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Abstrakt
Tato práce se zabývá použitím fázové korelace k určení vzájemné rotace, změny měřítka a
posunu mezi digitálními obrazy. Fázová korelace je založena na Fourierově transformaci,
proto je popsána Fourierova transformace funkcí definovaných na R2 i diskrétní Fourierova
transformace funkcí definovaných na konečném počtu bodů {0, 1, . . . , N − 1}2, N ∈ N.
Dále je pozornost věnována modifikacím fázové korelace, díky nimž metoda umožňuje
nalezení parametrů podobnostní transformace i mezi obrazy, které mají vysoký dynamic-
ký rozsah a slabě patrné struktury, obsahují aditivní nebo impulzní šum a jsou pořízeny
pomocí různých snímačů a optických soustav. Obsahem práce jsou i modifikace metody
pro snímky sluneční koróny pořízené během úplných zatmění Slunce, což patří mezi nej-
obtížnější úlohy registrace obrazů.

Summary
This thesis deals with the use of phase correlation for estimation of mutual rotation, scale-
change and translation between digital images. Phase correlation is based on the Fourier
transform, therefore the thesis describes the Fourier transform of functions defined on
R2 and the discrete Fourier transform of functions defined on a finite number of points
{0, 1, . . . , N −1}2, N ∈ N. The thesis describes modifications of the phase correlations for
estimation of similarity transformation parameters between images with high dynamic
range and faint structures, containing additive or impulse noise and images which are
taken with different sensors and optical systems. The thesis also focuses on the modifica-
tions of the method used for registration of solar corona images taken during total solar
eclipses, which counts among the hardest registration tasks.
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Chapter 1

Introduction

Registration of images generally means finding the mutual geometrical transformations
between the images. It is a very important part of image processing since we often need
to compose more images together. They are either overlapping by great parts and the
purpose of the composition is to produce a better image (lower additive noise etc.) or
they are less overlapping and the purpose of the composition is to produce a mosaic of
the images. The methods available for image registration depend on whether the images
are shifted only, similar (rotated, scaled, shifted) or distorted in a more complicated way.
Various methods for image registration are described in [49]. Some methods are based

directly on pixel values, e.g. the correlation methods [13] and the mutual-information
method [36]. Such methods are unusable if the images to be registered are exposed
differently. Other methods are based on matching of corresponding structures in the
images. However, these methods require that these structures are visible and clearly
defined in the images. This requirement is usually fulfilled when we register images of
a cell structure, other medical specimen or for instance aerial images. Registration of
solar corona images is different. The only clearly visible and defined structures in the
images are (apart from the Moon edge, which moves in front of the Sun) prominences.
They are visible on shorter exposures only. On images taken with longer exposure time,
prominences are saturated as well as the neighboring corona. A very contrasty structure is
the edge of the saturated part. Structures in the corona are very faint and it is impossible
to find matching structures in two images which are so clearly defined that they could be
used for image registration.
This problem can be overcome by registration methods which use the image as a whole

rather than separate structures in the images. Phase correlation is a method which works
with Fourier spectra of the images to be registered and is described e.g. in [13]. The
principles for phase correlation for estimating scale change, rotation and shift of images
is described in [45]. Its modifications for registration of solar corona images are described
in [23]. The methods assume that there is no other geometrical transformation between
the images than scale-change, rotation and translation. Other geometrical transformations
are usually negligible, especially in images taken with the same equipment.
When implemented in computer programs, phase correlation uses the Fast Fourier

transform, which is a fast implementation of the discrete Fourier transform. However, the
principles of the method (especially for scaled and rotated images) can be only described
by means of the Fourier transform of functions defined on R2. The Fourier transform, its
properties and the phase correlation of functions defined on R2 is discussed in Chapter 2.
Chapter 3 describes the discrete Fourier transform, its properties and the phase correla-
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tion of functions defined on a finite number of points arranged in a square. Chapter 4
deals with the phase-correlation based method for image registration and its modifications
for less similar images and for images of the solar corona images. It describes the math-
ematical background and practical aspects of image registration using phase correlation
in a detailed way which cannot be found in literature.
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Chapter 2

The Fourier transform

2.1 Basic notions

Definition 2.1. Let f(x) be a a complex function of a real variable, i.e. f : M → C,
M ⊆ R,

f(x) = u(x) + iv(x),

where u, v : M → R are real functions of a real variable. Let a, b ∈ R, a < b and let u, v
be Reimann integrable [38] on interval 〈a, b〉. Then we say that function f is integrable
on 〈a, b〉 and set [18]

b∫
a

f(x) dx =

b∫
a

u(x) dx+ i

b∫
a

v(x) dx.

Analogically, we define the antiderivative of f as∫
f(x) dx =

∫
u(x) dx+ i

∫
v(x) dx.

Remark 2.2. The previous definition shows that the rules for computing with integrals
of complex functions of a real variable are the same as those for computing with integrals
of real functions of a real variable.

Definition 2.3. Let function f : R → R be Riemann integrable [38] on every interval
〈a, b〉, a, b ∈ R, a < b. If the following limit exists and is finite

lim
b→∞

b∫
a

f(x) dx = A,

we say that integral
∞∫

a

f(x) dx

exists (converges, is convergent) [38] and write

∞∫
a

f(x) dx = A.
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If A = −∞ or A =∞, we say that the integral diverges and set
∞∫

a

f(x) dx = A.

In a similar way we treat the limit

lim
a→−∞

b∫
a

f(x) dx = B.

If both integrals
0∫

−∞

f(x) dx,

∞∫
0

f(x) dx

converge, we say that integral
∞∫

−∞

f(x) dx

exists (converges) [38] and it is equal to the sum of both integrals

∞∫
−∞

f(x) dx =

0∫
−∞

f(x) dx+

∞∫
0

f(x) dx.

Furthermore, if both integrals

0∫
−∞

f(x) dx,

∞∫
0

f(x) dx

diverge and have the same sign, we say that integral

∞∫
−∞

f(x) dx

diverges and set
∞∫

−∞

f(x) dx =

0∫
−∞

f(x) dx+

∞∫
0

f(x) dx.

Definition 2.4 (L(R)). Let us denote L(R) the space of all functions R → C such that

∞∫
−∞

|f(x)| dx

exists and is finite.
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Remark 2.5. The L(R) space has analogical properties with the L1(R) space [33]. The
L1(R) space is defined by means of the Lebesgue integral. However, some of the further
proves are based on Riemann integration. We will need integrals which are not defined
as Lebesgue integrals, but they converge as Riemann integrals. In image registration, we
will work with functions whose values are known in a finite number of points only. Then
we can make these functions both Riemann and Lebesgue integrable. Furthermore, the
space is usually defined for real functions (R → R). In Fourier analysis, we work with
complex functions (R → C) and Definition 2.1 makes this notion reasonable.

In accordance with Definition 2.3 of the improper integral of a real function of one real
variable, we define the improper double integral, which can be easily generalized to more
dimensions (the definition for the four-dimensional case is in Appendix D on page 99) and
to complex functions of two real variables.

Definition 2.6. Let f(x, y) be a function R2 → R. We write [48]

lim
(x,y)→(∞,∞)

f(x, y) = L

if and only if for every ε > 0 there exists r ∈ R such that for every a > r, b > r :
|f(a, b) − L| < ε. Analogically, such limit is defined for (x, y) → (∞,−∞), (x, y) →
(−∞,∞) and (x, y)→ (−∞,−∞).

Definition 2.7 (Improper double integral). Let f(x, y) be a function R2 → R. Let
R = 〈a,∞)× 〈c,∞), a, c ∈ R. If the following limits exist and are equal

lim
(b,d)→(∞,∞)

b∫
a

 d∫
c

f(x, y) dy

 dx = lim
(b,d)→(∞,∞)

d∫
c

 b∫
a

f(x, y) dx

 dy = A,
then we define ∫∫

R

f(x, y) dx dy = A.

Analogically, the integral is defined for R = (−∞, b〉 × 〈c,∞), R = 〈a,∞)× (−∞, d〉 and
R = (−∞, b〉 × (−∞, d〉. Furthermore, if all the following integrals exist and are finite,
or, in case some of the integrals are infinite, they have the same sign∫∫

〈0,∞)2

f(x, y) dx dy = B

∫∫
(−∞,0〉×〈0,∞)

f(x, y) dx dy = C

∫∫
〈0,∞)×(−∞,0〉

f(x, y) dx dy = D

∫∫
(−∞,0〉2

f(x, y) dx dy = E,

we define ∫∫
(−∞,∞)2

f(x, y) dx dy = B + C +D + E.
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If function f(x, y) is R2 → C, from the definition we integrate the real and imaginary
part separately and Definition 2.1 (page 5) is used for each of them.

Definition 2.8 (L(R2)). Let us denote L(R2) the space of functions R2 → C such that∫∫
R2

|f(x, y)| dx dy

exists and is finite.

Convention 2.9. Let a, b, c, d ∈ R ∪ {−∞,∞}, a < b, c < d and let f(x, y) ∈ L(R2).
Analogically with Fubini’s theorem [38] the double integral of function f on cartesian
rectangle 〈a, b〉 × 〈c, d〉 can equivalently be written in the following forms

∫∫
〈a,b〉×〈c,d〉

f(x, y) dx dy =

b∫
a

 d∫
c

f(x, y) dy

 dx = b∫
a

d∫
c

f(x, y) dx dy.

Definition 2.10 (Characteristic function of a set). Let X be a set and A its subset.
The characteristic function of set A relative to set X, χA is defined for every x ∈ X as

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A.

Sometimes, the name indicator function is used [9].

2.2 The Dirac distribution

Definition 2.11 (Finite function). A function f(x, y) : R2 → R is called finite [33]
if it is equal to zero outside of a cartesian rectangle 〈a, b〉 × 〈c, d〉, where a, b, c, d ∈ R,
a < b, c < d.

Remark 2.12. It is possible to define the finite function as a function which is equal to
zero outside of a bounded domain (the concept of domain to be defined in [18]). However,
it is not necessary here. For every function which is zero outside of a bounded domain,
there is a cartesian product of intervals outside of which it is equal to zero. And vice versa,
if a function is equal to zero outside of a cartesian product of intervalus 〈a, b〉 × 〈c, d〉, it
is equal to zero outside of every domain M such that 〈a, b〉 × 〈c, d〉 ⊂M .

Theorem 2.13. Let K be the set of all finite functions ϕ which have continuous deriva-
tives of all orders. Then K = (K,+, ·) is a vector space with standardly defined operations
of functions addition and multiplication by a constant.

Proof. It is easy to see that for any functions ϕ, ψ ∈ K and constants a, b ∈ R it holds
that ϕ + ψ ∈ K, the neutral element of the additive group (K,+) is a function which is
equal to zero everywhere, the inverse element of function ϕ is function −ϕ, addition of
functions is commutative, k ·(ϕ+ψ) = k ·ϕ+k ·ψ, (k+l)·ϕ = k ·ϕ+l ·ϕ, (k ·l)·ϕ = k ·(l ·ϕ)
and 1 · ϕ = ϕ.
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Definition 2.14 (Basic space, basic functions). Space K from Theorem 2.13 is called
the basic space and its elements are called basic functions [33].

Definition 2.15 (Convergence in K). A sequence {ϕn} ⊂ K is called convergent to
function ϕ ∈ K [33] if

1. there is a cartesian rectangle 〈a, b〉 × 〈c, d〉, a, b, c, d ∈ R, a < b, c < d, out of which
all functions ϕn are equal to zero,

2. the sequences of derivatives
{

∂kϕn

∂x1x2...xk

}
, k = 0, 1, 2, . . . , xj ∈ {x, y} converge uni-

formly to derivatives ∂kϕ
∂x1x2...xk

.

Definition 2.16 (Continuousness of linear functionals on K). A linear functional T
on the basic space K is called continuous [33] if for every sequence of functions {ϕn} ⊂ K
which converges to function ϕ ∈ K it holds T (ϕn)→ T (ϕ).

Definition 2.17 (Distribution on R2). A continuous linear functional T on the basic
space K is called a distribution [33] on R2.

Remark 2.18. According to the previous definition, each function f which is integrable
on every cartesian rectangle 〈a, b〉 × 〈c, d〉 generates a distribution since Tf (ϕ) defined by
the following formula

Tf (ϕ) =

∞∫
−∞

∞∫
−∞

f(x, y)ϕ(x, y) dx dy

is a continuous linear functional defined on K.

Definition 2.19 (Dirac distribution). The Dirac distribution [33] is a functional

T (ϕ) = ϕ(0, 0)

on the basic space K.
The Dirac distribution is usually written as [33]

∞∫
−∞

∞∫
−∞

δ(x, y)ϕ(x, y) dx dy,

where the symbol δ(x, y) represents a ”function” equal to zero for all (x, y) 6= (0, 0) such
that

∞∫
−∞

∞∫
−∞

δ(x, y) dx dy = 1.

It is obvious that such ”function” is even.

Definition 2.19 is the original definition for the δ-distribution introduced by Dirac. It
enables us to think of the δ-distribution as an infinitely high, infinitely short impulse.
However, there is another definition which is sometimes used in Fourier analysis. Let us
also introduce the definition of a δ-distribution used in [34] which is not equivalent with
the Dirac’s definition. A similar approach is also used in [44].
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Definition 2.20 (δ-distribution). The δ-distribution [34] is the limit of a sequence of
functions δp(x, y), p ∈ N such that

lim
p→∞

∞∫
−∞

∞∫
−∞

δp(x, y) dx dy = 1, (2.1)

lim
p→∞

δp(x1, y1)
lim

(x,y)→(0,0)
δp(x, y)

= 0, (x1, y1) ∈ R2 − {(0, 0)}. (2.2)

The problem of this definition is what sense the limit is taken in. It is a limit of
functions which is not a function.
We will show now an example of functions δp from Def. 2.20. Let us now introduce

functions

ζ(1),p(t) =

{
p
π

if t = 0
sin pt

πt
if t ∈ R− {0},

ζ(2)(s, t) =

{
s
2π if t = 0, s ∈ R
sin st
2πt

if t ∈ R− {0}, s ∈ R,
(2.3)

Functions ζ(1),p, ζ(2) are continuous since

lim
t→0

ζ(1),p(t) = lim
t→0

sin pt
πt
=
p

π
, lim

t→0
ζ(2)(s, t) = lim

t→0

sin st
2πt

=
s

2π
.

Furthermore
ζ(2)(p, t)− ζ(2)(−p, t) = ζ(1),p(t),

dζ(2)
ds
(s, t) =

cos st
2π

,

and ζ(1),p(t) ∈ L(R), especially
∞∫

−∞

ζ(1),p(t) dt = 1.

For the proof of the last statement see Appendix A (page 92).
A graph of function ζ(1),p is in Figure 2.1.

0

p

π

ζp(t)

t

π

p

2π

p

Figure 2.1: Graph of function ζp(t).
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An example of δp functions is [34]

ζp(x, y) =
1
4π2

p∫
−p

p∫
−p

ei(sx+ty) ds dt = (2.4)

=
1
4π2

p∫
−p

p∫
−p

(cos(sx+ ty) + i sin(sx+ ty)) ds dt =

=
1
4π2

p∫
−p

p∫
−p

(cos sx cos ty − sin sx sin ty + i sin sx cos ty + i sin ty cos sx)) ds dt =

=
1
4π2

p∫
−p

p∫
−p

(cos sx(cos ty + i sin ty) + sin sx(− sin ty + i cos ty)) ds dt =

=
1
4π2

p∫
−p

cos sx ds

p∫
−p

(cos ty + i sin ty) dt+

+
1
4π2

p∫
−p

sin sx ds

p∫
−p

(− sin ty + i cos ty) dt.

Integral of a sine function over a symmetrical interval (−p, p) is zero. Therefore

ζp(x, y) =
1
4π2

p∫
−p

cos sx ds

p∫
−p

cos ty dt =
[
ζ(2)(s, x)

]p
−p
·
[
ζ(2)(t, y)

]p
−p
= ζ(1),p(x)ζ(1),p(y).

Next we must prove that conditions (2.1), (2.2) hold for ζp.

Proof. Condition (2.1) holds not only for the limit p → ∞, but also for each p as it is
shown in [34].

∞∫
−∞

∞∫
−∞

ζp(x, y) dx dy =

∞∫
−∞

∞∫
−∞

ζ(1),p(x)ζ(1),p(y) dx dy =

∞∫
−∞

ζ(1),p(x) dx

∞∫
−∞

ζ(1),p(y) dy =

=
1
π2
2

∞∫
0

sin px
x
dx · 2

∞∫
0

sin py
y
dy =

4
π2
π

2
π

2
= 1,

the pre-last equality is proved in Appendix A.
Condition (2.2) for ζp: Let (x1, y1) ∈ R2 − {(0, 0)} arbitrarily. Then

lim
p→∞

ζp(x1, y1)
lim

(x,y)→(0,0)
ζp(x, y)

= lim
p→∞

ζp(x1, y1)
lim

(x,y)→(0,0)
ζ(1),p(x)ζ(1),p(y)

= lim
p→∞

ζp(x1, y1)
p2

π2

= 0.
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2.3 The Fourier transform and the inverse Fourier
transform

2.3.1 Functions in L(R)
Definition 2.21 (Fourier transform of functions in L(R)). Let f(x) ∈ L(R). The
Fourier transform [15], [32] of function f is function F {f} (ξ) = F (ξ) : R → C defined
as

F (ξ) =

∞∫
−∞

f(x)e−ixξ dx.

Function F is also called the Fourier spectrum of function f .

Remark 2.22. Once the Fourier transform is defined for functions in L(R), it exists and
is a bounded function as it is shown in [3]

|F (ξ)| =

∣∣∣∣∣∣
∞∫

−∞

f(x)e−ixξ dx

∣∣∣∣∣∣ ≤
∞∫

−∞

|f(x)| dx <∞.

Definition 2.23 (Inverse Fourier transform of functions in L(R)). Let func-
tion G(ξ) ∈ L(R). The inverse Fourier transform [15], [32] of function G is function
F−1 {G} (x) = g(x) : R → C defined by

g(x) =
1
2π

∞∫
−∞

G(ξ)eixξ dξ.

Remark 2.24. Similarly with the Fourier transform, the inverse Fourier transform exists
and is a bounded function for every G(ξ) ∈ L(R). However, if we defined the inverse
Fourier transform for functions which are Fourier spectra of functions in L(R), it may
happen that F−1 {F {f(x)}} 6= f(x) or the inverse Fourier transform is undefined. The
most obvious example of F−1 {F {f(x)}} 6= f(x) is taking a continuous function f ∈ L(R)
and a function g ∈ L(R) which are equal almost everywhere (the notion ”almost every-
where” to be defined in [9]). Then they have the same Fourier transform and if it exists
and is equal to f , also the same inverse Fourier transform. The integration eliminates the
discontinuity points in g and F−1 {F {f(x)}} = f(x) 6= g(x). The case when the inverse
Fourier transform is undefined is demonstrated by the following examples.

Example 2.25. Compute the Fourier transform of function

f(x) =

{
1 if − 1 < x < 1

0 else.

Solution. Obviously, f ∈ L(R).

F (ξ) =

1∫
−1

e−ixξ dx =

[
e−ixξ

−iξ

]1
x=−1

=
eiξ − e−iξ

iξ
= 2
sin ξ
ξ
.

The calculation is simplified in the sense that sin ξ
ξ
is undefined for ξ = 0 and function

ζ(1),1(ξ) should be used instead. Then F (ξ) = 2πζ(1),1(ξ).
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Example 2.26. Compute the inverse Fourier transform of function F (ξ) = 2πζ(1),1(ξ) in
x = 1, i.e. compute F−1 {F {f(x)}} |x=1, where f(x) is from Example 2.25.

Solution. We must check first if F (ξ) ∈ L(R). It is not, since
∞∫

−∞

∣∣∣∣sin xx
∣∣∣∣ dx = 2

∞∫
0

| sin x|
x
dx =∞,

which is proved in Appendix B. Therefore, the inverse Fourier transform of F (ξ) is
undefined.

Remark 2.27. We will show why the assumption that F ∈ L(R) cannot be omitted.
We will try to compute the integral defining the inverse Fourier transform for F (ξ) =
2πζ(1),1(ξ), first for x = 0 and then for x = 1. For x = 0 we have

1
2π

∞∫
−∞

2πζ(1),1(ξ)e
−i0ξ dξ =

2
π

∞∫
0

sin x
x
dx = 1 = f(0),

the pre-last equality is proved in Appendix A. For x = 1 we have

1
2π

∞∫
−∞

2πζ(1),1(ξ)e
iξ·1 dξ =

0∫
−∞

sin ξ
πξ
eiξ dξ +

∞∫
0

sin ξ
πξ
eiξ dξ =

=

0∫
−∞

sin ξ
πξ
(cos ξ + i sin ξ) dξ +

∞∫
0

sin ξ
πξ
(cos ξ + i sin ξ) dξ =

=

0∫
−∞

sin 2ξ
2πξ

dξ + i

0∫
−∞

sin2 ξ
πξ
dξ +

∞∫
0

sin 2ξ
2πξ

dξ + i

∞∫
0

sin2 ξ
πξ
dξ

The first and the third term is equal to 14 (for explanation see Appendix A on page 92).
The fourth term is ∞ (for explanation see Appendix C on page 97) and in a similar way,
the second one is −∞. Therefore, the integral defining the inverse Fourier transform of
F (ξ) = 2πζ(1),1(ξ) is undefined in x = 1.

This problem of integral convergence can be solved using the Cauchy principal value
of the integral in the inverse Fourier transform.

Definition 2.28 (Cauchy principal value). Let f be a function R → C. The value of

lim
r→∞

r∫
−r

f(x) dx

is called the Cauchy principal value [7] of the integral

∞∫
−∞

f(x) dx,

13



provided that this limit exists. We write

(P.V.)

∞∫
−∞

f(x) dx = lim
r→∞

r∫
−r

f(x) dx.

Theorem 2.29 (Riemann-Lebesgue Lemma). If f(x) ∈ L(R), then [40]

lim
ξ→±∞

F (ξ) = 0.

Proof. The following proof is taken from [40] and adapted to complex functions.
Let us assume first that f is a rectangle function, i.e.

f(x) =

{
c if a < x < b

0 else

for some a, b, c ∈ R, a < b. Then

F (ξ) =

b∫
a

ce−ixξ dx =

[
ce−ixξ

−iξ

]b

x=a

which goes to zero as ξ → ±∞. Now suppose that f is a step function, i.e. it is a linear
combination of rectangle functions. Due to linearity of Riemann integration, the Fourier
transform of f is a linear combination of Fourier transforms of these rectangle functions.
By the definition of the Riemann integral, given f is real and f ∈ L(R), there exists a
sequence fn of step functions such that

lim
n→∞

∞∫
−∞

|fn(x)− f(x)| dx = 0.

Then for every ξ ∈ R

lim
n→∞

|Fn(ξ)− F (ξ)| = lim
n→∞

∣∣∣∣∣∣
∞∫

−∞

fn(x)e
−ixξ dx−

∞∫
−∞

f(x)e−ixξ dx

∣∣∣∣∣∣
and since both fn, f ∈ L(R)

lim
n→∞

|Fn(ξ)− F (ξ)| = lim
n→∞

∣∣∣∣∣∣
∞∫

−∞

(fn(x)− f(x)) e−ixξ dx

∣∣∣∣∣∣ ≤
≤ lim

n→∞

∣∣∣∣∣∣
∞∫

−∞

(fn(x)− f(x)) dx

∣∣∣∣∣∣ ≤ limn→∞

∞∫
−∞

|fn(x)− f(x)| dx = 0

By the triangle inequality

F (ξ) ≤ |F (ξ)− Fn(ξ)|+ |Fn(ξ)|,

14



where the first term is bounded by any ε > 0 if n is big enough and the second term goes
to zero if ξ → ±∞. Therefore

lim
ξ→±∞

F (ξ) = 0.

If f is a complex function,
f(x) = u(x) + iv(x),

where u and v are real functions of a real variable and u, v ∈ L(R). Assuming that
u(x), v(x) have Fourier spectra U(ξ), V (ξ), we have

lim
ξ→±∞

U(ξ) = 0, lim
ξ→±∞

V (ξ) = 0,

therefore also
lim

ξ→±∞
F (ξ) = 0.

Definition 2.30 (C1 functions). Function f : R → C is said to be of class C1 [39] if it
is continuous and both its real and imaginary part have continuous derivatives.

Definition 2.31 (Piecewise C1 functions). Function f(x) : R → C is said to be
piecewise C1 [39] if it is continuous except for a finite number of discontinuity points in
any bounded interval and both its real and imaginary part’s derivatives are continuous
except for a finite number of discontinuity points in any bounded interval. Furthermore,
if f(x), (Ref(x))′, or (Imf(x))′ is discontinuous in x0, f, (Ref(x))′, and (Imf(x))′ have
right- and left-hand limits in x0.

Theorem 2.32 (Fourier Inversion Theorem for functions in L(R)). If f ∈ L(R)
and f is piecewise C1, then [40]

1
2π
(P.V.)

