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Abstract

Quantum entanglement plays essential role in quantum information processing. Our

task in this theoretically orientated thesis is to find a class of three-qubit fully-inseparable

states and analyzed this class of states in the question of localizability of quantum entan-

glement between two parties of our state by performing measurement on the third party.

The issue of localizability of quantum entanglement by POVM elements and utility of the

state for quantum information processing is discussed.
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1 Introduction

The thesis deals with genuine multipartite entanglement with finite dimensional Hilbert

state space. This type of entanglement found and finds many applications in quantum

information science.

The interesting such a kind of multipartite entanglement has arisen due to the presence of a

new type of quantum nonlocality, the called Greenberger-Horne-Zeilinger (GHZ) nonlocal-

ity [1]. Genuine multipartite entanglement also found applications in some older quantum

information protocols including assisted quantum teleportation [2], assisted dense coding

[3], third man quantum cryptography [4] or quantum secret sharing schemes.

New applications of genuine entanglement are in cluster state quantum computing [5] or

one-way quantum computing [6, 7], quantum simulations and topological quantum com-

puting [8].

The performace of all the assisted protocols [3, 9] as well as the quantum secret sharing [10]

rely on the possibility to localize entanglement between a pair of subsystems of a genuine

multipartite entanglement obviously plays a vital role also in cluster-state implementation

of entangling quantum gates. The term localizable entanglement was first introduced in

references [11] and [12] in the context of a measure of entanglement and it is defined as

a maximum amount of entanglement that can be localized between two subsystems of a

multipartite system by performing local measurements on the other subsystems.

Besides being useful in applications, localizability of entanglement in genuine multipartite

entangled state is distillable if one can distill by local operations and classical communica-

tion (LOCC) more entangled bipartite [13] or multipartite [14] states from only partially

entangled states. Localization of entanglement between two initially separable subsystems

of a multipartite quantum state by a measurement on the remaining subsystems of the state

can therefore be seen as a kind of a simple distillation protocol. The absence of localizable

entanglement in a given quantum state thus indicates that either more sophisticated pro-

tocols have to be used for its distillation or that the state contains nondistillable (bound)

entanglement [15]. Therefore, nonlocalizability of entanglement in genuine multipartite

entangled state is also a necessary prerequisite for the presence of bound entanglement in

this kind of states. Note that so far, an example of a genuine multipartite bound entangled

state has not been found.

In our thesis, we investigate genuine multipartite entanglement which does not posses lo-

calizable entanglement. First we construct an example of such a state for a simplest system

consisting of three quantum bits (qubits). The next part of this thesis contains analysis of

the experimental realization of the proposed state. Finally, in the last part of the thesis
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we discuss the utility of the state for quantum information processing.
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2 Theoretical background

In this section we briefly explain the basic quantum-mechanical concepts used throughout

the thesis. The present thesis deals with quantum entanglement in multipartite systems

and therefore we start with the description of states such systems in quantum mechanics.

2.1 Formalism of quantum states

In classical physics, a state of a system is fully described by a point in the phase space.

In contrast, in quantum theory, a state is characterized by a normalized vector in a com-

plex Hilbert space H [16]. In the present thesis we work only with systems with finite-

dimensional Hilbert state space and therefore we restrict our attention to these systems in

what follows. In the discrete variables, dimension of Hilbert space grows with the amount

of particles as 2N , where N in a number of particles. Representation via complex vectors

also give us maximum affordable information about given quantum state. In the further

text we will impose on theory for discrete variables, because my thesis deals with the

discrete ones.

2.1.1 Pure states

States, which can be represented as a vectors in Hilbert space are called pure states.

Mathematically, we can express these states as

|ψ〉 =
1√
〈ψ̃|ψ̃〉

|ψ̃〉 , (2.1)

where Dirac bra-ket notation is used and
√
〈ψ̃|ψ̃〉 is called the norm of the state. Pure

states are idealization. In practice, we do not have a complete information about state of

a quantum system. Then we talk about a mixed state and we have to describe it by the

so called density matrix.

2.1.2 Mixed states

Density matrix is used to describe a quantum system in a mixed state, a statistical ensemble

of several quantum states. For a mixed state, a density matrix is made of system in the

quantum state |ψj〉 with appropriate probability pj and can be expressed as

% =
∑
j

pj |ψj〉 〈ψj| , (2.2)
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where % is a common symbol for density operator. An operator % describes a density

matrix if and only if % is Hermitean, positive-semidefinite operator with a unit trace. The

Hermicity means that

%† = %, (2.3)

where † is a symbol for transposition and complex conjugate. Positive-semidefiniteness is

defined as

〈ψ| % |ψ〉 ≥ 0, (2.4)

for every |ψ〉 6= 0 and the unit trace condition reads as

Tr[%] =
∑
j

pj = 1. (2.5)

Density operator for a pure state apparently satisfies relation

%2 = %. (2.6)

2.2 Quantum bits

Quantum information is an extension of classical information as the complex numbers are

extension of the real ones. We define quantum bit [17], or qubit, as a quantum system with

two-dimensional complex Hilbert state space, i.e. H = C
2. Unlike a classical bit, which

can occur only in states 0 or 1 a quantum bit can exist in the superposition α |0〉 + β |1〉
where |α|2 + |β|2 = 1. In laboratory, we can encode qubits for example to the polarization

state of one photon. As a geometrical representation of two-level quantum system we use

Bloch sphere.

