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V 

Abstract - Opacity is a security property of discrete-event systems that 
asks whether, at any point of a computation, the secret is revealed to a 
passive intruder. The literature has introduced several notions of opacity, 
including language-based opacity, trace opacity, current-state opacity, weak 
fe-step opacity, weak oo-step opacity, strong fe-step opacity, initial-state opac­
ity, and initial-and-final-state opacity. In this work, we provide a complete 
and improved complexity picture of verifying the discussed opacity notions 
within the finite automata model. First, we focus on the complexity of de­
ciding current-state opacity in systems with a restricted set of events and 
a restricted structure. Second, we present polynomial-time transformations 
among the notions that preserve determinism and the number of observable 
events, allowing the generalization of results across different notions of opac­
ity. Third, we propose three new algorithms for verifying language-based 
opacity, trace opacity, weak /c-step opacity, weak oo-step opacity, and strong 
k-step opacity that improve their respective algorithmic complexity. 
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Preface 

The focus of this thesis is on opacity of discrete-event systems, examining 
three key areas: the complexity of deciding opacity, the design of verification 
algorithms, and the relationships among various notions of opacity. The 
results presented in this thesis are mostly based on following articles: 

[5] J. Balun and T. Masopust. On opacity verification for discrete-event 
systems. IFAC-PapersOnLine, 53(2):2075-2080, 2020. 

[7] J . Balun and T. Masopust. Comparing the notions of opacity for 
discrete-event systems. Discrete Event Dynamic Systems, 31:553-582, 
2021. 

[9] J. Balun and T. Masopust. On transformations among opacity notions. 
2022 IEEE International Conference on Systems, Man, and Cybernet­
ics (SMC), pages 3012-3017, 2022. 

[10] J . Balun and T. Masopust. On verification of weak and strong k-step 
opacity for discrete-event systems. IFAC-PapersOnLine, 55(28):108-
113, 2022. 16th IFAC Workshop on Discrete Event Systems WODES 
2022. 

In [5], we mainly focus on the complexity of deciding current-state opacity 
in systems with a restricted set of events and a restricted structure. Most of 
the results from this paper are presented in Chapter 4. 

In [7], we introduce transformations between weak k-step opacity and 
current-state opacity, and between language-based opacity and initial-state 
opacity. Selected transformations from this article are presented in Sec­
tions 5.1, 5.5, and 5.6. We also design new algorithms for verifying language-
based opacity, weak k-step opacity and weak oo-step opacity, the first of 
which is presented in Section 6.1. 

In [9], we have further improved the previously presented transformations 
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PREFACE 2 

from weak /c-step opacity to current-state opacity, which were initially intro­
duced in [7]. The updated transformations are polynomial in terms of the 
parameter k. These transformations, along with others from this paper, are 
discussed in Sections 5.4 and 5.6. A n extended version of this paper, under 
review in Discrete Event Dynamic Systems at the time of writing this thesis, 
is available on arXiv. 

In [10], we design a transformation from strong /c-step opacity to weak 
fc-step opacity, as well as algorithms to verify both strong and weak /c-step 
opacity. As the algorithm for verifying weak /c-step opacity is an updated 
version of the algorithm presented in [7], I have included only this improved 
variant in this thesis. The transformation can be found in Section 5.7, while 
algorithms are presented in Sections 6.2 and 6.3. A n extended version of this 
paper, accepted for publication in Automatica at the time of writing this 
thesis, is available on arXiv. 

Furthermore, some of the transformations from Sections 5.2, 5.3, and 5.4 
are not yet included in any article. I decided to include them in this thesis to 
give a complete picture of the transformations among the discussed notions. 

In addition to the articles listed above, I have made contributions to the 
following publications: 

[6] J . Balun and T. Masopust. On verification of strong periodic D-detect-
ability for discrete event systems. IFAC-PapersOnLine, 53(4):263-268, 
2020. 15th IFAC Workshop on Discrete Event Systems WODES 2020. 

[8] J . Balun and T. Masopust. On verification of D-detectability for dis­
crete event systems. Automatica, 133:109884, 2021. 

[31] J . Komenda, D. Zorzenon, and J . Balun. Modeling of safe timed petri 
nets by two-level (max,+) automata. IFAC-PapersOnLine, 55(28):212-
219, 2022. 16th IFAC Workshop on Discrete Event Systems WODES 
2022. 

[53] D. Zorzenon, J . Balun, and J . Raisch. Weak consistency of P-time event 
graphs. IFAC-PapersOnLine, 55(40):19-24, 2022. 1st IFAC Workshop 
on Control of Complex Systems C O S Y 2022. 

No results from these articles have been included in this thesis as they do 
not focus on opacity and due to space reasons. 

