kasten & Giordand)2Hu et al., 2007).

3.2. Genetick& analyza funkci CDK

Role jednotlivych CDK v sa\ buice, interakce se substraty, inhibitory a jinymi
proteiny, byla primar& studovana biochemickymi figtupy. Tyto studie vedly
k objasrni zapojeni CDK a dalSich protéido regulace buftného cyklu a pochopeni
celého mechanismu. V posledni dolsak k objastni ontogenetickych funkci CDK
napomahaji i genetické analyiryvivov mysich modelech. V séasné dob je popsano
mnozstvi modéi s cilenym untdenim jedné i vice CDK s@asr¢ (Ortega et al., 2002;
Malumbres et al., 2004; Malumbres et al., 2008; uvddires et al., 2009). Spousta
téchto experimerit vede k embryonalni letaditv riznych fazich vyvoje a poukazuje tak

na dilezitost rekterych cyklin-dependentnich kinas.



Cilené vyazeni CDK4 nebo CDK6 neni sice embryogéletalni, i kdyz
deficience &chto kinas ovliviuje proliferaci gkterych tym burgk. Ztrata exprese
CDK4 nagriklad brani proliferaci pankreatickydhbungk a burgk laktotrofa hypofyzy
v postnatalnim vyvoji (Rane et al., 1999; Tsutsuale 1999), potléeni exprese CDK6
pak vede k poklesu produkeéervenych krvinek (Malumbres et al., 2004). Kombmac
CDK6" a CDK4" zpisobuje pozdni embryonaini letalitu @wbdu poskozeni
krvetvorby (Malumbres et al., 2004).

Experimenty zabyvajici se cilenym fagenim kinasy CDK2 ukazaly, ze
nedochazi k vyraznym porucham prolifera¢&tarych typi burgk, coz vedlo k z&sru,
Ze CDK2 neni fimo vyZadovana pro proces liiného d@leni. Tato postradatelnost je
vyswtlovana schopnosti kompenzace hladiny CDK2 mitatickinasou CDK1 (Aleem
et al.,, 2005; Cai et al., 2006a). Negativni vliviiclence CDK2 byl pozorovanip
vyvoji obou tym pohlavnich bugk, které nebyly schopny dok&ih prvni meiotické
déleni, coz naslednvedlo ke steril# narozenych mysi (Berthet et al.,, 2006; Ortega
etal., 2002). Kombinaci mutantCDK2" a CDK4 doslo k potldeni proliferace a
diferenciace kardiomyocit(Barriere et al., 2007; Berthet et al., 2006jc¢gmz ani
u jednoho ze samostatnych mutanbto nebylo pozorovano. Kombinace mutant
CDK2"" a CDK6" nevedla kZzadnym dalsim efékt v porovnani s mutanty
jednotlivych kinas (Malumbres et al., 2004).

Potlateni exprese mitotické CDK1 vede k okamzité embridnatalitt bechem
prvniho bugcného dleni (Santamaria et al., 2007), stejako v gipadt vyrazeni
cyklint A2 (Murphy et al., 1997) nebo Bl (Brandeis et 41998). Tento jev je
pravdépodobré dan nezbytnosti CDK1 v mitotickém¢ldni a také nemoznosti jeji
kompenzace vdkterych procesech (Malumbres & Barbacid, 2009). Eymalni
letalita ve stadiu blastocysty visledku potldeni ptibéhu mitosy byla pozorovana
i u mutanta CDK1T (Lu et al., 2004).

Cilené vyazeni CDK5 vede k vyraznym abnormalitam ve vyvojsteuktue
nervového systému spojenych s perinatalni smrtinged (Ohshima et al., 1996).
Podobny fenotyp byl pozorovan i vipact umikceni vazebnych partnerp35/p39
(Ko et al., 2001).

VSechny zmiané in vivo experimenty s¥d¢i predevSim o nepostradatelnosti
CDK1/5/11, naopak CDK2/4/6tgjmé nejsou esencialni pro regulaci kaného cyklu,
jelikoz jejich ztrata se projevila jen ve vyvogkierych specializovanych békv urcité

fazi mySi embryogeneze (Malumbres & Barbacid, 2009)
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Stejnou mirou jako zmované genetické manipulatevivo prispivaji k lepSimu
pochopeni funkce dané cyklin-dependentni kinasyxpeamenty na nédorovych
burgcnych liniichin vitro (SIRNA, shRNA) odrazejiciifmy dopad vyazeni ugité/ych
CDK na nadorovou hiku. Genetické studie ukazaly na nevyznamnost CD&®&im
bunééné proliferace a podobné zdly byly publikovany i i vyrazeni CDK2
ve vybranych typech nadorovych kinych linii (kolorektalniho karcinomu,
osteosarkomu a karcinomwldzniho ¢ipku) metodou RNA-interference (Tetsu &
McCormick, 2003; Payton et al., 2006). Nicnagotlateni CDK2 pomoci RNAI vedlo
k zastaveni buftné proliferace melanodyta p‘edpoklada se, Zze CDK2 by mohla hrat
dulezitou roli ve vyvoji kozniho melanomu (Du et a2004), pravépodobré diky
nedavno prokazané vyrazmvySené expresi u tohoto typu nadorovychdsubdulah
et al., 2011).

Podobné experimenty byly prowiy i s ostatnimi cyklin-dependentnimi
kinasami. Vyazeni CDK1 v nadoroveé linii U208 NCI-H1299 vedlo k ¢éekdvanému
vyrazrejSimu natistu G2/M populace bk bez indukce apoptdzy (Cai et al., 2006a;
Payton et al., 2006), nicmé&ru linie MDA-MB-453 vedlo vyazeni CDK1 spol&¢
s G2/M blokem k ndistu apoptotické populace bikno vice nez 150% (Payton et al.,
2006). ProtoZze mnoho inhibitoICDK je skupino¥ selektivnich wu¢i CDK2 i CDK1,
zkoumal se i vliv satasného vkazeni oboudchto enzyni. TimtoreSenim byla navic i
potlatena vzajemna kompenzovatelnost obou kinas; ta pglarzena gitomnosti
anomalnich komplaex CDK2/cyklin B nebo CDKl1l/cyklin E (Cai et al., 2086
Sowasnym vyazenim CDK1 a CDK2 dlefpdpokladu vyrazh vzrostlo zastoupeni
burgk v G2/M fazich bu&ného cyklu v porovnani s ¥gzenim samotné CDK1, navic
doSlo k vyraznému nastu apoptotické populace bikn(Cai et al., 2006a).

Vytazeni CDK4/6/2 bylo ndfklad studovano na lymfomovych itkédch LY18
(Gumina et al.,, 2010). Ureni uvedenych CDK jednotkv nevedlo k vyraznym
zmenam, coz oft potvrzuje jejich vzgjemnou zastupitelnost. K akieei burgk v G1
fazi burééného cyklu a inhibici proliferace doslo a# potlateni exprese vSech CDK,
nebo kombinace CDK4/6 (Gumina et al., 2010).

Zvyseni apoptotické populace liknna 30% bylo pozorovanofipvyrazeni
CDKS5 v krysich nervovych hikach E-18 (Zheng et al., 2007), k p&#ai proliferace
doSlo u linie odvozené od karcinomu Stitné Zlazn @t al., 2007). Jiny efekt, podiani
migrace bupk jako vysledek undeni CDKS5, byl prokazan na prostatické linii DU145
(Strock et al., 2006).



Vyiazeni CDK9, pozitivniho regulatoru aktivity RNA polerasy I,
v nékterych bur¢nych liniich vedlo pedevsSim k ndistu apoptotické populace a
okamzitému poklesu bgdné transkripce (Cai et al., 2006b; Manohar et28110), coz
by mohlo s¥d¢it o nenahraditelnosti CDK9. SniZzeni exprese CDHIb lprovedeno
negimo pes cilené untkeni cyklinu H, ktery se jevi jako klbvy pro stabilitu celého
komplexu CDK7/cyklin H/MAT1 (Patel & Simon 2010)id¢3 vyrazny pokles hladiny
vSech &i uvedenych proteinvSak nedoslo k Zzadnym zZmam v bugéném cyklu, ani
k poklesu urova fosforylaci CDK1/2 a RNA polymerasy Il (Patel &n$on, 2010).
Moznym vyswtlenim mize byt nedostateé utlumeni aktivity CDK?7, jejiz rezidualni
aktivita miZe byt postéujici pro plreni vSech funkci, nebo kompenzace jinou kinasou.
Tyto domrénky vSak zatim nebyly experimentélpotvrzeny, nicméh nékteré studie
nazng&uji moznost fosforylace C-terminalni domény (CTDNAR polymerasy Il
kinasami CDK2/cyklin E a CDK1/cyklin B (Cisek et,a1989; Deng et al., 2002).

3.3.CDK a nadorova transformace

Mezi zakladni vlastnosti nddorovériy (Obrazek 1) pat nezavislost na mitogennich
faktorech a také sniZzena citlivost odpdivna fistové inhibéni signaly (Hanahan &
Weinberg, 2011). Qbtyto vlastnosti jsou spjaty se zvySenou d&umou proliferaci,
kterd souvisi s genetickymi nebo epigenetickymiérami proteii zasahujicich
do regulace buftného cyklu. Tyto poruchy mohou souviset (i) s jetingmi
regulatory buscného cyklu nebo (ii) s n&azenymi signalnimi drahami, které tyto
regulatory ovliviuji. Nadorovou transformaci vyragrpodporuji zndny proteinovych
hladin regulatakr CDK, predevsim firozenych inhibitoii Cip/Kip a INK4, cyklin
D/E/A, fosfatasy Cdc25A/B, ale také subsir@DK (nag. retinoblastomovy protein Rb
nebo nukleofosmin) (Malumbres & Carnero, 2003; $0a@®006). Pimé genetické
zmeény CDK jsou spiSe vyjimkou. Prvnitipad onkogenni aktivace CDK4 bodovou
mutaci (R24C) byl popsan u maligniho melanomu (@It al., 1995), vack jinych
nadorovych onemoeni byla prokazana zvySena exprese CDK4 diky arkplifigenu
(Ortega et al., 2002),figemz rEkteré z nich vykazovaly i spaleou amplifikaci
s genem pro Mdm-2 (Reis et al., 2000; Lopes e@D;; Simon et al., 2002). CDKE6 je
nadnérné exprimovana jen u d&kterych tymi spinocelularnich, gliomovych a
lymfomovych karcinom, opit jako disledek genovych amplifikaci (Malumbres &
Carnero, 2003). Ro¥# byly popsany ifpady nadorovych onemasmi, u kterych

10



EGFR Cyclin-dependent
inhibitors kinase inhibitors

Sustaining Evading
Aerobic glycolysis proliferative growth Immune activating
inhibitors signaling SUpPressors anti-CTLA4 mAb

Deregulating Avoiding

Proapoptotic Hes‘sl‘lmg E”f}b"tf_‘g Telomerase
. = ] ce replicative s
BH3 mimetics Aot i Inhibitors

Genome . Tumor-
instability &
mutation

AN

PARP Inducing Activating Selective anti-
inhibitors angiogenesis invasion & inflammatory drugs

metastasis
Inhibitors of Inhibitors of
VEGF signaling HGF/c-Met

Obrazek 1: Charakteristické znaky nadorové iky (p‘evzato z Hanahan & Weinberg, 2011;

s povolenim vydavatelstvi Elsevier).

dochazi ke zvySené expresi jak CDK4, tak CDK6 wtivebodovych mutaci
ve vazebnych mistech jejichfimzenych inhibitod (Zuo et al., 1996; Easton et al,
1998). Naopak nadorova onemechvychazejici z alteraci CDK2 nebo CDK1 zatim
popsany nebyly. ifpadna zvySeni aktivityéthto dvou kinas jsou&sSinou spojena se
zvySenou expresi cyklinu B inaktivaci p27 (u CDK2) nebo s inaktivaci p27 21p
(u CDK1) (Malumbres & Carnero, 2003; Malumbres & Bzcid, 2009).

Cykliny D, zapojené do signalni drahy Cyklin D-CDKR4ANK4-Rb-E2F, jsou
prokdzanymi onkogeny v cetad nadofi (Ortega et al., 2002), jejich overexprese vSak
také souvisi se zvySenou aktivaci fanych onkogennich signalnich drah vlivem
mutaci nafiklad v onkogenecRasa Myc (mitogenri aktivovana draha - MAPK) -
kateninu (draha Wnf}-katenin) nebo genuErbb2 (receptorova rodina RTK)
(Malumbres & Carnero, 2003). U cyklinu E a A nedazhcasto ke genetickym
alteracim, jejich zvySend exprese je spojovana rdgesou expresi p21 a p27,
prirozenych inhibitoii CDK rodiny Cip/Kip (Porter et al., 1997).

11



U téchto inhibitoi se setkavame s genetickou alteraci takéijetka. Prokazana
delece v genu pro p2l1 byla pozorovana jerckterych gipadech karcinokn Stitné
Zlazy (Shi et al., 1996), mutace v genu pro p27 pakkterych gipadech prsniho
adenokarcinomu (Spirin et al., 1996). P&dlai exprese p2l1 a p27 je danedqevsim
mutaci nathzeného nadorového supresoru p53i{pgut p21), ubikvitinligasy APC
(v ptipadt p27) nebo epigenetickym udenim (Malumbres & Carnero, 2003).
U dalSiho pirozeného inhibitoru p57 byla pozorovana translekaenu vedouci ke
ztragé CDK-inhibicni domény (Hatada et al., 1996; Lee at al., 19BiRjbitory rodiny
INK4 byvaji v nddorech velmiasto umtované z évodu delece, mutace a epigenetické
hypermethylace promoteru (Ruas & Peters, 1998)cds&ji se setkavdme s$mito
zménami u inhibitoru p16, naopak genetické alteracenhibitora p18 a pl9 jsou
pozorovany jenizdka (Gemma et al., 1996; Lapointe et al., 1996).

ZvySena exprese regdlach fosfatas Cdc25A/B popsanaady nadorovych
onemocgni vede k hyperaktivaci CDK (Boutros et al., 20@7)e &tSinou spojena
s aktivaci protoonkogenMyc a naslednou zvySenou expresi cykld (Galaktionov et
al., 1996; Sato et al., 2001).

3.4. Strategie pouZziti inhibitord CDK
VSechny vySe uvedené genetické i epigenetické aakerpodporujici nadorovou
transformaci a busgnou proliferaci nazrauji, Ze prd¢ CDK by se eventuatnmohly
stat cilem protinadorové terapie. Proto se stalan&iinhibice CDK selektivnimi
inhibitory jednim z intenzivéd zkoumanych fistupi, jak zabranit nekontrolovatelné
proliferaci nadorové hiky. V této souvislosti byly primagnstudovany vsechny CDK
zahrnuté do regulace btimého cyklu (CDK1/2/4/6) jako potencialni terapekéicile.
Nicmére v posledni dob se gedmétem zajmu stala i CDK5 a transkiih CDK7/9,
jejichz zvySena exprese byla prokazanackterych tym nadorovych onemoéni
(Romano & Giordano, 2008; Liu et al., 2010) a jefigootencialni inhibice by tudiz
mohla mit pinosny terapeuticky potencidl.

Nékteré inhibitory CDK, kromd ptimého vlivu na progresi bgdného cyklu
prostednictvim inhibice CDK1/2/4/6, omezuji proliferaciiabilitu nadorovych buk
i jinymi mechanismy. Zejména se jedna o schopnédenych inhibitofi CDK sniZzovat
aktivitu CDK9 (Chao & Price, 2001; Shima et al.,030 Heredia et al., 2005;
MacCallum et al., 2005; Cai et al., 2006b) a awwvat tak transkripci mRNA
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(Ljungman & Paulsen, 2001; Blagosklonny, 2004). |l&eni transkripce vede
ke sniZzeni expresi&ady antiapoptotickych protein(Bcl-2, Mcl-1, survivin, XIAP) a
podporuje indukci apoptosy. kterych malignich onemoéni se toto potlkgeni
hladiny antiapoptotickych protainroskovitinem (Alvi et al., 2005; Hahntow et al.,
2004; McCallum et al., 2005; Raje et al., 20059y dipiridolem (Kinig et al., 1997;
Kitada et al., 2000; Gojo et al., 2002; Chen et2005), SNS-032 (Chen et al., 2009),
P276-00 (Manohar et al.,, 2010) nebo AT7519 (Santale 2010) ukazalo jako
terapeuticky velmi nagné.

Inaktivace CDK9 nizkomolekularnimi inhibitory CDKSak nemd vliv pouze
na hladinu antiapoptotickych protéinprojevuje se i ndgggmo akumulaci proteinu p53
jako disledek poklesu transkripce jeho negativniho reguladm-2 (Lu et al., 2001;
Demidenko & Blagosklonny, 2004; Krystof et al., B0@riloha 1). Protein p53 je
vyzna&nym transkrignim faktorem, ktery zasahuje do mnoha damych proces,
véetrg regulace bu&ného cyklu, opravy DNA nebo apoptosy (Oren, 2003045 &
Lane, 2003). S aktivaci p53 je spojena naslednéesgppirozeného inhibitoru p2&i
aktivace proapoptotickych proté&rPuma a Noxa. Timto apobem se iive zvySovat
protinadorovy dinek slokenin, které jsou schopny inhibovat i transknp CDK7/9,
jak bylo napiklad ukazano v jedné Zizenych praciRriloha I).

DalSi dilezitou vlastnosti, kterou se mohou inhibitory Clp&dilet na potléeni
rastu nadoru a jeho expanzi, je jejich schopnostapotiat angiogenezi. Udkterych
inhibitori CDK byl prok&dzan negativni vliv na angiogenezilg@nim exprese VEGF
(vascular endothelial growth factor) (Mellilo et,al999; Ali et al., 2007; Stockwin
etal.,, 2009). Nicmé&h u nrekterych inhibitofi za potl@éenim angiogeneze
pravdEpodobri stoji inhibice transkripce obegna také omezeni migrace endotelialnich
burgk, tedy proces, kde se aktivé icastni CDK9 a CDK5 (Radhakrishnan & Gartel,
2006; Ali et al., 2007; Liebl et al., 2010; Zahédral., 2010P¥iloha II).

V souvislosti s hledanim vhodnych inhibitorCDK vSak prozatim nebyla
vyieSena otazka selektivitytiplusnych inhibitoli; zda-li je vyhodgjsi inhibovat jen
jednu utitou CDK, vSechnyi presreé definované kombinaceskterych CDK. Podobny
problém vyvstava u volby vhodného nadorového mogdgluyuziti raizné selektivnich
inhibitori CDK a uspSném pevedeni experimeiits burgcnymi kulturami a mySimi
modely do klinické podoby. Pouziti inhibitorCDK je totiZz omezeno v zavislosti

na typu nadorové tké&n genetickém pozadi a citlivosti k danému inhihitoyto
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nevyjasgné otazky jsou fi¢inou relativie pomalého pibéhu klinickych experimerit
s inhibitory CDK a zejména nejednozna terapeutickédnnosti.

U kazdého inhibitoru CDK je nutné zvaZovat (ne)s@tu piedevsim
i z hlediska moznych jinych proteinkinasovychugcilkteré by nemusely prospivat
Zadoucimu terapeutickémudigku. Nekteré gdekdvané toxickédinky spojené s inhibici
CDK4 (inhibice pankreatickycip-burgk vedouci k cukrovce), CDK2 (nedoktemi
meiotického dleni pohlavnich buik vedouci ke steril) nebo CDKG6 (ztrata
proliferace erytrocyt vedouci k anéemii), které byly prokazany v genetatkmodelech
(Malumbres & Barbacid, 2009), mohou byt akceptowvatgiz pro dosplého jedince,
naopak terapie cilend proti CDK1rijpadré i CDK7 a CDK11) by mohla znamenat
komplexni toxicitu vyrazé se neodliSujici od dneSnich cytostatik (Malumbé&es
Barbacid, 2009). Dalsi moznou komplikaci by mohiyt lvedlejSi @inky spojené
s inhibici még studovanych kinas CDK10 a CDK11, které zatim neliygowasti
testi selektivity novych inhibitat CDK. Bylo prokazéno, Ze inhibice CDK10 vede
k nezadouci aktivaci ERK/MAPK kinasové drahy (loras al., 2008) a pottgni
exprese CDK11 zvySuje genetickou nestabilitu a paodp tumorogenezi
(Chandramouli et al., 2007). Z aminokyselinové sgloe residui formujici aktivni
misto kinas CDK10/11 je vSak patrnd dostaé odliSnost od ostatnich CDK
(Tabulka 1), ¢imZz se pravépodobnost spotmé inhibice gkterych CDK spoléng
s CDK10 nebo CDK11 p@hkud snizZuje.

| pires komplexnost posuzovani vhodné selektivity inbibi CDK v zavislosti
na islusném genetickém modelu sefidanachazet &které vhodné diagnozy
pro experimentalni bu. Jednim zipkladdi maze byt cilena inhibice CDK4 u prsniho
karcinomu za fedpokladu zvySené expreBebb2 a Rasonkogenu, ktera naopak neni
acinna v gipad vyskytu Myc a Wnt-1 onkogeri (Yu et al., 2001). Naopak \ipad:
Myc-indukované rakoviny e se jevi inhibice CDK4 jako efektivni (Miliani
de Marval et al., 2004). DalSi moZnou aplikaci k&zala i inhibice CDK1, prokazana
ale jen v pipact nadorovych onemoéni charakterizovanych overexpresi onkogenu
Myc (Goga et al., 2007). Inhibice CDK2 by zase molaat mplatréni pri [écbé kozniho
melanomu podporovaného expresi transkiipo faktoru MITF (melanocyte lineage
transcription factor) (Du et al., 2004).
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Tabulka 1. Srovnani aminokyselin formujicich aktivnmista vybranych lidskych a leishmaniovych
CDK. Barvy zn#i fyzikalné-chemické vlastnosti aminokyselinfervena - hydrofobni, modra - kyselé,
oranzova - bazické, zelené - ostatni polarni. Negvizastoupené aminokyseliny ve vSech uvedenych

kinasach jsou oznéeny Sed.

65 82 82 84 85 87 134 144 145

LmjCRK1 V F E L D D L G D
82 99 100 102 103 105 149 152 162 163

LmjCRK3 V F E \% E D A L A D
64 80 81 82 83 86 135 145 146

CDK1 Vv F E F L D L A D
64 80 81 82 83 86 134 144 145

CDK2 Vv F E F L D L A D
64 80 81 82 83 86 134 144 145

CDK3 Vv F E F L D L A D
77 93 94 96 97 99 144 147 157 158

CDK4 \% F E \% D D E L A D
64 80 81 82 83 84 86 133 143 144

CDK5 \% F E F C D D L A D
77 98 99 101 102 104 152 162 163

CDK6 Vv F E \% D D L A D
75 o1 92 93 94 95 97 100 144 154 156

CDKY | F D F M E D \% L A D
79 97 98 100 101 103 155 158 172 173

CDK8 | F D A E D A I A D

79 103 104 105 106 107 109 112 153 156 166 167
CDK9 \% F D F C E D G A L A D

101 117 118 120 121 123 170 180 181

CDK10 L M G C E D L A D
488 504 507 508 510 557 567 568

CDK11 V M Vv E D L G D

4. Inhibitory CDK

Se zjisStnim, Zze by se CDK mohly stat vhodnym cilem protorédé terapie, zal
v poslednich dvaceti letech intenzivni vyzkum vestl hledani inhibitar CDK. Mezi
tzv. CDK-inhibitory prvni generace $adi roskovitin (Meijer et al., 2006) a flavopiridol
(Sedl&ek, 2001; Blagosklonny, 2004), jejichZ strukturyckigzi z pirodnich latek, a

které jako prvni vyznamneé inhibitory CDK vstoupdy klinického testovani. Naslegn
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bylo riznymi syntetickymi pistupy vyvinuto obrovské mnozstvi dalSich strukicinn
motiva (Malumbres et al., 2008; Dickson & Schwartz, 2003lumbres et al., 2009;
Wesierska-Gadek et al., 2009; Krystof & Uldrian 1@ Lapenna & Giordano, 2010;
Németh et al., 2011), ze kterych byly odvozeny bitbory CDK ozn&ované jako
inhibitory druhé generace, z nichZzékteré jsou v sotasnosti také testovany
v Klinickych experimentechlgbulka 2; Obrazek 2).

Diky postupujici genotypizaci jednotlivych typrakovin a pokroilému
mapovani funkci vSech znamych CDK se ¢ipp v budoucnu s vyvojem
tzv. CDK-inhibitorti tieti generace, které by uzép byt syntetizovany cileh jako
inhibitory uritych CDK (jejich kombinaci aifypadr i jinych kinas) dle zavislosti na
celkovém genetickém pozadi daného nadorového omemiodalumbres et al., 2008).

Mezi prvni systematicky popsané nizkomolekularnhibitory CDK pati
2,6,9-trisubstituované puriny (Meijer & Raymond 030, které tvei stZejni zaklad této
doktorské prace. lnymi syntetickymi pistupy byla ziskdna celéada purinovych
derivati (Vesely et al., 1994; De Azevedo at al., 1997; Ikak et al., 1997; Schow
et al., 1997; Chang et al., 1999; Vermeulen efal?2).

Tabulka 2. Rrehled inhibitoni CDK nachazejicich se viznych fazich klinického testovani (Malumbres
et al., 2008; Dickson & Schwartz, 2009; Malumbresad., 2009; Brasca et al., 2010; Wesierska-Gadek
et al., 2009; Krystof & Uldrian, 2010; Lapenna & @rdano, 2010; Németh et al., 2011).

Inhibitor Cilena CDK Inhibitor Cilena CDK
Flavopiridol 2/4/6/9 ZK 304709 1/2/417/9
Roscovitin 1/2/517/9 AZD5438 1/2/516/9
AT7915" 1/2/415 TG02 1/2/7/9
R547 1/2/4 BAY 1000394 1/2/4/9
PD-0332991 416 LEEO11 416
SNS-032 21719 P276-00 1/4/9
AG-024322 1/2/4 PHA-793887 1/2/415/7/9
RGB 286638 1/2/415/7/9 BAY 80-3000 1/2

P 1446A-05 4 INJ-7706621 1/2
PHA-8481258 1/2/4 SCH-727965 1/2/519

prokazana inhibice dalich proteinkindSK3;"VEGFR1/2/3, PDGFR, FIt-3; ‘AUR1/2; “TRKA,; °Flt-
3, JAK2, ERK5
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Jednim z nich byl roskovitin (CYC202; Seliciclibktery jako prvni a zatim
nejvyznamgjSi inhibitor CDK ztady trisubstituovanych purinvstoupil do klinickych
testi a v sodasnosti se nachazi tranych fazich klinického testovani jako samostatné
lé¢ivo proti nemalobu&nému karcinomu plic a karcinomu nosohltanu nebo
v kombinaci s gemcitabinem protiiznym typim progredujiciho solidniho tumoru

(cyclacel.com; clinicaltrials.gov).

4.1.Roskovitin
Roskovitin vykazuje vyrazné inhimi inky proti CDK1/2/5/7/9 (McClue et al., 2002;

Krystof et al.,, 2005), které se naslédrodrazeji vjeho antiprolifetaich a
cytotoxickych schopnostech (Meijer, 2006). Vliv kositinu na bugény cyklus je
spojovan s defosforylaci retinoblastomového praoteirs poklesem hladinyékterych
cyklint a CDK (Barrie et al., 2003; Whittaker et al., 200Raynaud et al., 2005;
McCallum et al., 2005; Paprskéda et al., 2009). Diky inhibici CDK7 a CDK9 dochaz
v bunkdch k poklesu aktivity RNA polymerdzy Il a tim kotfaéeni transkripce
(Ljungman & Paulsen, 2001; McCallum et al., 200%ijloha 1), coZ se projevuje
snizovanim hladin proteins kratkou stabilitou, fi@devSim s antiapoptotickou funkci
(Mcl-1, survivin, Mdm-2) a dochazi tak k indukciaédzy (McCallum et al., 2005;
Raje et al., 2005). Potlanim exprese proteinu Mdm-2 dochazi vikach ovlivrenych
roskovitinem k akumulaci nadorového supresoru p5&de (David-Pfeuty, 1999;
Paprskéova et al., 2009). Roskovitin negatévrovliviiuje také dalSi buné cile,
nag. mitogeni aktivované kinasy ERK1/2 (Whittaker et al., 200g@yridoxalkinasu
(Bach et al., 2005; Tang et al., 20@)mitotické kinasy AUR1/2 a PLK1 (Whittaker
et al., 2007), jejichZ inhibice se taky podili mdiproliferativnich @incich.

4.2.DalSi purinové inhibitory CDK

Diky pomerné silnym inhibénim vlastnostem, selekti¥it a fadkd vyznamnych
biologickych &inka se roskovitin stal motivaci mnoha studiinujicich se dalSimu
vyvoji inhibitori CDK. Vyvoj v oblasti purinovych inhibitdgr CDK se ubira fevazr
ttemi sméry. Prvnim z nich je snaha o obnu substituovatelnych pozic purinového
skeletu (pedevsim pozic 2, 6 a 9), druhou pak jegmensamotného purinového skeletu

nahradowi doplnénim dusikovych atofnza vzniku novych heterocyklickych systém
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tzv. purinovych bioisostér Tietim pistupem je pak kombinace dvouedeSlych
inovativnich snira.

Ve snaze zesilit inhibini a antiproliferani vlastnosti purinovych inhibitér
CDK bylo pripraveno velké mnozstvi derivas nejiiznejSimi typy substitueriit (Schow
et al., 1997). Pod#éo se tak ziskat ¢ktera &innéjSi analoga CVT313 (Brooks et al.,
1997), purvalanol (Gray et al., 1998; Chang et1899), olomoucin Il (Krystof et al.,
2005), H717 (Dreyer et al., 2001), NU2058 a NU61Davies et al., 2002; Hardcastle
et al., 2004), CR8 (Bettayeb et al., 2008a) nehmpiski biarylovych derivdt (Oumata
et al., 2008; Trova et al., 2009a; Trova et alQ@®Rf). | ges vysokou &innostiady
inhibitori  (aZ stonasobné zlepSeni inkitli a antiproliferani aktivity oproti

roskovitinu) nebyla Zadna sléenina vybrana pro klinické experimenty.

Pracovisé Laboratdge nistovych o
regulatofi taktéZz dlouhodab studuje inhibitory
CDK odvozené od roskovitinu. Snahou vSak n¢ OH
jen zvySeni inhikinich a proliferanich vlastnosti
now vznikajicich derivat, ale i zvySeni jejich l—:;N 7
metabolické stability. Farmakokinetické stud IN7” |5 N\>8
totiz ukazaly, Ze roskovitin je v systéniu vivo N/2K\N 2 No
ponerné rychle metabolizovan (Nutley et al OH H ’
2005; Raynaud et al., 2005; McClue & Stua BA-09

2007). Jeden z hlavnich metabili¥znikd oxidaci primarni hydroxyskupiny na C2
postrannimrettzci az na karboxylat a tim agretraci inhibéni vlastnosti wéi CDK.
Tato metabolicka deaktivace pak vede ke snizowempeutického dinku roskovitinu

in vivo (Benson et al., 2007). Na zaksattchto skuténosti byla v nasSi laboraio
piipravena série novych purinovych derivabbsahujicich sekundarni a terciarni
hydroxyskupinu na C2 postrannietezci, ktera by mila byt chragna proti metabolické
oxidaci. Dulezité gitom je také zachovani afinity k CDK a proapoptkéico misobeni

v nadorovych bu&nych liniich, které bylo prokazano se steninou BAQ9, zastupcem
této serigPriloha lll) .