We can express any pure state of a qubit as

|ψ(ϑ, φ)〉 = cos

(
ϑ

2

)
|0〉+ eiφ sin

(
ϑ

2

)
|1〉 , (2.7)

where ϑ ∈ [0, π] and φ ∈ [0, 2π]. In further work we deal with multiqubit systems involving

two or three qubits. States of such a system is described by vectors in H⊗H or H⊗H⊗H.

The basis is a product basis {|00〉 , |01〉 , |10〉 , |11〉} or or {|ijk〉}1i,j,k=0. Composite systems

of qubits may exhibit quantum entanglement which will be described in detail in Section

2.4.
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2.3 Measurement in quantum mechanics

In our thesis we deal with localizability of quantum entanglement in multipartite entangled

quantum systems by measurement on part of this states and thus is necessary to briefly

introduce basic concepts from the theory of quantum measurement.

2.3.1 Projective measurement

Physical quantities called observables are in quantum mechanics described by Hermitean

operators. Such the operators have real eigenvalues and orthogonal eigenvectors. Con-

sider an observable described by a Hermitian operator A, which is assumed for simplicity

to have non-degenerate eigenvalues a′ and the corresponding eigenvectors |a′〉. Then we

can associate with the observable the so called projective measurement described by the

following set of projective operators Pa′∈A, where

Pa′ = |a′〉 〈a′| , (2.8)

is the projector onto the eigenvector corresponding to the eigenvalue a′ and the symbol A
denotes the set of eigenvalues of the operator A. Operator P satisfies a conditions P 2 = P ,

P ≥ 0 and P † = P . The probability of getting a measurement outcome a′ when measuring

the observable A on a pure state |ψ〉 reads as

pa′ = | 〈a′|ψ〉 |2, (2.9)

and the corresponding state after the measurement is given by

|a′〉 =
Pa′ |ψ〉√
〈ψ|P †a′Pa′ |ψ〉

. (2.10)

On the other hand, when the measurement is carried out on a density matrix % one gets

with the probability

pa′ = Tr[%Pa′ ] (2.11)

the post-measurement state of the form

%′ =
Pa′%Pa′

Tr[%Pa′ ]
. (2.12)

Suppose, that state % of a system is composed of two subsystems, density operator % is
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acting on Hilbert space H = HA ⊗ HB. If we are interested in measurement on one of a

subsystems, the unnormalized outcome will take a form

%(A) = TrB[%(AB)P (B)], (2.13)

where P (B) is projective operator acting on the subsystem B. The symbol Tri in equation

(2.13) stands for the partial trace over the subsystem B and is defined as

Tri[·] =
∑

n 〈n|i · |n〉i, where {|n〉i} is the basis in the Hilbert space Hi. The density matrix

(2.13) is not normalized and is called a reduced density matrix.

2.3.2 Generalized measurement

Projective measurement is made of projectors projecting on orthogonal subspaces and pro-

jective operators satisfy P 2 = P . Positive operator value measurement (POVM) elements

do not necessarily have this property. Let’s have a set of non-orthonormal Hermitian pos-

itive semi-definite projective operators {Πi}. From the condition that these operators are

Hermitian we have that probabilities pi are real numbers

Πi = Π†i ⇒ pi ≡ Tr(%Πi) ∈ R (2.14)

Semi-definite positivity tells us that these probabilities are equal or greater then zero

Πi ≥ 0⇒ pi ≥ 0. (2.15)

POVM elements decompose identity operator, thus the probabilities pi sum up to 1∑
i

Πi = 1⇒
∑
i

pi = 1. (2.16)

POVM is defined by equations (2.14)-(2.16). Probability of outcome a′ after measurement

on |ψ〉 is given by

pa′ = 〈ψ|Πa′ |ψ〉 . (2.17)

Likewise, for a system made of two subsystems A and B, we can write the unnormalized

density matrix of subsystem A after the measurement of the POVM element Π
(B)
i on

subsystem B as

%(A) = TrB[%(AB)Π
(B)
i ], (2.18)
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2.4 Quantum entanglement and its properties

Quantum entanglement plays a central role in quantum information processing and it is

also a main advantage against classical information theory. The properties of quantum

entanglement have been summarized by Horodecki’s in a nice review paper [18]. If only

two parties are entangled we talk about bipartite entanglement whereas if more parties a

involved we talk about multipartite entanglement. In two-level systems, quantum states

can be entangled or separable. A quantum system is called separable, if we can write its

density matrix as a sum of local density matrices, written as

% =
∑
i

pi%
(A)
i ⊗ %

(B)
i , (2.19)

where %
(A)
i (%

(B)
i ) is a local state of subsystem A (B).

