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Abstract
This thesis explores music-driven object manipulation in the Unity game engine, which
offers a versatile toolset for artists and creators looking to integrate dynamic elements
based on background music. This project implements Fast Fourier Transform using an
external library, Onset Detection, beat generation, and related functionalities within Unity.
Consumer testing and experimentation demonstrate the potential of the implementation
and functionality of the plugin. By creating this proof of concept, the intention is to inspire
further innovation in this area and leverage music as a creative tool in not only game design
but other media as well.

Abstrakt
Táto bakalárska práca sa zaoberá manipuláciou objektov v hernom prostredí Unity na
báze hudby. V tomto projekte sa pozrieme na Rýchlu Fourierovu Transformáciu, detekciu
nástupov, generáciu dôb a vhodnú funkcionalitu v Unity. Testovanie s uživateľmi a experi-
mentácia, demonstrujú potenciál navrhnutej implementácie a funkcionalite pluginu. Zámer
tohto projektu je inšpirovať inováciu v tejto sfére a využiť hudbu ako kreatívny nástroj do
nie len hier ale aj ostatných digitálnych medii.
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Rozšírený abstrakt
Cieľom tejto bakalárskej práce je zoznámiť sa s problematikou analýzy hudby a vytvoriť
softvérový modul (ďalej len "plugin"), ktorý poskytne vývojárom v hernom prostredí Unity
analýzu hudby v pozadí a funkcionalitu na manipulovanie objektov nachádzajúcich sa v
scéne.

Zaoberáme sa prvkami hudby, ktoré sú vhodné na vizualizáciu, ako napríklad tempo,
melódia či hlasitosť. Pre správny návrh pluginu je potrebné pochopiť analýze zvukových
signálov, ich spracovaniu, ako celková analýza prebieha a aké matematické funkcie sa na ňu
používajú. Spolu sa pozrieme na časovú a frekvenčnú doménu, rýchlu Fourierovu Trans-
formáciu a detekciu nástupov. Taktiež je treba rozobrať rôzne metódy na získavanie dát v
Unity, ako napríklad AudioSource.GetSpectrumData alebo AudioClip.GetData.

Plugin sa skladá z viacerých častí; externá časť pre výpočet rýchlej Fourierovej Trans-
formácie, detekcia nástupov na rôznych frekvenčných rozsahoch, manažér udalostí (event
manager) a rôzne komponenty poskytujúce funkcionalitu pre užívateľa. Užívateľ si vie
zadať frekvenčné rozsahy, ktoré chce analyzovať. Plugin poskytuje rôzne informácie analy-
zovanej hudby, ku ktorým má užívateľ prístup, ako napríklad priemernú amplitúdu počas
hudby, sprektrálne informácie, a či v určitom rozsahu v stanovenom čase nastal nástup.
Tieto informácie sú poskytované hlavným komponentom ClipController alebo poslané ako
udalosť manažérom udalostí komponentom, ktoré danú udalosť odoberajú. Poskytovaná
funkcionalita pluginu na manipulovanie objektov v scéne zahrňuje: pohyb, rotácia a modi-
fikovanie veľkosti objektu na základe udalostí a priemernej amplitúdy, cinematickú kameru,
ktorá sa pohybuje po kontrolných miestach na základe času hudby a mnoho ďalších.

Kvalita pluginu bola testovaná dvanástimi účastníkmi, ktorí sa pozreli na videá ukazu-
júce funkcionalitu pluginu. Na základe ich odozvy vieme zhodnotiť, že plugin má potenciál
či už v rytmickej hre ale aj v scénach založených na hudbe.

Touto bakalárskou prácou chceme inšpirovať ďalších ľudí na experimentovanie s hudbou
nie len v hrách ale aj ostatných digitálnych médiách.
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Chapter 1

Introduction

Music is an important part of video games, helping to create the right mood, reinforce emo-
tions, and tell stories. It can also help to create immersion, capture the player’s attention,
and notify them about certain events. Music is a powerful tool used not only in games but
also in movies, TV series, and other forms of media. Sounds and music can also be used as
a memorization tool, helping players recognize certain events by sound.

Rhythm games are a well-established genre that relies entirely on music and the natural
human reaction to rhythm. They use the elements of music to create captivating gameplay.
Precision, accuracy, and flow are essential in these games, which is why they are often
hand-crafted to match the song’s rhythm perfectly. Some games even use all the elements
of a song to create procedural levels.

Using the environment to display music can have many benefits. It can provide players
with more information, such as helping them keep track of the beat.

Creating a dynamic environment that responds to music is not a new concept. However,
it is usually done manually. This thesis serves as a proof of concept for procedural elements
based on music in the Unity game engine. It creates a plugin that helps developers create
captivating environments, fun rhythmic gameplay, and more.

The final plugin is designed for the Unity Game Engine, a powerful, versatile cross-
platform game engine widely used to develop video games, simulations, and interactive
experiences. Unity’s flexibility and scalability allow developers to prototype quickly, iterate
efficiently, and deploy their projects across multiple platforms with ease. As a result,
Unity has become one of the leading game development engines in the industry, powering
thousands of games and experiences worldwide. It was an excellent choice for this plugin
due to its popularity among game developers and its large community that uses assets from
the Unity asset store.

In the upcoming chapters, valuable information about music in Chapter 2.1, methods
for retrieving it in Chapter 2.2, and its application in the plugin will be discussed. The
author’s proposal for the final product will be examined in Chapter 3, along with an ex-
ploration of how different components communicate and how the analysis functions. Given
the importance of testing, Chapter 4 will cover the creation of scenes to demonstrate the
plugin’s potential and provide an analysis of participants’ responses to assess the plugin’s
performance.
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Chapter 2

Theory

Analyzing music using computers presents unique challenges. Unlike humans, computers
cannot perceive music’s rhythm, pitch, and mood. While these elements come naturally
to us, computers require various calculations and algorithms to process the complexity of
musical signals.

The following sections explore the necessary theoretical foundations for this project.
Initially, fundamental concepts in music theory, such as beat, pitch, rhythm, and tempo,
are reviewed to determine which parameters should be extracted from the music. Afterward,
the methods used to gather data from the audio signal are discussed, with a specific focus
on the application of the Fast Fourier Transform (FFT) for data retrieval. Other topics
mentioned include procedural generation and its applications in game development, as well
as the Unity game engine and its audio integration.

2.1 Fundamentals Concepts
Understanding fundamental music concepts is helpful for effectively analyzing the gathered
data from audio signals. This section discusses some of the key concepts relevant to this
project, such as tempo, beat, and frequency. Rather than delving into the traditional music
perspective, the focus is more on relevant numerical representations and implications.

2.1.1 Tempo and Beat

Tempo refers to the speed or pace at which music is played, measured in beats per minute
(BPM) [12]. It dictates the overall rhythm and energy of a piece. The beat is a regular,
repeating pulse that underlies a musical pattern. Humans naturally synchronize movement
to the beat, which is invaluable for the game because it enhances the user experience and
immersion.