4.3. Roskovitinem inspirované purinové bioisostery

Jednou ze strategii racionalnihidspupu k vyvoji novych I&v (Patani & LaVoie, 1996;
Lima & Barreiro, 2005) je syntéza a studium bioisasteeboli strukturé podobnych
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slowenin liSicich se ¢kterymi funkénimi skupinamici atomy nebo jen vzgjemnym
uspdadanim jednotlivych atoin v molekule. Tyto modifikace obvykle vedou
ke znenam fyzikal®-chemickych vlastnosti néwzniklych slogenin, které se mohou
projevit (i) zlepSenim metabolické stability, (@dtlacenim utitych nezadoucich efekt
(iif) zmeénami farmakokinetickych vlastnosti, (iv) zlepSerindostupnosti (Popowycz
et al.,, 2009). Timto istupem bylo v poslednich letech syntetizovarotk tiid
bioisosted purinovych inhibitodh CDK (Obrazek 3). Nejwtsi skupinu tvéi bioisostery
se zachovanym gtem ¢tyt dusikovych atorin v zakladnim skeletu. Vznikly vSak i
skupiny isomek obsahujici pouzetit nebo dokonce dva atomy dusiku v molekule,
stejre tak i jedna skupina sléanin s @ti atomy dusiku.

Jen u méla zthto bioisostar doslo k vyrazgjSimu zvySeni aktivity &ci CDK.
VétSina bioisostér vykazuje stejné vlastnosti jako purinové latky. Zleakové pat
imidazo[2,1f]-1,2,4-triaziny (Bettayeb et al, 2008b; Popowycz al, 2009),
pyrolo[3,2-d]pyrimidiny (Capek et al., 2003) triazolo[1&pyrimidiny (Richardson et
al., 2006; WO/2004108136), imidazo[4fpyridiny (WO 2009/034411),
imidazo[1,2a]pyraziny (WO/2004/026877) a imidazo[1aPpyridiny
(WO/2004/026867; Fischmann et al., 2008). Sdab vSak vznikaly i purinové
bioisostery, u kterych doslo k aplnému padai inhibiéniho potencialu &i CDK. Jsou
jimi pyrazolo[3,4d]pyrimidiny (Kim et al., 2003), 8-azapuriny (Ha#tk et al., 2005) a
benzof]imidazoly (Jain et al., 2011).

Byly v8ak také pipraveny Ctyii typy bioisostei, které vyrazs prevysu;ji
inhibi¢ni  schopnosti analogickych putin Jsou jimi pyrazolo[1,%2]-1,3,5-triaziny
(Bettayeb et al, 2008b; Popowycz et al, 2009; WGO052082908),
pyrazolo[1,5a]pyrimidiny (Williamson et al., 2005; Paruch et,&007; Ali et al., 2009;
Heathcote et al., 2010; WO/2004/087707; WO2008/2272W0/2008/151304),
pyrazolo[1,5a]pyridiny  (Fischman et al, 2008; WO/2004/026872) a
pyrazolo[4,3d]pyrimidiny (KryStof et al., 2006; Sroka et al., B0 P¥ilohy 1V, V). Aby
mohlo dojit k co nejfesrEjSimu porovnani vlastnosti jednotlivych bioisogtebyl u
n¢kterych skupin vytvien gimy isomer roskovitinP#iloha IV - Figure 1).

Za vySSi dinnost tchto ¢tyt tiéid purinovych bioisostér pravdpodobré stoji
zejména usp@dani dusikovych atoimna gticlenném kruhu. Z vazby roskovitinu a
dalSich purinovych inhibitdr v aktivnim mist CDK2 (Davies et al., 2002) je totiz
patrna dlezitost atomu dusiku (pozice 7 u purinu), nebe podili na vodikoveé vazb

s aminoskupinou Leu83 podabiako dusik N6 s karbonylem Leu83 a vytviak
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Obrazek 3: Strukturni motivy zndmych purinovych sostefi cilené syntetizovanych a zkoumanych
jako inhibitory CDK.

nezbytny donor-akceptorovy motiv v péte oblasti CDK2. EFitomnost dusiku v této
pozici tedy zajiuje i u ostatnich purinovym bioisosiepodobné inhikiini vlastnosti
jako  upurinovych molekul. Pokud tento dusik chyhako v p@ipad
pyrazolo[3,4d]pyrimidina (Kim et al., 2003), pozorujeme vyrazneé snizenivelgtvaci
CDK. Avsak gritomnost dalSiho dusiku na vedlejSi poziénirelektrostaticky potencial
vazebn&asti inhibitoru (Popowycz et al, 2009), coZ se @vaje vyraznym zvysenim
afinity k CDK u zmirgnych ¢ty skupin bioisostér obsahujicich tento motiv.

Nicmére neni to jen pozice dvou dusiikktera by rozhodovala o sile inhihich

vlastnosti jednotlivychitd purinovych bioisostér DalSim vyznamnym faktorem se zda
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byt i celkovy p@et dusikovych atofv péticlenném kruhu, ktery je blize p&t€DK, a
jehoz atomy sedastni gimé vazebné interakce. U skupiny triazolo[&]pyrimidinta a
8-azapurif totiz doSlo zavedeninidtino dusiku do giclenného kruhu ke ziaému
zeslabeni inhibice CDK (Hawvkk et al., 2005; Richardson et al., 2006). Naopak
v pripadt Sesttlenného kruhu rizeme uvazovat o dostate variabili® v obsazenosti
jednotlivych poloh atomy dusiku, nabo r¢kterych fipadech nema odebrani jednoho
¢i vice atondi dusiku z gkterych pozic Sestienného kruhu vyrazny vliv na poteni
inhibice CDK. Rikladem nmiize byt série pyrazolo[1,8}1,3,5-triazimi (4N),
pyrazolo[1,5a]pyrimidina (3N) a pyrazolo[1,%]pyridina (2N) (Obrazek 4), u jejichz
zastupd Ize pozorovat zachovani srovnatelnych ininibth viastnosti.

_R2
HN

PN

_R2
HN
N odstranéni 1.dusiku N odstranéni 2.dusiku
S » S
J\\ S N S
N R1 N
R3

R3

R1

pyrazolo[1,5-a]-1,3,5-triaziny pyrazolo[1,5-a]pyrimidiny pyrazolo[1,5-a]pyridiny

Obrazek 4: Schématické znazafm t# skupin purinovych bioisosték, u kterych nedochéazi k vyraznym

zm¢nam v inhibici CDK po odebrani atomi/dusiku z vyzné&enych poloh.

4.4.Pyrazolo[4,3d]pyrimidiny

Pracovi& Laboratde nistovych regulatdgr se zabyva syntézou a zkoumanim
biologickych vlastnosti dvouitl purinovych bioisostér 8-azapurifi a pyrazolo[4,3-
dlpyrimidint. Zatimco u azapurindoSlo k zeslabeni inhiimich &inka vaci CDK
(Havlicek et al., 2005), u pyrazolo[4@pyrimidint byl pozorovan opay efekt.

U nejdive popsanych 3,7-disubstituovanych pyrazolo@Baimidina byla
prokazana zvySena inhibice CDK1 v porovnani sei spurind s identickymi
substituenty (Moravcova et al.,, 2003). U r@pin¢jSich latek vSak byla dosazena
inhibice CDK1 srovnatelna s trisubstituovanymi pyrroskovitinem¢i olomoucinem
Il. Dale se snaha organickych chemisoustedila na zavedentdtiho substituentu do
pozice 5 pyrazolo[4,8]pyrimidinového kruhu a byla vyt¥ena knihovna 3,5,7-
trisubstituovanych pyrazolo[4 @pyrimidind, u kterych byla zji%#nha podstat# vysSi
biologicka ®&innost v porovnani s puriny. Vztahy mezi struktuwaktivitou &chto
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bioisosted purinu zatim nebyly ucel&npublikovany, nicmé# protinadorové &inky
nekterych trisubstituovanych pyrazolo[4dBpyrimidini jiz byly popsany (Krystof et
al., 2006, Sroka et al., 201BFilohy 1V, V). Jedna slotenina z této série (LGR1406)
byla dokonce studovana v souvislosti s p@tdm abnormalnihaistu burk hladkého
svalstva (Sroka et al., 2010), coz by mohlo bytnaymné p hypotetickém vyuZiti
v |&cb¢ restenosy. festoze fimy vliv LGR1406 na CDK negvySuje @inky
roskovitinu, inhibice #istu svalovych butk je priblizné petkrat vysSi. Navic dochazi

k inhibici proliferace bugk hladkého svalstva i po mitogenni stimulaci.

A B
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5
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Obréazek 5: Roskovitin (A) a jeho pyrazolo[4,3-d]pyidinovy bioisoster LGR1404 (B).

Exaktni srovnani biochemickychciakia roskovitinu a jeho pyrazolo[4,3-
d]pyrimidinového bioisosteru LGR14040brazek 5 bylo jednim ze stejnich cili
této prace(Piiloha V). Pro potvrzeni fimé interakce LGR1404 s CDK2 byla
analyzovana krystalova struktura (zaznam v Profeata Bank: 3PJ8), déle byla
studovana selektivitai¢i fadt proteinkinas, vliv na proliferaci, indukci apopyoa
n¢které dalSi dinky spojované s inhibici CDK.

Dalsi inhibitor na bazi pyrazolo[4@pyrimidinu pripraveny a charakterizovany
béhem tohoto doktorského studia je LGR1492, zatinuamapéjSi inhibitor CDK2 ze
sowasné knihovnyé&hto bioisostar (Piiloha V). Vyznauje se podobnym profilem
selektivity jako roskovitin, dosahuje vSak sgjich inhibtnich a antiproliferénich
acinku (priblizné 15-krat, 1Go pro CDK¢ini priblizné 10 nM). Podobé# jako roskovitin
inhibuje replikaci DNA, potlauje transkripci mRNA, zastavuje btimy cyklus,
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zpisobuje jadernou akumulaci proteinu p53. OdliSnegigtrna jen v fibéhu burgéné
smrti. Pyrazolo[4,3]pyrimidin LGR1492 se totiz vyzraje ¢ast&né neobjassnym
mechanismem v zavislosti na pouzité koncentra@yapodobrg dusledkem ztraty
selektivity @i vysSich koncentracich a interakci s jinym &mym cilem. Podobny jev
v zavislosti na koncentraci latky byl popsan s oétinem, ale bez vysdleni
mechanismu &inku (Ishimaru et al., 2010).

4.5.Pyrazolo[1,54]-1,3,5-triaziny

DalSi zajimava skupina purinovych bioiso8tge postavena na pyrazolo[1ap-1,3,5-
triazinovém heterocyklu. Jednou #igravenych latek byl i roskovitinovy bioisoster
oznaovany jako N&N1 (Bettayeb et al, 2008b; WO/2005882). V porovnani
s roskovitinem ma zvySenou kinasovou selektivilmégi antiprolifer&ni vlastnostiin
vitro (Bettayeb et al, 2008b) a vysséinnost v experimentech na modeiu vivo
(Popowycz et al, 2009). Poznatkychito studii rovdZz poukazuji na potencial
bioisosterni strategie vyvoje novych latek vedokipiekonani limitujicich vlastnosti

pavodnich slodenin, v tomto pipact roskovitinu.

4.6. Pyrazolo[1,54a]pyrimidiny

U druhého dinngjSiho roskovitinového bioisosteru (latka BS-193;EI@N0167) ze
skupiny &innych pyrazolo[1,5]pyrimidint nebyly do dnesSniho dne popsany zadné
dalSi biologické dinky mimo inhibice CDK (Heathcote et al., 2010; V2008/151304).
Duvodem patra je, Ze se tato pracovni skupinaaa zabyvat mnohemciinngjSim
inhibitorem této série (latka 4k; Heathcote et a010). Latka 4k fedstavuje orakn
dostupny nanomolarni inhibitor CDK, selektivni pf@DK1/2/5/9, vysoce &nny
v modelechin vivo (Heathcote et al., 2010).

Jednim z dalSich vyznamnych pyrazolo[&]pyrimidinu je inhibitor dinaciclib
(SCH727965; Paruch et al., 2010). Podohako latka 4k vykazuje i dinaciclib
selektivitu vici CDK1/2/5/9 a vylepSené biologickeé vlastnastiitro ain vivo (Parry et
al., 2010). Navic je u dinaciclibu pozorovan vynaziiouhotrvajici terapeuticky efekt
vivo vznikajici po kratkodobém podani latky (Parry let2010). Na zaklaticelkového
biologického profilu je v satasnosti dinaciclib testovan ¥kolika rezimech viznych

fazich klinickych experimeit(Dickson & Schwartz, 2009; clinicaltrials.gov).
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Na vyzn&nost této skupiny purinovych bioisostguoukazuji i studie, které se
zanefily na hledani selektivniho inhibitoru CDK7 (WO/28/051304; Ali et al., 2009).

5. Mozné dalsi uplatréni inhibitor @ CDK

PrestoZe inhibitory CDK jsou prim&nvyvijeny jako mozna protinadorovaciea,
objevuji se v satasnosti v literatte i pripady mozného vyuziti v#de jinych
onemocgni a poruch Qbrazek 6). Zdanliw nesourodé oblasti vSak spojuji ptav
CDK.

Nemoci nervového systému (rfapAlzheimerova choroba) jsou pravidéln

spojovany s naruSenou funkci CDKS5, ktera hraje a§aou roli ve vyvoji a diferenciaci
neurorii. V nich je CDK5¢asto zvySe# aktivovana svymi vazebnymi partnery p29 a
p25, ktéi vznikaji proteolytickou aktivaci proteinp39 a p35, a podili se tak
na hyperfosforylaci cytoskeletalnich protiicoz vede k busgné smrti. Cilena inhibice
CDK5 by proto mohla byt z&kladem ¢y nekterych neurodegenerativnich
onemocgni. V rekterych gipadech se poukazuje i na moznou vyhodnost &péle
inhibice CDK5 s dalSimi kinasami, CDK1 nebo G$K®&nockaert et al., 2002).
Samotné inhibice CDK4 se zase jevi jakotstiteé feSeni pi leécbé nasledk mozkoveé
mrtvice (Osuga et al., 2000).
Virovd onemoctini se odviji od zavislosti viru na metabolickém rapa hostitelské
buiky. Nekteré viry pro svou replikaci aktivuji hostitelsk€DK (nag. lidsky
cytomegalovirus), jiné jsou schopny vyigaswij vlastni cyklin (nap. herpesviry), dalsi
pak vyuzivat transkrimi aparat hostitelské bky (HIV) (Knockaert et al., 2002). To
jsou hlavni dvody zkoumani inhibitar CDK jako potencialnich virostatik (Wang et
al., 2001; Schang, 2002). Protivirovy efekt ma dskovitin, ktery potlauje
prostednictvim inhibice CDK2 transkripci viru HIV (Agbiath et al., 2005), replikaci
cytomegaloviru a herpesviru (Bresnahan et al., 19@hang et al., 2000; Davido et al.,
2002). Nicmén potlateni transkripce HIV je spiSe spojovano s inhibibIK®, ktera je
dulezita pro funkci viralniho transaktivatoru Tat.nfe jev prokazany studii inhibitoru
CDK9 flavopiridolu na replikaci HIV (Chao et al.0@0) tak ukazal na potencialni
vyuziti inhibitori CDK9 g 1é¢bé HIV (Canduri et al., 2008; Wang & Fischer, 2008;
Németh et al., 2011).

| pii lécb¢ kardiovaskularnich nemoci jakymi jsou aterosklareestenosa, nebo

hypertrofie srdce se ro¥h mohou uplatovat tizn¢ selektivni inhibitory CDK. Srdani
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Obrazek 6: Schéma potencialniho terapeutického aotéchnologického vyuziti CDK @evzato
z Knockaert et al., 2002; Galons et al., 2010).

hypertrofie je charakterizovana &Senou velikosti diferenciovanych sédéch
myocyti v disledku intenzivni transkripce a translace. Urychléranskripce je
spojovano s chronickou aktivaci CDK9, ktera se lpoda fosforylaci CTD RNA
polymerasy Il a stimuluje tak transké&p elongaci (Kulkarni et al., 2004). Selektivni
inhibitory CDK9 by se tak mohly stat novym nastroj@ro potencialni kbu srdeéni
hypertrofie. Tato mySlenka je zpracovana v jednégublikaci autora Rfiloha VI).
Zabyva se strukturou a biologickou funkci CDK&gevSim ve spojitosti s hypertrofii
srdce; sotasti je i pehled dostupnych nizkomolekularnich inhibita€DK9, jejich
selektivity a dale moznosti racionalniho designi$idh specifickych inhibitar CDKO.
Nemoci jako ateroskleros& restenosa jsou charakterizovany zvysSenou pralifier
burék hladkého svalstva. Potleni jejich abnormalnihoistu, které by mohlo najit
uplatreni pii 1écbé restenosy, bylo Ugpreé prokazano nap u inhibitofi CDK
flavopiridolu (Ruef et al., 1999; Jaschke et aQ0#2), purinu CVT-313 (Brooks et al.,
1997) nebo jiz zminého pyrazolo[4,3pyrimidinu LGR1406 (Sroka et al., 2010).

Protozoalni infekce Zsobené jednobwtinymi parazity [eishmania,
Plasmodium, Trypanosompati mezi nejzavaz$si celos¥tova onemocéni. U €chto
parazifi bylo pozorovano mnoho spéteych znak s nadorovymi bikami, jakymi jsou
nekontrolovana proliferace, nezavislost na exogdmnfiaktorech nebo rezistence
k apoptose (Fuertes et al., 2008). Tento fakt kqatedpokladu, Ze by se latkyipodns
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vyvijené pro onkologické aplikace mohly uplatnitjako potencialni antiparazitika
(Klinkert & Heussler, 2006; Fuertes et al., 200BJky vysoké sekvemi i funkini
homologii rekterych lidskych a parazitickych CDK se tak polda prokazat
antiparaziticka aktivita ¢kterych inhibitoi CDK (Harmse et al., 2001; Grant et al.,
2004; Reichwald et al., 2008; Xingi et al., 2008ppriklad flavopiridol je schopen
blokovat bugény cyklus v G2/M fazi progednictvim inhibice CRK3 (cdc-2 related
kinase) uLeishmania mexican@Hassan et al., 2001). Nicmgaxistuji utité strukturni
odliSnosti mezi CDK a CRKTabulka 1), které by ndly umoznit vyvoj inhibitofi
specifickych pro parazita s minimalnim vlivem nastitelskou biiku a podstat tak
zvySit terapeuticky potencidl stasré vyvijenych slodenin. | naSi skupinou byla
publikovana studie zatfend na hledani potencialnich antileishmanialnicu¢ehin
mezi 2,6-disubstituovanymi puriny a st&jsubstituovanymi pyrazolo[4,8oyrimidiny
(P¥iloha VII). Tyto latky byly dive popsény jako inhibitory CDK1 (Moravcova et al.,
2003), a proto byly testovany wanych funknich i interaknich systémech
s homologni leishmanialni kinasou CRK3/CY&&i{oha VIII ), dilezitym regulatorem
buré¢ného cyklu parazita (Naula et al., 2005). dkterych inhibitofi byla prokadzana
interakce s timto proteinovym komplexem, ktera &sledr projevila i v inhibici fistu
(Hassan et al., 2001). Tato publikace tak n&zjana moZznosti vyuZziti gkterych
inhibitora, predevSim dGinnych pyrazolo[4,3]pyrimidint, jako potencialnich
antileishmanik a rize tak pomoci k vyvoji novych antiparasitickychiglenin.

Zaretlivé, imunitni procesy vznikaji v biige jako odezva na jeji poSkozeni nebo
napadeni &akym patogenem. Vakterych gFipadech obrany vSak nedochazi
k vyvolani adekvatni protizétlivé odpowdi, naopak mze dochazet k nespravnému
rozpoznani antigen jak je tomu u chronickych a autoimunitnich &aych
onemocgni, projevujicich se zpravidla vyskytem wtiepsient proliferujicich
lymfocyta, eosinofii a neutrofiti (Leitch et al., 2009). Diky znamym antiproliféndm
a proapoptotickym vlastnostem inhibiiloCDK se nabizi jejich potencialni vyuZiti
pii 1é¢bé raznych tym zaretlivych onemockni (Rossi et al., 2006; Leitch et al., 2009).
V piipact roskovitinu se fedpoklada, Ze jeho protiz&tivé vlastnosti jsou navic
podporovany fimou inhibici NFxB regulovanych gei) mitogenni drdhy ERKSI
potlatenim exprese Mcl-1 (Leitch et al., 2010; Berbegthl., 2011).

Také u nemoci ledvin oztavané jako glomerulonefritida, kde dochazi

k nadngérné proliferaci bugk ledvinovych glomerui, se pod#lo ukazat jistou aktivitu
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n¢kterych inhibitofi CDK, wetns roskovitinu (Clough, 2002; Milovanceva-Popovska et
al., 2005; Zoja et al., 2007).

Jednou z méh probadanych aplikaci je i vyuZziti inhibitorCDK pii in vitro
oplozeni a klonovani (Knockaert et al.,, 2002). R@mzroskovitinu bylo nafiklad
dosaZzeno vysSi U&gnosti klonovani u telecich embryi (Gibbons te &002),
na stejném modelu bylo vyuZito i butyrolactonu b ppotl&eni jaderné maturace

samtiho oocytu pi in vitro oplozeni (Ponderato et al., 2001).
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7. Seznam pouzitych zkratek

APC
AUR
Bcl-2
CDK
CRK
CTD
ERK
GSK3$
HIV
ICs0
MAPK
MAT1
Mcl-1
Mdm-2
MITF
NF-«xB
PDGFR
PLK
P-TEF
Rb
RTK
MRNA
shRNA
SiRNA
TFII
VEGF
XIAP

Anaphase-promoting complex

Aurora kinase

B-cell CLL/lymphoma 2
Cyclin-dependent kinase

Cdc2-related kinase

C-terminal domain
Extracellular-signal-regulated kinase
Glycogen synthase kinasg 3
Human immunodeficiency virus type 1
50% inhibitory concentration
Mitogen-activated protein kinase
Ménage a trois 1

Myeloid-cell leukemia 1

Murine double minute 2

Melanocyte lineage transcription factor
Nuclear factor kappa-light-chain-enhancer dgivated B cells
Platelet-derived growth factor receptor
Polo-like kinase

Positive transcription elongation factor
Retinoblastoma protein

Receptor tyrosine kinase

Messenger ribonucleic acid

Short hairspin ribonucleic acid

Small interfering ribonucleic acid
Transcription factor IIF

Vascular endothelial growth factor

X-linked inhibitor of apoptosis
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Strnad M. Functional p53 in cells contributes te #nticancer effect of the cyclin-
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derivatives of cyclin-dependent kinase inhibitor sgovitine. Cell Cycle
Regulators/Inhibitors and Cancefeb 5-8, 2011, Vienna, Austria.

Jorda R, Havlicek L, McNae IW, Walkinshaw MD, Voller J, Sturc AaMratilova
J, Kuzma M, Mistrik M, Bartek J, Strnad M, Krystgf Synthesis and biological
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10. Potvrzeni spoluautom o podilu uchaz€e na spolé&nych pracich

|.  Paprskéova M, Krystof V,Jorda R, DZubak P, Hajduch M, ¥éierska-Gdek J,
Strnad M. Functional p53 in cells contributes te #mticancer effect of the cyclin-
dependent kinase inhibitor roscovitideCell Biochem2009 Jun 1;107(3):428-37.

Radek Jorda se podilel na analyze exprese prtpomoci western blottingu a na
priprave vzorki pro nereni pomoci pitokové cytometrie.

II. KryStof V, Rarova L, Liebl J, Zahler Sprda R, Voller J, Cank&aP. The selective
P-TEFb inhibitor CAN508 targets angiogenesi8CS Chem Biol. 2011,
Vv recenznintizeni.

Radek Jorda @#il a vyhodnocoval vliv latky CAN508 na celkovoudita mRNA a
RNA v ovlivenych butkach MCF-7 a HMEC-1.

ll.  Jorda R, Zatloukal M,Rezntkova E, Vynetalova L, Krystof V, Strnad M: Novel
derivatives of cyclin-dependent kinase inhibitor sqovitine. Cell Cycle
Regulators/Inhibitors and Cancefeb 5-8, 2011, Vienna, Austria.

Radek Jorda navrhovalétsinu experimerit prova@l cytometrické analyzy a detekci
exprese proteih pomoci western blottingu. Vyrazrse podilel na psani textu a
grafickém zpracovaniOsobr prezentoval data na uvedené konferenci.

IV. Jorda R, Havlicek L, McNae IW, Walkinshaw MD, Voller J, Sturc AaMratilova
J, Kuzma M, Mistrik M, Bértek J, Strnad M, Krystdf Synthesis and biological
evaluation of 3,5,7-trisubstituted pyrazolo[4]pyrimidines, novel selective
inhibitors of cyclin-dependent kinases with antlgerative activity.J Med Chem
2011, v tisku, http://dx.doi.org/10.1021/jm200064p.

Radek Jorda se podilel natsiné provadnych experimert provadl cytometrické
analyzy, biochemické detekce aktivity kaspas, pldvaunofluoresceini analyzu a
stanoveni exprese prot@gnpomoci western blottingu. Vyrazrse podilel na psani
rukopisu, odesilal jej do redakce afapval pisluSnou korespondenci.

V. Rezntkova E,Jorda R, Krystof V, Havltek L, Strnad M: A novel pyrazolo[4,3-
dlpyrimidine inhibitor of cyclin-dependent kinasesantiproliferative and
proapoptotic effects22nd EORTC-NCI-AACR symposium on Molecular targets
and Cancer TherapeuticdNov 16-18, 2010, Berlin, Germanfguropean Assoc
Canc ResEJC SUPPLEMENTS Vol 8: pp 160-160.

Radek Jorda navrhovaktsinu experimerit zaved| a optimalizoval dvouparametrovou
analyzu exprese vybranych regulatdourecného cyklu pomoci ptokové cytometrie a
metodu stanoveni mMRNA a RNA pomoci radioaktma‘enych nukleositl Vyraze se
podilel na psani textu a grafickém zpracova@isobr prezentoval data na uvedené
konferenci.
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Krystof V, Chamrad I, Jorda R, Kohoutek J. Pharmacological targeting of CDK9
in cardiac hypertrophy, Med Res Rev. 2010 Jul;30(4):646-66.

Radek Jorda provedl kompletni literdrni reSersi dostupnych inhibitori CDKY, proved]
Jjeji zpracovani a podilel se na psani rukopisu.

VIL

Jorda R, Sacerdoti-Sierra N, Voller J, Havli¢ek L, Kracalikova K, Nowicki MW,
Nasereddin A, Krystof V, Strnad M, Walkinshaw MD, Jaffe ChL. Antileishmanial
activity of disubstituted purines and related pyrazolo[4,3-d|pyrimidines. Bioorg
Med Chem Lett. 2011, v recenznim fizeni.

Radek Jorda navrhoval vétSinu experimenti a syntézu nékterych sloucenin,
experimentdlné provddél purifikaci rekombinantni proteinkinasy CRK3/CYC6, podilel
se na optimalizaci kinasové inhibicni reakce. Vyrazné se podilel na psani rukopisu,
odesilal jej do redakce a vyFizoval pFislusnou korespondenci.

VIIL

Jorda R, Nowicki M W, Charles Ch L, Havli¢ek L, Krystof V, Strnad M,
Walkinshaw M D. Antileishmanial activity of disubstituted purines and related
pyrazolo[4,3-d]pyrimidines. 6" International Conference: INHIBITORS OF
PROTEIN KINASES, June 27-July 1, 2009, Warsaw, Poland (in Biochimica
Polonica, 56 Supplement 1/2009).

Radek Jorda navrhoval a provadeél vétsinu experimentu, provadeél purifikaci
rekombinantni proteinkinasy CRK3/CYC6 a testoval jeji inhibici s nové vyvijenymi
inhibitory v ruznych funkcnich i interakcnich systémech (thermal-shift assay, surface
plasmon resonance). Osobné prezentoval data na uvedené konferenci.
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Prof. Ing. Miroslav Strnad, DrSc.

Doc. RNDr. Vladimir Krystof, Ph.D.
RNDr. Marek Zatloukal, Ph.D.

Mgr. Martin Mistrik, Ph.D.

Mgr. Lucie Rérové, Ph.D.

Mgr. Eva Reznitkova

Mgr. Ivo Chamrad

Be. Ladislava Vymeétalova

Bc. Jana Navratilova
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Functional p53 in Cells Contributes to the Anticancer Effect
of the Cyclin-Dependent Kinase Inhibitor Roscovitine
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Jozefa Wesierska-Gadek,” and Miroslav Strnad’
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A-1090 Vienna, Austria

’Laboratory of Experimental Medicine, Department of Pediatrics and Oncology, School of Medicine and Dentistry,
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ABSTRACT

Inhibitors of cyclin-dependent kinases (CDKs) undergoing clinical trials as anticancer agents usually target several CDKs in cells. Some of
them are also able to increase cellular levels of p53 protein and to activate p53-regulated transcription. To define the role of p53 in the
anticancer effect of selective CDK inhibitors, two related compounds roscovitine and olomoucine II were studied. Roscovitine differs
functionally from its congener olomoucine Il only in the selectivity towards transcriptional CDK9. Action of both compounds on proliferation,
cell-cycle progression, and apoptosis was examined in RPMI-8226 cells expressing the temperature-sensitive mutant of p53 and in MCF-7
cells with wild-type p53. Both compounds blocked proliferation, decreased phosphorylation of RNA polymerase II, downregulated
antiapoptotic protein Mcl-1 in both cell lines in a dose-dependent manner, and also activated p53 in MCF-7 cells. Moreover, we showed
that the anticancer efficiency of CDK inhibitors was enhanced by active p53 in RPMI-8226 cells kept at permissive temperature, where
downregulation of Mcl-1, fragmentation of PARP-1, and increased caspase-3 activity was detected with lower doses of the compounds. The
results confirm that functional p53 protein may enhance the anticancer activity of roscovitine that could be beneficial for anticancer therapy.