∞∫
−∞

F (ξ)eixξ dξ = lim
r→∞

1
2π

r∫
−r

F (ξ)eixξ dξ =
limt→x+ f(x) + limt→x− f(x)

2
,

in particular, if f is continuous, then

1
2π
(P.V.)

∞∫
−∞

F (ξ)eixξ dξ = f(x).

Moreover, if also F ∈ L(R),

F−1 {F {f(x)}} = limt→x+ f(x) + limt→x− f(x)
2

,

and for a continuous function f with F ∈ L(R) we have

F−1 {F {f(x)}} = f(x).

15



Proof. The proof is taken from [40] and revised for complex functions and the consequence
for functions in L(R) is added.

1
2π

r∫
−r

F (ξ)eixξ dξ =
1
2π

r∫
−r

 ∞∫
−∞

f(s)e−isξ ds

 eixξ dξ

Since f ∈ L(R),

1
2π

r∫
−r

 ∞∫
−∞

f(s)e−isξ ds

 eixξ dξ =
1
2π

∞∫
−∞

f(s)

 r∫
−r

ei(x−s)ξ dξ

 ds =
=
1
π

∞∫
−∞

f(s)
sin(r(x− s))

x− s
ds =

1
π

∞∫
−∞

f(x− s)
sin rs
s
ds.

Let us introduce shorter notation for right- and left-hand limits:

f(x−) = lim
t→x−

f(t), f(x+) = lim
t→x+

f(t).

Then we can rewrite f(x− s) as

f(x− s) =

{
f(x+) + (f(x− s)− f(x+)) if s < 0

f(x−) + (f(x− s)− f(x−)) if s ≥ 0.

This is necessary for treating the case if f is not continuous in x. As the value in a single
point does not matter for a Riemann integral, it does not make any difference how the
case s = 0 is treated. It can be added to any of the cases above. Then the last integral
can be written as

1
π

∞∫
−∞

f(x− s)
sin rs
s
ds =

1
π

0∫
−∞

{
f(x+) + (f(x− s)− f(x+))

} sin rs
s
ds+

1
π

∞∫
0

{
f(x−) + (f(x− s)− f(x−))

} sin rs
s
ds.

1
π

∞∫
0

f(x−)
sin rs
s
ds =

f(x−)
π

∞∫
0

sin rs
s
ds =

f(x−)
π

· π
2
=
f(x−)
2

For the pre-last equality see Appendix A (page 92). Similarly,

1
π

∞∫
0

f(x+)
sin rs
s
ds =

f(x+)
2

.
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It remains to prove that the rest of the terms goes to zero as r goes to infinity.

1
π

∞∫
0

(f(x− s)− f(x−))
sin rs
s
ds =

=
1
π

K∫
0

(f(x− s)− f(x−))
sin rs
s
ds

︸ ︷︷ ︸
denote by a(x)

+
1
π

∞∫
K

(f(x− s)− f(x−))
sin rs
s
ds

︸ ︷︷ ︸
denote by b(x)

for fixed K > 0. Now set

g(s) = χ〈0,K)(s)
f(x− s)− f(x−)

s

for fixed x. Then

a(x) =
1
π

∞∫
−∞

g(s) sin rs ds =
1
π

∞∫
−∞

g(s)
eirs − e−irs

2i
ds =

1
2πi
(G(−r)−G(r)),

where G is the Fourier transform of g. Since g ∈ L(R), by the Riemann-Lebesgue
Lemma 2.29 (page 14) we have a(x)→ 0 as r →∞. Since | sin rs| ≤ 1,

|b(x)| ≤ 1
π

∣∣∣∣∣∣
∞∫

K

f(x− s)
1
s
ds

∣∣∣∣∣∣+ 1π
∣∣∣∣∣∣
∞∫

K

f(x−)
sin rs
s
ds

∣∣∣∣∣∣ =
∣∣∣∣∣ rs = t

r ds = dt

∣∣∣∣∣ ≤
≤ 1

π

∞∫
K

|f(x− s)| 1
K
ds+

|f(x−)|
π

∣∣∣∣∣∣
∞∫

Kr

sin t
t
dt

∣∣∣∣∣∣
Since f ∈ L(R),

∞∫
K

|f(x− s)| ds→ 0 as K →∞,

therefore the first term of |b(x)| goes to zero as K goes to infinity. The fact that
∞∫
0

sin x
x
dx =

π

2
<∞

implies that
∞∫

Kr

sin t
t
dt→ 0 as K →∞.

Thus, if we choose any ε > 0, we can find K big enough such that |b(x)| < ε for all x ∈ R.
We have proved that

1
π

∞∫
0

(f(x− s)− f(x−))
sin rs
s
ds
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goes to zero as r goes to infinity. In a similar way, we can prove that

1
π

∞∫
0

(f(x− s)− f(x+))
sin rs
s
ds

goes to zero as r goes to infinity. We can conclude that

lim
r→∞

1
2π

r∫
−r

F (ξ)eixξ dξ =
limt→x+ f(x) + limt→x− f(x)

2
.

If the Fourier spectrum F ∈ L(R), we can use the reasoning from Remark 2.22 on page 12,
this time for the inverse Fourier transform. We obtain that for every x ∈ R, |F−1 {F} (x)|
exists and is a finite number. Therefore,

lim
r→∞

1
2π

r∫
−r

F (ξ)eixξ dξ =
1
2π

∞∫
−∞

F (ξ)eixξ dξ = F−1 {F (ξ)} = limt→x+ f(x) + limt→x− f(x)
2

.

Finally, if f is continuous and F ∈ L(R),

F−1 {F {f(x)}} = f(x).

Example 2.33. Compute

1
2π
(P.V.)

∞∫
−∞

F (ξ)eixξ dξ

for function F (ξ) = 2πζ(1),1(ξ) from Example 2.25 on page 12.

Solution. The Fourier Inversion Theorem (Thm. 2.32) says that

1
2π
(P.V.)

∞∫
−∞

F (ξ)eixξ dξ =
1
2π
(P.V.)

∞∫
−∞

2πζ(1),1(ξ)e
ixξ dξ =


1 if − 1 < x < 1
1
2 if x ∈ {−1, 1}
0 else.

2.3.2 Functions in L(R2)
Definition 2.34 (Fourier transform of functions in L(R2)). Let f(x, y) ∈ L(R2).
The Fourier transform [8] of function f is function F {f} (ξ, η) = F (ξ, η) : R2 → C
defined as

F (ξ, η) =

∞∫
−∞

∞∫
−∞

f(x, y)e−i(xξ+yη) dx dy.

Function F is also called the Fourier spectrum of function f .
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Definition 2.35 (Inverse Fourier transform of functions in L(R2)). Let func-
tion G(ξ, η) ∈ L(R2). The inverse Fourier transform [8] of function G is function
F−1 {G} (x, y) = g(x, y) : R2 → C defined as

g(x, y) =
1
4π2

∞∫
−∞

∞∫
−∞

G(ξ, η)ei(xξ+yη) dξ dη.

Remark 2.36. The use of δp functions for definition of the δ-distribution (Definition 2.20
on page 10) used e.g. in [34] is quite unusual in literature and leads to the following claim
called the Fundamental Theorem on the Fourier Transform in [34]. We sketch what is
wrong with it and try to suggest a solution.

Let function f(x, y) ∈ L(R2). Then for every (x, y) ∈ R2 where f is continuous it
holds

F−1 {F {f(x, y)}} = f(x, y).

In discontinuity points, F−1 {F {f(x, y)}} equals to the average of f over an infinitesimal
neighborhood of the discontinuity point.

The following can be found in [34] as a proof of the claim:

F−1 {F {f(x, y)}} = 1
4π2

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(s, t)e−i(ξs+ηt) ds dt

 ei(ξx+ηy) dξ dη =

=
1
4π2

∞∫
−∞

∞∫
−∞

f(s, t)

 ∞∫
−∞

∞∫
−∞

ei[ξ(x−s)+η(y−t)] dξ dη

 ds dt.
The inner integral is function ζp from formula (2.4) on page 11 for p→∞ shifted by (s, t)
and multiplied by 4π2, therefore we can write

F−1 {F {f(x, y)}} = 1
4π2

∞∫
−∞

∞∫
−∞

f(s, t)4π2δ(x− s, y − t) ds dt =

=
1
4π2

∞∫
−∞

∞∫
−∞

f(s, t)4π2δ(s− x, t− y) ds dt,

which equals the average of f over an infinitesimal neighborhood of the discontinuity
point.

The biggest drawback of the statement is that it allows to compute the inverse Fourier
transform of Fourier spectra F (ξ, η) which are not in L(R2). This may not be a problem
of this statement, but rather on the concept of improper double integral itself. It is not
unified in literature whether an improper double integral is defined in the way I define it
in Definition 2.7 on page 7 or as the principal value of that integral (used e.g. in [38]).
Unfortunately, Komrska in [34] does not say which definition he is using.
Another drawback of the statement is the ”infinitesimal neighborhood” and its shape.

The average value of f over an infinitesimal neighborhood of a discontinuity point may
depend on the shape of the neighborhood. Consider the case illustrated in Fig. 2.2.
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Function f(x, y) = 1 on the gray area (continuing upwards) and is equal to zero otherwise.
Let us focus on the neighborhoods of the discontinuity point B and consider two types
of neighborhoods, an ellipse and a square. Independently on the size of the square, the
average value of f over the square neighborhood of B is 14 since f equals to 1 on a fourth
of the square. The size of the area of the ellipse where f(x, y) = 1 depends on the shape
of the ellipse, namely on its elongation. In the case depicted in Fig. 2.2, the area is less
than 14 . From the definition of function ζp, the neighborhood is square-shaped.

B

Figure 2.2: Illustration of the fact that the average value of function f over a neighborhood
of a discontinuity point B may depend on the shape of the neighborhood.

In one dimension, the formulation of the Fourier Inversion Theorem was quite straight-
forward using the Cauchy principal value. In more dimensions, it is more complicated.
One approach is to introduce a cut-off function which simulates the effect of the Cauchy
principal value used in one dimension.

Theorem 2.37 (Fourier Inversion Theorem for functions in L (R2)). If f(ξ, η) ∈
L (R2) and is continuous on R2, then for every (ξ, η) ∈ R2 [26]

f(x, y) = lim
ε→0

1
4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei(xξ+yη)e−ε2 ξ2+η2

2 dξ dη.

If also F (ξ, η) ∈ L (R2), then

F−1 {F {f(x, y)}} = 1
4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei(xξ+yη) dξ dη = f(x, y).

Proof. A proof together with a more general derivation can be found in [46].

Theorem 2.38. Let f ∈ L(R2) such that f(x, y) = g(x)h(y), g, h ∈ L(R) and g and h
are piecewise C1. Let F (ξ, η) be the Fourier transform of f . If the following limit exists

lim
(s,t)→(x,y)

f(s, t),

then

lim
r→∞

1
4π2

r∫
−r

r∫
−r

F (ξ, η)ei(xξ+yη) dξ dη =

1
4π2
(P.V.)

∞∫
−∞

(P.V.) ∞∫
−∞

F (ξ, η)ei(xξ+yη) dξ

 dη = lim
(s,t)→(x,y)

f(s, t).
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Proof.

lim
r→∞

1
4π2

r∫
−r

r∫
−r

F (ξ, η)ei(xξ+yη) dξ dη =

= lim
r→∞

1
4π2

r∫
−r

r∫
−r

 ∞∫
−∞

∞∫
−∞

f(s, t)e−i(sξ+tη) ds dt

 ei(xξ+yη) dξ dη =

= lim
r→∞

1
4π2

r∫
−r

r∫
−r

 ∞∫
−∞

∞∫
−∞

g(s)h(t)e−i(sξ+tη) ds dt

 ei(xξ+yη) dξ dη =

= lim
r→∞

1
2π

r∫
−r

 ∞∫
−∞

g(s)eiξ(x−s) ds

 dξ · 1
2π

r∫
−r

 ∞∫
−∞

h(t)eiη(y−t) dt

 dη
By the Fourier Inversion Theorem for functions in L(R) (Thm. 2.32, page 15), we have

lim
r→∞

 1
2π

r∫
−r

∞∫
−∞

g(s)eiξ(x−s) dξ ds
1
2π

r∫
−r

∞∫
−∞

h(t)eiη(y−t) dη dt

 =
= lim

s→x
g(s) lim

t→y
h(t) = lim

(s,t)→(x,y)
f(s, t).

Definition 2.39 (Amplitude spectrum, phase spectrum). Let function f(x, y) ∈
L(R2) have Fourier spectra F (ξ, η). The amplitude spectrum [8] of function f is a function
A(ξ, η) : R2 → R+0 defined as

A(ξ, η) = |F {f(x, y)}| = |F (ξ, η)|.

The phase spectrum [8] of function f is a function Φ(ξ, η) : R2 → 〈0, 2π) defined as

ReF (ξ, η) = A(ξ, η) cosΦ(ξ, η),

ImF (ξ, η) = A(ξ, η) sinΦ(ξ, η).

If A(ξ, η) = 0 for some (ξ, η), we define Φ(ξ, η) = 0.

2.4 Properties of the Fourier transform

Table 2.1 shows the basic properties of the Fourier transform. It is easy to prove them or
they are proved below. Functions are listed on the left, their Fourier transforms on the
right. f(x, y), g(x, y) are functions in L (R2), α, β, x0, y0, ξ0, η0 are real constants, f ∗ g
denotes convolution of functions f, g (defined in Section 2.5 on page 31). The formulae
are taken from [8] and [26] (adapted to two dimensions).
The second formula is linearity of the Fourier transform, the third formula is the Shift

Theorem (Thm. 2.42), the fourth one is called the Modulation Theorem [8], the fifth one is
the Scale-change Theorem (Thm. 2.43), the next one is a consequence of the Scale-change
Theorem (Corollary 2.44). The last three formulae are proved in Theorems 2.53, 2.60 and
2.61.
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1. f(x, y) F (ξ, η)

2. αf(x, y) + βg(x, y) αF (ξ, η) + βG(ξ, η)

3. f(x− x0, y − y0) F (ξ, η)e−i(ξx0+ηy0)

4. ei(ξ0x+η0y)f(x, y) F (ξ − ξ0, η − η0)

5. f(αx, αy) 1
α2
F
(

ξ
α
, η

α

)
6. f(−x,−y) F (−ξ,−η)
7. f ∗(x, y) F ∗(−ξ,−η)
8. (f ∗ g)(x, y) F (ξ, η)G(ξ, η)

9. f(x, y)g(x, y) 1
4π2 (F ∗G)(ξ, η)

Table 2.1: Basic properties of the Fourier transform.

Definition 2.40 (Integral part). Let a ∈ R. The integral part bac of the real number
a is defined as [24]

bac = max{n ∈ Z : n ≤ a}.

Definition 2.41 (Addition modulo 2π). Let a, b ∈ R. The binary operation R2 →
〈0, 2π) denoted ⊕ is defined as

a⊕ b ≡ a+ b (mod 2π) = (a+ b)− 2π
⌊
a+ b
2π

⌋
and is called addition modulo 2π [24].

Theorem 2.42 (Shift Theorem). Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its Fourier
spectrum. Let us suppose function

f2(x, y) = f1(x− x0, y − y0),

where x0, y0 ∈ R are given constants. Let F2(ξ, η) be the Fourier spectrum of function
f2(x, y). Then it holds (partially from [8])

F2(ξ, η) = F1(ξ, η)e
−i(ξx0+ηy0),

A2(ξ, η) = A1(ξ, η),

Φ2(ξ, η) = Φ1(ξ, η)⊕ (−ξx0 − ηy0).

Proof. Proof taken from [3] and modified for two dimensions.

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f1(x− x0, y − y0)e
−i(xξ+yη) dx dy =

=

∣∣∣∣∣∣ s = x− x0 x = s+ x0 ds = dx

t = y − y0 y = t+ y0 dt = dy

∣∣∣∣∣∣ =
∞∫

−∞

∞∫
−∞

f1(s, t)e
−i(ξ(s+x0)+η(t+y0)) ds dt =

=

∞∫
−∞

∞∫
−∞

f1(s, t)e
−i(ξs+ηt)e−i(ξx0+ηy0) ds dt = F1(ξ, η)e

−i(ξx0+ηy0)
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Let A1, A2 be the amplitude spectra of functions f1, f2. Then

A2(ξ, η) =
∣∣F1(ξ, η)e−i(ξx0+ηy0)

∣∣ = |F1(ξ, η)| · ∣∣e−i(ξx0+ηy0)
∣∣ = A1(ξ, η) · 1 = A1(ξ, η).

For the purpose of the phase spectrum, spectrum F2 can be written as

F2(ξ, η) = F1(ξ, η)e
−i(ξx0+ηy0) = F1(ξ, η)(cos(ξx0 + ηy0) + i sin(ξx0 + ηy0))

and Moivre’s theorem [18] implies that

Φ2(ξ, η) = Φ1(ξ, η)⊕ (−ξx0 − ηy0).

Theorem 2.43 (Scale-change Theorem). Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its
Fourier spectrum. Let us suppose function

f2(x, y) = f1(αx, αy),

where α ∈ R+ is a given constant. Let F2(ξ, η) be the Fourier spectrum of function
f2(x, y). Let A1(ξ, η), A2(ξ, η) be the amplitude spectra and Φ1(ξ, η),Φ2(ξ, η) the phase
spectra of functions f1, f2. Then it holds (partially from [8])

F2(ξ, η) =
1
α2
F1

(
ξ

α
,
η

α

)
,

A2(ξ, η) =
1
α2
A1

(
ξ

α
,
η

α

)
,

Φ2(ξ, η) = Φ1

(
ξ

α
,
η

α

)
.

Proof. Proof taken from [3] and modified for two dimensions.

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f2(x, y)e
−i(xξ+yη) dx dy =

∞∫
−∞

∞∫
−∞

f1(αx, αy)e
−i(xξ+yη) dx dy =

=

∣∣∣∣∣∣ s = αx x = s
α
dx = ds

α

t = αy y = t
α
dy = dt

α

∣∣∣∣∣∣ =
=
1
α2

∞∫
−∞

∞∫
−∞

f2(s, t)e
−i( s

α
ξ+ t

α
η) ds dt =

1
α2
F1

(
ξ

α
,
η

α

)

A2(ξ, η) = |F2(ξ, η)| =
1
α2

∣∣∣∣F1( ξα, ηα
)∣∣∣∣ = 1α2A1

(
ξ

α
,
η

α

)
The Moivre’s theorem [18] implies that

Φ2(ξ, η) = Φ1

(
ξ

α
,
η

α

)
.
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Corollary 2.44. Let f(x, y) ∈ L(R2) and let F (ξ, η) be its Fourier spectrum. Then [8]

F {f(−x,−y)} = F (−x,−y).

Proof. By the Scale-change Theorem for α = −1.

Theorem 2.45 (Rotation Theorem). Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its
Fourier spectrum. Let us suppose function

f2(x, y) = f1(x cos θ − y sin θ, x sin θ + y cos θ), (2.5)

where θ ∈ 〈0, 2π) is a given constant (see Fig. 2.3). Let F2(ξ, η) be the Fourier spectrum
of function f2(x, y). Let A1(ξ, η), A2(ξ, η) be the amplitude spectra and Φ1(ξ, η),Φ2(ξ, η)
the phase spectra of functions f1, f2. Then it holds (partially taken from [45]):

F2(ξ, η) = F1(ξ cos θ − η sin θ, ξ sin θ + η cos θ),

A2(ξ, η) = A1(ξ cos θ − η sin θ, ξ sin θ + η cos θ),

Φ2(ξ, η) = Φ1(ξ cos θ − η sin θ, ξ sin θ + η cos θ).

0

θ

x

y

x′

y′

A

a1

a2

a1 cos θ

a1 sin θ

a2 cos θ

−a2 sin θ

Figure 2.3: Derivation of the rotation formula (2.5). Point A has coordinates (a1, a2) in
coordinate system x, y, which is rotated with respect to coordinate system x′, y′ by angle
θ. Point (a1, 0) in x, y has coordinates (a1 cos θ, a1 sin θ) in x′, y′. Similarly, point (0, a2)
in x, y has coordinates (−a2 sin θ, a2 cos θ) in x′, y′. Thus, point A = (a1, a2) in coordinate
system x, y has coordinates (a1 cos θ − a2 sin θ, a1 sin θ + a2 cos θ) in coordinate system
x′, y′.
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Proof.

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f2(x, y)e
−i(xξ+yη) dx dy =

=

∞∫
−∞

∞∫
−∞

f1(x cos θ − y sin θ, x sin θ + y cos θ)e−i(xξ+yη) dx dy =

=

∣∣∣∣∣∣ s = x cos θ − y sin θ x = s cos θ + t sin θ

t = x sin θ + y cos θ y = −s sin θ + t cos θ

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣ cos θ sin θ

− sin θ cos θ

∣∣∣∣∣∣
∞∫

−∞

∞∫
−∞

f1(s, t)e
−i[ξ(s cos θ+t sin θ)+η(−s sin θ+t cos θ)] ds dt =

=

∞∫
−∞

∞∫
−∞

f1(s, t)e
−i[s(ξ cos θ−η sin θ)+t(ξ sin θ+η cos θ)] ds dt =

= F1(ξ cos θ − η sin θ, ξ sin θ + η cos θ)

Formulae for the amplitude and phase spectra are clear from the formula for the Fourier
spectrum.

Theorem 2.46 (Similarity Theorem). Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its
Fourier spectrum. Let us suppose function

f2(x, y) = f1(αx cos θ − αy sin θ − x0, αx sin θ + αy cos θ − y0),

where θ ∈ 〈0, 2π), α ∈ R+, x0, y0 ∈ R are given constants. Let F2(ξ, η) be the Fourier
spectrum of function f2(x, y). Let A1(ξ, η), A2(ξ, η) be the amplitude spectra and Φ1(ξ, η),
Φ2(ξ, η) the phase spectra of functions f1, f2. Then it holds:

F2(ξ, η) =
1
α2
e−i(ξx0+ηy0)F1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
,

A2(ξ, η) =
1
α2
A1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
,

Φ2(ξ, η) = Φ1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
⊕ (−ξx0 − ηy0).

Proof. Let us suppose functions

f2(x, y) = f1(αx cos θ − αy sin θ − x0, αx sin θ + αy cos θ − y0)

f3(x, y) = f1(αx cos θ − αy sin θ, αx sin θ + αy cos θ)

f4(x, y) = f1(x cos θ − y sin θ, x sin θ + y cos θ)

Then the preceding theorems imply that

F2(ξ, η) = F3(ξ, η)e
−i(ξx0+ηy0) =

=
1
α2
F4

(
ξ

α
,
η

α

)
e−i(ξx0+ηy0) =

=
1
α2
e−i(ξx0+ηy0)F1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
.
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The formulae for the amplitude and phase spectra are also clear consequences of the
preceding theorems.

Convention 2.47. Similarity generally involves not only rotation, scale-change and shift,
but also axial symmetry. There are no special methods for registration of functions
transformed by axial symmetry. From now on, I will use the notion of similarity for
rotation, scale-change and shift only. The effect of a general affine transformation, which
includes shift, scale-change, rotation and axial symmetry as special cases, is described by
the following theorem.

Theorem 2.48 (Affine Transformation Theorem). Let function f1(x, y) ∈ L(R2)
and let F1(ξ, η) be its Fourier spectrum. Let us suppose function f2(x, y) = f1(ax+ by +
c, dx+ ey + g), where a, b, c, d, e, g ∈ R are given constants with

D =

∣∣∣∣ a b
d e

∣∣∣∣ 6= 0.
The Fourier spectrum of function f2 is [12]

F2(ξ, η) =
1
|D|
e
i

D
[(ec−bg)ξ+(ag−cd)η]F1

(
eξ − dη

D
,
−bξ + aη

D

)
.

Proof. The proof is taken from [12] and adapted to the definition of the Fourier transform
we are using here.
Let us express the affine transformation

x′ = ax+ by + c

y′ = dx+ ey + g

in matrix notation: (
x′

y′

)
=

(
a b
d e

)(
x
y

)
+

(
c
g

)
.

The Jacobian of the transformation is |D|, which gives the relation

dx dy =
dx′ dy′

|D|
.

If the Jacobian is non-zero, the transformation can be inverted(
x
y

)
=

(
a b
d e

)−1(
x′ − c
y′ − g

)
.

In the exponent −i(xξ + yη), which occurs in the definition of the Fourier transform, we
can rewrite the term xξ + yη as

xξ + yη = (ξ η)

(
x
y

)
= (ξ η)

(
a b
d e

)−1(
x′ − c
y′ − g

)
=

=
1
D
(ξ η)

(
e −b
−d a

)(
x′ − c
y′ − g

)
=
1
D
(eξ − dη − bξ + aη)

(
x′ − c
y′ − g

)
.
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Plugging the last formula into the definition of the Fourier transform yields

F2(ξ, η) =

∞∫
−∞

∞∫
−∞

f1(ax+ by + c, dx+ ey + g)e
−i(xξ+yη) dx dy =

= e
i

D
[(eξ−dη)c+(−bξ+aη)g]

∞∫
−∞

∞∫
−∞

f1(x
′, y′)e−

i
D
[(eξ−dη)x′+(−bξ+aη)y′] dx

′ dy′

|D|
=

=
1
|D|
e
i

D
[(ec−bg)ξ+(ag−cd)η]F1

(
eξ − dη

D
,
−bξ + aη

D

)
,

which was to be proved.

