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Abstract 
This thesis explores music-driven object manipulat ion in the U n i t y game engine, which 
offers a versatile toolset for artists and creators looking to integrate dynamic elements 
based on background music. Th is project implements Fast Fourier Transform using an 
external l ibrary, Onset Detect ion, beat generation, and related functionalities w i t h i n Uni ty . 
Consumer testing and experimentation demonstrate the potential of the implementat ion 
and functionali ty of the p lugin . B y creating this proof of concept, the intention is to inspire 
further innovation in this area and leverage music as a creative t o o l i n not only game design 
but other media as well . 

Abstrakt 
Táto bakalárska práca sa zaoberá manipuláciou objektov v hernom prostredí U n i t y na 
báze hudby. V tomto projekte sa pozrieme na Rýchlu Fourierovu Transformáciu, detekciu 
nástupov, generáciu dôb a vhodnú funkcional i tu v U n i t y . Testovanie s užívateľmi a experi-
mentácia, demonštrujú potenciál navrhnutej implementácie a funkcionalitě pluginu. Zámer 
tohto projektu je inšpirovať inováciu v tejto sfére a využiť hudbu ako kreatívny nástroj do 
nie len hier ale aj ostatných digitálnych medii . 

Keywords 
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environment, Sound analysis 
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Rozšírený abstrakt 
Cieľom tejto bakalárskej práce je zoznámiť sa s problematikou analýzy hudby a vytvoriť 
softvérový m o d u l (ďalej len "plugin") , ktorý poskytne vývojárom v hernom prostredí U n i t y 
analýzu hudby v pozadí a funkcional i tu na manipulovanie objektov nachádzajúcich sa v 
scéne. 

Zaoberáme sa p r v k a m i hudby, ktoré sú vhodné na vizualizáciu, ako napríklad tempo, 
melódia či hlasitosť. Pre správny návrh pluginu je potrebné pochopiť analýze zvukových 
signálov, ich spracovaniu, ako celková analýza prebieha a aké matematické funkcie sa na ňu 
používajú. Spolu sa pozrieme na časovú a frekvenčnú doménu, rýchlu Fourierovu Trans­
formáciu a detekciu nástupov. Taktiež je treba rozobrať rôzne metódy na získavanie dát v 
Uni ty , ako napríklad AudioSource .GetSpec t rumData alebo A u d i o C l i p . G e t D a t a . 

P l u g i n sa skladá z viacerých častí; externá časť pre výpočet rýchlej Fourierovej Trans­
formácie, detekcia nástupov na rôznych frekvenčných rozsahoch, manažér udalostí (event 
manager) a rôzne komponenty poskytujúce funkcional i tu pre užívateľa. Užívateľ si vie 
zadať frekvenčné rozsahy, ktoré chce analyzovať. P l u g i n poskytuje rôzne informácie analy­
zovanej hudby, k u ktorým má užívateľ prístup, ako napríklad priemernú amplitúdu počas 
hudby, sprektrálne informácie, a či v určitom rozsahu v stanovenom čase nastal nástup. 
Tieto informácie sú poskytované hlavným komponentom C l i p C o n t r o l l e r alebo poslané ako 
udalosť manažérom udalostí komponentom, ktoré danú udalosť odoberajú. Poskytovaná 
funkcionali ta pluginu na manipulovanie objektov v scéne zahrňuje: pohyb, rotácia a modi ­
fikovanie veľkosti objektu na základe udalostí a priemernej amplitúdy, cinematickú kameru, 
ktorá sa pohybuje po kontrolných miestach na základe času hudby a mnoho dalších. 

K v a l i t a pluginu bola testovaná dvanástimi účastníkmi, ktorí sa pozreli na videá ukazu­
júce funkcional i tu pluginu. N a základe ich odozvy vieme zhodnotiť, že p lugin má potenciál 
či už v rytmickej hre ale aj v scénach založených na hudbe. 

Touto bakalárskou prácou chceme inšpirovať dalších ľudí na experimentovanie s hudbou 
nie len v hrách ale aj ostatných digitálnych médiách. 
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Chapter 1 

Introduction 

M u s i c is an important part of video games, helping to create the right mood, reinforce emo­
tions, and te l l stories. It can also help to create immersion, capture the player's attention, 
and notify them about certain events. M u s i c is a powerful too l used not only i n games but 
also i n movies, T V series, and other forms of media. Sounds and music can also be used as 
a memorizat ion tool , helping players recognize certain events by sound. 

R h y t h m games are a well-established genre that relies entirely on music and the natura l 
human reaction to r h y t h m . They use the elements of music to create captivat ing gameplay. 
Precision, accuracy, and flow are essential in these games, which is why they are often 
hand-crafted to match the song's r h y t h m perfectly. Some games even use a l l the elements 
of a song to create procedural levels. 

Us ing the environment to display music can have many benefits. It can provide players 
w i t h more information, such as helping them keep track of the beat. 

Creat ing a dynamic environment that responds to music is not a new concept. However, 
it is usually done manually. This thesis serves as a proof of concept for procedural elements 
based on music in the U n i t y game engine. It creates a plugin that helps developers create 
captivating environments, fun rhythmic gameplay, and more. 

The f inal p lugin is designed for the U n i t y G a m e Engine, a powerful, versatile cross-
plat form game engine widely used to develop video games, simulations, and interactive 
experiences. U n i t y ' s f lexibil i ty and scalabil i ty allow developers to prototype quickly, iterate 
efficiently, and deploy their projects across mult iple platforms w i t h ease. A s a result, 
U n i t y has become one of the leading game development engines i n the industry, powering 
thousands of games and experiences worldwide. It was an excellent choice for this plugin 
due to its popular i ty among game developers and its large community that uses assets from 
the U n i t y asset store. 

In the upcoming chapters, valuable information about music in Chapter 2.1, methods 
for retrieving it i n Chapter 2.2, and its appl icat ion i n the plugin w i l l be discussed. The 
author's proposal for the f inal product w i l l be examined i n Chapter 3, along w i t h an ex­
plorat ion of how different components communicate and how the analysis functions. G i v e n 
the importance of testing, Chapter 4 w i l l cover the creation of scenes to demonstrate the 
plugin's potential and provide an analysis of part ic ipants ' responses to assess the plugin's 
performance. 
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Chapter 2 

Theory 

A n a l y z i n g music using computers presents unique challenges. Unl ike humans, computers 
cannot perceive music's r h y t h m , pi tch, and m o o d . W h i l e these elements come natural ly 
to us, computers require various calculations and algorithms to process the complexity of 
musical signals. 

The following sections explore the necessary theoretical foundations for this project. 
Init ially, fundamental concepts in music theory, such as beat, p i tch , r h y t h m , and tempo, 
are reviewed to determine which parameters should be extracted from the music. A f t e r w a r d , 
the methods used to gather data f rom the audio signal are discussed, w i t h a specific focus 
on the appl icat ion of the Fast Fourier Transform ( F F T ) for data retrieval. Other topics 
mentioned include procedural generation and its applications i n game development, as well 
as the U n i t y game engine and its audio integration. 

2.1 Fundamentals Concepts 

Understanding fundamental music concepts is helpful for effectively analyzing the gathered 
data from audio signals. This section discusses some of the key concepts relevant to this 
project, such as tempo, beat, and frequency. Rather than delving into the t radi t ional music 
perspective, the focus is more on relevant numerical representations and implicat ions. 

2 . 1 . 1 T e m p o a n d B e a t 

Tempo refers to the speed or pace at which music is played, measured i n beats per minute 
( B P M ) [12]. It dictates the overall r h y t h m and energy of a piece. The beat is a regular, 
repeating pulse that underlies a musical pattern. Humans natural ly synchronize movement 
to the beat, which is invaluable for the game because it enhances the user experience and 
immersion. 

In Western classical music, the tempo is either wri t ten in B P M for more precise ind i ­
cation or left to the conductor to specify the tempo by just describing it i n I tal ian words. 
For example, Grave describes a very slow song, Moderato describes a moderate tempo, and 
Prestissimo a very, very fast tempo [12]. Y o u can see the tempo mark ing i n both forms in 
F i g 2.1. 