In Western classical music, the tempo is either written in BPM for more precise indi-
cation or left to the conductor to specify the tempo by just describing it in Italian words.
For example, Grave describes a very slow song, Moderato describes a moderate tempo, and
Prestissimo a very, very fast tempo [12]. You can see the tempo marking in both forms in
Fig 2.1.
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2.1.2 Time Signature

In Western music, a time signature also referred to as a meter signature, notation specifies
the number of note values of a particular type within each measure (bar). In musical
notation, it appears as two stacked numerals, as seen in Fig. 2.1. Time signatures are
categorized as simple (grouping note values in pairs like 2

4, 3
4, 4

4) or compound (grouping
in threes like 6

8, 9
8, 12

8 ), with less-common ones representing complex, mixed, additive, or
irrational meters [13]. The upper numeral in a time signature represents the number of
note values per bar, while the lower numeral indicates the type of note being counted.

Different genres often utilize specific time signatures to create their unique rhythmic
feels. For example, a waltz typically uses a 3

4 time signature, giving it a distinct ’one-two-
three’ rhythm. In contrast, many rock and pop songs use 4

4, also known as ’common time,’
which provides a steady and familiar beat. Understanding the song’s rhythm can help
during beat estimation or beat generation. For example, to create a heavy rhythm game, a
metronome-like effect can be achieved with the knowledge of time signature. This approach
emphasizes the first beat using audio-visual cues to keep the player in the flow.

Figure 2.1: Musical notation displaying different components of music. [14]

2.1.3 Onset

The onset is the beginning of a musical note or sound, characterized by the rise in amplitude
from zero to an initial peak. It is important for beat estimation and rhythm analysis, serving
as a reference point for identifying rhythmic patterns within the music. The onsets can be
seen in Fig. 2.2b as general amplitude spikes or in Fig. 2.2c as specific frequency spikes.

Fig. 2.2a, displays the different parts of the note. Distinguishing between these is crucial
because different applications have different needs. Transient represents a short interval
during which the signal rapidly evolves in some complex or relatively unpredictable way.
As was said, the onset marks the start of the note. More precisely, it marks the beginning
of the transient or the earliest point at which the transient can be reliably detected. Attack
is the time interval during which the amplitude rises. Additionally, the release of sustained
sounds can also be perceived as a transient period [3].
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(a) Different parts of a single note in ideal case [3]
(b) Possible onsets seen in waveform as ver-
tical spikes

(c) Possible onsets seen in spectrogram shown with brighter color

Figure 2.2: Onsets displayed in different domains

2.1.4 Frequency and Pitch

Frequency represents the speed of vibration in a sound wave, measured in Hertz (Hz),
determining its pitch or perceived musical tone. Detecting frequency variations is essential
for identifying melodies and harmonies within the music. Pitch refers to the position of a
single sound within the complete range of sounds.

The frequency of a sound wave determines the number of vibrations that occur per unit
of time. As a result, sounds with higher frequencies are perceived as having a higher pitch
and a more distinct, sharper quality. In other words, the higher the frequency, the higher
the pitch of the sound.

Unlike some animals, human ears detect frequencies between 20 and 20,000 Hz (assum-
ing optimal conditions) [10]; anything beyond (ultrasounds) or below (infrasounds) this
range is imperceptible to us. These audible frequencies are further divided into smaller
ranges, each with distinct characteristics. Different frequency ranges correspond to distinct
tonal qualities and characteristics [1]:

• Sub Bass (20–60 Hz): Felt more than heard, contributes to the overall richness
and depth of the sound.

• Bass (60–250 Hz): Determines the thickness or thinness of the sound, providing
the foundational notes of rhythm.

• Low Midrange (250–500 Hz): Contains low-order harmonics and contributes to
the bass presence in the mix.

• Midrange (500–2000 Hz): Determines the prominence of an instrument in the
mix, influencing its perceived clarity and definition.
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• Upper Midrange (2000–4000 Hz): Emphasizes the attack on percussive and
rhythmic instruments, adding presence and impact.

• Presence (4000–6000 Hz): Enhances the clarity and definition of sound, often
adjusted using treble controls in home stereos.

• Brilliance (6000–20000 Hz): Contains harmonics that contribute to the overall
brightness and shimmer of the sound.

An important note to remember is the relationship between frequency and pitch. Each
octave represents a doubling of frequency. This means that to calculate a lower octave of a
note, its frequency is divided by 2; for a higher octave, it is multiplied by 2. This knowledge
can be utilized to quickly determine which note has been played. For example, knowing
that note 𝐶1 has a frequency of 32.703 Hz allows for the calculation of any other octave of
this note, providing an approximate location for identifying that particular note.

2.1.5 Psychoacoustics

Psychoacoustics researches how humans perceive sound. It is an important field that helps
aid in the development of communication. It combines how human bodies receive sound
(physiology of sound) and how human brains interpret it (psychology of sound). These
disciplines provide an understanding of people’s different reactions to sounds [10]. These
insights are important because sound is essential in many fields, such as communications
devices, music and film production, and even the game industry. The sounds are very
diverse. The main elements contributing to this diversity are intensity, pitch, and tone.
The pitch was already mentioned in the previous Section 2.1.4.

Intensity is represented by amplitude, which is a measure of energy. It is measured
in decibels, and it determines the loudness of sound [8]. Human ears are more sensitive
to higher frequencies, which means that they may perceive them as louder, though the
intensity is independent of human perception. This can be seen in Fig. 2.3. Equal loudness
contours illustrate how the human ear perceives sound at different frequencies. The figure
shows that the ear is most sensitive to frequencies in the range from 1 to 5 kHz. Each curve
corresponds to a 10 dB increase using the 1 kHz tone as a reference point.
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Figure 2.3: The equal loudness contours showing human perception of different frequencies.1

Tone quality is influenced by the combination of different frequencies, which gives the
sound its unique characteristics. Even though the same pitch is being played, the sound
is different when two different instruments are played, for example, guitar and saxophone.
When a source vibrates, it vibrates with multiple frequencies at once. The quality of
sound is influenced by a mixture of various frequencies of sound waves. Humans mainly
hear the main pitch called fundamental, which is the lowest from the mixture. Higher
frequencies are called overtones, and those vibrating in whole-number multiples are called
harmonics [8]. This is why the guitar and saxophone sound different; the material from
which the instrument is created, the playing technique, and the generation of the sound
wave (blowing in saxophone or strumming a guitar string) all affect these frequencies and
change the tone.

Both music and noise are types of sounds. Usually, people consider music as pleasant,
and noise as unpleasant. However, this definition can be subjective because someone prac-
ticing the violin could sound terrible. There are three properties that the sound must have:
to be musical to classify sounds. First, it must have an identifiable pitch. Second, it must
have a good-quality tone that sounds pleasing. Third, it must have a repeating pattern or
rhythm to be music. On the other hand, noise has no identifiable pitch, no pleasing tone,
and no steady rhythm [8].

This study is used extensively in the game industry, from understanding how humans
utilize sound to create a realistic environment to using specific sounds with different indi-
cators (for example, roughness, sharpness, and loudness) to inform the player about danger
or interesting areas.

1Image used from Wikipedia https://en.wikipedia.org/wiki/Equal-loudness_contour
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2.2 Audio Signal Processing
Audio signal processing is a subfield of signal processing involving electronic manipulation
of audio signals. Audio signals are representations of sound that are in digital format, a
series of binary numbers. This digitization process, known as sampling, captures discrete
snapshots of the sound wave’s amplitude at regular intervals.