J. Cell. Biochem. 107: 428-437, 2009. © 2009 Wiley-Liss, Inc.
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S everal small molecular inhibitors of cyclin-dependent kinases

(CDK) are currently undergoing clinical evaluation as a new
generation of anticancer agents [Malumbres and Barbacid, 2001;
Fischer and Gianella-Borradori, 2005; Malumbres et al., 2008].
Activities of CDKs are usually elevated in cancers, due to both
genetic and epigenetic alterations of CDKs themselves or of the
proteins they interact with, including activating cyclins and
phosphatases (cdc25), inhibitors (INK4, CIP/KIP), and substrates
(pRBs and E2Fs) [Malumbres and Barbacid, 2001]. These alterations
provide a basis for pharmacological interventions by synthetic
compounds specifically targeting hyperactive cell-cycle regulators
in cancer cells.

The 2,6,9-trisubstituted purine derivative roscovitine belongs to
the most advanced anti-CDK drugs [Meijer and Raymond, 2003;
Fischer and Gianella-Borradori, 2005]. It has been long assumed that
roscovitine, like many other CDK inhibitors, arrests and Kkills
transformed cells as a direct consequence of the inactivation of cell-
cycle CDKs. However, several recent articles also point to an
involvement of the transcriptional CDK7 and CDK9 [Demidenko and
Blagosklonny, 2004; MacCallum et al., 2005; Cai et al., 2006a; Gao
et al., 2006; Hajduch et al., 2007]. Besides direct inhibition of CDK2
and CDK1 by roscovitine associated with cell-cycle arrest in G,/S
or G,/M transitions, there are indirect mechanisms by which
roscovitine can block the proliferation. For example, interaction
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with constitutively active CDK7, which phosphorylates the
threonine residue in the activation loop of CDKs (e.g., Thr161 in
CDK1), reduces levels of active CDKs [Hajduch et al., 2007]. An
unphosphorylated activation loop closes the catalytic site and the
activities of CDK1 and CDK2 then decrease. But most of the indirect
mechanisms stem from changed gene expression profiles following
treatment with roscovitine. Like several other CDK inhibitors,
roscovitine also reduces levels of cyclins D1, B, and A, while
simultaneously upregulating expression of the natural CDK
inhibitor p2 1" [Kotala et al., 2001; Lu et al., 2001; Whittaker
et al., 2004; Lacrima et al., 2005]. More recently, cDNA microarray
analysis demonstrated that other important cell-cycle regulatory
genes also change expression. For example, markedly reduced
mRNA expression was found for mitotic regulators, including
Aurora A and B, Polo-like kinase, Weel and Cdc25C [Whittaker
et al., 2007]. These alterations also contribute to cell-cycle arrest and
accumulating evidence suggests that roscovitine-sensitive CDK7
and CDK9 are responsible for the reduced expression [Whittaker
et al., 2004; Lacrima et al., 2005; MacCallum et al., 2005].

CDKs 7 and 9 stimulate initiation and elongation of mRNA
transcription, respectively, by phosphorylating the C-terminal
domain of RNA polymerase II. Suppressed transcription and
decreased phosphorylation of RNA polymerase Il were documented
in cells treated not only with roscovitine, but also with other CDK
inhibitors [Ljungman and Paulsen, 2001; Demidenko and Blagosk-
lonny, 2004; Whittaker et al., 2004]. The transcripts that are most
sensitive to CDK9 inhibition are those with short half-lives such as
cell-cycle regulators, mitotic kinases, NF-kB-regulated genes, and
apoptosis regulators, because their levels decrease rapidly when
initiation and elongation of transcription are inhibited. One of them
is MDM2, an E3-ubiquitin ligase negatively regulating tumor
suppressor p53 protein level [Momand et al., 1992]. p53 is a stress-
inducible transcription factor that controls hundreds of genes
involved in a variety of cellular functions, including cell-cycle
arrest, DNA repair, and apoptosis [Wei et al., 2006]. Due to
amplification or overexpression, MDM2 contributes to cancer
development. Disruption of the interaction between p53 and MDM2
provides a rationale for therapeutic p53 activation in cancers
bearing wild-type p53 gene. Interestingly, an alternative mechanism
of anticancer activity of roscovitine and some other CDK inhibitors
is based on accumulation of tumor suppressor protein p53 in nuclei
in a transcriptionally active form [David-Pfeuty, 1999; Kotala et al.,
2001; Lu et al., 2001; Wojciechowski et al., 2003; Demidenko and
Blagosklonny, 2004; Wesierska-Gadek et al., 2005]. The effect may
be due to downregulation of MDM2, as reduced expression of MDM?2
helps to stabilize p53 level. An increase of p53-dependent
transcription is also frequently observed, with the concomitant
accumulation of p21%*™, one of the endogenous CDK inhibitors
[Kotala et al., 2001; Lu et al., 2001].

In this study, we describe effects of roscovitine in human cancer
cell lines differing in p53 status. As shown recently, it has a greater
potency against p53 wild-type cell lines than against p53 mutant
cell lines [McClue et al., 2002; Krystof et al., 2005]. To define the role
of p53 in the anticancer effect of CDK inhibitors, we selected the
RPMI-8226 cell line, expressing a temperature-sensitive mutant of
p53 that allowed us to study the function of p53 in the same genetic

background under different temperatures, and the MCF-7 cell line
with wild-type p53. Structurally distinct compounds with surmised
functional similarities (i.e., with a common molecular target) are
often used for understanding and validating their molecular impact.
However, although these distinct compounds usually help to reveal
off-target effects, they may not only differ substantially in affinity
to the primary target, but also in other features such as polarity,
stability, and cellular uptake that could unknowingly limit the
comparative work. Therefore, our approach has been based on use of
two structurally related compounds, the functional analogues
roscovitine and olomoucine II, that strongly and equally inhibit
kinases CDK2 and CDK?7. Importantly for this study, both congeners
differ in selectivity towards transcriptional CDK9, which is more
sensitive to olomoucine II [Krystof et al., 2005]. Based on our data,
we demonstrate a crucial role of CDK9 in the upregulation of p53
and p53-connected anticancer properties of roscovitine. Our results
provide another insight into the cellular effects of roscovitine and
support its therapeutic application in cancers with wild-type p53.

DRUGS AND ANTIBODIES

R-roscovitine  (6-benzylamino-2-[(R)-(1-ethyl-2-hydroxyethyla-
mino)]-9-isopropylpurine) and R-olomoucine II (6-(2-hydroxyben-
zylamino)-2-{[(1R)-(hydroxymethyl)propyllamino}-9-isopropyl-
purine) were synthesized according to published procedures
[Havlicek et al., 1997; Krystof et al., 2002]. For cell treatment,
compounds were made up as 100 mM stocks in dimethylsulfoxide
(DMSO) and diluted prior to application in culture media. The
maximum concentration of DMSO in the medium never exceeded
0.1%.

The following specific antibodies were used to detect the relevant
proteins: anti-p53 (clone DO-1), anti-cyclin D1, anti-CDK4, anti-
MDM2 (clone 2A9), anti-PCNA (clone PC-10), and anti-p21“3!
(clone 118, all gifts from B. Vojtesek); anti-a-tubulin (clone DM1A;
Sigma-Aldrich, Prague, Czech Republic); anti-Mcl-1 (clone S-19),
anti-PARP-1 (clone F-2), anti-cyclin E (clone HE12), and anti-bcl-2
(clone 100; all from Santa Cruz Biotechnology, Santa Cruz, CA);
anti-RNA polymerase II (clone ARNA-3; Millipore, Prague, Czech
Republic); anti-RNA polymerase II phosphorylated on Ser-5 (clone
H14) and anti-RNA polymerase II phosphorylated on Ser-2 (clone
H5, both from Abcam, Cambridge, UK); fluorescein-labeled anti-
BrdU (Becton-Dickinson, Prague, Czech Republic).

CELL CULTURES AND VIABILITY ASSAY

Human MCF-7 breast carcinoma and RPMI-8226 multiple myeloma
cell lines purchased from American Type Culture Collection were
maintained in a humidified CO, incubator at 37 °C in DMEM or
RPMI medium, respectively, supplemented with 10% fetal bovine
serum, 4 mM glutamine, 100 IU/ml penicillin, and 100 pg/ml
streptomycin. Viability assays were performed in triplicates in 96-
well microtiter plates with cells seeded at densities appropriate for
their respective cell sizes and doubling times. Twelve hours after
seeding, tested compounds in threefold dilutions were added in
triplicate and the treatment lasted continuously for 72 h. At the end
of this period, the cells were fed for 1 h with Calcein AM solution
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(Invitrogen, Carlsbad, CA) and the fluorescence of the live cells was
measured at 485/538 nm (ex/em) with a Fluoroskan Ascent
microplate reader (Labsystems, Helsinki, Finland). The drug
concentrations lethal to 50% of the cells (ICs, values) were
determined from the dose-response curves using GraphPad Prism
software (GraphPad Software, La Jolla, CA).

BrdU INCORPORATION AND CELL-CYCLE ANALYSIS

Before harvesting, cells were pulse labeled with 10 wM 5-bromo-2’
deoxyuridine (BrdU) for 30 min. The cells were trypsinized, fixed
with ice-cold 70% ethanol, incubated on ice for 30 min, washed with
PBS, and resuspended in 2 M HCI for 30 min at room temperature to
denature their DNA. Following neutralization with 0.1 M Na,B,05,
the cells were washed with PBS containing 0.5% Tween-20 and 1%
BSA. They were then stained with fluorescein-labeled anti-BrdU
antibody for 30 min at room temperature in the dark. The cells were
then washed with PBS, incubated with propidium iodide (0.1 mg/ml)
and RNAse A (0.5 mg/ml) for 1 h at room temperature in the dark,
and finally analyzed by flow cytometry using a 488 nm single beam
laser (FACSCalibur; Becton-Dickinson).

CASPASES-3/7 ASSAY

Treated cells were harvested by centrifugations and homogenized in
an extraction buffer (10 mM KCl, 5 mM HEPES, 1 mM EDTA, 1 mM
EGTA, 0.20% CHAPS, inhibitors of proteases, pH 7.4) on ice for
20 min. The homogenates were clarified by centrifugation at
10,000¢g for 20 min at 4°C, the proteins were quantified by the
Bradford method and diluted to the same concentration. Lysates
were then incubated for 1 h with 100 uM Ac-DEVD-AMC as
substrate (Sigma-Aldrich) in an assay buffer (25 mM PIPES, 2 mM
EGTA, 2 mM MgCl,, 5 mM DTT, pH 7.3). For negative controls, the
lysates were supplemented with 100 wM Ac-DEVD-CHO as a
caspase-3/7 inhibitor (Sigma-Aldrich). The fluorescence of the
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Fig. 1.

product was measured using a Fluoroskan Ascent microplate reader
(Labsystems) at 346/442 nm (ex/em).

SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS AND
IMMUNOBLOTTING

For immunoblotting, harvested cells were lysed in RIPA buffer
(20 mM Tris-HCl, pH 7.4, 5 mM EDTA, 2 mM EGTA, 100 mM NaCl,
2 mM NaF, 0.2% Nonidet P-40, 30 pM PMSF, 1 mM DTT, 10 p.g/ml
of aprotinin and leupeptin). Proteins in lysates were quantified by
the Bradford method and then diluted with Laemmli electrophoresis
buffer. Proteins were then separated on SDS-polyacrylamide gels,
transferred onto nitrocellulose membranes (Bio-Rad Laboratories,
Prague, Czech Republic) and stained with Ponceau S to check equal
protein loading. The membranes were blocked with 5% low-fat milk
and 0.1% Tween-20 in PBS or in 3% BSA and 0.1% Tween-20 in TBS
(for the detection of phosphoproteins), respectively, for 2 h and
probed with the specific primary antibodies overnight. After
washing in PBS/TBS and PBS/TBS with 0.1% Tween-20, the
membranes were probed with horseradish peroxidase-conjugated
secondary antibodies and vizualized with chemiluminescent
detection reagent ECL+ (Amersham Biosciences, Prague, Czech
Republic). To confirm equal protein loading, immunodetection was
performed with the anti-a-tubulin monoclonal antibody.

ANTIPROLIFERATE EFFECTS OF ROSCOVITINE AND OLOMOUCINE I
The MCF-7 breast cancer and multiple myeloma RPMI-8226 cell
lines were treated with the CDK inhibitors roscovitine and
olomoucine II, and the percentage of surviving cells was measured
by the Calcein AM viability assay. Cells were incubated with
increasing concentrations of both drugs for 72 h and then the ICsq
values were determined. As shown in Figure 1, neither roscovitine
nor olomoucine II affected viability of cells at low concentrations

RPMI-8226

100: 4¥

80+

60+

viable cells (%)

® roscontine
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Roscovitine and olomoucine Il reduce the number of living cells. Human MCF-7 breast cancer and RPMI-8226 multiple myeloma cell lines were treated for 72 h with

increasing concentrations of roscovitine and olomoucine Il. Then, the number of viable cells was determined by a Calcein AM assay. Results represent the average + SD for three

independent experiments.
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over the 72 h incubation period. The ICsy values are 15.2 uM for
roscovitine and 6.1 pM for olomoucine II in RPMI-8226 cells. The
sensitivity of the MCF-7 cell line is comparable to that of multiple
myeloma; the ICsq of roscovitine is 13.3 and 5.5 wM for olomoucine
I in MCF-7 cells. The results show that olomoucine II is at least
twofold more effective than roscovitine in both cell lines.

CDK INHIBITORS ARREST CELL CYCLE IN MULTIPLE PHASES

To further test the antiproliferative effects of CDK inhibitors, we
treated both cell lines with either roscovitine or olomoucine II for
24 h and analyzed their dose-dependent effect on the cell division
cycle. The cells, pulse labeled with BrdU, were doubly stained with PI
and anti-BrdU antibody and analyzed by flow cytometry. As shown
in Figure 2, CDK inhibitors arrested both cell lines in G,/M phases
and decreased the size of their S-phase populations. In addition,
RPMI-8226 cells also partially accumulated in the G; phase upon
treatment with higher concentrations of both inhibitors. Impor-
tantly, both CDK inhibitors also markedly decreased the population
of cells actively replicating DNA (i.e., BrdU-positive cells).
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Fig. 2.

ROSCOVITINE AND OLOMOUCINE Il INDUCE
CASPASE-DEPENDENT CELL DEATH

The analysis of the DNA profiles of RPMI-8226 myeloma cells
revealed an accumulation of sub-G; cells treated with both CDK
inhibitors indicating that cells undergo apoptosis. The appearance of
hypoploid cells is usually attributable to caspase-dependent
fragmentation of chromatin. Therefore, we determined the activity
of caspase-3/7 in RPMI-8226 cells exposed to roscovitine or
olomoucine II using a fluorogenic substrate Ac-DEVD-AMC. In the
first series of experiments, cells were treated in a time-dependent
manner with fixed drug concentrations exceeding their ICs, values
(40 pM roscovitine and 20 wM olomoucine II). Roscovitine strongly
induced the activity of caspase-3/7; after treatment for only 3 h a
threefold increase of the effector caspases was observed compared
with the untreated control; this increased to a sevenfold increase
after 6 h (Fig. 3A). Unlike roscovitine, olomoucine II only weakly
affected the activity of caspases-3/7; a threefold enhancement of the
activity was detected after 6 h and after longer treatment the
caspase-3/7 activity decreased.
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Roscovitine and olomoucine Il induce cell-cycle arrest. MCF-7 and RPMI-8226 cells were treated for 24 h with increasing concentrations of roscovitine and

olomoucine Il. Half an hour before the end point, BrdU was added to the culture media. The cells were collected, fixed, and stained with propidium iodide and anti-BrdU
antibodies. DNA content and the percentage of BrdU-labeled cells were quantified by flow cytometry.
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Fig. 3. Roscovitine and olomoucine Il cause cell death. RPMI-8226 cell line was treated in a time (A) or concentration-dependent (B,C) manner with roscovitine and
olomoucine Il, harvested and whole cell lysates were prepared. The activities of caspases-3/7 were measured using specific fluorogenic peptide substrate Ac-DEVD-AMC (A,B), or

the fragmentation of PARP-1 was detected by immunoblotting (C). The significance (treatment vs. control) was determined using Dunnett's multiple comparison test: “P < 0.05

(significant); **P < 0.01 (very significant); “*P < 0.001 (extremely significant).

In a concentration-dependent experiment, the cells were treated
for 24 h. As shown in Figure 3B, 40 and 80 wM roscovitine induced
a strong activation of procaspases-3/7, whereas olomoucine II
activated procaspases-3/7 only weakly in RPMI-8226 cells.

Monitoring of the cleavage of PARP-1, a nuclear target of
caspase-3, confirmed the above results. An appearance of the
caspase-3-cleaved PARP-1 fragment at 89 kDa after cell exposure to
40 M roscovitine was associated with a diminution of its full-
length form (Fig. 3C; left panel). Fragmentation of PARP-1 was also
detected after treatment of RPMI-8226 cells with olomoucine II at
higher doses (10 and 20 pM). However, the intensity of full-length
PARP-1 remained almost unchanged (Fig. 3C; right panel).

Taken together, our results clearly evidence that roscovitine
strongly activates pro-caspases-3/7 in RPMI-8226 cells in a time-
and concentration-dependent manner. However, the results for

olomoucine II are inconsistent and its stimulatory effect on pro-
caspase-3/7 is only weak. Our data suggest that olomoucine II may
initiate cell death by a mechanism different from that of roscovitine.

EXPRESSION OF CELL-CYCLE AND APOPTOTIC PROTEINS

To better understand the mechanisms leading to the cell-cycle arrest
and induction of apoptosis by roscovitine and olomoucine II, we
next analyzed changes in selected proteins by immunoblotting
(Fig. 4). In MCF-7 cells, treatment with equiactive doses of
roscovitine and olomoucine II (20 and 5 pM, respectively) resulted
in a significant reduction in CDK4 expression and when higher doses
were used, the level of its positive regulator cyclin D1 also declined.
In RPMI-8226 cells, the level of CDK4 was rapidly decreased, but
cyclin D1 expression remained unchanged. Reduction of cyclin E, a
regulatory subunit of CDK2 controlling G,/S phase transition, also
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Fig. 4. Roscovitine and olomoucine Il change the expression of the cell-cycle proteins and regulators of apoptosis. Cell lines were treated in a concentration-dependent

manner with roscovitine and olomoucine Il for 24 h, harvested, and whole cell lysates were prepared. The changes in the expression of various cell-cycle regulators in MCF-7 cell

line expressing wild-type p53 and RPMI-8226 cell line with mutant p53 were analyzed by immunoblotting.

occurred in both cell lines. These observations correlate with flow
cytometry results, where the rapid G, block and declined S phase
population (in RPMI-8226 cells) and increasing of G,/M arrest and
decreased S phase (in MCF-7) were seen following treatment with
CDK inhibitors.

In line with previously published data, both roscovitine and
olomoucine II were also able to cause the accumulation of p53 in
MCF-7 cells and activate p21"*! expression (Fig. 4). Interestingly,
p21"* expression diminished with the highest concentrations of
CDK inhibitors, probably as a result of inhibition of general mRNA
transcription. Interestingly, in RPMI-8226 cells with inactive p53,
levels of neither p53 nor p21“" changed. In contrast, the
antiapoptotic protein Mcl-1 decreased in both cell lines following

treatment, whereas no changes were detected in the levels of another
antiapoptotic factor bcl-2 (Fig. 4) or proapoptotic protein bax (not
shown).

DEPHOSPHORYLATION OF THE RNA POLYMERASE II

Previous studies have shown that treatment of cells with roscovitine
leads to dephosphorylation of the carboxyl-terminal domain (CTD)
of RNA polymerase II, particularly at serine 2 and 5, which
consequently decreases transcription rate. The phosphorylation of
the CTD of RNA polymerase I is caused by two CDKs, namely CDK9,
which is specific for Ser-2 phosphorylation, and CDK7, which
phosphorylates both sites. Also, the phosphorylation at Ser-5, but
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ase |l and its phosphorylation status in RPMI-8226 cells. Cells were incubated
with drugs at the indicated time points, harvested, and whole cell lysates were
analyzed by immunoblotting.

not at Ser-2, is responsible for prevention of RNA polymerase II
ubiquitylation.

To confirm our assumption that not only roscovitine but also
olomoucine II inhibits CTD phosphorylation, RPMI-8226 cells were
treated with both CDK inhibitors in a time-dependent manner
(Fig. 5). The expression of total RNA polymerase II did not change
during treatment with both CDK inhibitors for 3 h. However,
phosphorylated Ser-2 was markedly reduced after 60 min in
olomoucine Il-treated cells, while only moderate roscovitine-
induced diminution of the Ser-2 phosphorylation was detected
after 1.5 h and at its twofold higher concentration. The longer
exposure (12 or 24 h) of cells to the drugs resulted in degradation of
total RNA polymerase II level.

REACTIVATION OF WILD-TYPE p53 PROTEIN IN RPMI-8226 CELLS
SENSITIZES THEM TO INDUCTION OF APOPTOSIS

The cell lines examined in this study differ in their p53 status; MCF-
7 cells express wild-type p53, while in RPMI-8226 cells bearing
temperature-sensitive mutant of p53 (E285K), p53 protein switches
between mutant and wild-type conformation in a temperature-
dependent manner. At restrictive (37 °C) temperature mutated p53
protein occurs. After shift to a permissive (30 °C) temperature, the
protein is folded to functional p53. To analyze the functional
involvement of p53 in the efficiency of the treatment with CDK
inhibitors, we cultivated RPMI-8226 cells independently at two
different temperatures (restrictive or permissive), and exposed them
to increasing doses of roscovitine or olomoucine II. The cell lysates
were prepared and the levels of cell-cycle regulators were analyzed
by immunoblotting.

Both CDK inhibitors caused accumulation of wild-type p53
protein in cells maintained at permissive temperature, but did not
change the levels of mutant p53 in cells cultivated at restrictive
temperature. This indicates that both CDK inhibitors promote
stabilization of wild-type p53 protein. Moreover, the monitoring of
the expression of p53 targets such as p21"*™" and MDM2 revealed
their appearance following treatment with CDK inhibitors solely in
cells maintained at permissive temperature, but not in cells kept at
restrictive temperature (Fig. 6).

Remarkably, cells under permissive conditions underwent
apoptosis even at lower concentrations of roscovitine and
olomoucine II (Fig. 6). We have observed fragmentation of
PARP-1 to occur in cells treated with about twofold lower drug

concentrations that in cells kept in restrictive temperature (Fig. 6A).
Similarly, expression of antiapoptotic protein Mcl-1 was also
suppressed more efficiently at 30 °C by both inhibitors (Fig. 6A).
More importantly, activities of caspases-3/7 extracted from cells
kept under different conditions significantly differed, that is, they
were higher in lysates prepared from cells kept at 30 °C (Fig. 6B).
These data evidence that wild-type p53 protein expressed in RPMI-
8226 cells cultured at permissive temperature facilitates induction of
apoptosis upon treatment with roscovitine and olomoucine II.

Observations reported in many articles have provided the rationale
for therapeutical applications of roscovitine, a 2,6,9-trisubstituted
purine inhibitor of cyclin-dependent kinases CDK1, CDK2, CDK3,
CDK7, and CDK9. This drug has entered clinical trials as a potential
agent for treatment of several different cancers, including B-cell
malignancies, lung and breast cancers [Meijer and Raymond, 2003;
Meijer et al., 2006]. Roscovitine has been shown to arrest the cell
cycle in proliferating cells, a response associated with pRb
dephosphorylation [Whittaker et al., 2004]. The antiproliferative
effects of roscovitine are caused by its ability to target multiple CDKs
simultaneously rather than only one of them. The ability to induce
cell arrest and death through depletion of the activity of a single
CDK is weak and often cell line dependent, but cooperative
pharmacological inactivation of several CDKs results in stronger
antiproliferative effects in cancer cell lines [Cai et al., 2006b].
Similarly, recent genetic experiments demonstrated that multiple
CDKs are not essential for mouse embryonic cells, where only
mitotic CDK1 is required [Santamaria et al., 2007]. Interestingly, in
cells lacking multiple CDKs, unusual compensatory complexes of
CDK1 with cyclins E or D were detected [Aleem et al., 2005; Cai et al.,
2006b; Santamaria et al., 2007]. Therefore, CDK1 can apparently
compensate for the lack of, but itself cannot be replaced by, any
interphase CDK in normal cells [Santamaria et al., 2007]. The
situation in human adult or transformed cells is still not completely
clear, but available data suggest that only combined inhibition of
CDK1, CDK2, and CDK9 in some cancer cell lines significantly
decreases cell proliferation and enhances apoptosis, too. Notably,
CDK1, CDK2, and CDK9 represent a rational subset of CDK family
members for drug targeting [Cai et al., 2006a,b] and this subset
overlaps well with the selectivity of roscovitine [McClue et al., 2002;
Krystof et al., 2005].

In line with published results, we found that not only roscovitine
but also olomoucine II arrested the cell cycle in MCF-7 and RPMI-
8226. Both CDK inhibitors blocked the G,/M transition and brought
about a concentration-dependent reduction in BrdU incorporation.
Furthermore, the blocking of G; was evident at higher concentra-
tions of both drugs in the RPMI-8226 cell line. The cell-cycle arrest
was accompanied by decreased levels of cyclin D1, cyclin E, and
CDK4 in both cell lines, as well as enhanced expression of
transcription factor p53 and its downstream target p21**" in MCF-
7. There were no substantial differences in the effects of both
compounds, other than the higher efficiency of olomoucine II over
roscovitine attributable to stronger CDK9 inhibition.
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Roscovitine and olomoucine Il induce reactivation of temperature-sensitive mutant p53 in RPMI 8826. RPMI-8226 cells were treated for 24 h in a concentration-dependent

manner with roscovitine and olomoucine Il at 30 or 37°C, harvested, and whole cell lysates were prepared. The expression of cell-cycle regulators and proteins involved in apoptosis were
detected by immunoblotting (A). The activities of caspases-3/7 in treated cells were measured using specific fluorogenic peptide substrate Ac-DEVD-AMC (B). The significance
(treatment at 30°C vs. 37°C) was determined using Bonferroni's multiple comparison test: “P < 0.05 (significant); **P< 0.01 (very significant); “**P < 0.001 (extremely significant).

However, the exact mechanism by which roscovitine induces
apoptosis has not been clearly defined and it is still uncertain which
CDKs (or other targets) are critical for its anticancer effects and to
what extent. Several studies have shown that CDK9 is an important

target of some pharmacological CDK inhibitors, including roscov-
itine, flavopiridol, SU9516, and AZ703 [Gojo et al., 2002;
MacCallum et al., 2005; Raje et al.,, 2005; Gao et al., 2006; Cai
et al., 2006a]. As well as others, all these drugs are capable of
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inhibiting phosphorylation of the C-terminus of RNA polymerase II
and therefore act as global transcriptional repressors. RNA
polymerase II is regulated by phosphorylation of Ser-5 and Ser-2
within the CTD by CDK7 and CDK9 and probably also by cell-cycle-
related CDK1 and CDK2 [Cai et al., 2006b]. Hence, the major impact
of these pharmacological inhibitors is manifested primarily on
short-lived proteins such as Mcl-1, XIAP, or p21"*™'. Of these, Mcl-1
plays a critical role in the survival of cancer cells being an important
antiapoptotic protein [MacCallum et al., 2005; Yang-Yen, 2006].
Both Mcl-1 protein and its mRNA have very short half-lives and
therefore repression of transcription leads to its relatively rapid
elimination from cells and promotes apoptosis. Downregulation of
Mcl-1 by roscovitine and olomoucine II in the two cell lines shown
here is therefore consistent with observations by others [Gojo et al.,
2002; MacCallum et al., 2005; Raje et al., 2005; Gao et al., 2006].
Indeed, both CDK inhibitors were able to induce apoptosis in RPMI-
8226 cells, as evidenced by increased caspase-3/7 activity and
fragmentation of PARP-1. Surprisingly, despite weaker caspase-3/7
activation by olomoucine II, the cells were still more sensitive to
olomoucine II (cf. to Fig. 1) as shown by enhanced PARP-1
fragmentation. The results suggest that different cell death pathways
(proteases) may be involved in the apoptosis induced by both
structurally related CDK inhibitors. Due to different inhibitory
potency of the compounds towards CDK9, we may speculate about
the role of CDK9 (or an unknown target of the inhibitors) in caspase-
3/7 activation and alternative mechanisms of cell death. The
existence of an alternative mechanism of cell death would explain
why MCE-7 cells also respond to olomoucine Il more rapidly than to
roscovitine, even though they lack functional caspase-3 [Simstein
et al., 2003].

Inhibition of RNA polymerase II-dependent transcription
also leads to accumulation of p53 by blocking its degradation by
MDM?2 [Kotala et al., 2001; Lu et al., 2001]. Recently, it was
described that p53 restoration can be strongly potentiated by
combinations of p53-activating agents with different actions,
such as nutlin-3a, a specific inhibitor of MDM2, with nongenotoxic
CDKs inhibitors, like DRB and roscovitine [Cheok et al., 2007]. We
showed here the influence of roscovitine and its derivative
olomoucine II on reactivation of the temperature-sensitive E285K
mutant of p53 in RPMI-8226 cells. The lower temperature allows
stabilization of active p53 and subsequent expression of p21*2f,
enhanced by roscovitine and olomoucine II, as also shown here.
Simultaneously, reduced expression of antiapoptotic Mcl-1 and
fragmentation of PARP-1 were observed with at least twofold lower
doses of the compounds at permissive conditions. Nearly the same
effect of both drugs was also observed following measurement of
caspase-3/7 activity, together suggesting that cells die more easily if
they possess functional p53, as suggested by our previous study
[Krystof et al., 2005].

However, blockage of transcription and accumulation of p53
resulting from diminished levels of MDM2 is definitely not the only
reason for induction of programmed cell death by CDK inhibitors
[0'Hagan and Ljungman, 2004 ; Wesierska-Gadek et al., 2005, 2007];
specific posttranslational modifications of p53 are necessary for its
particular functions. It has been evidenced that roscovitine activates
HIP2 kinase, modifying p53 at Ser-46, and that overexpression of

HIP2 kinase increases rate of apoptosis in MCF-7 cells, involving
p53AIP1 protein, the downstream target of p53 [Wesierska-Gadek
et al., 2007]. This pathway probably helps to overcome lack of
functional caspase-3 in MCF-7 cells and increase the efficacy of
drug-induced apoptosis. Similarly, our results also indicate that CDK
inhibitors are able to induce different apoptotic pathways,
depending on the status of p53 and/or caspase-3 in the two cell
lines used here.