4 



2 . 1 . 2 T i m e S i g n a t u r e 

In Western music, a t ime signature also referred to as a meter signature, notat ion specifies 
the number of note values of a part icular type w i t h i n each measure (bar). In musical 
notat ion, it appears as two stacked numerals, as seen i n F i g . 2.1. T i m e signatures are 
categorized as simple (grouping note values i n pairs like 2 , |, |) or compound (grouping 
in threes like |, |, g2), w i t h less-common ones representing complex, mixed, addit ive, or 
irrat ional meters [13]. The upper numeral in a t ime signature represents the number of 
note values per bar, while the lower numeral indicates the type of note being counted. 

Different genres often uti l ize specific t ime signatures to create their unique rhythmic 
feels. For example, a waltz typica l ly uses a | t ime signature, g iv ing it a distinct 'one-two-
three' r h y t h m . In contrast, many rock and pop songs use |, also known as 'common t ime, ' 
which provides a steady and famil iar beat. Understanding the song's r h y t h m can help 
during beat est imation or beat generation. For example, to create a heavy r h y t h m game, a 
metronome-like effect can be achieved w i t h the knowledge of t ime signature. This approach 
emphasizes the first beat using audio-visual cues to keep the player i n the flow. 

Figure 2.1: M u s i c a l notat ion displaying different components of music. [14] 

2 . 1 . 3 O n s e t 

The onset is the beginning of a musical note or sound, characterized by the rise in ampli tude 
from zero to an i n i t i a l peak. It is important for beat est imation and r h y t h m analysis, serving 
as a reference point for identifying rhythmic patterns w i t h i n the music. The onsets can be 
seen in F i g . 2.2b as general ampli tude spikes or i n F i g . 2.2c as specific frequency spikes. 

F i g . 2.2a, displays the different parts of the note. Dis t inguishing between these is crucial 
because different applications have different needs. Transient represents a short interval 
during which the signal rapidly evolves in some complex or relatively unpredictable way. 
A s was said, the onset marks the start of the note. More precisely, it marks the beginning 
of the transient or the earliest point at which the transient can be rel iably detected. A t t a c k 
is the t ime interval dur ing which the ampli tude rises. Addi t iona l ly , the release of sustained 
sounds can also be perceived as a transient period [3]. 

Tempo marking BPM 

Allegro (J = 132) 

Time 
signature 
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a t t a c k 

(c) Possible onsets seen in spectrogram shown with brighter color 

Figure 2.2: Onsets displayed i n different domains 

2 . 1 . 4 F r e q u e n c y a n d P i t c h 

Frequency represents the speed of v ibra t ion i n a sound wave, measured in Hertz (Hz) , 
determining its pi tch or perceived musical tone. Detect ing frequency variations is essential 
for identifying melodies and harmonies w i t h i n the music. P i t c h refers to the posit ion of a 
single sound w i t h i n the complete range of sounds. 

The frequency of a sound wave determines the number of vibrations that occur per unit 
of t ime. A s a result, sounds w i t h higher frequencies are perceived as having a higher pi tch 
and a more dist inct , sharper quality. In other words, the higher the frequency, the higher 
the p i tch of the sound. 

Unl ike some animals, human ears detect frequencies between 20 and 20,000 H z (assum­
ing opt imal conditions) [10]; anything beyond (ultrasounds) or below (infrasounds) this 
range is imperceptible to us. These audible frequencies are further d iv ided into smaller 
ranges, each w i t h distinct characteristics. Different frequency ranges correspond to distinct 
tonal qualities and characteristics [1]: 

• S u b B a s s (20—60 H z ) : Felt more t h a n heard, contributes to the overall richness 
and depth of the sound. 

• B a s s (60—250 H z ) : Determines the thickness or thinness of the sound, providing 
the foundational notes of r h y t h m . 

• L o w M i d r a n g e (250—500 H z ) : Contains low-order harmonics and contributes to 
the bass presence i n the mix . 

• M i d r a n g e (500—2000 H z ) : Determines the prominence of an instrument i n the 
mix , influencing its perceived clari ty and definit ion. 
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• U p p e r M i d r a n g e (2000—4000 H z ) : Emphasizes the attack on percussive and 
rhythmic instruments, adding presence and impact . 

• P r e s e n c e (4000—6000 H z ) : Enhances the clar i ty and definition of sound, often 
adjusted using treble controls i n home stereos. 

• B r i l l i a n c e (6000—20000 H z ) : Contains harmonics that contribute to the overall 
brightness and shimmer of the sound. 

A n important note to remember is the relationship between frequency and pi tch . E a c h 
octave represents a doubl ing of frequency. This means that to calculate a lower octave of a 
note, its frequency is d iv ided by 2; for a higher octave, it is mul t ip l ied by 2. Th is knowledge 
can be ut i l ized to quickly determine which note has been played. For example, knowing 
that note C\ has a frequency of 32.703 H z allows for the calculat ion of any other octave of 
this note, providing an approximate locat ion for identifying that part icular note. 

2 . 1 . 5 P s y c h o a c o u s t i c s 

Psychoacoustics researches how humans perceive sound. It is an important field that helps 
aid in the development of communicat ion. It combines how human bodies receive sound 
(physiology of sound) and how human brains interpret it (psychology of sound). These 
disciplines provide an understanding of people's different reactions to sounds [10]. These 
insights are important because sound is essential in many fields, such as communications 
devices, music and f i lm product ion, and even the game industry. The sounds are very 
diverse. The m a i n elements contr ibut ing to this diversity are intensity, p i tch , and tone. 
The pi tch was already mentioned in the previous Section 2.1.4. 

Intensity is represented by ampli tude, which is a measure of energy. It is measured 
in decibels, and it determines the loudness of sound [8]. H u m a n ears are more sensitive 
to higher frequencies, which means that they may perceive them as louder, though the 
intensity is independent of human perception. T h i s can be seen i n F i g . 2.3. E q u a l loudness 
contours i l lustrate how the human ear perceives sound at different frequencies. T h e figure 
shows that the ear is most sensitive to frequencies in the range from 1 to 5 k H z . E a c h curve 
corresponds to a 10 d B increase using the 1 k H z tone as a reference point. 
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10Hz 100 1000 10k 100kHz 

Figure 2.3: T h e equal loudness contours showing human perception of different frequencies. 1 

Tone qual i ty is influenced by the combination of different frequencies, which gives the 
sound its unique characteristics. E v e n though the same pi tch is being played, the sound 
is different when two different instruments are played, for example, guitar and saxophone. 
W h e n a source vibrates, it vibrates w i t h mult iple frequencies at once. The qual i ty of 
sound is influenced by a mixture of various frequencies of sound waves. Humans main ly 
hear the m a i n pi tch called fundamental , which is the lowest from the mixture . Higher 
frequencies are called overtones, and those v ibrat ing i n whole-number multiples are called 
harmonics [8]. This is why the guitar and saxophone sound different; the mater ia l from 
which the instrument is created, the playing technique, and the generation of the sound 
wave (blowing i n saxophone or s t rumming a guitar string) a l l affect these frequencies and 
change the tone. 

B o t h music and noise are types of sounds. Usually, people consider music as pleasant, 
and noise as unpleasant. However, this definition can be subjective because someone prac­
t ic ing the v io l in could sound terrible. There are three properties that the sound must have: 
to be musical to classify sounds. F i r s t , it must have an identifiable p i tch . Second, it must 
have a good-quality tone that sounds pleasing. T h i r d , it must have a repeating pattern or 
r h y t h m to be music. O n the other hand, noise has no identifiable pi tch , no pleasing tone, 
and no steady r h y t h m [8]. 

This study is used extensively in the game industry, f rom understanding how humans 
uti l ize sound to create a realistic environment to using specific sounds w i t h different ind i ­
cators (for example, roughness, sharpness, and loudness) to inform the player about danger 
or interesting areas. 

1Image used from Wikipedia https://en.wikipedia.org/wiki/Equal-loudness_contour 
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2.2 A u d i o Signal Process ing 

A u d i o signal processing is a subfield of signal processing involving electronic manipulat ion 
of audio signals. A u d i o signals are representations of sound that are i n dig i ta l format, a 
series of binary numbers. Th is digi t izat ion process, known as sampling, captures discrete 
snapshots of the sound wave's ampli tude at regular intervals. 

2 . 2 . 1 D o m a i n s 

A u d i o signals are commonly visualized as waveforms i n the time domain, as can be seen 
in F i g . 2.4, i l lustrat ing the variations of ampli tude over t ime [5]. W h i l e this representa­
t ion offers a basic understanding of the time-related characteristics, such as changes in 
volume, potential peaks, or intensity, it provides l imi ted insight into its underlying spectral 
characteristics. 