Theorem 2.49. Let function f ∈ L(R2). Then [34]
(a) F {f(x, y)} = 4π2F−1 {f(−x,−y)} ,

(b) F−1 {f(x, y)} = 1
4π2

F {f(−x,−y)} .

If f is also continuous and its Fourier spectrum F (ξ, η) is in L (R2), then
(c) F {F {f(x, y)}} = 4π2f(−x,−y),

(d) F−1 {F−1 {f(x, y)}
}
=
1
4π2

f(−x,−y).

Proof.

(a)

4π2F−1 {f(−x,−y)} = 4π2 1
4π2

∞∫
−∞

∞∫
−∞

f(−x,−y)eixξ+iyη dx dy =

=

∣∣∣∣ s = −x ds = − dx
t = −y ds = − dy

∣∣∣∣ =
∞∫

−∞

∞∫
−∞

f(s, t)e−isξ−itη ds dt = F {f(x, y)} .

(b) is obtained from (a) by substituting −x for x and −y for y and dividing the equality
by 4π2.

(c)

F {F {f(x, y)}} =
∞∫

−∞

∞∫
−∞

F (ξ, η)e−i(xξ+yη) dξ dη =

=

∞∫
−∞

∞∫
−∞

F (ξ, η)eix(−ξ)+iy(−η) dξ dη =

∣∣∣∣ σ = −ξ dσ = − dξ
τ = −η dτ = − dη

∣∣∣∣ =
=

∞∫
−∞

∞∫
−∞

F (−σ,−τ)eixσ+iyτ dσ dτ =

= 4π2F−1 {F {f(−x,−y)}} = 4π2f(−x,−y),
the pre-last equality due to Corollary 2.44 (page 24).
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(d)

F−1 {F−1 {f(x, y)}
}
=
1
4π2

∞∫
−∞

∞∫
−∞

 1
4π2

∞∫
−∞

∞∫
−∞

f(s, t)eisξ+itη ds dt

 eixξ+iyη dξ dη =

=
1
16π4

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(s, t)e−i(−s)ξ−i(−t)η ds dt

 eixξ+iyη dξ dη =

=

∣∣∣∣ u = −s du = − ds
v = −t dv = − dt

∣∣∣∣ =
=
1
16π4

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f(−u,−v)e−iuξ−ivη du dv

 eixξ+iyη dξ dη =

=
1
4π2

F−1 {F {f(−x,−y)}} = 1
4π2

f(−x,−y),

the pre-last equality due to Corollary 2.44 (page 24).

Example 2.50. The Fourier transform of the centered (µ = 0) two-dimensional Gauss

function [35] with variance matrix σ2I is function e−
σ2(ξ2+η2)

2 , i.e. Gauss function with
variance matrix σ−2I without the normalizing factor

F
{
1
2πσ2

e−
x2+y2

2σ2

}
= e−

σ2(ξ2+η2)
2 .

Solution. The solution is taken from [34] and adapted for two dimensions. Let

f(x, y) =
1
2πσ2

e−
x2+y2

2σ2 .

Its Fourier transform is

F {f(x, y)} =
∞∫

−∞

∞∫
−∞

1
2πσ2

e−
x2+y2

2σ2 e−i(ξx+ηy) dx dy =

=
1

σ
√
2π

∞∫
−∞

e−
x2

2σ2 e−iξx dx

︸ ︷︷ ︸
denote by G(ξ)

· 1

σ
√
2π

∞∫
−∞

e−
y2

2σ2 e−iηy dy

︸ ︷︷ ︸
denote by G(η)

Since G is a positive function, we can split the integral into two

G(ξ) =
1

σ
√
2π

∞∫
−∞

e−
x2

2σ2 cos ξx dx+
1

σ
√
2π

∞∫
−∞

e−
x2

2σ2 i sin ξx dx

︸ ︷︷ ︸
=0

=

=
1

σ
√
2π
2

∞∫
0

e−
x2

2σ2 cos ξx dx =
2

σ
√
2π

∞∫
0

e−
x2

2σ2

∞∑
n=0

(−1)n

(2n)!
(ξx)2n dx.
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By Beppo Levi’s Theorem [9],

G(ξ) =
2

σ
√
2π

∞∑
n=0

(−1)n

(2n)!
ξ2n

∞∫
0

x2ne−
x2

2σ2 dx

︸ ︷︷ ︸
denote by In

.

By partial integration we obtain In as

In =

∣∣∣∣∣ u = e−
x2

2σ2 u′ = − 2x
2σ2 · e

− x2

2σ2

v′ = x2n v = x2n+1

2n+1

∣∣∣∣∣ =
=

[
e−

x2

2σ2 · x
2n+1

2n+ 1

]∞
x=0

−
∞∫
0

x2n+1

2n+ 1

(
− x

σ2

)
e−

x2

2σ2 dx =

= 0 +
1

σ2(2n+ 1)

∞∫
0

x2(n+1)e−
x2

2σ2 dx =
1

σ2(2n+ 1)
In+1.

For n > 0

In = σ
2(2n− 1)In−1 =

(
σ2
)2
(2n− 1)(2n− 3)In−2 = (2n− 1)!!

(
σ2
)n
I0.

I0 =

∞∫
0

e−
x2

2σ2 dx =
σ
√
2π
2

(2n− 1)!! = (2n− 1)(2n− 3) · · · · · 3 · 1 = (2n− 1)!
(2n− 2)(2n− 4) · · · · · 4 · 2

=
(2n− 1)!
(n− 1)!2n−1

In =
(2n− 1)!
(n− 1)!2n−1

σ2n · σ
√
2π
2

G(ξ) =
2

σ
√
2π

[
σ
√
2π
2
+

∞∑
n=1

(−1)n

(2n)!
ξ2n

(2n− 1)!
(n− 1)!2n−1

σ2n · σ
√
2π
2

]
=

= 1 +
∞∑

n=1

ξ2nσ2n(−1)n 1
n!2n

=
∞∑

n=0

ξ2nσ2n(−1)n

n!2n
=

∞∑
n=0

1
n!

[
−(ξσ)

2

2

]n

= e−
ξ2σ2

2

F {f(x, y)} = G(ξ)G(η) = e−
ξ2σ2

2 · e−
η2σ2

2 = e−
σ2(ξ2+η2)

2

In the following examples, the Fourier transforms of functions which are not in L(R2)
are presented. The functions will used for proves of the phase-correlation function prop-
erties. In these cases, the derivation involves the theory of distributions.

Example 2.51. The Fourier transform of the Dirac distribution shifted by (x0, y0) ∈ R2
is e−i(ξx0+ηy0)

F {δ(x− x0, y − y0)} = e−i(ξx0+ηy0).
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Solution. The derivation can be found in [42].

Example 2.52. The Fourier transform of exponential function ei(ax+by), a, b ∈ R is the
Dirac distribution shifted by (a, b)

F
{
ei(ax+by)

}
= δ(x− a, y − b).

Solution. The derivation can be found in [42].

Theorem 2.53. Let f(x, y) ∈ L(R2) and let F (ξ, η) be its Fourier spectrum. The Fourier
spectrum of the complex conjugate of function f is the complex conjugate of its Fourier
spectra with reversed axes [34]

F {f ∗(x, y)} = F ∗(−ξ,−η).

Proof. Proof taken from [34].

F {f ∗(x, y)} =
∞∫

−∞

∞∫
−∞

f ∗(x, y)e−i(xξ+yη) dx dy =

∞∫
−∞

∞∫
−∞

f ∗(x, y)ei(−xξ−yη) dx dy =

=

 ∞∫
−∞

∞∫
−∞

f(x, y)e−i[x(−ξ)+y(−η)] dx dy

∗

= F ∗(−ξ,−η),

where the third equality holds because for a ∈ R is eia = cos a + i sin a, e−ia = cos a +
i sin(−a) = cos a− i sin a. Hence eia =

(
e−ia

)∗
.

Theorem 2.54. Let f(x, y) ∈ L(R2) and let F (ξ, η) ∈ L (R2) be its Fourier spectrum.
Let f be continuous. Then the inverse Fourier transform of the complex conjugate of
spectrum F is the complex conjugate of function f with reversed axes, i.e. in every point
where f is continuous it holds

F−1 {F ∗(ξ, η)} = f ∗(−x,−y).

Proof. Proof taken from [34].

F−1 {F ∗(ξ, η)} = 1
4π2

∞∫
−∞

∞∫
−∞

F ∗(ξ, η)ei(ξx+ηy) dξ dη =

=
1
4π2

∞∫
−∞

∞∫
−∞

F ∗(ξ, η)e−i(−ξx−ηy) dξ dη =

=

 1
4π2

∞∫
−∞

∞∫
−∞

F (ξ, η)ei[ξ(−x)+η(−y)] dξ dη

∗

= f ∗(−x,−y)

Theorem 2.55. Let f(x, y) ∈ L(R2) and let F (ξ, η) ∈ L (R2) be its Fourier spectrum.
Let f be continuous. f is a real function, i.e. f(x, y) = f ∗(x, y) ∀(x, y) ∈ R2, if and only
if F (ξ, η) = F ∗(−ξ,−η).
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Proof. Proof taken from [34].

(a) Let us suppose that f is a real function. Then Theorem 2.53 implies that

F (ξ, η) = F {f(x, y)} = F {f ∗(x, y)} = F ∗(−ξ,−η).

(b) Let us suppose that F (ξ, η) = F ∗(−ξ,−η). Then Theorem 2.54 implies that

f(x, y) = F−1 {F (ξ, η)} = F−1 {F ∗(−ξ,−η)} = f ∗(x, y).

Corollary 2.56. Let f(x, y) ∈ L(R2) be a real function with a Fourier spectrum F (ξ, η).
Then

A(ξ, η) = A(−ξ,−η).

Proof. Consequence of Theorem 2.53. We can also use the first part of the proof of
Theorem 2.55, which does not require that F (ξ, η) ∈ L (R2).

Corollary 2.57. Let f(x, y) ∈ L(R2) be a real continuous function with a Fourier
spectrum F (ξ, η) ∈ L (R2). Let G(ξ, η) be a bounded function R2 → R such that
G(ξ, η) = G(−ξ,−η). Then

F−1 {F (ξ, η) ·G(ξ, η)}

is real.

Proof. According to Theorem 2.55, if f is real, then

F (ξ, η) = F ∗(−ξ,−η).

Multiplying the equality by G, we obtain

F (ξ, η) ·G(ξ, η) = F ∗(−ξ,−η) ·G(−ξ,−η) = (F (−ξ,−η) ·G(−ξ,−η))∗.

Since G is bounded, there is no doubt about existence of the inverse Fourier transform.
Then again according to Theorem 2.55,

F−1 {F (ξ, η) ·G(ξ, η)}

is real.

2.5 Convolution

Definition 2.58 (Convolution). Let functions f1(x, y), f2(x, y) ∈ L(R2). The convolu-
tion [8] f1 ∗ f2 of functions f1, f2 is a function

f(x, y) =

∞∫
−∞

∞∫
−∞

f1(s, t)f2(x− s, y − t) ds dt.

Theorem 2.59. Let functions f1(x, y), f2(x, y) ∈ L(R2). Then f1 ∗ f2 ∈ L(R2).
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Proof. We start by proving that f1(x, y) · f2(u, v) ∈ L (R4), i.e. (a proof from [10])

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f1(x, y)f2(u, v)| du dv dx dy <∞.

The definitions of the quadruple improper integral and the L(R4) space are only technical.
They are similar to the definitions in the two-dimensional case and are can be found in
Appendix D on page 99.

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f1(x, y)f2(u, v)| du dv dx dy =

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

|f1(x, y)| · |f2(u, v)| du dv dx dy =

=

∞∫
−∞

∞∫
−∞

|f1(x, y)|

 ∞∫
−∞

∞∫
−∞

|f2(u, v)| du dv


︸ ︷︷ ︸

denote by I

dx dy

0 ≤ I <∞ since f2 ∈ L (R2). Therefore using Fubini’s Theorem [9],

∞∫
−∞

∞∫
−∞

|f1(x, y)|

 ∞∫
−∞

∞∫
−∞

|f2(u, v)| du dv

 dx dy =
=

∞∫
−∞

∞∫
−∞

|f1(x, y)| dx dy
∞∫

−∞

∞∫
−∞

|f2(u, v)| du dv <∞.

Thus f1(x, y) · f2(u, v) ∈ L (R4). By making the change of variables u = p − s, x = s,
v = q − t, y = t we obtain

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f1(x, y)f2(u, v) du dv dx dy =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f1(s, t)f2(p− s, q− t) ds dt dp dq,

which says that function

(f1 ∗ f2)(p, q) =
∞∫

−∞

∞∫
−∞

f1(p− s, q − t)f2(s, t) ds dt

belongs to L (R2).

Theorem 2.60. Let functions f1(x, y), f2(x, y) ∈ L (R2) with Fourier spectra F1(ξ, η),
F2(ξ, η). Then

F {f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).

32



Proof. Proof taken from [8].

F {f1 ∗ f2} =
∞∫

−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f1(s, t)f2(x− s, y − t) ds dt

 e−i(xξ+yη) dx dy =

=

∞∫
−∞

∞∫
−∞

 ∞∫
−∞

∞∫
−∞

f1(s, t)f2(x− s, y − t)e−i(xξ+yη) dx dy

 ds dt =
=

∞∫
−∞

∞∫
−∞

f1(s, t)

 ∞∫
−∞

∞∫
−∞

f2(x− s, y − t)e−i(xξ+yη) dx dy

 ds dt =
=

∣∣∣∣ p = x− s x = s+ p dx = dp
q = y − t y = t+ q dy = dq

∣∣∣∣ =
=

∞∫
−∞

∞∫
−∞

f1(s, t)

 ∞∫
−∞

∞∫
−∞

f2(p, q)e
−iξ(p+s)−iη(q+t) dp dq

 ds dt =
=

∞∫
−∞

∞∫
−∞

f1(s, t)

 ∞∫
−∞

∞∫
−∞

f2(p, q)e
−i(ξp+ηq)e−i(ξs+ηt) dp dq

 ds dt =
=

∞∫
−∞

∞∫
−∞

f1(s, t)e
−i(ξs+ηt) ds dt

∞∫
−∞

∞∫
−∞

f2(p, q)e
−i(ξp+ηq) dp dq = F1(ξ, η) · F2(ξ, η)

Theorem 2.61. Let functions f1(x, y), f2(x, y) ∈ L (R2) with Fourier spectra F1(ξ, η),
F2(ξ, η) ∈ L (R2). Let f1, f2 be continuous. Then

F {f1(x, y) · f2(x, y)} =
1
4π2

F1(ξ, η) ∗ F2(ξ, η).

Proof. Proof taken from [32] adapted for two dimensions.

F {f1(x, y) · f2(x, y)} =
∞∫

−∞

∞∫
−∞

f1(x, y)f2(x, y)e
−i(xξ+yη) dx dy =

=

∞∫
−∞

∞∫
−∞

 1
4π2

∞∫
−∞

∞∫
−∞

F1(σ, τ)e
i(xσ+yτ) dσ dτ

 f2(x, y)e
−i(xξ+yη) dx dy =

=
1
4π2

∞∫
−∞

∞∫
−∞

F1(σ, τ)

 ∞∫
−∞

∞∫
−∞

f2(x, y)e
−ix(ξ−σ)−iy(η−τ) dx dy

 dσ dτ =
=
1
4π2

∞∫
−∞

∞∫
−∞

F1(σ, τ)F2(ξ − σ, η − τ) dσ dτ =
1
4π2

F1(ξ, η) ∗ F2(ξ, η)
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2.6 Cross correlation, phase correlation

Definition 2.62 (Cross-power spectrum, normalized cross-power spectrum,
semi-normalized cross-power spectrum). Let functions f1(x, y), f2(x, y) ∈ L (R2)
have Fourier spectra F1(ξ, η), F2(ξ, η). The cross-power spectrum [13] of functions f1, f2
is function Cf1,f2(ξ, η) : R2 → C defined as

Cf1,f2(ξ, η) = F1(ξ, η) · F ∗
2 (ξ, η).

The normalized cross-power spectrum [13] is function Zf1,f2(ξ, η) : R2 → C defined as

Zf1,f2(ξ, η) =
F1(ξ, η) · F ∗

2 (ξ, η)
|F1(ξ, η) · F2(ξ, η)|

,

and if p, q ∈ R+ are given constants, the semi-normalized cross-power spectrum is function
Zp,q

f1,f2
(ξ, η) : R2 → C defined as

Zp,q
f1,f2
(ξ, η) =

F1(ξ, η) · F ∗
2 (ξ, η)

(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)
.

Definition 2.63 (Cross-correlation function, phase-correlation function, semi-
phase correlation function). Let functions f1(x, y), f2(x, y) ∈ L (R2) have Fourier
spectra F1(ξ, η), F2(ξ, η). Function Qf1,f2(x, y) : R2 → C defined as

Qf1,f2(x, y) = F−1 {Cf1,f2(ξ, η)} = F−1 {F1(ξ, η) · F ∗
2 (ξ, η)}

is called the cross-correlation function of functions f1, f2. Function Pf1,f2(x, y) : R2 → C
defined as

Pf1,f2(x, y) = F−1 {Zf1,f2(ξ, η)} = F−1
{
F1(ξ, η) · F ∗

2 (ξ, η)
|F1(ξ, η) · F2(ξ, η)|

}
(2.6)

is called the phase-correlation function of functions f1, f2. Function P
p,q
f1,f2
(x, y) : R2 → C

defined as

P p,q
f1,f2
(x, y) = F−1 {Zp,q

f1,f2
(ξ, η)

}
= F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)
(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)

}
is called the semi-phase correlation function of functions f1, f2.

Theorem 2.64 (Cross-correlation function of real functions). Let functions f1(x,
y), f2(x, y) ∈ L (R2) be continuous real (f ∗1 = f1, f

∗
2 = f2) and with Fourier spectra

F1(ξ, η), F2(ξ, η) ∈ L (R2). Then the cross-correlation function of these functions is real.

Proof. Using Theorems 2.37 (page 20), 2.54 (page 30), and 2.60 (page 32), we can compute
the cross-correlation function of f1 and f2 as

Qf1,f2(x, y) = F−1 {F1(ξ, η) · F ∗
2 (ξ, η)} = F−1 {F {f1(x, y)} · F {f ∗2 (−x,−y)}} =

= f1(x, y) ∗ f ∗2 (−x,−y) = f1(x, y) ∗ f2(−x,−y),

which is a real function.
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Remark 2.65. In [34] and in one-dimensional case in [32], we can find the definition of
the cross-correlation of functions f1(x, y), f2(x, y) as

f1(x, y) ? f2(x, y) =

∞∫
−∞

∞∫
−∞

f ∗1 (s, t)f2(s+ x, t+ y) dx dy.

The cross-correlation can be transformed to convolution [34]

f1(x, y) ? f2(x, y) = f
∗
1 (−x,−y) ∗ f2(x, y).

Therefore, using the proof of Theorem 2.64 and commutativity of convolution [15]

Qf1,f2(x, y) = f1(x, y) ∗ f ∗2 (−x,−y) = f ∗2 (−x,−y) ∗ f1(x, y) = f2(x, y) ? f1(x, y),

which gives the connection between the cross-correlation used in Fourier analysis [32]
and the cross-correlation function Qf1,f2 defined in Definition 2.63 and used in image
registration.

Theorem 2.66. Let functions f1(x, y), f2(x, y) ∈ L (R2) be real with Fourier spectra
F1(ξ, η), F2(ξ, η) and amplitude spectra A1(ξ, η), A2(ξ, η). Let p, q ∈ R+0 , let ε ∈ R+. If

A1(ξ, η), A2(ξ, η) > ε ∀(ξ, η) ∈ R2 or p, q > 0

then the semi-phase correlation function of functions f1, f2 with parameters p, q is a real
function, i.e.

F−1
{

F1(ξ, η) · F ∗
2 (ξ, η)

(A1(ξ, η) + p) · (A2(ξ, η) + q)

}
is a real function. Especially, if A1(ξ, η), A2(ξ, η) > ε ∀(ξ, η) ∈ R2, the phase-correlation
function of functions f1, f2 is real.

Proof. Amplitude spectra are real functions and from Corollary 2.56 (page 31) we have
that for real functions

Ak(ξ, η) = Ak(−ξ,−η) for k = 1, 2.

Furthermore, if
A(ξ, η) = (A1(ξ, η) + p) · (A2(ξ, η) + q),

we have A(ξ, η) = A(−ξ,−η) and A is again real. Now function 1
A(ξ,η) has all properties

of function G in Corollary 2.57 (page 31). It is a real bounded function with A(ξ, η) =
A(−ξ,−η). Function F1(ξ, η) ·F ∗

2 (ξ, η) has the properties of function F in Corollary 2.57
due to the fact that the cross-correlation function of two real functions is real (Thm. 2.64).
Therefore,

F−1
{
F1(ξ, η) · F ∗

2 (ξ, η)
A(ξ, η)

}
= F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)
(A1(ξ, η) + p) · (A2(ξ, η) + q)

}
is real. If A1(ξ, η), A2(ξ, η) > ε > 0 ∀(ξ, η) ∈ R2, we can set p = q = 0 and conclude that
the phase-correlation function of real functions is real.
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Theorem 2.67 (Phase-correlation function of shifted functions). Let f1(x, y) ∈
L (R2) and let F1(ξ, η) be its Fourier spectrum. Let us suppose function f2(x, y) =
f1(x − x0, y − y0), where x0, y0 ∈ R are given numbers. Let F2(ξ, η) be the Fourier
spectrum of function f2. Then the phase-correlation function of functions f1, f2 is the
Dirac distribution shifted by (−x0,−y0) [13]

Pf1,f2(x, y) = δ(x+ x0, y + y0).

Proof. The Shift Theorem (Theorem 2.42 on page 22) implies that

Zf1,f2(ξ, η) =
F1(ξ, η) · F ∗

1 (ξ, η)
(
e−i(ξx0+ηy0)

)∗
|F1(ξ, η) · F1(ξ, η)e−i(ξx0+ηy0)|

= ei(ξx0+ηy0).

According to Example 2.51 on page 29

F {δ(x− x0, y − y0)} = e−i(ξx0+ηy0).

Therefore

Pf1,f2(x, y) = F−1 {ei(ξx0+ηy0)
}
= F−1 {e−iξ(−x0)−iη(−y0)

}
= δ(x+ x0, y + y0).

[13] describes the derivation of the formula (2.6) on page 34 for the phase-correlation
function. If functions f1, f2 are mutually shifted, their Fourier spectra differ only in the
phase (see the Shift Theorem 2.42, page 22)

F2(ξ, η) = F1(ξ, η)e
−i(ξx0+ηy0).

If we compute the cross-power spectrum of such images

Cf1,f2(ξ, η) = F1(ξ, η)F
∗
1 (ξ, η)e

i(ξx0+ηy0),

we are now interested in its phase. Normalizing the cross-power spectrum, we extract the
phase

Zf1,f2(ξ, η) =
F1(ξ, η) · F ∗

2 (ξ, η)
|F1(ξ, η) · F2(ξ, η)|

=
F1(ξ, η) · F ∗

1 (ξ, η)
(
e−i(ξx0+ηy0)

)∗
|F1(ξ, η) · F1(ξ, η)e−i(ξx0+ηy0)|

= ei(ξx0+ηy0).

Applying the inverse Fourier transform, we obtain the Dirac distribution shifted by
(−x0,−y0).
Theorem 2.67 shows a simple method for finding the mutual shift between two func-

tions. The phase-correlation function of two mutually shifted functions is a function
which is non-zero in one single point (−x0,−y0). Numbers x0, y0 give the vector by which
the second function is shifted in respect to the first one and therefore if function f2 is
shifted back by (−x0,−y0), we obtain an identical function with function f1. Modifica-
tion for similarly transformed functions (shift, rotation, scale change) will be discussed in
Chapter 4.
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Chapter 3

The discrete Fourier transform

3.1 The discrete Fourier transform and the inverse
discrete Fourier transform

Definition 3.1 (Discrete Fourier transform). Let f(x, y) be a function {0, 1, . . . , N−
1} × {0, 1, . . . , N − 1} = {0, 1, . . . , N − 1}2 → C, N ∈ N. The discrete Fourier transform
[8] of function f(x, y) is function D {f} (ξ, η) = F (ξ, η) : {0, 1, . . . , N − 1}2 → C defined
as

F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N
(xξ+yη). (3.1)

Function F is also called the Fourier spectrum of function f .