2.2.1 Domains

Audio signals are commonly visualized as waveforms in the time domain, as can be seen
in Fig. 2.4, illustrating the variations of amplitude over time [5]. While this representa-
tion offers a basic understanding of the time-related characteristics, such as changes in
volume, potential peaks, or intensity, it provides limited insight into its underlying spectral
characteristics.

Figure 2.4: Visualization of an audio waveform in the time domain from AudaCity. In
stereo, the x-axis is time, and the y-axis is amplitude.

Signal processing techniques are needed to transform the signal into a frequency domain
to extract more information from the audio data [5]. The frequency domain reveals the
signal’s spectral composition, which provides valuable insights into its frequency compo-
nents and distribution. Within this domain, the spectrum represents the magnitudes of
frequencies present in the signal at a specific point or range of time, providing a detailed
view of its frequency content as can be seen in Fig. 2.5.

Figure 2.5: Frequency spectrum from AudaCity. The x-axis is frequency, and the y-axis is
magnitude.
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By analyzing the frequency domain, dominant frequencies can be detected at a given
time, providing information about the musical notes or percussive hits present in the audio
signal.

2.2.2 Fourier Transform

The Fourier Transform (FT) [4] is an essential mathematical tool used to analyze frequency
domain signals. It breaks down a continuous-time signal into its constituent frequencies
and provides insights into the signal’s frequency content. Mathematically, the continuous
Fourier Transform 𝑆(𝑓) of a continuous-time signal 𝑥(𝑡) is given by the following equation:

𝑆(𝑓) =

∫︁ ∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

This equation represents the integral over all time of the product of the signal 𝑥(𝑡) and
a complex exponential function 𝑒−𝑗2𝜋𝑓𝑡, where 𝑓 represents frequency in Hertz. The FT
provides a continuous representation of the signal’s frequency spectrum, making it suitable
for analyzing continuous-time signals.

2.2.3 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) [4] is a mathematical technique used to analyze the
frequency content of finite sequences of samples in discrete-time signals. It is the discrete
counterpart of the FT and provides a discrete representation of the signal’s frequency
content. The DFT is computed by finding the Fourier coefficients of the sequence of samples.
Mathematically, the DFT 𝑋(𝑘) of a discrete-time signal 𝑥(𝑛) can be represented as follows:

𝑋(𝑘) =

𝑁−1∑︁
𝑛=0

𝑥(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁

Here, 𝑁 represents the number of samples in the sequence, 𝑥(𝑛) represents the discrete
signal samples, and 𝑘 represents the frequency index. The DFT transforms the discrete
signal from the time domain to the frequency domain, enabling analysis of discrete-time
signals in terms of their frequency components.

2.2.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) [4] is a powerful algorithm that is used to calculate the
DFT (Discrete Fourier Transform). It reduces the computational complexity compared to
the direct computation of the DFT, making it practical for real-world applications. The
FFT algorithm is based on the divide-and-conquer principle, breaking down the DFT com-
putation into smaller sub-problems. This algorithm enables the rapid computation of the
frequency spectrum of a signal, making it useful for efficient signal-processing tasks such as
filtering, spectral analysis, and modulation. Due to its speed and efficiency, the FFT algo-
rithm is widely used in various fields, including digital signal processing, communications,
and audio processing, to compute the frequency content of signals.
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2.2.5 Windowing Techniques

After decomposing the audio signal into its frequency components using the Fast Fourier
Transform (FFT), a common problem encountered is spectral leakage. Spectral leakage
means energy at one frequency ”leaks“ into adjacent frequency bins, resulting in inaccurate
and distorted frequency analysis. Shorter segments of audio signals are more prone to cause
this phenomenon.

Fortunately, this challenge can be addressed by employing windowing techniques to im-
prove the accuracy of the analysis. Windowing means segmenting the audio signal into
shorter overlapping frames, called windows, each of which is multiplied by a window func-
tion. Various window functions are available, each with a different outcome and suitable
for different use cases [11]. For example, Rectangular window or Hanning, Hamming, and
Blackman windows. The Hanning window was chosen for this project because it worked
well during testing.
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Figure 2.6: Examples of windowing functions. The plots display the signal’s time-domain
amplitude variation (blue) and its frequency-domain power distribution (orange).2

Fig. 2.6 shows the Hanning window, which was chosen for this project, and the Rectan-
gular or box window, which is one of the simplest ones. The figures show how the functions
affect the signal.

The Rectangular window in Fig. 2.6b segments the signal into a box-like shape with
equal-sized frames. The amplitude within each segment results in sudden transitions at the
edges of the window; therefore, it is less effective at mitigating spectral leakage compared
to other window functions [11].

The Hanning window in Fig. 2.6a has the shape of a raised cosine. In comparison to
the Rectangular window, the Hanning window gradually decreases the amplitude towards
the edges of each windowed segment. This creates a smooth transition and reduces spec-
tral leakage, leading to more precise frequency analysis. As a result, sudden changes are
minimized, and the accuracy of the analysis is improved [11].

2Images used from Wikipedia https://en.wikipedia.org/wiki/Window_function
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2.2.6 Onset Detection

Onset detection detects musical events in an audio signal. As was already mentioned in
the Subsection 2.1.3, an onset is the beginning of a musical note or sound. The algorithm
analyzes the amplitude envelope of the audio signal’s spectral characteristics to detect these
events. This technique is often used with a thresholding technique to distinguish peaks from
background noise or sustained sounds [3].

Using onset detection can be found in beat estimation, speech recognition, or, in general,
sound event detection. In the context of music analysis, onset detection is useful for rhythm
analysis, tempo estimation, and identifying musical structure. (Melodies and more)

Onset detection algorithms vary among different methods. The simplest algorithms
are based on the amplitude of the signal alone, comparing the amplitudes directly without
converting the data to the frequency domain. For example, the onsets can be seen clearly
for percussive elements when looking at Fig. 2.4 of the waveform. This approach may
be sufficient for beat estimation, but for more information, a more complex algorithm is
needed.

When the data is converted to the frequency domain, algorithms can be used that can
capture subtle changes in spectral characteristics. These characteristics may not be appar-
ent in the time domain. Sometimes, a spike in amplitude may occur without an actual
onset; this can be mitigated when analyzing the signal’s frequency content. As shown in
Fig. 2.7, hi-hat onsets (the grey rectangle) and kick onsets (the green rectangle) can be
detected by analyzing two different frequency ranges. This would not be possible by ana-
lyzing the time domain. When the whole spectrum is analyzed, vertical lines corresponding
to the waveform spikes are obtained.

Figure 2.7: Spectrogram of a section of the song. The x-axis represents time, the y-axis
represents frequency (20-20000Hz), and the color represents the magnitude of that frequency
in that time.
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2.3 Procedural Generation in Games
Procedural Generation is a game development technique that automates the creation of
game elements using algorithms instead of manual input. This method generates content
dynamically during runtime, allowing developers to create vast and diverse game worlds
rather than relying on pre-made assets [6].

