
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

PROCEDURAL SOUND-BASED ELEMENTS IN GAMES
PROCEDURÁLNÍ HERNÍ PRVKY NA ZÁKLADĚ ZVUKŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

PATRI K J ESKO

Ing. TOMÁŠ POLÁŠEK

BRNO 2023

Bachelor's Thesis Assignment
Institut:

Student :

P rogramme:

Tit le:

Category:

Depar tment of Compute r Graph ics and Mul t imedia (DCGM)
J e s k o Pa t r i k
Informat ion Techno logy

P r o c e d u r a l S o u n d - B a s e d E l e m e n t s in G a m e s

Computer Graph ics

156350

Academic year: 2023/24

Ass ignment :

1. Survey the current state of sound analys is and procedural generat ion in games .
2. Des ign a l ibrary for sound-based procedura l genera t ion .
3. Imp lement the l ibrary by means of your cho ice.
4 . Create a demonst ra t ion of the l ibrary's funct ional i ty.
5. Evaluate your l ibrary and per form a user s tudy.
6. Present your results using a poster and a shor t v ideo.

Li terature:
• Koster, Raph . Theory of fun for g a m e des ign. O'Rei l ly Media , Inc., 2013 .
• Schel l , Jesse . The Ar t of G a m e Des ign : A book of lenses. C R C press, 2008 .
• Y a o , Richard et a l . Oculus V R Best Pract ices Guide. Onl ine, 2014 .
• Leap Mot ion, V R Best Pract ices Guide l ines. Onl ine, 2015
• Unity Learn. Unity, ht tps: / / learn.uni ty.com/.
• Further sources accord ing to the superv isor .

Requ i rements for the semest ra l de fence :
Goals 1, 2 and a basic demonst ra t ion of the l ibrary's funct ional i ty

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : P o l á š e k T o m á š , I n g .

Head of Depar tment : Černocký Jan , prof. Dr. Ing.

Beginning of work : 1.11.2023

Submiss ion deadl ine: 9.5.2024

Approva l date: 9.11.2023

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://learn.unity.com/
https://www.fit.vut.cz/study/theses/

Abstract
This thesis explores music-driven object manipulat ion in the U n i t y game engine, which
offers a versatile toolset for artists and creators looking to integrate dynamic elements
based on background music. Th is project implements Fast Fourier Transform using an
external l ibrary, Onset Detect ion, beat generation, and related functionalities w i t h i n Uni ty .
Consumer testing and experimentation demonstrate the potential of the implementat ion
and functionali ty of the p lugin . B y creating this proof of concept, the intention is to inspire
further innovation in this area and leverage music as a creative t o o l i n not only game design
but other media as well .

Abstrakt
Táto bakalárska práca sa zaoberá manipuláciou objektov v hernom prostredí U n i t y na
báze hudby. V tomto projekte sa pozrieme na Rýchlu Fourierovu Transformáciu, detekciu
nástupov, generáciu dôb a vhodnú funkcional i tu v U n i t y . Testovanie s užívateľmi a experi-
mentácia, demonštrujú potenciál navrhnutej implementácie a funkcionalitě pluginu. Zámer
tohto projektu je inšpirovať inováciu v tejto sfére a využiť hudbu ako kreatívny nástroj do
nie len hier ale aj ostatných digitálnych medii .

Keywords
Fast Fourier Transform, Beat Generat ion, U n i t y G a m e Engine, Onset Detect ion, D y n a m i c
environment, Sound analysis

Kľúčové slová
Rýchla Fourierova Transformácia, Generovanie dôb, Herné prostredie U n i t y , Detekcia nás­
tupov, Dynamické prostredie, Analýza zvukou

Reference
J E S K O , P a t r i k . Procedural Sound-based Elements in Games. B r n o , 2023. Bachelor's thesis.
B r n o Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. Tomáš
Polášek

Rozšírený abstrakt
Cieľom tejto bakalárskej práce je zoznámiť sa s problematikou analýzy hudby a vytvoriť
softvérový m o d u l (ďalej len "plugin") , ktorý poskytne vývojárom v hernom prostredí U n i t y
analýzu hudby v pozadí a funkcional i tu na manipulovanie objektov nachádzajúcich sa v
scéne.

Zaoberáme sa p r v k a m i hudby, ktoré sú vhodné na vizualizáciu, ako napríklad tempo,
melódia či hlasitosť. Pre správny návrh pluginu je potrebné pochopiť analýze zvukových
signálov, ich spracovaniu, ako celková analýza prebieha a aké matematické funkcie sa na ňu
používajú. Spolu sa pozrieme na časovú a frekvenčnú doménu, rýchlu Fourierovu Trans­
formáciu a detekciu nástupov. Taktiež je treba rozobrať rôzne metódy na získavanie dát v
Uni ty , ako napríklad AudioSource .GetSpec t rumData alebo A u d i o C l i p . G e t D a t a .

P l u g i n sa skladá z viacerých častí; externá časť pre výpočet rýchlej Fourierovej Trans­
formácie, detekcia nástupov na rôznych frekvenčných rozsahoch, manažér udalostí (event
manager) a rôzne komponenty poskytujúce funkcional i tu pre užívateľa. Užívateľ si vie
zadať frekvenčné rozsahy, ktoré chce analyzovať. P l u g i n poskytuje rôzne informácie analy­
zovanej hudby, k u ktorým má užívateľ prístup, ako napríklad priemernú amplitúdu počas
hudby, sprektrálne informácie, a či v určitom rozsahu v stanovenom čase nastal nástup.
Tieto informácie sú poskytované hlavným komponentom C l i p C o n t r o l l e r alebo poslané ako
udalosť manažérom udalostí komponentom, ktoré danú udalosť odoberajú. Poskytovaná
funkcionali ta pluginu na manipulovanie objektov v scéne zahrňuje: pohyb, rotácia a modi ­
fikovanie veľkosti objektu na základe udalostí a priemernej amplitúdy, cinematickú kameru,
ktorá sa pohybuje po kontrolných miestach na základe času hudby a mnoho dalších.

K v a l i t a pluginu bola testovaná dvanástimi účastníkmi, ktorí sa pozreli na videá ukazu­
júce funkcional i tu pluginu. N a základe ich odozvy vieme zhodnotiť, že p lugin má potenciál
či už v rytmickej hre ale aj v scénach založených na hudbe.

Touto bakalárskou prácou chceme inšpirovať dalších ľudí na experimentovanie s hudbou
nie len v hrách ale aj ostatných digitálnych médiách.

Procedural Sound-based Elements in Games

Declaration
I declare that I was working on this thesis by myself, w i t h the help of Ing. Tomáš Polášek,
and I referenced every source and publ icat ion I used.

Pa t r ik Ješko
J u l y 29, 2024

Acknowledgements
I would like to thank Ing. Tomáš Polášek for his patience and useful tips dur ing the whole
project.

Contents

1 I n t r o d u c t i o n 3

2 T h e o r y 4
2.1 Fundamentals Concepts 4
2.2 A u d i o Signal Processing 9
2.3 Procedural Generation in Games 13
2.4 A u d i o in U n i t y 13

3 P l u g i n P r o p o s a l 15
3.1 P l u g i n Architecture 15
3.2 Analys is 16
3.3 Funct ional i ty 21
3.4 Components 22
3.5 Q u a l i t y of Life 23

4 T e s t i n g 2 4

4.1 Forest Scene 24
4.2 Space Scene 27

4.3 Results 29

5 C o n c l u s i o n 31

B i b l i o g r a p h y 33

A D i s k S t r u c t u r e 35

1

List of Figures

2.1 M u s i c a l notat ion displaying different components of music. [14] 5
2.2 Onsets displayed in different domains 6
2.3 The equal loudness contours showing human perception of different frequen­

cies. 1 8
2.4 Visua l iza t ion of an audio waveform in the time domain f rom A u d a C i t y . In

stereo, the x-axis is t ime, and the y-axis is ampli tude 9
2.5 Frequency spectrum from A u d a C i t y . The x-axis is frequency, and the y-axis

is magnitude 9
2.6 Examples of windowing functions. The plots display the signal's t ime-domain

ampli tude variat ion (blue) and its frequency-domain power d is t r ibut ion (or­
ange). 2 11

2.7 Spectrogram of a section of the song. The x-axis represents t ime, the y-axis
represents frequency (20-20000Hz), and the color represents the magnitude
of that frequency in that t ime 12

3.1 Architecture of the proposed plugin . Different objects, their functionality,
and how they communicate w i t h each other 16

3.2 Simplif ied diagram of the event system displaying communicat ion between
components and Event Manager, and C l i p Control ler 21

4.1 F igure displaying spectrogram (top plot) of The Baudelaire Orphans by
Thomas Newman and flux values w i t h the dynamic threshold and onsets
of the melody event trigger (bottom plot) 25

4.2 Different parts of the forest scene video and important functionali ty 26
4.3 F igure displaying spectrogram of Space D i v i n g by m e z h d u n a m i . (top plot)

and flux values w i t h the dynamic threshold of the SubBass range(bottom plot) . 27
4.4 Different figures of the space scene video 28

2

Chapter 1

Introduction

M u s i c is an important part of video games, helping to create the right mood, reinforce emo­
tions, and te l l stories. It can also help to create immersion, capture the player's attention,
and notify them about certain events. M u s i c is a powerful too l used not only i n games but
also i n movies, T V series, and other forms of media. Sounds and music can also be used as
a memorizat ion tool , helping players recognize certain events by sound.