Entangled states are states, which cannot be written in the form of (2.19). Trivial example

of a separable state in two-qubit system is the state |0〉A ⊗ |0〉B. When there is not a risk

of confusion we omit the symbol of the tensor product ⊗ for the sake of brevity. As an

example of entangled states of a two-qubit system can serve us Bell states

|Φ±〉 = (1/
√

2)(|0〉A |0〉B ± |1〉A |1〉B) and |Ψ±〉 = (1/
√

2)(|0〉A |1〉B ± |1〉A |0〉B).

2.4.1 PPT separability criterion

While decision about entanglement of pure states is simple, situation is much more com-

plicated for mixed states. For this purpose, various separability criteria have been created

[18]. In this thesis we will use positive partial transpose (PPT) criterion. PPT criterion

was firstly introduced by Peres [19]. This criterion is a very strong necessary condition for

separability. It says, that if %AB is a separable density matrix, then its partial transpose

%TBAB is also a legitimate density matrix. The symbol TB denotes the partial transpose

operation with respect to subsystem B which is defined as

〈ij| %TA |lm〉 ≡ 〈im| % |lj〉 (2.20)

In this thesis, we will also work with density matrices of three qubits A,B and C and we

will use the partial transpose operation with respect to individual qubits. For the qubit A

the operation is defined as

〈ijk| %TA |lmn〉 ≡ 〈ljk| % |imn〉 , (2.21)

whereas for qubits B and C it is defined similarly just by interchanging the second and

third indices, respectively, of the matrix element on the right-hand-side of equation (2.21).
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Similar to the two-qubit case, if the qubit A is separable from the pair of qubits (BC),

then ρTA ≥ 0. Thus if ρTA < 0, then the qubit A is entangled with the remaining two

qubits. However, in contrast to two qubits, in the three-qubit case the condition ρTA ≥ 0

is not sufficient for separability of the qubit A due to the existence of the so called PPT

entangle states [20].

2.4.2 Separability for three-qubit systems

Following the classification in [14] the three qubits can be split into two groups in three

ways, i.e. we have A− (BC), B − (AC) and C − (AB) bipartite splittings. According to

the separability of a given quantum state with respect to the splittings we distinguish the

following five separability classes:

(1) Fully inseparable states are states, which are entangled with respect to all bipartite

splittings A − (BC), B − (AC) and C − (AB). An example is maximally entangled of

three-qubit GHZ state [1], |GHZ〉 = (1/
√

2)(|000〉ABC + |111〉ABC).

(2) One-qubit biseparable states are entangled with respect to splitting of two bipartite

splittings but separable with respect to the third one. An example can be a state |α〉 =

|Ψ+〉AB |0〉C .

(3) Two-qubit biseparable states which are entangled with respect to one bipartite splitting.

But separable with respect to the remaining two bipartite splitting.

(4) Three-qubit biseparable states are separable across all three bipartite splittings but

cannot be written in the form

% =
∑
i

|ai〉A 〈ai| ⊗ |bi〉B 〈bi| ⊗ |ci〉C 〈ci| , (2.22)

where |ai〉, |bi〉 and |ci〉 are unnormalized states of subsystems A, B and C. (5) Fully

separable states can be written in the form (2.22).

A vast majority of applications of multipartite entanglement relies on fully inseparable

states and, in particular, on the GHZ state. An important property of the GHZ state for

applications such as secret sharing or assisted dense quantum coding is, that we can by

measuring one qubit in the basis |±〉 = (1/
√

2)(|0〉 ± |1〉) and communicating the mea-

surement result to the locations of the other qubits establish a maximally entangled Bell

state |Φ+〉 between the qubits. In other worlds, we can localize maximally entangled state

between two qubits by a measurement on the third qubit.

In our thesis, we deal with states, which belongs to the same class as GHZ state, but do

not have this property.
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2.5 Localizable entanglement

Localizable entanglement is a property of given state. Localizable entanglement is a maxi-

mal entanglement quantified by some entanglement measure, which can be created between

two qubits of a three-qubit state by a measurement on the third qubit supplemented by

some correcting operations on the two qubits, which depend on the measurement outcome.

Figure 1: Localizable entanglement is a maximum entanglement which can be obtained

by measuring, for example, a qubit A and communicating measurement result with other

parties. Boxes in the figure denote correcting quantum operations on qubits B and C,

which depend on the outcome of the measurement on qubit A. Let’s have a GHZ state.