Moreover, it seems to be possible that interplays between p53 and
other antiapoptotic/prosurvival molecules also contribute to
roscovitine-induced apoptosis in cancer cells. For example, recent
article suggests that p53-dependent apoptosis is potentiated by NF-
kB suppression and shows that both these pathways are targeted
simultaneously by roscovitine [Dey et al., 2008]. Or alternatively, it
was shown recently that mitochondrial p53 displaces Mcl-1 from
the complex with Bak upon cell stress, resulting in release of
cytochrome ¢ from mitochondria and induction of apoptosis [Leu
et al., 2004]. p53 negatively regulates translationally controlled
tumor protein TCTP, which normally binds to Mcl-1 and thus
prevents its ubiquitinylation by ARF-BP/Mule [Zhong et al., 2005].
Stabilized and activated p53 may therefore influence Mcl-1 activity
directly by disrupting its pro-survival function in mitochondria and
indirectly by allowing its ubiquitinylation [Zhong et al., 2005]. Our
finding confirms that simultaneous inactivation of the CDKs
involved in the regulation of the cell cycle, as well as transcription,
seems to be beneficial for anticancer therapy and further suggests
that active p53 may enhance the anticancer activity of roscovitine
through multiple mechanisms.
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ABSTRACT

Small molecule inhibitors of cyclin-dependent kieagCDK) have been developed as anticancer drugs
with cytostatic and cytotoxic properties, but sooiehem have also been shown to limit angiogenesis.
Here, we report that the 3,5-diaminopyrazole CANS50Bibits endothelial cell migration and tube
formation. In addition, it reduces phosphorylatwithe C-terminus of RNA polymerase Il and inhibits
mMRNA synthesis in endothelial cells, in accordawitd previous observations that it has high seldgti
towards the positive transcriptional regulator PFBEMoreover, CAN508 reduces expression of vascular
endothelial growth factor by several human canedrlioes. The findings suggest that P-TEFb maybe

attractive target for antiangiogenic therapy.
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INTRODUCTION

Members of the cyclin-dependent kinase (CDK) fanhifyve well-documented roles in the regulation of
cell growth, gene transcription and cell death. s&gyuently, they have attracted considerable atteiais
possible novel therapeutic agents for treating dewiange of diseases. In the last two decades many
CDK-selective inhibitors have been identified eitbg screening natural compounds or through dicecte
medicinal chemistry programs. Exposure to CDK iithils can induce cell cycle arrest, apoptosis, or
both, depending on the selectivity of the inhihitanti-proliferative effects result from inhibiticof cell
cycle CDKs 1, 2, 4 and 6, whereas inhibition of trenscriptional CDKs 7 and 9 has been shown to
promote apoptosis.

To date, ca. 20 potent CDK inhibitors have beensteged for clinical trials in patients with
different cancer$? One of these, ZK 304709, is a relatively promismukinase inhibitor that targets not
only multiple CDKs, but also vascular endotheliabwgth factor (VEGF) receptor tyrosine kinases 1-3
and platelet-derived growth factor recepfotyrosine kinase (PDGFRB)Hence, ZK 304709 has been
proposed to exert its anticancer effeicts/ivo through interfering with tumour angiogenesis, whis
widely regarded as a key stage in carcinogenesis.

Several other CDK inhibitors have also been shawimftuence angiogenesis. For example, the
potent, selective CDK inhibitor SNS-032 preventgmaiion of human umbilical vein endothelial cells
(HUVECS) and inhibits formation of a capillary neik from these cells in cultufeThe mechanism
responsible for the anti-angiogenic propertieshig tirug has not been determined, but its actionbea
partially ascribed to down-regulation of both mRIdAd protein levels of VEGF, the most potent tumour
angiogenic factor.

The CDK inhibitor flavopiridol is currently conséded to be a transcriptional inhibitor, but it has
also been shown to prevent VEGF production in humeamocyte$. Both SNS-032 and flavopiridol
share similar kinase inhibition profiles, includitaygeting of CDK9; a subunit of Positive Transtidp
Elongation Factor b (P-TEFb), and hence an importagulator of the elongation phase of mRNA
transcription. Connections between angiogenesid\MmRRanscription and CDK9 have been suggested by
analyses of the effects of 4-amino-6-hydrazinp-D-ribofuranosyl-H-pyrrolo[2,3-d]-pyrimidine-5-
carboxamide (ARC). This compound was originallyntified as a general inhibitor of transcriptiontbu
it also potently induces apoptosis in human tunoelis and has strong anti-angiogenic actiuityitro.”®

The aims of the study presented here were to eteatha potential utility of disrupting the link
between angiogenesis and P-TEFb, and more spdlgifitee effects of CAN508, the most potent
competitive 4-arylazo-3,5-diamind-tpyrazole inhibitor of P-TEFb subunit CDK9,on human
endothelial cells. Towards this end, we have exathithe anti-angiogenic properties of CAN508 in
several biochemical and cellular models, focusingts transcriptional effects. Our results sugdbat

abrogation of P-TEFb activity could serve as a piidétherapeutic anti-tumour angiogenesis strategy

RESULTS
As mentioned above, the main aims of this studyewerinvestigate the effects of disrupting the link
between angiogenesis and p-TEFb, and more spdlgiftoaassess responses of human endothelial cells

to the compound CAN508AN508 has already been shown to have anti-pralifeg activity towards



four human cancer cell linés vitro, albeit at high micromolar concentratichBurther information about
its anticancer activity was obtained from testshwHCI160, a panel of 59 cell lines used for high-
throughput drug screening in the Developmental dpeutics Program of the US National Cancer
Institute (Bethesda, USA). The average Ghlue was 2QuM (range 4.1 to 49.2M) and the highest
activities were observed in the leukemia and metanoell lines (Table S1).

We next determined its anti-proliferative activagainst primary endothelial cells. As shown in
Figure 1, reductions in both HMEC-1 and HUVEC celimbers were observed (using Calcein AM
staining) within 72 h of treatment with CAN508 centrations > 50 pM. Thus, the effects of CAN508
on numbers of primary cells in the cultures weradly weaker than its inhibitory effects on thewtto
of cancer cells. However, in further experiments tilme frame and CAN508 concentration were limited
to <24 h and < 50 pM, respectively.

Recent work has shown that some compounds thattt&DK9 also possess significant anti-
angiogenic activityn vitro.>” We therefore evaluated the potential anti-angiagectivity of CAN508 in
cell migration and tube formation assays using HGVBnd HMEC-1 primary endothelial cells,
respectively. As shown in Figure 2, treating thésceith CAN508 clearly inhibited cell migration dn
tube formation (both of which can be easily quadifby analysing images of cell cultures). The
migration of VEGF-stimulated HUVECs across a sdratc area was inhibited by CAN508 in a dose-
dependent manner, and significant inhibition of mafipn was observed at concentrations Ul The
experiments with HMEC-1 showed that CAN508 treathradso inhibited tube formation (reducing the
total length of tubes by 20% and 30%, and theiriaretength by 30% and 50%, at pM and 40uM,
respectively; Figure 2D). However, CAN508 only magdly (and non-significantly) decreased the total
number of tube nodes. In summary, the results shatvCAN508 significantly reduced the angiogenic-
like activity of endothelial cells in a dose-depentfashion. Moreover, all of the observed effeutse
clearly apparent after 16 h treatment and in a eomation range that did not affect cell viabil{if.
Figure 1).

Flavopiridol, SNS-032 and ARC have been shown teelenti-angiogenic activity, which was
proposed to result from reduced expression of VE@Fextracellular factor known to be required for
activation of endothelial celfs>® VEGF is an extracellular factor required for aation of endothelial
cells. To determine whether CAN508 also reduces NE®@pression, we exposed the human carcinoma
cell lines MCF7, MDA-MB-231 and DU145 to varioussés of CAN508 for 24 h, then determined the
quantity of VEGF released into their media by saictivELISA. The results, presented in Figure 3, show
that at concentrations exceeding 10 uM CAN508 Biamtly reduced the amount of VEGF in the cell
culture media. However, untreated HMEC-1 cellsasésl very low levels of VEGF into their growth
media (29 pg/ml £ 26 pg/ml), close to the assagtedtion limit, hence the effects of CAN508 on thes
cells could not be reliably measured.

The CDKO9 inhibitors flavopiridol and roscovitinevebeen shown to reduce expression of NF-
KB target genes, probably through interference weheral transcription, which may further potentiate
the anticancer effects of these inhibittt5: One of the genes regulated by KB-and down-regulated by
roscovitine is intercellular adhesion molecule-CAM-1),*° expression of which contributes to cell

adhesion, invasivity and angiogenesis. We theretot@mined the effects of CAN508 treatment on



ICAM-1 expression in HMEC-1 cell, by stimulatingetttells with TN for 30 min, applying various
doses of CAN508, then examining their expressiolCéiM-1 flow cytometrically 24 h later. The results
show that CAN508 reduced ICAM-1 expression dosesddpntly, with an approximate 4£value of 20
UM (Figure 4).

CDK inhibitors that interfere with transcription\reabeen found to be potent inhibitors of CDK7
and CDK9'?** and we have previously shown that CAN508 treatneant reduce the activity of RNA
polymerase Il in cancer ceflsTo explore consequences of this activity, in thespnt study we used
pulse-labelling to determine the effects of CANS@8the synthesis of both mRNA and total RNA in
human MCF7 breast cancer and HMEC-1 cells (FigyreTbe level of newly synthesized RNA was
found to be dose-dependently reduced after 2 heatrhent, with I, values of 15 uM and 20 uM for
MCF7 and HMEC-1 cells, respectively. We next canfid that thiseduction of RNA transcription is
accompanied by decreased phosphorylation of RNArmpeifase Il at its C-terminus. The human RNA
polymerase Il CTD is composed of 52 repeats of Heptad sequence ;3,P:T,SPsS;, and
phosphorylation of Ser5 and Ser2 (catalyzed by CDitidd CDK9, respectively) is required for
completion of the initiation and elongation phasésnRNA transcription. In both HMEC-1 and MCF7
cells treatment with CAN508 dose-dependently redu&er2 phosphorylation levels, and Ser5
phosphorylation to a lesser extent, indicating thatcompound inhibits CDK9 more strongly than CDK7
(Figure 5).

Preliminary kinetic measurements with a small stilsdehuman protein kinases, focused on
CDKs, suggested that CAN508 selectively inhibitskKOI1Cs;=0.35 puM), at least 40-fold more strongly
than other CDKS.To further characterise CAN508 selectivity we pef its activity against a panel of
100 enzymes covering all protein kinase familiesng a standard kinetic radioassay at a single dbse
CAN508 (10 uM). The results, summarized in Table b@w that in addition to CDK9, CDK2/cyclin A
has substantial sensitivity to the compound (redidativity 27%). Of the other protein kinaseseaeésthe
activities of 28 were inhibited by more than 50%s{dual activities: 17-48%) and 70 were inhibitgd b
50% or less. To explore the reasons for the obdewsedlectivity, the structure of the CAN508-
CDK9/cyclin T complex was determined, but the fimgs will be published in another paper (Baumli et

al., manuscript in preparation).

DISCUSSION

Antitumour activities of small-molecule inhibitoid® CDKs are highly complex and pleiotropic. The
diversity of their effects is partly due to thebility to differentially block multiple CDKs involed in cell
cycle regulation and transcription. Unexpectedbyme CDK inhibitors (including flavopiridol, SNS-032
roscovitine and ARC) currently under clinical ewation as anticancer drugs, have also been shown to
inhibit angiogenesisin vitro.>®* Furthermore, although their underlying mechanismighmdiffer
somewhat due to differences in their kinase sefiggtithey all share significant activity againsbK9.
Recent bioinformatics analyses have suggestedhibatancer selectivity and (especially) anti-angitg
effects of ARC may be due to its ability to inhilgitotein kinase C (PKC) in addition to CDK9.
However, flavopiridol, roscovitine and SNS-032 gmeor PKC inhibitors>*® as is CAN508, another

small compound that targets CDK9. Furthermore, egemtly found that CDK5 also plays an important



role in angiogenesis and that the antiangiogenitvigc of several CDK inhibitors with different
structures, including roscovitine, arises at |gastially from interference with CDK5:’

Here, we show that CAN508 has the ability to bldalo essential angiogenic steps (cell
migration and tube formation) in human endotheaiells in vitro. Given the kinase profile of CAN508,
its anti-angiogenic properties are probably medidtg inhibition of CDK9-catalyzed phosphorylatioh o
RNA polymerase I, leading to rapid down-regulati@hRNA transcription. Subsequent reductions in
expression of the strong angiogenic hormone VEGH sanface expression of the adhesion molecule
ICAM-1 may contribute to the observed effects. tc@dance with this hypothesis, reduced expression
of VEGF by other CDK9-targeting compounds (inclgl®NS-032 and ARC) is a postulated mechanism
for their inhibition of the VEGF-dependent migratiof, and tube formation by, endothelial céffsOn
the other hand, the function of ICAM-1 has beenligti mainly in the context of inflammatory diseases
as it is critical for the transmigration of leukdey into tissueS® However, expression of ICAM-1 is also
important for the activity of endothelial cells atiekir interaction with tumour cells, whidh regulated
mainly by the transcription factor MB.* Although we did not detect any evidence of a diletk
between the action of CAN508 and ®B; it is possible that exposure to CAN508 may lead
perturbations in the transcription of NB-regulated genes. In this respect, it is notahkt the less
selective CDK inhibitors flavopiridol and roscowié (both of which target CDK9) can also suppress
NF«B activation'®* inter alia roscovitine can repress expression of thekBHeegulated gene product
ICAM-1.%°

The suppression of transcription as a consequeric€K9 inhibition by roscovitine,
flavopiridol, CAN508 or ARC has also been linkedrduction of the tumour suppressor g53>?°The
tumour-suppressive role of p53 in DNA repair andai{point activation has been well documented, but
its roles in the modulation of angiogenesis antro@ration are not well understood.. However, ¢hare
several mechanisms whereby the accumulation ofged®l contribute to the observed anti-angiogenic
properties of CDK inhibitors, including p53-depentiactivation of SMAR1, which coordinates p53 and
TGF{ pathways, leading to a reduction of cell migrafibror p53-dependent up-regulation of
caldesmon, an actin-binding protein inhibitor ofdpsome/invadopodium formatigh.Alternatively,
CDKS9 inhibitors may limit angiogenesis by decregsilevels of short-lived proteins, including
cyclins?®?*#* |n accordance with this hypothesis, a spliced inyBlla variant can reportedly inhibit
RhoA-induced ROCK kinase activity (independently@DKs 4 and 6) and thereby promote cellular
migration®®

In conclusion, we show here that compound CANS#8dnti-angiogenic potential that is linked
with inhibition of the transcription regulator P-FE Since hexamethylene bisacetamide inducible
protein 1 (HEXIM1), a negative regulator of P-TE&ttivity, may also play an inhibitory role during
angiogenesi&’ abrogation of CDK9 activity could serve as a ptig¢therapeutic strategy against tumour

angiogenesis.

METHODS
Drugs and antibodies. CAN508 was synthesized and used as previously ibescr The following

specific antibodies were used to detect the cooredipg proteins: anti-tubulin (clone DM1A, Sigma-



Aldrich), anti-RNA polymerase Il (clone ARNA-3, Mippore), anti-RNA polymerase Il phosphorylated at
Ser-2 or Ser-5 (clones H5 and H14, Abcam) and élscein-labelled anti-ICAM1 (Invitrogen).

Céll culturesand viability assay. Human microvascular endothelial cells (HMEC-1 cealgift from Dr.
F.J. Candal, CDC, Atlanta, GA) were cultured in @hdlial cell growth medium (Provitro)
supplemented with 10% fetal bovine serum. Humanilicab vein endothelial cells (HUVECSs) were
isolated from umbilical veins by collagenase digestand used at passage two or tHfe€he human
carcinoma cell lines MCF-7, MDA-MB-231 (both bréaghd DU145 (prostate) were purchased from the
American Type Culture Collection and cultured in BM medium supplemented with 10% fetal bovine
serum. Viability assays were performed in 96-welicnatiter plates using Calcein AM solution
(Invitrogen) and a Fluoroskan Ascent microplatalezgLabsystems).

NCI60 cytotoxicity assay. The cytotoxic activity of CAN508 against the NCIé8Il panel was assayed
by staff of the Developmental Therapeutics ProgrddTP) of the US National Cancer Institute
(Bethesda, MD) using the standard protocol
(http://dtp.nci.nih.gov/docs/compare/compare_metihagly.html). G, values (concentrations of the
drug inducing a 50% reduction of growth) values evestimated from the dose response curves, and
CAN508 was assigned NSC number 741614.

Migration assay. Confluent HUVECs were scratched and immediatelnté@ with either starvation
medium M199 (serum-free, negative control; PAN Batt) or full endothelial cell growth medium
(positive control). After incubation with varioussks of CAN508 at 37 °C for 16 h, each well was
photographed using a TILLvisiON-system (TILL Phadtms) connected to an Axiovert 200 microscope
(Carl Zeiss). Migration was expressed as the ptapoof pixels that were not covered by cells ie th
image of the wound area using S.CORE Image Anadgdisvare (S.CO LifeScience).

Tube formation. Ibidi p-slides were coated with Matrifel(Schubert & Weiss-OMNILAB) then
suspensions of 1xMHMEC-1 cells in growth medium supplemented withwithout various doses of
CAN508 were distributed into the wells of the stidéfter incubation at 37 °C for 16 h, each wellswa
photographed and analyzed as for the migrationyasisan numbers of tubes (capillary structures) and
nodes formed by treated cells and untreated canivete quantified and compared.

ELISA quantification of VEGF. Amounts of VEGF released from cultured cells irite tnedium were
quantified using a Human VEGF ELISA Development @eprotech) according to the manufacturer’s
instructions. Briefly, cells seeded in 6-well plteere treated with various doses of CAN508 in 2l
complete medium, then after 24 h incubation the iomadwas collected, cleared by centrifugation,
analyzed directly in triplicate, and the levels VEGF present in the samples were quantified by
comparison to a standard curve generated usingntioant VEGF supplied with the kit.

Flow cytometric analysis of the cell adhesion molecule ICAM-1. HMEC-1 cells were grown to
confluence, CAN508 was added to various concentratand 30 min later TN&-Sigma Aldrich) was
added to a concentration of 10 ng/ml to all sampbasept controls. After 24 h, the cells were fixgd
4% formaldehyde and labelled with FITC-labelledi-#@AM-1 antibody, then samples were prepared
and analyzed flow cytometrically by a FACSCalibuystem (Becton Dickinson) as previously
described? In each experiment, the fluorescence of cells sggdo all treatments was expressed relative

to the mean fluorescence of cells treated with @dene (set as 100%), and changes in the expreskion



ICAM-1 on the cells’ surfaces were expressed imgof relative changes in the mean (logarithmic)
index of fluorescence intensity. At least thredetént sets of experiments were performed in trgié.
Measurement of RNA synthesis. To evaluate the effects of CAN508 on RNA synthesal|s were
prelabelled with {*CJthymidine (60 Bg/ml in growth medium) 1 day befothe measurements, and
nascent RNA was labelled for the last 30 min ofgdimeatment by addingH]uridine (7 x 16 Bg/ml).

For measurements of total RNA synthesis, cell Bsatere precipitated with ice-cold TCA, the TCA-
insoluble material was collected on spin filtensvitek), washed and then nucleic acids were eluiithal

1 M NaOH. The®H and **C in the eluate were quantified simultaneously gisim LS6500 liquid
scintillation counter (Beckman Coulter). mRNA waslated from cells using an Oligotex Direct mMRNA
kit (Qiagen), then relative total RNA synthesis anBNA synthesis rates were determined by calcigatin
the *H/*C ratio for each sample and comparing it with tagorfrom an untreated control sample. The
data are presented here as percentages SHINE ratio for each treatment compared with the value
determined for mock-treated control cells.

SDS-polyacrylamide gel electrophoresis and immunoblotting. For immunoblotting, harvested cells
were lysed, proteins in lysates were quantifiedjteld with Laemmli electrophoresis buffer to equal
concentrations, separated on SDS-polyacrylamids, gehnsferred to nitrocellulose membranes and
stained with Ponceau S to check for equal proteading. The membranes were blocked and, after
probing with individual antibodies and antigen-batly complexes, visualized using ECL+
chemiluminescent detection reagent (Pierce).

Protein kinase assays. The kinase selectivity of CAN508 (at 10 uM) wasfped by screening under
previously described conditions in assays initiatéith 800 cpm/pmol+y-*PJATP at 5, 20 or 5QM, as
indicated in the Supporting Information, to enstirat the ATP concentration wasK,, value for each
enzyme® In each case the reaction was stopped by thei@midit phosphoric acid and the mixture was
spotted onto P81 filter plates. The experiment pagormed in duplicate, and inhibition was expresse
as residual kinase activities.

Statistical analysis. All experiments were performed in triplicate in &ast two independent
experiments. All quantitative data are presentedma&sns + standard deviation (SD), and for all

comparisons of treatment means with controls, oag-ANOVA was used.

SUPPORTING INFORMATION

Supporting Information can be found with this detionline at ....
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FIGURE LEGENDS

Figure 1. Growth inhibitory effect of CAN508 on human micr@eallar endothelial cells. (HMEC-1) and
umbilical vein endothelial cells (HUVECS). The selllere incubated for 72 h with the indicated dages
CAN508, then the number of cells remaining in eachure was quantified using Calcein AM staining
and fluorescence measurement. The assay was pedonntriplicate and repeated twice.

Figure 2. CAN508 has antiangiogenic effedts vitro on human endothelial cells. Confluent HUVEC
cells were scratched and treated with/without CABIS8fter 16 h, cells that migrated were stained and
photographed (A), then quantified (B). For tubenfation assays, HMEC-1 cells were seeded in
Matrigel-coated dishes in the presence of indicateses of CAN508 and incubated for 16 h to allow
formation of a capillary network. The cells wereofdgraphed (C), then the length of tubes and number
of nodes were measured and counted, respectivély=@ negative controls (NC), the cells were kiept

a serum-free medium, for positive controls (PC) ¢bls were kept in a full medium. Both assays were
repeated thrice. Representative microphotograpbwsisly cell migration and capillary network formatio
are presented.

Figure 3. Expression of VEGF in MCF7, MDA-MB-231 and DU145llceultures is reduced in the
presence of CAN508. Cells were exposed to indicdizskes of CAN508 for 24 h, then the amount of
VEGF released into the cell culture medium wasrddgteed by sandwich ELISA.

Figure 4. Expression of ICAM-1 on surfaces of HMEC-1 cellsrésluced in the presence of CAN508.
HMEC-1 cells were stimulated with TNFor 30 min then treated with indicated doses ofNBA8, and
changes in ICAM-1 expression on cell surfaces &fteh were measured and expressed as changes in the
mean (logarithmic) index of fluorescent intensityaqtified by flow cytometry. NC, control cells
untreated with TNE&.

Figure 5. CAN508 inhibits transcription in HMEC-1 and MCF7llseHMEC-1 (A, B) and MCF7 (C, D)
cells were labelled with*{C]thymidine for 24 h, treated with CAN508 for 2 then pulse-fed with
[*H]uridine for 30 min, after which RNA was isolatadd quantified (A, C). Phosphorylation of the CTD
of RNA polymerase Il at Ser2 and Ser5 in cellstgddor 2 h with indicated doses of CAN508 was
analyzed by immunoblotting (B, D).
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Growth inhibitory effect of CANS08 on human micrevascular endothelial cells. (HMEC-1) and
umbilical vein endothelial cells {HUVECs). The cells were incubated for 72 h with the indicated doses
of CANS508, then the number of cells remaining in each culture was quantified using Calcein AM
staining and fluorescence measurement. The assay was performed in triplicate and repeatad twice.
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CANS08 has antiangiogenic effects in vitro on human endothelial cells. Confluent HUVEC cells were
scratched and treated with/without CAN5S08. After 16 h, cells that migrated were stained and
photographed (A), then quantified (B). For tube formation assays, HMEC-1 cells were seeded in
Matrigel-coated dishes in the presence of indicated doses of CANS08 and incubated for 16 h to allow
formation of a capillary network. The cells were photographed (C), then the length of tubes and
number of nodes were measured and counted, respectively (D). For negative controls (NC), the
cells were kept in a serum-free medium, for positive controls (PC) the cells were kept in a full
medium. Both assays were repeated thrice. Representative microphotographs showing cell
migration and capillary network formation are presented.
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Figure 3.
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Expression of VEGF in MCF7, MDA-MB-231 and DU145 cell cultures is reduced in the presence of
CANS08, Cells were exposed to indicated doses of CANS08 for 24 h, then the amount of VEGF
released into the cell culture medium was determined by sandwich ELISA.
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Figure4.
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cells were stimulated with TNFa for 30 min then treated with indicated doses of CANS08, and
changes in ICAM-1 expression on cell surfaces after 24 h were measured and expressed as changes
in the mean (logarithmic) index of fluorescent intensity quantified by flow cytometry. NC, control
cells untreated with TNFo.
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polymerase II at Ser2 and SerS in cells treated for 2 h with indicated doses of CANS08 was analyzed
by immunoblotting (B, D).
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Table 1. Kinase selectivity of new
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12 Anticancer activity of all
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four human cancer cell lines
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Figure 1. Average anticancer activity of new derivatives tested using Calcein AM assay
against four cancer cell lines expressed as ratios of IC,, compared to IC;, of roscovitine

INDUCTION OF APOPTOSIS

For the evaluation of apoptotic effects of BA0O9 in HCT-116 and K562 cells we used fluorimetric-based
caspase-3,7 activity assay and immunoblotting analyses of some apoptotic markers (Figure 2).
Expression of proteins PUMA, caspase 3 and Bcl-2 remained unchanged after the treatment of cells.
On the other hand the level of anti-apoptotic protein Mcl-1 showed the decrease upon the treatment of
the highest tested concentration of BAQ9. Also the fragmentation of poly(ADP-ribose)polymerase
(PARP)was seen.

The previous results were complemented by caspase-3,7 enzyme activity assay but only marginal
activation of caspases 3,7 was observed after BA09 treatment of HCT-116 cells (Figure 3). This effect
corresponds with immunoblotting analysis, where the cleavage of zymogene of caspase-3 was not
observed at the same concentrations (Figure 2B). The ability of compound BA11 to induce apoptosis
(in enzymatic assay) was also tested in both cell lines. In contrast to BA09, compound BA11 activated
apoptosis more potently (Figure 3).
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ACTIVATION OF P53 AND P53-ACTIVATED TRANSCRIPTION

Treatment of cells harboring wild type tumor suppressor protein p53 with CDK inhibitors usually lead to
the accumulation of p53 and an increase of p53-dependent transcription. Therefore we evaluated these
effects upon treatment with one of the most effective compound, BA09, in colorectal carcinoma HCT-116
cells. BAO9 rapidly increased the expression of p53 starting from 1 pM concentration (Figure 4A).
Accumulation of p53 was accompanied with decreased expression of Mdm-2, which is a negative
regulator of p53. The induction of p21"*”', a direct p53 transcriptional target, was also analyzed. The
protein level increases slightly from 1 uM and reached maximum at 5 uM.

The effect of BAO9 on p53-dependent transcriptional activity was confirmed by R-galactosidase reporter
assay using stable transfected cell line Arn-8. Roscovitine derivative BA09 exerted dose-dependent
effect on p53 transcriptional activation, with maximum at 2 yM concentration (Figure 4B).
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Figure 4: Analysis of p53 activation. (A) Immunoblot analysis of p53, p21"*"" and Mdm-2 in HCT-116
treated with BAO9 for 24 h. PCNA level was detected to verify equal protein loading. (B) Analysis of
relative p53-dependent transcriptional activity by B-galactosidase reporter assay in Arn-8 cell line treated
with BAO9 for 24 h.

CELLCYCLEANALYSIS

The antiproliferative activity of BAO9 was analyzed in asynchronously growing colon carcinoma cell line
HCT-116 and chronic myeloid leukemia cell line K562 stained with propidium iodide. As shown in Figure
5 inhibitor BAO9 potently decreased population of cells in G1 phase of cell cycle and arrested cells in late
S and G2/M phases. This effect was evident mainly in HCT-116 cells, where we observed about 15%
more cells in G2/M phase of cell cycle compared to control cells after the treatment with 5 pM BA09.
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Figure 5. Flow cytometric analysis of cell cycle after propidium iodide staining in HCT-116 and K562 cell
lines treated with BAQO9 for 24 hours.

REPLICATION AND TRANSCRIPTION

For the evaluation of transcription inhibition of BA09 in HCT-116 and K562 cells we use immunoblotting
analysis of dephosphorylation of RNA polymerase Il at Ser2 and 5, respectively. Already at the dose of
5 uM of BAO9 we observed rapid decrease of transcription in both cell lines (Figure 6A,B).
The effect of BAO9 on replication was analyzed by flow cytometric measurement of HCT-116 and K562
cells doubly stained with propidium iodide and 5-bromo-2'-deoxyuridine (BrdU). As shown in Figure 5C,
BAO09 rapidly decreased the population of cells actively replicating DNA (i.e. BrdU-positive cells) in a
dose-dependent manner. Similarly, at the dose of 5 pM of BA09 we observed markedly decreased
replication to 5% and 57 % value of control in HCT-116 and K562 cells, respectively. Higher concentration
(25 pM) then caused total block of replication.
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Figure 6. Effect of BA09 (24 h treatment) on
transcription and replication of HCT-116 and
K562 cell lines. (A, B) Imunoblotting analysis of
dephosphorylation of RNA polymerase II. Tubulin
level was detected to verify equal protein loading.
(C) Flow cytometric quantification of actively-
replicating (BrdU positive S phase cells) HCT-116
and K562 cells.
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ABSTRACT: Inhibition of cyclin-dependent kinases (CDKs)
with small molecules has been suggested as a strategy for
treatment of cancer, based on deregulation of CDKs commonly
found in many types of human tumors. Here, a new potent
CDK2 inhibitor with pyrazolo[4,3-d]pyrimidine scaffold has
been synthesized, characterized, and evaluated in cellular and
biochemical assays. 7-Benzylamino-5(R)-[2-(hydroxymethyl)-
propyl]amino-3-isopropyl-1(2)H-pyrazolo[4,3-d]pyrimidine,
compound 7, was prepared as a bioisostere of the well-known
CDK inhibitor roscovitine. An X-ray crystal structure of com-
pound 7 bound to CDK2 has been determined, revealing a

PDB: 3PJ8

Pyrazolo[4,3- rimidine 7
Y 14,2-dlpy CDK2/Compound 7

binding mode similar to that of roscovitine. Protein kinase selectivity profile of compound 7 and its biological effects (cell cycle
arrest, dephosphorylation of the retinoblastoma protein, accumulation of the tumor suppressor protein pS3, induction of apoptosis,
inhibition of homologous recombination) are consistent with CDK inhibition as a primary mode of action. Importantly, as the
anticancer activities of the pyrazolo[4,3-d]pyrimidine 7 exceed those of its bioisostere roscovitine, compound 7 reported here may

be preferable for cancer therapy.