Definition 3.2 (Inverse discrete Fourier transform). Let f(x, y) be a function {0, 1,
. . . , N − 1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier transform. The inverse
discrete Fourier transform [8] of function F (ξ, η) is functionD−1 {F} (x, y) : {0, 1, . . . , N−
1}2 → C defined as

D−1 {F} (x, y) = 1
N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N
(xξ+yη). (3.2)

Convention 3.3. If it makes no confusion, we will omit the word ”discrete” knowing
what kind of functions we are dealing with.

Theorem 3.4 (Fourier Inversion Theorem). Let f(x, y) be a function {0, 1, . . . , N −
1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier transform. Then the inverse
discrete Fourier transform of function F (ξ, η) is function f(x, y), i.e.

D−1 {D {f(x, y)}} = f(x, y).
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Proof. The proof is a generalized version of a one-dimensional proof in [41].

D−1 {D {f(x, y)}} = 1
N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N
(xξ+yη) =

=
1
N2

N−1∑
ξ=0

N−1∑
η=0

N−1∑
s=0

N−1∑
t=0

f(s, t)e−
2πi
N
(sξ+tη)e

2πi
N
(xξ+yη) =

=
1
N2

N−1∑
s=0

N−1∑
t=0

f(s, t)
N−1∑
ξ=0

N−1∑
η=0

eξ
2πi
N
(x−s)eη

2πi
N
(y−t) =

=
1
N2

N−1∑
s=0

N−1∑
t=0

f(s, t)

[
N−1∑
ξ=0

(
e
2πi
N
(x−s)

)ξ
]

︸ ︷︷ ︸
denote by g(s)

[
N−1∑
η=0

(
e
2πi
N
(y−t)

)η
]

︸ ︷︷ ︸
denote by g(t)

g(s) is a finite geometrical series, therefore we can compute its sum. If e
2πi
N
(x−s) = 1, i.e.

x = s, then g(s) = N . Otherwise, x− s ∈ Z− {0} and

g(s) =
1−

(
e
2πi
N
(x−s)

)N

1− e 2πiN
(x−s)

=
1− e2πi(x−s)

1− e 2πiN
(x−s)

=
1− 1

1− e 2πiN
(x−s)

= 0.

Similarly,

g(t) =

{
N if y = t

0 else.

Therefore,

D−1 {D {f(x, y)}} = 1
N2

f(x, y) ·N ·N = f(x, y).

Remark 3.5. On the contrary to the Fourier transform, the discrete Fourier transform
always exists due to the fact that the summation is over a finite number of points.

Equations (3.1) and (3.2) define F (ξ, η) and D−1 {F} (x, y) for every (ξ, η) and (x, y) ∈
Z2. Therefore, we can define the periodization of the Fourier spectrum, F̃ (ξ, η), and the
periodization of the original function, f̃(x, y). We define here the periodization by means
of the discrete Fourier transform. This approach is used in one dimension in [15]. There
are other approaches, e.g. [8] uses modulo arithmetics in formulae where the argument of
the functions would be out of {0, 1, . . . , N − 1}2.
Definition 3.6 (Periodization of function and its Fourier spectrum). Let f(x, y)
be a function {0, 1, . . . , N −1}2 → C, N ∈ N and let F (ξ, η) be its Fourier spectrum. The
periodization of the Fourier spectrum F is function F̃ (ξ, η) : Z2 → C defined as

F̃ (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N
(xξ+yη).

The periodization of function f is function f̃(x, y) : Z2 → C defined as

f̃(x, y) =
1
N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N
(xξ+yη).

38



Corollary 3.7. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N. Then for every
(x, y), (ξ, η) ∈ {0, 1, . . . , N − 1}2 and k, l ∈ Z it holds:

f(x, y) = f̃(x+ kN, y + lN),

F (ξ, η) = F̃ (ξ + kN, η + lN).

In particular,
f̃(x, y) = f(x, y), f̃(−x,−y) = f(N − x,N − y),

F̃ (ξ, η) = F (ξ, η), F̃ (−ξ,−η) = F (N − ξ,N − η).

Proof. The claim is clear from formulae (3.1), (3.2) on page 37, the Fourier Inversion
Theorem (Thm. 3.4) and the fact that goniometric functions are 2π-periodic.

Definition 3.8 (Discrete Fourier transform of periodized functions). Let f(x, y)
be a function {0, 1, . . . , N − 1}2 → C, N ∈ N. The discrete Fourier transform of the peri-
odization of function f , f̃(x, y) : Z2 → C is function D{f̃}(ξ, η) = F (ξ, η) : {0, 1, . . . , N −
1}2 → C defined as

F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f̃(x, y)e−
2πi
N
(xξ+yη).

Definition 3.9 (Inverse discrete Fourier transform of periodized functions). Let
f(x, y) be a function {0, 1, . . . , N −1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier
transform with periodization F̃ (ξ, η) : Z2 → C. The inverse discrete Fourier transform of
function F̃ (ξ, η) is function D−1{F̃}(x, y) : {0, 1, . . . , N − 1}2 → C defined as

D−1{F̃}(x, y) = 1
N2

N−1∑
ξ=0

N−1∑
η=0

F̃ (ξ, η)e
2πi
N
(xξ+yη).

Corollary 3.10. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N with Fourier
spectrum F (ξ, η). For every (x, y) ∈ {0, 1, . . . , N − 1}2, it holds:

D {f(x, y)} = D
{
f̃(x, y)

}
,

D−1
{
D
{
f̃(x, y)

}}
= D−1

{
F̃ (ξ, η)

}
= f(x, y)

Proof. The claim is a consequence of Definitions 3.8 and 3.9 and Theorem 3.4 (Fourier
Inversion Theorem).

Corollary 3.11. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N with Fourier
spectrum F (ξ, η). For every k, l ∈ Z it holds:

D {f(x, y)} =
k+N−1∑

x=k

l+N−1∑
y=l

f̃(x, y)e−
2πi
N
(xξ+yη),

D−1 {F (ξ, η)} = 1
N2

k+N−1∑
ξ=k

l+N−1∑
η=l

F̃ (ξ, η)e
2πi
N
(xξ+yη).
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Proof. The first claim is a consequence of the fact that both functions f̃ and e−
2πi
N
(xξ+yη)

for fixed ξ, η ∈ Z are N -periodic. The second claim is a consequence of the fact that both
functions F̃ and e

2πi
N
(xξ+yη) for fixed x, y ∈ Z are N -periodic.

Definition 3.12 (Amplitude spectrum, phase spectrum). Let f(x, y) be a function
{0, 1, . . . , N − 1}2 → C, N ∈ N with Fourier spectrum F (ξ, η). The amplitude spectrum
[8] of function f is function A(ξ, η) : {0, 1, . . . , N − 1}2 → R defined as

A(ξ, η) = |D {f(x, y)}| = |F (ξ, η)|.

The phase spectrum [8] of function f is function Φ(ξ, η) : {0, 1, . . . , N − 1}2 → 〈0, 2π)
defined as

ReF (ξ, η) = A(ξ, η) cosΦ(ξ, η),

ImF (ξ, η) = A(ξ, η) sinΦ(ξ, η).

If A(ξ, η) = 0 for some (ξ, η), we define Φ(ξ, η) = 0.

In a similar way, we can define the amplitude and phase spectra of periodized functions
and periodized amplitude and phase spectra.

3.2 Properties of the discrete Fourier transform

Table 3.1 shows the basic properties of the discrete Fourier transform. It is easy to prove
them or they are proved below. Functions are listed on the left, their Fourier transforms
on the right. f(x, y), g(x, y) are functions {0, 1, . . . , N−1}2 → C, N ∈ N, α, β, x0, y0, ξ0, η0
are real constants, f ∗ g denotes discrete periodic convolution of functions f, g (described
in Section 3.3). The formulae are taken from [8].

1. f(x, y) F (ξ, η)

2. αf(x, y) + βg(x, y) αF (ξ, η) + βG(ξ, η)

3. f̃(x− x0, y − y0) F (ξ, η) · e−i(ξx0+ηy0)

4. ei(ξ0x+η0y)f(x, y) F̃ (ξ − ξ0, η − η0)

5. f̃(−x,−y) F̃ (−ξ,−η)
6. f ∗(x, y) F̃ ∗(−ξ,−η)
7. (f ∗ g)(x, y) F (ξ, η) ·G(ξ, η)
8. f(x, y) · g(x, y) 1

4π2 (F ∗G)(ξ, η)

Table 3.1: Basic properties of the discrete Fourier transform.

The second formula is linearity of the Fourier transform, the third formula is the Shift
Theorem for Periodized Functions (Thm. 3.16), the fourth one is the Modulation Theorem
[8], the fifth one is Theorem 3.14, the sixth one is Theorem 3.15 and the last two formulae
are proved in Section 3.3.
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Theorem 3.13. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N with Fourier
spectrum F (ξ, η). Then [15]

F (0, 0) =
N−1∑
x=0

N−1∑
y=0

f(x, y).

Proof.

F (0, 0) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N
(x·0+y·0) =

N−1∑
x=0

N−1∑
y=0

f(x, y)

Theorem 3.14. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N with Fourier
spectrum F (ξ, η). The Fourier transform of function f with reversed axes is function
F with reversed axes, the inverse Fourier transform of function F with reversed axes is
function f with reversed axes, i.e. [8]

D
{
f̃(−x,−y)

}
= F̃ (−ξ,−η) = F (N − ξ,N − η),

D−1
{
F̃ (−ξ,−η)

}
= f̃(−x,−y) = f(N − x,N − y).

Proof.

D
{
f̃(−x,−y)

}
=

N−1∑
x=0

N−1∑
y=0

f̃(−x,−y)e−
2πi
N
(xξ+yη) =

∣∣∣∣∣∣ s = −xt = −y

∣∣∣∣∣∣ =
=

0∑
s=−N+1

0∑
t=−N+1

f̃(s, t)e−
2πi
N
(−sξ−tη) = F̃ (−ξ,−η)

The last equality is due to Corollary 3.11. The second claim is obtained from the first
one by applying discrete inverse Fourier transform to its both sides. On the contrary with
the Fourier transform discussed in Chapter 2, this step always works due to the Fourier
Inversion Theorem (Thm. 3.4, page 37).

Theorem 3.15. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N and let F (ξ, η)
be its Fourier spectrum. Then the Fourier transform of the complex conjugate of function
f is F̃ ∗(−ξ,−η) [15], i.e.

D {f ∗(x, y)} = F̃ ∗(−ξ,−η).

Proof.

D {f ∗(x, y)} =
N−1∑
x=0

N−1∑
y=0

f ∗(x, y)e−
2πi
N
(xξ+yη) =

N−1∑
x=0

N−1∑
y=0

f ∗(x, y)e
2πi
N
(−xξ−yη) =

=

(
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N
(−xξ−yη)

)∗

= F̃ ∗(−ξ,−η).
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Theorem 3.16 (Shift Theorem for Periodized Functions). Let f1(x, y) be a function
{0, 1, . . . , N − 1}2 → C, N ∈ N and let F1(ξ, η) be its Fourier spectrum. Let us suppose
function f2(x, y) : {0, 1, . . . , N − 1}2 → C such that

f2(x, y) = f̃1(x− x0, y − y0),

where x0, y0 ∈ Z are given numbers. Let F2(ξ, η) be the Fourier spectrum of function
f2(x, y). Then it holds

F2(ξ, η) = e
− 2πi

N
(ξx0+ηy0)F1(ξ, η).

Proof. The following proof is a generalized version of the one-dimensional case proved in
[15].

F2(ξ, η) =
N−1∑
x=0

N−1∑
y=0

f2(x, y)e
− 2πi

N
(xξ+yη) =

N−1∑
x=0

N−1∑
y=0

f̃1(x− x0, y − y0)e
− 2πi

N
(xξ+yη) =

=

∣∣∣∣∣∣ s = x− x0

t = y − y0

∣∣∣∣∣∣ =
N−1−x0∑
s=−x0

N−1−y0∑
t=−y0

f̃1(s, t)e
− 2πi

N
[ξ(s+x0)+η(t+y0)] =

= e−
2πi
N
(ξx0+ηy0)

N−1−x0∑
s=−x0

N−1−y0∑
t=−y0

f̃1(s, t)e
− 2πi

N
(sξ+tη) = e−

2πi
N
(ξx0+ηy0)F1(ξ, η)

The last equality is due to Corollary 3.11.

Theorem 3.17 (Shift Theorem). Let f1(x, y) be a function {0, 1, . . . , N−1}2 → C, N ∈
N. Let x0, y0 ∈ Z, k, l ∈ N0,M ∈ N are given numbers such that

M < N,

k + x0 ≥ 0, k +M + x0 ≤ N − 1,

l + y0 ≥ 0, l +M + y0 ≤ N − 1,

and let f1 be zero out of {k, k+1, . . . , k+M − 1}× {l, l+1, . . . , l+M − 1}. Let f2(x, y)
be a function {0, 1, . . . , N − 1}2 → C such that

f2(x, y) =


f1(x− x0, y − y0) if max{0, x0} ≤ x ≤ min{N − 1, N − 1 + x0},

max{0, y0} ≤ y ≤ min{N − 1, N − 1 + y0},
0 else.

Such relations are illustrated in Figure 3.1. Let F1(ξ, η), F2(ξ, η) be the Fourier spectra
of functions f1 and f2. Then it holds

F2(ξ, η) = e
− 2πi

N
(ξx0+ηy0)F1(ξ, η).

42



k M

N

x

x0

y0

l

y
M

Figure 3.1: Illustration of relations between functions f1 and f2 and numbers
k, l,M,N, x0, y0 in the Shift Theorem (Thm. 3.17). Function f1 is zero outside the darker
square, function f2 outside the brighter square. x0,y0 are positive numbers in the picture.

Proof.

F2(ξ, η) =
N−1∑
x=0

N−1∑
y=0

f2(x, y)e
− 2πi

N
(xξ+yη) =

k+M−1+x0∑
x=k+x0

l+M−1+y0∑
y=l+y0

f2(x, y)e
− 2πi

N
(xξ+yη) =

=
k+M−1+x0∑

x=k+x0

l+M−1+y0∑
y=l+y0

f1(x− x0, y − y0)e
− 2πi

N
(xξ+yη) =

=

∣∣∣∣∣∣ s = x− x0

t = y − y0

∣∣∣∣∣∣ =
k+M−1∑

s=k

l+M−1∑
t=l

f1(s, t)e
− 2πi

N
[ξ(s+x0)+η(t+y0)] =

= e−
2πi
N
(ξx0+ηy0)

k+M−1∑
s=k

l+M−1∑
t=l

f1(s, t)e
− 2πi

N
(sξ+tη) = e−

2πi
N
(ξx0+ηy0)F1(ξ, η)

Theorem 3.18. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N. Then it holds

(a) D {D {f(x, y)}} = N2f̃(−x,−y),

(b) D−1 {D−1 {f(x, y)}
}
=
1
N2

f̃(−x,−y),

(c) D {f(x, y)} = N2D−1
{
f̃(−x,−y)

}
,

(d) D−1 {f(x, y)} = 1
N2

D
{
f̃(−x,−y)

}
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Proof.

(a)

D {D {f(x, y)}} =
N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e−
2πi
N
(xξ+yη) =

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N
(−xξ−yη) =

=

∣∣∣∣∣∣ σ = −ξτ = −η

∣∣∣∣∣∣ =
0∑

σ=−N+1

0∑
τ=−N+1

F̃ (−σ,−τ)e
2πi
N
(xσ+yτ) =

= N2D−1
{
D
{
f̃(−x,−y)

}}
= N2f̃(−x,−y)

(b)

D−1 {D−1 {f(x, y)}
}
=
1
N2

N−1∑
ξ=0

N−1∑
η=0

(
1
N2

N−1∑
s=0

N−1∑
t=0

f(s, t)e
2πi
N
(sξ+tη)

)
e
2πi
N
(xξ+yη) =

=
1
N4

N−1∑
ξ=0

N−1∑
η=0

(
N−1∑
s=0

N−1∑
t=0

f(s, t)e−
2πi
N
(−sξ−tη)

)
e
2πi
N
(xξ+yη) =

=

∣∣∣∣∣∣ u = −sv = −t

∣∣∣∣∣∣ = 1
N4

N−1∑
ξ=0

N−1∑
η=0

(
0∑

u=−N+1

0∑
v=−N+1

f̃(−u,−v)e−
2πi
N
(uξ+vη)

)
e
2πi
N
(xξ+yη) =

=
1
N2

D−1
{
D
{
f̃(−x,−y)

}}
=
1
N2

f̃(−x,−y)

(c) is obtained from (a) by applying the inverse Fourier transform to both its sides.

(d) is obtained from (c) by substituting −x for x, −y for y and dividing both sides by
N2.

Theorem 3.19. Let f(x, y) be a function {0, 1, . . . , N−1}2 → C, N ∈ N and have Fourier
spectrum F (ξ, η). f is a real function, i.e. f(x, y) = f ∗(x, y) ∀(x, y) ∈ {0, 1, . . . , N − 1}2,
if and only if F (ξ, η) = F̃ ∗(−ξ,−η) (partially stated in [15]).

Proof.

(a) Let us suppose that f is a real function. Then Theorem 3.15 (page 41) implies that

F (ξ, η) = D {f(x, y)} = D {f ∗(x, y)} = F ∗(−ξ,−η).

(b) Let us suppose that F (ξ, η) = F ∗(−ξ,−η). Then Theorem 3.15 and the Fourier
Inversion Theorem (Thm. 3.4, page 37) imply that
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f(x, y) = D−1 {F (ξ, η)} = D−1
{
F̃ ∗(−ξ,−η)

}
= D−1 {D {f ∗(x, y)}} = f ∗(x, y)

Corollary 3.20. Let function f(x, y) : {0, 1, . . . , N − 1}2 → R, N ∈ N. Then

A(ξ, η) = A(−ξ,−η).

Proof. Consequence of Theorem 3.19.

Corollary 3.21. Let function f(x, y) : {0, 1, . . . , N − 1}2 → R, N ∈ N. Let function
G(ξ, η) : {0, 1, . . . , N − 1}2 → R such that G(ξ, η) = G̃(−ξ,−η). Then

D−1 {F (ξ, η) ·G(ξ, η)}

is real.

Proof. According to Theorem 3.19, if f is real, then

F (ξ, η) = F̃ ∗(−ξ,−η).

Multiplying the equality by G, we obtain

F (ξ, η) ·G(ξ, η) = F̃ ∗(−ξ,−η) · G̃(−ξ,−η) = (F̃ (−ξ,−η) · G̃(−ξ,−η))∗.

Then again according to Theorem 3.19,

D−1 {F (ξ, η) ·G(ξ, η)}

is real.

3.3 Discrete periodic convolution

Definition 3.22 (Discrete periodic convolution). Let f1(x, y), f2(x, y) be functions
{0, 1, . . . , N − 1}2 → C, N ∈ N. Function f(x, y) : {0, 1, . . . , N − 1}2 → C is called the
discrete periodic convolution [8] of functions f1, f2, denoted by f(x, y) = f1(x, y)∗f2(x, y),
if

f(x, y) =
N−1∑
s=0

N−1∑
t=0

f1(s, t)f̃2(x− s, y − t).

Theorem 3.23. Let functions f1(x, y), f2(x, y) : {0, 1, . . . , N − 1}2 → C, N ∈ N have
Fourier spectra F1(ξ, η), F2(ξ, η). Then

D {f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).
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Proof. A similar proof can be found in [8]. Let f(x, y) = f1(x, y) ∗ f2(x, y). Then

D {f(x, y)} =
N−1∑
x=0

N−1∑
y=0

(
N−1∑
s=0

N−1∑
t=0

f1(s, t)f̃2(x− s, y − t)

)
e−

2πi
N
(xξ+yη) =

=
N−1∑
s=0

N−1∑
t=0

f1(s, t)
N−1∑
x=0

N−1∑
y=0

f̃2(x− s, y − t)e−
2πi
N
(xξ+yη) =

∣∣∣∣∣∣ p = x− s

q = y − t

∣∣∣∣∣∣ =
=

N−1∑
s=0

N−1∑
t=0

f1(s, t)
N−1−s∑
p=−s

N−1−t∑
q=−t

f̃2(p, q)e
− 2πi

N
[ξ(p+s)+η(q+t)] =

=
N−1∑
s=0

N−1∑
t=0

f1(s, t)e
− 2πi

N
(sξ+tη) ·

N−1−s∑
p=−s

N−1−t∑
q=−t

f̃2(p, q)e
− 2πi

N
(pξ+qη) =

= F1(ξ, η) · F2(ξ, η).

Theorem 3.24. Let functions f1(x, y), f2(x, y) : {0, 1, . . . , N − 1}2 → C, N ∈ N have
Fourier spectra F1(ξ, η), F2(ξ, η). Then [15]

D {f1(x, y) · f2(x, y)} =
1
N2

F1(ξ, η) ∗ F2(ξ, η).

Proof. Let f(x, y) = f1(x, y)∗f2(x, y). Using the Fourier Inversion Theorem 3.4 (page 37)
we can compute D {f(x, y)} as

D {f(x, y)} =
N−1∑
x=0

N−1∑
y=0

f1(x, y)f2(x, y)e
− 2πi

N
(xξ+yη) =

=
N−1∑
x=0

N−1∑
y=0

(
1
N2

N−1∑
σ=0

N−1∑
τ=0

F1(σ, τ)e
2πi
N
(xσ+yτ)

)
f2(x, y)e

− 2πi
N
(xξ+yη) =

=
1
N2

N−1∑
σ=0

N−1∑
τ=0

F1(σ, τ)
N−1∑
x=0

N−1∑
y=0

f2(x, y)e
− 2πi

N
[x(ξ−σ)+y(η−τ)] =

=
1
N2

N−1∑
σ=0

N−1∑
τ=0

F1(σ, τ)F̃2(ξ − σ, η − τ) =
1
N2

F1(ξ, η) ∗ F2(ξ, η).

3.4 Cross correlation, phase correlation

Definition 3.25 (Cross-power spectrum, normalized cross-power spectrum,
semi-normalized cross-power spectrum). Let functions f1(x, y), f2(x, y) : {0, 1, . . . ,
N−1}2 → C, N ∈ N and Fourier spectra F1(ξ, η), F2(ξ, η). The cross-power spectrum [23]
of functions f1, f2 is function Cf1,f2(ξ, η) : {0, 1, . . . , N − 1}2 → C defined by

Cf1,f2(ξ, η) = F1(ξ, η) · F ∗
2 (ξ, η).
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The normalized cross-power spectrum [23] of functions f1, f2 is function Zf1,f2(ξ, η) : {0, 1,
. . . , N − 1}2 → C defined by

Zf1,f2(ξ, η) =
F1(ξ, η) · F ∗

2 (ξ, η)
|F1(ξ, η) · F2(ξ, η)|

.

If p, q ∈ R+ are given constants, the semi-normalized cross-power spectrum of functions
f1, f2 with parameters p, q is function Z

p,q
f1,f2
(ξ, η) : {0, 1, . . . , N − 1}2 → C defined as

Zp,q
f1,f2
(ξ, η) =

F1(ξ, η) · F ∗
2 (ξ, η)

(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)
.

Definition 3.26 (Cross-correlation function, phase-correlation function, semi-
phase correlation function). Let functions f1(x, y), f2(x, y) : {0, 1, . . . , N − 1}2 →
C, N ∈ N have Fourier spectra F1(ξ, η), F2(ξ, η). Function Qf1,f2(x, y) : {0, 1, . . . , N −
1}2 → C defined as

Qf1,f2(x, y) = D−1 {Cf1,f2(ξ, η)} = D−1 {F1(ξ, η) · F ∗
2 (ξ, η)}

is called the cross-correlation function of functions f1, f2. Function Pf1,f2(x, y) : {0, 1, . . . ,
N − 1}2 → C defined as

Pf1,f2(x, y) = D−1 {Zf1,f2(ξ, η)} = D−1
{
F1(ξ, η) · F ∗

2 (ξ, η)
|F1(ξ, η) · F2(ξ, η)|

}
is called the phase-correlation function of functions f1, f2 and function P

p,q
f1,f2
(x, y) : {0, 1,

. . . , N − 1}2 → C defined as

P p,q
f1,f2
(x, y) = D−1 {Zp,q

f1,f2
(ξ, η)

}
= D−1

{
F1(ξ, η) · F ∗

2 (ξ, η)
(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)

}
is called the semi-phase correlation function of functions f1, f2 with parameters p, q.

Theorem 3.27 (Cross-correlation function for real functions). Let f1(x, y), f2(x, y)
be functions {0, 1, . . . , N − 1}2 → R, N ∈ N (real functions) and have Fourier spectra
F1(ξ, η), F2(ξ, η). Then the cross-correlation function of these functions is real.