By performing measurement on qubit A in the basis |±〉A we get |Φ±〉BC . Communicating

measurement result and applying Pauli matrix σz = |0〉 〈0| − |1〉 〈1|, where {|0〉 , |1〉} rep-

resent normalized basis vectors in two-dimensional vector space, we obtain |Φ+〉. This is

the basic principle underlying the performance of the quantum secret sharing or assisted

dense coding.
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3 Original results

Entanglement localizability in multipartite systems is crucial in many applications in quan-

tum information processing such as quantum computation [6] or assisted quantum telepor-

tation [2]. Another important property of multipartite mixed entangled quantum states

is a distillation of entanglement to the maximally entangled multipartite state such as

the GHZ state [1] or to Bell’s states, maximally entangled states in bipartite systems. In

conjuction with distillation there are still open questions in the sense of so-called bound

entangled states. This term is used for states which are entangled but no pure entangled

states can be obtained from them by using local operations and classical communication.

Existence of fully inseparable multipartite bound entangled states is still an open question.

In this part of my thesis I construct a three-qubit state with nonlocalizable entanglement

which is also a nontrivial necessary prerequisite for the presence of multipartite bound

entanglement.

3.1 Our state

We analyze the concept of nonlocalizable entanglement on a two-parametric family of

three-qubit states.

Our work is mainly based on the paper published by Dür, Cirac and Tarrach [14]. They

consider a set of three-qubit density operators in the following form:

%3 =
∑
σ=±

λσ0 |Ψσ
0〉 〈Ψσ

0 |+
3∑
j=1

λj(|Ψ+
j 〉 〈Ψ+

j |+ (|Ψ−j 〉 〈Ψ−j |) (3.1)

with

|Ψ±j 〉 =
1√
2

(|j〉AB |0〉C ± |(3− j)〉AB |1〉C), (3.2)

where |j〉AB ≡ |j1〉A |j2〉B with j = j1j2 is understood in binary notation. For example,

|Ψ±0 〉 = |GHZ±〉 = (1/
√

2)(|000〉 ± |111〉) are standard GHZ states. The state (3.1)

describes a quantum state only if

λi ≥ 0 for i = 1, 2, 3,+,−, (3.3)

and λs are restricted by condition Tr(%3) = 1. The state (3.1) has negative partial transpose

over given qubit if

%TA3 < 0 if ∆ > 2λ2,

%TB3 < 0 if ∆ > 2λ1,

%TC3 < 0 if ∆ > 2λ3,

(3.4)
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where ∆ ≡ λ+0 −λ−0 ≥ 0. In the following text we will instead of |GHZ+〉 use the expression

|GHZ〉, because |GHZ+〉 state is part of a state which will be analyzed.

We start the construction of a fully inseparable state with nonlocalizable entanglement on

a simple example of a state given by a convex mixture of the GHZ state and the maximally

mixed state described by the identity operator. The latter state has the form It has form

%p = p |GHZ〉 〈GHZ|+ 1− p
8

1. (3.5)

where p ∈ [0, 1] is a parameter controlling the ratio between the GHZ state and the

maximally mixed state. This state is in the form of state (3.1) if λ−0 = 0, λ+0 = p+(1−p)/8
and λ1 = λ2 = λ3 = (1 − p)/8. Moreover, from the inequalities (3.4) it follows that the

state (3.5) is fully inseparable for p > 1/5. It has been shown in [13] that states in the form

(3.5) are distillable using purification protocol described in [13] if p > 0.32. For values of

parameter p greater then 0.32 one may still be able to distill GHZ state. In the reference

[21] it was also shown that all fully inseparable states of the form (3.1) are also distillable

which implies the distillability of the state (3.5) for all p > 1/5. These states can be also

easily prepared in the laboratory. This is important because of experimental confirmation

of our results.

In order to construct a fully inseparable state which can be also a candidate for a bound

entangled state, we have to go beyond the structure (3.1). For simplicity, we construct a

state which is fully symmetric, i.e., it is invariant under the exchange of any two qubits.

%p,µ = p%µ +
1− p

8
1, (3.6)

where %µ is a density matrix defined as

%µ = µ |GHZ〉 〈GHZ|+ 1− µ
3

(|001〉 〈001|+ |010〉 〈010|+ |100〉 〈100|), (3.7)

where the parameter µ ∈ [0, 1] controls the ratio between the GHZ and the correlated noise

given by the second term on the right-hand side of equation (3.7). The generalized state

(3.6) belongs to the class of states (3.1) only in special cases when µ = 1 or p = 1. If

µ = 1 then state (3.6) reduces to state (3.5). If p = 1 then we get only the mixture of

the GHZ state with correlated noise (3.7). Due to the fact that these states have some

eigenvalues equal to zero as can be seen from the state conditions (3.3), states lie on the

boundary of the set of quantum states and therefore are not suitable for experimental proof

of our results. For this reason we add to the state (3.7) also a noise term represented by

the identity operator, which shifts the state from the boundary and thus makes it more

friendly to experimental demonstration. In the following section we analyze entanglement

as well as its localizability for the density matrix (3.6).
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3.2 Nonlocalizable entanglement

We consider a fully symmetric three-qubit state (3.6), which is a mixture of a fully insepa-

rable state, a separable correlated noise and a completely depolarized state. Now, we will

answer the question when entanglement is present in this class of states and when it can

be localized. In particular, we would like to know whether there exists a non-empty set of

the states which are fully inseparable but the entanglement is nonlocalizable.