I 15 30 45 1:00 1:15 1:30 1:45 

'mezhdunami - Space DMng 

Figure 2.4: V isua l iza t ion of an audio waveform i n the time domain from A u d a C i t y . In 
stereo, the x-axis is t ime, and the y-axis is ampli tude. 

Signal processing techniques are needed to transform the signal into a frequency domain 
to extract more information from the audio data [5]. The frequency domain reveals the 
signal's spectral composit ion, which provides valuable insights into its frequency compo­
nents and dis tr ibut ion. W i t h i n this domain , the spectrum represents the magnitudes of 
frequencies present in the signal at a specific point or range of t ime, providing a detailed 
view of its frequency content as can be seen in F i g . 2.5. 

50Hz 70Hz 100Hz HOHz 200Hz 300Hz 500Hz 70OHz 1000Hz 140OHz 2OO0Hz 3000Hz 5000Hz 8000Hz 12000Hz 20000Hz 

Figure 2.5: Frequency spectrum from A u d a C i t y . The x-axis is frequency, and the y-axis is 
magnitude. 
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B y analyzing the frequency domain, dominant frequencies can be detected at a given 
t ime, providing information about the musical notes or percussive hits present in the audio 
signal. 

2 . 2 . 2 F o u r i e r T r a n s f o r m 

The Fourier Transform ( F T ) [4] is an essential mathematical too l used to analyze frequency 
domain signals. It breaks down a continuous-time signal into its constituent frequencies 
and provides insights into the signal's frequency content. Mathematical ly , the continuous 
Fourier Transform S(f) of a continuous-time signal x(t) is given by the following equation: 

/

oo 
x(t)e-j2nftdt 

-oo 

This equation represents the integral over a l l t ime of the product of the signal x(t) and 
a complex exponential function e -^2 7 1"^', where / represents frequency i n Her tz . T h e F T 
provides a continuous representation of the signal's frequency spectrum, making it suitable 
for analyzing continuous-time signals. 

2 . 2 . 3 D i s c r e t e F o u r i e r T r a n s f o r m 

The Discrete Fourier Transform ( D F T ) [4] is a mathematical technique used to analyze the 
frequency content of finite sequences of samples in discrete-time signals. It is the discrete 
counterpart of the F T and provides a discrete representation of the signal's frequency 
content. The D F T is computed by f inding the Fourier coefficients of the sequence of samples. 
Mathematica l ly , the D F T X{k) of a discrete-time signal x{n) can be represented as follows: 

N-l 
X(k) = ^ x(n)e-j27Tkn/N 

n=0 
Here, iV represents the number of samples i n the sequence, x{n) represents the discrete 

signal samples, and k represents the frequency index. The D F T transforms the discrete 
signal f rom the t ime domain to the frequency domain , enabling analysis of discrete-time 
signals i n terms of their frequency components. 

2 . 2 . 4 F a s t F o u r i e r T r a n s f o r m 

The Fast Fourier Transform ( F F T ) [4] is a powerful a lgor i thm that is used to calculate the 
D F T (Discrete Fourier Transform). It reduces the computat ional complexity compared to 
the direct computat ion of the D F T , making it pract ical for real-world applications. The 
F F T a lgor i thm is based on the divide-and-conquer principle, breaking down the D F T com­
putat ion into smaller sub-problems. This a lgor i thm enables the rapid computat ion of the 
frequency spectrum of a signal, making it useful for efficient signal-processing tasks such as 
filtering, spectral analysis, and modulat ion . Due to its speed and efficiency, the F F T algo­
r i t h m is widely used i n various fields, inc luding dig i ta l signal processing, communications, 
and audio processing, to compute the frequency content of signals. 
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2 . 2 . 5 W i n d o w i n g T e c h n i q u e s 

Af ter decomposing the audio signal into its frequency components using the Fast Fourier 
Transform ( F F T ) , a common problem encountered is spectral leakage. Spectral leakage 
means energy at one frequency „leaks" into adjacent frequency bins, resulting in inaccurate 
and distorted frequency analysis. Shorter segments of audio signals are more prone to cause 
this phenomenon. 

Fortunately, this challenge can be addressed by employing windowing techniques to i m ­
prove the accuracy of the analysis. W i n d o w i n g means segmenting the audio signal into 
shorter overlapping frames, called windows, each of which is mul t ip l ied by a window func­
t ion . Various window functions are available, each w i t h a different outcome and suitable 
for different use cases [11]. For example, Rectangular window or H a n n i n g , H a m m i n g , and 
B l a c k m a n windows. The H a n n i n g window was chosen for this project because it worked 
well dur ing testing. 

Hann window Fourier transform Rectangular window Fourier transform 

samples bins samples bins 

(a) Hann (Hanning) window function (b) Rectangular window function 

Figure 2.6: Examples of windowing functions. The plots display the signal's t ime-domain 
ampli tude variat ion (blue) and its frequency-domain power dis tr ibut ion (orange). 2 

F i g . 2.6 shows the H a n n i n g window, which was chosen for this project, and the Rectan­
gular or box window, which is one of the simplest ones. The figures show how the functions 
affect the signal. 

The Rectangular window i n F i g . 2.6b segments the signal into a box-like shape w i t h 
equal-sized frames. The ampli tude w i t h i n each segment results i n sudden transitions at the 
edges of the window; therefore, it is less effective at mit igat ing spectral leakage compared 
to other window functions [11]. 

The H a n n i n g window i n F i g . 2.6a has the shape of a raised cosine. In comparison to 
the Rectangular window, the H a n n i n g window gradually decreases the ampli tude towards 
the edges of each windowed segment. This creates a smooth transi t ion and reduces spec­
t ra l leakage, leading to more precise frequency analysis. A s a result, sudden changes are 
minimized , and the accuracy of the analysis is improved [11]. 

2Images used from Wikipedia https://en.wikipedia.org/wiki/Window_function 
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2 . 2 . 6 O n s e t D e t e c t i o n 

Onset detection detects musical events i n an audio signal. A s was already mentioned in 
the Subsection 2.1.3, an onset is the beginning of a musical note or sound. The a lgor i thm 
analyzes the ampli tude envelope of the audio signal's spectral characteristics to detect these 
events. Th is technique is often used w i t h a thresholding technique to dist inguish peaks from 
background noise or sustained sounds [3]. 

Us ing onset detection can be found in beat estimation, speech recognition, or, i n general, 
sound event detection. In the context of music analysis, onset detection is useful for r h y t h m 
analysis, tempo estimation, and identifying musical structure. (Melodies and more) 

Onset detection algorithms vary among different methods. The simplest algorithms 
are based on the ampli tude of the signal alone, comparing the amplitudes directly without 
converting the data to the frequency domain . For example, the onsets can be seen clearly 
for percussive elements when looking at F i g . 2.4 of the waveform. T h i s approach may 
be sufficient for beat estimation, but for more information, a more complex a lgor i thm is 
needed. 

W h e n the data is converted to the frequency domain , algorithms can be used that can 
capture subtle changes in spectral characteristics. These characteristics may not be appar­
ent i n the t ime domain . Sometimes, a spike in ampli tude may occur without an actual 
onset; this can be mit igated when analyzing the signal's frequency content. A s shown in 
F i g . 2.7, hi-hat onsets (the grey rectangle) and kick onsets (the green rectangle) can be 
detected by analyzing two different frequency ranges. This would not be possible by ana­
lyz ing the t ime domain . W h e n the whole spectrum is analyzed, vert ical lines corresponding 
to the waveform spikes are obtained. 

Figure 2.7: Spectrogram of a section of the song. The x-axis represents t ime, the y-axis 
represents frequency (20-20000Hz), and the color represents the magnitude of that frequency 
in that t ime. 
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2.3 P r o c e d u r a l Genera t ion i n Games 

Procedural Generat ion is a game development technique that automates the creation of 
game elements using algorithms instead of manual input . Th is method generates content 
dynamical ly dur ing runtime, al lowing developers to create vast and diverse game worlds 
rather than relying on pre-made assets [6]. 