Jin Balun 
Olomouc, June 2023 



Chapter 1 

Introduction 

With the development of digitalization, the security is becoming an increas­
ingly important topic. Since many properties of the systems can be de­
duced from their discrete abstraction, several cybersecurity notions have 
been introduced for the discrete-event systems. Namely, such properties 
include anonymity of Schneider and Sidiropoulos [43], noninterference of 
Hadj-Alouane et al. [11], secrecy of Alur et al. [1], security of Focardi and 
Gorrieri [22], and opacity of Mazaré [36]. 

This thesis focuses on the opacity property, which guarantees that a sys­
tem prevents an intruder from revealing its secret. In the opacity setting, 
the intruder is a passive observer that knows the structure of the system but 
has only limited capability to observe its behavior. Therefore, if the intruder 
wants to reveal the secret, he must estimate the current state of the system 
based on his observations. Intuitively, the system is opaque if for every secret 
behavior, there is a nonsecret behavior that looks the same to the intruder. 
Therefore, at no point during the computation can the intruder be certain 
whether or not secret behavior has occurred. The secret itself is usually mod­
eled as either a set of secret behaviors or a set of secret states. The former 
option leads to language-based opacity, while the latter leads to state-based 
opacity. Several notions of language-based and state-based opacity have been 
discussed in the literature, from which we selected, in our opinion, the most 
important and practical ones. 

Defining the secret as a behavior results in two notions, that is, language-
based opacity (LBO) and trace opacity (TO). In the case of language-based 
opacity, which was introduced by Badouel et al. [4] and Dubreil et al. [20], the 
secret is defined as a subset of system's behavior. This subset is known as a 
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secret language and it contains compromising sequences of the system. Such a 
sequence may, for example, represent the initiation of a system reboot. Trace 
opacity, as introduced by Bryans et al. [12], is a special case of language-based 
opacity. In trace opacity, the secret language comprises only those behaviors 
that contain one of the secret events that represent the occurence of some 
critical action of the system. 

Regarding state-based opacity, we consider the following six notions: 
current-state opacity (CSO), weak /c-step opacity (/c-SO), weak oo-step opac­
ity (oo-SO), strong /c-step opacity (/c-SSO), initial-state opacity (ISO), and 
initial-and-final-state opacity (IFO). In this case, each secret state represents 
a vulnerable condition of the system, such as a particular part of the system 
undergoing maintenance. 

The most basic state-based notion is current-state opacity of Bryans et 
al. [13] that prevents the intruder from revealing whether the system is cur­
rently in a secret state. However, in the future, the intruder may realize that 
the system was in a secret state at some earlier point of the computation. 
For example, if the intruder estimates that the system could be in one of two 
possible states, and then in the following step, the system proceeds via an 
observable event that is only possible from one of those states, the intruder 
can deduce the state in which the system was one step ago. This issue has 
been considered in the literature and led to the introduction of weak /c-step 
opacity and weak oo-step opacity by Saboori and Hadjicostis [38, 42]. While 
weak fc-step opacity requires that the intruder cannot ascertain the secret in 
the current state and k subsequent observable steps, weak oo-step opacity 
requires that the intruder can never ascertain that the system was in a secret 
state. Note that weak 0-step opacity coincides with current-state opacity by 
definition, and that an n-state automaton is weakly oo-step opaque if and 
only if it is weakly (2 n — 2)-step opaque [52]. 

Falcone and Marchand [21] have suggested that weak /c-step opacity is 
not as secure as it may seem. Although it may seem sufficiently confidential, 
the intruder can still deduce that the system was previously in a secret state, 
even if the intruder cannot determine the exact time at which the system 
entered that state. To address this issue, they introduced a stronger version 
of /c-step opacity called strong /c-step opacity, which provides a higher level 
of confidentiality. 

Bryans et al. [13] introduced initial-state opacity, which prevents the in­
truder from revealing, at any time instant, whether the system started in a 
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Model |So| = 1 |S 0 | > 2 

NFA CONP-complete PSPACE-complete [17] 
DFA CONP-complete PSPACE-complete 
partially ordered NFA NL-complete PSPACE-complete 
partially ordered DFA NL-complete PSPACE-complete 
acyclic NFA NL-complete CONP-complete 
acyclic DFA NL-complete CONP-complete 

Table 1.1: Complexity of verifying current-state opacity for different models 
with S G being the set of observable events. 

secret state. Initial-and-final-state opacity of Wu and Lafortune [50] is a gen­
eralization of both current-state opacity and initial-state opacity, where the 
secret is represented as a pair of an initial and a marked state. Therefore, the 
intruder can never reveal both starting and ending point of the computation 
at the same time. 

This thesis focuses solely on the theoretical aspects of opacity. However, 
there have been successful implementations of opacity in various applications, 
such as concealment of vehicle positions by Saboori and Hadjicostis [40], 
and ensuring privacy of location-based services by Wu et al. [51]. For a 
comprehensive overview of opacity and its applications, we recommend the 
reader the work of Jacob et al. [27]. 