Proof. Using Theorems 3.4 (page 37) and 3.15 (page 41) we can compute the cross cor-
relation function as

Qf1,f2(x, y) = D−1 {F1(ξ, η) · F ∗
2 (ξ, η)} = D−1 {D {f1(x, y)} · D {f ∗2 (−x,−y)}} =

= D−1 {D {f1(x, y) ∗ f ∗2 (−x,−y)}} = f1(x, y) ∗ f ∗2 (−x,−y) =
= f1(x, y) ∗ f2(−x,−y),

which is a real function.

Remark 3.28. From [15], generalized into two dimensions and with notation from Re-
mark 2.65 (page 35), the discrete periodical correlation is a function

f1(x, y) ? f2(x, y) =
N−1∑
s=0

N−1∑
t=0

f ∗1 (s, t)f̃2(s+ x, t+ y).
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Using [15], we can prove a formula to transform cross-correlation to convolution

f1(x, y) ? f2(x, y) = f̃
∗
1 (−x,−y) ∗ f2(x, y).

Therefore, using the proof of Theorem 3.27 and commutativity of convolution [15]

Qf1,f2(x, y) = f1(x, y) ∗ f̃ ∗2 (−x,−y) = f̃ ∗2 (−x,−y) ∗ f1(x, y) = f2(x, y) ? f1(x, y),

which gives the connection between the cross-correlation used in Fourier analysis [15]
and the cross-correlation function Qf1,f2 defined in Definition 3.26 and used in image
registration.

Theorem 3.29. Let functions f1(x, y), f2(x, y) : {0, 1, . . . , N − 1}2 → R, N ∈ N have
amplitude spectra A1(ξ, η), A2(ξ, η). Let p, q ∈ R+0 . If

A1(ξ, η), A2(ξ, η) > 0 ∀(ξ, η) or p, q > 0

then the semi-phase correlation function of functions f1, f2 with parameters p, q

D−1
{

F1(ξ, η) · F ∗
2 (ξ, η)

(A1(ξ, η) + p) · (A2(ξ, η) + q)

}
is a real function. Especially, if A1(ξ, η), A2(ξ, η) > 0 ∀(ξ, η), the phase-correlation func-
tion of functions f1, f2 is real.

Proof. Amplitude spectra are real functions and from Corollary 3.20 (page 45) we have
that

Ak(ξ, η) = Ãk(−ξ,−η) for k = 1, 2.

Furthermore, if
A(ξ, η) = (A1(ξ, η) + p) · (A2(ξ, η) + q),

we have A(ξ, η) = Ã(−ξ,−η) and A is again real. Now function 1
A(ξ,η) has all properties

of function G in Corollary 3.21 on page 45. It is a real bounded function with A(ξ, η) =
Ã(−ξ,−η). Function F1(ξ, η) ·F ∗

2 (ξ, η) has the properties of function F in Corollary 3.21
due to the fact that the cross-correlation function of two real functions is real (Thm. 3.27).
Therefore,

D−1
{
F1(ξ, η) · F ∗

2 (ξ, η)
A(ξ, η)

}
= D−1

{
F1(ξ, η) · F ∗

2 (ξ, η)
(A1(ξ, η) + p) · (A2(ξ, η) + q)

}
is real. If A1(ξ, η), A2(ξ, η) > 0 ∀(ξ, η), we can set p = q = 0 and conclude that the
phase-correlation function of real functions is real.

Definition 3.30 (Discrete impulse function). Let function d(x, y) be defined on
{0, 1, . . . , N − 1}2 as

d(x, y) =

{
1 if (x, y) = (0, 0)

0 else.

Function d is called the discrete impulse function.
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Theorem 3.31 (Phase-correlation function of shifted functions). Let functions
f1, f2 fulfill the same assumptions as in the Shift Theorem (Thm. 3.17, page 42). Then
the phase-correlation function of functions f1, f2 is the discrete impulse function d shifted
by (−x0,−y0)

Pf1,f2(x, y) = d̃(x+ x0, y + y0).

Proof. Shift Theorem (Thm. 3.17) implies that

Zf1,f2(ξ, η) =
F1(ξ, η) · F ∗

1 (ξ, η)
(
e−

2πi
N
(ξx0+ηy0)

)∗∣∣∣F1(ξ, η) · F1(ξ, η)e− 2πiN
(ξx0+ηy0)

∣∣∣ = e 2πiN
(ξx0+ηy0).

According to formula (3.18d) (since functions f1 and F1 are both {0, 1, . . . , N − 1}2 → C,
we can interchange their roles and use formula (3.18d) for F1),

D−1 {Zf1,f2(ξ, η)} =
1
N2

D
{
Z̃f1,f2(−ξ,−η)

}
=
1
N2

N−1∑
ξ=0

N−1∑
η=0

e−
2πi
N
(ξx0+ηy0)e−

2πi
N
(ξx+ηy) =

=
1
N2

N−1∑
ξ=0

e−
2πi
N

ξ(x+x0) ·
N−1∑
η=0

e−
2πi
N

η(y0+y) =

=
1
N2

N−1∑
ξ=0

(
e−

2πi
N
(x+x0)

)ξ

︸ ︷︷ ︸
denote by g(x)

·
N−1∑
η=0

(
e−

2πi
N
(y0+y)

)η

︸ ︷︷ ︸
denote by g(y).

Similarly to the proof of the Fourier Inversion Theorem (Thm. 3.4, page 37), g(x) is a
finite geometrical series. For x = −x0+kN , where k an arbitrary integer, g(x) = N since
all elements of the series are equal to one. Otherwise,

g(x) =
1−

(
e−

2πi
N
(x+x0)

)N

1− e− 2πiN
(x+x0)

=
1− e−2πi(x+x0)

1− e− 2πiN
(x+x0)

=
1− 1

1− e− 2πiN
(x+x0)

= 0.

Analogically,

g(y) =

{
N if y = −y0 + lN, l ∈ Z
0 else.

Hence,

Pf1,f2(x, y) = D−1 {Zf1,f2(ξ, η)} =


1 if (x, y) = (−x0 + kN,−y0 + lN)
for some k, l ∈ Z

0 else

= d̃(x+ x0, y + y0).
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Chapter 4

Image registration

4.1 Digital image

The chips of digital cameras have usually rectangular matrices of photo-sensitive elements.
CMOS and CCD chips have photo-diodes as photo-sensitive elements. If there are color
filters before the photo-diodes (organized in a so called Bayer mask [14]), some photo-
diodes receive only a part of the spectrum and each pixel has information about one color
channel only. The other color components are interpolated in each pixel to obtain a color
image. There is another system of sensors for color digital photography, Foveon [28],
where each photo-sensitive element captures information about all three color channels,
the red, green, and the blue one.
It rarely makes sense to register color components separately. The only case when it

makes sense is correction of chromatic abberation of the used optical system. Therefore,
for image registration we convert digital color images into gray scale.

Definition 4.1 (Digital gray-scale image). Let R = {0, 1, . . . ,M−1}×{0, 1, . . . , N−
1},M,N ∈ N and let W = {0, 1, . . . , w − 1}, w ∈ N. Function [20]

f(x, y) : R→ W

is called a digital gray-scale image or image only if no confusion may be caused. M is
called the image width, N the image height. Elements of R are called pixels, value of f in
pixel (x, y) is called the pixel value. The value of w determines the image dynamic range.
We say that the dynamic range is n bits per pixel (it is an n-bit image) if w = 2n.

Definition 4.2 (Digital color image). A digital color image is a triple of digital gray-
scale images (r, g, b), which are called (in this order) the red, green and blue color channel.

Remark 4.3. Usually, matrices are used to represent images, they are called image
matrices. These matrices are only tables of pixel values and operations defined for matrices
do not make sense for them.

Definition 4.4 (Additive noise). Let f be a digital gray-scale image representing an
ideal image (containing no additive noise). Let n be a digital gray-scale image of the same
size as f whose pixel values are rounded independent realization of a random variable X.
Let h = f + n. Then we say that image h contains additive noise [20]. Image n is called
the noise image and the characteristics of X are called the characteristics of additive
noise.
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Additive noise usually has normal distribution. Its standard deviation is dependent
on temperature of the sensor. The higher is the temperature the higher is the standard
deviation of the impulse noise.

Remark 4.5. The previous definition does not say what happens to pixels where f+n >
w − 1 or f + n < 0 (w − 1 is the maximal possible pixel value, see Def. 4.1). Usually, we
try to set the exposure on the camera so that such cases do not happen. If they do, all
values higher than w − 1 are mapped to w − 1 and values lower than 0 are mapped to 0

h(x, y) =


0 if f(x, y) + n(x, y) < 0

f(x, y) + n(x, y) if 0 ≤ f(x, y) + n(x, y) < w

w − 1 if f(x, y) + n(x, y) ≥ w.

To convert a color image into a gray-scale one, we compute a convex combination of
the red, green, and blue color channels

f(x, y) = Round(crr(x, y) + cgg(x, y) + cbb(x, y)),

where cr, cg, cb ∈ 〈0, 1〉 and cr + cg + cb = 1. The constants cr, cg, cb should be chosen
to minimize the standard deviation of additive noise in image f . There is no rule for
choosing the constants that works for all images. For instance, if the scene of the image
is mostly red (images taken with red illumination or through a narrow-band filter), cr
should be much higher than cg and cb. For general images, the constants should be
chosen with respect to the number of each color-sensitive sensors and their pixel quantum
efficiency, thus the geometric quantum efficiency of the sensor (see Fig. 4.1). In the best
case, the constants should be chosen as multiples of the integral of quantum efficiency
over the whole spectrum. However, for a given camera, it is very hard to find its quantum
efficiency. The producers do not publish them and results of measurements are available
for a few cameras only. Then, we must use some assessments, e.g.

cr =
1
9
, cg =

6
9
, cb =

2
9
.

If we want to register astronomical images, which are taken through thicker layers of the
atmosphere, it is better to increase cr and decrease cb, because the atmosphere absorbs
blue light more than red light.

Remark 4.6 (Connection between F and D). [8] very well describes the connection
between the Fourier transform of periodic functions or functions defined on a cartesian
product of two finite intervals, its Fourier series and discrete Fourier transform. This en-
ables us to work with gray-scale images and functions applied on them (by multiplication,
convolution) as with functions defined on R2. This approach makes many descriptions
possible to be written in a compact form and some computations to be performed.

Remark 4.7. Some theorems about the properties of the Fourier transform in Chapter 2
require that function f is continuous and its Fourier spectrum F is in L(R2). If we
consider a digital image as a function R2 → C (used in symbolic computations especially
with rotated and scaled images), we know its values in a finite number of points only. The
functions can be made as smooth as we want them to be and since the function values
are defined on a bounded set only, the functions can also be taken as being in L (R2).

51



(a) (b)

Figure 4.1: Quantum efficiency of digital cameras Canon EOS 5D and 5D Mark II taken
from [50]. The pixel quantum efficiency (a) is the efficiency of an isolated pixel, which
may be either red-sensitive, green-sensitive, or blue-sensitive drawn with the respective
color. Geometric quantum efficiency (b) takes into account the organization of the Bayer
mask of the detector. It shows the efficiency of a 2× 2 pixel elementary structure. There
is one pixel for the red channel, two pixels for the green channel and one pixel for the
blue channel. Therefore, the geometric quantum efficiency is reduced by factors of 0.25,
0.50 and 0.25 with respect to pixel quantum efficiency.

4.2 Registration of idealized images

In this section, we will focus on registration of images which are identical up to a shift,
scale-change or rotation. They neither contain different noise nor have different brightness
or contrast. The images which the methods will be demonstrated on will be cropped from
a bigger image so that they are identical up to a shift, scale-change or rotation.

4.2.1 Registration of identical images

Firstly, if we consider registration of functions in L(R2) discussed in Section 2.6 (from
page 34), the phase-correlation function of two identical functions is the Dirac distribution.
However, the normalized cross-power spectrum is only defined for such values of ξ and η
where the Fourier spectrum of the image to be registered is non-zero (Def. 2.62, page 34).
Otherwise, the fraction defining the normalized cross-power spectrum is undefined. For
the integral used in the inverse Fourier transform defining the phase-correlation function
(Def. 2.63, page 34), it does not matter if the integrand value is undefined in a finite
number of points, but it is typically not the case. If the cross-power spectrum is zero in a
point (ξ, η), it is physically reasonable that it is also zero in a neighborhood of the point.
Most typically, the Fourier spectrum (and therefore also the cross-power spectrum) has a
bounded support which is located around (0, 0).
In the practical case, registration of digital images, the phase-correlation function of
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two identical images is the discrete impulse function (Def. 3.30, page 48). The case that
the fraction defining the normalized cross-power spectrum is zero (Def. 3.25, page 46)
is fatal for the sum used in the inverse Fourier transform defining the phase-correlation
function (Def. 3.26, page 47). It happens if the registered image does not have the highest
spatial frequencies, the Fourier spectrum of such image is zero in points (ξ, η) far from
the origin. For instance, it is an ideal image containing no additive noise and the image
has ”empty resolution”, it is an artificially enlarged replica of an image. In reality, every
image taken by a digital camera contains additive noise, which ensures that no values of
the spectrum are exactly zero. However, they may be very low causing very high values
of Zf,f .
On the other hand, the cross-correlation function of two identical functions, is a func-

tion which does not set any requirements on the functions. It has a global maximum in
(0, 0) [1] and its shape depends on the function, since Theorem 3.27 on page 47 says that

Qf,f (x, y) = f(x, y) ∗ f(−x,−y).

Figure 4.2 shows that the cross-correlation function even need not be concave and thus
may have other local maxima than (0, 0).
The problem of division by zero or ”nearly zero” in phase-correlation can be solved by

using a semi-phase correlation function (Definitions 2.62 on page 34 and 3.25 on page 46).
The selection of numbers p and q will be discussed in Section 4.3.1 (starting from page 65).

Remark 4.8. All figures showing a Fourier spectrum or a cross-correlation function or a
phase-correlation function in this thesis are so called permuted. The images are considered
as periodized in the sense of Definition 3.6 and then the figures show the values of the peri-
odization from −N

2 to
N
2 − 1. The reason for the permutation is that point (0, 0) is drawn

in the middle and the graph of the cross-correlation function or the phase-correlation
function resembles more the graph of a function defined on R2. Here we assume that N is
even. The Fast Fourier Transform (FFT) algorithm [37] is used for computing the discrete
Fourier transform and enables to speed up the computation if N is a composite number. If
N is a prime number, the number of elementary operations (a multiplication of two com-
plex numbers followed by addition of two complex numbers) needed for the computation
of the discrete Fourier transform is N2. If N = N1N2, N1, N2 ∈ N, the number of elemen-
tary operation can be reduced to N(N1 +N2). If N = N1N2 . . . Nk, N1, N2, . . . , Nk ∈ N ,
the number of operations needed is N(N1 + N2 + · · · + Nk). In particular, if N = 2k, it
requires 2kN = 2N log2N elementary operations [3]. Therefore, we will use N ’s which
are divisible by a higher power of 2, at least 16, better 256, 512 and are not divisible by
a high prime number. Hence it makes no sense to use odd N and in the following text N
assume that N is even.
Furthermore, all spectra are shown in logarithmic brightness scale. In linear scale,

they would all have a very bright center and no visible structure around it.

Remark 4.9. Digital gray-scale images are a special case of functions discussed in Chap-
ter 3. The discrete Fourier transform of a digital gray-scale image is a complex function
whose real and imaginary parts are generally not integer-valued. Therefore, in computers
the calculations are performed in floating point types. When exporting the data for visu-
alization, the spectrum or the phase-correlation function or the cross-correlation function
is converted to an integer-valued type, usually word (a 16-bit gray-scale image). This
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(a) (b)

(c)

Figure 4.2: Original image f (a), its cross-correlation function Qf,f as a gray-scale image
(b) and as a 3D graph (c).

way, we loose information on the absolute numbers, which are however of no use for im-
age registration. This is why the values of Qf,f in Figure 4.2c are in {0, 1, . . . , 65 535}
(65 535 = 216 − 1, the image is a 16-bit image).

Remark 4.10. The cross-correlation function of two real functions is again real (Theo-
rems 2.64 on page 34 and 3.27 on page 47). The phase-correlation function and the semi-
phase correlation function of two real functions is real too (Theorems 2.66 on page 2.66
and 3.29 on page 48). This enables to draw the correlation functions as usual gray-scale
images.
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4.2.2 Registration of shifted images

Theoretical results for shifted images are Theorems 2.67 (page 36) and 3.31 (page 49).
They both assume that both functions are identical but shifted with respect to each other
by a vector (x0, y0),

f2(x, y) = f1(x− x0, y − y0).

In the discrete case, the support of both functions is only a smaller subset (”subsquare”)
of {0, 1, . . . , N − 1}2, N ∈ N (see Fig. 3.1, page 43). This is a simplified case. In reality,
we are trying to find the shift vector between two images which are both cropped from
a ”bigger scene”, in this section from the same bigger image. Here we assume that the
images are shifted by integer shifts only (x0, y0 ∈ Z). The phase correlation works very
well then. The phase-correlation function is not a discrete impulse function, but there is
still one (very clear and sharp) global maximum at coordinates (x0, y0). The problem of
finding a mutual shift between images is transformed not to finding the non-zero element,
but to finding the global maximum.
However, the discrete Fourier transform works either with periodic functions or makes

them periodic [13]. In general case, an image has not the same values on the edges and
by periodizing an image, we obtain a function with jumps at the edges of the original
image. These jumps are often the most contrasty structures in the function and may lead
to incorrect registration. Therefore, it is necessary to remove such edges from the image
used for the shift estimation, to smooth them out. This is done by multiplying the image
by a suitable function g, a so called window function. Such function must be zero or
almost zero at the image edges and one on a large part of the image. Commonly used
window functions are the Gaussian window function and the Hanning window function.
A brief discussion on other types of window functions can be found in [47] and a very
detailed discussion can be found in [31].

Definition 4.11 (Window functions). Let sets

A = 〈−a, a〉 × 〈−b, b〉, a, b ∈ R+0 ,

B =
{
(x, y);x2 + y2 ≤ r2

}
, r ∈ R+0 .

Let σ ∈ R+ be a given number. Let ρ(X,A) be the distance of point X = (x, y) from set
A, i.e. [18]

ρ(X,A) = inf {d ∈ R, d = ρ(X, Y ), Y ∈ A} ,

where ρ(X, Y ) is the Euclidean metric.

(a) Function

gGR(x, y) = e
− ρ2(X,A)

σ2

is called the rectangular Gaussian window function.

(b) Function

gGC(x, y) = e
− ρ2(X,B)

σ2

is called the circular Gaussian window function.
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(c) Function

gHR(x, y) =

{
1
2 +

1
2 cos

πρ(X,A)
σ

if ρ(X,A) ≤ σ

0 if ρ(X,A) > σ

is called the rectangular Hanning window function.

(d) Function

gHC(x, y) =

{
1
2 +

1
2 cos

πρ(X,B)
σ

if ρ(X,B) ≤ σ

0 if ρ(X,B) > σ

is called the circular Hanning window function.

Figure 4.3 shows graphs of cuts of the window functions defined in Definition 4.11.
The window functions are defined symmetrical with center in (0, 0). When we apply them
on images, we must shift them by

(
N
2 ,

N
2

)
, i.e. multiply image f by a window function

g
(
x− N

2 , y −
N
2

)
.

x

y = 0

−a− 3σ a + 3σ−a a0

gGR(x, y), gGC(x, y)1

(a)

x

y = 0

−a− σ a + σ−a a0

gHR(x, y), gHC(x, y)1

(b)

Figure 4.3: Graphs of cut of window functions gGR, gGC (a), gHR, gHC (b) for y = 0.

The Gaussian window function never diminishes totally. Therefore, it is necessary to
use σ low enough so that the values of g at the image edge are negligible. It is reasonable
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that the distance from the set A or B to the image edge is at least 3σ. For a point (x, y)
which is 3σ far from set A, gGR(x, y) = e−9

.
= 1.234 1 · 10−4, which results in a pixel value

of 8 applied on a 16-bit image which is originally white at this pixel. Such value is really
negligible compared to other structures in a common image.
The advantage of rectangular window functions is that they keep a bigger part of the

image. On the other hand, they still keep some little information on the image edges, as
the edges of the unchanged part of the image are parallel with the original image edges.
Using circular window functions, we loose a bigger part of the images, but we also loose
all information on the original image edges. An advantage of Hanning window functions
is that they diminish totally at image edges (for suitable σ). It is not necessary to apply
the same window function on both images to be registered. It depends on the distribution
of structures in the image. If the window functions are different (i.e. in the best case one
is rectangular and the other is circular), it assures that they do not bring about similar
structures in the images which might lead to incorrect registration.
The Fourier spectra of most images have a clear cross corresponding to the the jumps at

image edges. The purpose of multiplication by a window function is to remove the image
edges, which means to remove the cross from the Fourier spectra. Even the rectangular
window functions work very well as it is illustrated in Figure 4.4.

(a) Amplitude spectrum of the original im-
age, Fig. 4.2a. Note the slightly inclined
horizontal line. It clearly shows that most of
the structures in the image are not horizon-
tal, but they are inclined. The boat is not
oriented exactly horizontally in the picture.

(b) Amplitude spectrum of the original im-
age multiplied by a rectangular Gaussian
window function (N = 1024, a = b = 256,
σ = 85).

Figure 4.4: Illustration of the image edge removal on the amplitude spectrum.

Even slightly overlapping images can be registered by means of phase correlation.
The shift computed by phase-correlation is ambiguous. It is due to the similarity of the
Shift Theorem for periodized functions (Thm. 3.16, page 42) and the Shift Theorem 3.17
(page 42). The phase-correlation function does not say if the shift is for instance 56N or
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−16N . If the global maximum appears at a point close to (0, 0), it is natural to assume
that the shift is small. If the shift is not small, it is necessary to choose the second
possibility. In most cases, it is clearly visible which possibility is the correct one. This
makes image registration harder to automatize.
If we register images which are smaller that N × N , we center the images inside the

square image. Let us assume that images f1, f2 have width m and height n. Let N ∈ N
be number divisible by a higher power of 2 (at least 16), not divisible by a high prime
number, such that m ≤ N, n ≤ N . Then we create image fc1, fc2 from images f1, f2 by

fck(x, y) =

{
fk(x−m0, y − n0) if m0 ≤ x ≤ m0 +m− 1, n0 ≤ x ≤ n0 + n− 1
0 else

for k = 1, 2, where m0 =
⌊

N−m
2

⌋
, n0 =

⌊
N−n
2

⌋
. Images f1, f2 are placed in the center of

images fc1, fc2 surrounded by a black area. If we center all images into a bigger square
one, we can register images of different sizes. Now the edges of the images will be the most
contrasty structures in the images and would lead to incorrect registration. Therefore, we
must apply suitable window functions on the images to smooth the edges out. It is also
possible to apply window functions before centering the images.

4.2.3 Registration of similar images

Generally, similarity is a combination of rotation, scale-change, shift and axial symmetry.
It is usually clearly visible whether the transformation between two images involves axial
symmetry. If it does, we flip one of the images before proceeding with the registration.
Then we can use the method described bellow for estimation of the rotation, scale-change
and shift parameters.
Shifts by integer shift vectors can be performed precisely in digital images. Rotations

by general angles and scale-changes by general factors must be performed by interpola-
tion of pixel values. Therefore, the Fourier transform of rotated and scaled functions is
discussed for functions in L (R2) only (Theorems 2.45 on page 24 and 2.43 on page 23),
not in the discrete case.
Let us first consider a digital gray-scale image f1 and an image f2, which is a replica

of image f1 rotated by angle θ ∈ 〈0, 2π) around the origin, i.e. with some simplification
we can write

f2(x, y) = f1(x cos θ − y sin θ, x sin θ + y cos θ).

The simplification lies in the fact that the formula treats the functions as if they were
R2 → C. Function f2 must be interpolated and rounded from function f1 pixel values.
If this transformation is performed with digital gray-scale images, a part of image f1 is
cut out in image f2 and a part is filled with zeroes. In reality, both images are cropped
from a ”bigger scene”, therefore there is no filling with zeroes, pixel values are non-zero
even in pixels of f2 which do not correspond to any pixels in f1. They are known from
the ”bigger scene”.
Before computing Fourier spectra, we need to apply window functions on both images.

If the images are transformed to polar coordinates, rotation is transformed to shift along
the angle axis. In most cases, we do not know the point around which the image was
rotated, which makes suitable transformation to polar coordinates impossible. According
to the Rotation Theorem 2.45, the amplitude spectrum A2 of image f2 is rotated by angle
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θ with respect to the amplitude spectrum A1 of image f1

A2(ξ, η) = A1(ξ cos θ − η sin θ, ξ sin θ + η cos θ).

It is always rotated around the origin (from the Similarity Theorem 2.46 on page 25).

Definition 4.12 (Transformation to polar coordinates). Let f(x, y) be a func-
tion R2 → C. Function f(x, y) transformed to polar coordinates is function fp(ρ, ϕ) :
〈0,+∞)× 〈0, 2π)→ C such that

ρ =
√
x2 + y2,

and ϕ is the solution to

x = ρ cosϕ

y = ρ sinϕ.