The success of procedural generation depends on both sophisticated algorithms and the 
reliable product ion of random numbers [6]. These random numbers are the bui ld ing blocks 
for generating diverse and unpredictable content. Addi t iona l ly , the abi l i ty to reproduce 
the same sequence of random numbers through a consistent start ing seed and a lgor i thm 
ensures consistency in generated content across different gameplay sessions. 
Procedural generation offers several advantages for game developers, some of them are: 

• Infinite Variety - R a n d o m l y generating provides infinite content possibilities, increas­
ing game replayability, a core concept in most game genres. 

• Saves T i m e - Generat ing levels by script is much faster than creating them manually. 
It certainly is a challenging task. 

• A d a p t a b i l i t y to the Player - Procedural ly generated content can be adapted to the 
player's sk i l l level and experience by incorporat ing the „difficulty" variable, hence 
creating a more personalized gaming experience. 

• E x p l o r i n g N e w - Procedura l generation encourages players to explore, making the 
game engaging and fun. 

Procedural generation can be used i n mult iple aspects of the game: 

• Procedura l Level Generat ion - Useful for sandbox and roguelike games. It creates a 
unique experience each t ime the player progresses through the game. 

• Procedura l Generat ion of Enemies and N P C s - Generat ing different kinds of enemies 
can create interesting gameplay and challenges for the player. 

• Procedura l Item and L o o t Generat ion - Useful for creating random rewards for the 
player, m a k i n g the playthrough more interesting by incorporat ing randomness. 

Procedural generation is a powerful tool for game developers to automatical ly generate 
levels, landscapes, and other game elements, enabling the creation of v i r tua l ly limitless 
content. It conveys a sense of never-ending content w i t h i n l imi ted resources and is a great 
solution for mit igat ing product ion costs and storage and dis tr ibut ion l imitat ions. Procedu­
ra l generation empowers developers to create immersive gaming experiences w i t h r ich and 
ever-changing environments, enhancing player engagement and replayability. 

2.4 A u d i o i n U n i t y 

G i v e n the decision to work i n the U n i t y engine, it is crucial to understand its audio ca­
pabilit ies. A u d i o is managed through the AudioSource and A u d i o C l i p components, which 
provide a good framework for playing and manipula t ing audio data. T h e following subsec­
t ion describes the components and functionalities relevant to the objectives of the thesis. 
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2 . 4 . 1 A u d i o S o u r c e a n d A u d i o C l i p 

The AudioSource [2] component serves as a controller for p laying audio clips ( A u d i o C l i p 
component) and offers parameters to adjust playback settings such as volume, pi tch , and 
spatial blend. W h i l e it is useful for modi fy ing the audio cl ip itself, it is not applicable to 
the objectives of the thesis. 

The A u d i o c l i p [2], on the other hand, represents an audio asset that AudioSource can 
play. It represents the music w i t h a l l the necessary data for analysis. 

U n i t y seamlessly converts audio files such as .mp3 or .wav to A u d i o C l i p format, meaning 
that users do not need to worry about different formats. 

2 . 4 . 2 A u d i o S o u r c e . G e t S p e c t r u m D a t a 

This method computes the audio signal's frequency spectrum using the F F T a lgor i thm [2]. 
Developers can extract spectral features by analyzing the frequency components returned. 
It is mostly used for tasks such as audio visual izat ion, frequency-based effects processing, 
and onset detection. 

2 . 4 . 3 A u d i o S o u r c e . G e t O u t p u t D a t a 

G e t O u t p u t D a t a [2] retrieves raw waveform data directly from the AudioSource , al lowing 
for real-time audio signal analysis. It returns raw audio samples that developers can use 
to perform signal processing tasks such as visual izat ion of waveforms and manipula t ion of 
audio effects. 

B o t h G e t S p e c t r u m D a t a and G e t O u t p u t D a t a provide real-time data chunks. However, 
for preprocessing the audio, an alternative method is needed. 

2 . 4 . 4 A u d i o C l i p . G e t D a t a 

G e t D a t a [2], on the other hand, is an A u d i o C l i p method that returns sample data for 
the entire song at once. Th is feature allows developers to preprocess the song, providing 
f lexibil i ty to apply various algorithms as needed. 
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Chapter 3 

Plugin Proposal 

N o w that tempo and melodies are recognized as interesting features of a song, and they 
can be identified using F F T and Onset Detect ion. Different data retrieval options i n Uni ty , 
such as AudioSource .GetSpec t rumData or A u d i o C l i p . G e t D a t a were mentioned. The i m ­
plementation of the onset detection is inspired by the algorithms in [9]. The article clearly 
explains the implementat ion of onset detection and offers bo th preprocessing and real-time 
implementation. 

Onset detection is a great tool for estimating tempo and detecting melodies i n a song, 
so its placement at the center of this p lugin is perfect. 

Of course, the song's other useful information cannot be forgotten, like the ampli tude, 
which can be used i n dynamic light modula t ion or atmospheric effects. The spectral centroid 
is another interesting piece of information. It indicates where the center of mass of the 
spectrum is located, and it is connected to the impression of a sound's brightness. 

3.1 P l u g i n A r c h i t e c t u r e 

Before describing the implementat ion stage, it is helpful to understand the problem and 
consider the data flow and communicat ion between parts. T h e plugin's m a i n component 
w i l l be C l ipContro le r , which needs to be attached to an object w i t h AudioSource . The 
schematic overview of the proposal can be seen in F i g . 3 .1 . The data flow goes as follows: 

• S t e p 1 C l i p C o n t r o l l e r retrieves cl ip data and sends them to D S P L i b for F F T 
analysis. 

• S t e p 2 D S P L i b performs analysis on a chunk and returns average ampli tude and 
spectral data back to Cl ipContro l l e r , simultaneously sending the spectral data to 
F l u x Analys is . 

• S t e p 3 F l u x A n a l y s i s performs OnsetDetect ion and returns SpectralFluxInfo into 
Cl ipContro l ler . 

• S t e p 4 A f t e r a l l the data is preprocessed, C l i p C o n t r o l l e r checks for peaks i n the 
current t ime and updates the publ ic values like average ampli tude and spectrum. 

• S t e p 5 C o m p o n e n t s can retrieve the data direct ly from C l i p C o n t r o l l e r or by 
subscribing to the event and wait ing for invocat ion from the E v e n t M a n a g e r . 
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FluxAnalysis 

SpectralFlux Onset 
Detection 

SpectralData DSPLib 

Implementation of FFT 

Amplitudes 
SpectralData 

SpectralFluxInfo 

CurrentAmplitude 
CurrentTime 

CurrentSpectrum 

SampleData 

ClipController 

Invoke 

Peak 
Happened 

EventManager 

Parameters 

AudioSource 

EventTriggers 

SampleCount 

Figure 3.1: Archi tecture of the proposed plugin . Different objects, their functionality, and 
how they communicate w i t h each other. 

3.2 A n a l y s i s 

The first step is to gather the data . A s previously discussed, U n i t y affords mult iple choices 
for data retrieval: real-time analysis v i a G e t S p e c t r u m D a t a and G e t O u t p u t D a t a or prepro­
cessing using G e t D a t a . W h i l e real-time analysis offers immediacy, the preprocessing grants 
enhanced f lexibi l i ty and the abi l i ty to anticipate future song dynamics. 

3 . 2 . 1 D a t a M a n a g e m e n t 

In this project's infrastructure are two key data structures: SpectralFluxInfo, which keeps 
data f rom the spectral f lux analysis, and Parsed C l i p , a class made for managing mult iple 
information about the cl ip attributes. A custom D a t a W r i t e r class has been developed to 
serialize data into J S O N format to ensure data persistence across runtimes. Th is allows 
users to r u n the same song mult iple times w i t h just one analysis. 

E v e n t C u s t o m i z a t i o n 

Furthermore, the p lugin contains a versatile event customization feature. Users have the 
opportunity to specify frequency ranges and thresholds and assign unique identifiers to 
each event. Th is functionali ty allows for adaptabi l i ty and empowers users to experiment 
and modify analysis to their specific requirements. 
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Event triggers are saved as scriptable objects so the data persists. A custom editor was 
developed to manage this scriptable object. In addi t ion to creating event triggers, the user 
can edit them and does not have to worry about naming two different events w i t h the same 
name because checks are implemented to prevent that f rom happening. 

To help experiment and not leave the user guessing the frequencies, there is a generated 
grid w i t h musical notes from the note Co at 16.35 H z up to B7 at 3951.36 H z . This ensures 
that a developer w i t h the knowledge of the note range of a melody in a song w i l l have quick 
access to that frequency, and if he does not have the knowledge, this note gr id makes it less 
complicated to t ry different things out. 