The success of procedural generation depends on both sophisticated algorithms and the
reliable production of random numbers [6]. These random numbers are the building blocks
for generating diverse and unpredictable content. Additionally, the ability to reproduce
the same sequence of random numbers through a consistent starting seed and algorithm
ensures consistency in generated content across different gameplay sessions.
Procedural generation offers several advantages for game developers, some of them are:

• Infinite Variety - Randomly generating provides infinite content possibilities, increas-
ing game replayability, a core concept in most game genres.

• Saves Time - Generating levels by script is much faster than creating them manually.
It certainly is a challenging task.

• Adaptability to the Player - Procedurally generated content can be adapted to the
player’s skill level and experience by incorporating the ”difficulty“ variable, hence
creating a more personalized gaming experience.

• Exploring New - Procedural generation encourages players to explore, making the
game engaging and fun.

Procedural generation can be used in multiple aspects of the game:

• Procedural Level Generation - Useful for sandbox and roguelike games. It creates a
unique experience each time the player progresses through the game.

• Procedural Generation of Enemies and NPCs - Generating different kinds of enemies
can create interesting gameplay and challenges for the player.

• Procedural Item and Loot Generation - Useful for creating random rewards for the
player, making the playthrough more interesting by incorporating randomness.

Procedural generation is a powerful tool for game developers to automatically generate
levels, landscapes, and other game elements, enabling the creation of virtually limitless
content. It conveys a sense of never-ending content within limited resources and is a great
solution for mitigating production costs and storage and distribution limitations. Procedu-
ral generation empowers developers to create immersive gaming experiences with rich and
ever-changing environments, enhancing player engagement and replayability.

2.4 Audio in Unity
Given the decision to work in the Unity engine, it is crucial to understand its audio ca-
pabilities. Audio is managed through the AudioSource and AudioClip components, which
provide a good framework for playing and manipulating audio data. The following subsec-
tion describes the components and functionalities relevant to the objectives of the thesis.

13



2.4.1 AudioSource and AudioClip

The AudioSource [2] component serves as a controller for playing audio clips (AudioClip
component) and offers parameters to adjust playback settings such as volume, pitch, and
spatial blend. While it is useful for modifying the audio clip itself, it is not applicable to
the objectives of the thesis.

The Audioclip [2], on the other hand, represents an audio asset that AudioSource can
play. It represents the music with all the necessary data for analysis.

Unity seamlessly converts audio files such as .mp3 or .wav to AudioClip format, meaning
that users do not need to worry about different formats.

2.4.2 AudioSource.GetSpectrumData

This method computes the audio signal’s frequency spectrum using the FFT algorithm [2].
Developers can extract spectral features by analyzing the frequency components returned.
It is mostly used for tasks such as audio visualization, frequency-based effects processing,
and onset detection.

2.4.3 AudioSource.GetOutputData

GetOutputData [2] retrieves raw waveform data directly from the AudioSource, allowing
for real-time audio signal analysis. It returns raw audio samples that developers can use
to perform signal processing tasks such as visualization of waveforms and manipulation of
audio effects.

Both GetSpectrumData and GetOutputData provide real-time data chunks. However,
for preprocessing the audio, an alternative method is needed.

2.4.4 AudioClip.GetData

GetData [2], on the other hand, is an AudioClip method that returns sample data for
the entire song at once. This feature allows developers to preprocess the song, providing
flexibility to apply various algorithms as needed.
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Chapter 3

Plugin Proposal

Now that tempo and melodies are recognized as interesting features of a song, and they
can be identified using FFT and Onset Detection. Different data retrieval options in Unity,
such as AudioSource.GetSpectrumData or AudioClip.GetData were mentioned. The im-
plementation of the onset detection is inspired by the algorithms in [9]. The article clearly
explains the implementation of onset detection and offers both preprocessing and real-time
implementation.

Onset detection is a great tool for estimating tempo and detecting melodies in a song,
so its placement at the center of this plugin is perfect.

Of course, the song’s other useful information cannot be forgotten, like the amplitude,
which can be used in dynamic light modulation or atmospheric effects. The spectral centroid
is another interesting piece of information. It indicates where the center of mass of the
spectrum is located, and it is connected to the impression of a sound’s brightness.

3.1 Plugin Architecture
Before describing the implementation stage, it is helpful to understand the problem and
consider the data flow and communication between parts. The plugin’s main component
will be ClipControler, which needs to be attached to an object with AudioSource. The
schematic overview of the proposal can be seen in Fig. 3.1. The data flow goes as follows:

• Step 1 ClipController retrieves clip data and sends them to DSPLib for FFT
analysis.

• Step 2 DSPLib performs analysis on a chunk and returns average amplitude and
spectral data back to ClipController, simultaneously sending the spectral data to
FluxAnalysis.

• Step 3 FluxAnalysis performs OnsetDetection and returns SpectralFluxInfo into
ClipController.

• Step 4 After all the data is preprocessed, ClipController checks for peaks in the
current time and updates the public values like average amplitude and spectrum.

• Step 5 Components can retrieve the data directly from ClipController or by
subscribing to the event and waiting for invocation from the EventManager.
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Figure 3.1: Architecture of the proposed plugin. Different objects, their functionality, and
how they communicate with each other.

3.2 Analysis
The first step is to gather the data. As previously discussed, Unity affords multiple choices
for data retrieval: real-time analysis via GetSpectrumData and GetOutputData or prepro-
cessing using GetData. While real-time analysis offers immediacy, the preprocessing grants
enhanced flexibility and the ability to anticipate future song dynamics.

3.2.1 Data Management

In this project’s infrastructure are two key data structures: SpectralFluxInfo, which keeps
data from the spectral flux analysis, and Parsed Clip, a class made for managing multiple
information about the clip attributes. A custom DataWriter class has been developed to
serialize data into JSON format to ensure data persistence across runtimes. This allows
users to run the same song multiple times with just one analysis.

Event Customization

Furthermore, the plugin contains a versatile event customization feature. Users have the
opportunity to specify frequency ranges and thresholds and assign unique identifiers to
each event. This functionality allows for adaptability and empowers users to experiment
and modify analysis to their specific requirements.
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Event triggers are saved as scriptable objects so the data persists. A custom editor was
developed to manage this scriptable object. In addition to creating event triggers, the user
can edit them and does not have to worry about naming two different events with the same
name because checks are implemented to prevent that from happening.

To help experiment and not leave the user guessing the frequencies, there is a generated
grid with musical notes from the note 𝐶0 at 16.35 Hz up to 𝐵7 at 3951.36 Hz. This ensures
that a developer with the knowledge of the note range of a melody in a song will have quick
access to that frequency, and if he does not have the knowledge, this note grid makes it less
complicated to try different things out.

3.2.2 Clip Analysis

Structures are in place to store the analyzed data, approaching the core of the analysis;
however, the FFT must not be forgotten. Since Unity does not provide its own FFT imple-
mentation, it is necessary to either create a custom solution or find one that is implemented.
The library mentioned in the selected article, DSPLib [7], will be utilized for this project.

To perform FFT, necessary clip data, such as length and number of samples, must be
gathered. Additionally, the sample count has to be chosen to determine the size of the frame
that is going to be analyzed. The sample count has to be a power of 2. Usually, it is 512 or
1024, which is sufficient. A large sample count means a finer frequency resolution; however,
this also means it will take longer to compute, which may not be desirable. While 1024
samples produced excellent results and the analysis time was satisfactory, user preferences
may differ, and serializing these modifiable variables is good practice.