Most of the mentioned notions have been studied within the framework 
of many different models, such as finite automata [38], Petri nets [13], timed 
automata [16], and stochastic automata [30]. In this thesis, we model the 
system as a finite automaton with partially observable behavior. In some 
cases, we also consider structurally simpler variants such as partially ordered 
automata or acyclic automata. In Chapter 2, we introduce relevant concepts 
of automata theory and we formalize the model itself. Chapter 3 provides 
an overview of all the opacity notions considered in this work together with 
illustrative examples. 

One of the key areas in opacity research is the complexity of deciding 
whether a system satisfies a given notion of opacity. Since the verification is 
often based on the observer construction, the problem belongs to P S P A C E . In 
fact, most of the notions are PSPACE-complete in the general case, and thus 
there is no polynomial-time verification algorithm unless P = P S P A C E . This 
raises the question of whether the problem is easier to solve if we somehow 
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Notion |So| = 1 |S 0 | > 2 Order 

LBO CONP-complete PSPACE-complete 0((n + m)2n) 
TO NL-complete PSPACE-complete 0((n + m)2n) 
CSO CONP-complete PSPACE-complete 0(£2n) [37] 
fc-SO CONP-complete PSPACE-complete 0((n + m)2n) 
oo-SO CONP-complete PSPACE-complete 0((n + m)2n) 
fc-SSO CONP-complete PSPACE-complete 0((n + m)2n) 
ISO NL-complete PSPACE-complete <3(£2n) [50] 
IFO CONP-complete PSPACE-complete 0(£2n2) [50] 

Table 1.2: Complexity of verifying the notions of opacity for DESs following 
from the transformations, algorithms, and known results; S G stands for the 
set of observable events, n for the number of states of the input automaton, £ 
for the number of observable events of the input automaton, and m < £n for 
the number of transitions in the projected automaton of the input automaton. 

restrict the structure of the system. Therefore, in Chapter 4, we investigate 
the problem of deciding current-state opacity for systems that have a limited 
number of observable events and that are represented by partially ordered 
or acyclic automata. However, despite these restrictions, the problem re­
mains hard in almost all practical cases, as indicated in Table 1.1, where we 
summarize our findings and existing results. 

Transformations are another useful tool for analysing the complexity of 
decision problems. If we can, for example, transform an instance of the 
current-state opacity problem to an instance of the language-based opac­
ity problem in polynomial time and vice versa, we can derive P S P A C E -

completeness of language-based opacity from the PSPACE-completeness of 
current-state opacity. Such transformations were first provided by Wu and 
Lafortune [50] between language-based opacity, current-state opacity, initial-
state opacity, and initial-and-final-state opacity. In Chapter 5, we extend 
their results and provide transformations for trace opacity, weak k-step opac­
ity, weak oo-step opacity, and strong /c-step opacity. Thus, by combining 
these transformations, we show how to transform between any two notions, 
allowing the generalization of results across different notions of opacity. In 
particular, we show that for systems with two or more observable events, 
the decision problem of any of the considered notions is PSPACE-complete. 
On the other hand, if the system has only one observable event, then the 
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problem is coNP-complete for all notions, except for initial-state opacity 
and trace opacity, which are NL-complete. We summarize results following 
from transformations, together with the existing results, in Table 1.2. 

In addition to the new complexity results, the transformations also en­
abled us to design three new algorihms, which we introduce in Chapter 6. 
Through the analysis of existing algorithms [34, 50, 41, 42, 52, 21, 35, 49], 
we demonstrate that our algorithms improve the algorithmic complexity of 
verifying language-based opacity, trace opacity, weak /c-step opacity, weak 
oo-step opacity, and strong fc-step opacity. The right-most column of Ta­
ble 1.2 provides a summary of the complexities of the best-known algorithms 
for all of the discussed notions. Note that we have not compared the algo­
rithms experimentally, and therefore in practical cases our algorithms might 
be outperformed. 
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Chapter 2 

Preliminaries 

In this chapter, we formalize the notation and model of a discrete-event 
system based on finite automata. For more details on these topics see [24, 15]. 

For a set S, \S\ denotes the cardinality of S, and 2 s denotes the power set 
of S. We define N to be the set of all non-negative integers, and we extend 
it with its limit to N Q O = N U {oo}. 

2.1 Languages and automata 

A n alphabet £ is a finite nonempty set of events. A string over £ is a 
sequence of events from £ ; the empty string is denoted by e. The set of all 
finite strings over £ is denoted by £*. A language L over £ is a subset of 
£*. The set of prefixes of strings of L is the set L — {u \ 3v £ £*, uv 6 L}. 
For a string u £ £*, \u\ denotes the length of it, and u denotes the set of all 
prefixes of u. 

Definition 2.1. A nondeterministic finite automaton (NFA) over an alpha­
bet £ is a structure A = (Q,T,,5,1, F), where Q is a finite set of states, 
5: Q x S —> 2® is a transition function, / C Q is a set of initial states, and 
F C Q is a set of marked states. 