3 . 2 . 2 C l i p A n a l y s i s 

Structures are i n place to store the analyzed data, approaching the core of the analysis: 
however, the F F T must not be forgotten. Since U n i t y does not provide its own F F T imple­
mentation, it is necessary to either create a custom solution or f ind one that is implemented. 
The l ibrary mentioned i n the selected article, D S P L i b [7], w i l l be ut i l ized for this project. 

To perform F F T , necessary c l ip data, such as length and number of samples, must be 
gathered. Addi t iona l ly , the sample count has to be chosen to determine the size of the frame 
that is going to be analyzed. The sample count has to be a power of 2. Usual ly , it is 512 or 
1024, which is sufficient. A large sample count means a finer frequency resolution; however, 
this also means it w i l l take longer to compute, which may not be desirable. W h i l e 1024 
samples produced excellent results and the analysis t ime was satisfactory, user preferences 
may differ, and serializing these modifiable variables is good practice. 

H a n d l i n g C h a n n e l s i n A u d i o P r o c e s s i n g 

One important detai l to th ink about is the number of channels. Songs can be either stereo, 
meaning that they have left and right channels, or mono which has only one channel. For 
the plugin to accept any type of song, it is necessary to calculate both scenarios. The 
G e t D a t a funct ion returns the raw sample data of the song. In the case of a stereo song, 
there w i l l be twice as much data as in a mono song for each channel. 

DataSize = Total SempleLength x Number of'Channels 

Before running the F F T l ibrary, the channel data must be combined. In the case of 
stereo audio, the F F T could be applied separately to the right and left channels. However, 
this approach offers l imi ted advantages when the number of channels in the audio is un­
certain. C o m b i n i n g the samples is straightforward. The G e t D a t a function always returns 
samples i n this order: [LQ, RQ, LI, RI, ...] 

Calcula t ing the average of these samples generates a combined array on which the F F T 
can be performed. Let S be the mult i -channel input array, C the number of channels, and 
F the f inal combined array. T h e n the calculation would look like: 

1 ° 

^b'] = ^ E 5 b ' x C + z] 
i=0 

Where j is the index of the combined array F, i is the index w i t h i n the current set of 
channels, and the expression S[j x C + i] accesses the samples i n the original mult i -channel 
array S. 
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F a s t F o u r i e r T r a n s f o r m a n d S i m p l e A u d i o A n a l y s i s 

The F F T analysis is executed iteratively across the entire audio c l ip , w i t h each i teration 
processing a window w i t h a specified size of sample count. The number of iterations is 
calculated as follows: 

LengthO f'Samples iterations SampleCount 

A l g o r i t h m 1: I T E R A T I O N T H R O U G H C L I P S A M P L E S 

I n p u t : (clipSamples) 

1 GetCurrentClipSamples 
2 Apply FFTWindow 
3 PerformFFTandConverttoMagnitude 
4 Calculate Amplitude 
5 C alculateC entralSpectroid 
6 SaveSpectrumData 
7 C'alculateC•urrentSongTime 
8 f o r trigger in triggers d o 
9 S end Datato Spectral Flux Analyzer 

10 e n d f o r 

A l g o r i t h m 1 displays steps computed in each i teration. The first step is to copy s a m p l e -
C o u n t amount of samples from the Cl ipSamples , which w i l l be worked w i t h . A s mentioned 
in SubSection 2.2.5 windows are used to mitigate the effects of spectral leakage. 

A p p l y i n g the F F T window involves several key steps using the D S P L i b [7]. F irs t is 
the calculation of the coefficients for the desired window type, which in this thesis is the 
H a n n i n g window. The next step is to scale these coefficients to match the window size. 
F ina l ly , the computat ion of the scale factor is crucial for preserving the ampli tude of the 
signal after windowing and performing the F F T . 

Performing the F F T and converting to magnitudes involves these steps: F i r s t , the F F T 
is executed on the scaled spectrum window, transforming the t ime-domain signal into the 
frequency domain and producing complex numbers. These complex numbers represent 
both the ampli tude and phase information of the frequencies present i n the signal. Next , 
converting the F F T output to magnitudes, which extracts the ampli tude information from 
the complex numbers, is necessary. Th is step is crucial because it provides a clear rep­
resentation of the signal's frequency content, al lowing for further analysis of the spectral 
properties of the audio. The final step is to scale the magnitudes using the scale factor 
to ensure the ampli tude is preserved correctly after the transformation. Th is spectrum is 
saved as s c a l e d F F T S p e c t r u m . 

The samples are now i n the frequency domain, meaning some of the information can 
already be gathered. This p lugin keeps track of the average ampli tude, which is the mean 
of the magnitudes in the s c a l e d F F T S p e c t r u m . Spectral centroid, a measure of the center 
of mass of the power spectrum of a signal, has a more complex calculation than average 
amplitude. 
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Fol lowing equations shows the calculation of spectral centroid: 

SpectralCentroid = ^=^Jk X X { k ) ) 

Where iV is tota l size of the s c a l e d F F T S p e c t r u m , is the frequency corresponding to 
the k — th i tem of spectrum, calculated as: 

SampleRate 
fk = kx SampleCount 

and Xh is sum of amplitudes of the s c a l e d F F T S p e c t r u m . The numerator represents 
the weighted sum of a l l frequency contributions. The denominator is the tota l ampli tude, 
ensuring that the centroid is normalized. Th is approach gives a weighted average frequency, 
reflecting the energy dis tr ibut ion across the spectrum. 

The whole s c a l e d F F T S p e c t r u m is also saved, i n case the user would like to uti l ize i t . 
Af ter that, the spectrum data is sent to the Spectral F l u x Analyzer . 

K e e p i n g T r a c k o f T i m e 

A s could be seen in the A l g o r i t h m 1 the song's current t ime is also saved. This is because 
it allows simple retrieval of corresponding data by calculat ing the index based on the song 
t ime and accessing that index i n the data l ist . The calculation of the precise t ime of the 
song goes as follows: 

TimeDurationPer Sample 
SampleRate 

TotalTimeElapsed = TimeDurationPer Sample x Samplelndex 

TotalTimeDuration = Time Duration Per Sample x SampleCount 

Where SampleRate is the number of samples captured per second i n a digi ta l audio record­
ing. It is usually expressed in Hertz (Hz) , where 1 H z equals 1 sample per second and it can 
be obtained in U n i t y using Audio Clip, frequency, and Samplelndex is the current i teration 
index. 

„To calculate the corresponding index for the actual t ime of the song, follow these 
steps:": 

TotalNumberOf Samples 
LengthPer Sample 

Samplelndex -

TotalLengthO f AudioC lip 

CurrentTime 
LengthtPer Sample 

3 . 2 . 3 O n s e t D e t e c t i o n u s i n g S p e c t r a l F l u x 

The Spectral F l u x A n a l y z e r is an instance w i t h variables that track data for each event. 
The m a i n funct ion AnalyzeSpec t rum is called in paral lel f rom C l i p Analys is , as explained in 
Subsection 3.2.2, after the F F T analysis for each event trigger. Onset detection has already 
been discussed, and the next topic w i l l be spectral f lux. 
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S p e c t r a l F l u x C a l c u l a t i o n 

Spectral f lux or spectral difference measures the difference i n magnitude between consecu­
tive frames. Here came the deciding point for choosing the gathering method. The analysis 
would funct ion well w i t h real-time data collection but might lag sl ightly behind the actual 
song. To mitigate this, G e t D a t a was used to preprocess the song. This approach may i n ­
troduce a loading t ime before a game level but results i n a m i n i m a l delay between the song 
and data. Let P(t) and P(t — 1) represent the power spectra of the current and previous 
frames, and let SF(t) be the spectral flux. 

where / represents frequency bins i n the power spectrum, which are the trigger ranges 
defined by the user. 

T h r e s h o l d i n g a n d D y n a m i c T h r e s h o l d i n g 

Next , a threshold must be calculated, which determines if the peak happened. A peak is 
identified when the spectral flux exceeds the threshold. W h i l e a static threshold could be 
used, it would not be precise, and it is not worth it to save some computer power for it . 
Therefore, implementing a dynamic threshold is necessary. F i r s t l y the average of the 
spectral flux values is calculated. This project calculates using 50 values. 