R h y t h m games are a well-established genre that relies entirely on music and the natura l
human reaction to r h y t h m . They use the elements of music to create captivat ing gameplay.
Precision, accuracy, and flow are essential in these games, which is why they are often
hand-crafted to match the song's r h y t h m perfectly. Some games even use a l l the elements
of a song to create procedural levels.

Us ing the environment to display music can have many benefits. It can provide players
w i t h more information, such as helping them keep track of the beat.

Creat ing a dynamic environment that responds to music is not a new concept. However,
it is usually done manually. This thesis serves as a proof of concept for procedural elements
based on music in the U n i t y game engine. It creates a plugin that helps developers create
captivating environments, fun rhythmic gameplay, and more.

The f inal p lugin is designed for the U n i t y G a m e Engine, a powerful, versatile cross-
plat form game engine widely used to develop video games, simulations, and interactive
experiences. U n i t y ' s f lexibil i ty and scalabil i ty allow developers to prototype quickly, iterate
efficiently, and deploy their projects across mult iple platforms w i t h ease. A s a result,
U n i t y has become one of the leading game development engines i n the industry, powering
thousands of games and experiences worldwide. It was an excellent choice for this plugin
due to its popular i ty among game developers and its large community that uses assets from
the U n i t y asset store.

In the upcoming chapters, valuable information about music in Chapter 2.1, methods
for retrieving it i n Chapter 2.2, and its appl icat ion i n the plugin w i l l be discussed. The
author's proposal for the f inal product w i l l be examined i n Chapter 3, along w i t h an ex­
plorat ion of how different components communicate and how the analysis functions. G i v e n
the importance of testing, Chapter 4 w i l l cover the creation of scenes to demonstrate the
plugin's potential and provide an analysis of part ic ipants ' responses to assess the plugin's
performance.

3

Chapter 2

Theory

A n a l y z i n g music using computers presents unique challenges. Unl ike humans, computers
cannot perceive music's r h y t h m , pi tch, and m o o d . W h i l e these elements come natural ly
to us, computers require various calculations and algorithms to process the complexity of
musical signals.

The following sections explore the necessary theoretical foundations for this project.
Init ially, fundamental concepts in music theory, such as beat, p i tch , r h y t h m , and tempo,
are reviewed to determine which parameters should be extracted from the music. A f t e r w a r d ,
the methods used to gather data f rom the audio signal are discussed, w i t h a specific focus
on the appl icat ion of the Fast Fourier Transform (F F T) for data retrieval. Other topics
mentioned include procedural generation and its applications i n game development, as well
as the U n i t y game engine and its audio integration.

2.1 Fundamentals Concepts

Understanding fundamental music concepts is helpful for effectively analyzing the gathered
data from audio signals. This section discusses some of the key concepts relevant to this
project, such as tempo, beat, and frequency. Rather than delving into the t radi t ional music
perspective, the focus is more on relevant numerical representations and implicat ions.

2 . 1 . 1 T e m p o a n d B e a t

Tempo refers to the speed or pace at which music is played, measured i n beats per minute
(B P M) [12]. It dictates the overall r h y t h m and energy of a piece. The beat is a regular,
repeating pulse that underlies a musical pattern. Humans natural ly synchronize movement
to the beat, which is invaluable for the game because it enhances the user experience and
immersion.

In Western classical music, the tempo is either wri t ten in B P M for more precise ind i ­
cation or left to the conductor to specify the tempo by just describing it i n I tal ian words.
For example, Grave describes a very slow song, Moderato describes a moderate tempo, and
Prestissimo a very, very fast tempo [12]. Y o u can see the tempo mark ing i n both forms in
F i g 2.1.

4

2 . 1 . 2 T i m e S i g n a t u r e

In Western music, a t ime signature also referred to as a meter signature, notat ion specifies
the number of note values of a part icular type w i t h i n each measure (bar). In musical
notat ion, it appears as two stacked numerals, as seen i n F i g . 2.1. T i m e signatures are
categorized as simple (grouping note values i n pairs like 2 , |, |) or compound (grouping
in threes like |, |, g2), w i t h less-common ones representing complex, mixed, addit ive, or
irrat ional meters [13]. The upper numeral in a t ime signature represents the number of
note values per bar, while the lower numeral indicates the type of note being counted.

Different genres often uti l ize specific t ime signatures to create their unique rhythmic
feels. For example, a waltz typica l ly uses a | t ime signature, g iv ing it a distinct 'one-two-
three' r h y t h m . In contrast, many rock and pop songs use |, also known as 'common t ime, '
which provides a steady and famil iar beat. Understanding the song's r h y t h m can help
during beat est imation or beat generation. For example, to create a heavy r h y t h m game, a
metronome-like effect can be achieved w i t h the knowledge of t ime signature. This approach
emphasizes the first beat using audio-visual cues to keep the player i n the flow.

Figure 2.1: M u s i c a l notat ion displaying different components of music. [14]

2 . 1 . 3 O n s e t

The onset is the beginning of a musical note or sound, characterized by the rise in ampli tude
from zero to an i n i t i a l peak. It is important for beat est imation and r h y t h m analysis, serving
as a reference point for identifying rhythmic patterns w i t h i n the music. The onsets can be
seen in F i g . 2.2b as general ampli tude spikes or i n F i g . 2.2c as specific frequency spikes.

F i g . 2.2a, displays the different parts of the note. Dis t inguishing between these is crucial
because different applications have different needs. Transient represents a short interval
during which the signal rapidly evolves in some complex or relatively unpredictable way.
A s was said, the onset marks the start of the note. More precisely, it marks the beginning
of the transient or the earliest point at which the transient can be rel iably detected. A t t a c k
is the t ime interval dur ing which the ampli tude rises. Addi t iona l ly , the release of sustained
sounds can also be perceived as a transient period [3].

Tempo marking BPM

Allegro (J = 132)

Time
signature

5

SO 45 1:00 1
j 1 , 1 1 1 1 , 1

a t t a c k

(c) Possible onsets seen in spectrogram shown with brighter color

Figure 2.2: Onsets displayed i n different domains

2 . 1 . 4 F r e q u e n c y a n d P i t c h

Frequency represents the speed of v ibra t ion i n a sound wave, measured in Hertz (Hz) ,
determining its pi tch or perceived musical tone. Detect ing frequency variations is essential
for identifying melodies and harmonies w i t h i n the music. P i t c h refers to the posit ion of a
single sound w i t h i n the complete range of sounds.

The frequency of a sound wave determines the number of vibrations that occur per unit
of t ime. A s a result, sounds w i t h higher frequencies are perceived as having a higher pi tch
and a more dist inct , sharper quality. In other words, the higher the frequency, the higher
the p i tch of the sound.

Unl ike some animals, human ears detect frequencies between 20 and 20,000 H z (assum­
ing opt imal conditions) [10]; anything beyond (ultrasounds) or below (infrasounds) this
range is imperceptible to us. These audible frequencies are further d iv ided into smaller
ranges, each w i t h distinct characteristics. Different frequency ranges correspond to distinct
tonal qualities and characteristics [1]:

• S u b B a s s (20—60 H z) : Felt more t h a n heard, contributes to the overall richness
and depth of the sound.

• B a s s (60—250 H z) : Determines the thickness or thinness of the sound, providing
the foundational notes of r h y t h m .

• L o w M i d r a n g e (250—500 H z) : Contains low-order harmonics and contributes to
the bass presence i n the mix .

• M i d r a n g e (500—2000 H z) : Determines the prominence of an instrument i n the
mix , influencing its perceived clari ty and definit ion.

G

• U p p e r M i d r a n g e (2000—4000 H z) : Emphasizes the attack on percussive and
rhythmic instruments, adding presence and impact .

• P r e s e n c e (4000—6000 H z) : Enhances the clar i ty and definition of sound, often
adjusted using treble controls i n home stereos.

• B r i l l i a n c e (6000—20000 H z) : Contains harmonics that contribute to the overall
brightness and shimmer of the sound.

A n important note to remember is the relationship between frequency and pi tch . E a c h
octave represents a doubl ing of frequency. This means that to calculate a lower octave of a
note, its frequency is d iv ided by 2; for a higher octave, it is mul t ip l ied by 2. Th is knowledge
can be ut i l ized to quickly determine which note has been played. For example, knowing
that note C\ has a frequency of 32.703 H z allows for the calculat ion of any other octave of
this note, providing an approximate locat ion for identifying that part icular note.

2 . 1 . 5 P s y c h o a c o u s t i c s

Psychoacoustics researches how humans perceive sound. It is an important field that helps
aid in the development of communicat ion. It combines how human bodies receive sound
(physiology of sound) and how human brains interpret it (psychology of sound). These
disciplines provide an understanding of people's different reactions to sounds [10]. These
insights are important because sound is essential in many fields, such as communications
devices, music and f i lm product ion, and even the game industry. The sounds are very
diverse. The m a i n elements contr ibut ing to this diversity are intensity, p i tch , and tone.
The pi tch was already mentioned in the previous Section 2.1.4.