The transition function can be extended to the domain 2^ x S* by induc­
tion. Equivalently, the transition function is a relation 5 C Q x S x Q, where, 
e.g., 5(q, a) = {s, t} denotes two transitions (q, a, s) and (q, a, t). To simplify 
our proofs, we use the notation 5(Q, S) = Uses $(Q, s), where S C S*. 

For a set Q0 C Q, the set Lm(A, Q0) = {w G £* | 5(Q0, w) n F ^ 0} is 
the language marked by .A from the states of C]o, and L(A, Qo) — {w G £* | 

9 
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5(Qo,w) ^ 0} is the language generated by A from the states of Q0. The 
languages marked and generated by A are defined as Lm(A) = Lm(A, I) and 
L(A) = L(A, I), respectively. If Lm(A) = L(A) holds, then A is non-blocking 
and every string generated by A can be extended to a marked string. 

The NFA A is deterministic (DFA) if | / | = 1 and \S(q,a)\ < 1 for every 
q £ Q and a G E . In this case, we identify the singletons with their elements, 
and simply write A = (Q, E , 5, q0, F) if I = {q0} and 5(g, a) = q' instead of 
5(q,a) = {q'}. 

Let < be the reachability relation on the state set Q defined as p < q 
if there is w G E* such that q £ u;). Then, the NFA .A is partially 
ordered (poNFA) if its reachability relation < is a partial order. If A is a 
partially ordered DFA, we use the notation poDFA. The automaton is acyclic, 
if q £ S(q, w) for every q G Q and w G S* — {e}. 

Let = (Qj, Sj, 5j, 7j, Fj), where i G {1, 2}, be two NFAs. For Ai and Ai 
over common alphabet S — S i = S 2 , the product automaton of «4.i and Ai is 
defined as the automaton A\ x «42 — (Qi x Q 2 , S, (5, A x I2,Fi x F2), where 
5((qi,q2),a) = 5i(qi,a) x 52(q2,a) for every pair of states (qi,q2) G Qi x Q2 

and every event a G E . Notice that the definition does not restrict the 
state space of the product automaton to its reachable part. In case where 
E i ^ E 2 , we use the synchronous product of Ai and ^42, which is defined as 
the automaton Ai \\ A2 = (Qi x Q2, E i U E 2 , 5, I\ x I2, F\ x F2) where 

(Ji(gi, a), 5 2(g 2, a)) if a G E i n E 2 , 5i{qu a)\ and 52(q2, a)\ 
(Ji(gi, a), g2) if a G E i - E 2 and 5i(gi, a)! 
(gi, ^ ( g 2 , a)) if a G E 2 - E i and 5 2(g 2, a)! 
undefined otherwise 

for (gi,g 2) £ Qi x Q2 and a G E i U E 2 , and Si(qi,a)\ denotes the fact that 
there is a transition under a defined at ĝ  in Ai-

2.2 Discrete-event systems 

In this section, we recall the standard definition of a discrete-event system. 
Intuitively, we model the system as a non-deterministic finite automaton with 
partially observable behavior. 

Definition 2.2. A discrete-event system (DES) G over E is an NFA over E 
together with the partition of E into E G and E u o of observable and unobserv-
able events, respectively. 

<5((<?i, 9 2 ) , a) = 
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If we want to specify that the DES is modeled by a DFA, we talk about 
deterministic DES. If the marked states are irrelevant, we omit them and 
simply write G = (Q, S, 6,1). 

Definition 2.3. Let £ be an alphabet and S G , S u o C S be its partition into 
observable and unobservable events. The observation projection P : S* —> S* 
is a morphism for concatenation defined by P(a) — e if a G S u o , and P(a) — a 
if a G S 0 . 

The action of P on a string a\a2 • • • a n , with G £ for 1 < i < n, is to 
erase all unobservable events, that is, P ( a i a 2 • • • an) — P(a i )P(a 2 ) • • • P(an). 
The definition can be readily extended to languages. 

Definition 2.4. A projected automaton of a DES G over £ with respect to 
the projection P : £* —> £* is the NFA P(G) obtained from (7 by replacing 
every transition (p, a, (?) by (p, -P(a), q), followed by the standard elimination 
of the e-transitions. 

Equivalently, the transition function 7: Q x S G —> 2® of -P(G) can be 
defined as 7 ( ^ , 0 ) = P _ 1 ( a ) ) . Note that P(G) is an NFA over S G with 
the same states as G that recognizes the language P{Lm(G)) and can be 
constructed in polynomial time, see [24] for more details. 

Definition 2.5. A n observer of a DES (7 is the accessible part of the DFA 
constructed from P{G) by the standard subset construction. 

We call the DFA constructed from P{G) by the standard subset construc­
tion a full observer of G. The full observer has exponentially many states 
compared with G, and in the worst case, the same holds for the observer as 
well, see [28] for more details. 