In order to find out, when our class of states is fully inseparable we will use the PPT crite-

rion. Because the state is fully symmetric, it is sufficient to investigate the inseparability of

the states only with respect to one bipartite splitting, say A− (BC). The criterion states,

that if the state (3.6) has a negative partial transpose with respect to the qubit A then

the state is entangled with respect to the A− (BC) splitting.

Actually, we want to find a condition on parameters p and µ due to PPT criterion so that

ρTAp,µ has some eigenvalue negative. After some algebra we arrive at the condition telling us

when the state (3.6) is fully inseparable in the form

pPPT(µ) ≡ 1− 4µ+ 4
√

1− 2µ+ 10µ2

5− 8µ+ 48µ2
≤ p ≤ 1 (3.8)

The set of fully inseparable states in the plane of parameters p and µ is depicted by a

gray area in Figure 2. where the presence of entanglement in the state (3.6) is show as a

two-parametric set of states above for parameters p and µ above blue line.
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Figure 2: Gray area defined by the condition (3.8) depicts the set of parameters p and µ for

which the state (3.6) is NPT and therefore fully inseparable. The threshold value pNPT(µ)

above which the state (3.6) is fully inseparable is depicted by the blue curve. Note, that

in principle there can be also entangled states in the white area below the blue curve due

to the fact that in the case of entangled states between one qubit and two qubits (2 × 4

system) there can exist PPT entangled states [20].

From the inequality (3.8) we see that at given µ there exists a bound pNPT(µ) above

which the state (3.4) is NPT and therefore fully inseparable. The Figure 2 further reveals,

that the threshold value pNPT(µ) is a monotonously decreasing function of µ which attains

a minimum of pNPT,min = 0.2 at µ = 1. Therefore, if we decrease p below 0.2 the influ-

ence of maximally mixed state turns our state into a PPT state. On the other hand, at

sufficiently large fixed value of the parameter p NPT property and therefore entanglement

appears when we increase the influence of the GHZ state by increasing the value of the

parameter µ.

Now, we would like to address a question, whether there is a subset of parameters in the

gray area in Figure 2 which contains states the entanglement of which cannot be localized.

Such states then lack an important property of fully inseparable states which is used in

several quantum information applications.

In what follows, we try to find conditions for p and µ such that no entanglement can be

localized between qubits A and B of the state (3.6) by any projective measurement on

qubit C. Let us therefore consider a generic projective measurement on qubit C projecting

onto the pure states |ψ(ϑ, φ)〉 and |ψ⊥(ϑ, φ)〉 (2.8).

In order to decide, whether there is a state (3.6) from which entanglement cannot be
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localized by any such measurement it is sufficient to investigate separability of the con-

ditional state of qubits A and B after the projection onto the state |ψ(ϑ, φ)〉. If the

conditional state is PPT for any choice of the angles ϑ and φ, then the state is separable.

Then, also the conditional state after the projection onto the orthogonal state |ψ⊥(ϑ, φ)〉
will be inevitably separable. As mixing of such states, which might be also transformed by

some local operations dependent on the measurement outcome, cannot turn the separable

states into entangled states, the resulting state will also be separable and thus no entan-

glement can be localized as required.

Now we will do measurement covering the whole Bloch sphere on qubit C (2.8) on our

state (3.6), then we will find the least eigenvaule of a reduced density matrix after partial

transpose and we will find angles ϑ and φ such as that least eigenvalue will be minimal.

We need to have least eigenvalue minimal because due to PPT criterion we want to localize

such entanglement as we can.

After measuring on qubit C (2.13) with (2.8) we get reduced unnormalized state

%̃AB(ϑ, φ) = TrC(ρp |ψ(ϑ, φ)〉C 〈ψ(ϑ, φ)|). (3.9)

Using the definition of partial trace we can easily obtain elements of matrix (3.9) as follows

%̃AB(ϑ, φ) = TrC(%p,µ |ψ(ϑ, φ)〉C 〈ψ(ϑ, φ)|) =

TrC

{
%p,µ

[
cos

(
ϑ

2

)
|0〉C + eiφ sin

(
ϑ

2

)
|1〉C

] [
cos

(
ϑ

2

)
〈0|C + e−iφ sin

(
ϑ

2

)
〈1|C

]}
.