Intensity is represented by ampli tude, which is a measure of energy. It is measured
in decibels, and it determines the loudness of sound [8]. H u m a n ears are more sensitive
to higher frequencies, which means that they may perceive them as louder, though the
intensity is independent of human perception. T h i s can be seen i n F i g . 2.3. E q u a l loudness
contours i l lustrate how the human ear perceives sound at different frequencies. T h e figure
shows that the ear is most sensitive to frequencies in the range from 1 to 5 k H z . E a c h curve
corresponds to a 10 d B increase using the 1 k H z tone as a reference point.

7

- l O d B 1

10Hz 100 1000 10k 100kHz

Figure 2.3: T h e equal loudness contours showing human perception of different frequencies. 1

Tone qual i ty is influenced by the combination of different frequencies, which gives the
sound its unique characteristics. E v e n though the same pi tch is being played, the sound
is different when two different instruments are played, for example, guitar and saxophone.
W h e n a source vibrates, it vibrates w i t h mult iple frequencies at once. The qual i ty of
sound is influenced by a mixture of various frequencies of sound waves. Humans main ly
hear the m a i n pi tch called fundamental , which is the lowest from the mixture . Higher
frequencies are called overtones, and those v ibrat ing i n whole-number multiples are called
harmonics [8]. This is why the guitar and saxophone sound different; the mater ia l from
which the instrument is created, the playing technique, and the generation of the sound
wave (blowing i n saxophone or s t rumming a guitar string) a l l affect these frequencies and
change the tone.

B o t h music and noise are types of sounds. Usually, people consider music as pleasant,
and noise as unpleasant. However, this definition can be subjective because someone prac­
t ic ing the v io l in could sound terrible. There are three properties that the sound must have:
to be musical to classify sounds. F i r s t , it must have an identifiable p i tch . Second, it must
have a good-quality tone that sounds pleasing. T h i r d , it must have a repeating pattern or
r h y t h m to be music. O n the other hand, noise has no identifiable pi tch , no pleasing tone,
and no steady r h y t h m [8].

This study is used extensively in the game industry, f rom understanding how humans
uti l ize sound to create a realistic environment to using specific sounds w i t h different ind i ­
cators (for example, roughness, sharpness, and loudness) to inform the player about danger
or interesting areas.

1Image used from Wikipedia https://en.wikipedia.org/wiki/Equal-loudness_contour

8

https://en.wikipedia.org/wiki/Equal-loudness_contour

2.2 A u d i o Signal Process ing

A u d i o signal processing is a subfield of signal processing involving electronic manipulat ion
of audio signals. A u d i o signals are representations of sound that are i n dig i ta l format, a
series of binary numbers. Th is digi t izat ion process, known as sampling, captures discrete
snapshots of the sound wave's ampli tude at regular intervals.

2 . 2 . 1 D o m a i n s

A u d i o signals are commonly visualized as waveforms i n the time domain, as can be seen
in F i g . 2.4, i l lustrat ing the variations of ampli tude over t ime [5]. W h i l e this representa­
t ion offers a basic understanding of the time-related characteristics, such as changes in
volume, potential peaks, or intensity, it provides l imi ted insight into its underlying spectral
characteristics.

I 15 30 45 1:00 1:15 1:30 1:45

'mezhdunami - Space DMng

Figure 2.4: V isua l iza t ion of an audio waveform i n the time domain from A u d a C i t y . In
stereo, the x-axis is t ime, and the y-axis is ampli tude.

Signal processing techniques are needed to transform the signal into a frequency domain
to extract more information from the audio data [5]. The frequency domain reveals the
signal's spectral composit ion, which provides valuable insights into its frequency compo­
nents and dis tr ibut ion. W i t h i n this domain , the spectrum represents the magnitudes of
frequencies present in the signal at a specific point or range of t ime, providing a detailed
view of its frequency content as can be seen in F i g . 2.5.

50Hz 70Hz 100Hz HOHz 200Hz 300Hz 500Hz 70OHz 1000Hz 140OHz 2OO0Hz 3000Hz 5000Hz 8000Hz 12000Hz 20000Hz

Figure 2.5: Frequency spectrum from A u d a C i t y . The x-axis is frequency, and the y-axis is
magnitude.

9

B y analyzing the frequency domain, dominant frequencies can be detected at a given
t ime, providing information about the musical notes or percussive hits present in the audio
signal.

2 . 2 . 2 F o u r i e r T r a n s f o r m

The Fourier Transform (F T) [4] is an essential mathematical too l used to analyze frequency
domain signals. It breaks down a continuous-time signal into its constituent frequencies
and provides insights into the signal's frequency content. Mathematical ly , the continuous
Fourier Transform S(f) of a continuous-time signal x(t) is given by the following equation:

/

oo
x(t)e-j2nftdt

-oo

This equation represents the integral over a l l t ime of the product of the signal x(t) and
a complex exponential function e -^2 7 1"^', where / represents frequency i n Her tz . T h e F T
provides a continuous representation of the signal's frequency spectrum, making it suitable
for analyzing continuous-time signals.

2 . 2 . 3 D i s c r e t e F o u r i e r T r a n s f o r m

The Discrete Fourier Transform (D F T) [4] is a mathematical technique used to analyze the
frequency content of finite sequences of samples in discrete-time signals. It is the discrete
counterpart of the F T and provides a discrete representation of the signal's frequency
content. The D F T is computed by f inding the Fourier coefficients of the sequence of samples.
Mathematica l ly , the D F T X{k) of a discrete-time signal x{n) can be represented as follows:

N-l
X(k) = ^ x(n)e-j27Tkn/N

n=0
Here, iV represents the number of samples i n the sequence, x{n) represents the discrete

signal samples, and k represents the frequency index. The D F T transforms the discrete
signal f rom the t ime domain to the frequency domain , enabling analysis of discrete-time
signals i n terms of their frequency components.

2 . 2 . 4 F a s t F o u r i e r T r a n s f o r m

The Fast Fourier Transform (F F T) [4] is a powerful a lgor i thm that is used to calculate the
D F T (Discrete Fourier Transform). It reduces the computat ional complexity compared to
the direct computat ion of the D F T , making it pract ical for real-world applications. The
F F T a lgor i thm is based on the divide-and-conquer principle, breaking down the D F T com­
putat ion into smaller sub-problems. This a lgor i thm enables the rapid computat ion of the
frequency spectrum of a signal, making it useful for efficient signal-processing tasks such as
filtering, spectral analysis, and modulat ion . Due to its speed and efficiency, the F F T algo­
r i t h m is widely used i n various fields, inc luding dig i ta l signal processing, communications,
and audio processing, to compute the frequency content of signals.

10

2 . 2 . 5 W i n d o w i n g T e c h n i q u e s

Af ter decomposing the audio signal into its frequency components using the Fast Fourier
Transform (F F T) , a common problem encountered is spectral leakage. Spectral leakage
means energy at one frequency „leaks" into adjacent frequency bins, resulting in inaccurate
and distorted frequency analysis. Shorter segments of audio signals are more prone to cause
this phenomenon.

Fortunately, this challenge can be addressed by employing windowing techniques to i m ­
prove the accuracy of the analysis. W i n d o w i n g means segmenting the audio signal into
shorter overlapping frames, called windows, each of which is mul t ip l ied by a window func­
t ion . Various window functions are available, each w i t h a different outcome and suitable
for different use cases [11]. For example, Rectangular window or H a n n i n g , H a m m i n g , and
B l a c k m a n windows. The H a n n i n g window was chosen for this project because it worked
well dur ing testing.

Hann window Fourier transform Rectangular window Fourier transform

samples bins samples bins

(a) Hann (Hanning) window function (b) Rectangular window function

Figure 2.6: Examples of windowing functions. The plots display the signal's t ime-domain
ampli tude variat ion (blue) and its frequency-domain power dis tr ibut ion (orange). 2

F i g . 2.6 shows the H a n n i n g window, which was chosen for this project, and the Rectan­
gular or box window, which is one of the simplest ones. The figures show how the functions
affect the signal.

The Rectangular window i n F i g . 2.6b segments the signal into a box-like shape w i t h
equal-sized frames. The ampli tude w i t h i n each segment results i n sudden transitions at the
edges of the window; therefore, it is less effective at mit igat ing spectral leakage compared
to other window functions [11].

The H a n n i n g window i n F i g . 2.6a has the shape of a raised cosine. In comparison to
the Rectangular window, the H a n n i n g window gradually decreases the ampli tude towards
the edges of each windowed segment. This creates a smooth transi t ion and reduces spec­
t ra l leakage, leading to more precise frequency analysis. A s a result, sudden changes are
minimized , and the accuracy of the analysis is improved [11].

2Images used from Wikipedia https://en.wikipedia.org/wiki/Window_function

11

https://en.wikipedia.org/wiki/Window_function

2 . 2 . 6 O n s e t D e t e c t i o n

Onset detection detects musical events i n an audio signal. A s was already mentioned in
the Subsection 2.1.3, an onset is the beginning of a musical note or sound. The a lgor i thm
analyzes the ampli tude envelope of the audio signal's spectral characteristics to detect these
events. Th is technique is often used w i t h a thresholding technique to dist inguish peaks from
background noise or sustained sounds [3].