For DESs with a single observable event we define a function (p^ that 
assigns, to every state q, the maximal number i £ { 0 , . . . , k} of observable 
steps that are possible from state q. 

Definition 2.6. Let Ga = (Q, S, 5,1) be a DES with S 0 = {a} and P : £* ->• 
{a}* be the observation projection. The function <pk: Q —> { 0 , . . . , k} with 
respect to P is defined as ipk(q) — max{i G { 0 , . . . , k} \ 5(q, P _ 1 ( a 4 ) ) ^ 0}. 

Evidently, if (fk(q) > \Q\ for a state q £ Q, then (^(i?) = &;, since there 
must be a cycle containing an observable event that is reachable from q. 
Therefore, we can assume that k is never greater than the number of states 
of the system Ga, i.e., k < \Q\. 



CHAPTER 2. PRELIMINARIES 12 



Chapter 3 

Notions of opacity 

In this chapter, we present the formal definitions of all considered opacity 
notions within the finite automata model. For more details about opacity, 
we refer the reader to the overview by Jacob et al. [27]. 

The opacity notions studied in this thesis can be divided into two types, 
namely language-based opacity and state-based opacity. The difference be­
tween the two types is the way the secret is modeled. If the secret is modeled 
as a set of behaviors, then opacity notion is referred to as language-based. In 
the second case, the secret is modeled as a set of states, giving the state-based 
opacity notion. 

In the first two sections, we introduce the language-based notions, namely 
language-based opacity and trace opacity. The rest of the chapter is dedicated 
to the notions of state-based opacity, namely current-state opacity, weak 
fe-step opacity, strong /c-step opacity, initial-state opacity, and initial-and-
final-state opacity. Aside from strong k-step opacity, which is defined only for 
deterministic DESs, we define all other notions for nondeterministic systems. 

3.1 Language-based opacity (LBO) 

Language-based opacity was introduced by Badouel et al. [4] and Dubreil 
et al. [20]. We recall the most general definition by Lin [34]. Intuitively, a 
system is language-based opaque if for every string w in the secret language, 
there exists a string w' in the non-secret language with the same observation 
P(w) — P{w'). In this case, the intruder cannot conclude whether the secret 
string w or the non-secret string w' has occurred. 

13 



CHAPTER 3. NOTIONS OF OPACITY 14 

Figure 3.1: Example of language-based opacity. 

Definition 3.1. Given a DES G = (Q, E , 6,1), a, projection P: E* ->• E*, a 
secret language L s C L(G), and a non-secret language L ^ s C L(G). System 
G is language-based opaque (LBO) if L$ C P^xP{LNs)-

We assume that the languages Lg = L(.As) and L W s = L(ANS) are rep­
resented by the non-blocking automata As — (Qs> ^ Is, Fs) a n ( A ANS — 
(QNS, °~NS, INS, FNS), respectively Without loss of generality we may as­
sume that their sets of states are disjoint, that is, Qs H QNS — 0- It is worth 
mentioning that the secret and non-secret languages are often considered to 
be regular; and we consider it as well. The reason is that, for non-regular 
languages, the inclusion problem is undecidable; see Asveld and Nijholt [3] 
for more details. 

Another notion studied in the literature is weak language-based opac­
ity [34], which should not be confused with (strong) language-based opacity 
defined above. In comparison, the weak notion holds if the intruder confuses 
at least one secret string, formally LsC\P~lP(LNs) ^ 0- We do not consider 
the weak notion in this thesis. 

Example 3.2. Let G over S = {a, 6, c} depicted in Figure 3.1 be an in­
stance of the language-based opacity problem with the secret language L$ — 
L(As) — abb* and the non-secret language LNS — L(ANS) — acb*. We 
distinguish two cases depending on whether event c is observable or not. 

In the first case, we assume that event c is unobservable. In this case, G 
is language-based opaque, because P(L>s) = abb* and P(LNs) — ab*, and the 
reader can see that P{Ls) Q P(LNs). 

In the second case, we assume that event c is observable. In this case, G 
is not language-based opaque, because ab £ P(I>s) whereas ab 0 P(LNs). o 
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Figure 3.2: Example of trace opacity. 

3.2 Trace opacity (TO) 

Trace opacity was introduced by Bryans et al. [12]. A trace w G S* is secret 
if it contains any event from a specified set of secret events, otherwise w 
is non-secret. In accordance with [12], we consider all secret events to be 
unobservable. A system is trace opaque if for every secret trace, there is a 
non-secret trace that looks the same to the intruder. 

Definition 3.3. Given a DES G = (Q,T,,S,I), a projection P: £* ->• £*, 
and a set of unobservable secret events S C T,uo. System G is trace opaque 
(TO) if P{Sec{G)) C P{Pub{G)), where Sec{G) = L{G) n £*££* is the set 
of secret traces and PubiG) — LiG) n (S — S)* is the set of non-secret traces. 