Handling Channels in Audio Processing

One important detail to think about is the number of channels. Songs can be either stereo,
meaning that they have left and right channels, or mono which has only one channel. For
the plugin to accept any type of song, it is necessary to calculate both scenarios. The
GetData function returns the raw sample data of the song. In the case of a stereo song,
there will be twice as much data as in a mono song for each channel.

𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑒𝑚𝑝𝑙𝑒𝐿𝑒𝑛𝑔𝑡ℎ×𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

Before running the FFT library, the channel data must be combined. In the case of
stereo audio, the FFT could be applied separately to the right and left channels. However,
this approach offers limited advantages when the number of channels in the audio is un-
certain. Combining the samples is straightforward. The GetData function always returns
samples in this order: [𝐿0, 𝑅0, 𝐿1, 𝑅1, . . .]

Calculating the average of these samples generates a combined array on which the FFT
can be performed. Let 𝑆 be the multi-channel input array, 𝐶 the number of channels, and
𝐹 the final combined array. Then the calculation would look like:

𝑃 [𝑗] =
1

𝐶

𝐶∑︁
𝑖=0

𝑆[𝑗 × 𝐶 + 𝑖]

Where 𝑗 is the index of the combined array 𝐹 , 𝑖 is the index within the current set of
channels, and the expression 𝑆[𝑗×𝐶+ 𝑖] accesses the samples in the original multi-channel
array 𝑆.
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Fast Fourier Transform and Simple Audio Analysis

The FFT analysis is executed iteratively across the entire audio clip, with each iteration
processing a window with a specified size of sample count. The number of iterations is
calculated as follows:

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
𝐿𝑒𝑛𝑔𝑡ℎ𝑂𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑆𝑎𝑚𝑝𝑙𝑒𝐶𝑜𝑢𝑛𝑡

Algorithm 1: Iteration through clip samples
Input: (𝑐𝑙𝑖𝑝𝑆𝑎𝑚𝑝𝑙𝑒𝑠)

1: 𝐺𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑖𝑝𝑆𝑎𝑚𝑝𝑙𝑒𝑠
2: 𝐴𝑝𝑝𝑙𝑦𝐹𝐹𝑇𝑊𝑖𝑛𝑑𝑜𝑤
3: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝐹𝐹𝑇𝑎𝑛𝑑𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑡𝑜𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
4: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
5: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑖𝑑
6: 𝑆𝑎𝑣𝑒𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐷𝑎𝑡𝑎
7: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑛𝑔𝑇 𝑖𝑚𝑒
8: for 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 in 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 do
9: 𝑆𝑒𝑛𝑑𝐷𝑎𝑡𝑎𝑡𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐹 𝑙𝑢𝑥𝐴𝑛𝑎𝑙𝑦𝑧𝑒𝑟

10: end for

Algorithm 1 displays steps computed in each iteration. The first step is to copy sample-
Count amount of samples from the ClipSamples, which will be worked with. As mentioned
in SubSection 2.2.5 windows are used to mitigate the effects of spectral leakage.

Applying the FFT window involves several key steps using the DSPLib [7]. First is
the calculation of the coefficients for the desired window type, which in this thesis is the
Hanning window. The next step is to scale these coefficients to match the window size.
Finally, the computation of the scale factor is crucial for preserving the amplitude of the
signal after windowing and performing the FFT.

Performing the FFT and converting to magnitudes involves these steps: First, the FFT
is executed on the scaled spectrum window, transforming the time-domain signal into the
frequency domain and producing complex numbers. These complex numbers represent
both the amplitude and phase information of the frequencies present in the signal. Next,
converting the FFT output to magnitudes, which extracts the amplitude information from
the complex numbers, is necessary. This step is crucial because it provides a clear rep-
resentation of the signal’s frequency content, allowing for further analysis of the spectral
properties of the audio. The final step is to scale the magnitudes using the scale factor
to ensure the amplitude is preserved correctly after the transformation. This spectrum is
saved as scaledFFTSpectrum.

The samples are now in the frequency domain, meaning some of the information can
already be gathered. This plugin keeps track of the average amplitude, which is the mean
of the magnitudes in the scaledFFTSpectrum. Spectral centroid, a measure of the center
of mass of the power spectrum of a signal, has a more complex calculation than average
amplitude.
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Following equations shows the calculation of spectral centroid:

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =

∑︀𝑁
𝑘=1(𝑓𝑘 ×𝑋(𝑘))∑︀𝑁

𝑘=1𝑋(𝑘)

Where 𝑁 is total size of the scaledFFTSpectrum, 𝑓𝑘 is the frequency corresponding to
the 𝑘 − 𝑡ℎ item of spectrum, calculated as:

𝑓𝑘 = 𝑘 × 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒

𝑆𝑎𝑚𝑝𝑙𝑒𝐶𝑜𝑢𝑛𝑡

and 𝑋𝑘 is sum of amplitudes of the scaledFFTSpectrum. The numerator represents
the weighted sum of all frequency contributions. The denominator is the total amplitude,
ensuring that the centroid is normalized. This approach gives a weighted average frequency,
reflecting the energy distribution across the spectrum.

The whole scaledFFTSpectrum is also saved, in case the user would like to utilize it.
After that, the spectrum data is sent to the Spectral Flux Analyzer.

Keeping Track of Time

As could be seen in the Algorithm 1 the song’s current time is also saved. This is because
it allows simple retrieval of corresponding data by calculating the index based on the song
time and accessing that index in the data list. The calculation of the precise time of the
song goes as follows:

𝑇𝑖𝑚𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒 =
1

𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑇𝑖𝑚𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒× 𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑛𝑑𝑒𝑥

𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒× 𝑆𝑎𝑚𝑝𝑙𝑒𝐶𝑜𝑢𝑛𝑡

Where 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒 is the number of samples captured per second in a digital audio record-
ing. It is usually expressed in Hertz (Hz), where 1 Hz equals 1 sample per second and it can
be obtained in Unity using AudioClip.frequency, and 𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑛𝑑𝑒𝑥 is the current iteration
index.

”To calculate the corresponding index for the actual time of the song, follow these
steps:“:

𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑂𝑓𝐴𝑢𝑑𝑖𝑜𝐶𝑙𝑖𝑝

𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑛𝑑𝑒𝑥 =

⌊︂
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒

𝐿𝑒𝑛𝑔𝑡ℎ𝑡𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒

⌋︂
3.2.3 Onset Detection using Spectral Flux

The Spectral Flux Analyzer is an instance with variables that track data for each event.
The main function AnalyzeSpectrum is called in parallel from Clip Analysis, as explained in
Subsection 3.2.2, after the FFT analysis for each event trigger. Onset detection has already
been discussed, and the next topic will be spectral flux.
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Spectral Flux Calculation

Spectral flux or spectral difference measures the difference in magnitude between consecu-
tive frames. Here came the deciding point for choosing the gathering method. The analysis
would function well with real-time data collection but might lag slightly behind the actual
song. To mitigate this, GetData was used to preprocess the song. This approach may in-
troduce a loading time before a game level but results in a minimal delay between the song
and data. Let 𝑃 (𝑡) and 𝑃 (𝑡 − 1) represent the power spectra of the current and previous
frames, and let 𝑆𝐹 (𝑡) be the spectral flux.