Let us denote

Ap
1(ρ, ϕ), A

p
2(ρ, ϕ), ρ ∈

(
0,
N

2

〉
, ϕ ∈ 〈0, 2π)

the amplitude spectra of images f1, f2 transformed to polar coordinates. We restrict to
ρ ∈

(
0, N
2

〉
, because we assume here that the domain of the image (0, 1, . . . , N − 1) is

the same as the domain of the Fourier spectrum and we transform to polar coordinates
only the interior of the incircle of the domain. Furthermore the transformed amplitude
spectrum is stored in the computer as a digital gray-scale image and it is necessary to
decide about the scale of the angle axis. The rotation has changed to shift,

Ap
2(ρ, ϕ) = A1(ρ cosϕ cos θ − ρ sinϕ sin θ, ρ cosϕ sin θ + ρ sinϕ cos θ) =

= A1(ρ cos(ϕ+ θ), ρ sin(ϕ+ θ)) = A
p
1(ρ, ϕ+ θ),

and we can use phase correlation applied on amplitude spectra Ap
1, A

p
2 to determine the

shift vector [45]. Yet it is not necessary to use the whole spectra [45]. Corollaries 2.56
(page 31) and 3.20 (page 45) say that if function f is real (as all digital images are)

A(ξ, η) = A(−ξ,−η).

Therefore, any two subsequent quadrants of the amplitude spectra contain all information
about the whole amplitude spectra. The amplitude spectrum in polar coordinates is a
periodic function with period π and we can use the Shift Theorem for Periodized Func-
tions 3.16 (page 42). Applying phase correlation on periodic functions, we do not need to
apply any window functions as we do for most digital images. (The amplitude spectra are
not periodic in the ρ-axis. Edges in ρ = 0 and ρ = N

2 may lead to incorrect registration.
Since we are not searching for a shift in the ρ-axis, this error is of no interest here.) This
means that we apply phase-correlation on Ap

1(ρ, ϕ), A
p
2(ρ, ϕ), ρ ∈

(
0, N
2

〉
, ϕ ∈ 〈0, π) and

the found shift in angle axis ϕ represents the rotation angle θ between images f1 and f2.
Instead of functions Ap

1(ρ, ϕ), A
p
2(ρ, ϕ), it is better to use functions ln(1 + A

p
1(ρ, ϕ)),

ln(1 + Ap
2(ρ, ϕ)). Amplitude spectra A1, A2 have the highest values around (0, 0) and

higher spatial frequencies have much smaller values of the amplitude spectra. The lowest
frequencies are not that useful for phase-correlation. They describe the overall brightness
of the image, vignetting, diffuse light in the optical system etc. Applying logarithm on
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the amplitude spectra values makes higher spatial frequencies more significant for phase
correlation.
The rotation angle computed by phase correlation is ambiguous. The phase correlation

does not say if the rotation angle is e.g. 23π or
5
3π [45]. It is due to the π-periodicity of

amplitude spectra Ap
1, A

p
2. It is usually reasonable to await small rotation angles and if

they are not correct, to choose the second possibility. This makes registration of rotated
images harder to automatize. [45] suggest a method to automatize it. First, f2 is rotated
by the computed angle θ, then by π + θ. In both cases, the shift vector (x0, y0) between
images f1 and f2 rotated by −θ is computed by means of phase correlation. The higher
peak in the phase-correlation function corresponds with the correct rotation.

Remark 4.13. De Castro and Morandi in [16] described a method for phase-correlation
based registration of translated and rotated images. They introduced a function

G(ξ, η, ϑ) =
F2(ξ, η)

F1(ξ cosϑ− η sinϑ, ξ sinϑ+ η cosϑ)
,

where ϑ ∈ 〈0, 2π) is a variable. Obviously, if ϑ = θ,

G(ξ, η, θ) = e−i(ξx0+ηy0)

and the inverse Fourier transform of G(ξ, η, θ) is the Dirac distribution shifted by (−x0,
−y0). The ”closer” F−1 {G(ξ, η, ϑ)} is to the Dirac distribution (or the discrete impulse
function in the practical computation) the better estimation of θ is ϑ. We must evaluate
F−1 {G(ξ, η, ϑ)} for a number of values of ϑ and then iterate in the interval which gives
the best estimations. Each evaluation requires one computation of the inverse Fourier
transform, whereas the method based on amplitude spectra which was discussed above in
this section requires four Fourier transforms and one inverse Fourier transform in total.
This makes the method of De Castro and Morandi significantly slower than the method
based on amplitude spectra.

Let us now consider image f2 not only rotated by angle θ, but also scaled by factor
α ∈ R+ with respect to image f1, i.e. with simplification we can write

f2(x, y) = f1(αx cos θ − αy sin θ, αx sin θ + αy cos θ).

Definition 4.14 (Transformation to logarithmic-polar coordinates). Let f(x, y)
be a function R2 → C. Function f(x, y) transformed to logarithmic-polar coordinates is
function f lp(ρ, ϕ) : R× 〈0, 2π)→ C such that for

eρ =
√
x2 + y2,

and ϕ is the solution to

x = eρ cosϕ

y = eρ sinϕ.

Before computing Fourier spectra, we apply window functions on both images. Ac-
cording to the Similarity Theorem 2.46 (page 25), the amplitude spectrum of image f2 is
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(up to a multiplicative constant) rotated by angle θ and scaled by factor 1
α
with respect

to amplitude spectrum A1,

A2(ξ, η) =
1
α2
A1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
.

Let us denote

Apl
1 (ρ, ϕ), A

pl
2 (ρ, ϕ), ρ ∈

(
0, ln

N

2

〉
, ϕ ∈ 〈0, π)

amplitude spectra A1, A2 transformed to logarithmic-polar coordinates. The lower bound
for ρ was set to 0, which leaves out the value at the origin. This is the lowest spatial
frequency, whose value only says the average image brightness. This number has no sense
for image registration. We are taking ϕ ∈ 〈0, π) only as the amplitude spectra are π-
periodic (due to Corollaries 2.57 on page 31 and 3.21 on page 45). Changing the linear
scale on the ρ axis to logarithmic undersamples the functions, therefore it is necessary to
decide well about the scale of the ρ axis.
After the amplitude spectra were transformed to logarithmic-polar coordinates, the

rescale changed to shift on the ρ axis,

Alp
2 (ρ, ϕ) =

1
α2
A1

(
eρ

α
cosϕ cos θ − e

ρ

α
sinϕ sin θ,

eρ

α
cosϕ sin θ +

eρ

α
sinϕ cos θ

)
=

= A1
(
eρ−lnα cos(ϕ+ θ), eρ−lnα sin(ϕ+ θ)

)
= Alp

1 (ρ− lnα, ϕ+ θ),

and we can apply phase correlation to the logarithmic-polar amplitude spectra Alp
1 , A

lp
2

[45], [1]. The found shift vector represents the logarithm of the scale factor, lnα on the
ρ-axis and the rotation angle θ in the ϕ-axis. Similarly to registration of rotated images,
it is better to use functions ln(1 + Alp

1 (ρ, ϕ)), ln(1 + A
lp
2 (ρ, ϕ)) instead of A

lp
1 , A

lp
2 for the

phase correlation. Furthermore, it is necessary to apply a rectangular window function
on the amplitude spectra, since they are not periodic in the ρ-axis. Constants a and b of
the window function should be chosen so that only edges with ρ = 0 and ρ = ln N

2 are
removed. The amplitude spectra are π-periodic, therefore there is not need to remove
the edges with ϕ = 0 and ϕ = π. Influences of image rotation and scale-change on
amplitude spectra and amplitude spectra in logarithmic-polar coordinates are illustrated
in Figure 4.5
If image f2 is not only a rotated and scaled, but also a shifted replica of image f1 (shift

and rotation is equivalent with rotation around an arbitrary point),

f2(x, y) = f1(αx cos θ − αy sin θ − x0, αx sin θ + αy cos θ − y0),

where x0, y0 ∈ Z, |x0|, |y0| < N , the Similarity Transformation Theorem 2.46 (page 25)
implies that the shift has no influence on the amplitude spectra of image f2,

A2(ξ, η) =
1
α2
A1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
.

Therefore, we can find the angle θ and scale factor α by means of the method described
above. After image f2 is rotated by angle −θ and scaled by factor 1α to compensate the
rotation and scale-change found by the phase correlation, creating image f3, only shift
remains between image f1 and image f3. Now we can apply phase correlation to find the
shift [45].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Illustration of influences of image rotation and scale on amplitude spectra
and amplitude spectra in logarithmic-polar coordinates. Images (a) and (b) are both
made from the same original image, image (b) is cropped from an image rotated by 30
degrees and scaled by α = 0.8 with respect to the original one. A circular Hanning
window function was applied on both images. Images (c) and (d) show amplitude spectra
of images (a) and (b). Images (e) and (f) show the amplitude spectra transformed to
logarithmic-polar coordinates.
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Influence of matrix size N on registration precision

When we considered shifted images with integer shifts, it was enough that the size of
the matrices representing the Fourier spectra was the same as the size of a square that
the digital images fitted in. The shift was found precisely by phase correlation. If we
consider rotated and scaled images, the situation is totally different. Apart from rotation
by k π

2 , k ∈ Z, there is nothing like ”integer rotation”. The size of the amplitude-spectrum
matrix in logarithmic-polar coordinates says how many steps the angle of π is divided
to. We can find the rotation between two images up to this precision only (if we do not
consider the subpixel extension of the phase-correlation method discussed in Section 4.4
on page 74). Similarly, the precision of the registration of scaled images depends on the
resolution of the ρ-axis.

4.3 Registration of real images

In this section, we assume that the images to be registered are not identical up to a
similarity. They may be taken with different exposure settings, there may be dust particles
on the chip. The images may be taken by different cameras causing different properties of
additive and impulse noise and through different optical systems with different modulation
transfer functions.
The modulation transfer function [21] of an image is a function κ = k(τ), where τ is

spatial frequency and k the normalized contrast. A testing image is a pattern composed of
black and white stripes with sine brightness course. The spatial frequency is the number
of stripe couples in a unit length. Thus the spatial frequency is measured in m−1, usually
in mm−1 (often line pairs per millimeter (lp/mm) are used). The normalized contrast is
the difference between the highest and the lowest pixel values in the image of the stripes
divided by the highest and the lowest possible pixel values, i.e.

k =
S − s

T − t
,

where S and s are the maximal and minimal pixel values in an image of the stripes with
spatial frequency τ , T and t are the theoretical maximal and minimal pixel values. The
lowest value of τ > 0 for which k(τ) = 0 is denoted by µ and called the limiting frequency.
For a given normalized contrast α, the frequency rα = κ−1(α) is called the resolution at
contrast α.
Examples of the modulation transfer function are in Figure 4.6.

Definition 4.15 (Image defects, impulse noise). Let f be a digital gray-scale image
representing an ideal image. Let h be a digital gray-scale image with pixel values

h(x, y) =

{
f(x, y) if Y (x, y) = 0,

m(x, y) if Y (x, y) = 1,

where Y (x, y) are realizations of a random variable X with Bernoulli distribution and
m(x, y) are independent realization of a random variable Z (generally, we do not know
its distribution). If Y (x, y) are not independent realizations of X, we say that image h
contains defects. If Y (x, y) are independent realizations ofX, we say that image h contains
impulse noise [22]. The impulse noise is called constant if for the same conditions (images
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1

k

µrα

α

(a) An model example of a graph of a
modulation transfer function.

(b) The modulation transfer function of the
Canon RF500/4.5L lens at f8 (curve A). Curves
B, C and D apply for mirror lenses with central
obstruction (sketched above the graph) of the
same parameters as the Canon lens. The ratio
S0 : Sm is 0.25 (curve B), 0.5 (curve C), and
0.75 (curve D). Graph taken from [5].

Figure 4.6: Examples of the modulation transfer functions.

taken with the same camera and same exposure setting shortly one after another), we
obtain the same realization of X. The impulse noise is called variable if the realizations
of X are different for every image.

Remark 4.16. Similarly to additive noise, we need to treat the case when f +m > w−1
or f +m < 0 (w − 1 is the maximal possible pixel value, see Def. 4.1). On the contrary
to the additive noise, the exposure setting is not adjusted to impulse noise. All values
higher than w − 1 are mapped to w − 1 and values lower than 0 are mapped to 0 like we
did for additive noise in Remark 4.5 on page 51.

The cause of image defects and constant impulse noise in digital images are mostly
faulty sensors. In scanned classical images, image defects are for example scratches on the
scanned film. The cause of variable impulse noise in digital images are mostly collisions
of the chip with high-energy particles (cosmical radiation). They result in saturated
(h(x, y) = w− 1) pixels called the hot pixels. The longer exposure time we use, the more
hot pixels the image contains.

Definition 4.17 (Dust). Let f be a digital gray-scale image representing an ideal image
containing no dust. Let s be a function R2 → 〈0, 1〉 which is equal to 1 on R2 apart from
a finite number of bounded connected sets A1, . . . An, n ∈ N. Let image

h(x, y) = Round(f(x, y)s(x, y)).

Then we say that image h contains dust.

Remark 4.18. In digital cameras, there may be dust particles directly on the chip or
more often on a filter before it. If the dust particles are directly on the chip, it causes
almost black spots in the image which are almost independent on the used optical system.
If the dust particles are on a filter, they cause darker spots in the image whose size and
dimness depend on the optical system and the aperture setting (if the system has an
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aperture). Therefore, the appearance of dust particles may vary from image to image.
Furthermore, if we shake the camera or the camera shakes the chip (some newer camera
models shake the chip to remove dust particles), the particles may move. If we do not
change the settings of the optical system and do not move the camera much, we can
take so called flat-field images, out-of-focus images of an evenly lit ground (e.g. the sky
through a flimsy paper). They enable us to estimate the function s and if we multiply
function h by 1

s
, we can somehow restore image f provided s is not 0 or close to zero

at some pixels. However, further image processing may reveal the places with corrected
darker spots again.

4.3.1 Registration of images with respect to their modulation
transfer function

The modulation transfer function is mainly influenced by the properties of the optical
system and the photo-sensitive elements of the chip. If the optical system is out of
focus, the limiting frequency (from the definition of the modulation transfer function on
page 63) is lower than if the optical system is in focus. If we have a very good lens
and a chip with large sensors, the limiting frequency is lower than if we had smaller
sensors. Taking the size of sensors into consideration, the limiting frequency can be used
for computing the limiting frequency in the Fourier spectrum of the image taken with
this system. If we have focused optics of high quality enough for the size of the sensors,
the limiting frequency in the Fourier spectrum is larger than

√
2
2 N (the highest frequency

of the spectrum). If the optical system is out of focus, some higher frequencies in the
Fourier spectrum may contain no information, be equal to zero (or almost zero if we take
noise into consideration). Such case can be treated by using the semi-phase correlation
function (Definition 3.25 on page 46)

P p,q
f1,f2
(x, y) = D−1

{
F1(ξ, η) · F ∗

2 (ξ, η)
(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)

}
for p, q ∈ R+. Letting (p, q)→ (0, 0), we obtain the phase-correlation function. If we take
high values of p, q, we are dividing by almost a constant, resulting in nearly the cross-
correlation function (up to a multiplicative constant). If we use pure phase-correlation,
the values of the cross-power spectrum are normalized by its amplitude, which means that
information on all spatial frequencies are taken with the same weight. If there is almost
no information on a given frequency, it is divided by its very small amplitude. If there
is much information on a given spatial frequency, the value of the cross-power spectrum
is large causing division by a large amplitude. On the contrary, a pure cross-correlation
does not perform any normalization, the cross-power spectrum is taken as it is. This
may seem to be better in case there are frequencies with no information, like in an image
out of focus. However, as wee have seen in Figure 4.2 on page 54, the cross-correlation
function does not necessarily have the global maximum as a very sharp and high peak. It
may be instable for registration of images with different properties. Therefore, it is better
to use a semi-phase correlation. For sharp images, we may use very small values of p, q
only to make sure that no division by zero may occur. For images which are out-of-focus,
taken with poor optics, or at bad conditions (seeing, haze), we should increase p and q
to decrease the influence of frequencies with no information. Suitable values of p, q are
0.01maxξ,η∈{0,1,N−1}Af (ξ, η) to 0.1maxξ,η∈{0,1,N−1}Af (ξ, η) (where Af is the amplitude
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spectrum of function f) [23]. If the two images to be registered were taken with the same
optical system, both constants should be the same. However, to register images taken
with optical system of very different qualities, we can use different values of p, q.
[6] uses the semi-phase correlation function also for registration of images deteriorated

by Gaussian additive noise.

4.3.2 Registration of images containing additive noise and vari-
able impulse noise, with vignetting and diffuse light

Both additive noise and variable impulse noise are different in every image. Therefore,
there are no corresponding structures in the noise between two different images to be reg-
istered. Both additive noise and variable impulse noise represent information on all spatial
frequencies, mostly on the highest ones. Usually, they are dominant on these frequencies,
which makes the highest frequencies less reliable for image registration. Furthermore,
the lowest spatial frequencies are useless too. F (0, 0) represents the sum of values of
all pixels (Theorem 3.13) (in a gray-scale image the average pixel value) and other low
frequencies contain information about the largest-scale structures in the images such as
optics vignetting and diffuse light in the optical system. They are sensitive to different
contrast and brightness settings of the images. Removing the lowest spatial frequencies is
also a way of enhancing the image structure and is used for visualizing images with high
dynamic range, which makes it suitable for registration of such images, especially with
structures which are hardly visible in the image. A modification of this method is also
used for images of the solar corona discussed in Section 4.6 (starting from page 75).
Due to the facts mentioned above, it is often necessary to multiply the Fourier spectra

of the images by a suitable weight function to reduce information on the highest and the
lowest spatial frequencies. Multiplying the Fourier spectra by a low-pass high-pass weight
function, the semi-phase correlation function (for any p, q ≥ 0) with this modification
remains real, which is ensured by Corollary 3.21 on page 45.

Definition 4.19 (Low-pass high-pass weight function). Let r1, r2, σ1, σ2 ∈ R+ such
that r1 < r2. Function Hr1,σ1(ξ, η) : R2 → 〈0, 1〉 defined as

Hr1,σ1(ξ, η) =


0 if 4

N2
(ξ2 + η2) < (r1 − σ1)2

1
2 +

1
2 cos

π
(
r1− 2

N

√
ξ2+η2

)
σ1

if (r1 − σ1)2 ≤ 4
N2
(ξ2 + η2) < r21

1 else

is called the high-pass weight function. Function Hr2,σ2(ξ, η) : R2 → 〈0, 1〉 defined as

Hr2,σ2(ξ, η) =


1 if 4

N2
(ξ2 + η2) < r22

1
2 +

1
2 cos

π
(
r2− 2

N

√
ξ2+η2

)
σ2

if r22 ≤ 4
N2
(ξ2 + η2) < (r2 + σ2)2

0 else

is called the low-pass weight function. Function Hr2,σ2
r1,σ1
(ξ, η) : R2 → 〈0, 1〉 defined as

Hr2,σ2
r1,σ1
(ξ, η) = Hr1,σ1(ξ, η) ·Hr2,σ2(ξ, η)

is called the low-pass high-pass weight function. Graphs of a low-pass high-pass weight
function are in Figure 4.7.
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r1,σ1
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1

(a) Graph of cut of function Hr2,σ2
r1,σ1 (ξ, η).

(b) Graph of function Hr2,σ2
r1,σ1 (ξ, η) with N = 1000, r1 = 0.3, r2 = 0.7,

σ1 = 0.2, σ2 = 0.25.

Figure 4.7: Graphs of a low-pass high-pass weight function.

A similar weight function is used in [45]. Like window functions, the weight functions
from Definition 4.19 are defined symmetrical with center in (0, 0). When we apply them
on images, we must shift them by

(
N
2 ,

N
2

)
, i.e. multiply the Fourier spectra of the images

by function Hr2,σ2
r1,σ1

(
ξ − N

2 , η −
N
2

)
.

Multiplying the spectra by a low-pass high-pass weight function causes that the prod-
uct is equal to zero for some values of ξ and η. Therefore, it is necessary to use the
semi-phase correlation with p, q > 0 to avoid division by zero. In a general case, it is
possible to apply different low-pass high-pass weight functions on each image to be regis-
tered. For instance, additive noise in an image scanned from a classical film has different
properties than the noise in an image taken with a digital camera. However, choosing
appropriate values of r1, r2, σ1, σ2 is complicated and there is no precise rule for that. It
is usually necessary to set the parameters manually, study the modified phase-correlation
function and if the shift vector is not estimated correctly, change the them and repeat the
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computation.
In most cases, we do not make the image registration less precise if we apply one low-

pass high-pass weight function on the normalized cross-power spectrum of the images. It
enables to recompute the modified phase-correlation function faster after having changed
the parameters r1, r2, σ1, σ2 and it involves less parameters. It also does not bring about
division by zero, because we multiply by the weight function after having divided. In
the further text, we will stick to this simpler case. Then the formula for modified phase
correlation for images with additive noise and variable impulse noise is

D−1
{
Hr2,σ2

r1,σ1

(
F1(ξ, η) · F ∗

2 (ξ, η)
(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)

)}
with p, q ≥ 0 and the result of the inverse discrete Fourier transform remains real due to
Corollary 3.21 (page 45).
If there is no need for the high-pass weight function due to negligible amount of

additive noise and variable impulse noise or the application of a high-pass weight function
is performed in another way (for example by a filter applied directly on images f1, f2 as
it is described in Section 4.6 starting from page 75), the low-pass weight function from
Definition 4.19 can be replaced by the Gaussian low-pass weight function, which treats
the normalized cross-power spectrum in a different way.

Definition 4.20 (Gaussian low-pass weight function). Let λ ∈ R+0 . Function
Hλ(ξ, η) : R2 → (0, 1〉 defined as

Hλ(ξ, η) = e
−λ ξ2+η2

N2

is called the Gaussian low-pass weight function with parameter λ.

In fact, the Gaussian low-pass weight function is identical with the circular Gaussian
window function from Definition 4.11 (page 55) for r = 0 and λ = N2

σ2
. Influence of the λ

parameter of the Gaussian low-pass weight function is illustrated in Figures 4.8 and 4.9.

4.3.3 Registration of images containing image defects, constant
impulse noise and dust

In this section, we will assume that the images to be registered contain not only additive
noise and variable impulse noise, but also image defects, constant impulse noise and dust
and both of them were taken with the same camera. Images taken by different cameras
have faulty pixels and dust at different places. Then these structures in one image do
not correspond to any structures in the second image and they do not bring about a
misleading maximum of the modified phase-correlation function. The difference between
the noise discussed in the previous chapter and the defects discussed here is that image
defects, constant impulse noise and dust represent structures which are identical or very
similar in both images. Therefore, they often lead to incorrect image registration. The
shift computed by phase-correlation may be (0, 0), because the faulty pixels and dust do
not move between taking images. This causes the worst problems if the shift between the
images is very small and the correct maximum is then close to (0, 0). If the norm of the
shift vector is higher (the maxima corresponding to the correct shift and the zero shift are
far enough so that their peaks do not overlap), the maxima are clearly distinguishable and
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Figure 4.8: Details of peaks of the phase-correlation function with Gaussian low-pass
weight function applied on the normalized cross-power spectrum. Parameter λ is set to
0, 1, 2, 4, 8, . . . , 256 (from top left to bottom right). The images are shown in negative,
i.e. the darkest pixels are global maxima. Image f1 is a high quality image of the solar
corona taken by Constantinos Emmanoulidis in Akademgorodok, Novosibirsk, Russia on
August 1, 2008 with digital camera Canon EOS 350D and Skywatcher ED80 lens with
f6.3 focal reducer 395mm. Image f2 is identical with image f1 up to a non-integer shift by
(5.352,−3.598). A circular Gaussian window function and the T8 filter were applied on
both images (see Section 4.6.1 for details on the filter). The details show 20× 20 pixels.
λ = 32 is probably the best for estimation of the shift vector.

by choosing suitable values of the parameters of the low-pass high-pass weight function
we can usually assure that global maximum is the correct one. This may sometimes
deteriorate the registration precision.
Even if the images contain image defects, constant impulse noise and dust, we may try

to register them without treating the defects. Treating them takes more computing time
and in case of dust, it cannot be done automatically. It often helps to adjust the value of
r1 or λ of the low-pass weight function applied on the normalized cross-power spectrum.
However, if the peak of the modified phase-correlation function becomes too flat and the
registration imprecise, it is necessary to treat the image defects, constant impulse noise or
dust. If we treat all of them, it is necessary to treat image defects and impulse noise before
treating dust, so that we do not use faulty pixels for interpolation of spots caused by dust
particles. Dust causes bigger problems than constant impulse noise. Impulse noise affects
single pixels, having impact especially high spatial frequencies, which are then filtered out
by the low-pass weight function. The spots from dust particles are bigger, affecting more
frequencies.