Af terward , a threshold mult ipl ier , which defines the sensitivity of the threshold is mult ipl ied 
by the Average F l u x , resulting i n threshold T. Th is threshold mult ipl ier is a parameter of 
event triggers created by the event customization feature 3.2.1. T h a t means the user can 
test what result works for them. 

P e a k d e t e c t i o n 

To detect the peak, it is important to calculate the pruned spectral f lux. Th is is the 
difference between the spectral flux and the threshold, representing whether the spectral 
flux is greater than the threshold: 

Peak is detected when SFwuneii{t) exceeds both SFprune(i(t + 1) and SFwuned(t — 1). 

3 . 2 . 4 B e a t D e t e c t i o n 

The peaks have been detected, and using them to a rough estimation of the song's tempo 
can be made. B y expanding the base a lgor i thm on specific ranges, the chances rise, however, 
it s t i l l is not reliable. Beat detection is very t r icky and comes w i t h a lot of variables. Some 
of them are m i x i n g of the song, genre, and noise. The ideal song would have clear percussion 
elements, such as kick and snare, that would be seen i n the spectrum, however, users may 
use songs of different genres and qualities. That ' s why the beat generation was added, to 
ignore the song's quali ty and poor m i x i n g . Users can obtain the tempo in B P M from th i rd-
party applications, specify it i n the m a i n script as a parameter and the beat generation w i l l 
create events accordingly. 

SF(t) = ]T max(0, P(t, f),P(t - 1, / ) ) 

N 
i=l 

SFpruned(t) = max(0, SF(t) - T) 
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3.3 Funct iona l i ty 

The necessary data has been extracted f rom the audio cl ip at this stage. Users can now 
access this data through the m a i n component called C l i p C o n t r o l l e r , which requires an Event 
Triggers scriptable object and an AudioSource to analyze a c l ip . In order to inspire users 
and showcase the potential , addi t ional functionali ty needs to be implemented. This w i l l 
include a custom event system, beat generation, and various other components. 

3 . 3 . 1 E v e n t S y s t e m 

The uni ty event system is powerful and very useful, but after introducing custom events from 
Subsection 3.2.1 to this plugin , a custom event manager was needed w i t h the event system 
more catered to the needs of the p lugin . So, an Event Manager is created automatical ly 
and instantiated by the C l i p Control ler . It is singleton to ensure the event system won't get 
messy. The event system consists of a dict ionary where the key is the event name, and the 
value is a list of actions w i t h the Spectra lFLuxInfo parameter. Th is helps quick access to a l l 
event subscribers. The Event Manager has a custom Subscribe and Unsubscribe function 
to keep track of subscribers. Other than that, it works just like a basic event system. C l i p 
Control ler checks whether an event trigger occurs, and if yes, it calls the Invoke method of 
Event Manager, which then invokes a l l Act ions of subscribers to that specific event. See 
F i g . 3.2 for a better understanding. 

Clip Controller 

Current song 
Information 

List of events 

No 
IsPeak? / 

IsNewBeat? 

User components 

Component 2 

Action to be 
invoked 

Component 1 

Action to be 
invoked 

bscribe 

Yes 

O 
Invoke 

eventName 

Event Manager 

Components 
subscribed to events 

Invoke 
subscribed to 
eventName 

O 
Figure 3.2: Simplif ied diagram of the event system displaying communicat ion between 
components and Event Manager, and C l i p Control ler . 
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3 . 3 . 2 B e a t G e n e r a t i o n 

A s previously mentioned in Subsection 3.2.4, beat detection is a challenge. Beat generation, 
on the other hand, is pure math . To calculate the interval between i n d i v i d u a l beats, the 
song's B P M is a necessary parameter. T h i s can be obtained using third-party software. 

60 
interval BPM 

For example, if the song has a tempo of 120 B P M , it means that there w i l l be 0.5 seconds 
between each beat. N o w , the beat event has to be invoked. To do that , the program has 
to keep track of t ime; a different functionali ty is used then in the analysis. Synchronizing 
object manipula t ion to beat is very delicate, which is why high accuracy is important . 
Us ing AudioSet t ings .dspTime, which returns the current t ime of the audio system, is much 
more precise than s imply using AudioSource . t ime because it is based on the actual number 
of samples the audio system processes [2]. A f t e r w a r d , the difference between the start of 
the track and the current D S P t ime determines if a beat happened. 

To broaden the beat events, an enumerate of different times of beat is created; the 
user can now specify on what beat to listen to the event. For example, the user can 
choose to trigger every beat, just the second beat, even beats, or odd beats. Specification 
of t ime signatures was added to give the user even more f lexibil i ty and possibilities. A s 
Subsection 2.1.2 mentions, t ime signature specifies how many beats are i n a bar. Th is beat 
generation is straightforward and expects only | or | t ime signatures, which are the most 
common ones. Th is allows the user to create accents, for example, on the first beat of a 
bar, or create an environment that is more responsive to the song. 

3.4 Components 

Now, game developers and other users have access to a l l data and systems, and it is up to 
them to create what they want. Components were developed for their smoother creative 
process and quicker prototyping of different scenes. Some are more complex than others, 
a l l based on the information retrieved from the song. 

3 . 4 . 1 B e a t - b a s e d C o m p o n e n t s 

The beat-based components are simple, and only the m a i n properties of objects, such as 
scale, positions, and rotat ion, are modif ied. These components are simple and just keep 
going back and forth between specified values i n specified beat intervals. Other components 
are modi fy ing the intensity of a light or enabling and disabling an object. 

One of the more complex components is checkpoint movement. It works by creating a 
list of transforms that act as checkpoints through which the object moves. The user can 
specify how many beats it takes the object to reach a checkpoint so that it moves more 
quickly or slowly. 
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3 . 4 . 2 A m p l i t u d e B a s e d C o m p o n e n t s 

These components are not based on events; they are based only on the ampli tude values 
of the song. It can create dynamic light or fog. E x a c t l y that was created. A component 
for dynamic light is created to work w i t h spot and point types of l ight. It changes light's 
intensity and area w i t h the changing ampli tude. The dynamic fog component works by 
changing the density of a U n i t y fog created by their renderer settings; when the music is 
busier and has a higher ampli tude, there is less fog in the scene. 

Last but not least is scaling w i t h ampli tude, which scales the object by the ampli tude 
in the song currently. 

3 . 4 . 3 C i n e m a t i c C a m e r a 

Other than basic, general components, which can be used quickly, a more complex system 
called a cinematic camera system was also created. It is a custom-made movement script 
through checkpoints for the camera, designed to synchronize closely w i t h the song's pro­
gression. E a c h checkpoint is defined by posit ion and corresponding t imestamp, indicat ing 
a specific moment in the song timeline when the camera should reach the checkpoint. Wai t 
t ime, rotat ion t ime, and rotat ion target were added to give the user more freedom. It creates 
even more possibilities and mimics an animat ion cl ip but w i t h easier song synchronization. 

3.5 Q u a l i t y of Li fe 

D u r i n g the development and testing, functionali ty for solely quali ty of workflow and con­
venience was created. This functionali ty is s t i l l relevant for future developers who would 
work w i t h the plugin ; that 's why some of them are described below. 

3 . 5 . 1 D a t a W r i t e r 

D a t a W r i t e r is one of the classes that provide the functionali ty to serialize the ParsedCl ip 
into J S O N format and save it locally, which provides quicker experimenting w i t h things 
not related to the analysis, such as beat events. The C l i p C o n t r o l l e r has a flag to r u n the 
analysis and overwrite the saved file for easy workflow; if users do not want to re-analyze 
the song, the D a t a W r i t e r w i l l read it f rom a file and send it to C l i p C o n t r o l l e r to continue 
the flow of the game. 

In case the developer wants to examine the data inside the P a r s e d C l i p for a deeper un­
derstanding, there is a funct ion to print mult iple files w i t h different data for each frequency 
range; this is because the one file is so large that it is impossible to read anything except 
the cl ip's name from it . 