B INTRODUCTION

A growing body of evidence has linked abnormal protein
phosphorylation patterns with pathogenesis of various human
diseases and encouraged the search for compounds capable of
specifically inhibiting protein kinases. Indeed, therapeutic success of
several kinase inhibitors that had been approved for the treatment of
particular cancer type(s) during recent years established protein
kinases as an important class of novel drug targets. Among the 518
human genes encoding protein kinases, cyclin-dependent protein
kinases (CDKs) have orxgmally attracted attention because of their
frequent deregulation in cancer." Cyclin-dependent kinases, listing
at least 13 members in humans, are serine/threonine kinases that
participate mainly in processes of cell cycle control, transcription,
and postranscriptional modifications but also in cell differentiation
and cell death.>*

v ACS Publications ©xxxx american chemical Society

During the past decade many CDK inhibitors have been
developed and characterized. Some of the most efficient ones
entered clinical trials as candidate drugs against various types of
cancer™® and/or advanced to preclinical evaluation of potential
value in treatment of other diseases linked with CDK deregula-
tion, such as neurodegenerative and cardiac disorders, viral and
protozoan infections, %lomerulonephritis or other types of
chronic inflammation.> The purine heterocycle became
one of the first systematically investigated scaffolds of CDK
inhibitors (due to a possibility of variable substitutions mainly at
positions 2, 6, and 9), leading to the discoveries of olomoucine
and roscovitine.'' ' Roscovitine is a pan-selective CDK
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inhibitor with multiple effects on cell proliferation, cell cycle
progression, pS3 expression, and pS3-dependent transcription
and/or induction of apoptosis in cancer cells.'* Because of these
effects, (R)-roscovitine was among the first CDK inhibitors that
entered clinical trials.

Inspired by the success of roscovitine, further exploration of
purine-derived CDK inhibitors has been mainly oriented toward
either modifications of the roscovitine molecule in its substitu-
table positions or, more recently, redistribution of nitrogen
atoms of the purine scaffold. Both these directions have led not
only to the large number of purine inhibitors derived from
roscovitine'>>* but also to libraries of compounds with alter-
native core heterocyclic skeleton structure with side chain types
of roscovitine: pyrazolo[3,4-d]pyrimidines,**** pyrazolo[1,5-a]-
1,3,5-triazines,” >’ imidazo[2,1-f]- 1,2,4-triazines,>>*° yrazolo-
[1,5-a]pyrimidines,”® ** imidazo[1,2-a]pyrazines,*>*° triazolo-
[1,5-a]pyrimidines,*”** imidazo[4,5-d]pyridines® and pyrolo-
[3,2-d]pyrimidines.*’

In this study, we describe synthesis of a novel bioisostere of
roscovitine with the pyrazolo[4,3-d]pyrimidine core. The 3,7-
disubstituted pyrazolo[4,3-d]|pyrimidines were previously de-
scribed as CDK inhibitors,*' and we have found that introduction
of the third substituent to position 5 led to development of a new
class of potent purine-related CDK inhibitors. The representa-
tive 3,5,7-trisubstituted pyrazolo[4,3-d]pyrimidine 7 has been

evaluated in diverse biological assays in comparison with roscov-
itine as a reference molecule. Our results demonstrate that a
change in a position of a single nitrogen atom can alter CDK
inhibitory properties of this class of compounds, analogous to
some other purine bioisosteres (Figure 1).232326333%4

B RESULTS AND DISCUSSION

Chemistry. We have previously described synthesis of 5,7-
di(4-methoxybenzyl)amino-3-isopropyl-1(2)H-pyrazolo[4,3-
d]pyrimidine that was prepared as an analogue of microtu-
bule-interfering drug myoseverin.” A key assumed intermediate
of the synthetic route was $,7-dichloro-3-isopropyl-1(2)H-
pyrazolo[4,3-d]pyrimidine. However the intermediate was not
isolated and characterized. An attempt to synthesize pyrazolo-
[4,3-d]pyrimidine analogue of roscovitine, i.e., the compound
with different S,7-substituents in contrast to 5,7-disubstituted
myoseverin derivative, via the same synthetic approach was not
successful. Therefore, we developed a completely new synthetic
route outlined in Scheme 1. This synthetic approach is simple,
and all intermediates are easily detectable and isolatable, with the
exception of the final compound 7. The last reaction step gives
only poor yield of the desired compound even in a complex
reaction mixture, and therefore, compound 7 has to be isolated
by a column chromatography.

dx.doi.org/10.1021/jm200064p |J. Med. Chem. XXXX, XXX, 000-000



Journal of Medicinal Chemistry

Scheme 1

Table 1. Inhibition of Proliferation in a Panel of Human
Cancer Cell Lines by Compound 7

human tumor cell lines

origin type ICso (uM),* 7
breast MCE-7 75+23
HBL-100 113 £24
BT-474 85+ 05
colon HT-29 6.6 19
HCT-116 11.0 £ 1.8
multiple myeloma RPMI-8226 3.6+03
U266 49 £ 0.1
leukemia K-562 7.7 £08
CEM 3.8+0.8
HL-60 7.1 £ 0.5
osteosarcoma HOS 7.5+ 19
melanoma G-361 48+ 1.6
cervix HeLa 69 + 1.7
lung A-549 71 +21
epidermis A-431 7.7+£0.3

“ Average £ SD values from three determinations.

Anticancer Cytotoxicity. For a comparison of pyrazolo[4,3-d]-
pyrimidines with purines, the antiproliferative activity of com-
pound 7 was tested on a panel of human cell lines representing a
range of tumor types (Table 1). Determination of proliferation
clearly showed stronger activity of compound 7 over roscovitine.
This result was further confirmed through testing on the NCI60
panel (Figure S2 in Supporting Information),™ where com-
pound 7 showed a higher activity than both racemic R,S-
roscovitine and R-roscovitine in all three assay end points
(Glso, TGI, LCso) (Table 2). All the observed differences in
the activity are statistically highly significant (p < 10”7, one-sided
Wilcoxon paired test). In contrast to roscovitine, compound 7
showed not only cytostatic (Glso, TGI) but also significant
cytotoxic (LCsp) effect against the majority (74.6%) of the
NCI60 cell lines in the concentration range applied. The
observed comparable median activities of compound 7 toward
the cell lines with either the wild-type or mutant pS3 (7.5 vs 10.4,
23.2 vs 26.4, and 55.8 vs 66.5 uM for Gls,, TGIL and LCs,

respectively) are consistent with the accepted opinion that pS3
status does not play a major role in resistance to CDK
inhibitors.*> %’

In order to identify compounds with similar effects on the
NCI60 cell lines, we calculated Pearson correlation coefficients
(r) of the activity patterns (Glso values for the individual cell
lines) of compound 7 and 16 533 other compounds tested on the
NCI60 panel (see Experimental Section for the criteria of
compound selection). Calculations were carried out on a
log—log scale. The analysis identified 2H-pyrazolo|[3,4-d]-
pyrimidine CGP-57380"° (r = 0.66, rank 1, p = 1.0 x 10~ %),
an inhibitor of MNKI. MNKI is a positive regulator of the
eukaryotic initiation factor 4E (eIF4E), which besides its role in
translation also regulates distribution of cyclin D1 mRNA.*
Treatment with MNKI1 inhibitor leads to a decrease of the
cellular content of cyclin D1.¥°° A strong correlation was
observed for the cells with both the wild type (N = 16, r =
0.71, p = 0.0022) and mutant pS3 gene (N =43,r=0.63,p =7.0
x 10 ). It is tempting to speculate that the observed similarity
in the activity patterns of the two compounds might stem from an
effect on CDK activity, directly in the case of compound 7 and
indirectly in the case of MNKI inhibitor. On the other hand,
comparison with experimentally validated (ICso < 100 «M)
inhibitors of cyclin-dependent kinases 1 and 2 and related kinases
(CDKs4,5,7,8,9 and/or glycogen synthase kinase-3/3) included
in BindingDB (33 compounds, 37 activity patterns)®">* shows
that Glso pattern of compound 7 is distinctly different. This
observation suggests that other factors beyond the known shared
molecular target(s) influence the resulting biological activity.
Figure 2 shows signed coeflicients of determination #* (measure
of variability explained by a regression line) calculated separately
for the cell lines with the wild-type and mutant p53 gene. The
cumulation of the data points along the x axis indicates various
degrees of similarity in the activity of compound 7 and the
individual CDK/GSK3B inhibitors against the cell lines expres-
sing wild-type p53. On the other hand, the activity pattern of
compound 7 on the pS3 mutant cell lines was distinctly different
(low signed 1*). A possible explanation of this difference might be
a generally high sensitivity of certain pS3 wild type cell lines to
chemical insults. Similar results were obtained when rank sum
correlation was used instead of Pearson's correlation for calcula-
tion of signed coefficient of determination (not shown). We
conclude that growth inhibitory activity of compound 7 differs

dx.doi.org/10.1021/jm200064p |J. Med. Chem. XXXX, XXX, 000-000
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Table 2. Cytostatic and Cytotoxic Effects of Compound 7 and R,S- and R-Roscovitine against NCI60 Panel”

Glso (uM) TGI (M) LCso (uM)

median range median range median range
7 10.2 3.0—23.8 (0/59) 25.9 10.6—60.8 (0/59) 65.3 39.1 to >100 (15/59)
R,S-roscovitine 17.9 4.6—57.8 (0/59) 58.1 20.9 to >100 (14/59) >100 51.9 to >100 (39/59)
R-roscovitine 19.3 4.9 to >100 (1/52) >100 14 to >100 (36/53) >100 82.0 to >100 (50/53)

“ Given are median and range of Glso, TG and LCs together with proportion of the cell lines for which the end point was not reached at the highest

concentration tested (100 #M) (data in parentheses).
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Figure 2. Effect of pS3 status on relation (expressed as signed coeffi-
cient of determination r*) between Gls, patterns of compound 7 and
individual inhibitors of CDKs and/or GSK3B. Black circle designates
MNK-1 inhibitor.*® Black triangle designates R-roscovitine, and black
square designates racemic roscovitine.

from those of other structurally diverse CDK inhibitors, includ-
ing its isomer roscovitine, and this difference is typically more
pronounced when only the cell lines harboring mutant p53 are
considered.

Kinase Selectivity of Compound 7. The kinase selectivity of
compound 7 was determined in enzyme assays with recombinant
CDK2/cyclin E, CDKS/p35, CDK7/cyclin H/MAT1, and
CDK9/cyclin T1. The ICsy values for compound 7 were
comparable to that of roscovitine (Table 3), but isomer 7 showed
generally better efficiency in CDK inhibition with ICs, values in
the submicromolar range (Figure S1). In the following experi-
ment the selectivity of compound 7 was tested against a panel of
purified recombinant human protein kinases at a single concen-
tration of 10 uM. The assays confirmed that compound 7 inhibits
preferentially CDKs (Table 3). In addition to potent inhibition
of CDKs, moderate inhibition was observed for GSK3B, stress-
activated protein kinases PRAK and MSKI, and mitogen-acti-
vated kinase MEK, and these activities may contribute to the
observed antiproliferative effects of compound 7.

Crystal Structure of Compound 7 with CDK2. The crystal
structure of compound 7 in complex with CDK2 has been
determined at 1.96 A resolution. Compound 7 binds in the
narrow cleft between the N- and C-terminal domains of CDK2.

Table 3. Kinase Selectivity Profile for Compound 7 and Its
Purine Analogue Roscovitine

kinase inhibition (%)* ICso (uM)®
protein kinase 7 roscovitine 7 roscovitine
CDKl1/cyclin B 84 70 nd nd
CDK2/cyclin A 97 94 nd nd
CDK2/cyclin E 98 95 0.04 0.22
CDKS5/p3S 95 85 0.20 0.94
CDK?7/cyclin H/MAT1 96 87 0.16 0.48
CDK9/cyclin T1 90 87 1.00 1.77
CK1 7 1 nd nd
CK2 19 10 nd nd
GSK3A 32 13 nd nd
GSK3B 54 25 nd nd
MEK1 S8 38 nd nd
PRAK 30 28 nd nd
MSK1 39 29 nd nd

“In the presence of 100 uM ATP with 10 uM compound. ¥ nd: not
determined.

The electron density for the inhibitor is excellent with all its
atoms being well-defined in density and allowing the unambig-
uous positioning of the inhibitor in the binding cleft (Figure 3A).
The binding mode of compound 7 in the active site of CDK2 is near
identical in the positioning of the pyrazolo[4,3-d]pyrimidine core
when compared with other homologous ligand structures (Protein
Data Bank codes 2A0C, 1GSS, IW0X, 1CKP, 2A4L, 3DDP, 3NS9)
with the pyrazolo[4,3-d]pyrimidine being sandwiched between the
side chains of Leu134 and Ile10. Similar to other homologous ligand
structures, compound 7 forms a conserved hydrogen bond pattern
to the backbone carbonyl of Leu83 and to the backbone NH of this
same residue. An additional conserved hydrogen bond is found at
the backbone carbonyl of Glu81, yet this interaction is considerably
shorter when compared to other similar ligand structures (2.77 A
compared to 3.18 A for the roscovitine complex, PDB code 2A4L)
(Figure 3A). Some variation between homologous structures is
found in the positioning of the phenyl ring of the benzylamino
group. In general this group is sandwiched between the side chain of
Ile10 and the backbone of His83. This is also the case with
compound 7, although the interaction of the His84 backbone
carbonyl at the ortho position of the ring is longer in this structure
(Figure 3A). A further difference in the binding mode is apparent
when comparing the position of the hydroxymethylpropyl group.
This group takes up a similar orientation to that found in the
olomoucine II structure (PDB code 2A0C) and is rotated in the
opposite direction to that found in the structure containing
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Figure 4. Immunoblot analysis of Rb phosphorylation and some cell
cycle regulators. Asynchronous MCF-7 cells were exposed for 24 h to the
indicated concentrations of compound 7. Tubulin levels are included as
a control for equal protein loading.

roscovitine (PDB code 2A4L, Figure 3B). The hydroxyl atom of this
group makes a strong hydrogen bond to a water molecule (water
71), which in turn forms strong interactions to the side chain of
Asp14S (Figure 3). This bridging interaction is not observed in any
of the homologous ligand/CDK2 complex structures. Therefore,
although ligand compound 7 is reminiscent of other roscovitine-like
ligands, these are significant differences in their respective binding
modes that make compound 7 distinct.

Cellular Effects of Compound 7. When exponentially grow-
ing human MCEF-7 breast cancer cells were treated with com-
pound 7 for 24 h, a dose-dependent inhibition of retinoblastoma
protein (Rb) phosphorylation at Ser249/Thr252, Ser807/811,
Ser780, and Ser795 became apparent on immunoblots of total
cellular proteins probed with phosphospecific antibodies.
These results demonstrate the ability of compound 7 to affect
the activities of CDK4 and CDK2 in proliferating cells. These
CDKs play critical positive roles at the G;/S transition by
phosphorylating the Rb protein. Inhibition of cellular CDK
activity and consequent Rb dephosphorylation causes cell
cycle arrest in the G, phase. Similar observations have been
published not only with roscovitine®*~® but also with roscov-
itine isomers imidazo[2,1-f]-1,2,4-triazine 13*° and pyrazolo-
[1,5-a]-1,3,5-triazine 722

Moreover, changes of protein abundance for some cell cycle
regulators upstream of the Rb protein were monitored in MCF-7
cells treated with compound 7, compared with mock-treated
controls. A significant reduction in CDK4 protein level was
observed, and the abundance of cyclin D1, a positive regulator of
CDXK4, also diminished. In contrast, no changes in protein levels
of CDK1, CDKG6, and cyclins E and A were seen (Figure 4). This
inhibitory pattern, consistent with the cell-cycle effects of com-
pound 7, was observed in MCF-7 cells also upon treatment with
roscovitine™ and pyrazolo[1,5-a]pyrimidine BS-181.>* On the
other hand, human HT-29 colon cancer cells responded to
roscovitine treatment by a decrease in cyclin A protein level,
while the abundance of CDK4 remained unchanged.>*

Cell Cycle Analysis. The antiproliferative activity of com-
pound 7 was verified by flow cytometry analysis of asynchro-
nously growing MCF-7 cells and the multiple myeloma RPMI-
8226 cell line, through double staining with propidium iodide
and S-bromo-2’-deoxyuridine (BrdU). As shown in Figure S,
treatment with both compound 7 and roscovitine arrested the
cell cycle progression in the G,/M phase and resulted in
decreased S-phase populations in the two cell lines. Upon
treatment with higher concentrations of roscovitine and
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Figure 5. Compound 7 arrests cells at various stages of the cell cycle: flow cytometric analysis of BrdU and propidium iodide incorporation in RPMI-
8226 and MCF-7 cells treated for 24 h with roscovitine and compound 7, respectively.

compound 7 the populations of cells actively replicating DNA
(i.e,, BrdU-positive cells) also decreased markedly. In addition,
accumulation of RPMI-8226 cells in G, was found, an outcome
not observed in MCF-7 cells. In summary, compound 7 arrested
the cell cycle of two human cancer cell lines more efficiently than
roscovitine, but both compounds displayed similar patterns of
the cell-cycle blockade.

Besides cell cycle changes, increases of subG; population
(indicative of apoptosis) upon treatment with the two com-
pounds were also observed (Figure S). Notably, compound 7
triggered apoptosis already after 24 h of treatment at compound
concentrations above 10 #M in MCEF-7, U266, and RPMI-8226
cells (Figure S3). These results correlate well with data on
induction of apoptosis obtained by other apoptotic assays (see
below and Figures 6 and S4).

Induction of Apoptosis. Most CDK inhibitors, including
roscovitine, semisynthetic flavone flavopiridol,>’ > and 3-sub-
stituted indolinone compound SU9516,°*°" exert a strong
proapoptotic effect on multiple mgfeloma cells through down-
regulation of Mcl-1 protein.”*®*~®* Therefore, we studied in-
duction of apoptosis in multiple myeloma cell lines in more
detail. Compound 7 induced apoptosis in the multiple myeloma
cell line RPMI-8226, as documented by detection of a cleaved
fragment of caspase-3 and its enhanced enzymatic activity, by
fragmentation of poly(ADP ribose )polymerase 1 (PARP) and by
down-regulation of antiapoptotic protein Mcl-1 (Figure 6C). As
shown in Figure 6A, treatment with 20 #M compound 7 induced
strong activation of caspases 3 and 7 as quantified by a biochem-
ical assay. This result correlates well not only with the immuno-
blotting analysis, where the cleavage of caspase-3 zymogene was
observed under the same experimental conditions, but also with

the flow cytometric detection of the caspase-3 fragment using
the anticleaved caspase-3 (Asp175) antibody (Figure 6B,C).
Monitoring of the cleavage of PARP, a nuclear target of
caspase-3, further confirmed the above results. Taken together,
our results clearly showed that compound 7 induces apoptosis
in the RPMI-8226 multiple myeloma cell line in a concentra-
tion-dependent manner. Furthermore, consistent results were
found also for another multiple myeloma cell line, U266
(Figure SS).

Induction of p53-Dependent Transcription. Treatment of
cells harboring wild-type pS3 with CDK inhibitors leads to
accumulation of p53 and to an increase of p53-dependent
transcription, as shown with roscovitine.*>%¢ A strong nuclear
immunofluorescence signal of pS3 was also evident in MCF-7
cells following treatment with compound 7 (Figure 7A). These
results were then confirmed and extended by immunoblotting
analyses of the levels of pS3 and its targets, p21""*"" and Mdm-2
(Figure 7C). We found that after 24 h incubations of proliferating
MCE-7 cells with 20 #M roscovitine and 10 #M compound 7 the
level of pS3 was strongly increased. Moreover, the accumulated
pS3 was transcriptionally active, as indicated by the enhanced
expression of the cell cycle inhibitory protein p21"A™, a well-
established transcriptional target of p53.

Next, the effect of compound 7 on pS53-dependent transcrip-
tional activity was determined by the f-galactosidase activity
measurement in the human melanoma cell line ARN8.°° Com-
pound 7 showed a dose-dependent activity effect on pS3-
regulated transcription, with the maximum impact observed
between 10 and 20 uM (Figure 7B), while the maximal effect
of roscovitine was observed at an approximately 1.5-fold higher
concentration (data not shown).
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Figure 6. Compound 7 induces apoptosis in RPMI-8226 cell line after continuous 24 h treatment. (A) The activities of caspases 3 and 7 measured using
a fluorogenic substrate Ac-DEVD-AMC in lysates of cells treated with increasing doses of compound 7. (B) Active fragment of caspase-3 (gray line)
detected by flow cytometry using specific anticleaved caspase-3 (Asp175) antibody in cells treated with 20 M compound 7. Black and gray lines indicate
untreated and treated cells, respectively. (C) Fragmentation of PARP and caspase-3 and down-regulation of Mcl-1 detected by immunoblot analysis.

Tubulin levels were monitored to verify equal protein loading.

Compound 7 Inhibits DNA Repair via Homologous Re-
combination Independently of RAD51 Protein Abundance.
Homologous recombination (HR) is important for DNA double
strand break (DSB) repair, and its proper function is required for
the maintenance of genomic stability and cell survival®” HR
repair seems to be restricted only to S and G2 phases of the cell
cycle, where homologous sequences are available, consistent with
regulation of HR activity via CDK dependent mechanism(s).
Indeed, in yeast, Sae2 protein phosphorgflation by CDK was
identified as an important HR regulator® and a similar CDK-
dependent mechanism was proposed also for mammalian cells.
However, in mammalian cells the identification of CDK(s)
responsible for regulation of HR is rather problematic because
studies with roscovitine or flavopiridol also showed rapid down-
regulation of a core HR-pathway protein Rad51,%"”° the effect
which may mask any other potential regulatory impact of CDK
inhibition on HR. Moreover, RadS51 down-regulation seems
unlikely to represent a physiological mode of HR regulation
because RadS1 abundance is not markedly altered throughout
G1, S, and G2 phases of the cell cycle.71 Thus, we examined
whether compound 7 could be used as an alternative CDK
inhibitor, possibly capable of modulating the HR process without
affecting the RadS1 status. We selected the highest concentra-
tions of roscovitine, flavopiridol, and compound 7 which do not
yet affect the cell cycle progression (Figure S6) and assessed HR
using an assay in which HR efficiency to repair DSB within a
reporter plasmid in human cells is quantified through measure-
ment of the repair-generated GFP fluorescence signal by flow
cytometry.”” In parallel we monitored the RADS1 protein level
by immunoblotting. In cells treated with compound 7 and

flavopiridol, the HR efficiency was reduced to 66% and 62% of
control values, respectively (Figure 8A). Notably, at the drug
concentrations used for the HR assay only flavopiridol caused a
significant RADS1 decrease (Figure 8B). Treatment with ros-
covitine at a concentration not affecting the cell cycle did not
influence HR significantly nor did it affect the RADS1 level
(Figure 8). On the basis of these results, obtained particularly
because of compound 7, we conclude that CDK inhibition can
affect HR efficiency independently of effects on RADS1 protein
abundance.

B CONCLUSION

Compound 7 was prepared and characterized as a representa-
tive of a new group of CDK inhibitors, trisubstituted pyrazolo-
[4,3-d]pyrimidines. In several biochemical and biological assays,
the effects of compound 7 were compared with those of its
bioisostere, roscovitine. These analyses showed similar kinase
selectivity profiles of roscovitine and compound 7, yet apparently
higher efficiency of the latter compound. The overall molecular
and cellular effects of compound 7 were consistent with its ability
to inhibit CDKs and, furthermore, revealed evidence for a role of
CDKs in regulation of DNA repair by HR. The data suggest that
blocking HR-mediated repair by compound 7 and perhaps also
by other CDK inhibitors could potentially be exploited in cancer
therapy in at least three scenarios: (i) to sensitize cancer cells to
therapeutically used clastogens including ionizing radiation; (ii)
as single agents to affect cancer cells preferentially, because of the
tumor-specific oncogene-evoked reglication stress and the ensu-
ing constitutive DNA damage7377 whose repair requires HR;
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Figure 7. Induction of pS3 in cells by compound 7. (A) Double labeling of asynchronous MCF-7 cells, treated with 10 #M compound 7 for 24 h, with
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Figure 8. Compound 7 reduces homologous recombination. DR-
U20S-GFP cells expressing I-Scel nuclease to produce DSBs within
the HR-reporter sequences were used to measure the GFP product as a
readout for effects of CDK inhibitors on HR efficiency. (A) GFP level
and its fluorescence intensity in DR-U20S-GFP cells reflect the degree
of successful HR-mediated recombination that was subject to modula-
tion by roscovitine (10 uM), compound 7 (S uM), or flavopiridol (0.1
UM) for 56 h. (B) Protein levels of RADS1 were analyzed by immuno-
blotting in DR-U20S-GFP cells exposed to increasing concentrations of
the drugs, as indicated. Frames highlight scenarios with drug concentra-
tions used in the HR assay.

(iii) to selectively kill cancer cells that often harbor defects in
DNA damage response pathways, taking advantage of the
synthetic lethality principle.”” Altogether, our present character-
ization of this novel trisubstituted pyrazolo[4,3-d]pyrimidine

warrants further evaluation of these purine-derived bioisosteres
as potential new candidate anticancer drugs.

B EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were deter-
mined on a Kofler block and are uncorrected. NMR spectra were
measured on a Bruker AVANCE III 400 MHz spectrometer (400.13
MHz for 'H and 100.61 MHz for '*C) and a Bruker AVANCE III 600
MHz spectrometer (600.23 MHz for "H and 150.93 MHz for >C) and a
Varian Geminy 300 (300.1 MHz for "H and 75 MHz for *C) in DMSO-
dg or CDCl; at 303 K. The residual solvent signal was used as an internal
standard (Og 2.500 and O¢ 39.60 for DMSO-dg or Oy 7.265 and O¢
77.00 for CDCL;). "H NMR, "*C NMR, COSY, HSQC, and HMBC
results were obtained using standard manufacturers’ software (Topspin
2.1, Bruker Biospin GmbH, Rheinstetten Germany). Chemical shifts are
given in O scale [ppm] and coupling constants in Hz. Digital resolution
enabled us to report chemical shifts of protons to 3 and coupling constants
to 1 and carbon chemical shifts to 2 decimal places. ESI or APCI mass
spectra were determined using a Waters Micromass ZMD mass spectro-
meter (direct inlet, coin voltage 20 V). IR spectra were recorded on an FT-
IR Nicolet 200 instrument with KBr tablet. Compound purity was
determined by elemental analyses (0.4%) or LC—MS analysis and was
confirmed to be >95% for all compounds. Merck silica gel Kieselgel 60
(230—400 mesh) was used for column chromatography.

Prepared Compounds. 4-Amino-5-isopropyl-1(2)H-pyrazole-
3-carboxamide (1). 1 was prepared according to the published synthesis.*

3-Isopropyl-5-sulfanyl-1(2)H-pyrazolo[4,3-d]pyrimidin-7-ol (2).
A mixture of amide 1 (1.5 g, 9 mmol) and thiourea (3.8 g, 46 mmol) was
fused (195 °C) for 30 min under argon atmosphere. After cooling, the
reaction melt was suspended in water (20 mL) and the solution was
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alkalized at 0 °C by 2 M NaOH solution to pH 12.3. The resulting dark
solution was decolorized by carboraffin. The filtered solution was
acidified by HCI to pH 5.7—6.0. After 1 h the product was filtered off,
washed with cooled water, and dried at 80 °C/20 Torr. Yield 82%, mp
>305 °C (dec). MS ESI : [M — H]™ = 209.3. "H NMR (400 MHz,
303.1 K, DMSO-dg) 6 1.225 (d, ] = 6.9 Hz, 6H, (CH,),), 3.370 (sept, ] =
6.9 Hz, 1H, CH), 12.116 (brs, 1H), 12.651 (brs, 1H), 13.842 (br's, 1H).
3C NMR (100 MHz, 303.1 K, DMSO-ds) 6 21.91 (q, (CH3),), 24.08
(d, CH), 124.04 (s), 126.91 (s), 134.08 (s, C-9), 143.13 (5, C-9), 152.57
(s), 155.34 (s). Anal. (CgH;(N,OS) C, H, N, S.
3-Isopropyl-5-methylsulfanyl-1(2)H-pyrazolo[4,3-d]pyrimidin-7-ol
(3). Thiol 2 (16 g, 70 mmol) was added to a mixture of 50 mL of EtOH
and 170 mL of water at 35 °C. The pH of the solution was adjusted to 9.3
by adding a water solution of 30% NaOH, and thus, thiol 2 was dissolved.
During vigorous agitation dimethylsulfate (6.6 mL, 70 mmol) was added
at 20 °C to the reaction mixture. The crystallized product was filtered off,
washed (2 ) with a mixture of EtOH/H,O (1/2.5, 20 mL), and water.
The product was dried at 80 °C/20 Torr. Yield 90%, mp 213—216 °C.
MSESI: [M — H]~ =223.3. "H NMR (600 MHz, 303.1 K, DMSO-ds)
8 1.349 (d, J = 7.0 Hz, 6H, (CH,),), 2.531 (s, 3H, CH;S), 3.216 (sept,
J=7.0 Hz, 1H, CH), 12.398 (s, 1H, NH or OH), 13.513 (s, 1H, NH or
OH). *C NMR (150 MHz, 303.1 K, DMSO-dg) 6 12,94 (q, CH5S),
21.69 (q, (CH3),), 26.32 (d, CH), 125.08 (s), 136.91 (s, C-4), 149.48 (s,
C-9),151.94 (s, C-2), 153.51 (s). Tautomer: "H NMR (600 MHz, 303.1
K, DMSO-ds) 0 1.369 (d, ] = 7.0 Hz, 6H, (CH3),), 2.50* (s, 3H, CH,S),
3285 (sept, J = 7.0 Hz, 1H, CH), 11.959 (s, 1H, NH or OH), 13.770 (s,
1H, NH or OH). *C NMR (150 MHz, 303.1 K, DMSO-ds) 6 12,86 (g,
CH,S), 21.69 (q, (CH,),), 24.74 (d, CH), 133.60 (s), 134.69 (s),
140.34 (s, C-9), 151.21 (s, C-2), 157.35 (s). HSQC readout was done.
7-Chloro-3-isopropyl-5-methylsulfanyl-1(2)H-pyrazolo[4,3-d]pyri-
midine (4). Dimethylaniline (30 mL) was dropped under nitrogen
atmosphere into a mixture of thioether 3 (18 g, 80 mmol) and POCl;
(120 mL) during 30 min. Then the reaction mixture was refluxed for S h
(bath temperature of 108 °C). After cooling to room temperature, the
reaction mixture was concentrated under vacuum (the excess of POCl;
was removed). Methyl tert-butyl ether (MTBE) (140 mL) was added,
and during agitation water (50 mL) was added. The organic phase was
separated off, and the water phase was extracted once more by MTBE.
Combined organic phases were diluted by 70 mL of water and alkalized
by solid NaHCOj3 (2 g) to pH 7.5. The mixture was then agitated for 2 h.
The organic phase was separated by carboraffin trituration and dried by
MgSO,. Crystallization from MTBE—heptane afforded (after drying at
70 °C/20 Torr) 16 g of a yellow product. Yield 80%, mp >170 °C (dec).
MS ESI™: [M — H]™ =241.3 (100%), 243 (30%). "H NMR (400 MHz,
303.1 K, CDCly) 6 1.500 (d, J = 7.0 Hz, 6H, (CH3),), 2.644 (s, 3H,
CHS,S), 3.488 (sept, ] = 7.0 Hz, 1H, CH). *C NMR (100 MHz, 303.1 K,
CDCl;) 6 14.59 (q, CH3S), 21.34 (q, (CH3),), 27.12 (d, CH), 128.77
(s, C-6), 144.21 (s, C-5), 144.51 (s, C-4), 151.96 (s, C-9), 163.60 (s,
C-2). Anal. (CoH,,CIN,S) C, H, N, CL
7-Benzylamino-3-isopropyl-5-methylsulfanyl-1(2)H-pyrazolo[4,3-
dJpyrimidine Hydrochloride (5). 7-Chloro derivative (8.5 g, 35S mmol),
benzylamine (9 mL, 85 mmol), and triethylamine (23 mL, 230 mmol) in
50 mL of 1-butanol were heated with stirring at 100 °C for 3 h. The
solution was evaporated to dryness in vacuum, and the residue was
partitioned between H,O and EtOAc. The combined organic phase was
purified by carboraffin and dried with magnesium sulfate and evapo-
rated. Product was dissolved in a mixture of 30 mL of MTBE, 10 mL of
H,0, and 4 mL of isopropanol. After acidification by S N HCl to pH 0.5,
hydrochloride § crystallized. Product was filtered off, washed twice with
a mixture of MTBE/2-propanol (7/3, 10 mL), and dried at 70 °C/20
Torr. Yield 11 g, 88%, mp 197—204 °C (after recrystallization from
boiling EtOH, mp 205—210 °C). MS ESI": [M — H] ™~ = 312.3 (100%),
348 (50%, M 4 CI7). MS ESI™: 314.3 (100%, M + H). IR (ecm™):
1618,1581,1532, 1353, 1246, 1181, 1062, 924, 698. "H NMR (400 MHz,

303.1 K, CDCly) 0 1.340 (d, ] = 7.0 Hz, 6H, (CH;),), 2.541 (s, 3H,
CHS,S), 3.300 (sept, J = 7.0 Hz, 1H, CH), 4.762 (br s, 2H, NHCH,),
6.658 (br s, 1H, NHCH,), 7.213—7.277 (5H, m, H-ortho, H-meta,
H-para), 11.615 (br s, H-7 or H-8). *C NMR (100 MHz, 303.1 K,
CDCl,) 8 1442 (q, CH,S), 21.51 (q, (CHs),), 26.01 (d, CH), 44.65 (t,
NHCH,), 127.53 (d, C-para), 127.79 (d, C-ortho), 128.62 (d, C-meta),
137.96 (s, C-ipso), 138.77 (s), 151.24 (s, C-9), 163.34 (s, C-2). Anal.
(C16H19NsS) C, H, N.