Us ing onset detection can be found in beat estimation, speech recognition, or, i n general,
sound event detection. In the context of music analysis, onset detection is useful for r h y t h m
analysis, tempo estimation, and identifying musical structure. (Melodies and more)

Onset detection algorithms vary among different methods. The simplest algorithms
are based on the ampli tude of the signal alone, comparing the amplitudes directly without
converting the data to the frequency domain . For example, the onsets can be seen clearly
for percussive elements when looking at F i g . 2.4 of the waveform. T h i s approach may
be sufficient for beat estimation, but for more information, a more complex a lgor i thm is
needed.

W h e n the data is converted to the frequency domain , algorithms can be used that can
capture subtle changes in spectral characteristics. These characteristics may not be appar­
ent i n the t ime domain . Sometimes, a spike in ampli tude may occur without an actual
onset; this can be mit igated when analyzing the signal's frequency content. A s shown in
F i g . 2.7, hi-hat onsets (the grey rectangle) and kick onsets (the green rectangle) can be
detected by analyzing two different frequency ranges. This would not be possible by ana­
lyz ing the t ime domain . W h e n the whole spectrum is analyzed, vert ical lines corresponding
to the waveform spikes are obtained.

Figure 2.7: Spectrogram of a section of the song. The x-axis represents t ime, the y-axis
represents frequency (20-20000Hz), and the color represents the magnitude of that frequency
in that t ime.

12

2.3 P r o c e d u r a l Genera t ion i n Games

Procedural Generat ion is a game development technique that automates the creation of
game elements using algorithms instead of manual input . Th is method generates content
dynamical ly dur ing runtime, al lowing developers to create vast and diverse game worlds
rather than relying on pre-made assets [6].

The success of procedural generation depends on both sophisticated algorithms and the
reliable product ion of random numbers [6]. These random numbers are the bui ld ing blocks
for generating diverse and unpredictable content. Addi t iona l ly , the abi l i ty to reproduce
the same sequence of random numbers through a consistent start ing seed and a lgor i thm
ensures consistency in generated content across different gameplay sessions.
Procedural generation offers several advantages for game developers, some of them are:

• Infinite Variety - R a n d o m l y generating provides infinite content possibilities, increas­
ing game replayability, a core concept in most game genres.

• Saves T i m e - Generat ing levels by script is much faster than creating them manually.
It certainly is a challenging task.

• A d a p t a b i l i t y to the Player - Procedural ly generated content can be adapted to the
player's sk i l l level and experience by incorporat ing the „difficulty" variable, hence
creating a more personalized gaming experience.

• E x p l o r i n g N e w - Procedura l generation encourages players to explore, making the
game engaging and fun.

Procedural generation can be used i n mult iple aspects of the game:

• Procedura l Level Generat ion - Useful for sandbox and roguelike games. It creates a
unique experience each t ime the player progresses through the game.

• Procedura l Generat ion of Enemies and N P C s - Generat ing different kinds of enemies
can create interesting gameplay and challenges for the player.

• Procedura l Item and L o o t Generat ion - Useful for creating random rewards for the
player, m a k i n g the playthrough more interesting by incorporat ing randomness.

Procedural generation is a powerful tool for game developers to automatical ly generate
levels, landscapes, and other game elements, enabling the creation of v i r tua l ly limitless
content. It conveys a sense of never-ending content w i t h i n l imi ted resources and is a great
solution for mit igat ing product ion costs and storage and dis tr ibut ion l imitat ions. Procedu­
ra l generation empowers developers to create immersive gaming experiences w i t h r ich and
ever-changing environments, enhancing player engagement and replayability.

2.4 A u d i o i n U n i t y

G i v e n the decision to work i n the U n i t y engine, it is crucial to understand its audio ca­
pabilit ies. A u d i o is managed through the AudioSource and A u d i o C l i p components, which
provide a good framework for playing and manipula t ing audio data. T h e following subsec­
t ion describes the components and functionalities relevant to the objectives of the thesis.

13

2 . 4 . 1 A u d i o S o u r c e a n d A u d i o C l i p

The AudioSource [2] component serves as a controller for p laying audio clips (A u d i o C l i p
component) and offers parameters to adjust playback settings such as volume, pi tch , and
spatial blend. W h i l e it is useful for modi fy ing the audio cl ip itself, it is not applicable to
the objectives of the thesis.

The A u d i o c l i p [2], on the other hand, represents an audio asset that AudioSource can
play. It represents the music w i t h a l l the necessary data for analysis.

U n i t y seamlessly converts audio files such as .mp3 or .wav to A u d i o C l i p format, meaning
that users do not need to worry about different formats.

2 . 4 . 2 A u d i o S o u r c e . G e t S p e c t r u m D a t a

This method computes the audio signal's frequency spectrum using the F F T a lgor i thm [2].
Developers can extract spectral features by analyzing the frequency components returned.
It is mostly used for tasks such as audio visual izat ion, frequency-based effects processing,
and onset detection.

2 . 4 . 3 A u d i o S o u r c e . G e t O u t p u t D a t a

G e t O u t p u t D a t a [2] retrieves raw waveform data directly from the AudioSource , al lowing
for real-time audio signal analysis. It returns raw audio samples that developers can use
to perform signal processing tasks such as visual izat ion of waveforms and manipula t ion of
audio effects.

B o t h G e t S p e c t r u m D a t a and G e t O u t p u t D a t a provide real-time data chunks. However,
for preprocessing the audio, an alternative method is needed.

2 . 4 . 4 A u d i o C l i p . G e t D a t a

G e t D a t a [2], on the other hand, is an A u d i o C l i p method that returns sample data for
the entire song at once. Th is feature allows developers to preprocess the song, providing
f lexibil i ty to apply various algorithms as needed.

14

Chapter 3

Plugin Proposal

N o w that tempo and melodies are recognized as interesting features of a song, and they
can be identified using F F T and Onset Detect ion. Different data retrieval options i n Uni ty ,
such as AudioSource .GetSpec t rumData or A u d i o C l i p . G e t D a t a were mentioned. The i m ­
plementation of the onset detection is inspired by the algorithms in [9]. The article clearly
explains the implementat ion of onset detection and offers bo th preprocessing and real-time
implementation.

Onset detection is a great tool for estimating tempo and detecting melodies i n a song,
so its placement at the center of this p lugin is perfect.

Of course, the song's other useful information cannot be forgotten, like the ampli tude,
which can be used i n dynamic light modula t ion or atmospheric effects. The spectral centroid
is another interesting piece of information. It indicates where the center of mass of the
spectrum is located, and it is connected to the impression of a sound's brightness.

3.1 P l u g i n A r c h i t e c t u r e

Before describing the implementat ion stage, it is helpful to understand the problem and
consider the data flow and communicat ion between parts. T h e plugin's m a i n component
w i l l be C l ipContro le r , which needs to be attached to an object w i t h AudioSource . The
schematic overview of the proposal can be seen in F i g . 3 .1 . The data flow goes as follows:

• S t e p 1 C l i p C o n t r o l l e r retrieves cl ip data and sends them to D S P L i b for F F T
analysis.

• S t e p 2 D S P L i b performs analysis on a chunk and returns average ampli tude and
spectral data back to Cl ipContro l l e r , simultaneously sending the spectral data to
F l u x Analys is .

• S t e p 3 F l u x A n a l y s i s performs OnsetDetect ion and returns SpectralFluxInfo into
Cl ipContro l ler .

• S t e p 4 A f t e r a l l the data is preprocessed, C l i p C o n t r o l l e r checks for peaks i n the
current t ime and updates the publ ic values like average ampli tude and spectrum.

• S t e p 5 C o m p o n e n t s can retrieve the data direct ly from C l i p C o n t r o l l e r or by
subscribing to the event and wait ing for invocat ion from the E v e n t M a n a g e r .

15

FluxAnalysis

SpectralFlux Onset
Detection

SpectralData DSPLib

Implementation of FFT

Amplitudes
SpectralData

SpectralFluxInfo

CurrentAmplitude
CurrentTime

CurrentSpectrum

SampleData

ClipController

Invoke

Peak
Happened

EventManager

Parameters

AudioSource

EventTriggers

SampleCount

Figure 3.1: Archi tecture of the proposed plugin . Different objects, their functionality, and
how they communicate w i t h each other.

3.2 A n a l y s i s

The first step is to gather the data . A s previously discussed, U n i t y affords mult iple choices
for data retrieval: real-time analysis v i a G e t S p e c t r u m D a t a and G e t O u t p u t D a t a or prepro­
cessing using G e t D a t a . W h i l e real-time analysis offers immediacy, the preprocessing grants
enhanced f lexibi l i ty and the abi l i ty to anticipate future song dynamics.

3 . 2 . 1 D a t a M a n a g e m e n t

In this project's infrastructure are two key data structures: SpectralFluxInfo, which keeps
data f rom the spectral f lux analysis, and Parsed C l i p , a class made for managing mult iple
information about the cl ip attributes. A custom D a t a W r i t e r class has been developed to
serialize data into J S O N format to ensure data persistence across runtimes. Th is allows
users to r u n the same song mult iple times w i t h just one analysis.