(3.10)

After multiplying brakets in (3.10) and using property of trace we obtain

%̃AB(ϑ, φ) =
1 + cos (ϑ)

2
〈0|C %p,µ |0〉C +

1− cos (ϑ)

2
〈1|C %p,µ |1〉C +

sin (ϑ)

2

(
eiφ 〈0|C %p,µ |1〉C + e−iφ 〈1|C %p,µ |0〉C

)
= · · · =

1

2

[
1 + cos (ϑ) (%00 − %11) + 2 sin (ϑ)<

(
eiφ%01

)]
,

(3.11)

where

%ij =
1∑

k,l,m,n=0

〈kli|ABC %p,µ |mnj〉ABC |kl〉AB 〈mn| . (3.12)

Normalized state (3.9) is a state in a form

%AB(ϑ, φ) =
%̃AB(ϑ, φ)

TrAB%̃AB(ϑ, φ)
. (3.13)
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If we use results recieved from (3.11) together with (3.12) and when we applied them on

our state (3.6), result can be written in a matrix form

%AB(ϑ, φ) =
1

N


c 0 0 b

0 a 0 0

0 0 a 0

b∗ 0 0 d

 (3.14)

where N is a norm of (3.9) and a, b, b∗, c and d have the following expressions

a =
1

24
[3 + p− 4pµ− 4p(−1 + µ) cos (ϑ)] (3.15)

b =
1

4
eiφpµ sin(ϑ), (3.16)

b∗ =
1

4
e−iφpµ sin(ϑ), (3.17)

c =
1

24
[3 + p+ 2pµ+ 2p(−2 + 5µ) cos (ϑ)] (3.18)

d =
1

8
[1− p+ 2pµ− 2pµ cos (ϑ)] . (3.19)

The norm of the matrix (3.14) N is equal to (1/6) [3− p(−1 + µ) cos (ϑ)] and it is positive

for every p ∈ [0, 1], µ ∈ [0, 1] and ϑ ∈ [0, π]. Thus for finding the condition when matrix

(3.13) is entangled according to PPT criterion we can do computation without norm of

that matrix.

To find out under what conditions matrix (3.9) is entangled, we need to carry out partial

transpose on (3.9), find the smallest eigenvalue and discuss its sign how PPT criterion says

with respect to ϑ and φ. If the smallest eigenvalue after partial transpose of (3.9) will be

negative then (3.9) is entangled.

After the partial transpose over qubit A (2.21) of matrix (3.9) we get

%̃TAAB(ϑ, φ) =


c 0 0 0

0 a b 0

0 b∗ a 0

0 0 0 d

 (3.20)

We can reduce a problem of finding the smallest eigenvalue of (3.20) to finding the smallest

eigenvalue of the matrix

Λ(ϑ, φ) =

(
a b

b∗ a

)
, (3.21)

because eigenvalues corresponding to matrix element c and d will be positive for every p

and µ from interval [0, 1].
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Figure 3: Red dashed line is curve of optimal measurement on |±〉. Under this line is a

reduced density matrix (3.9) due to PPT criterion separable. Orange dot-dashed line is

also a a curve of optimal measurement, but for ϑ ∈ [0, π/2]. Above blue line is a density

matrix (3.6) entangled, below that line is separable. Two-parametric set of states from

gray area have entanglement which we can not localize with any projective measurement

and are not usable for application in quantum information

The smallest eigenvalue of a matrix (3.21) will be after some easy computing in the form

λ1 = a− |b|. If we take a look on (3.16) we will find, that the smallest eigenvalue of (3.21)

does not depend on φ. After substituting (3.15) and (3.16) into λ1 we get three-parametric

equation

λ1 =
1

24

[
3 + p− 4pµ− 4p(−1 + µ) cos (ϑ)− 1

4
pµ| sin(ϑ)|

]
. (3.22)

We want to find the minimum of λ1 with respect to ϑ so mathematically we are solving

equation dλ1
dϑ

= 0. Solution of our optimization leads to the condition on ϑ which looks as

follows

tan (ϑ) =
3

2

µ

µ− 1
. (3.23)

What does the equation (3.23) tell us? If we mention that ϑ ∈ [0, π] and function tangent

is discontinuous at π/2 we have to split interval where ϑ is defined onto two subintervals

[0, π/2] and [π/2, π].