𝑆𝐹 (𝑡) =
∑︁
𝑓

max(0, 𝑃 (𝑡, 𝑓), 𝑃 (𝑡− 1, 𝑓))

where 𝑓 represents frequency bins in the power spectrum, which are the trigger ranges
defined by the user.

Thresholding and Dynamic Thresholding

Next, a threshold must be calculated, which determines if the peak happened. A peak is
identified when the spectral flux exceeds the threshold. While a static threshold could be
used, it would not be precise, and it is not worth it to save some computer power for it.
Therefore, implementing a dynamic threshold is necessary. Firstly the average of the 𝑁
spectral flux values is calculated. This project calculates using 50 values.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹 𝑙𝑢𝑥 =
1

𝑁

𝑁∑︁
𝑖=1

𝑆𝐹 (𝑡− 𝑖)

Afterward, a threshold multiplier, which defines the sensitivity of the threshold is multiplied
by the Average Flux, resulting in threshold 𝑇 . This threshold multiplier is a parameter of
event triggers created by the event customization feature 3.2.1. That means the user can
test what result works for them.

Peak detection

To detect the peak, it is important to calculate the pruned spectral flux. This is the
difference between the spectral flux and the threshold, representing whether the spectral
flux is greater than the threshold:

𝑆𝐹𝑝𝑟𝑢𝑛𝑒𝑑(𝑡) = max(0, 𝑆𝐹 (𝑡)− 𝑇 )

Peak is detected when 𝑆𝐹𝑝𝑟𝑢𝑛𝑒𝑑(𝑡) exceeds both 𝑆𝐹𝑝𝑟𝑢𝑛𝑒𝑑(𝑡+ 1) and 𝑆𝐹𝑝𝑟𝑢𝑛𝑒𝑑(𝑡− 1).

3.2.4 Beat Detection

The peaks have been detected, and using them to a rough estimation of the song’s tempo
can be made. By expanding the base algorithm on specific ranges, the chances rise, however,
it still is not reliable. Beat detection is very tricky and comes with a lot of variables. Some
of them are mixing of the song, genre, and noise. The ideal song would have clear percussion
elements, such as kick and snare, that would be seen in the spectrum, however, users may
use songs of different genres and qualities. That’s why the beat generation was added, to
ignore the song’s quality and poor mixing. Users can obtain the tempo in BPM from third-
party applications, specify it in the main script as a parameter and the beat generation will
create events accordingly.
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3.3 Functionality
The necessary data has been extracted from the audio clip at this stage. Users can now
access this data through the main component called ClipController, which requires an Event
Triggers scriptable object and an AudioSource to analyze a clip. In order to inspire users
and showcase the potential, additional functionality needs to be implemented. This will
include a custom event system, beat generation, and various other components.

3.3.1 Event System

The unity event system is powerful and very useful, but after introducing custom events from
Subsection 3.2.1 to this plugin, a custom event manager was needed with the event system
more catered to the needs of the plugin. So, an Event Manager is created automatically
and instantiated by the Clip Controller. It is singleton to ensure the event system won’t get
messy. The event system consists of a dictionary where the key is the event name, and the
value is a list of actions with the SpectralFLuxInfo parameter. This helps quick access to all
event subscribers. The Event Manager has a custom Subscribe and Unsubscribe function
to keep track of subscribers. Other than that, it works just like a basic event system. Clip
Controller checks whether an event trigger occurs, and if yes, it calls the Invoke method of
Event Manager, which then invokes all Actions of subscribers to that specific event. See
Fig. 3.2 for a better understanding.

Figure 3.2: Simplified diagram of the event system displaying communication between
components and Event Manager, and Clip Controller.
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3.3.2 Beat Generation

As previously mentioned in Subsection 3.2.4, beat detection is a challenge. Beat generation,
on the other hand, is pure math. To calculate the interval between individual beats, the
song’s BPM is a necessary parameter. This can be obtained using third-party software.

60

𝐵𝑃𝑀
= 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

For example, if the song has a tempo of 120 BPM, it means that there will be 0.5 seconds
between each beat. Now, the beat event has to be invoked. To do that, the program has
to keep track of time; a different functionality is used then in the analysis. Synchronizing
object manipulation to beat is very delicate, which is why high accuracy is important.
Using AudioSettings.dspTime, which returns the current time of the audio system, is much
more precise than simply using AudioSource.time because it is based on the actual number
of samples the audio system processes [2]. Afterward, the difference between the start of
the track and the current DSP time determines if a beat happened.

To broaden the beat events, an enumerate of different times of beat is created; the
user can now specify on what beat to listen to the event. For example, the user can
choose to trigger every beat, just the second beat, even beats, or odd beats. Specification
of time signatures was added to give the user even more flexibility and possibilities. As
Subsection 2.1.2 mentions, time signature specifies how many beats are in a bar. This beat
generation is straightforward and expects only 4

4 or 3
4 time signatures, which are the most

common ones. This allows the user to create accents, for example, on the first beat of a
bar, or create an environment that is more responsive to the song.

3.4 Components
Now, game developers and other users have access to all data and systems, and it is up to
them to create what they want. Components were developed for their smoother creative
process and quicker prototyping of different scenes. Some are more complex than others,
all based on the information retrieved from the song.

3.4.1 Beat-based Components

The beat-based components are simple, and only the main properties of objects, such as
scale, positions, and rotation, are modified. These components are simple and just keep
going back and forth between specified values in specified beat intervals. Other components
are modifying the intensity of a light or enabling and disabling an object.

One of the more complex components is checkpoint movement. It works by creating a
list of transforms that act as checkpoints through which the object moves. The user can
specify how many beats it takes the object to reach a checkpoint so that it moves more
quickly or slowly.
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3.4.2 Amplitude Based Components

These components are not based on events; they are based only on the amplitude values
of the song. It can create dynamic light or fog. Exactly that was created. A component
for dynamic light is created to work with spot and point types of light. It changes light’s
intensity and area with the changing amplitude. The dynamic fog component works by
changing the density of a Unity fog created by their renderer settings; when the music is
busier and has a higher amplitude, there is less fog in the scene.

Last but not least is scaling with amplitude, which scales the object by the amplitude
in the song currently.

3.4.3 Cinematic Camera

Other than basic, general components, which can be used quickly, a more complex system
called a cinematic camera system was also created. It is a custom-made movement script
through checkpoints for the camera, designed to synchronize closely with the song’s pro-
gression. Each checkpoint is defined by position and corresponding timestamp, indicating
a specific moment in the song timeline when the camera should reach the checkpoint. Wait
time, rotation time, and rotation target were added to give the user more freedom. It creates
even more possibilities and mimics an animation clip but with easier song synchronization.

3.5 Quality of Life
During the development and testing, functionality for solely quality of workflow and con-
venience was created. This functionality is still relevant for future developers who would
work with the plugin; that’s why some of them are described below.

3.5.1 DataWriter

DataWriter is one of the classes that provide the functionality to serialize the ParsedClip
into JSON format and save it locally, which provides quicker experimenting with things
not related to the analysis, such as beat events. The ClipController has a flag to run the
analysis and overwrite the saved file for easy workflow; if users do not want to re-analyze
the song, the DataWriter will read it from a file and send it to ClipController to continue
the flow of the game.