3 . 5 . 2 T e s t i n g E n v i r o n m e n t 

It was essential to see what was happening i n the song dur ing the tweaking process. That ' s 
why a testing playground was created to let users see the spectrum data of the song and 
see in which frequency ranges something is happening. Th is visual izat ion helps to create 
more precise frequency ranges for the event triggers. 
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Chapter 4 

Testing 

Testing is very important i n a l l kinds of projects, especially the creation of plugins. The 
results obtained w i l l determine the potent ial of the p lugin . The focus w i l l be on the overall 
user experience and synchronization w i t h the music. Focusing more on the outcome of the 
plugin than the usage reveals if the p lugin has any potential at a l l . Test questions were 
formulated using Google Forms. 

Two uni ty scenes were created, each showcasing a different functionali ty of the plugin . 
Videos showcasing the important functionali ty were created and added to the questionnaire. 
The videos could not be uploaded to Y o u T u b e due to copyright reasons. Therefore, readers 
interested i n viewing the videos can watch the forest and space videos direct ly f rom the 
disk; the structure is described i n appendix A . 

4.1 Forest Scene 

The forest scene was based on a piece from the movie A Series Of Unfortunate Events called 
The Baudelaire Orphans created by T h o m a s N e w m a n . This song was chosen because of 
a pretty melody midway through that is reminiscent of stars. The piece also has crescendos, 
which are interesting to visualize. It is an orchestral piece without any percussion elements, 
which made it a bad choice for a r h y t h m showcase but great for a more cinematic, artistic 
experience. 

4 . 1 . 1 A n a l y s i s R e s u l t s 

To better visualize when the analysis detects peaks, the results saved as J S O N files, gener­
ated by D a t a W r i t e r 3.5.1 were ut i l ized and then plotted using the P y t h o n l ibrary M a t p l o t l i b . 

In F ig .4 .1 , the analysis shows a melody that resembles stars. The melody was main ly de­
tected between 65 and 115 seconds, corresponding to the spectrogram i n the same timeframe 
w i t h i n the frequency range of 1046.50 H z to 2093.00 H z . This indicates that the melody 
detection was accurate. However, as shown in Fig.4.1 and the video i n A p p e n d i x A , the 
stars occasionally appear too close together, even when the melody is not playing. This 
clustering is visible around the 100-second mark i n the plot . To address this, increasing the 
threshold mult ipl ier or detecting each note ind iv idua l ly might improve accuracy. 

The peaks detected before the melody starts or ends are problematic, as they were not 
intended. To mitigate this issue, the stars object was activated just before the expected 
start of the melody. 
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Figure 4.1: F igure displaying spectrogram (top plot) of The Baudelaire Orphans by 
Thomas Newman and flux values w i t h the dynamic threshold and onsets of the melody 
event trigger (bottom plot) . 

4 . 1 . 2 S c e n e C r e a t i o n 

A l l the assets are free f rom the asset store. T h e decision to use a low-poly forest was made 
because it worked well for this music piece. The asset comes w i t h the whole scene prepared 
w i t h rocks, trees, mushrooms, sunflowers, and more, which was not altered i n any way. 
This scene was used and then the procedural sound-based elements were added to it . 

A skybox of the starry night sky created by a th ird-party tool named 3 D T o o l was added 
to the scene, which greatly helped to set the right m o o d . T h e n , the unity fog system was 
used to create a feeling of mystery, the light was changed to lighter blue to m i m i c the moon, 
and the scene was finished. 

Take a look at F i g . 4.2a to see the whole scene without the fog that would block the 
view. 
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4 . 1 . 3 S c e n e F u n c t i o n a l i t y 

For functionali ty showcase, the custom-made checkpoint camera movement, mentioned in 
Subsection 3.4.3, was ut i l ized to move through the scene dynamical ly . Th is guarantees that 
the video captures everything the plugin has to offer. Three checkpoints were created, each 
focusing on a different functionality. 

F i r s t P a r t 

The first checkpoint was set to look at a bunch of rocks w i t h mushrooms and sunflowers, 
seen i n F i g . 4.2b, showcasing the functionali ty of ampli tude scaling and light modif icat ion. 

S e c o n d P a r t 

The second checkpoint focused on stars to show what can be done w i t h the Onset detec­
t ion . Here, a pleasant melody reminiscent of stars was ut i l ized. Two particle systems were 
created, one representing the light of a star and the second adding flare. Together, they 
created a pretty star-like effect. 

To synchronize it w i t h the piece, a script was created that randomizes the posit ion of 
the particle systems and emits one particle w i t h a dynamic size of the current ampli tude 
in the camera direction. 

The decision was made to include the lower arpeggio, which accompanied the melody. 
The particle systems were duplicated, assigned a different event trigger, and given a distinct 
color for improved visibi l i ty , resulting in an appealing star dance effect. 

The second part can be seen i n F i g . 4.2c. 

T h i r d P a r t 

The last checkpoint was looking into the forest, seeing clearer when the crescendo happened 
and seeing how the fog was coming back after i t , almost as if the instruments were creating 
w i n d blowing the fog away. It can be seen i n F i g . 4.2d 

(a) Full scene without fog (b) First part, mushrooms and sunflowers 

(c) Second part, starry sky (d) Third part, fading fog 

Figure 4.2: Different parts of the forest scene video and important functionality. 
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4.2 Space Scene 

This scene was made to show the beat generation and potential of the plugin to be used 
in r h y t h m games. For a song, Space Diving by an artist named m e z h d u n a m i . , which 
falls into the synth-wave electro genre, was perfect. The song features dist inct , percussive 
elements, evoking images of a game-level performance perfectly suited to this type of music. 

4 . 2 . 1 A n a l y s i s R e s u l t s 

The spectrogram was also created using the P y t h o n l ibrary M a t p l o t l i b and results were 
generated by D a t a W r i t e r 3.5.1. 

In F i g . 4.3, there are no distinct onsets shown. This is due to the chosen song having a 
tempo of 160 B P M (approximately 2.5 beats per second) combined w i t h some imperfections 
in the analysis, resulting i n the plot being dominated by continuous lines. 

The b o t t o m plot illustrates the Bass range 2.1.4, in the frequency range of 60-250 H z . 
Onsets can s t i l l be identified by examining the D y n a m i c Threshold line and the Onset 
Funct ion values. A n onset occurs when the Onset Funct ion value exceeds the D y n a m i c 
Threshold line. However, except for some quieter sections, onsets were being detected 
almost continuously. This problem required the development of the Beat Generation. 

17500 

x 12500 

c 10000 

5000 

Time (s) 

t i l l jjjlj 
200 

Time (s) 

Figure 4.3: F igure displaying spectrogram of Space D i v i n g by m e z h d u n a m i . (top plot) 
and flux values w i t h the dynamic threshold of the SubBass range(bottom plot) . 
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4 . 2 . 2 S c e n e C r e a t i o n 

A s w i t h the Forest Scene 4.1.2, a l l the assets used i n this scene are free from the asset 
store. The asset contained a space station scene that was already prepared and just needed 
the plugin's functionali ty to be complete. A player movement script was created w i t h a 
rotat ing camera for video recording. Addi t iona l ly , a space skybox was implemented, seen 
in F i g . 4.4a, using the same third-party tool , 3DTool , that was ut i l ized in the forest scene 
to posit ion the space stat ion w i t h i n the cosmos. Th is scene lacks the post-processing touch 
that the first scene had, but more important ly , it has to showcase the beat synchronization, 
which is visible. See F i g . 4.4 to see the space station. 

4 . 2 . 3 S c e n e F u n c t i o n a l i t y 

Here, a l l the beat components mentioned in the Subsection 3.4.1 are ut i l ized. Doors that 
open by rotat ing, moving f rom side to side, or disappear completely can be seen i n the 
scene. Checkpoint movement is also ut i l ized on a floating object i n space to m i m i c orbit . 
The light component was added to showcase not only the gameplay possibilities of the 
components but also to set the m o o d . T h e lights m i m i c the flickering of an abandoned 
space station. 

A l l of these elements were intended to contribute to an engaging level filled w i t h poten­
t i a l puzzles and narratives. Whether it was a success or not is not up to us. 

(a) Full scene of the space station (b) Starting position in the space station 

(c) Doors in rotating motion (d) Another angle of the space station 

Figure 4.4: Different figures of the space scene video. 

Please refer to A p p e n d i x A for picture location for better resolution. 
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4.3 Resul ts 

The respondents were i n the 20-25 age range and varied in profession. There were 12 
participants. Notably , a quarter of them were not students. Furthermore, only 16.6% 
of the participants reported having experience w i t h the r h y t h m game genre, while 41.6% 
indicated no prior gaming experience whatsoever. Interestingly, one respondent works in 
the game industry. Addi t iona l ly , a significant major i ty of 66.6% had experience w i t h music 
other than listening, whether playing an instrument or s tudying music theory. 