Treating image defects and impulse noise

Treating impulse noise was described in [22]. It always consists of two steps — detection
and correction.
To detect impulse noise and image defects, we test a statistical hypothesis that a given
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Figure 4.9: Details of peaks of the phase-correlation function with Gaussian low-pass
weight function applied on the normalized cross-power spectrum. Parameter λ is set to
0, 1, 2, 4, 8, . . . , 256 (from top left to bottom right). The images are shown in negative,
i.e. the darkest pixels are global maxima. Image f2 is a slightly blurred image (the lens
was out of focus, there was probably motion-blur too) of the solar corona taken by Lapo
Casetti at the Bodonch Gol in Mongolia on August 1, 2008 with digital camera Canon
EOS 350D and Borg 77ED refractor, 6.5/500mm, with exposure time 2 s. Image f1 is
a composition of ten images with exposure times 1/125 s to 1/4 s. A circular Gaussian
window function and the T10 filter were applied on both images. The details show 40×40
pixels. λ = 64 is probably the best for estimation of the shift vector.

pixel (x, y) is faulty. The test criteria is

|f(x, y)− f̄(x, y)| < ε,

where f(x, y) is the value of the given pixel in the tested image and f̄(x, y) is a location
characteristic of the statistical set consisting of pixel values of the pixels in the neighbor-
hood of pixel (x, y). A very good characteristic to be used is median though it is slower to
be computed. It is faster to compute the mean value. The mean value gives worse results
especially in case there are more faulty pixels in the neighborhood of the tested pixel, e.g.
a row of faulty pixels. Probably the best characteristic is the trimmed mean value, i.e. a
mean value computed from only those pixel values f(s, t) of the neighborhood which have

|f(s, t)− f0.5(x, y)| < δ,

where δ > ε and f0.5(x, y) is the median of pixel values in the neighborhood of pixel (x, y).
It is convenient for computations to use square neighborhoods, e.g. 5× 5 pixels. There is
a mathematical method for choosing the appropriate values of ε described in [22], but it
is usually enough to check visually if the faulty pixels are removed and the image is not
deteriorated much.
A fast single-path method of faulty-pixel correction replaces the pixel value f(x, y) by

the value of the location characteristic used for detection, f̄(x, y). In this case, the value
f̄(x, y) is computed from all pixels, even from the faulty ones. This gives bad results
especially if we use the mean value as the location characteristic. A slower, double-path
method replaces f(x, y) by f̄(x, y) computed only from pixels which were not detected as
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faulty. The best and the slowest method replaces f(x, y) by a value interpolated from the
neighboring pixels which were not detected as faulty.
If there are bigger image defects, e.g. a block of faulty pixels or multiple faulty rows,

they need to be detected manually and then interpolated from the neighboring pixels.

Treating dust

Darker spots in the images caused by dust particles on the chip or on the filters before it
are several pixels to tens of pixels large. They are too large to be detected by a method
used for detecting impulse noise and may look similar to correct structures in the image.
Therefore, they must be detected manually. After selecting which pixels belong to the
spots, the pixels should be interpolated from the surrounding pixels. The interpolation
should be done in a way that does not bring about any new structures in the affected
pixels. A suitable method is incomplete convolution described in [25].

4.3.4 Registration of shifted images step by step

In this section, we will sum up the modified phase correlation for shifted images. Let us
denote f1, f2 the images to be registered. For computing the Fourier transform we will
use a square N ×N (N is an even number).

1. Multiplication of images f1, f2 by window functions, obtaining images fw1, fw2.

2. Centering images fw1, fw2 in the square N ×N pixels, obtaining images fc1, fc2.

3. Computing the semi-normalized cross-power spectrum Z = Zp,q
fc1,fc2

of images fc1, fc2.
Constants p, q chosen close to zero.

4. Multiplication of Z by a low-pass high-pass weight function, obtaining function Zw.

5. Computing the inverse discrete Fourier transform P of Zw.

6. Finding the coordinates of the global maximum of function P , i.e. finding the shift
vector (−x0,−y0).

The algorithm involves two discrete Fourier transforms and one inverse discrete Fourier
transform computed by means of the Fast Fourier Transform algorithm.
Applying the computed shift on the original images and checking their coincidence,

we may find out that the computed shift is incorrect. From the properties of images f1, f2
and the shape of the peak in P , we can suggest changes to the algorithm to compute a
better shift vector. The fastest option is to change the properties of the low-pass high-pass
weight function. Enhancing parameter r1 or λ usually helps in cases the global maximum
is not the centroid of the peak and also in cases when the global maximum is in (0, 0)
(corresponding to the dust and constant impulse noise). In the latter case, it would be
better to remove the dust or constant impulse noise, but it is more time-consuming (dust
must be removed manually and if we remove constant impulse noise, we must start the
algorithm from scratch). If we do not need to enhance r1 or λ too much (r1 = 0.5 or
λ = 512 is about the maximal usable value), it is possible to overcome the problem of dust
and constant impulse noise by the low-pass weight function. If there is too much dust or
constant impulse noise, it is necessary to treat it. Constant impulse noise must be treated
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before treating dust. If one or both of the images are blurred (lower-quality optics, optical
system out of focus, vibrations during the exposure), it may help to enhance constants
p, q in the modified normalized cross-correlation function or to enhance parameter r2 of
the high-pass weight function.

4.3.5 Registration of similar images step by step

In this section, we will sum up the modified phase correlation for similar images. Let us
denote f1, f2 the images to be registered. For computing the Fourier transform we will
use a square N ×N (N is an even number).

1. Multiplication of images f1, f2 by window functions, obtaining images fw1, fw2.

2. Centering images fw1, fw2 in the square N ×N pixels, obtaining images fc1, fc2.

3. Computing amplitude spectra A1, A2 of images fc1, fc2.

4. Computing logarithm of the amplitude spectra A1, A2 (precisely ln(1 + A1), ln(1 +
A1)), obtaining functions Al1, Al2.

5. Transforming functions Al1, Al2 to logarithmic-polar coordinates, obtaining func-
tions Alp

l1, A
lp
l2.

6. Multiplying functions Alp
l1, A

lp
l2 by rectangular window functions which diminish only

at edges with ρ = 0 and ρ = N
2 , obtaining functions A

lp
w1, A

lp
w2.

7. Computing the semi-normalized cross-power spectrum Zp,q
A of functions Alp

w1, A
lp
w2.

Constants p, q chosen close to zero.

8. Applying a low-pass high-pass weight function on ZA, obtaining function ZwA.

9. Computing the inverse discrete Fourier transform PA of function ZwA

10. Finding the coordinates of the global maximum of function PA, i.e. finding the vector
(lnα, θ).

11. Applying scale-change by α−1 and rotation by −θ to image fc2, obtaining image f3.

12. Computing the semi-normalized cross-power spectrum Z of images fc1, f3. Con-
stants p, q chosen close to zero.

13. Applying a low-pass high-pass weight function on Z, obtaining function Zw.

14. Computing the inverse discrete Fourier transform P of function Zw.

15. Finding the coordinates of the global maximum of function P , i.e. finding the vector
(−x0,−y0).

The algorithm involves six discrete Fourier transforms and two inverse discrete Fourier
transform computed by means of the Fast Fourier Transform algorithm. The number of
Fourier transforms can be reduced by one if we keep the Fourier transform of image f1
from step 3 to step 12. The discussion on the parameters of the algorithm is quite the
same as for the shifted images, however, most of the parameters are used twice and they
do not need to be the same in both cases.
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4.3.6 Registration of motion-blurred images

It sometimes happens, not only in solar eclipse photography, that taken images are motion-
blurred due to vibrations of the mount or motion of the observed objects. The latter
happens for instance if a paralactic mount is not set up properly or a fixed mount is used
for astronomical photography with too long exposure times. Both causes result in motion
along a circle, but the curvature is usually negligible and the motion can be approximated
by motion along a straight line. The discussion of the dynamics of this motion is more
complicated. Vibrations of the mount can be taken as oscillation with attenuated sine
course. If they are caused by the mirror or the shutter in the camera, the oscillation
amplitude is the highest shortly after the exposure starts and decreases quickly. Another
source of oscillations my be strong wind, which causes oscillations with the same frequency
(eigenfrequency of the system), but unpredictable amplitude. The exposure time has a
big impact on the blur of the images. Images with shorter exposure times are less likely
blurred. Images with exposure time of a few seconds may be taken during several periods
of the oscillation. Despite the lower quality of the images caused by motion blur, it is
sometimes necessary to work with such images. Due to the complicated dynamics, it is
impossible to use deblurring methods based on deconvolution.
Figure 4.10 illustrates the impact of motion blur of one of the images to be registered

on the phase-correlation function. The global maximum in phase-correlation functions
with higher values of λ is approximately at coordinates (1, 1.73), which is the mean shift
of the images used for creation of image f2.

Figure 4.10: Details of peaks of the phase-correlation function of two images, one is a
motion-blurred replica of the other one. Gaussian low-pass weight function was applied
on the normalized cross-power spectrum. Parameter λ was set to 0, 1, 2, 4, 8, . . . , 256 (from
top left to bottom right). The images are shown in negative, i.e. the darkest pixels are
global maxima. Image f1 is identical with the image used in Figure 4.8. To create image
f2, 17 replica of image f1 were created with shift

(
t cos π

3 , t sin
π
3

)
, t = 0, 0.25, 0.5, . . . , 4,

and they were averaged. A circular Gaussian window function and the T8 filter were
applied on both images (see Section 4.6 for details on the filter). The details show 18×18
pixels.

In images with no sharp contrasty structures (like Figure 4.12b on page 77), it is hard
to say visually if the image is motion-blurred or not. The shape of the phase-correlation
function peak can be a good tool for this assessment.
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4.4 Subpixel precision registration

The modified semi-phase correlation function is represented by a matrix, which means
that the searched coordinates (x0, y0) are integer-valued. Let (x0, y0) be the integer-valued
estimate of the shift vector between images f1 and f2 computed as the coordinates of the
global maximum of the semi-phase correlation function (with some modifications to the
method described in the Section 4.3). We will compute the sub-pixel precision estimate
of the shift vector, (x̄0, ȳ0). There are several methods how to estimate non-integer valued
shifts.
Oversampling the images (described briefly in [2]) cannot enhance the registration

precision much and leads to immense storage requirements and time-consuming compu-
tations. [2] describes fitting of a quadratic, Gaussian or modified sinc function through
points P (x0, y0), P (x0 + 1, y0), P (x0 − 1, y0), P (x0, y0 + 1), P (x0, y0 − 1), where P is the
phase-correlation function, separately in each direction. These methods only use a small
number of points around (x0, y0) and thus are quite sensitive to small variations in values
of P in these points. On the other hand, the methods are based on the properties of
the phase-correlation function of two replicas of the same image mutually shifted by a
non-integer shift (Figure 4.8), which is a modified sinc function [43]. Therefore, they lead
to very good results if the images to be registered are ”nearly identical”, e.g. video-rate
images taken with a hand-held camera. As we can see from Figures 4.9 and 4.10, it is quite
reasonable to take more points into consideration, especially in cases when the images are
”more different”. This is what the following method does.
A method described in [23] based on geometric moments turned up to be very robust.

The sub-pixel precision estimate of the shift vector, (x̄0, ȳ0) is computed as

(x̄0, ȳ0) =

(
M1,0
M0,0

,
M0,1
M0,0

)
,

whereMk,l is the geometric moment computed over a circle with center (x0, y0) and radius
ε ∈ R+, i.e.

Mk,l =
∑∑
x2+y2<ε

xkylP (x0 + x, y0 + y), k, l = 0, 1,

where P (x, y) is the modified semi-phase correlation function from the last step of the
sequence of steps described in Section 4.3.4. We may consider the point (x̄0, ȳ0) as the
center of gravity of the peak and its neighborhood with radius ε. Usual values of ε range
from 3 to 8. This parameter is another parameter which needs to be set manually when
two image are to be registered.
The subpixel extension of the modified phase-correlation method describes estimating

of a non-integer shift between images. It can also be used for enhancing the precision of
the estimation of rotation and scale-change between similar images. The only difference
is that the integer-valued vector (x0, y0) is replaced by a value of (lnα, θ) corresponding
to integer indices in the matrix representing the modified phase-correlation function. The
subpixel estimation gives us non-integer indices in the matrix, which correspond to a more
precise value of (lnα, θ).
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4.5 Checking the results

It is always very important to check if the computed registration parameters are correct.
A simple method is to create a color composition of both images after one of them was
transformed with the estimated parameters. There are several possibilities. One of them is
to create an image with image f1 in its red and blue color channels and transformed image
f2 in its green color channel. The human eye is the most sensitive in green [24], therefore
both images are using about the same brightness range. Figure 4.11 is an example of
images used for checking the registration results.
If both original images are identical up to a shift, the color image is neutrally gray.

Images of the same ”scene” taken at the same conditions with the same settings only
show color noise. If the images are taken at different conditions, with different settings of
the camera or the optical system, the image is not neutrally gray. Our knowledge about
the content of the images will enable us to assess if they are registered correctly.

(a) (b)

Figure 4.11: Color images used for checking the registration results. Figure (a) shows a
small part of images f1, f2 before registration, in Figure (b) image f2 was shifted by the
computed shift vector (14.089,−40.955). The used images were taken by Constantinos
Emmanoulidis in Akademgorodok, Novosibirsk, Russia on August 1, 2008 with digital
camera Canon EOS 400D and Takahashi TSA102 814mm lens.

4.6 Registration of solar corona images

Digital images of the solar corona taken during total solar eclipses are specific in many
ways. The solar corona has very high contrast, which causes that it is impossible to
capture it in a single image. It is necessary to take images with different exposure times
to cover whole its brightness range. Images taken with very short exposure times are
mostly underexposed with only a small part of the image correctly exposed. Images
taken with longer exposure times have a part which is overexposed (saturated), a part
which is correctly exposed, and a part with very low pixel values containing almost no
information. Images taken with the longest exposure times have a large overexposed part
and the rest is correctly exposed. We need to register images taken with different exposure
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times and then compose all these images into one image with very high dynamic range.
Specific methods used for solar corona image registration are described in [23].
Usually, there are not many structures visible in the original images. There is very

high contrast, which may be eliminated by using a suitable high-pass weight function on
the normalized cross-power spectrum. However, there are aspects that cause that it is
better to replace the high-pass weight function by another procedure. The most contrasty
structure in solar corona images from total solar eclipses is the edge of the Moon. The
Moon moves in front of the Sun during the eclipse, which causes that registration of
the images with respect to the Moon does not give the same results as registration with
respect to the corona. If we do not remove the Moon edge from the images used for image
registration, the images will be registered to the Moon and the corona will be registered
incorrectly. Furthermore, a contrasty and sharp structure in the images is the edge of the
saturated part of the image. Any non-linearity (edge of the saturated part, inhomogenous
diffuse light) highly influences spatial frequencies in the radial direction and makes them
unreliable for image registration.

4.6.1 Tangential high-pass filter Tς

A solution to this problem is removing the information on spatial frequencies in radial
direction and preserving the information on the spatial frequencies in tangential direction
only. This cannot be done by applying a weight function on the spectrum. This must
be done by a filter Tς(f(x, y)) applied on the images which is defined by the following
formula

Tς(f(x, y)) = f(x, y)−
1

ς
√
2π

l2∫
l1

f

(
xc + ρ cos

(
ϕ+

l

ρ

)
, yc + ρ sin

(
ϕ+

l

ρ

))
e−

l2

2ς2 dl,

(4.1)
where ρ, ϕ are the polar coordinates of point (x, y). The origin (xc, yc) of the polar
coordinate system should be in the center of the Sun, which is not easy to be found.
Therefore the center of the Moon is used instead as its approximation. The difference
between the positions of the two centers is not big and it has no influence on the precision
of image registration. The integral in formula (4.1) may be understood as an unsharp mask
created by means of a one-dimensional low-pass filter with Gaussian kernel applied on the
circle centered at the center of the Sun. Limits l1, l2 are usually set to l = −3ς, l2 = 3ς.
The difference between integration of the Gauss function from −∞ to ∞ and from −3ς
to 3ς is negligible since we work with 16-bit gray-scale images. The value of ς must be
chosen according to the image quality. For sharp images, we choose e.g. ς = 8, for less
sharp images, we increase ς slightly. Since f(x, y) is defined only for integer-valued (x, y),
its values must be interpolated to compute the integral, the final value is then rounded
for each pixel. Such a filter gives both positive and negative pixel values, therefore the
image after filtration is stored in a signed type array, e.g. {−32 768, . . . , 32 767}.
We must also apply a window function on the image. Due to the shape of the solar

corona, circular window functions are usually more suitable. Computing a filtered image
with a circular window function is much faster than computing a filtered image with a
rectangular window function applied, because we do not need to compute the filtered
image in a large part of the image if we use a circular window function. Nevertheless, if
the exposure time of the image was long and a large part of the image is saturated, there is
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only little space left in the annulus between the edge of the saturated part and the image
edge. Then it is better to use a rectangular window function so that we use the image
structures far from the center of the Sun. Moreover, it is necessary to remove the edge of
the Moon and the edge of the saturated part. Therefore, the window function needs to
be more like the low-pass high-pass weight function from Definition 4.19 (page 66) with
r1−σ1 at the edge of the saturated part if there is one. If there is no saturated part, then
on the edge of the Moon. An example of original images of the solar corona (in linear
brightness scale) and test images used for the estimation of scale-change, rotation and
shift is in Fig. 4.12.

(a) (b)

(c) (d)

Figure 4.12: Example of solar corona images taken during a total solar eclipse. Images
were taken by Constantinos Emmanoulidis in Akademgorodok, Novosibirsk, Russia on
August 1, 2008 with digital camera Canon EOS 400D and Takahashi TSA102 814 mm
lens. The exposure times were 1/60 s (image a) and 2 s (image b). Image (c) was created
from image (a) using filter T8 and a circular window function, image (d) was created from
image (b) using filter T8 and a rectangular window function. The exposure time of image
(b) was so long that it was necessary to use a rectangular window function.
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We use images computed using the described filtration and window function as images
fw1, fw2 in the estimation of the image rotation, rescale, and shift described step-by-step
in Sections 4.3.4 and 4.3.5. The filtration is performed instead of the high-pass weight
function, therefore no more high-pass weight functions are used.

Computing time

Computation of a test image for registration using the T8 filter and a circular Gaussian
window function takes 144 s for an 3 472× 2 314 pixel image with the diameter of the Sun
986 pixels on a computer with Intel Pentium D 3.2GHz CPU and 800MHz memory. To
compute the test image with a rectangular window function, it takes 206 s.

4.6.2 Methods and parameters used for solar corona images

Miloslav Druckmüller developed the first version of the computer program for image
registration based on phase correlation, PhaseCorr, based on the article [45]. The current
version is PhaseCorr 6.0. The control window of the PhaseCorr program is in Figure 4.13.
I have been using the program for several years and gained some skills about the shape of
the peak in the phase-correlation function and the parameters which influence it. In this
section, I would like to mention which methods described in the previous sections we use
and how we do that.

Figure 4.13: The control window of PhaseCorr 6.0.

Let us suppose that we have two images f1, f2 of the solar corona taken during a total
solar eclipse and we would like to register them. They must be taken with the same or
similar exposure times (up to about two stops depending on their quality) or if they are
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taken with different lenses, their exposure times must be similar in the sense of how much
the corona is exposed. To register images with very different exposure times, we need to
have some images with exposure times between f1 and f2 which are registered to one of
the images (e.g. the one with shorter exposure time, f1). Then we average all images we
already have registered, transformed by the computed similarity transformation. Some of
these images have exposure times between f1 and f2. This average is then used instead
of image f1 for the registration.
First we create so called test images used only for the similarity parameter estimation.

This is done in the Corona software. I created the first version of this program in 2002 and
since that time, Miloslav Druckmüller has developed it into a complicated software for
coronal structure enhancement. In the Corona software, we set the approximate position
of the Moon in the images and its radius. Then the program computes the test images
applying a circular or rectangular window function and the Tς filter. For high quality
images, we use ς = 8, for good images, ς = 9 and for lower quality images, we use ς = 10.
These images are used for registration in the PhaseCorr program. It uses phase cor-

relation, i.e. parameters p = q = 0 in the formula for the semi-phase correlation function.
It only performs a check if the product of amplitude spectra of both images is non-zero
in each pixel. If it is zero, it divides by one instead of zero.
As the low-pass weight function, it uses the Gaussian low-pass weight function with

λ = 0, 1, 2, 4, . . . , 4096. Commonly used values are 8 to 256. Higher values are used
only for poor quality images and images with bad correspondence. The recent version
also enables to use subpixel precision registration using the method based on geometrical
moments described in Section 4.4 (page 74).
When the rotation angle θ and scale factor α are computed, the transformation is

performed with the test image only. The whole similarity transformation is performed
after the shift vector is estimated, which keeps as large part of the original image as
possible.

Computing time

For computing the discrete Fourier transform, PhaseCorr uses the FFTW2dll library writ-
ten by Jindřich Nový, which is sometimes even faster than the Fast Fourier Transform.
Registering shifted images, the PhaseCorr program performs steps 3 to 6 from the al-
gorithm in Section 4.3.4. On a computer with Intel Pentium D 3.2GHz CPU, 800MHz
memory, the computation takes 21 s for N = 3472. To compute one Fourier transform,
it takes 6.2 s. Registering similar images, the program performs steps 3 to 10 from the
algorithm in Section 4.3.5. After the user chooses parameters λ and ε, the test image
for image f2 is rotated and scaled by the computed parameters and the user proceeds to
registration of images which are shifted only. Steps 3 to 10 take 44 s for the image and
computer described above.

4.6.3 Registration of images at different wavelengths

In order to comprehend better the processes in the solar corona, it is very useful to study
the radiation of ions or atoms at specific spectral lines. Most of the radiation of the corona
is the photospheric light scattered by free electrons in the corona. Its intensity depends on
the wavelength by the Planck law [29] for temperature 5 785K (the average temperature
of the photosphere) [4]. For this purpose, it is necessary to take photographs at the
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wavelength of the spectral line through a narrow-band filter. Apart from these so called
on-line images, it is necessary to take so called off-line images, which are images taken
through a narrow-band filter with the same band-width and the transmission shifted about
a nanometer from the spectral line. The difference between the photospheric radiation
at these two wavelengths can be considered as negligible. First, the on-line and off-line
images are registered separately, then each images of exposure time is calibrated by flat-
field images and the off-line images for each exposure time are subtracted from the on-line
images. Thus we obtain images showing radiation of the studied ions or atoms only. These
images are then composed into one image with high dynamic range and coronal structures
are enhanced.
If we want to register images showing the radiation of different ions or atoms at

different wavelengths, there may be few similar structures in the images. However, we can
use the off-line images used for creation of both images to estimate the transformation
parameters. Both sets of off-line images contain about the same structures since they
show the photospheric light scattered by free electrons in the corona. Thus we use very
similar off-line images to estimate the parameters of the similarity between very dissimilar
images. Examples of images showing the radiation of specific iron ions (on-line minus off-
line images) and their off-line images are in Figure 4.14. The off-line images 4.14b,d
contain similar structures and hence can be used for registration of images 4.14a,c.

4.7 Testing registration precision

4.7.1 Testing on simulated data

I generated 30 realizations (Xk, Yk) of the random vector (x0, y0) standing for the shift
vector between two images. Both x0 and y0 were uniformly distributed over 〈−200, 200〉.
The generated shift vectors were rounded to three decimals obtaining vectors (xk, yk).
Image f1 was a high quality image used in Figure 4.8 on page 69. The width of the image
was N = 3472, which was also the size of the matrix used for the discrete Fourier trans-
form. Image f2 was shifted with respect to image f1 by vector (xk, yk), k = 1, 2, . . . , 30.
The subpixel shift was performed by means of bilinear interpolation. A circular Guassian
window function was applied and the image used for shift estimation was filtered by the
T8 filter (see Section 4.6.1, page 76). I tried to find the used shifts using the subpixel
extension of the phase correlation method. Knowing what the correct shift was, I tried
to set parameters r2 for the low-pass weight function and ε for subpixel shift estimation
so that the estimated shift is as close to (xk, yk) as possible. Using r2 = 32 and ε = 8,
I succeeded to find precisely the shift vector (xk, yk) for all k = 1, 2, . . . , 30.
Then I did the same test with rotation and scale-change. The generated vectors

(αk, θk), k = 1, 2, . . . , 30 were used for the creation of image f2 scaled by factor αk and
rotated by θk degrees with respect to image f1 using bilinear interpolation. αk ∈ 〈0.9, 1.1〉
with four decimals, θk ∈ 〈−10, 10〉 with three decimals. It was necessary to vary the
values of r2 in the range of 16, 32 and 64 and the values of ε in the range 4, 6, 8, 10 to
obtain the best estimates. In 6 of 30 cases, it was impossible to find αk or θk exactly.
However, the error was only on the fourth decimal for αk (one case) and on the third
decimal for θk (five cases).
Testing on simulated data showed that the phase correlation method with its modifica-

tions and the subpixel precision extension are very precise tools for estimating parameters
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(a) (b)

(c) (d)

Figure 4.14: Images taken during the total solar eclipse on August 1, 2008 with narrow-
band filters. Figure (a) shows the radiation of Fe XI ion, Figure (c) the radiation of Fe
XIV ion, they are on-line images with off-line images subtracted. Figures (b) and (d) are
the off-line images for images (a) and (c). All images are compositions of many images
taken with different exposure times, registered by modified phase correlation, composed
in a single image with very high dynamic range. Finally, structure enhancement was
applied on the images. The images are shown in negative. They are taken from [30].

of similarity between images. In practice, the precision of registration depends on quality
of the used images. The precision of the method is much higher than the precision which
is possible due to other factors influencing the image, e.g. seeing, vibrations of the mount,
image blur caused by movement of the objects which are captured etc.