In case the developer wants to examine the data inside the ParsedClip for a deeper un-
derstanding, there is a function to print multiple files with different data for each frequency
range; this is because the one file is so large that it is impossible to read anything except
the clip’s name from it.

3.5.2 Testing Environment

It was essential to see what was happening in the song during the tweaking process. That’s
why a testing playground was created to let users see the spectrum data of the song and
see in which frequency ranges something is happening. This visualization helps to create
more precise frequency ranges for the event triggers.
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Chapter 4

Testing

Testing is very important in all kinds of projects, especially the creation of plugins. The
results obtained will determine the potential of the plugin. The focus will be on the overall
user experience and synchronization with the music. Focusing more on the outcome of the
plugin than the usage reveals if the plugin has any potential at all. Test questions were
formulated using Google Forms.

Two unity scenes were created, each showcasing a different functionality of the plugin.
Videos showcasing the important functionality were created and added to the questionnaire.
The videos could not be uploaded to YouTube due to copyright reasons. Therefore, readers
interested in viewing the videos can watch the forest and space videos directly from the
disk; the structure is described in appendix A.

4.1 Forest Scene
The forest scene was based on a piece from the movie A Series Of Unfortunate Events called
The Baudelaire Orphans created by Thomas Newman. This song was chosen because of
a pretty melody midway through that is reminiscent of stars. The piece also has crescendos,
which are interesting to visualize. It is an orchestral piece without any percussion elements,
which made it a bad choice for a rhythm showcase but great for a more cinematic, artistic
experience.

4.1.1 Analysis Results

To better visualize when the analysis detects peaks, the results saved as JSON files, gener-
ated by DataWriter 3.5.1 were utilized and then plotted using the Python library Matplotlib.

In Fig.4.1, the analysis shows a melody that resembles stars. The melody was mainly de-
tected between 65 and 115 seconds, corresponding to the spectrogram in the same timeframe
within the frequency range of 1046.50 Hz to 2093.00 Hz. This indicates that the melody
detection was accurate. However, as shown in Fig.4.1 and the video in Appendix A, the
stars occasionally appear too close together, even when the melody is not playing. This
clustering is visible around the 100-second mark in the plot. To address this, increasing the
threshold multiplier or detecting each note individually might improve accuracy.

The peaks detected before the melody starts or ends are problematic, as they were not
intended. To mitigate this issue, the stars object was activated just before the expected
start of the melody.
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Figure 4.1: Figure displaying spectrogram (top plot) of The Baudelaire Orphans by
Thomas Newman and flux values with the dynamic threshold and onsets of the melody
event trigger (bottom plot).

4.1.2 Scene Creation

All the assets are free from the asset store. The decision to use a low-poly forest was made
because it worked well for this music piece. The asset comes with the whole scene prepared
with rocks, trees, mushrooms, sunflowers, and more, which was not altered in any way.
This scene was used and then the procedural sound-based elements were added to it.

A skybox of the starry night sky created by a third-party tool named 3DTool was added
to the scene, which greatly helped to set the right mood. Then, the unity fog system was
used to create a feeling of mystery, the light was changed to lighter blue to mimic the moon,
and the scene was finished.

Take a look at Fig. 4.2a to see the whole scene without the fog that would block the
view.
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4.1.3 Scene Functionality

For functionality showcase, the custom-made checkpoint camera movement, mentioned in
Subsection 3.4.3, was utilized to move through the scene dynamically. This guarantees that
the video captures everything the plugin has to offer. Three checkpoints were created, each
focusing on a different functionality.

First Part

The first checkpoint was set to look at a bunch of rocks with mushrooms and sunflowers,
seen in Fig. 4.2b, showcasing the functionality of amplitude scaling and light modification.

Second Part

The second checkpoint focused on stars to show what can be done with the Onset detec-
tion. Here, a pleasant melody reminiscent of stars was utilized. Two particle systems were
created, one representing the light of a star and the second adding flare. Together, they
created a pretty star-like effect.

To synchronize it with the piece, a script was created that randomizes the position of
the particle systems and emits one particle with a dynamic size of the current amplitude
in the camera direction.

The decision was made to include the lower arpeggio, which accompanied the melody.
The particle systems were duplicated, assigned a different event trigger, and given a distinct
color for improved visibility, resulting in an appealing star dance effect.

The second part can be seen in Fig. 4.2c.

Third Part

The last checkpoint was looking into the forest, seeing clearer when the crescendo happened
and seeing how the fog was coming back after it, almost as if the instruments were creating
wind blowing the fog away. It can be seen in Fig. 4.2d

(a) Full scene without fog (b) First part, mushrooms and sunflowers

(c) Second part, starry sky (d) Third part, fading fog

Figure 4.2: Different parts of the forest scene video and important functionality.
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4.2 Space Scene
This scene was made to show the beat generation and potential of the plugin to be used
in rhythm games. For a song, Space Diving by an artist named mezhdunami., which
falls into the synth-wave electro genre, was perfect. The song features distinct, percussive
elements, evoking images of a game-level performance perfectly suited to this type of music.

4.2.1 Analysis Results

The spectrogram was also created using the Python library Matplotlib and results were
generated by DataWriter 3.5.1.

In Fig. 4.3, there are no distinct onsets shown. This is due to the chosen song having a
tempo of 160 BPM (approximately 2.5 beats per second) combined with some imperfections
in the analysis, resulting in the plot being dominated by continuous lines.

The bottom plot illustrates the Bass range 2.1.4, in the frequency range of 60–250 Hz.
Onsets can still be identified by examining the Dynamic Threshold line and the Onset
Function values. An onset occurs when the Onset Function value exceeds the Dynamic
Threshold line. However, except for some quieter sections, onsets were being detected
almost continuously. This problem required the development of the Beat Generation.

Figure 4.3: Figure displaying spectrogram of Space Diving by mezhdunami. (top plot)
and flux values with the dynamic threshold of the SubBass range(bottom plot).
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4.2.2 Scene Creation

As with the Forest Scene 4.1.2, all the assets used in this scene are free from the asset
store. The asset contained a space station scene that was already prepared and just needed
the plugin’s functionality to be complete. A player movement script was created with a
rotating camera for video recording. Additionally, a space skybox was implemented, seen
in Fig. 4.4a, using the same third-party tool, 3DTool, that was utilized in the forest scene
to position the space station within the cosmos. This scene lacks the post-processing touch
that the first scene had, but more importantly, it has to showcase the beat synchronization,
which is visible. See Fig. 4.4 to see the space station.

4.2.3 Scene Functionality

Here, all the beat components mentioned in the Subsection 3.4.1 are utilized. Doors that
open by rotating, moving from side to side, or disappear completely can be seen in the
scene. Checkpoint movement is also utilized on a floating object in space to mimic orbit.
The light component was added to showcase not only the gameplay possibilities of the
components but also to set the mood. The lights mimic the flickering of an abandoned
space station.

All of these elements were intended to contribute to an engaging level filled with poten-
tial puzzles and narratives. Whether it was a success or not is not up to us.

(a) Full scene of the space station (b) Starting position in the space station

(c) Doors in rotating motion (d) Another angle of the space station

Figure 4.4: Different figures of the space scene video.