7-Benzylamino-3-isopropyl-5-methylsulfonyl-1(2)H-pyrazolo[4,3-
dlpyrimidin (6). Thioether S (liberated base, 8 g, 26 mmol) was
dissolved in 40 mL of ethanol, and solution of 20 g of Oxone in
50 mL of H,O was added at 45—50 °C. Oxygenation was checked by
TLC (silica gel, MeOH/toluene, 1/ 9) and was completed in 30 min.
Water (130 mL) and ethyl acetate (S0 mL) were added. Product was
extracted in the organic phase once more with 20 mL of ethyl acetate.
The combined organic phase was purified by carboraffin and dried with
magnesium sulfate and evaporated. Product was crystallized from
methanol. Yield 7.5 g, 83%, mp 96 °C. MS ESI : [M — H] ™ = 3443
(100%, M — H™). MS ESI™: 346.3 (100%, M -+ H™). IR (cm™"): 1626,
1534, 1453, 1359, 1297, 1128 (SO,), 1060, 926, 753. "H NMR (400
MHz, 303.1 K, CDCly) 0 1.325 (d, ] = 5.0 Hz, 6H, (CHs),), 3.222 (s,
3H, CH;S0,), 3.349 (br s, 1H, CH), 4.761 (br s, 2H, NHCH,),
7.259—7.185 (3H, m, H-meta, H-para), 7.310 (2H, m, H-ortho). *C
NMR (100 MHz, 303.1 K, CDCl;) 0 21.56 (q, (CHs),), 26.14 (d, CH),
39.13 (g, CH3S0,), 45.17 (t, NHCH,), 124.79 (s), 127.64 (d, C-para),
128.01 (d, C-ortho), 128.64 (d, C-meta), 137.27 (s, C-ipso), 150.68 (s),
151.39 (s), 157.79 (s, C-2). Anal. (C,4H;sN50,S) C, H, N.

7-Benzylamino-5(R)-[2-(hydroxymethyl)propyllJamino-3-isopro-
pyl-1(2)H-pyrazolo[4,3-d]pyrimidine (7). Methylsulfone 6 (0.2 g, 0.58
mmol) and R-(—)-2-amino-1-butanol (2 mL, 23 mmol) were heated in
sealed ampule for 3 h to 160 °C. Excess of the amine was evaporated at a
temperature below 70 °C, and the residue was partitioned in CHCl;/
H,O. The combined organic phases were dried with magnesium sulfate
and evaporated. Product was purified by column flash chromatography
on silica gel stepwise with 1%, 2%, 4%, and 6% MeOH in CHCl;.
Product was obtained in noncrystallizable amorphous colorless glass
form. Yield 54 mg, 25%, [0 ]p +53 (¢ 1.35, CHCl;). MSESI*: [M+H] ©
= 355.4 (100). MS ESI : [M — H]~ = 353.3 (100). 'H NMR (300
MHz, DMSO-d,) 0.85 (t,] = 7,5 Hz, 3H, CH;CH,), 1.32 (d, J = 7.0 Hz,
6H, (CH;),CH), 1.39—1.68 (m, 2H, CH,CH3), 3,16 (sept, ] = 7,0 Hz,
1H, CH(CHs,),), 3.37 —3.51 (m, 2H, CH,OH), 3.78 (m, 1H, CHNH),
4.68 (brs, 2H, CH,Ph), 5.74 (brs, 1H,NH), 7.26 (m, 1H, H-para), 7.34
(m, 2H, H-meta), 7.39 (m, 2H, H-ortho), 11.79 bs (*/, H, NH), 13,28
bs (*/, H,NH). *C NMR (75 MHz, DMSO-dg) 8 10.6,21.5,21.6,23.8,
25.9, 43.0, 54.2, 63.4, 126.9, 127.5, 128.3, 139.3, 147.1, 157.6 . Anal.
(C1oH6NgO) C, H, N.

Enzyme Inhibition Assay. CDK2/cyclin E kinase was produced
in Sf9 insect cells via baculoviral infection and purified on a NiNTA
column (Qiagen). CDKS/p3S, CDK7cyclin H/MAT1, and CDK9/
cyclin T1 were purchased from ProQinase GmbH. The kinase reactions
were assayed with 1 mg/mL histone H1 (for CDK2 and CDKS) or
(YSPTSPS),KK peptide (for CDK7 and CDK9) in the presence of 15/
0.15/1.5/1.5 uM ATP (for CDK2/CDKS/CDK?7/CDK9), 0.0 uCi
[7-**P]ATP, and the test compound in a final volume of 10 L, all in a
reaction buffer (60 mM HEPES—NaOH, pH 7.5, 3 mM MgCl,, 3 mM
MnCl,, 3 uM sodium orthovanadate, 1.2 mM DTT, 2.5 ug/S0 uL
PEGa0,000)- The reactions were stopped by adding S uL of 3% aqueous
H3PO,. Aliquots were spotted onto P-81 phosphocellulose (Whatman),
washed 3Xx with 0.5% aqueous H3PO,, and finally air-dried. Kinase
inhibition was quantified using digital image analyzer FLA-7000
(Fujifilm). The concentration of the test compounds required to
decrease the CDK by 50% was determined from dose-response curves
and designated ICsp.
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Kinase Selectivity. All kinase assays were carried out by the
SelectScreen Kinase Profiling Service in the presence of 100 uM ATP
and 10 uM compound and performed according to the standard
protocol of Invitrogen.

Crystallization and Structure Determination. Human recom-
binant CDK2 was purchased from ProQinase GmbH, and crystals were
grown following the protocol of the supplier. The compound 7/CDK2
complex was prepared by transferring a coverslip containing a drop of
native CDK2 crystals over a well solution of 35% PEG 6000 and
equilibrating at 17 °C for 24 h. A single crystal of CDK2 was transferred
from this drop into a 1 4L drop of 35% PEG 6000, 100 mM Na HEPES
buffer (pH 7.5), 1 mM compound 7, and S mM DMSO and placed over
a well of the same solution. Crystals were left to soak for 2 days. The
crystal of about 0.1 mm in length was mounted in a 0.1—0.2 mm
cryoloop (Hampton Research) and was flash-frozen in liquid nitrogen.
The soaking solution acted as a cryoprotectant. All diffraction data were
collected at 100 K (Cryostream) using a Rigaku Micro7 rotating anode
generator and a Mar34S detector (MarResearch). Data processing was
carried out using the programs MOSFLM and SCALA.”® Initial struc-
ture solution was performed using the program PHASER” using an
available CDK2 structure (PDB code 2A0C). The programs
REFMAC”® and PHENIX”® were used for refinement, with manual
refinement and waterfitting being performed by the program COOT.*
Crystallographic processing and refinement statistics are summarized in
Supporting Information (Table S1). Atomic coordinates have been
deposited in the Brookhaven Protein Data Bank under the accession
code 3PJ8.

Cell Maintenance and Cytotoxicity Assay. The cytotoxicity of
the studied compounds was determined with cell lines of different
histological origin. The cells, cultured in DMEM (supplemented with
10% fetal calf serum, 4 mM glutamine, 100 IU/mL penicillin, 100 zg/mL
streptomycin) in a humidified CO, incubator at 37 °C, were redis-
tributed into 96-well microtiter plates at appropriate densities for their
respective cell sizes and growth rates. After preincubation, test com-
pounds in 3-fold dilutions were added in triplicates. Treatment lasted for
72 h and then calcein AM solution was added. The fluorescence of the
live cells was measured at 485 nm/538 nm (excitation/emission) with a
Fluoroskan Ascent microplate reader (Labsystems). ICs, values, the
drug concentrations reducing number of viable cells to 50%, were
determined from the dose-response curves.

Immunoblotting. For direct immunoblotting, total cellular pro-
tein lysates were prepared by harvesting treated cells in Laemmli sample
buffer. Proteins were separated on SDS-polyacrylamide gels and elec-
troblotted onto nitrocellulose membrane. The blotted membranes were
stained with 0.2% Ponceau-S in 1% aqueous acetic acid to verify equal
protein loading, destained, and blocked in PBS and 0.1% Tween 20
(PBS-T) with 5% low fat milk or 3% bovine serum albumin (BSA). The
membranes were then incubated with specific antibodies overnight at
4 °C. After being washed three times in PBS-T, the membranes were
incubated with a 1:2000 dilution of peroxidase-conjugated secondary
antibodies. After another three washes in PBS-T, peroxidase activity was
detected using ECL+ reagents (AP Biotech) according to the manu-
facturer’s instructions.

Antibodies. Specific antibodies were purchased from Cell Signaling
Technology (antitotal pRb, clone 4H1, and anti-pRb antibodies phos-
phorylated at S780, S79S, and S807/811), Sigma-Aldrich (anti-pRb
phosphorylated at Ser249/Thr252, anti-0-tubulin, clone DM1A, perox-
idase-labeled secondary antibodies), Santa Cruz Biotechnology (anti-Mcl-
1, clone S-19, anti-PARP, clone F-2, anti-Mdm-2, clone SMP14, anti-
RADS], clone H-92, anti CDK1, clone B-6; anti-cyclin E, clone HE12),
DAKO Cytomation (anti-caspase-3), Roche Applied Science (anti-S-
bromo-2'-deoxyuridine-fluorescein, clone BMC 9318), Jackson Immu-
noResearch Laboratory (fluorescein-conjugated Goat Anti-Mouse IgG),
Beckman Coulter (anti-cleaved caspase-3) or were a generous gift from

Dr. B. Vojtések (anti-p$3, clone DO-1, anti—pZIWAFl, clone 118, anti-
CDK4, anti-cyclin D1, anti-CDKS6, anti-cyclin A).

BrdU Incorporation and Cell Cycle Analysis. Subconfluent
MCEF-7 cells were treated with compound 7 or roscovitine at different
concentrations for 24 h. The cultures were fed and pulse-labeled with
10 uM S-bromo-2'-deoxyuridine (BrdU) for 30 min at 37 °C before
harvesting. The cells were trypsinized, washed by PBS containing 1%
BSA (PBS/BSA), fixed with ice-cold 70% ethanol, incubated on ice for
30 min, washed with PBS/BSA again, and resuspended in 2 M HCl for
30 min at room temperature in order to denature their DNA. Following
neutralization with 0.1 M Na,B40,, the cells were harvested by
centrifugation and washed with PBS/BSA containing 0.5% Tween-20.
They were then stained with anti-BrdU fluorescein-labeled antibody
(1:50) for 30 min at room temperature in the dark. The cells were then
washed with PBS, incubated with propidium iodide (0.1 mg/mL) and
RNase A (0.5 mg/mL) for 1 h at room temperature in the dark and
finally analyzed by flow cytometry using a 488 nm laser (Cell Lab Quanta
SC, Beckman Coulter).

p53-Dependent Transcriptional Activity. To measure pS3-
dependent transcriptional activity, -galactosidase activity was deter-
mined in the human melanoma cell line ARN-8, stably transfected with a
pS3-responsive reporter construct pRGCAfoslacZ.66 After 24 h of
incubation with the inhibitors the cells were permeabilized with 0.3%
Triton X-100 for 15 min, and then 4-methylumbelliferon-f3-p-galacto-
pyranoside was added as a substrate to a final concentration of 80 (M.
After 1 h the fluorescence was measured at 355 nm/460 nm (excitation/
emission) with a Fluoroskan Ascent microplate reader (Labsystems).

Immunofluorescence. MCF-7 cells grown on coverslips were
treated with increasing concentrations of compounds for 24 h. Slips were
then rinsed in PBS, and cells were fixed in methanol/acetone (1:1)
at —20 °C for atleast 1 h. The coverslips were then rehydrated in PBS for
10—20 min, rinsed with 10% fetal bovine serum, and incubated with the
mouse monoclonal anti-p$3 antibody (DO-1) for 1 h at room tempera-
ture. The samples were then washed three times with PBS before being
incubated for 1 h with a secondary fluorescein isothiocyanate-conju-
gated anti-mouse IgG antibody. After incubation the coverslips were
rinsed three times in PBS and then the nuclei were stained by DAPI (MP
Biomedicals). After the final wash by water the coverslips were mounted
on microscope slides using Mowiol mounting medium (Calbiochem)
and observed using a fluorescence microscope (Olympus BXS0)
coupled with a digital camera (Olympus DP71).

Caspase-3/7 Assay. The cells were harvested by centrifugation
and homogenized in an extraction buffer (10 mM KCl, S mM HEPES,
1 mM EDTA, 1 mM EGTA, 0.2% CHAPS, inhibitors of proteases, pH
7.4) on ice for 20 min. The homogenates were clarified by centrifugation
at 10000g for 30 min at 4 °C. The proteins were quantified by the
Bradford method and diluted to equal concentrations. Lysates were then
incubated for 1 h with 100 uM Ac-DEVD-AMC as substrate in the assay
buffer (25 mM PIPES, 2 mM EGTA, 2 mM MgCl,, S mM DTT, pH
7.3). For negative controls, the lysates were supplemented with 100 uM
Ac-DEVD-CHO as a caspase-3/7 inhibitor. The fluorescence of the
product was measured using a Fluoroskan Ascent microplate reader
(Labsystems) at 355 nm /460 nm (excitation/emission).

Flow Cytometry Analysis of Cleaved Caspase-3. RPMI-8226
cells were collected by centrifugation, and the pellets were resuspended
in 4% formaldehyde solution for 10 min at 37 °C. The cells were then
permeabilized by adding ice-cold methanol to a final concentration of
90% and incubated for 30 min on ice. Subsequently the cells were rinsed
in BSA/PBS, pelleted, resuspended in a few drops of BSA/PBS, and
incubated for 10 min at room temperature. Then anticleaved caspase-3
antibody conjugated with Alexa Fluor 488 (Beckman Coulter) was
added, and the cells were incubated for 1 h in the dark at room
temperature. Finally the cells were washed in BSA/PBS, resuspended
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again, and analyzed by flow cytometry using a 488 nm laser (Cell Lab
Quanta SC, Beckman Coulter).

Homologous Recombination Assay. A U20S clone containing
a single complete copy of the integrated HR reporter hprt-DR-GFP was
obtained from Pierce et al.®* DR-U20S-GFP cells (3.3 x 10° per well)
were seeded in 100 mm dishes and transfected with 1 g of pCKA-I-Scel
plasmid using Fugene 6 reagent. Sixteen hours later, the medium was
replaced with fresh medium containing tested compounds (S M for
compound 7, 10 uM for roscovitine, 0.1 #M for flavopiridol). Cells were
harvested after 2 days for flow cytometric analysis on a Cell Lab Quanta
SC cytometer (Beckman Coulter).

NCI60 Cytotoxicity Assay. Tests of toxicity on NCI60, a set of 59
human cancer cell lines derived from nine tissue types, were performed
at the Developmental Therapeutics Program of the National Cancer
Institute (Bethesda, MD, U.S.). The cytotoxicity of compound 7 was
evaluated by measuring total cell protein using the sulforhodamine B
method according to the standard protocol at time 0 and after 48 h. The
highest concentration tested was 100 #M. Glso, TGI, and LCsq
(concentration of a drug inducing S0% reduction of growth, total
growth inhibition, and 50% reduction of initial cell population, re-
spectively) were estimated from the dose-response curves.

Correlation Analysis of NCI60 Activity. The activity pattern
(Gl values for individual NCI60 cell lines) of compound 7 was
correlated with the drug activity patterns in the DTP cancer screening
data set, May 2009 release (http:/ /dtp.ncinih.gov/docs/cancer/
cancer_data.html). Pearson correlation coefficients (r) were calculated
on a log—log scale. Signed version of coefficient of determination is
defined as [r/abs(r)]r”. Only the activity patterns fulfilling following
criteria were analyzed: (1) Glsg values for at least 50 cell lines, (2) Gls,
reached against more than 50% of the cell lines tested, and (3) Gl for
the most sensitive cell line at least S times lower than GI; for the most
resistant cell line. Experimentally validated low molecular inhibitors of
CDKs 1,2,4,5,7,8,9 and glycogen synthase kinase-3 with ICs, < 100
UM were extracted from BindingDB.*"*> SDfile with the data was
downloaded on November 17, 2009. Pubchem ID was used for
conversion of BindingDB and NCI60 identifiers. Data manipulation
and analysis was done in R 2.8.1.
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Abstract: Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological
stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of
differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription
and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of
transcription, and among these CDKY is directly associated with cardiac hypertrophy. CDK9 phos-
phorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of
transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also
confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal
chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of
CDKO9 is available. Recent determination of CDK9’s crystal structure now allows the development of
selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9
may therefore constitute a novel target for drugs against cardiac hypertrophy. © 2009 Wiley Periodicals,
Inc. Med Res Rev, 30, No. 4, 646-666, 2010

Key words: P-TEFb; cardiac myocyte; cardiac hypertrophy; protein kinase; inhibitor

1. INTRODUCTION

Cardiovascular disease is today the main cause of mortality worldwide, representing 30% of
all deaths, and its incidence is still on the rise. The term cardiovascular disease comprises a
broad spectrum of cardiac and circulatory pathologies. One of the most frequent is heart
failure, which can be defined as the inability of the heart to pump enough blood to the
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body." This syndrome has many clinical types and its initial causes can be wide-ranging, e.g.
myocardial infarction or other forms of ischemic heart disease, hypertension, coronary artery
diseases, valvular diseases, congenital defects, infectious diseases, cardiotoxic substances, or
cardiac hypertrophy.**

The last mentioned disease, cardiac hypertrophy, is characterized by an increase in the
size of differentiated cardiac myocytes. This typically, but not always, necessitates enlarge-
ment of the entire myocardium. Cardiac hypertrophy can arise as a response of the heart to
increased hemodynamic demand. If this process is associated with normal or even improved
cardiac myocyte contractile function, it can be seen as adaptive hypertrophy. This type of
cardiac hypertrophy can occur in healthy individuals following pregnancy or exercise and is
traditionally classified by cardiologists as physiological. However, persistence of this com-
pensatory mechanism for a longer period can lead to cardiac dysfunction and heart failure. In
the case of cardiac hypertrophy accompanied by impaired contractile function of cardiac
myocytes and subsequent heart dysfunction, the terms maladaptive or pathological can be
used.>® Interestingly, hypertrophy also plays a role in cardiac development soon after birth.
It has been found that cardiac myocytes of newborns and individuals afflicted with patho-
logical cardiac hypertrophy share some similarities in the gene expression.” Due to its
occurrence in neonatal cardiac myocytes, this gene expression profile is referred to as the fetal
gene program.

Over the past decade, a great diversity of stimuli has been identified triggering cardiac
hypertrophy. Our knowledge of diverse regulatory circuits, such as transduction and
intracellular signaling pathways, specific transcription factors and their co-factors delineating
resurrection of the fetal gene program in the onset of cardiac hypertrophy, has emerged from
numerous specialized studies.®!” Nevertheless, until recently, central molecular mechanisms
underlying pathological growth of cardiac myocytes have not been convincingly elaborated.
This review therefore focuses on cyclin-dependent kinase 9 (CDK9), an important regulatory
molecule that could act as a linking node of various signaling mechanisms participating in the
initiation and progress of cardiac hypertrophy. Its structure, biological function, and espe-
cially involvement in hypertrophic growth are discussed in detail, and separate sections
are devoted to CDK9 low-molecular inhibitors and their potential in pharmacological
modulation of this insidious disease.

2. MOLECULAR BASIS OF CARDIAC HYPERTROPHY

As it had been known that enlargement of cardiac myocytes could be attributed to overall
increase of protein content due to elevated RNA production,'® it came as no surprise that
RNA polymerase II (RNAPII), responsible for transcription of coding RNA species, was
identified as a limiting factor of hypertrophic growth. In particular, phosphorylation of its
C-terminal domain (CTD) on serine 2 (Ser2) in a highly multimerized heptapeptide motif
(Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) indicative of fully elongating RNAPII was found to
be associated with the hallmark of cardiac hypertrophy.'*?° The prototypical kinase cata-
lyzing Ser2 phosphorylation is positive transcription elongation factor b (P-TEFb).>'** In
addition to phosphorylating Ser2, P-TEFD is also responsible for initiating the elongation
phase of transcription by overcoming inhibitory effects of negative elongation factors on
RNAPII at the proximal promoter regions HSP70, JunB, MAP kinase phosphatase-1 genes,
and others. %’

P-TEFb is typically found in two functionally distinct complexes in cells. Active P-TEFb
consists of CDK9 and cyclin T1, T2a, or T2b.>' Inactive P-TEFb is inhibited in a
“large’” complex by cooperative association with 7SK small nuclear RNA (7SK snRNA),

Medicinal Research Reviews DOI 10.1002/med
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hexamethylene-bisacetamide inducible protein 1 (Heximl), 7SK snRNA methylphosphate
capping enzyme (MEPCE), and La-related protein 7 (LARP7).%*

Most importantly, the crucial role of P-TEFb for the onset and pathology of cardiac
hypertrophy has been demonstrated at multiple levels. First and foremost, genetic ablation of
cardiac lineage protein 1 (Clp-1), the mouse homolog of Hexim1, was shown to cause fetal
lethality in mouse due to pathological enlargement of the heart with the complex phenotype
recapitulating all characteristics of cardiac hypertrophy.®® In addition, depletion of 7SK
snRNA by a small interference RNA approach in primary rat cardiac myocytes has been
shown to be sufficient to trigger the myocytes’ abnormal growth.?® By contrast, two- and six-
fold increase of cyclin T1 levels in adult heart in transgenic mouse models resulted in con-
centric hypertrophy with 20 and 40% heart weight/body weight ratios and without detectably
reinitiating the fetal gene program.?® This rather surprising loss of induction of the fetal gene
program in these mice can now be elegantly explained by recent observations that provide
important evidence that elongation control, directed by P-TEFb, might orchestrate a unique
pattern of gene expression during development.>>*® Thus, P-TEFb most likely plays two
equally important roles in the pathophysiology of cardiac hypertrophy (Fig. 1). First, en-
hanced activity of P-TEFDb, elevated by ectopic expression of cyclin T1 in the adult heart, will
support transcription of already transcribed genes in the heart. Secondly, as do diverse
hypertrophic stimuli, P-TEFb promotes de novo expression of specific genes earlier
recognized as susceptible to developmental or environmental cues.’’

Last but not least, all tested hypertrophic stimuli led to disruption of the large P-TEFDb
complex and release of fully active P-TEFb (Fig. 1).2°2% Still, the molecular mechanisms
involved in P-TEFD liberation are not yet characterized, except recent observation made by
Espinoza-Derout who had shown Jak/STAT signal transduction pathway to be involved in
the release of P-TEFb from large complex in cardiac myocytes.*® We can only speculate that

a Adult heart b Fetal heart c Adult heart

hypertrophic

rtrop transgenic
stimuli knock-out

cyclin T1

Figure 1. Involvementof P-TEFb (CDK9/cyclinT) in regulating transcription of the fetal gene program and growth-promoting
genes during cardiac hypertrophy. Diverse stress stimuli trigger the expression of genes associated with the fetal gene program
and of growth-promoting genes. Importantly, participation of the intracellular signaling pathways induced in parallel by these
stimuli is absolutely necessary for reactivation of fetal gene program genes through the yet unknown factor(s) represented by the
question mark (a). Genetic depletion of Hexim1 in the fetal heart results in the expression of growth-promoting genes, as well as of
genes of the fetal gene program, even without the activation of intracellular signaling pathways, because both sets of these genes
are already actively transcribed. The same hypertrophic phenotype would be most likely seen, too, when cyclin T1 was ectopically
expressed in the fetal heart (b). In the adult heart, genes of the fetal gene program are silenced. Thus, ectopic expression of cyclin T1
inthe adult heart leads to increased transcription of mostly growth-promoting genes without activating fetal gene program genes. It
is possible to assume that depletion of Hexim1 in the adult heart could have the same effect as ectopic expression of cyclinT1 (c).
Green and red rectangles depict active and suppressed transcription of the fetal gene program and growth-promoting genes,
respectively. Green and red CDK9/cyclin Tovals signify inactive and active P-TEFb complexes, respectively.
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there are either one or more unknown factors sensing hypertrophic stimuli and causing direct
disassembly of the large P-TEFb complex or post-translational modification(s) of its subunits
leading to the same outcome. The second scenario could be supported, at least in part, by
numerous publications defining the relevance of post-translational modifications of CDKO9.
In the case of CDKY9, only modifications so far found to either activate or inhibit CDK9
(P-TEFD) activity are relevant to manifestation of cardiac hypertrophy. Phosphorylation of
Ser and Thr residues at the C-terminus tail and Thr 186 in the T-loop positively affect CDK9
(P-TEFb) kinase activity by inducing conformational changes to either bind cyclin T1 or
allow kinase recognition of the Ser/Thr-Pro substrate motif, respectively.** ** In sharp
contrast, phosphorylation on Thr29 found within the HIV transcription initiation complex is
inhibitory.*® Dephosphorylation of Thr 186 blocks CDK9 activity, while by contrast
dephosphorylation of Thr29 relieves its inhibition.**** In addition, acetylation of Lys44 in
the ATP-binding domain by p300/CBP increases its kinase activity but acetylation of Lys44
and Lys48 by P/CAF and GCN35 inhibits its kinase activity.*®*” Interestingly, acetylations on
cyclin T1 support the Hexim1-free active form of P-TEFb. Moreover, functional connection
may exist between p300-mediated acetylation of CDK9 and cyclin T1.%3

It is now clear that in the search for potent and specific inhibitors of CDK9, one must
consider processes governing the balance between inactive and active complexes of P-TEFb
and post-translational modification that will participate in the final picture of P-TEFb’s
involvement in adaptive or pathophysiological hypertrophy of cardiac myocytes.

3. SMALL-MOLECULE INHIBITORS OF CDK9

Because CDKs had been originally discovered as key components of the cell cycle regulation
machinery, small-molecule CDK inhibitors were initially studied for their antiproliferative
effects as compounds with promising potential in cancer therapy.*° Recently, novel
functions of some CDKs have been described, including in regulating transcription.’’?
These findings have suggested brand new indications for possible use of CDK inhibitors and
stimulated their further development. These facts, along with findings about up-regulated
expression and enhanced activity of CDK9 in cardiac hypertrophy mentioned above, have
also led to proposing CDK9 inhibitors as possible therapeutics for this disease.* To date,
about 30 inhibitors of CDK9 have been identified. Examples of the most potent and selective
of these are listed in Table I and illustrated by Figure 2.

One of the first compounds reported to inhibit CDK9 was 5,6-dichloro-1-B-ribofur-
anosyl-benzimidazole (DRB). Its ability to inhibit transcription had long been known,>
but its exact molecular target remained unknown. Chodosh et al. introduced the idea that
DRB might interact with an elongation factor,’” and this theory was proven after studies by
Marshall and Price. They described a P-TEFb complex and showed that it is the limiting
factor in the production of long mRNA transcripts.®* The final breakthrough came with the
discovery that DRB could inactivate Drosophila P-TEFb transcriptional activity.®>*® One
year later, PITALRE kinase, now called CDK9, was found to be the catalytic subunit of
P-TEFb®” and at the same time DRB was finally shown to block its kinase activity.®®
Although the first information was published more than 10 years ago, further knowledge
about the kinase selectivity of this nucleoside analogue has remained poor.

The potential of flavopiridol, an important multi-selective kinase inhibitor, to inhibit
CDK9 was suggested by its ability to change levels of different mRNAs in Saccharomyces
cerevisiae.”” This possibility was originally confirmed biochemically, and flavopiridol was
characterized as an uncompetitive inhibitor of P-TEFb.” Although this kind of kinetic
behavior was quite surprising because flavopiridol had been known to compete with ATP on

Medicinal Research Reviews DOI 10.1002/med
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CDK1, 2 and 4,”" 7 similar results were obtained by other research groups and flavopiridol
was presented to be an allosteric inhibitor of CDK9.”* While there had been doubts about
these conclusions,’””>”"" direct evidence for competitive inhibition has recently been pro-
vided. In the last year, the structure of the CDK9/cyclinT1 complex co-crystallized with
flavopiridol was described. It is now absolutely clear that flavopiridol binds at the ATP-
binding site of CDK9.”® Its orientation is similar to the binding mode of its des-chloro
analogue to inactive monomeric CDK?2,”* with the molecule almost entirely buried in CDKO9.
The tight-binding mode also sheds light on the strange kinetic behavior of flavopiridol,
because it is known that tight-binding inhibitors do not follow Michaelis-Menten
kinetics.”®"*® Flavopiridol has been tested primarily in cancer models since its discovery, but
some reports indicate its possible use as a drug for cardiovascular diseases. It has been
demonstrated that flavopiridol could be considered a pharmacological candidate for pre-
vention and treatment of smooth muscle cell-rich vascular lesions following vascular injury in
humans, such as in-stent restenosis.®'*? Flavopiridol was also effective in a rat model of focal
ischemia.®?