Testing on images with simulated additive noise

I tested the registration precision on images with added additive noise too. I took the
image used for the testing in the previous section and shifted it by (16, 17). Then I reduced
the size of both the original image and the shifted image three times. I cropped a square
752 × 752 pixels from both images and added additive noise with normal distribution
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to both the images. I chose this procedure so that there is no systematical error in the
registration caused by the organization of the Bayer mask before the sensors. I cropped
both images after the resize so that there is no missing part filled with zeroes in the shifted
image. This enabled me to use the same rectangular Gaussian window function on both
the images.
Then I used the modified phase-correlation method to estimate the shift between the

images. The following table shows the results. The values of ω are standard deviations of
the normal distribution used for the additive noise simulation. λ and ε are the values of
the parameter of the low-pass function (Definition 4.20 on page 68) and the radius used
for subpixel correction (Section 4.4 on page 74) which gave the estimated shift closest
to
(
16
3 ,
17
3

) .
= (5.333, 5.667). The last column shows the error of such estimation, i.e. the

Euclidean norm of the difference of the correct and estimated shift vector. Parameter
ς was set to 8 and the registration precision was insensitive to this parameter. ω = 32
is about the lowest standard deviation of additive noise which Canon EOS 5D digital
camera has at ISO 100. ω = 512 is about the highest standard deviation of additive noise
which the camera has at ISO 3 200. The additive noise standard deviation depends on
temperature.

ω λ ε error
32 16 4 0.023
64 32 6 0.053
128 32 6 0.084
256 64 8 0.027
512 64 6 0.942

The table shows that the more significant the additive noise is, the more we should
enhance λ to filter out information on high spatial frequencies deteriorated by the additive
noise. The influence of additive noise on the registration precision is almost negligible
provided that images were not taken with some of the highest ISO setting the camera
offers.

4.7.2 Testing on real data

It is problematic to test the precision of registration on real solar eclipse data, because
we would need another method with comparable or higher precision which would be able
to give us parameters of the geometrical transformation of images. [23] uses a method
based on measurement of the lunar centroid. For each image, we need to know precisely
the time when the image was taken. We can assume that the mutual shift of the images
to be registered is the shift of the lunar centroid corrected by the shift of the Moon with
respect to the Sun in the images computed from the time when the images were taken,
used optics and parameters of the camera sensor. Only images with short exposures can
be used, because overexposed parts of the image at the lunar edge would lead to imprecise
lunar centroid measurement.
The testing in [23] was performed on images taken on August 1, 2008 in Mongolia by

Miloslav Druckmüller, Peter Aniol and Vojtech Rušin with Canon EOS 5D digital camera
and 1250mm lens. The following parameters of the modified phase correlation were used:
N = 4096, p = q = 0.01%max{Af1 , Af2}, r2 = 0.1N , ς = 8, ε = 3. Since paralactic
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mount was used, the mutual rotation of images was considered to be zero. The lens was
not refocused between the images, therefore no scale-change occurred. Registration by
means of modified phase-correlation and using the lunar centroid do not give differences
higher than 0.40 pixel on the used images.
The data set which the testing in [23] was performed on is quite unique. It is hard

to repeat such test with another data set, because the requirements on the images are
very strong. First, we need to know the times when the images were taken with higher
precision than one second (which is the highest precision available from the EXIF data
of the files). Therefore, we need images taken using a computer program which can
guarantee the precision. We use the Multican application for Linux created by Jindřich
Nový. Secondly, we need images which are shifted with respect to each other, meaning
that the paralactic mount should not be set up in the best possible way. Otherwise, there
is nothing to measure by means of the phase-correlation based method. (Un)fortunately,
the mount used in 2009 on Enewetak was so good and so well set up that there is no
measurable shift among images taken tens of seconds one after another. Last but not
least, only images taken with a suitable focal length must be used. The longer focal
length we use, the more the Moon moves and the longer shifts can be measured. Finally,
there are no better or comparable good data as those used in [23] which can be used for
the testing.
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Chapter 5

Conclusion

Throughout the thesis, I gave proves to several theorems which I have not found proves
to in literature – Theorems 2.45, 2.49c,d, 3.14, 3.15, and 3.24.
Gathering theorems from various sources, I realized that some theorems are stated in

a careless manner. Therefore, I added assumptions to Theorems 2.48, 2.49, 2.54, 2.55,
2.61, and 2.67.
I defined the notions of L(R), L(R2) spaces, semi-normalized cross-power spectrum,

cross-correlation function, phase-correlation function and semi-phase correlation function,
periodization of a function {0, 1, . . . , N − 1}2 → C, N ∈ N and its Fourier spectrum,
discrete Fourier transform and inverse discrete Fourier transform of periodized functions.
I introduced functions ζ(1),p(t) and ζ(2)(s, t).
I stated and proved some new minor results in the Fourier analysis and phase-correlat-

ion theory, namely Theorems 2.38, 2.46, Corollary 2.57, Theorems 2.59, 2.64, 2.66, 3.17,
3.18, Corollary 3.21, Theorems 3.27, 3.29, and 3.31.
I described the method for registration of scaled, rotated and shifted images based

on phase-correlation with its modifications which make it possible to use the method to
register even quite dissimilar images. The images may have high dynamic range and faint
structures, they may contain additive noise, impulse noise, faulty pixels, spots caused by
dust particles. I described the practical aspects of image registration which cannot be
found in literature in details. Namely, I described the need of removing image edges and
suggested window functions for this purpose. The method for registration of rotated and
scaled images is only described in [45] and I gave more rigorous mathematical derivations
of the algorithms. I showed the reasons for applying weight functions on the Fourier
spectra and suggested additive constants in the denominator of the phase-correlation
formula in image with some kinds of modulation transfer function.
I described the extension of this method to subpixel precision and tested the preci-

sion. The method is so precise that other factors influencing image quality, like seeing,
vibrations of the camera and motions of the observed object have much bigger effect. The
method proved to be very robust and it can register images of the solar corona taken dur-
ing total solar eclipses which are impossible to be registered manually by control points
or other registration techniques.
The precise registration of images is very important. If the registered images are then

composed in a single image, imprecise registration causes blur of the resulting image.
Image registration with error smaller than one pixel is a necessary condition for recovering
the faint structures in the visible solar corona in a way showed in Figure 5.1. Such images
enable us to study the strong solar magnetic field visualized by the photospheric light

84



scattered on free electrons in the visible light in high resolution. Special techniques can
be used to visualize different types of ions which map different temperatures. Without
registration of there two types of images, it is impossible to use to full advantage to this
data. Cosmic probes also study the solar corona. It is either using a coronagraph (the
Sun is obscured by a disc with higher diameter than the solar disc) in the visible light or
in the ultra-violet part of the spectrum. Coronagraphs cannot show the innermost part of
the corona, where the most fascinating processes take place. Therefore, the solar eclipses
are unique opportunities to study the inner corona in visible light.

Figure 5.1: An image showing the inner corona during the total solar eclipse on August 1,
2008 (in negative). The images used for the creation of this image were taken by Con-
stantinos Emmanoulidis in Akademgorodok, Novosibirsk, Russia with Takahashi TSA102
814 mm lens and Canon EOS 400D digital camera. 37 images with exposure times 1/250 s
to 2 s were used. Eclipse images were calibrated by means of dark frames and flat-fields,
registered by means of the modified phase-correlation method described in this thesis,
composed by means of LDIC 5.0 software and processed using Corona 4.1 in order to
visualize coronal structures. Final processing was done using ACC 6.1 software. Image
processing by Hana Druckmüllerová and Miloslav Druckmüller [19]. The image is one of
the best images showing the inner corona of the Sun.
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Used symbols

N the set of numbers 1, 2, 3, . . .
N0 the set of numbers 0, 1, 2, . . .
Z the set of integers
R+ the set of all positive real numbers, i.e. (0,∞)
R+0 the set of all non-negative real numbers, i.e. 〈0,∞)
L(R) space of all function R → C with finite integral of |f |, see

Definition 2.4
L(R2) space of all function R2 → C with finite integral of |f |, see

Definition 2.8
C1 class of continuous functions with continuous derivatives, see

Definition 2.30
a∗ the complex conjugate of a ∈ C
bac the integral part of real number a, see Definition 2.40
⊕ addition modulo 2π, see Definition 2.41
χA(x) the characteristic function of set A, see Definition 2.10
F the Fourier transform, see Definitions 2.21, 2.34
F−1 the inverse Fourier transform, see Definitions 2.23, 2.35
D the discrete Fourier transform, see Definitions 3.1, 3.8
D−1 the inverse discrete Fourier transform, see Definitions 3.2,

3.9
f(x, y), f1(x, y), f2(x, y) functions from L (R2) or functions {0, 1, . . . , N − 1} →

C, N ∈ N
N size of the domain functions f(x, y), f1(x, y), f2(x, y), which

are defined on {0, 1, . . . , N − 1}, N ∈ N, N is supposed to
be an even number

(P.V.) the Cauchy principal value, see Definition 2.28
F (ξ, η), F1(ξ, η), F2(ξ, η) the Fourier spectra of functions f(x, y), f1(x, y), f2(x, y)
A(ξ, η), A1(ξ, η), A2(ξ, η) the amplitude spectra of functions f(x, y), f1(x, y), f2(x, y)
Φ(ξ, η),Φ1(ξ, η),Φ2(ξ, η) the phase spectra of functions f(x, y), f1(x, y), f2(x, y)
Cf1,f2(ξ, η) the cross-power spectrum of functions f1, f2, see Defini-

tions 2.62, 3.25
Zf1,f2(ξ, η) the normalized cross-power spectrum of functions f1, f2, see

Definitions 2.62, 3.25
Zp,q

f1,f2
(ξ, η) the semi-normalized cross-power spectrum of functions

f1, f2, see Definitions 2.62, 3.25
Qf1,f2(ξ, η) the cross-correlation function of functions f1, f2, see Defini-

tions 2.63, 3.26
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Pf1,f2(ξ, η) the phase-correlation function of functions f1, f2, see Defini-
tions 2.63, 3.26

P p,q
f1,f2
(ξ, η) the semi-phase correlation funcion of functions f1, f2, see

Definitions 2.63, 3.26
p, q parameters of the semi-normalized cross-power spectrum

and the semi-phase correlation function, see Definitions 2.62,
2.63, 3.26, 3.26

(x0, y0) the shift vector between functions/images f1, f2, see e.g. the
Shift Theorem 2.42

α the scale-change factor between functions/images f1, f2, see
e.g. the Scale-change Theorem 2.43

θ the rotation angle between functions/images f1, f2, see e.g.
the Rotation Theorem 2.45

f1 ∗ f2 the convolution of functions f1 and f2, see Definition 2.58
or discrete periodic convolution of functions f1 and f2, see
Definition 3.22

f̃(x, y), f̃1(x, y), f̃2(x, y) the periodization of functions f(x, y), f1(x, y), f2(x, y) :
{0, 1, . . . , N − 1} → C, N ∈ N, see Definition 3.6

w the number of possible pixel values of a gray-scale image,
see Definition 4.1

Round the unary operation of rounding to the nearest integer
gGR, gGC , gHR, gHC Gaussian and Hanning, rectangular and circular window

functions, see Definition 4.11
fp(ρ, ϕ) function f(x, y) transformed to polar coordinates, see Defi-

nition 4.12
f lp(ρ, ϕ) function f(x, y) transformed to logarithmic-polar coordi-

nates, see Definition 4.14
r1, r2, σ1, σ2 parameters of the low-pass high-pass weight function, see

Definition 4.19
λ parameter of the Gaussian low-pass weight function, see Def-

inition 4.20
ε radius of the neighborhood used for subpixel precision reg-

istration, see Section 4.4
Tς tangential high-pass filter used for solar corona images, see

Section 4.6.1
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Appendix A

Proof of equality
∞∫
0

sinx
x dx =

π
2

A.1 Integration-theory proof

Several times, we needed to compute the integral

∞∫
0

sin px
x
dx.

It is enough to compute the integral

∞∫
0

sin x
x
dx (A.1)

as
∞∫
0

sin px
x
dx =

∣∣∣∣ t = px
dt = p dx

∣∣∣∣ =
∞∫
0

sin t
t
p

dt
p
=

∞∫
0

sin t
t
dt.

I learned the computation of (A.1) at the lectures in Integration Theory by Christer
Borell at Chalmers University of Technology in autumn 2009 [11]. It is also Exercise 59
on page 77 in [27], where Folland suggests to integrate e−xy sin x with respect to x and y.
Let us start with computing

b∫
0

 ∞∫
0

e−xy sin x dy

 dx, b ∈ R+.

If the iterated integral with the absolute value of integrand is finite, we can use Fubini’s
Theorem [9].

b∫
0

 ∞∫
0

|e−xy sin x| dy

 dx = b∫
0

[
−| sin x|

x
e−xy

]∞
y=0

dx =

b∫
0

| sin x|
x
dx ≤ 1 · b < +∞
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Now we can use Fubini’s Theorem in its weak form and write

b∫
0

 ∞∫
0

e−xy sin x dy

 dx = ∞∫
0

 b∫
0

e−xy sin x dx

 dy. (A.2)

Now we compute∫
e−xy sin x dx =

∫
e−xy

(
1
2i
eix − 1

2i
e−ix

)
dx =

1
2i

∫ (
e−xy+ix − e−xy−ix) dx =

=
1
2i

(
e−xy+ix

−y + i
− e

−xy−ix

−y − i

)
=
e−xy

2i

(
eix

−y + i
− e−ix

−y − i

)
=

=
e−xy

2i
eix(−y − i)− e−ix(−y + i)

y2 + 1
=

=
e−xy

2i(y2 + 1)

[
−i
(
eix + e−ix

)
+ y

(
−eix + e−ix

)]
=

=
e−xy

y2 + 1
(− cosx− y sin x).

Therefore,

∞∫
0

 b∫
0

e−xy sin x dx

 dy = ∞∫
0

[
e−xy

y2 + 1
(− cosx− y sin x)

]b

x=0

dy =

=

∞∫
0

(
e−by

y2 + 1
(− cos b− y sin b) +

1
y2 + 1

)
dy =

∞∫
0

fb(y) dy +
π

2

if we denote
e−by

y2 + 1
(− cos b− y sin b) = fb(y).

Furthermore,
lim
b→∞

fb(y) = 0.

We need a majorant to |fb(y)| to use the Dominated Convergence Theorem [9].

|fb(y)| ≤
e−by

y2 + 1
(1 + y) ≤ e−by

(
1
2
+ 1

)
=
3
2
e−by

as it is elementary to prove that for every y ∈ R

2y
y2 + 1

≤ 1 and 1
y2 + 1

≤ 1.

Therefore fb(y) ∈ L1 with respect to Lebesque measure on 〈0,+∞) [9]. Using the Domi-
nated Convergence Theorem, we obtain that

lim
b→∞

∞∫
0

fb(y) dy =

∞∫
0

lim
b→∞

fb(y) dy =

∞∫
0

0 dy = 0.
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The left-hand side of equation (A.2) is

b∫
0

[
−e−xy sin x

x

]+∞
y=0

dx =

b∫
0

sin x
x
dx→

∞∫
0

sin x
x
dx as b→∞.

The left-hand side of equation (A.2) is convergent to π
2 , therefore the right-hand side is

convergent as well and it holds
∞∫
0

sin x
x
dx =

π

2
. (A.3)

A.2 Fourier-series proof

There is another, more basic proof of the equality (A.3), which I learned after having
written down the nice proof above. In fact, it was an exam task at the exam from the
course in Fourier Analysis at Chalmers University of Technology on October 24, 2009
prepared by Hjalmar Rosengren. The proof consists of two steps. First, we will show that

sin x
x
= b0 +

∞∑
n=1

bn cos(nx), 0 < x < π,

where

bn =
1
π

(n+1)π∫
(n−1)π

sin x
x
dx.

Then, using this result, we will compute the integral (A.1).
sinx

x
is an even function, therefore it can be expressed as a Fourier cosine series [26]

sin x
x
=
b0
2
+

∞∑
n=1

bn cos(nx), 0 < x < π,

where

bn =
2
π

π∫
0

sin x
x
cos(nx) dx. (A.4)

A well-known trigonometric formula [38] says that for any real numbers A,B it holds

2 cos
A+B
2
sin

A−B

2
= sinA− sinB.

If we take A−B
2 = x,

A+B
2 = nx and separate A,B, we find out that

2 sinx cos(nx) = sin(x(n+ 1))− sin(x(n− 1)).

Plugging this into the formula for bn (A.4), we get

bn =
1
π

π∫
0

(
sin(x(n+ 1))

x
− sin(x(n− 1))

x

)
dx.
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1
π

π∫
0

sin(x(n+ 1))
x

dx =

∣∣∣∣ t = x(n+ 1) 0 7→ 0
dt = (n+ 1) dx π 7→ π(n+ 1)

∣∣∣∣ = 1π
π(n+1)∫
0

sin t
t
dt (A.5)

A similar procedure gives that

1
π

π∫
0

sin(x(n− 1))
x

dx =
1
π

π(n−1)∫
0

sin t
t
dt (A.6)

Taking the difference between formulae (A.5) and (A.6) gives the desired formula for bn
in the form

bn =
1
π

(n+1)π∫
(n−1)π

sin x
x
dx.

Plugging n = 0 into the last formula will make us use sinx
x
for x = 0. The function value is

undefined, one should rather use the notation of ζ functions introduced by Formulae (2.3)
on page 10. However, this would make the following integrals too complicated. Therefore,
from now on, we will assume that sinx

x
equals 1 for x = 0. Finally, we can write sinx

x
on

0 < x < π as

sin x
x
=
1
2π

π∫
−π

sin t
t
dt+

1
π

∞∑
n=1

cos(nx)

(n+1)π∫
(n−1)π

sin t
t
dt.

If we now take x = 0, we calculate

1 =
1
2π

π∫
−π

sin t
t
dt+

1
π

∞∑
n=1

(n+1)π∫
(n−1)π

sin t
t
dt =

=
1
π

π∫
0

sin t
t
dt+

1
π

∞∑
n=−∞

n6=0

(n+1)π∫
nπ

sin t
t
dt =

1
π

∞∫
−∞

sin t
t
dt.

This means that
∞∫

−∞

sin t
t
dt = π

concluding that
∞∫
0

sin x
x
dx =

π

2
.
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Appendix B

Proof of equality
∞∫
0

| sinx|
x dx =∞

The proof is taken from [11].

∞∫
0

| sin x|
x
dx =

∞∑
k=0

(k+1)π∫
kπ

| sin x|
x
dx ≥

∞∑
k=0

(k+1)π−π
4∫

kπ+π
4

| sin x|
x
dx ≥

∞∑
k=0

(k+1)π−π
4∫

kπ+π
4

| sin x|
(k + 1)π − π

4

dx =
∞∑

k=0

1
(k + 1)π − π

4

3π
4∫

π
4

| sin x| dx

︸ ︷︷ ︸
>0

= +∞
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Appendix C

Proof of equality
∞∫
0

sin2 x
x dx =∞

∞∫
0

sin2 x
x
dx =

1∫
0

sin2 x
x
dx+

∞∫
1

sin2 x
x
dx

The first integral is a finite number. To show this we define a function

ψ(x) =

{
sin2 x

x
if x > 0

0 if x = 0,

which is a non-negative function defined for non-negative numbers. The function is con-
tinuous in zero since limx→0

sin2 x
x
= 0 by L’Hospital’s rule. Then we can use Weierstrass

Theorem [38] saying that a function which is continuous on a closed interval ([0, 1] in this
case) is also bounded on this interval and the integral from 0 to 1 is lower or equal to
this upper bound. In fact, the function is bounded by 1 and the first integral is therefore
smaller than one. Now we focus on the second integral.

∞∫
1

sin2 x
x
dx =

∞∫
1

1− cos 2x
2x

dx =

∞∫
1

1
2x
dx−

∞∫
1

cos 2x
2x

dx (C.1)

The first integral is a well-known diverging integral and it remains for prove that the
second one converges. This can be proved using the Dirichlet criterion [17].

Theorem C.1 (Dirichlet criterion of integral convergence). If the following con-
ditions are fulfilled,

1. function ϕ(x) is monotone and converges to zero for x→ +∞

2. function f(x) has a bounded primitive function

F (x) =

x∫
a

f(t) dt,
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then the integral
∞∫

a

f(x)ϕ(x) dx

converges (not necessarily absolutely).

Applying the Dirichlet criterion on the second integral in (C.1) taking ϕ(x) = 1
2x ,

f(x) = cos 2x shows that the integral converges. The original integral

∞∫
0

sin2 x
x
dx

was split in three integrals, two of which are finite and one diverges, therefore

∞∫
0

sin2 x
x
dx =∞.
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Appendix D

Definitions of quadruple improper
integral and L

(
R4
)

Definition D.1. Let f(x, y, u, v) be a function R4 → R. We write

lim
(x,y,u,v)→(∞,∞,∞,∞)

f(x, y, u, v) = L

if and only if for every ε > 0 there exists r ∈ R such that for every a, b, c, d > r :
|f(a, b, c, d)− L| < ε.

Definition D.2 (Improper quadruple integral). Let f(x, y, u, v) be a function R4 →
R. Let R = 〈a1,∞)×〈b1,∞)×〈c1,∞)×〈d1,∞), a1, b1, c1, d1 ∈ R. If the following limits
exist and are equal for every permutation of intervals and order of integration

lim
(a1,b1,c1,d1)→(∞,∞,∞,∞)

a2∫
a1

 b2∫
b1

 c2∫
c1

 d2∫
d1

f(x, y, u, v) dv

 du
 dy

 dx = · · · =
= lim
(a1,b1,c1,d1)→(∞,∞,∞,∞)

d2∫
d1

 c2∫
c1

 b2∫
b1

 a2∫
a1

f(x, y, u, v) dx

 dy
 du

 dv = A
then we define ∫∫∫∫

R

f(x, y, u, v) dx dy du dv = A.

Analogically, the integral is defined for R = (−∞, a2〉 × 〈b1,∞) × 〈c1,∞) × 〈d1,∞),
R = (−∞, a2〉 × (−∞, b2〉 × 〈c1,∞) × 〈d1,∞) etc. Furthermore, if all the following
integrals exist and are finite, or, in case some of the integrals are infinite, they have the
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same sign ∫∫∫∫
〈0,∞)4

f(x, y, u, v) dx dy du dv = A1

∫∫∫∫
(−∞,0〉×〈0,∞)3

f(x, y, u, v) dx dy du dv = A2

∫∫∫∫
〈0,∞)×(−∞,0〉×〈0,∞)2

f(x, y, u, v) dx dy du dv = A3

...∫∫∫∫
(−∞,0〉4

f(x, y, u, v) dx dy du dv = A16,

we define ∫∫∫∫
(−∞,∞)4

f(x, y, u, v) dx dy du dv =
16∑

n=1

An.

If function f(x, y) is R2 → C, Definition 2.1 on page 5 remains valid and numbers
A1, A2, . . . , A16 are complex.

Definition D.3 (L (R4) space). Let us denote L (R4) the space of all complex functions
of four real variables, i.e.,

f(x, y, u, v) = p(x, y, u, v) + iq(x, y, u, v),

where p, q : R4 → C such that∫∫∫∫
R4

|f(x, y, u, v)| dx dy du dv

exists and is finite.

Convention D.4. Let a1, a2, b1, b2, c1, c2, d1, d2 ∈ R ∪ {−∞,∞}, a1 < a2, b1 < b2, c1 <
c2, d1 < d2 and let f(x, y, u, v) ∈ L (R4). Due to Fubini’s theorem [9] the quadruple
integral of function f on the cartesian product 〈a1, a2〉 × 〈b1, b2〉 × 〈c1, c2〉 × 〈d1, d2〉 can
equivalently be written in many forms, such as∫∫∫∫

〈a1,a2〉×〈b1,b2〉×〈c1,c2〉×〈d1,d2〉

f(x, y, u, v) dx dy du dv =

=

a2∫
a1

b2∫
b1

 c2∫
c1

d2∫
d1

f(x, y, u, v) du dv

 dx dy =
=

a2∫
a1

b2∫
b1

c2∫
c1

d2∫
d1

f(x, y, u, v) dx dy du dv.

100