Please refer to Appendix A for picture location for better resolution.
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4.3 Results
The respondents were in the 20–25 age range and varied in profession. There were 12
participants. Notably, a quarter of them were not students. Furthermore, only 16.6%
of the participants reported having experience with the rhythm game genre, while 41.6%
indicated no prior gaming experience whatsoever. Interestingly, one respondent works in
the game industry. Additionally, a significant majority of 66.6% had experience with music
other than listening, whether playing an instrument or studying music theory.

At the start of this chapter, it was mentioned that the main focus is on overall feeling
and synchronization with music. The results show two videos with completely different
feelings.

4.3.1 Forest Scene

The forest scene had been given a score of 8.8 out of 10 in total. That is very pleasant.
The majority of participants, 66.7%, said they did not see any problem with the scene. The
other users had multiple different comments, but the most common comment was about
the stars in the second part of the video.

Even though there were small problems, it seems that almost every participant could
imagine this functionality being utilized in some kind of digital media, be it an advertise-
ment, a video clip, or a trailer. The other participants answered ”maybe“, which indicates
that the deciding factor would be the execution. Take a look at the questions and results
in the Tab. 4.1.

In summary, the scene garnered a very positive response, indicating that the plugin is
on the right path.

Questions Have you noticed any prob-
lems with the audio visualiza-
tion shown in the video?

Would this functionality be
good in trailers, video clips, ad-
vertisements, or other kinds of
digital media?

Yes 33.3% 83.3%
No 66.7% -
Maybe - 16.7%

Table 4.1: Response percentages from questionnaire.

4.3.2 Space Scene

On the other hand, the space scene had a different story. With a total score of 7.5 out of
10 in total, it was not such a success. Even though the majority of 58.3% still answered
that they did not see any problem with the synchronization, it was seen that participants
who have more experience with rhythm games voted that they had indeed seen problems.
The deciding factor was the door movement. The combination of different beat triggers
and styles of opening the door created a very confusing environment, so it was hard to see
if the doors were really on beat. Other than that, there were slight issues with the scene,
but these were unrelated to the beat synchronization, so they are irrelevant.
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Even though this scene shows bigger problems, after the question if they think that the
plugin could be used to create rhythm games, only one participant said ”No“; others said

”Maybe“ and ”Yes“, which again indicates that it will be based on the execution and care
for the game. See the experimental results in the Tab. 4.2.

In summary, although this scene did not receive as positive a response as the forest
scene, it still got good comments and tips on what to look at and tweak more. Again, the
potential stays, but it may need more work.

Questions Have you noticed any synchro-
nization or any other problems?

Would this kind of beat syn-
chronization precision be
enough for a game?

Yes 41.7% 58.3%
No 58.3% 8.3%
Maybe - 33.3%

Table 4.2: Response percentages from questionnaire.

30



Chapter 5

Conclusion

Music is closely tied to daily lives, accompanying people almost everywhere: in the car, in
the supermarket, while watching movies or series, and even while playing games. Utilizing
the natural perception of music in different kinds of mediums can create an immersive
environment that enhances emotional feelings and perception of the music being played.

This paper explored fundamental music concepts, as discussed in Section 2.1, including
tempo, beat, onset, and frequency. It explains how humans perceive sounds and volume
in SubSection 2.1.5. Section 2.2 covered audio signal processing providing an overview
of the time domain and frequency domain, and discussed the Fourier Transform and its
application, including the Fast Fourier Transform. Section 2.4 highlighted the benefits of
procedural generation and examined Unity’s handling of audio clips and potential data
retrieval methods.

The proposal for a plugin that analyzes background music playing in a Unity scene was
then examined. The steps of clip analysis mentioned in Subsection 3.2.2 and onset detec-
tion using spectral flux in Subsection 3.2.3 were explored, revealing the challenges of beat
detection. Data management and event customization solutions were introduced, featuring
a custom event system designed to work with any created event. Afterward, a solution
for rhythmic elements in games using simple beat generation was found. Additionally, the
various components offered by the plugin were discussed, including object transform modifi-
cation to the rhythm of a song and dynamic fog controlled by the song’s current amplitude.
A custom cinematic camera script that allows users to plan camera movement with the
song timeline and rotate the camera towards a selected object was also mentioned, along
with some quality-of-life features in the plugin.

Testing was conducted after the creation of all components, and the results were an-
alyzed. The creation of two testing scenes, their motivation, and the differing reactions
they received were discussed. The forest scene, showcasing the dynamic camera and en-
vironment, received more positive feedback compared to the space scene, which displayed
rhythmic patterns prone to inaccuracy, as detailed in Section 4.3. The plugin’s potential
was evident even before testing, but the results confirmed that it was progressing in the
right direction.

A potential improvement of the plugin could be running half of the preprocess func-
tionality and then running it while the game runs. This would minimize the waiting time
needed to wait for the analysis to finish. Adding a list of AudioClips, which would be
processed before playing, would help if the scene had multiple songs.
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The analysis has ways to improve, and adding machine learning would provide even
more functionality, like mood detection or genre estimation. This would be a great tool for
procedurally generating levels with colors and assets matching the song.

Another direction for the plugin could be into a more cinematic sphere, with custom
checkpoint creation functionality that would make the checkpoint system easier to use and
custom time stamps into custom-made clip objects.

The beat estimation analysis could be improved to make the beat generation obsolete,
which would eliminate another concern from developers about finding the tempo of the
song and opening up possibilities for procedural levels with rhythmic elements.

This project has multiple possible ways to evolve, and the way it will continue is just up
to the developers interested in music and digital media working closely together with it.
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Appendix A

Disk Structure

This appendix describes the structure of the disk. The Multimedia folder contains the
videos used in testing and pictures used in this thesis. The Latex folder contains the PDF
and the source files for this thesis.

In case the reader wants to try the plugin on their machine, the package on the disk
Procedural_Sound_based_Elements.unitypackage contains all the necessary files for it to
work. The project runs on Unity version 2021.3.24f1. Simply import the package into Unity,
and download the dependencies listed in README.md. To explore the prepared scenes
seen in this thesis navigate to ProceduralSoundBasedElements folder and import the
project into Unity.

/
README.me.........Markdown file with information about the package installation.
Procedural_Sound_based_Elements.unitypackage.Unity package containing the
library
Procedural_Sound_based_Elements_in_Games.pdf................Thesis pdf file
Procedural_Sound_based_Elements_in_Games_poster.pdf ........ Thesis poster
Multimedia/............................................Folder with multimedia

Videos/..............................Videos used in the testing questionnaire
Screenshots/ ....................................... Screenshots of the game

Latex/.....................................Folder with latex scripts and pictures
ProceduralSoundBasedElements/..Unity project folder with the scenes for testing

Assets/............................Folder with the assets in the Unity project
Pure Poly/................................Asset pack used in ForestScene
Scenes/....................................................Testing scenes
Sci-Fi Styled Modular Pack/.............Asset pack used in SpaceScene
ScriptableObjects/...........Scriptable objects used in the testing scenes
Scripts/.............................................Scripts of the plugin
SkyBox/.............................................PNGs for the skybox
TestingMusic/................................Music for testing the plugin
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