E v e n t C u s t o m i z a t i o n

Furthermore, the p lugin contains a versatile event customization feature. Users have the
opportunity to specify frequency ranges and thresholds and assign unique identifiers to
each event. Th is functionali ty allows for adaptabi l i ty and empowers users to experiment
and modify analysis to their specific requirements.

16

Event triggers are saved as scriptable objects so the data persists. A custom editor was
developed to manage this scriptable object. In addi t ion to creating event triggers, the user
can edit them and does not have to worry about naming two different events w i t h the same
name because checks are implemented to prevent that f rom happening.

To help experiment and not leave the user guessing the frequencies, there is a generated
grid w i t h musical notes from the note Co at 16.35 H z up to B7 at 3951.36 H z . This ensures
that a developer w i t h the knowledge of the note range of a melody in a song w i l l have quick
access to that frequency, and if he does not have the knowledge, this note gr id makes it less
complicated to t ry different things out.

3 . 2 . 2 C l i p A n a l y s i s

Structures are i n place to store the analyzed data, approaching the core of the analysis:
however, the F F T must not be forgotten. Since U n i t y does not provide its own F F T imple­
mentation, it is necessary to either create a custom solution or f ind one that is implemented.
The l ibrary mentioned i n the selected article, D S P L i b [7], w i l l be ut i l ized for this project.

To perform F F T , necessary c l ip data, such as length and number of samples, must be
gathered. Addi t iona l ly , the sample count has to be chosen to determine the size of the frame
that is going to be analyzed. The sample count has to be a power of 2. Usual ly , it is 512 or
1024, which is sufficient. A large sample count means a finer frequency resolution; however,
this also means it w i l l take longer to compute, which may not be desirable. W h i l e 1024
samples produced excellent results and the analysis t ime was satisfactory, user preferences
may differ, and serializing these modifiable variables is good practice.

H a n d l i n g C h a n n e l s i n A u d i o P r o c e s s i n g

One important detai l to th ink about is the number of channels. Songs can be either stereo,
meaning that they have left and right channels, or mono which has only one channel. For
the plugin to accept any type of song, it is necessary to calculate both scenarios. The
G e t D a t a funct ion returns the raw sample data of the song. In the case of a stereo song,
there w i l l be twice as much data as in a mono song for each channel.

DataSize = Total SempleLength x Number of'Channels

Before running the F F T l ibrary, the channel data must be combined. In the case of
stereo audio, the F F T could be applied separately to the right and left channels. However,
this approach offers l imi ted advantages when the number of channels in the audio is un­
certain. C o m b i n i n g the samples is straightforward. The G e t D a t a function always returns
samples i n this order: [LQ, RQ, LI, RI, ...]

Calcula t ing the average of these samples generates a combined array on which the F F T
can be performed. Let S be the mult i -channel input array, C the number of channels, and
F the f inal combined array. T h e n the calculation would look like:

1 °

^b'] = ^ E 5 b ' x C + z]
i=0

Where j is the index of the combined array F, i is the index w i t h i n the current set of
channels, and the expression S[j x C + i] accesses the samples i n the original mult i -channel
array S.

17

F a s t F o u r i e r T r a n s f o r m a n d S i m p l e A u d i o A n a l y s i s

The F F T analysis is executed iteratively across the entire audio c l ip , w i t h each i teration
processing a window w i t h a specified size of sample count. The number of iterations is
calculated as follows:

LengthO f'Samples iterations SampleCount

A l g o r i t h m 1: I T E R A T I O N T H R O U G H C L I P S A M P L E S

I n p u t : (clipSamples)

1 GetCurrentClipSamples
2 Apply FFTWindow
3 PerformFFTandConverttoMagnitude
4 Calculate Amplitude
5 C alculateC entralSpectroid
6 SaveSpectrumData
7 C'alculateC•urrentSongTime
8 f o r trigger in triggers d o
9 S end Datato Spectral Flux Analyzer

10 e n d f o r

A l g o r i t h m 1 displays steps computed in each i teration. The first step is to copy s a m p l e -
C o u n t amount of samples from the Cl ipSamples , which w i l l be worked w i t h . A s mentioned
in SubSection 2.2.5 windows are used to mitigate the effects of spectral leakage.

A p p l y i n g the F F T window involves several key steps using the D S P L i b [7]. F irs t is
the calculation of the coefficients for the desired window type, which in this thesis is the
H a n n i n g window. The next step is to scale these coefficients to match the window size.
F ina l ly , the computat ion of the scale factor is crucial for preserving the ampli tude of the
signal after windowing and performing the F F T .

Performing the F F T and converting to magnitudes involves these steps: F i r s t , the F F T
is executed on the scaled spectrum window, transforming the t ime-domain signal into the
frequency domain and producing complex numbers. These complex numbers represent
both the ampli tude and phase information of the frequencies present i n the signal. Next ,
converting the F F T output to magnitudes, which extracts the ampli tude information from
the complex numbers, is necessary. Th is step is crucial because it provides a clear rep­
resentation of the signal's frequency content, al lowing for further analysis of the spectral
properties of the audio. The final step is to scale the magnitudes using the scale factor
to ensure the ampli tude is preserved correctly after the transformation. Th is spectrum is
saved as s c a l e d F F T S p e c t r u m .

The samples are now i n the frequency domain, meaning some of the information can
already be gathered. This p lugin keeps track of the average ampli tude, which is the mean
of the magnitudes in the s c a l e d F F T S p e c t r u m . Spectral centroid, a measure of the center
of mass of the power spectrum of a signal, has a more complex calculation than average
amplitude.

18

Fol lowing equations shows the calculation of spectral centroid:

SpectralCentroid = ^=^Jk X X { k))

Where iV is tota l size of the s c a l e d F F T S p e c t r u m , is the frequency corresponding to
the k — th i tem of spectrum, calculated as:

SampleRate
fk = kx SampleCount

and Xh is sum of amplitudes of the s c a l e d F F T S p e c t r u m . The numerator represents
the weighted sum of a l l frequency contributions. The denominator is the tota l ampli tude,
ensuring that the centroid is normalized. Th is approach gives a weighted average frequency,
reflecting the energy dis tr ibut ion across the spectrum.

The whole s c a l e d F F T S p e c t r u m is also saved, i n case the user would like to uti l ize i t .
Af ter that, the spectrum data is sent to the Spectral F l u x Analyzer .

K e e p i n g T r a c k o f T i m e

A s could be seen in the A l g o r i t h m 1 the song's current t ime is also saved. This is because
it allows simple retrieval of corresponding data by calculat ing the index based on the song
t ime and accessing that index i n the data l ist . The calculation of the precise t ime of the
song goes as follows:

TimeDurationPer Sample
SampleRate

TotalTimeElapsed = TimeDurationPer Sample x Samplelndex

TotalTimeDuration = Time Duration Per Sample x SampleCount

Where SampleRate is the number of samples captured per second i n a digi ta l audio record­
ing. It is usually expressed in Hertz (Hz) , where 1 H z equals 1 sample per second and it can
be obtained in U n i t y using Audio Clip, frequency, and Samplelndex is the current i teration
index.

„To calculate the corresponding index for the actual t ime of the song, follow these
steps:":

TotalNumberOf Samples
LengthPer Sample

Samplelndex -

TotalLengthO f AudioC lip

CurrentTime
LengthtPer Sample

3 . 2 . 3 O n s e t D e t e c t i o n u s i n g S p e c t r a l F l u x

The Spectral F l u x A n a l y z e r is an instance w i t h variables that track data for each event.
The m a i n funct ion AnalyzeSpec t rum is called in paral lel f rom C l i p Analys is , as explained in
Subsection 3.2.2, after the F F T analysis for each event trigger. Onset detection has already
been discussed, and the next topic w i l l be spectral f lux.

19

S p e c t r a l F l u x C a l c u l a t i o n

Spectral f lux or spectral difference measures the difference i n magnitude between consecu­
tive frames. Here came the deciding point for choosing the gathering method. The analysis
would funct ion well w i t h real-time data collection but might lag sl ightly behind the actual
song. To mitigate this, G e t D a t a was used to preprocess the song. This approach may i n ­
troduce a loading t ime before a game level but results i n a m i n i m a l delay between the song
and data. Let P(t) and P(t — 1) represent the power spectra of the current and previous
frames, and let SF(t) be the spectral flux.

where / represents frequency bins i n the power spectrum, which are the trigger ranges
defined by the user.

T h r e s h o l d i n g a n d D y n a m i c T h r e s h o l d i n g

Next , a threshold must be calculated, which determines if the peak happened. A peak is
identified when the spectral flux exceeds the threshold. W h i l e a static threshold could be
used, it would not be precise, and it is not worth it to save some computer power for it .
Therefore, implementing a dynamic threshold is necessary. F i r s t l y the average of the
spectral flux values is calculated. This project calculates using 50 values.

Af terward , a threshold mult ipl ier , which defines the sensitivity of the threshold is mult ipl ied
by the Average F l u x , resulting i n threshold T. Th is threshold mult ipl ier is a parameter of
event triggers created by the event customization feature 3.2.1. T h a t means the user can
test what result works for them.