A t the start of this chapter, it was mentioned that the m a i n focus is on overall feeling 
and synchronization w i t h music. The results show two videos w i t h completely different 
feelings. 

4 . 3 . 1 F o r e s t S c e n e 

The forest scene had been given a score of 8.8 out of 10 i n total . T h a t is very pleasant. 
The majori ty of participants, 66.7%, said they d i d not see any problem w i t h the scene. The 
other users had mult iple different comments, but the most common comment was about 
the stars in the second part of the video. 

Even though there were smal l problems, it seems that almost every part icipant could 
imagine this functionali ty being ut i l ized i n some k i n d of digi ta l media, be it an advertise­
ment, a video c l ip , or a trailer. The other participants answered „maybe", which indicates 
that the deciding factor would be the execution. Take a look at the questions and results 
in the Tab. 4.1. 

In summary, the scene garnered a very positive response, indicat ing that the plugin is 
on the right path . 

Q u e s t i o n s H a v e y o u n o t i c e d a n y p r o b ­
l e m s w i t h t h e a u d i o v i s u a l i z a ­
t i o n s h o w n i n t h e v i d e o ? 

W o u l d t h i s f u n c t i o n a l i t y b e 
g o o d i n t r a i l e r s , v i d e o c l i p s , a d ­
v e r t i s e m e n t s , o r o t h e r k i n d s o f 
d i g i t a l m e d i a ? 

Y e s 33.3% 83.3% 
N o 66.7% -
M a y b e - 16.7% 

Table 4.1: Response percentages from questionnaire. 

4 . 3 . 2 S p a c e S c e n e 

O n the other hand, the space scene had a different story. W i t h a to ta l score of 7.5 out of 
10 i n total , it was not such a success. E v e n though the majori ty of 58.3% s t i l l answered 
that they d i d not see any problem w i t h the synchronization, it was seen that participants 
who have more experience w i t h r h y t h m games voted that they had indeed seen problems. 
The deciding factor was the door movement. The combinat ion of different beat triggers 
and styles of opening the door created a very confusing environment, so it was hard to see 
if the doors were really on beat. Other than that, there were slight issues w i t h the scene, 
but these were unrelated to the beat synchronization, so they are irrelevant. 
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Even though this scene shows bigger problems, after the question if they think that the 
plugin could be used to create r h y t h m games, only one part icipant said „No"; others said 
„Maybe" and „Yes", which again indicates that it w i l l be based on the execution and care 
for the game. See the experimental results i n the Tab. 4.2. 

In summary, al though this scene d i d not receive as positive a response as the forest 
scene, it s t i l l got good comments and tips on what to look at and tweak more. A g a i n , the 
potential stays, but it may need more work. 

Q u e s t i o n s H a v e y o u n o t i c e d a n y s y n c h r o ­
n i z a t i o n o r a n y o t h e r p r o b l e m s ? 

W o u l d t h i s k i n d o f b e a t s y n ­
c h r o n i z a t i o n p r e c i s i o n b e 
e n o u g h f o r a g a m e ? 

Y e s 41.7% 58.3% 
N o 58.3% 8.3% 
M a y b e - 33.3% 

Table 4.2: Response percentages from questionnaire. 
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Chapter 5 

Conclusion 

M u s i c is closely t ied to dai ly lives, accompanying people almost everywhere: i n the car, in 
the supermarket, while watching movies or series, and even while playing games. U t i l i z i n g 
the natura l perception of music i n different kinds of mediums can create an immersive 
environment that enhances emotional feelings and perception of the music being played. 

This paper explored fundamental music concepts, as discussed in Section 2.1, inc luding 
tempo, beat, onset, and frequency. It explains how humans perceive sounds and volume 
in SubSection 2.1.5. Section 2.2 covered audio signal processing providing an overview 
of the t ime domain and frequency domain , and discussed the Fourier Transform and its 
applicat ion, inc luding the Fast Fourier Transform. Section 2.4 highlighted the benefits of 
procedural generation and examined U n i t y ' s handl ing of audio clips and potential data 
retrieval methods. 

The proposal for a p lugin that analyzes background music playing in a U n i t y scene was 
then examined. The steps of c l ip analysis mentioned i n Subsection 3.2.2 and onset detec­
t ion using spectral f lux in Subsection 3.2.3 were explored, revealing the challenges of beat 
detection. D a t a management and event customization solutions were introduced, featuring 
a custom event system designed to work w i t h any created event. A f t e r w a r d , a solution 
for rhythmic elements in games using simple beat generation was found. Addi t iona l ly , the 
various components offered by the p lugin were discussed, inc luding object transform modif i ­
cation to the r h y t h m of a song and dynamic fog controlled by the song's current ampli tude. 
A custom cinematic camera script that allows users to p lan camera movement w i t h the 
song timeline and rotate the camera towards a selected object was also mentioned, along 
w i t h some quality-of-life features i n the plugin . 

Testing was conducted after the creation of a l l components, and the results were an­
alyzed. The creation of two testing scenes, their motivat ion, and the differing reactions 
they received were discussed. The forest scene, showcasing the dynamic camera and en­
vironment, received more positive feedback compared to the space scene, which displayed 
rhythmic patterns prone to inaccuracy, as detailed i n Section 4.3. The plugin's potential 
was evident even before testing, but the results confirmed that it was progressing i n the 
right direction. 

A potential improvement of the plugin could be running half of the preprocess func­
t ional i ty and then running it while the game runs. This would minimize the wait ing time 
needed to wait for the analysis to finish. A d d i n g a list of A u d i o C l i p s , which would be 
processed before playing, would help if the scene had mult iple songs. 
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The analysis has ways to improve, and adding machine learning would provide even 
more functionality, like mood detection or genre estimation. Th is would be a great too l for 
procedurally generating levels w i t h colors and assets matching the song. 

Another direction for the plugin could be into a more cinematic sphere, w i t h custom 
checkpoint creation functionali ty that would make the checkpoint system easier to use and 
custom time stamps into custom-made cl ip objects. 

The beat est imation analysis could be improved to make the beat generation obsolete, 
which would eliminate another concern f rom developers about f inding the tempo of the 
song and opening up possibilities for procedural levels w i t h rhythmic elements. 

This project has mult iple possible ways to evolve, and the way it w i l l continue is just up 
to the developers interested in music and digi ta l media working closely together w i t h it . 
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Appendix A 

Disk Structure 

This appendix describes the structure of the disk. The M u l t i m e d i a folder contains the 
videos used i n testing and pictures used i n this thesis. The L a t e x folder contains the P D F 
and the source files for this thesis. 

In case the reader wants to t r y the plugin on their machine, the package on the disk 
Procedural_Sound_based_Elements.unitypackage contains a l l the necessary files for it to 
work. The project runs on U n i t y version 2021.3.24fl. S imply import the package into Uni ty , 
and download the dependencies l isted i n README.md. To explore the prepared scenes 
seen i n this thesis navigate to P r o c e d u r a l S o u n d B a s e d E l e m e n t s folder and import the 
project into Uni ty . 

/ 
README.me M a r k d o w n file w i t h information about the package instal lat ion. 
_Procedural_Sound_based_Elements .unitypackage . U n i t y package containing the 
l ibrary 
. Procedural_Sound_based_Elements_in_Games .pdf Thesis pdf file 
Procedural_Sound_based_Elements_in_Games_poster.pdf Thesis poster 
.Multimedia/ Folder w i t h mul t imedia 

Videos/ Videos used i n the testing questionnaire 
Screenshots/ Screenshots of the game 

.Latex/ Folder w i t h latex scripts and pictures 
ProceduralSoundBasedElements/. . U n i t y project folder w i t h the scenes for testing 
L Assets/ Folder w i t h the assets in the U n i t y project 

Pure Poly/ Asset pack used i n ForestScene 
Scenes/ Testing scenes 
S c i - F i Styled Modular Pack/ Asset pack used in SpaceScene 
ScriptableObjects/ Scriptable objects used i n the testing scenes 
Scripts/ Scripts of the plugin 
SkyBox/ P N G s for the skybox 
TestingMusic/ M u s i c for testing the plugin 
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