Intuitively, trace opacity is a special case of language-based opacity, where 
the secret language of trace opacity is strictly defined as a set of strings 
containing at least one secret event, and the non-secret language is defined 
as any other behavior of the system. In Section 5.3, we present a way to 
construct automata As and ANS from a trace opacity problem instance G 
such that L(As) = Sec{G) and L(ANS) = Pub{G). 

Example 3.4. Let G over £ = {a, 6, c, a} depicted in Figure 3.2 be an 
instance of the trace opacity problem with the set of secret events S = {a}. 
We distinguish two cases depending on whether event c is observable or not. 

If event c is unobservable, then G is trace opaque, because for every secret 
trace w G SeciG) — crab* there is a non-secret trace w' £ PubiG) — acb* with 
the same observation P(w) = P(w'), since we have P(Sec(G)) = P(Pub(G)). 

If event c is observable, then the reader can see that G is not trace opaque. 
There are non-secret traces e and a with the same observation as secret traces 
a and aa, respectively, but there is no non-secret trace for the secret trace 
crab with observation P(aab) — ab. o 
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Figure 3.3: Example of current-state opacity. 

3.3 Current-state opacity (CSO) 

Bryans et al. [13] introduced current-state opacity for systems modeled by 
Petri nets and Bryans et al. [12] generalized it to transition systems. Current-
state opacity asks whether the intruder cannot decide, at any instance of time, 
whether the system is currently in a secret state. Therefore, the system is 
current-state opaque if, for every string leading to a secret state, there exists 
another string with the same observation that leads to a non-secret state. 

Definition 3.5. Given a DES G — (Q, S, 5,1), a projection P: S* —> £*, a 
set of secret states Qs C Q, and a set of non-secret states QNS C Q. System 
G is current-state opaque if for every string w such that 6(1, w) n Qs ^ 0, 
there exists a string w' such that P(w) = P(w') and 5(1, w') n QNS 0-

Note that the definition of current-state opacity does not require QNS — 
Q — Qs, and thus the systems we consider can contain states that are neither 
secret nor non-secret. We call these states neutral and we cannot simply 
handle them as non-secret states. 

Example 3.6. Let G over £ = {a, b, c} depicted in Figure 3.3 be an instance 
of the current-state opacity problem with the set of secret states Qs = {2} 
and the set of non-secret states QNS — {5}. We distinguish two cases de­
pending on whether event c is observable or not. 

If event c is unobservable, then G is current-state opaque, because the 
only string leading to the secret state, state 2, is the string a, for which the 
string ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac). 

If event c is observable, then G is not current-state opaque, because the 
only string leading to a non-secret state, string ac, has a different observation 
than the string a leading to the secret state, that is, P(ac) ^ P(a)- o 
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3.4 Weak A>step opacity (k-SO) 

The notion of weak /c-step opacity, which was introduced by Saboori and 
Hadjicostis [38, 42], is a generalization of current-state opacity requiring that 
the intruder cannot reveal the secret in the current state and k subsequent 
observable steps. 

Definition 3.7. Given a DES G = (Q,T,,6,I), a projection P: £* ->• £*, 
a set of secret states Qs C Q, a set of non-secret states QNS ^ Q, and a 
parameter k £ N Q O . System G is weakly k-step opaque (k-SO) if for every 
string st £ L(G) with \P(t)\ < k and 6(6(1, s) n Qs,*) 0, there exists a 
string s't' £ L(G) such that P(s) = P(s'), P(t) = P(t'), and 6(6(1, s') D 

We distinguish two special cases for k — 0 and k — oo. By definition, 
weak 0-step opacity is equivalent to current-state opacity. In the case of weak 
oo-step opacity, Y i n and Lafortune [52] have shown that an n-state DES is 
weakly oo-step opaque if and only if it is weakly (2 n — 2)-step opaque. 

Below we present a separate definition of weak oo-step opacity, since 
this notion is often studied independently in the literature. In addition, the 
transformations of weak oo-step opacity are simpler than those of weak fc-step 
opacity, and so in Section 5.6 we use Transformation 5.34 from weak oo-step 
opacity to current-state opacity as an intermediate step before introducing a 
general transformation for any k £ N ^ . 

Definition 3.8. Given a DES G = (Q,T,,6,I), a projection P: £* ->• £*, 
a set of secret states Qs C Q, and a set of non-secret states QNS Q Q-
System G is weakly oo-step opaque (oo-SO) if for every string st £ L(G) 
such that 6(6(1, s) n Qs,t) ^ 0, there exists a string s't' £ L(G) such that 
P(s) = P(s'), P(t) = P(t'), and 6(6(1, s') n QNS, t') ± 0. 

Example 3.9. Let G over £ = {a, b, c} depicted in Figure 3.4 be an instance 
of the weak fc-step opacity problem with the set of secret states Qs = {2} 
and the set of non-secret states QNS — {4} • We consider two cases based on 
the observability status of event c. 