P e a k d e t e c t i o n

To detect the peak, it is important to calculate the pruned spectral f lux. Th is is the
difference between the spectral flux and the threshold, representing whether the spectral
flux is greater than the threshold:

Peak is detected when SFwuneii{t) exceeds both SFprune(i(t + 1) and SFwuned(t — 1).

3 . 2 . 4 B e a t D e t e c t i o n

The peaks have been detected, and using them to a rough estimation of the song's tempo
can be made. B y expanding the base a lgor i thm on specific ranges, the chances rise, however,
it s t i l l is not reliable. Beat detection is very t r icky and comes w i t h a lot of variables. Some
of them are m i x i n g of the song, genre, and noise. The ideal song would have clear percussion
elements, such as kick and snare, that would be seen i n the spectrum, however, users may
use songs of different genres and qualities. That ' s why the beat generation was added, to
ignore the song's quali ty and poor m i x i n g . Users can obtain the tempo in B P M from th i rd-
party applications, specify it i n the m a i n script as a parameter and the beat generation w i l l
create events accordingly.

SF(t) =]T max(0, P(t, f),P(t - 1, /))

N
i=l

SFpruned(t) = max(0, SF(t) - T)

20

3.3 Funct iona l i ty

The necessary data has been extracted f rom the audio cl ip at this stage. Users can now
access this data through the m a i n component called C l i p C o n t r o l l e r , which requires an Event
Triggers scriptable object and an AudioSource to analyze a c l ip . In order to inspire users
and showcase the potential , addi t ional functionali ty needs to be implemented. This w i l l
include a custom event system, beat generation, and various other components.

3 . 3 . 1 E v e n t S y s t e m

The uni ty event system is powerful and very useful, but after introducing custom events from
Subsection 3.2.1 to this plugin , a custom event manager was needed w i t h the event system
more catered to the needs of the p lugin . So, an Event Manager is created automatical ly
and instantiated by the C l i p Control ler . It is singleton to ensure the event system won't get
messy. The event system consists of a dict ionary where the key is the event name, and the
value is a list of actions w i t h the Spectra lFLuxInfo parameter. Th is helps quick access to a l l
event subscribers. The Event Manager has a custom Subscribe and Unsubscribe function
to keep track of subscribers. Other than that, it works just like a basic event system. C l i p
Control ler checks whether an event trigger occurs, and if yes, it calls the Invoke method of
Event Manager, which then invokes a l l Act ions of subscribers to that specific event. See
F i g . 3.2 for a better understanding.

Clip Controller

Current song
Information

List of events

No
IsPeak? /

IsNewBeat?

User components

Component 2

Action to be
invoked

Component 1

Action to be
invoked

bscribe

Yes

O
Invoke

eventName

Event Manager

Components
subscribed to events

Invoke
subscribed to
eventName

O
Figure 3.2: Simplif ied diagram of the event system displaying communicat ion between
components and Event Manager, and C l i p Control ler .

21

3 . 3 . 2 B e a t G e n e r a t i o n

A s previously mentioned in Subsection 3.2.4, beat detection is a challenge. Beat generation,
on the other hand, is pure math . To calculate the interval between i n d i v i d u a l beats, the
song's B P M is a necessary parameter. T h i s can be obtained using third-party software.

60
interval BPM

For example, if the song has a tempo of 120 B P M , it means that there w i l l be 0.5 seconds
between each beat. N o w , the beat event has to be invoked. To do that , the program has
to keep track of t ime; a different functionali ty is used then in the analysis. Synchronizing
object manipula t ion to beat is very delicate, which is why high accuracy is important .
Us ing AudioSet t ings .dspTime, which returns the current t ime of the audio system, is much
more precise than s imply using AudioSource . t ime because it is based on the actual number
of samples the audio system processes [2]. A f t e r w a r d , the difference between the start of
the track and the current D S P t ime determines if a beat happened.

To broaden the beat events, an enumerate of different times of beat is created; the
user can now specify on what beat to listen to the event. For example, the user can
choose to trigger every beat, just the second beat, even beats, or odd beats. Specification
of t ime signatures was added to give the user even more f lexibil i ty and possibilities. A s
Subsection 2.1.2 mentions, t ime signature specifies how many beats are i n a bar. Th is beat
generation is straightforward and expects only | or | t ime signatures, which are the most
common ones. Th is allows the user to create accents, for example, on the first beat of a
bar, or create an environment that is more responsive to the song.

3.4 Components

Now, game developers and other users have access to a l l data and systems, and it is up to
them to create what they want. Components were developed for their smoother creative
process and quicker prototyping of different scenes. Some are more complex than others,
a l l based on the information retrieved from the song.

3 . 4 . 1 B e a t - b a s e d C o m p o n e n t s

The beat-based components are simple, and only the m a i n properties of objects, such as
scale, positions, and rotat ion, are modif ied. These components are simple and just keep
going back and forth between specified values i n specified beat intervals. Other components
are modi fy ing the intensity of a light or enabling and disabling an object.

One of the more complex components is checkpoint movement. It works by creating a
list of transforms that act as checkpoints through which the object moves. The user can
specify how many beats it takes the object to reach a checkpoint so that it moves more
quickly or slowly.

22

3 . 4 . 2 A m p l i t u d e B a s e d C o m p o n e n t s

These components are not based on events; they are based only on the ampli tude values
of the song. It can create dynamic light or fog. E x a c t l y that was created. A component
for dynamic light is created to work w i t h spot and point types of l ight. It changes light's
intensity and area w i t h the changing ampli tude. The dynamic fog component works by
changing the density of a U n i t y fog created by their renderer settings; when the music is
busier and has a higher ampli tude, there is less fog in the scene.

Last but not least is scaling w i t h ampli tude, which scales the object by the ampli tude
in the song currently.

3 . 4 . 3 C i n e m a t i c C a m e r a

Other than basic, general components, which can be used quickly, a more complex system
called a cinematic camera system was also created. It is a custom-made movement script
through checkpoints for the camera, designed to synchronize closely w i t h the song's pro­
gression. E a c h checkpoint is defined by posit ion and corresponding t imestamp, indicat ing
a specific moment in the song timeline when the camera should reach the checkpoint. Wai t
t ime, rotat ion t ime, and rotat ion target were added to give the user more freedom. It creates
even more possibilities and mimics an animat ion cl ip but w i t h easier song synchronization.

3.5 Q u a l i t y of Li fe

D u r i n g the development and testing, functionali ty for solely quali ty of workflow and con­
venience was created. This functionali ty is s t i l l relevant for future developers who would
work w i t h the plugin ; that 's why some of them are described below.

3 . 5 . 1 D a t a W r i t e r

D a t a W r i t e r is one of the classes that provide the functionali ty to serialize the ParsedCl ip
into J S O N format and save it locally, which provides quicker experimenting w i t h things
not related to the analysis, such as beat events. The C l i p C o n t r o l l e r has a flag to r u n the
analysis and overwrite the saved file for easy workflow; if users do not want to re-analyze
the song, the D a t a W r i t e r w i l l read it f rom a file and send it to C l i p C o n t r o l l e r to continue
the flow of the game.

In case the developer wants to examine the data inside the P a r s e d C l i p for a deeper un­
derstanding, there is a funct ion to print mult iple files w i t h different data for each frequency
range; this is because the one file is so large that it is impossible to read anything except
the cl ip's name from it .

3 . 5 . 2 T e s t i n g E n v i r o n m e n t

It was essential to see what was happening i n the song dur ing the tweaking process. That ' s
why a testing playground was created to let users see the spectrum data of the song and
see in which frequency ranges something is happening. Th is visual izat ion helps to create
more precise frequency ranges for the event triggers.

23

Chapter 4

Testing

Testing is very important i n a l l kinds of projects, especially the creation of plugins. The
results obtained w i l l determine the potent ial of the p lugin . The focus w i l l be on the overall
user experience and synchronization w i t h the music. Focusing more on the outcome of the
plugin than the usage reveals if the p lugin has any potential at a l l . Test questions were
formulated using Google Forms.

Two uni ty scenes were created, each showcasing a different functionali ty of the plugin .
Videos showcasing the important functionali ty were created and added to the questionnaire.
The videos could not be uploaded to Y o u T u b e due to copyright reasons. Therefore, readers
interested i n viewing the videos can watch the forest and space videos direct ly f rom the
disk; the structure is described i n appendix A .

4.1 Forest Scene

The forest scene was based on a piece from the movie A Series Of Unfortunate Events called
The Baudelaire Orphans created by T h o m a s N e w m a n . This song was chosen because of
a pretty melody midway through that is reminiscent of stars. The piece also has crescendos,
which are interesting to visualize. It is an orchestral piece without any percussion elements,
which made it a bad choice for a r h y t h m showcase but great for a more cinematic, artistic
experience.

4 . 1 . 1 A n a l y s i s R e s u l t s

To better visualize when the analysis detects peaks, the results saved as J S O N files, gener­
ated by D a t a W r i t e r 3.5.1 were ut i l ized and then plotted using the P y t h o n l ibrary M a t p l o t l i b .