Tangent for ϑ ∈ [0, π/2] is positive so the optimal measurement will be done under the

angle corresponding to ϑ = arctan(3
2

µ
µ−1). On the other hand, for ϑ ∈ [π/2, π] tangent is

negative, but the right hand side of equation (3.23) is always positive, so extreme have to lie

on the border of the interval ϑ ∈ [π/2, π]. If we consider a sign of derivation, mathematical
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analysis tells us, that the eigenvalue λ1 is increasing function of ϑ ∈ [π/2, π]. Again

according to the PPT criterion, we want to have this eigenvalue minimal so the optimal

measurement will be reached for ϑ = π/2. If we substitute this result into equation (2.8)

we will find that minimize the lowest value of the smallest eigenvalue after partial transpose

of the state (3.6) will be obtained by performing measurement on |+〉. Because optimal

measurement is not phase-depended, measuring on |−〉 will give us the same result. We

can localize the most of entanglement of the conditional state (3.13) by measuring the

qubit C in the |±〉 basis as it can be seen in Figure 3. We will not localize more if we

will be measuring in basis where ϑ = arctan(3
2

µ
µ−1). This result was expected because of

symmetry of our state (3.6).

3.3 Experimental data processing

For verification of our results, we collaborated with Quantum Optics Laboratory Olomouc,

in particular with dr. M. Mičuda. We reconstructed density matrix using maximum

likehood method [23] for µ = 1 and p = 0.25. Values of parameters µ and p were chosen

such that we can easily reconstruct our state in laboratory and so that we can verify if the

entanglement is nonlocalizable . We reconstructed state

%1/4 =
1

4
|GHZ〉 〈GHZ|+ 3

32
1. (3.24)

State (3.24) is a mixture of maximally entangled GHZ state with weight 1/4 and noise with

weight 3/4. Dr. M. Mičuda reconstructed one thousand density matrix corresponding to

state (3.24). Now is our task to verify our theoretical results. First of all, we tested if state

(3.24) is fully-inseparable due to splitting considered in 2.4.2.

j A B C

102 ×Min[eig(%Tj)] −3.00± 0.05 −1.98± 0.05 −3.37± 0.05

Table 1: Values of eigenvalues of (3.6) after partial transpose over given qubit. All of the

smallest eigenvalues are negative. So according to PPT criterion is (3.24) nonseparable

with respect to splitting A− (BC), B − (AC) and C − (AB).

Results shown in Table 3.3 tells us that state (3.24) is nonseparable with respect to all

splittings. This is in conformity with our theoretical result as can be seen in Figure 3.

We verified nonseparability and now we want to verify nonlocalizability. We have to do

measurement on experimentally reconstructed matrices using (3.12) and do partial trans-

pose over qubit A and find minimal eigenvalue. Finding minimal eigenvalue analytic way
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is quite problematic, because experimental density matrix have every element non-zero.

After performing measurement on the experimentally reconstructed state (3.24) and par-

tial transpose, we decided to find the least eigenvalue numerically.

We divide both intervals for ϑ ∈ [0, π] and φ ∈ [0, 2π] to 63 values equally distributed on

these intervals. Then we calculated value of the smallest eigenvalue numerically for every

measurement (2.7) and corresponding values of ϑ and φ.

Figure 4: An example of computing the least eigenvalue after measurement on one recon-

structed density matrix (3.24) and partial transpose over qubit A.

In the Figure 4 we can see how this works for one matrix. After measuring, doing partial

transpose and dividing intervals for ϑ and µ into 63 discrete values, our reduced density

matrix will split onto 632 matrices, which contains only numbers. Then using numerical

algorithms we can easily find the smallest eigenvalue. We obtain 63 × 63 matrix, which

elements are minimal values of eigenvalues after measurement and partial transpose. So

we can see, for which ϑ and φ we can do the best measurement.

We do that on every reconstructed density matrix. Mean value of given smallest eigenvalue

and standard deviation is Min[eig(%TAred)] = 10−2 × (6.14 ± 0.08) and their corresponding

values ϑ and φ are equal with small deviation to ϑ = π/4 and φ = 0 or π/2. Because the

minimal eigenvalue is positive, there is no entanglement which we can localize. We also

check that optimal measurement is performed in |±〉 basis. These results are with perfect

agreement with theoretical results.
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3.4 Nonlocalizability of entanglement by POVM

In Section 3.2 we showed that there exist two-parametric set of states, which contain en-

tanglement nonlocalizable by any projective measurement. But is there a non-projective

measurement described in theory 2.3.2 which can localize more then projective measure-

ment? Answer of this question is no, we cannot localize more of entanglement then by

projective measurement. Prove of this statement is based on fact, that we can express

every POVM element in the orthogonal basis using spectral decomposition. And because

we cannot localize entanglement by projective measurement, we also cannot localize entan-

glement by POVM elements. That is because mixing of results of projective measurement

is LOCC operation and entanglement cannot be created using these operations. These can

be mathematically expressed as

%
(AB)
K = TrC [%ABCΠ

(C)
K ] =

∑
i

λi TrC [%ABC |λi〉C 〈λi|] =
∑
i

λi%
AB
K,i , (3.25)

where we spread POVM elements Π
(C)
K acting on qubit C into diagonal basis using spectral

decomposition Π
(C)
K =

∑
i λi |λi〉C 〈λi|. If for every %ABK,i =

∑
l pl%

(A)
l ⊗ %(B)

l , e. g. %ABK,i is

separable, then %ABK is also separable.