If event c is unobservable, then G is weakly A;-step opaque for any k £ N Q Q . 

Indeed, the only string leading to the unique secret state, state 2, is the string 
a. The same string leads to the unique non-secret state, state 4. Then, any 
possible extension of the string a from the secret state 2 is the string bl, for 
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Figure 3.4: Example of weak fc-step opacity. 

i € N , which reaches state 3. However, for any such extension, there is the 
extension cb% from the non-secret state 4 with P(atf) — P{acU). 

If c is observable, then the reader can see that G is weakly 0-step opaque, 
or in other words, current-state opaque. However, G is not weakly fe-step 
opaque for any k > 0, because after observing the string ab, the intruder can 
deduce that the system was in the secret state 2 one step ago. o 

3.5 Strong fc-step opacity (A>SSO) 

While weak k-step opacity is considered to be relatively confidential, Falcone 
and Marchand [21] have shown that it is not as confidential as it may seem. 
The intruder may still be able to determine that the system was previously 
in a secret state, but not the exact time when this occurred. Therefore, they 
introduced a stronger notion of opacity called strong fe-step opacity, which 
provides a higher level of confidentiality. 

In accordance with Falcone and Marchand [21], we consider strong /c-step 
opacity only for deterministic DESs where all states that are not secret are 
non-secret, that is, QNS — Q — Qs- It means that every state has its own 
secret/non-secret status and there are no neutral states. 

Definition 3.10. Given a deterministic DES G — (Q, X , 5, qo), a projection 
P: X * —> £*, a set of secret states Qs C Q, and a parameter k £ N Q O . System 
G is strongly k-step opaque (/c-SSO) if for every string s £ L(G), there exists 
a string w £ L{G) such that P{s) — P{w) and for every prefix w1 of u>, if 
| P H | - \P(w')\ < k, then 5(q0,w') £ Qs. 

Note that strong 0-step opacity is not equivalent to current-state opacity 
as in the case of weak 0-step opacity. In Theorem 5.59, we show that un-
observable transitions from secret states to non-secret states, like transition 
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Figure 3.5: Example of strong k-step opacity. 

(5, it, 6) in Example 3.11, are the only issues making the difference between 
strong 0-step opacity and weak 0-step (current-state) opacity. However, as 
pointed out by Wintenberg et al. [49], strong /c-step opacity implies weak 
fc-step opacity as long as no neutral states are considered. 

Example 3.11. Let G over £ = {a, b, u} depicted in Figure 3.5 be an in­
stance of the strong fe-step opacity problem with unobservable event u, the 
set of secret states Qs — {5}, and the set of non-secret states QNS — Q — Qs-
We consider two cases based on the observability status of event b. 

If event b is unobservable, then G is strongly /c-step opaque for any k G 
N Q O . Indeed, the only string leading to the unique secret state, state 5, is the 
string a, while the string 6a with the same observation leads to the non-secret 
state, state 3, without going through any secret state. Then, any possible 
extensions of the string a from the secret state 5 are the strings u and ua, 
which reach states 6 and 7, respectively. However, for these extensions there 
are e and a extensions of the string ba from state 3 such that P{au) — Piba) 
and P{aua) — P(baa), respectively, that do not go through a secret state. 

If b is observable, then G is weakly /c-step opaque for any k G N ^ , but 
not strongly 1-step opaque, because for s — aua, the only string with the 
same observation as s is w — aua, and hence the prefixes w' for which 
\P(w)\ — \P(w')\ < 1 are the strings w' — a, w' — au, and w' — aua. However, 
for w' — a, we obtain that 6(1, a) — 5 G Qs, which violates the definition 
of strong 1-step opacity. In fact, the system G is neither strongly 0-step 
opaque, because for s = au, the only strings w with the same observation 
as s are the strings au and a, both with prefix w' — a such that |-P(u>)| — 
\P(w')\ < 0 and 6(1, a) = 5 G Qs, which violates the definition of strong 
0-step opacity. On the other hand, the system is obviously current-state 
opaque. Consequently, the notions of strong 0-step opacity and current-state 
opacity do not coincide. o 
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Figure 3.6: Example of initial-state opacity. 

3.6 Initial-state opacity (ISO) 

Initial-state opacity was first introduced by Bryans et al. [13] for systems 
modeled by Petri nets and then Bryans et al. [12] generalized it to transition 
systems. Intuitively initial-state opacity asks whether the intruder can never 
reveal whether the computation started in a secret state. 

Definition 3.12. Given a DES G = (Q,T,,S,I), a projection P: £* ->• E*, 
a set of secret initial states Qs Q I, and a set of non-secret initial states 
QNS ^ I- System G is initial-state opaque (ISO) if for every w £ L(G,Qs), 
there exists w' £ L(G, QNS) such that P(w) = Piw'). 