In F ig .4 .1 , the analysis shows a melody that resembles stars. The melody was main ly de­
tected between 65 and 115 seconds, corresponding to the spectrogram i n the same timeframe
w i t h i n the frequency range of 1046.50 H z to 2093.00 H z . This indicates that the melody
detection was accurate. However, as shown in Fig.4.1 and the video i n A p p e n d i x A , the
stars occasionally appear too close together, even when the melody is not playing. This
clustering is visible around the 100-second mark i n the plot . To address this, increasing the
threshold mult ipl ier or detecting each note ind iv idua l ly might improve accuracy.

The peaks detected before the melody starts or ends are problematic, as they were not
intended. To mitigate this issue, the stars object was activated just before the expected
start of the melody.

24

140

Onset function
Dynamic threshold
Onsets

Time (s)

Figure 4.1: F igure displaying spectrogram (top plot) of The Baudelaire Orphans by
Thomas Newman and flux values w i t h the dynamic threshold and onsets of the melody
event trigger (bottom plot) .

4 . 1 . 2 S c e n e C r e a t i o n

A l l the assets are free f rom the asset store. T h e decision to use a low-poly forest was made
because it worked well for this music piece. The asset comes w i t h the whole scene prepared
w i t h rocks, trees, mushrooms, sunflowers, and more, which was not altered i n any way.
This scene was used and then the procedural sound-based elements were added to it .

A skybox of the starry night sky created by a th ird-party tool named 3 D T o o l was added
to the scene, which greatly helped to set the right m o o d . T h e n , the unity fog system was
used to create a feeling of mystery, the light was changed to lighter blue to m i m i c the moon,
and the scene was finished.

Take a look at F i g . 4.2a to see the whole scene without the fog that would block the
view.

25

4 . 1 . 3 S c e n e F u n c t i o n a l i t y

For functionali ty showcase, the custom-made checkpoint camera movement, mentioned in
Subsection 3.4.3, was ut i l ized to move through the scene dynamical ly . Th is guarantees that
the video captures everything the plugin has to offer. Three checkpoints were created, each
focusing on a different functionality.

F i r s t P a r t

The first checkpoint was set to look at a bunch of rocks w i t h mushrooms and sunflowers,
seen i n F i g . 4.2b, showcasing the functionali ty of ampli tude scaling and light modif icat ion.

S e c o n d P a r t

The second checkpoint focused on stars to show what can be done w i t h the Onset detec­
t ion . Here, a pleasant melody reminiscent of stars was ut i l ized. Two particle systems were
created, one representing the light of a star and the second adding flare. Together, they
created a pretty star-like effect.

To synchronize it w i t h the piece, a script was created that randomizes the posit ion of
the particle systems and emits one particle w i t h a dynamic size of the current ampli tude
in the camera direction.

The decision was made to include the lower arpeggio, which accompanied the melody.
The particle systems were duplicated, assigned a different event trigger, and given a distinct
color for improved visibi l i ty , resulting in an appealing star dance effect.

The second part can be seen i n F i g . 4.2c.

T h i r d P a r t

The last checkpoint was looking into the forest, seeing clearer when the crescendo happened
and seeing how the fog was coming back after i t , almost as if the instruments were creating
w i n d blowing the fog away. It can be seen i n F i g . 4.2d

(a) Full scene without fog (b) First part, mushrooms and sunflowers

(c) Second part, starry sky (d) Third part, fading fog

Figure 4.2: Different parts of the forest scene video and important functionality.

26

4.2 Space Scene

This scene was made to show the beat generation and potential of the plugin to be used
in r h y t h m games. For a song, Space Diving by an artist named m e z h d u n a m i . , which
falls into the synth-wave electro genre, was perfect. The song features dist inct , percussive
elements, evoking images of a game-level performance perfectly suited to this type of music.

4 . 2 . 1 A n a l y s i s R e s u l t s

The spectrogram was also created using the P y t h o n l ibrary M a t p l o t l i b and results were
generated by D a t a W r i t e r 3.5.1.

In F i g . 4.3, there are no distinct onsets shown. This is due to the chosen song having a
tempo of 160 B P M (approximately 2.5 beats per second) combined w i t h some imperfections
in the analysis, resulting i n the plot being dominated by continuous lines.

The b o t t o m plot illustrates the Bass range 2.1.4, in the frequency range of 60-250 H z .
Onsets can s t i l l be identified by examining the D y n a m i c Threshold line and the Onset
Funct ion values. A n onset occurs when the Onset Funct ion value exceeds the D y n a m i c
Threshold line. However, except for some quieter sections, onsets were being detected
almost continuously. This problem required the development of the Beat Generation.

17500

x 12500

c 10000

5000

Time (s)

t i l l jjjlj
200

Time (s)

Figure 4.3: F igure displaying spectrogram of Space D i v i n g by m e z h d u n a m i . (top plot)
and flux values w i t h the dynamic threshold of the SubBass range(bottom plot) .

27

4 . 2 . 2 S c e n e C r e a t i o n

A s w i t h the Forest Scene 4.1.2, a l l the assets used i n this scene are free from the asset
store. The asset contained a space station scene that was already prepared and just needed
the plugin's functionali ty to be complete. A player movement script was created w i t h a
rotat ing camera for video recording. Addi t iona l ly , a space skybox was implemented, seen
in F i g . 4.4a, using the same third-party tool , 3DTool , that was ut i l ized in the forest scene
to posit ion the space stat ion w i t h i n the cosmos. Th is scene lacks the post-processing touch
that the first scene had, but more important ly , it has to showcase the beat synchronization,
which is visible. See F i g . 4.4 to see the space station.

4 . 2 . 3 S c e n e F u n c t i o n a l i t y

Here, a l l the beat components mentioned in the Subsection 3.4.1 are ut i l ized. Doors that
open by rotat ing, moving f rom side to side, or disappear completely can be seen i n the
scene. Checkpoint movement is also ut i l ized on a floating object i n space to m i m i c orbit .
The light component was added to showcase not only the gameplay possibilities of the
components but also to set the m o o d . T h e lights m i m i c the flickering of an abandoned
space station.

A l l of these elements were intended to contribute to an engaging level filled w i t h poten­
t i a l puzzles and narratives. Whether it was a success or not is not up to us.

(a) Full scene of the space station (b) Starting position in the space station

(c) Doors in rotating motion (d) Another angle of the space station

Figure 4.4: Different figures of the space scene video.

Please refer to A p p e n d i x A for picture location for better resolution.

28

4.3 Resul ts

The respondents were i n the 20-25 age range and varied in profession. There were 12
participants. Notably , a quarter of them were not students. Furthermore, only 16.6%
of the participants reported having experience w i t h the r h y t h m game genre, while 41.6%
indicated no prior gaming experience whatsoever. Interestingly, one respondent works in
the game industry. Addi t iona l ly , a significant major i ty of 66.6% had experience w i t h music
other than listening, whether playing an instrument or s tudying music theory.

A t the start of this chapter, it was mentioned that the m a i n focus is on overall feeling
and synchronization w i t h music. The results show two videos w i t h completely different
feelings.

4 . 3 . 1 F o r e s t S c e n e

The forest scene had been given a score of 8.8 out of 10 i n total . T h a t is very pleasant.
The majori ty of participants, 66.7%, said they d i d not see any problem w i t h the scene. The
other users had mult iple different comments, but the most common comment was about
the stars in the second part of the video.

Even though there were smal l problems, it seems that almost every part icipant could
imagine this functionali ty being ut i l ized i n some k i n d of digi ta l media, be it an advertise­
ment, a video c l ip , or a trailer. The other participants answered „maybe", which indicates
that the deciding factor would be the execution. Take a look at the questions and results
in the Tab. 4.1.

In summary, the scene garnered a very positive response, indicat ing that the plugin is
on the right path .

Q u e s t i o n s H a v e y o u n o t i c e d a n y p r o b ­
l e m s w i t h t h e a u d i o v i s u a l i z a ­
t i o n s h o w n i n t h e v i d e o ?

W o u l d t h i s f u n c t i o n a l i t y b e
g o o d i n t r a i l e r s , v i d e o c l i p s , a d ­
v e r t i s e m e n t s , o r o t h e r k i n d s o f
d i g i t a l m e d i a ?

Y e s 33.3% 83.3%
N o 66.7% -
M a y b e - 16.7%

Table 4.1: Response percentages from questionnaire.

4 . 3 . 2 S p a c e S c e n e

O n the other hand, the space scene had a different story. W i t h a to ta l score of 7.5 out of
10 i n total , it was not such a success. E v e n though the majori ty of 58.3% s t i l l answered
that they d i d not see any problem w i t h the synchronization, it was seen that participants
who have more experience w i t h r h y t h m games voted that they had indeed seen problems.
The deciding factor was the door movement. The combinat ion of different beat triggers
and styles of opening the door created a very confusing environment, so it was hard to see
if the doors were really on beat. Other than that, there were slight issues w i t h the scene,
but these were unrelated to the beat synchronization, so they are irrelevant.

29

Even though this scene shows bigger problems, after the question if they think that the
plugin could be used to create r h y t h m games, only one part icipant said „No"; others said
„Maybe" and „Yes", which again indicates that it w i l l be based on the execution and care
for the game. See the experimental results i n the Tab. 4.2.