3.5 Entanglement localization by unitary operation

3.5.1 Probabilistic localization

Even though entanglement in (3.24) is nonlocalizable, there exist techniques how to extract

him. Lets have CNOT operation on qubits B and C, where B is control qubit and C

target qubit. CNOT gate flips target qubit if and only if control qubit is |1〉. Let’s have

our reconstructed (3.24) state but with no exact p value. After CNOT operation on (3.6)

we get

U †CNOT %p UCNOT =

p(|Φ+〉AB 〈Φ+|)⊗ |0〉C +
1− p

8
1AB ⊗ |0〉C ,

(3.26)

where UCNOT is an unitary operation acting on qubits B and C and where we used the

formula UBC
CNOT |GHZ〉ABC = |Φ+〉AB |0〉C . |Φ+〉 = (1/

√
2)(|00〉 + |11〉) is one of the fully

inseparable Bell basis. If we will perform measurement |0〉 on C we get unnormalized

Werner state [22]

%W = p |Φ+〉 〈Φ+|+
1− p

8
1. (3.27)
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Norm of this state is equal to (1 + p)/2. So normalized output looks as follows

%W =
2p

1 + p
|Φ+〉 〈Φ+|+

1− p
4(1 + p)

1. (3.28)

PPT criterion tells us, that the state (3.28) is entangled if coefficient which stands before

|Φ+〉 〈Φ+| is greater then 1/3. In our reconstructed state (3.24) we used p = 1/4. If we

substitute this into (3.28), normalized Werner state will be in a form

%W =
2

5
|Φ+〉 〈Φ+|+

3

20
1. (3.29)

Because 2/5 > 1/3, is state (3.29) entangled. Although we cannot localize entanglement

contained in (3.24) we can obtain entangled state (3.29) using local CNOT operation propa-

bilistically.

3.5.2 Deterministic localization

In Section 3.5 we showed that we can extract entanglement from class of states %p (3.5)

into entangled class of states 3.28 for 1/5 < p ≤ 1/3 using CNOT operation on qubits BC.

But this extraction of quantum entanglement is only probabilistic. Alternatively, we can

extract a maximally entangled state deterministically applying local completely positive

map (CPM) [24] to qubits B and C defined by EBC(%) =
∑

j O
(j)
BC%O

(j)†
BC with Kraus

operators O(1)
BC = 1B ⊗ |0〉C 〈0|, O

(2)
BC = |0〉B 〈0| ⊗ |1〉C 〈1| and O(3)

BC = |0〉B 〈1| ⊗ |1〉C 〈1|.
Kraus operators satisfy

∑
j O(j)†O(j) = 1. Throwing away qubit C leaves the state

%(AB)
p = TrC(EBC(%(ABC)

p )) = p |Φ+〉 〈Φ+|+
3(1− p)

8
(|00〉 〈00|+ |10〉 〈10|)+

1− p
8

(|11〉 〈11|+ |01〉 〈01|).
(3.30)

A state %
(AB)
p is entangled (distillable) for p > 3.02169 due to PPT criterion. Earlier we

showed, that class of states %p (3.5) is entangled for 1/5 < p ≤ 1 and entanglement is

localizable for 1/3 < p ≤ 1. This result tells us that the deterministic way we can not

extract entanglement from class of states %p (3.5) everywhere where is entangled.
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4 Conclusion

We constructed three-bubit state with nonlocalizable entanglement. In subsection 3.2 we

showed that there exist a two-parametric set of states containing entanglement which we

cannot localize with a projective measurement. We also showed, that nonlocalizability

with projective measurement implies nonlocalizability with general POVM elements. We

also prove our results experimentally. In subsection 3.5 we showed that we can extract

probabilistically maximally entangled state |Φ+〉 after CNOT operations on BC measuring

|0〉 on qubit C. Deterministic extraction of entanglement in Section 3.5.2 showed that we

can extract bipartite entangled state (3.30) for p > 3.02169.

We spread our analysis of CPM introduced in Section 3.5.2 on two parametric set of states

%p,µ (3.6) and tried to use the output for dense coding. But analysis showed that the

local von Neumann entropy (S(%) = −Tr(% log %)) S(%
(B)
p,µ ) [25] is smaller then a entropy

S(%
(AB)
p,µ ), where %

(B)
p,µ = TrA[%

(AB)
p,µ ] and %

(AB)
p,µ is a state %p,µ (3.6) after CNOT operation,

CPM and throwing away qubit C. For dense coding is necessary to given state to be more

disordered locally then globally. The question of utility of more sophisticated dense coding

skills will be addressed elsewhere.

The question of distillability of the states (3.6) using methods of [21] is left for future work.
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