Soon after the discovery of the action of flavopiridol, another well-known pan-specific
CDK inhibitor, roscovitine, was also reported to significantly suppress mRNA production.®*
Especially CDKs 7 and 9 that both phosphorylate the C-terminal domain of RNAPII are
sensitive to roscovitine.®>*¢ Importantly, roscovitine is the only CDK inhibitor tested in a
cellular model of cardiac hypertrophy.?” Roscovitine was shown to significantly reduce
hypertrophic growth of cardiac myocytes caused by treatment with angiotensin II. Moreover,
it also efficiently repressed protein synthesis, E2F-dependent transcription, DNA synthesis,
and endoreduplication.®” This antihypertrophic activity obviously was not connected with
the inhibition of CDK2, as expression of the nonfunctional CDK?2 mutant had no effect on
hypertrophic cells. Because the molecular basis of roscovitine’s effects was not fully explained
by the authors, it is tempting to speculate that hypertrophy was suppressed through the
CDKY inhibition-dependent mechanism, at least in angiotensin II-stimulated cardiac
hypertrophy.

Even though DRB, flavopiridol and roscovitine were demonstrated to inhibit CDKY,
their effects on transcription differ slightly. All three compounds especially affect transcripts
with short half-lives, but DRB and flavopiridol have similar profiles of suppressing genes and
reducing mRNA levels in a global manner.®® In contrast, roscovitine does not induce a global
loss of gene expression and the number of genes responding to roscovitine treatment by
increased expression is nearly the same as the number of genes whose expression decreases.®

DRB, flavopiridol, and roscovitine are undoubtedly the most-studied inhibitors of
CDKO9, but, as stated in the introduction to this section, there are many other compounds
sharing the same kinase target. Employing Tat-dependent transcription assay, the com-
pounds T172298 and TRB bearing the same benzimidazole scaffold as DRB were discovered
to inhibit CDKO9. In the same screen, inhibitory effects toward CDK9 of isoxazole T276339
and isoquinoline sulphonamide H7 were identified as well.®® Each of these compounds can be
interpreted as a mild CDK9 inhibitor with an ICs, ranging from 0.9 to 9 uM.%®

Structural modifications to roscovitine have led to the discovery of CDKY9 inhibitors
such as olomoucine IT,%° pyrazolo[1,5-a]-1,3,5-triazine 7a,0192 imidazo[2,1-f]-1,2,4-triazine
13,192 and CR8.”* CDK selectivity of these purine analogues subtly differs, but it can be
summarized that the inhibitory ability regarding CDK9 was fairly improved.

Meridianins and variolins are natural products originated from marine invertebrates and
which display CDK9 inhibitory activity and cytotoxicity against several human cancer cell
lines.”*®” As a consequence of its abilities, deoxyvariolin B (PMO01218) is now being
investigated as a potential antitumor drug.”® Recently, the chemical similarities between
meridianins and variolins have been utilized to synthesize their hybrid structure, meriolins.”®

Medicinal Research Reviews DOI 10.1002/med
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In comparison with meridianins and variolins, these new chemical compounds have
enhanced specificity toward CDK with marked potency on CDK2 and 9.°*%° SU9516,'%%-1%!
B5,'% ZK 304709,'"" and indirubin-3'-monoxime'® also belong to the group of CDKY
inhibitors sharing an indole skeleton. The CDK9 ICsq values of these compounds vary from
micromolar (4.3 uM for B5 and 0.1 uM for SU9516) to nanomolar (indirubin-3’-monoxime
and especially ZK 304709, Table I).

In recent years, several other compounds have been developed with broad CDK speci-
ficity but that inhibit CDK9 at nanomolar concentrations. SNS-032,'% R547,'% thiazolyl-
pyrimidines (compounds 32 and 1),''% AG-012986,'" RGB-286638,''® P276-00,""" and
imidazole pyrimidine amides (compounds 6d, 7d, (S)-8b and 9b)!'? can be included in this
category. The additional compounds AZ703 and AT7519 have been characterized as highly
selective for CDK9 and their ICsy measures are under 1 pM.!1311% All these compounds have
undergone thorough preclinical evaluation, and some of them have already entered clinical
trials as anticancer agents.*

EXEL-8647 is a CDKJ9 inhibitor identified in a high-throughput screen carried out by
Exelixis, Inc.''® This compound has a very interesting CDK selectivity profile, because its
CDKJ9 inhibitory potential is more than 100-fold greater than that of other CDKs.'"
Another compound showing significant CDK9 specificity is CANS508, the most potent
competitive CDKO inhibitor from the series of 4-arylazo-3,5-diamino-1H-pyrazoles.''® Based
on these facts, EXEL-8647 and CANS508 are the only inhibitors that could be referred to as
CDKJ9 specific.

To complete the summary, the nucleoside analogue 4-amino-6-hydrazino-7-B-D-ribo-
furanosyl-7H-pyrrolo[2,3-d ]-pyrimidine-5-carboxamide (ARC) and pyrazolopyrimidone-
related RGB-286147 should not be omitted. The inhibitory effect of these compounds on
CDKDJ9 is clear, but unfortunately there is no information as to their CDK9 inhibition
potency. 17118

4. THE STRUCTURE OF CDK9/CYCLIN T1

In order to obtain maximal efficiency of CDKO9 inhibitors in all possible therapeutic in-
dications, molecules with high selectivity for CDK9 are required. Rational design of such
selective compounds is now facilitated by determination of the kinase’s crystal structure in
complex with cyclin T1.”® The structure of the CDK9 complex is similar to all previously
determined structures for other CDKs. The enzyme adopts the bilobal fold typical of most
protein kinases, with the smaller N-terminal domain consisting predominantly of B-sheet
structure and the larger C-terminal domain consisting primarily of a-helices (Fig. 3a). The
most obvious structural difference between CDK9/cyclin T1 and the well-characterized
CDK2/cyclin A related to the cell cycle is in the size of the CDK/cyclin interface. The
orientation of cyclin T1 with respect to CDK9 is rotated by about 26°, which results in a
reduced number of mutual contacts. The buried molecular surface area of the CDK9/cyclin
T1 complex is just 60% of the molecular surface area that is buried on the CDK2/cyclin A
complex.”® In this regard, the structure of CDK9/cyclin T1 is reminiscent of the recently
solved CDK4/cyclin D that also has a relatively small interface.''®'?° This structural feature
of both CDK9 and CDK4 influences their physiological regulation and also is probably
linked to the relatively strict substrate specificity of these two kinases.

As with CDK2, full activity of CDK9 depends not only on cyclin binding but also on
phosphorylation of Thr186 within the activation segment.”® In contrast to active CDK2,
where the activation segment attaches directly to cyclin, the phosphorylated Thr186 of
CDKO9 does not interact with cyclin T1. Nevertheless, this phosphorylation repositions the
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a | > b

Figure 3. Structure of CDK9 in a complex with flavopiridol (blue) or ATP (red) localized within its active site (a). Detailed views
on interactions of CDK9 with flavopiridol (b) and ATP (c) with selected amino acid residues forming the active site of CDK9 (b).
Prepared with PyMol (http://pymol.sourceforge.net/) using the PDB entries 3BLR and 3BLQ.

activation loop and allows the kinase to recognize the substrate Ser/Thr-Pro motif. Another
residue important for substrate recognition is Argl88 located in one of the basic clusters,
which is able to interact with CDK7-phosphorylated Ser5 within the CTD. Recent experi-
ments suggest that phosphorylated Ser5 is not a prerequisite for efficient recognition by
CDKJY9 and phosphorylation at Ser2.'?' In the transcription complex, however, phosphory-
lations of Ser5 by CDK7 release the CTD from the DNA and make it available for CDK9.'?!

The active site, where ATP as well as all small-molecule inhibitors bind, is located in the
deep hydrophobic cleft between the two lobes that are connected by the hinge region
(residues 104-107 in CDKDY, residues 81-84 in CDK?2). This region contains a set of hydrogen
bond donor and acceptor sites that are used for binding the adenine of ATP. Moreover, the
adenine ring is fixed between the N- and C-terminal domains through hydrophobic contacts
with a number of residues, including Ile25, Val33, Ala46, Val79, Phel05, and Leul56
(in CDKD9) that are identical in almost all CDKs (Fig. 4a).

5. INTERACTIONS OF CDK9 WITH INHIBITORS

The majority of small-molecule inhibitors of CDKs are ATP-competitive and bind in the
deep cleft between the two domains.'**!** Most of the contacts are hydrophobic, but the
inhibitors complexed with CDK2 also accept a hydrogen bond from the backbone nitrogen of
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Figure 4. Comparison of human CDK9 and CDK2 primary and tertiary structures. Alignment of amino acid residues that form
the active site in human CDK1-9 (a). Amino acids are colored according to their physicochemical properties: red—hydrophobic,
blue—acidic, yellow-basic, green—polar; amino acids identical in most CDKs are highlighted gray; (*) identical; (;) conserved.
Comparison of the active site in CDK9 (b) and CDK?2 (c), color-coded as in the alignment. All structural figures were prepared with
PyMol (http://pymol.sourceforge.net/) using the PDB entries 3BLR and 1GY3.

Leu83 and donate another hydrogen bond to the backbone carbonyl of Glu81. A third
hydrogen bond to the backbone carbonyl group of Leu83 has been observed for some
inhibitors. Besides bonding to these three amino acids, inhibitors interact also with the
ribosylphosphate-binding site of CDKs. Until the structure of CDK9 was solved experi-
mentally, a structural model of CDK9 had been used to study the interactions between CDK9
and flavopiridol or CANS508, respectively, both well established and potent inhibitors of
CDKO9.7%!"6¢ Similar interaction patterns were also suggested for binding of these inhibitors.

In 2008, flavopiridol was co-crystallized with CDK9/cyclin T1 and the complex structure
was finally solved.”® As expected from the modeling studies, flavopiridol binds to CDK9 in a
manner similar to the binding of des-chloro-flavopiridol to CDK?2.”*> The compound forms
conserved hydrogen bonds to the hinge residues Aspl04 and Cysl06 and an additional
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hydrogen bond to Aspl67 through its piperidine ring (Fig. 3b). Interestingly, flavopiridol
induces a conformation change in the glycine-rich loop of CDKUJ9, closing tightly the active
site into an inactive conformation that excludes ATP binding. A similar change in con-
formation has been observed in other protein kinases upon interaction with inhibitors, e.g. in
the Abl complex with imatinib,'** but among CDKs such change has been described for the
first time.

In the recently reported complex of CDK9 with EXEL-8647, the inhibitor is also
localized in the active site, but no details have been disclosed other than a note about an
observed salt bridge, probably between Lys35 and Glul07.''> This salt bridge has been
predicted by modeling studies as a reason for increased affinity of flavopiridol and CANS508
to CDKJY, as it should bring the residues from two different lobes of the kinase closer
together. Therefore it may be the cause for stronger interactions.’®!'!®

6. STRUCTURE-BASED INHIBITOR DESIGN

Solving the structure of CDK2 by X-ray analysis has driven the development of a large
number of various ATP-competitive inhibitors. Specificity profiles of several known CDK
inhibitors suggest that truly CDK9-specific compounds can be prepared (e.g. EXEL-8647 or
CANS508, see Table I).''*!'® Nevertheless, the high degree of sequence similarity among the
phylogenetically conserved CDK family members complicates reaching reasonable selectivity
for individual CDKs. Successful design of such inhibitors should be facilitated by the known
crystal structures of approximately half the family, including CDK2,'* CDK4,'"?:!%°
CDK35,'%%127 CDK6,'*® CDK7,'* and especially CDK9.”® Limited information on other
CDKSs that still resist crystallizing has been generated by indirect procedures including in
silico modeling and genetic engineering. For example, CDK1 and CDK3 were homology
modeled based on the crystal structures of related CDK2 and CDK6."3% 3% Alternatively,
when the crystal structure of CDK4 was not available, its active site was modeled from
crystallographic analysis of the CDK?2 variant containing amino acids forming the active site
of CDK4.'* Both experimental and modeled structures of individual CDKs should allow for
determining the specific residues that comprise the key differences between their active sites
and identifying the interactions that could be exploited in the design of highly selective
CDKO9 inhibitors.

For the purposes of inhibitor design, the active site can be parceled out into several
elements that may be approached independently. The hinge region of CDKs, utilized by all
known inhibitors by means of its set of hydrogen bonds, is identical in CDKs 1-3 but is less
conserved in other CDKs (see Fig. 4a). As demonstrated by Lu and Schulze-Gahmen, the
differences in the hinge regions of CDK2 and CDKG6 are responsible for a pyrido[2,3-d]-
pyrimidin-7-one inhibitor specificity as they induce changes in the inhibitor orientation that
may lead to steric clashes in only some CDKs.'?® This raises the possibility that the hinge
conformation is kinase specific and may be important for the specificity. In contrast, other
authors surmise that as these residues provide only contacts through the backbone atoms
they would not be expected significantly to impact inhibitor binding.'?!

A much more interesting area is located around the entry to the active site, and is
sometimes referred to as the specificity surface. For example, local sequence differences are
not only the reason for the specificity of purine-based inhibitors toward CDK2 over CDK4.%°
Conversely, they also account for the specificity of some anilinopyrimidines for CDK4.'*!
Especially in the case of the latter compounds, the reason for such specificity lies in the
changes of ionizable amino acids: in CDK4, an acidic residue (Glul44) replaces GIn131 of
CDK2, and a neutral residue Thr102 of CDK4 is substituted for the positively charged Lys89
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in CDK2. In CDKDJ9, these two residues are replaced with the much smaller Alal53 and
Gly112, respectively (Fig. 4b). As shown in the crystal structures of CDK9,”® this area is
therefore markedly both less crowded and polar and should be able to host relatively bulky
substituents of potential inhibitors.

The structurally adjacent ribosylphosphate-binding site of CDKs is covered by a flexible
glycine-rich loop that significantly changes conformation upon cyclin binding and activating
phosphorylation. Despite the fact that the dynamic nature of this region complicates efforts
to rationally improve affinity of the inhibitors, many of them have been shown to interact
through hydrogen bonds with the amino acids Gln131, Asp86,°7>13* Lys33, and Asp145 of
CDK2. As demonstrated in the CDK9-flavopiridol co-crystal, the inhibitor induces a change
in conformation of the glycine loop that subsequently moves the side chain of Phe30 closer to
the bound ligand and stabilizes it through additional van der Waals contacts while CDK9
adopts an inactive conformation that excludes ATP binding. A similar change in con-
formation has been observed also in CDK2 upon binding of NU2058, an inhibitor with a
hydrophobic side chain occupying the ribose site that is reminiscent of a conformation seen
in inactive CDK2.'%

In summary, there is a lot of space around the active site of CDKs to be explored for the
design of truly monospecific CDK9 inhibitors. The conformation of the glycine-rich loop and
the possibility to stabilize CDKJ in its inactive conformation, in particular, provide attractive
initial points for the rational design of inhibitors possessing both high affinity and specificity
to CDKO.

7. PERSPECTIVES

Despite advances in the development of CDK inhibitors, no truly monospecific inhibitors
have been described. However, many selective CDK inhibitor scaffolds discovered to date
offer various motifs for optimization in terms of their selectivity through analogue synthesis
guided at least partially by knowledge of the active site of CDK9. Alternatively, the structure
of CDK9 now can be also used to find novel inhibitors by virtual screening methods. This
provides the advantage of filtering out unselective compounds according to their interactions
with other CDKs. On the other hand, one of the most disputable questions about phar-
macological applications of CDK inhibitors concerns relationships between selectivity of the
inhibitors and their potential therapeutic applications. Although studied for more than a
decade, no proof has yet been established regarding the concept of using CDK inhibition
for anticancer therapy and no such therapy has been approved. Meanwhile, the possible
application of CDK inhibitors in cardiac hypertrophy has been far less studied and discussed.
Would it be better to use (if any are to be used at all) highly selective CDK9 inhibitors, or
molecules with combined effects on multiple CDKs? Although CDK9 inhibition with
monospecific compounds could be sufficient to repress hypertrophic growth, less selective
CDK inhibitors are not out of the game, either, as demonstrated by roscovitine that targets
not only CDK9 but also other CDKs.®” Then again, more promiscuous inhibitors targeting
simultancously CDK9 and some protein kinases involved in signaling pathways that parti-
cipate in hypertrophic response may provide additional area for designing and optimizing the
most suitable selectivity profile and to find the best therapeutic molecules.'!!>!471¢

Besides CDK inhibitors alone, it might be worth trying their combined use with histone
deacetylase (HDAC) inhibitors in therapeutic management of cardiac hypertrophy.
A rationale for their application is based on observations from cell culture experiments and
in vivo models. Use of HDAC inhibitors on cultured cardiac myocytes prevented hyper-
trophy and activation of the fetal gene program classically induced by hypertrophic agonists.
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Moreover, administration of apicidin (a specific class I HDAC inhibitor) or Trichostatin A
significantly decreased myocardial hypertrophy and fetal gene expression after induction of
cardiac hypertrophy in mice by thoracic aortic banding.'*%!¥’

While on the subject of combined applications, it is extremely interesting that the clas-
sical CDK inhibitor roscovitine has recently been shown to inhibit and slow activation and
enhance inactivation of L-type Ca’' channels in cardiac myocytes.'*® As L-type Ca*"
channel blockers are classic cardiovascular drugs, these extra properties make roscovitine a
very attractive and promising antihypertrophic compound, and especially when considering
its CDK9 inhibitory competence. In our noble attempts to find a systematic approach for
treating, or at least attenuating, the pathology of cardiac hypertrophy, one must also think of
combining strategies aimed at different processes closely involved in the hallmark of cardiac
hypertrophy. Therefore, targeting the P-TEFb complex, and especially its kinase subunit
CDKDJ, by specific regimes seems to be a truly promising point of departure.
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reduced viability of axenic amastigotesLaiishmania donovani, we screened them for interaction with
recombinant leishmanial cdc-2 related protein kén@@RK3/CYC6), an important cell cycle regulator of
the parasitic protozoan. Eighteen pairs of corredpwy isomers were tested for viability of amastigo
and for inhibition of CRK3/CYC6 kinase activity. ®@ compounds9@, 12A, 13A) show activity
against amastigotes with E{0n a range 1.5 to 12.4M. Structure-activity relationships for the tested

compounds are discussed and related to the ligopphibf the compounds.

Abbreviations

CDK, cyclin-dependent kinase; CRK, cdc-2 relategtgin kinase; CYC, cyclin



Text

Leishmaniasis encompasses a spectrum of humarseseaused by protozoan parasites belonging to the
genus Leishmania. Designated a “neglected disdage¢he World Health Organization, it is found in
more than 88 countries worldwide and where an edtich350 million people are exposed to infection.
The main diseases caused by these parasites in@ludataneous leishmaniasis, a self-limiting skin
disease that leaves scars; (ii) mucocutaneousmeisiasis, a debilitating, disfiguring, chronic dise of

the nasopharynx and mucosal tissue; and (iii) vé&ddeishmaniasis, a fatal disease of the liveleep

and bone marrow causing extensive morbidity andtatit. Recently, perhaps due to global warming,
the leishmaniases appear to be spreading to regiemusly free of these diseades.

Existing chemotherapeutics, such as pentavalemtmany, pentamidine and amphotericin B,
show serious limitations and require intravenoysditon, clinical supervision and hospitalizatiomedto
significant toxicity. Liposomal encapsulated amgnamin B exhibits lower toxicity and is very
expensive, although a recent study suggests ttss oay be significantly reduced by shortening the
therapeutic regim@In India, parasite resistance against pentavaleiiinony drugs has become a serious
problem, with > 60% of the visceral leishmaniasitignts failing to respond to treatménimilar
problems of parasite resistance appear in Hiéhmania co-infection patients not receiving highly
active antiretroviral therapy, who tend to be refioay to treatment and frequently relafsRecently,
miltefosine, the only oral drug for treating visaketeishmaniasis, was registered in India, Europg a
South America Use of miltefosine in pregnant women is limitédwever, due to teratogenic effects,
and resistance to the drug develops easily in @itu

Improved treatment protocols, such as combinati@nalpy, are under investigation in an effort
to optimize efficacy, reduce costs and prevent gigraesistance, but new drugs are urgently neéaled
expand the treatment options available for theseadies. Modern approaches are being employed that
integrate genomic, proteomic and cellular analyisesdeveloping novel and effective anti-leishmanial
drugs. Rational drug design directed against prasizymes, such as dihydrofolate reductase, pierid
reductase or malate dehydrogenase, essential dbfepation or survival, has identified specificayme
inhibitors, including trisubstituted pyrimidinesriazines and paullonés! Alternatively, parallels
between parasites and cancer cells, including uteidmproliferation in the host, independence of
exogenous growth factors and resistance to apspimsiy provide new insights into drug developntént,
suggesting that anti-cancer drugs and compoundaliy developed for oncological indications sfhbul
be screened as potential leishmanicidal ag&nfswhile such an approach led to the discovery of
miltefosine, most anti-cancer drugs studied to ddew only moderate anti-parasitic activity and éhav
low selectivity indices, a major parameter in dtagicity evaluation.

Drug development for cancer has focused in receatsyon protein kinase inhibitors. As parasite
protein kinases frequently show limited homologyhtst enzymes and play important roles in regugatin
parasite proliferation, differentiation and sunljvas well as virulence molecule expression and hos
protective responses, they have been proposed rgststafor drug development. Indeed several
leishmanial protein kinase families including cpetlependent kinase (CDKJ;® glycogen synthase
kinase!® mitogen activated protein kindSeand cAMP dependent protein kin¥seave been shown to be

essential for parasite growth and surviv&i™®



Analysis of the leishmanial kinome has identified ddc-2 related protein kinases (CRKS)
belonging to the CDK family and 11 cyclins (CY&)The large number of CRKs and CYCs may be
related to the asynchronous replication of the earchnd kinetoplast DNA during the cell cycle cégh
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protozoan eukaryoté®* Several protein kinase inhibitors including flairigol,?* substituted

purinest**°

paullones;* indirubins’** and staurosporine derivativé'shave been screened for anti-
leishmanial activity. Many these compounds are alstive on parasitic CRKs, and have been shown to
block cell cycle and reduce parasite viability. Quagticular protein kinase, CRK3, is an essentiayene
for Leishmania mexicana,?” and it has been shown, in complex with its bindpagtner CYCE2?* to
regulate the G2/M transitiol.We describe a library of 6,9-disubsituted puriaes corresponding 3,7-
disubstituted pyrazo[d,3-d]pyrimidines (Fig. 1) that have been previously shdw cause growth arrest,
induce apoptosis in cancer cells, and inhibit hur@K1,? as leishmanicidal compounds targeting
CRK3/CYCE6 kinase.

We tested 18 isomeric pairs of purine and corredimgnpyrazolo[4,3]pyrimidine (Table 1.)
for their ability to inhibit leishmanial CRK3 pradte kinase activity and to kill axenic amastigotes o
Leishmania donovani. Kinase inhibition assay were performed with CRKBE5 complex and human
histone H1*2*® Anti-amastigote activity was evaluated using ailiy assay based on the reduction of
alamarBlu€”?® All compounds were initially screened for antisleinanial activity at a single
concentration (3@M). The results are summarized in Table 1. Compar the activity of purine and
pyrazolo[4,3d]pyrimidine derivatives in the single point ass&jg( 3A) clearly shows that pyrazolo[4,3-
dlpyrimidines (A series) are markedly more poterhiliitors of CRK3/CYC6 activity than are the
corresponding purines. They were always more agtitle at least 3-fold greater activity observed 1@r
compound pairs. More precise information about@fRK3/CYC6 inhibitory activity of the compounds
was subsequently obtained from the dose-responsasei activity curves. Median 4 values for
pyrazolo[4,3d]pyrimidines and purines were 57.9 and >10W, respectively (p < 0.005, paired
Wilcoxon test, two-sided). Analysis of structurdiaity relationships in the A series (pyrazolo[4,3-
d]pyrimidines) shows that the most potent inhibitams CRK3/CYC6 either are highly lipophilic
(adamantyl derivativeA, 1Cso = 1.8uM; halogenophenyl derivativeslA-14A, ICso = 6.8-16.1uM) or
have 2-hydroxybenzyl group at ti& position @A, ICso = 11.9uM) (Fig. 4). The positive inhibitory
effect ofortho-substitution of benzyl groups on human CDK2 haantreported previously and explained
by the stabilization of the active conformation tb& inhibitor by an intramolecular hydrogen bond
betweeno-hydroxy with the nitrogen in position 1 of the e ring®® In contrast, activity of 2-
aminobenzyl derivative 83) was lower that of 2-hydroxybenzyl derivativ@A(, but equlled to
unsubstituted compourtA. On the other hand, most of the compounds showningr limited activity in
the kinase assay (§¢> 100uM) belong to the most polar compounds in the skes€ observations
suggest that interaction between Mfe(or N ® for purines) substituent and the active site oK@Rnight
be stabilized by hydrophobic interactions. In seie(purines), only adamantyl puri®@8 (ICso = 12.3
uM) and fluorophenyl derivative$1B and12B (ICso= 49.9 and 22.8M, respectively) had 16 values
lower than the maximum concentration tested (1080). The observation that certain substitutions
increase kinase inhibitory potency in both compotypes suggests that pyrazolo[4]pyrimidines and

purines might share a similar mode of binding ® @RK3/CYC6 complex.



Several studies using other human CDK inhibitosvwsithat these compounds can block CRK
activity and that this inhibition reduces paragiteliferation and viability:* *> % Therefore, we screened
all the compounds also for their ability to Kikishmania donovani amastigotes, the form of the parasite
responsible for disease. Anti-amastigote activitthe compounds are summarized in Table 1 and €igur
3, which clearly show that leishmanicidal activigflects inhibition of the CRK3/CYC6 kinase. Aveeag
inhibitory effect of pyrazolo[4,2f]pyrimidines at the single concentration of 30 miooles was always
higher than that of corresponding purine derivativictivity at least 3 fold greater was observedhia
case of 9 compound pairs. The most active pyraz@af|pyrimidines in terms of E§ were adamanty!
(9A), halogenophenyllA, 13A) and 2-OH-benzyl derivativeg4). Since these compounds are also the
most potent inhibitors of CRK3/CYC6 in the datas#ie observed effect on parasite viability is atoly
mediated by CRK3/CYC6 inhibition in agreement wijitevious reports! A link between the anti-
amastigote activity of CDK inhibitors and leishmanCRK inhibition was first suggested by experingent
using flavopiridol, a pan-selective CDK inhibitdis compound inhibits CRK3 kinase g4 100 nM),
and it also has been shown to arrest the parasiéd’sycle?” Additional experiments have shown that
trisubstituted purines and indirubin analogs (albwn CDK inhibitors) that are potent CRK3 inhib&or
are also effective in killing.eishmania in vitro.** *> Nevertheless, the possibility cannot be excludied t
inhibition of another target contributes to theeetf

Finally, we note that our dataset demonstratesttieapositive association between the activity
and polarity in the group of pyrazolo[4dpsyrimidines (Fig. 3B) was not limited to the vitibi assay
but was also observed in thevitro kinase assay. Our analysis demonstrates thatlwonship between
compound polarity and its cellular activity maycertain cases reflect the effect of polarity onaffaity
for the binding site of a molecular target ratheart its effect on the transport through biological
membranes. Similar relationships between lipophfli@and anti-leishmanial activity of many diverse
compounds have also been reported previddshy.

In summary, the present study clearly shows thatseries of 3,7-disubstituted pyrazolo[4,3-
dlpyrimidines displaying moderate inhibition activitagainst the leishmanial CRK3/CYC6 protein
complex also kills axenic amastigotes, thereby icomifig previously published hypothesdfsThese
findings may not only provide chemical tools forsltastudies or.eishmania biology, but they can also
help to develop a new series of related compoupésifically directed against these parasites amihiga

an improved therapeutic index.
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Figures captions

Figure 1.

Structures of studied 3,7-disubstituted pyrapbl@d]pyrimidines (A) and 6,9-disubstituted purines (B).
Figure 2.

Elution profile of CRK3/CYC6 complex purificationnoa CS*-NTA column. (A) 10ul of each eluted
fraction from CS*-NTA column was separated by SDS-PAGE and staiyeal ®oomassie Brilliant Blue
for visualizing purity of the protein complex. Maldar masses of both proteins correspond to their
predicted values (35.6 and 36.2 kDa for CRK3 andC6)Yrespectively). (B) Detection of CYC6 by
immunoblotting using an anti-His tag antibody. Lamenbering refers to the fraction number.

Figure 3.

(A) Plot showing relationship between leishmaniti@dativity and CRK3/CYC6 kinase inhibition
(expressed as % inhibition) of studied 2,6-disubtd purines (white circles) and corresponding 3,7
disubstituted pyrazold,3-d]pyrimidines (black circles). Both determinationsrevearried out in at least
duplicates using 30 pM of compound (Table 1). (B)t Bhowing relationship between leishmanial
axenic amastigote viability inhibition and CRK3/C8kinase inhibition (1G,) by 3,7-disubstituted
pyrazold4,3-d]pyrimidines (A series). Circles correspond witholiilicity (logP) of each compound,
with logP values shown as shades of gray (white, 1.65 — Adtft gray, 2.29 — 2.94; dark gray, 2.94 —
3.58; black, 3.58 — 4.23). Numbering of the circtesrespond with numbers of compounds listed in
Table 1. Values of Idgwere calculated using ACD/PhysChem Suite softyagesion 12.0, ACD/Labs).
Figure4.

Inhibition of recombinant CRK3/CYC6 by the mostezffive compoundSA (grey curve) and2A (black

curve).



Table 1.
Antileishmanial activity and CRK3/CYC6 inhibitiornctivity of studied 3,7-disubstituted pyrazplo3-
d]pyrimidines (A series) and 6,9-disubstituted pusi(ig series).