In summary, al though this scene d i d not receive as positive a response as the forest
scene, it s t i l l got good comments and tips on what to look at and tweak more. A g a i n , the
potential stays, but it may need more work.

Q u e s t i o n s H a v e y o u n o t i c e d a n y s y n c h r o ­
n i z a t i o n o r a n y o t h e r p r o b l e m s ?

W o u l d t h i s k i n d o f b e a t s y n ­
c h r o n i z a t i o n p r e c i s i o n b e
e n o u g h f o r a g a m e ?

Y e s 41.7% 58.3%
N o 58.3% 8.3%
M a y b e - 33.3%

Table 4.2: Response percentages from questionnaire.

30

Chapter 5

Conclusion

M u s i c is closely t ied to dai ly lives, accompanying people almost everywhere: i n the car, in
the supermarket, while watching movies or series, and even while playing games. U t i l i z i n g
the natura l perception of music i n different kinds of mediums can create an immersive
environment that enhances emotional feelings and perception of the music being played.

This paper explored fundamental music concepts, as discussed in Section 2.1, inc luding
tempo, beat, onset, and frequency. It explains how humans perceive sounds and volume
in SubSection 2.1.5. Section 2.2 covered audio signal processing providing an overview
of the t ime domain and frequency domain , and discussed the Fourier Transform and its
applicat ion, inc luding the Fast Fourier Transform. Section 2.4 highlighted the benefits of
procedural generation and examined U n i t y ' s handl ing of audio clips and potential data
retrieval methods.

The proposal for a p lugin that analyzes background music playing in a U n i t y scene was
then examined. The steps of c l ip analysis mentioned i n Subsection 3.2.2 and onset detec­
t ion using spectral f lux in Subsection 3.2.3 were explored, revealing the challenges of beat
detection. D a t a management and event customization solutions were introduced, featuring
a custom event system designed to work w i t h any created event. A f t e r w a r d , a solution
for rhythmic elements in games using simple beat generation was found. Addi t iona l ly , the
various components offered by the p lugin were discussed, inc luding object transform modif i ­
cation to the r h y t h m of a song and dynamic fog controlled by the song's current ampli tude.
A custom cinematic camera script that allows users to p lan camera movement w i t h the
song timeline and rotate the camera towards a selected object was also mentioned, along
w i t h some quality-of-life features i n the plugin .

Testing was conducted after the creation of a l l components, and the results were an­
alyzed. The creation of two testing scenes, their motivat ion, and the differing reactions
they received were discussed. The forest scene, showcasing the dynamic camera and en­
vironment, received more positive feedback compared to the space scene, which displayed
rhythmic patterns prone to inaccuracy, as detailed i n Section 4.3. The plugin's potential
was evident even before testing, but the results confirmed that it was progressing i n the
right direction.

A potential improvement of the plugin could be running half of the preprocess func­
t ional i ty and then running it while the game runs. This would minimize the wait ing time
needed to wait for the analysis to finish. A d d i n g a list of A u d i o C l i p s , which would be
processed before playing, would help if the scene had mult iple songs.

31

The analysis has ways to improve, and adding machine learning would provide even
more functionality, like mood detection or genre estimation. Th is would be a great too l for
procedurally generating levels w i t h colors and assets matching the song.

Another direction for the plugin could be into a more cinematic sphere, w i t h custom
checkpoint creation functionali ty that would make the checkpoint system easier to use and
custom time stamps into custom-made cl ip objects.

The beat est imation analysis could be improved to make the beat generation obsolete,
which would eliminate another concern f rom developers about f inding the tempo of the
song and opening up possibilities for procedural levels w i t h rhythmic elements.

This project has mult iple possible ways to evolve, and the way it w i l l continue is just up
to the developers interested in music and digi ta l media working closely together w i t h it .

32

Bibliography

[1] Mixing Techniques - Audio Spectrum online. Teach M e A u d i o , apr i l 2020. Available
at: https : //www.teachmeaudio.com/mixing/techniques/audio-spectrum, [cit.

2024-04-28].

[2] Unity Documentation scripting API online. U n i t y Technologies, may 2024. Available
at: https://docs.unity3d.com/ScriptReference/index.html. [cit. 2024-05-01].

[3] B E L L O , J . ; D A U D E T , L . ; A B D A L L A H , S.; D U X B U R Y , C ; D A V I E S , M . et a l . A tutor ia l

on onset detection i n music signals. IEEE Transactions on Speech and Audio
Processing, 2005, vol . 13, no. 5.

[4] B R I G H A M , E . O . and M O R R O W , R . E . The fast Fourier transform. IEEE Spectrum,
1967, vol . 4, no. 12.

[5] C O N S T A N T I N E S C U , C . and B R A D , R . A n Overview on Sound Features in T i m e and

Frequency D o m a i n . International Journal of Advanced Statistics and IT&C for
Economics and Life Sciences, december 2023, vol . 13.

[6] C o x , G . Procedural Generation of Computer Game Maps online. Baeldung, march
2024. Available at:
https: //www.baeldung.com/cs/gameplay-maps-procedural-generation. [cit. 2024-05-1].

[7] H A G E M A N , S. DSPLib - FFT / DFT Fourier Transform Library for .NET 4 online.
CodeProject , June 2016. Available at: https://www.codeproject.com/Articles/
1107480/DSPLib-FFT-DFT-Fourier-Transform-Library-for-NET-6. [cit. 2024-04-28].

[8] I O W A S T A T E U N I V E R S I T Y C E N T E R F O R N O N D E S T R U C T I V E E V A L U A T I O N .

Components of Sound online. Available at:
https://www.nde-ed.org/Physics/Sound/components.xhtml, [cit. 2024-05-04].

[9] J E S S E . Algorithmic Beat Mapping in Unity online. M e d i u m , february 2018. Available
at: https://medium.com/0jesse_87798/d4c2c25d2f27. [cit. 2024-04-20].

[10] M l N A R D , A . DPsychoacoustics: Understanding the Listening Experience online.
A N S Y S , July 2023. Available at:
https://www.ansys.com/blog/understanding-psychoacoustics. [cit. 2024-04-29].

[11] P R A B H U , K . M . M . Window Functions and Their Applications in Signal Processing.
Taylor & Francis, 2014.

[12] P R E I S , J . What is Tempo in Music? online. Hoffman Academy. Available at:
https: //www.hoffmanacademy.com/blog/what-is-tempo-in-music/. [cit. 2024-04-29].

33

http://www.teachmeaudio.com/mixing/techniques/audio-spectrum
https://docs.unity3d.com/ScriptReference/index.html
http://www.baeldung.com/cs/gameplay-maps-procedural-generation
https://www.codeproject.com/Articles/
https://www.nde-ed.org/Physics/Sound/components.xhtml
https://medium.com/0jesse_87798/d4c2c25d2f27
https://www.ansys.com/blog/understanding-psychoacoustics
http://www.hoffmanacademy.com/blog/what-is-tempo-in-music/

T H E E D I T O R S O F E N C Y C L O P A E D I A B R I T A N N I C A . Time signature online. M a r c h
2024. Available at: h t t p s : / / w w w . b r i t a n n i c a . c o m / a r t / t i m e - s i g n a t u r e . [cit. 2024-05-2].

W E T , R . de. Music Duration Calculator

h t t p s : / / w w w . o m n i c a l c u l a t o r . c o m / o t h e r / m u s i c - d u r a t i o n . Accessed on M a y 02,

2024.

34

https://www.britannica.com/art/time-signature
https://www.omnicalculator.com/other/music-duration

Appendix A

Disk Structure

This appendix describes the structure of the disk. The M u l t i m e d i a folder contains the
videos used i n testing and pictures used i n this thesis. The L a t e x folder contains the P D F
and the source files for this thesis.

In case the reader wants to t r y the plugin on their machine, the package on the disk
Procedural_Sound_based_Elements.unitypackage contains a l l the necessary files for it to
work. The project runs on U n i t y version 2021.3.24fl. S imply import the package into Uni ty ,
and download the dependencies l isted i n README.md. To explore the prepared scenes
seen i n this thesis navigate to P r o c e d u r a l S o u n d B a s e d E l e m e n t s folder and import the
project into Uni ty .

/
README.me M a r k d o w n file w i t h information about the package instal lat ion.
_Procedural_Sound_based_Elements .unitypackage . U n i t y package containing the
l ibrary
. Procedural_Sound_based_Elements_in_Games .pdf Thesis pdf file
Procedural_Sound_based_Elements_in_Games_poster.pdf Thesis poster
.Multimedia/ Folder w i t h mul t imedia

Videos/ Videos used i n the testing questionnaire
Screenshots/ Screenshots of the game

.Latex/ Folder w i t h latex scripts and pictures
ProceduralSoundBasedElements/. . U n i t y project folder w i t h the scenes for testing
L Assets/ Folder w i t h the assets in the U n i t y project

Pure Poly/ Asset pack used i n ForestScene
Scenes/ Testing scenes
S c i - F i Styled Modular Pack/ Asset pack used in SpaceScene
ScriptableObjects/ Scriptable objects used i n the testing scenes
Scripts/ Scripts of the plugin
SkyBox/ P N G s for the skybox
TestingMusic/ M u s i c for testing the plugin

35