Leishmania donovani axenic CRK3/CYC6
Comp. R-substitution amastigotes inhibition kinase inhibition

[%]* ECso [uM] [%]° ICso [uM] ¢
1A beng 206+ 0.1 68.6 245+02 54.16
1B y 19.9+2.4 n.d. 185+ 1.2 >100
2A 874+04 357 68.0+2.1 11.01
2B 2-hydroxybenzyl 11.7+27 n.d. 28+1.3 >100
3A 254 +38 >100 358+14 83.16
3B 3-hydroxybenzyl 6.5+1.4 n.d. 8.8+0.6 >100
A 315+33 83.0 360+75 75.47
4B 4-methoxybenzyl 151+1.6 n.d. 6.9+98 >100
5A . 8.4+42 >100 19.0+3.0 >100
58 3,4-dimethoxybenzyl 1.9+05 n.d. 23+1.6 >100
6A 343+24 94.0 268+34 28.16
eg  Shydroxy-4-methoxybenzyl “g'o’ 5 nd. 112+29 >100
A 104+ 24 >100 410+18 100
78 A-hydroxy-3-methoxybenzyl  “g'c’ ) nd. 11.9+0.1 >100
8A . 413+22 >100 423+05 58.64
8B 2-aminobenzyl 6.6 +4.0 n.d. 11.0+6.3 >100
%A 73.2+0.0 1.22 938+03 1.82
9B adamantan-1-yl 72.0+0.2 n.d. 66.1+2.1 12.23
10A 455+223 85.0 325+20 57.18
10B 3-methylbut-2-en-1-yl 0.04+52 nd. 32414 >100
11A 66.6 0.1 232 704+18 14.56
11B 3-fluoropheny! 16.5 + 0.7 n.d. 30.4 +0.7 49.92
12A 758+ 1.7 11.6 788+04 6.8
128 4-fluorophenyl 215+1.1 n.d. 53.3+6.1 22.84
13A 733+1.1 12.4 813+23 9.86
138 3-chlorophenyl 35.1+3.3 n.d. 223+4.9 >100
14A 207+67 18.7 356+34 16.13
14B 2-bromophenyl 26.2+3.2 n.d. 1.8+5.0 >100
15A . 158+4.1 >100 24+36 >100
158 2-aminocyclohexyl 45+3.8 n.d. 54+3.4 >100
16A . 33+14 >100 350+ 16 >100
16B 4-aminocyclohexyl 1.0+27 n.d. 26.4 +3.7 >100
17A carfurd 166+1.9 >100 285+78 >100
178 y 145+ 3.0 n.d. 35+1.7 >100
18A ont 27.3+1.6 54.7 465 + 2.7 >100
188 penty 226+53 n.d. 14.8+55 >100

n.d. — not determined,; all values were determingduplicate or triplicate assaysin the presence of 30
uM compound®in the presence of 38Vl ATP with 30uM compound? in the presence of 18Vl ATP
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Chemistry

The straightforward synthesis of 9-isopropyl-6-gitbted purines (series B) (Fig. 1) from 6-chloro-9
isopropylpurine was described previouS3,7-disubstituted pyrazolo[4@pyrimidines (series A) (Fig.

1) were prepared according to published proceduBezifly, 3-isopropyl-4-nitropyrazolecarboxylic idc
was esterified to nitroester and reduced to theesponding aminoester. Substituted pyrazole was the
cyclised and chlorinated to 7-chloro derivative ethivas used for nucleophilic substitution with eiént
amines to get final 7-substituted-3-isopropylpytafh3-djpyrimidines. All structural data of the
compoundslA - 4A, 6A, 10A, 13A, 14A, 17A, 18A, 1B - 4B, 6B, 10B, 13B, 14B, 17B, 18B are
described in our previous article¥.Data of newly synthesized compounds are presenéed (see
Materials and methods).

Materials and methods

General procedures

Column chromatography was performed on silica br€k Kieselgel 60, 230-400). Melting points were
determined on a Kofler block. THel NMR spectrad ppm;J, Hz) were recorded on a Bruker Avance
300 spectrometer operating at a temperature of R99Vass spectra were measured on an MS
Waters/Micromas ZMD-detector using direct inletottespray ionization with coin voltage of 15V.
Elemental analyses indicated by symbols of the efgsnwere within + 0.4% of the theoretical value.

Prepared compounds

7-(3,4-Dimethoxybenzylamino)-3-isopr opylpyrazolo[4,3-d] pyrimidine (5A)

Column chromat.: 2% MeOH in CHEImp 179 °C; MS ESI + : 328.3 (100%, M F)HMS ESI - : 326.3
(100%, M - H); *H NMR (300 MHz, CDC}) §(ppm): 1.45 (6H, dJ=7.0 Hz, (CH),CH), 3.476 (1H,
sept,J=7.0 Hz, CHCHy),), 3.657 (3H, s, OCH}, 3.792 (3H, s, OCH), 4.65 (2H, bdJ=3.5 Hz, CHNH),
6.47 (1H, bs, NH), 6.68-6.72 (2H, m, ArH), 6.834(1d, J=8.0 Hz, ArH), 8.499 (1H, s, H Anal.
(C17H21N502) Cv H! N.

6-(3,4-Dimethoxybenzylamino)-9-isopropylpurine (5B)

Column chromat.: 3% MeOH in CHEImp 147 - 150 °C; MS ESI + : 328.3 (100%, M HHH NMR
(300 MHz, DMSO-¢) 8(ppm): 1.513 (6H, dJ=6.7 Hz, (CH).CH), 3.691 (3H, s, OC#), 3.707 (3H, s,
OCH), 4.61 (2H, bs, CHNH), 4.707 (1H, sept}=6.7 Hz, CHCHs),), 6.850 (2H, s, ArH), 7.025 (1H, s,
ArH), 8.198 (1H, s, H&), 8.242 (1H, s, H&. Anal. (G/H.:NsO,) C, H, N.

7-(4-Hydr oxy-3-methoxybenzylamino)-3-isopr opylpyrazolo[4,3-d]pyrimidine (7A)

Column chromat.: 2% MeOH in CHEImp 200 - 206 °C; MS ESI + : 314.3 (100%, M HHVS ESI - :

312.2 (100%, M - H), 348.2 (20%, M + CJ; *H NMR(300 MHz, DMSO-¢) &(ppm): 1.363 (6H, d,
J=6.9 Hz, (CH),CH), 3.312 (1H, sept]=6.9 Hz , CHCHa),), 3.753 (3H, s, OC}), 4.615 (2H, bdJ=5.0

Hz, CHNH), 6.73 - 6.89 (2H, m, ArH), 6.998 (1H, s, ArH),672 (1H, bs, NH), 8.251 (1H, s, BC
8.949 (1H, s, NH), 12.26 (1H, s, OH). Anal1{8:90Ns0,) C, H, N.

6-(4-Hydr oxy-3-methoxybenzylamino)-9-isopropylpurine (7B)

Column chromat.: 2% MeOH in CHEImp 158 - 164 °C; MS ESI + : 314.3 (100%, M +)H'H
NMR(300 MHz, DMSO-@) &(ppm): 1.514 (6H, dJ=6.8 Hz, (CH),CH), 3.715 (3H, s, OC¥), 4.583
(2H, bs, CHNH), 4.704 (1H, sept]=6.8 Hz, CHCHy),), 6.62 - 6.98 (2H, m, ArH), 6.983 (1H, s, ArH),
7.672 (1H, bs, NH), 8.13 (1H, bs, NH), 8.238 (1HHE®), 8.76 (1H, s, HE). Anal. (GgH1N:O) C, H,
N.

7-(2-Aminobenzylamino)-3-isopropylpyrazolo[4,3-d]pyrimidine (8A)

Column chromat.: CHGl MeOH / ag. 25% NEDH (97 / 2.5/ 0.2); mp 147 - 149 °C. MS ESI + 3ZB
(100%, M + H), MS ESI - : 281.2 (100%, M - 317.2 (25%, M + CJ; '"H NMR (300 MHz, MeOD)
d(ppm): 1.41 (6H, dJ=7.0 Hz, (CH),CH); 3.47 (1H, sept]=7.0 Hz, CHCHjy),), 4.73 (2H, s, CENH),
6.64 - 6.80 (2H, m, ArH), 7.07 (1H, 377.4 Hz, ArH), 7.20 (1H, dd}=7.7 Hz, 1.4, ArH), 8.25 (1H, s,
HC®). Anal. (GsH1gNg) C, H, N.

6-(2-Aminobenzylamino)-9-isopropylpurine (8B)

Crystallized from reaction mixture (n-BuOH), redajtized from n-BuOH; mp 147 - 149 °C. MS ESI +:
283.2 (100%, M + B); *H NMR (300 MHz, DMSO-g) 3(ppm): 1.516 (6H, dJ=7.0 Hz, (CH),CH), 4.52
(2H, bs, CHNH), 4.712 (1H, sept]=7.0 Hz, CHCHy),), 5.217 (2H, bs, Nb), 6.463 (1H, ddJ=7.5 Hz,
7.3, ArH), 6.586 (1H, dJ=7.8 Hz, ArH), 6.917 (1H, dd}=7.2 Hz, 7.0, ArH), 7.131 (1H, d=7.6 Hz,
ArH), 8.12(1H, bs, NH), 8.207 (1H, s, B)8.247 (1H, s, H. Anal. (GsH1gNg) C, H, N.
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7-(Adamantan-1-ylamino)-3-isopr opylpyrazolo[4,3-d]pyrimidine (9A)

Column chromat.: 1% MeOH in CH{Isyrup-like product crystallized after several stayp 72 - 98 °C;
MS ESI + : 312.3 (100%, M + B MS ESI - : 310.2 (100%, M - i 346.2 (20%, M + CJ; *H NMR
(300 MHz, CDC}) 8(ppm): 1.441 (6H, dJ=6.9 Hz, (CH),CH), 1.738 (6H, bs, adamantyl), 2.14 (3H, bs,
adamantyl), 2.253 (6H, bs, adamantyl), 3.486 (Bt,9=6.9 Hz, CHCH),), 8.410 (1H, s, HE. Anal.
(C18H25N5) Cv H! N.

6-(Adamantan-1-ylamino)-9-isopropylpurine (9B)

Column chromat.: 1% MeOH in CHEImp 133 - 147 °C; MS ESI + : 312.3 (100%, M HHH NMR
(300 MHz, DMSO-¢) &(ppm): 1.512 (6H, dJ=6.5 Hz, (CH),CH), 1.673 (6H, bs, adamantyl), 2.072
(3H, bs, adamantyl), 2.205 (6H, bs, adamantyl)1%.71H, septJ=7.0 Hz, CHCHs),), 6.447 (1H, bs,
NH), 8.197 (1H, s, H8, 8.220 (1H, s, HY. Anal. (GgH»sNs) C, H, N.

7-(3-Fluor oanilino)-3-isopr opylpyrazolo[4,3-d]pyrimidine (11A)

Crystallized from reaction mixture (CHg recrystallized from CHGJ mp 208 - 210 °C; MS ESI + :
272.3 (100%, M + F); MS ESI - : 270.2 (100%, M - Bt *H NMR (300 MHz, DMSO-¢) 5(ppm): 1.383

(6H, d,J=6.9 Hz, (CH),CH), 3.515 (1H, sepfl=6.9 Hz, CHCHy),), 7.130 (1H, ddJ=4.3 Hz, 4.2 , ArH),

7.508 (1H, ddJ=15.0 Hz, 8.2 ArH), 7.761 (1H, d=8.2 Hz, ArH), 7.993 (1H, d]=10.7 Hz, ArH), 8.819
(1H, s, HC), 12.21 (1H, bs, NH). Anal. (GH14FNs) C, H, N.

6-(3-Fluoroanilino)-9-isopr opylpurine (11B)

Column chromat.: 1% MeOH in CHEImp 94 - 99 °C; MS ESI + : 272.3 (100%, M #)H'H NMR
(300 MHz, DMSO-¢) 8(ppm): 1.577 (6H, d,J=6.9 Hz, (CH).CH), 4.841 (1H, septJ)=6.9 Hz,
CH(CHsy),), 6.826 (1H, ddJ=8.8 Hz, 8.7 , ArH), 7.335 (1H, dd=15.0 Hz, 8.2, ArH), 7.785 (1H, d,
J=8.2 Hz, ArH), 8.039 (1H, dJ=12.3 Hz, ArH), 8.459 (1H, s, H 8.220 (1H, s, HY. Anal.
(C14H14FNs) C, H, N.

7-(4-Fluor oanilino)-3-isopr opylpyrazolo[4,3-d]pyrimidine (12A)

Column chromat.: 3% MeOH in CHEImp 233 °C; MS ESI + : 272.3 (100%, M $)HMS ESI - : 270.2
(100%, M - H), 306.4 (15%, M + CJ; '"H NMR (300 MHz, DMSO-¢, 335 K) §(ppm): 1.432 (6H, d,
J=7.0 Hz, (CH),CH), 3.398 (1H, sept]=7.0 Hz, CHCH,),), 7.207 (2H, ddJ=8.6 Hz, 8.5, ArH), 7.882
(2H, bs, ArH), 8.365 (1H, s, HR; 9.39 (1H, bs, NH). Anal. (GH.4FNs) C, H, N.

6-(4-Fluor oanilino)-9-isopr opylpurine (12B)

Column chromat.: 2% MeOH in CHEImp 139 - 145 °C; MS ESI + : 272.3 (100%, M HHH NMR
(300 MHz, DMSO-¢) é(ppm): 1.559 (6H, dJ=6.7 Hz, (CH),CH), 4.801 (1H, sept)=6.7 Hz,
CH(CHs)y), 7.16 (2H, dd,)=6.6 Hz, 6.6, ArH), 7.955 (2H, dd=9.2 Hz, 5.0, ArH), 8.375 (1H, s,
8.421 (1H, s, H, 9.910 (1H, bs, NH). Anal. (GH1,FNs) C, H, N.

7-(2-Aminocyclohexylamino)-3-isopr opylpyrazolo[4,3-d]pyrimidine (15A)

Column chromat.: CHGI/ MeOH / aq. 25% NKOH (94 / 6 / 0.2); mp 112 - 118 °C. MS ESI + : 2¢5.
(100%, M + H), MS ESI - : 273.2 (100%, M - B 309.2 (5%, M + C); *H NMR (300 MHz, MeOD)
d(ppm): 1.20 — 1.39 (8H, m, cyclohexyl), 1.37 (6H,J6.7 Hz, (CH),CH), 1.83 — 2.02 (2H, m,
cyclohexyl), 2.92 (1H, bs, Ni}, 3.344 (1H, septJ)=6.7 Hz, CHCH,),), 8.26 (1H, s, HE). Anal.
(CraHzNe) C, H, N.

6-(2-Aminocyclohexylamino)-9-isopropylpurine (15B)

Column chromat.: CHGV MeOH / aqg. 25% NKDH (94 / 6 / 0.2); amorphous glass, mp 98 — 110MS.
ESI + : 275.4 (100%, M + B; 'H NMR (300 MHz, DMSO-¢) §(ppm): 1.21 - 1.40 (8H, m, cyclohexyl),
1.604 (6H, d,J=6.8 Hz, (CH),CH), 1.85 — 2,08 (2H, m, cyclohexyl), 4.789 (1Hptsel=7.0 Hz,
CH(CHs),), 4.29 (1H, bd, NH), 5.42 (2H, bs, NH 8.11 (1H, s, HE), 8.381 (1H, s, HE. Anal.
(C14H22N6) Cv H! N.

7-(4-Aminocyclohexylamino)-3-isopr opylpyrazolo[4,3-d]pyrimidine (16A)

Column chromat.: CHGlI MeOH / ag. 25% NKDH (94 / 6 / 0.2); amorphous glass, mp 95 — 105MS.
ESI + : 275.4 (100%, M + B, MS ESI - : 273.2 (100%, M - H 309.2 (10%, M + CJ; *H NMR (300
MHz, MeOD) é(ppm): 1.18 — 1.38 (8H, m, cyclohexyl), 1.36 (6HJd6.9 Hz, (CH),CH), 1.82 — 2.00
(2H, m, cyclohexyl), 2.97 (1H, bs, NH 3.343 (1H, sept)=6.9 Hz, CHCH,),), 8.232 (1H, s, H®).

Anal. (C4H2:Ng) C, H, N.
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6-(4-Aminocyclohexylamino)-9-isopropylpurine (16B)

Column chromat.: CHGlI MeOH / aq. 25% NEDH (94 / 6 / 0.2); mp 127 — 133 °C. MS ESI + : 2/5.
(100%, M + H); *H NMR (300 MHz, CDCJ) &(ppm): 1.20 - 1.40 (8H, m, cyclohexyl), 1.604 (&,
J=7.0 Hz, (CH),CH), 1.85 — 2.08 (2H, m, cyclohexyl), 4.789 (1Hptsd = 7.0 Hz, CHCH,),), 4.14 (1H,
bd, NH), 5.38 (2H, bs, N}), 7.819 (1H, s, H®, 8.385 (1H, s, HE. Anal. (G4HNg) C, H, N.

L eishmania donovani cell culture

L. donovani (MHOM/SD/1962/1S-Cl2d) was used in this work. Axer@mastigotes were grown in a
complete RPMI 1640 medium containing 20% fetal csdfum, pH 5.5, at 37 °C in a 5% €O
atmosphere, as described elsewHere.

Axenic amastigote viability assay

Screening of the compounds for leishmanicidal #gtiwas carried out using an alamarBlue (AbD
Serotec) viability assay similar to that reported feishmanial promastigotésStandardization and
optimization of the assay for axenic amastigotesd@scribed elsewhet€ompounds to be assayed were
diluted to twice the final concentration in the quete amastigote medium, containing 1% dimethyl
sulfoxide (DMSO), and were aliquoted in triplicd25 uL/well) into 96-well flat-bottom plates (Nunc).
Amastigotes (5.0 x faells/mL; 125uL/well) were added to each well and incubated #h2at 37 °C in

a 5% CQ incubator. The alamarBlue viability indicator wadded (25uL/well) and the plates were
incubated for an additional 24 h, at which time therescenceiex = 544 nmjem = 590 nm) was
measured in a microplate reader (Fluoroskan As&ént Complete medium both with and without
DMSO was used as negative controls (providing OBbition of amastigote growth). Amphotericin B
(Sigma-Aldrich), a drug used to treat visceralheigniasis, was included as a positive control arhea
plate and gave >90% inhibition of parasite grovith gM.

Kinase assays

CDK2-cyclin E kinase was produced in Sf9 insectlscelo-infected with appropriate baculoviral
constructs, as previously describethe leishmanial full length proteins CYC6 (Himgged) and CRK3
were co-expressed in RosettaBL21(DE3)pLy&Scoli cells, induced with 10QuM IPTG at 20°C
overnight (Fig. 2). Both proteins form a stable pdew in bacteria and as such was purified on &-Co
NTA column accordingly to manufacture’s protocolig@en). Purified protein complex was always
prepared freshly using one-step affinity purificati Fraction 6 (Fig. 2), showing the highest kinase
activity, was used in appropriate dilution for kéeainhibitor screening and assayed with 1 mg/mtohis

H1 in the presence of 15 uM ATP, 0.05 pEPPJATP and of the test compound in a final volumé.of
pL, all in a reaction buffer (50 mM HEPES, 10 mM ®1g 5 mM EGTA, 10 mM 2-glycerolphosphate,

1 mM NaF, 1 mM DTT, pH 7.4). After 30 min incubatiaeactions were stopped by adding 5 pL of 3 %
ag HPO,. Aliquots were spotted onto P-81 phosphocellul@déhatman), which was subsequently
washed 3 x with 0.5% aqs;FAQ, and finally air-dried. To quantify kinase inhibitipa digital image
analyzer BAS-1800 (Fuijifilm) was employed. Kinas#ivty was expressed as a percentage of maximum
activity. The concentration of the test compouretyuired to decrease the CDK by 50% was determined
from dose-response curves and designateg IC

Electrophoresis and immunoblotting

Aliguots of each fraction from a CRK3/CYC6 puriftaan were subjected to SDS-polyacrylamide gel
electrophoresis (12.5% gel). Purity of the CRK3/@YComplex was evaluated by staining with
Coomassie Blue G-250 (Sigma-Aldrich). In parall@koteins separated on a second gel were
electrophoretically transferred onto a nitrocelidomembrane, then blocked with PBS containing 0.1%
Tween-20 (PBS-T) and 5% low-fat milk. The membraves then incubated overnight with anti-His
probe (clone H3 at 1:500 dilution; Santa Cruz Bibt®logy). After washing three times in PBS-T, the
membrane was incubated with a 1:1000 dilution abpielase-conjugated secondary antibody (Dako
Cytomation). After an additional three washes inSPB peroxidase activity was detected using ECL+
reagents (AP Biotech) according to the manufacturestructions.
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INTRODUCTION

Due to very high identity and similarity in amino acid
sequence among mammalian cyclin-dependent
kinases (CDKSs) and leishmanial cyclin-dependent
related kinases (CRKs) (Figure 1) new developed
inhibitors with CDK selectivity could also be very

effective in treatment of parasite diseases applied N
to CRK protein kinases. We report here results of \>
screening directed to find new antileishmanial N

drugs among 6,9-disubstituted purines and
structure related 3,7-disubstituted pyrazolo[4,3-
d]pyrimidines. These compounds have been
previously shown to moderately inhibit human
cyclin-dependent kinases CDK1 or CDK2 [1].
Since some compounds blocked the proliferation of
axenic amastigotes of Leishmania donovani, we
screened them for interaction with recombinant
leishmanial kinase CRK3, an important regulator of
the cell cycle of the parasitic protozoan leishmanias
[2,3], using methods of Thermofluor thermal shift
assay and surface plasmon resonance (SPR).
Some compounds from this screen showed
promising results in all of these tests and could be
used as lead structures for a further development of
anew potential antileishmanial drugs.

A

Figure 1: Structures of studied 3,7-

disubstituted pyrazolo[4,3-d]pyrimidines (A)

and 6,9-disubstituted purines (B).

EFFECT ONAXENIC AMASTIGOTES

We have tested in total 19 pairs of purine isomers and corresponding pyrazolo[4,3-d]pyrimidines for
antiproliferative effects on axenic amastigotes of Leishmania donovani using the method which was
described previously [4]. All results are summarized in Table |. Testing of listed compounds showed that
all pyrazolo[4,3-d]pyrimidines have better antiproliferative effects than related disubstituted purines. In
the first series of isomers we could compare an antiproliferative efficiency of compounds with different
substitution on benzyl ring. Addition of a polar amino (9A) or hydroxy (2A) group at ortho or para
positions of the benzyl ring dramatically increase the inhibitory activity in comparison to the
unsubstituted derivative. Substitution at the meta position (e.g. methoxy) led to a decrease in inhibitory
activity. All tested halogen-phenyl pyrazolopyrimidine derivatives (13A, 14A, 15A) display very
promising results and exhibit about 70% inhibition at 30 uM and 50% at 15 pM. Only the bromo
derivative 16A shows a slight decrease in this inhibition trend. The most potent compound in this series
was 14A (4-fluorophenyl substituent) which, together with hydroxy derivative (2A), is the most effective
member of this screen. Furthermore, both isomers of compound 11 which contain the bulky
hydrophobic adamanthyl group have exhibited very high inhibition. We also tested many compounds
with various N6 side chains (17-21), but surprisingly no inhibition was observed.

THERMAL-SHIFT ASSAY

All compound listed in Table |. were tested for CRK3/ligand interaction using a Thermofluor-based
thermal shift assay [5]. Many of these compounds have shown destabilizing effects on enzyme stability,
which correlates with low inhibition in in vivo studies and inhibition through human CDK enzymes as
well (e.g. 8A, 8B, 5A, 5B, 18A, 18B). A slight promising result is observed with compounds with a
hydroxyl or amino group on aromatic side chain ring (9A). Quite surprising data were determined by
halogen derivatives which have shown very high inhibition data on tested axenic amastigotes. Positive
thermal shift was assigned only on isomers with fluoro substitution (13A, 14A). However no effect was
observed in presence of other halogen derivatives (isomers 15 and 16). The highest stabilizing effect
was found for pyrazolo[4,3-d]pyrimidine isomer with adamanthyl group with T,, about 6.3.
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Figure 2: Sequence alignment
of human CDK1, CDK2 and
CRK3 from Leishmania major.
Blue boxes indicate 54% and
58% identity in amino acid
sequence (light - two sequences;
dark - all three sequences), but
similarity in amino acids
sequence rises up 70% and
75%.
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Table I. Antileishmanial activity, CDK inhibition activity and CRK3/ligand interaction data

of studied 3,7-disubstituted pyrazolo[4,3-d]pyrimidines and 6,9-disubstituted purines.
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Figure 3. Stabilizing effect of selected compounds on denaturating process of protein complex
CRK3/CYCB6. Curves represent nonlinear fits as a function of relative fluorescence units RFU (left) or
first derivative -d(RFU)/dT (right) against temperature. Each curve is a mean of three determinations.
T, was determined from the peak minima in the first derivative curves.

9% inhibition of Leishmania

SURFACE PLASMON RESONANCE

To complete an interaction study of CRK3/ligand the method surface plasmon resonance was used.
Protein-ligand interaction was determined first by one-point concentration screen (200 pM) to guage
any binding response. Subsequently, positive hits were tested in the concentration range 49 nM - 50 uM
for K, determination (Table I). Many of the studied ligands showed no binding response against CRK3
kinase (e.g. isomers 5). Determined Kd values of selected positive hits was observed mostly above 100
UM which signified low binding affinity to CRK3. Only a few ligands returned positive hits from both the
SPR and previous thermal shift screen; fluoro (14A) and adamanthyl (11A) derivatives, which gave Kd
values 93.4 pM and 59.2 pM respectively. The next three strongest binding ligands (18A, 18B, 7A) have
Kd values below 100 pM, but they have not shown any significant data through other tests, in vivo
especially.

2. . Figure 4. Steady-state
£ . - affinity analysis of
3w . = control selected ligands using
g 2 . Lo surface plasmon
g N . s resonance. Indirubin
& L derivative was used as

s .. . . * a control (K, ~ 3 pM).

o T 2 by
Concentration (M)
METHODS SURFACE-PLASMON RESONANCE

THERMAL-SHIFT ASSAY SPRis an optical method based on measurement of change in refractive index

. Thermal
o Resubstitution donovani axenic amastigotes ‘ CCD[:;A . CCD[I:I%II . e K?[PI:A .
30uM 15 M * 0 Tm
A son! 296201 nd. 12 X0 o7 >100
18 o 199524 nd. 36 269 il nbir.
2 87.420.4 68.1206 04 018 06 >100
2-hydroxybenzyl
2B 14.242.1 n.d. 4.4 6.65 0.3 nb.r.
3A 20.7:5.4 n.d. 17 011 03 >100
3-hydroxybenzyl
3B 6.5¢1.4 nd. 31 0.70 0.4 >100
4A AR 36.9+20.8 n.d. 18 0.09 03 >100
48 i 185:4.9 nd 40 060 02 nbr.
5A PR 315:33 237249 23 032 07 nbr.
58 e 151216 nd. 38 212 07 nbr.
6A P p— 84242 nd. na. 127 a6 >100
6B 1.9:0.5 n.d. n.a. 12.46 -1.6 nb.r.
A 2-hydroxy-3-methoxybenzyl 34.3:2.4 25.6£3.1 n.a. 0.10 04 771
7B 8.842.2 n.d. n.a. 1.81 -0.1 >100
8A 10.4£2.4 n.d. na. 029 -0.6 >100
4-hy -3-methc U
88 Varoxy-S methoxybenzy 9521.1 nd. na. 534 07 nbr.
o 2 aminobona! 413222 265411 na >100 04 >100
o8 4 6.624.0 nd. na. 548 06 nbr.
10A na. na. na. na. na. na.
4-carboxybenzyl
10B 19.411.8 n.d. n.a. 1.28 03 nb.r.
A 732200 0595162 na. 25.16 63 592
adamantan-1-yl
1B 72.0:0.2 46.8£0.0 n.a. >100 -1.6 >100
12A 45.5+2.3 32.8+1.2 45 114 na. na.
thylbut-2-en-1-yl
128 Smethyibutzenty 004152 nd. 17 337 07 nb.r
13A 2-fluorophenyl 66.6+0.1 498426 na. 0.48 04 >100
138 = 16.5:0.7 nd. na. 198 03 nbr.
14A 758217 56306 na. 021 04 934
4-fluorophenyl
14B 21.5¢1.1 n.d. n.a. 2.83 -0.6 nb.r.
15A 73.3+1.1 52.3:1.6 09 0.44 -3.7 >100
3-chlorophenyl
158 35.1£3.3 n.d. 59 278 -1.1 nb.r.
16A 52.1£2.1 36.7£2.5 na. 0.60 na. >100
2-bromophenyl
168 26232 nd na. 396 07 >100
17A - 15.8+4.1 124414 na. >100 01 >100
178 — 45138 nd. na. 67.45 08 >100
18A 3314 nd. 60 105 06 278
4-aminocyclohexyl
18B 1.0£2.7 n.d. n.a. 1.48 -0.6 81.2
oA 166:1.9 nd. 25 073 06 >100
furfuryl
198 14.5£3.0 n.d. 9.1 5.02 -0.7 nb.r.
20A 27.3:16 n.d. 12 079 04 >100
pentyl
20B 27.9+4.8 n.d. 6.9 1.02 -0.7 nb.r.
21A na. na. na. na. na. na.
(2-hydr -1-phenyl)ethyl
218 kit Aok 45211 nd na. 1839 07 >100

n.a.- notavailable, n.d. - not determined, n.b.r. - no binding response in one-point concentration screen. All values were determined
by duplicate or triplicate assays.
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IP2669

Method is based on monitoring ligand effects on temperature-dependent
protein unfolding. To monitor protein unfolding, the environmentally sensitive
fluorescent dye Sypro Orange was used. The unfolding process exposes the
hydrophobic " region of proteins and results in a large increase in
fluorescence, which is used to monitor the protein-unfolding transition.
Interaction of studied ligand with protein expresses as positive shift in
transition melting temperature T,

Solutions of 25 pl of 500x Sypro Orange, 1 l of test compound (10 mM in
100% DMSO), 2 pl of protein (1 mg/mi) and protein buffer (50 mM Hepes, 150
mM NaCl, pH 8.0) to the final volume 50 il were added to the wells of a 96-
well thin-wall PCR plate. Protein buffer was added instead of test compound
or protein in the control samples to correlate results for background and
autofluorescence effect of ligand. The plates were sealed with Microseal
Adhesive Sealer and heated in an iCycler iQ Real Time PCR Detection
System from 20 °C to 80 °C in increments of 0.5 °C/30 s. Fluorescence
changes in the wells were monitored simultaneously with a charge-coupled
device camera. The wavelengths for excitation and emission were 485 and
575nm, respectively.

(RI)as a result of interaction immobilized ligand (protein) onto the sensor surface
andts binding partner (inhibitor) which is injected under continuous flow through
the flow cell.
Real time protein-ligand interaction analysis was performed using Biacore T100
instrument and immobilization of protein CRK3 (200 M) was performed on NTA
sensor chip. Allinteraction assays were carried outin HBS buffer + 50 yM EDTA,
2 % DMSO pH 7.4 at 25 °C with a flow rate 50 uL/min and the contact time 50 s.
first by one-point screen
(200 M) to determine any binding response, then positive hits were tested in
concentration range 49 nM - 50 pM. Data was evaluated for solvent and
reference correction and overall binding affinity (K,) was determined by steady-
state affinity analysis
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