We consider all states that are neither secret nor non-secret to be neutral. 
In particular, the secrecy status of the non-initial states do not play any role 
in initial-state opacity. 

Example 3.13. Let G over E = {a, 6, c} depicted in Figure 3.6 be an in­
stance of the initial-state opacity problem with the set of secret initial states 
Qs — {1} and the set of non-secret initial states QNS — {4}- We distinguish 
two cases depending on whether event c is observable or not. 

In the first case, we assume that event c is unobservable. In this case, 
G is initial-state opaque, because P(L(G, 1)) = abb* and P(L(G, 4)) = ab*. 
and the reader can see that P(L(G, Qs)) ^ P(L(G, QNS))-

In the second case, we assume that event c is observable. In this case, G is 
not initial-state opaque, because ab € P(L(G, 1)) whereas ab 0 P(L(G, 4)), 
and hence P(L(G, Qs)) % P(L(G, QNS)). o 
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b 

Figure 3.7: Example of initial-and-final-state opacity; the states of secret pair 
are square-shaped and the states of non-secret pair are diamond-shaped. 

3.7 Initial-and-final-state opacity (IFO) 

The last notion we consider is initial-and-final-state opacity of Wu and Lafor-
tune [50]. Initial-and-final-state opacity is a generalization of both current-
state opacity and initial-state opacity where the secret is represented as a 
pair of an initial and a marked state. Consequently initial-state opacity is a 
special case of initial-and-final-state opacity where the marked states do not 
play a role, and current-state opacity is a special case where the initial states 
do not play a role. 

Definition 3.14. Given a DES G = (Q,T,,S,I), a projection P: £* ->• £*. 
a set of secret state pairs Qs C I x Q, and a set of non-secret state pairs 
QNS <~ I x Q- System G is initial-and-final-state opaque (IFO) if for every 
secret pair (qo,qf) £ Qs and every w £ L(G,q0) such that qf £ 5(q0,w), 
there exists a non-secret pair (q'0,q'f) £ QNS and w' £ L(G,q'0) such that 
q'f £ 6(q'0, w') and P{w) = P{w'). 

Wu and Lafortune [50] also consider a special case with the sets of secret 
and non-secret pairs of the form Qs — Is x Fs and QNS — INS x FNS, where 
Is, INS ^ I and Fs, FNs C Q. In this case, however, the instance of initial-
and-final-state opacity corresponds to an instance of language-based opacity, 
where As — (Q, S, 5, Is, Fs) and A/vs1 — (Q, S, INS, FNS) are automata for 
the secret and non-secret languages, respectively. 

Example 3.15. Let G over S = {a,b,c} depicted in Figure 3.7 be an in­
stance of the initial-and-final-state opacity problem with the set of secret 
pairs Qs = {(1,3)} and the set of non-secret pairs QNS — {(4,6)}. We 
distinguish two cases depending on whether event c is observable or not. 
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In the first case, we assume that event c is unobservable. In this case, 
G is initial-and-final-state opaque, because the language of sequences that 
start and end in single secret pair (1,3) equals to £(1,3) = abb*, while the 
language of sequences of the non-secret pair (4,6) equals to 1/(4,6) — acb*. 
and the reader can see that P(L(i ; 3 )) C P(L( 4 > 6 )) . 

In the second case, we assume that event c is observable. In this case, 
G is not initial-and-final-state opaque, because ab G P(L(i ; 3 )) whereas ab 0 
P(L( 4 ) 6 )) , and hence P(L(i ; 3 )) % P(L( 4 ; 6 ) ) . Notice that sequences that start 
in state 4 and end in state 3 do not affect initial-and-final-state opacity, since 
pair (4, 3) belongs neither to Qs nor QNS- 0 



Chapter 4 

Properties of current-state 
opacity 

This chapter focuses on analyzing the complexity of verifying current-state 
opacity in systems with a restricted set of events and a restricted structure. 
We show that in most cases these restrictions do not make the verification 
tractable, and therefore the problem remains hard in essentially all practical 
cases. 

The complexity of opacity verification has widely been investigated in 
the literature and is often based on the computation of observer. Thus the 
problem belongs to P S P A C E . It is actually PSPACE-complete for most of 
the discussed notions. Indeed, Cassez et al. [17] showed that the verification 
of current-state opacity is at least as hard as deciding universality, which is 
PSPACE-complete for nondeterministic automata as well as for deterministic 
automata with partial observation. 

Remark 4.1. By Cassez et al. [17], the verification of current-state opac­
ity is at least as hard as deciding universality. Indeed, for a DES G — 
(Q,T,,5,1, F), we have L(G) — E* if and only if G is current-state opaque 
with respect to Qs — Q — F, QNS — F, and P: £ —> £. 

However, PSPACE-completeness of universality problem requires a non-
trivial structure of the model and the ability to express all possible strings. 
This give rise to a question whether there are structurally simpler systems 
for which the verification of opacity is tractable. We investigate the problem 
for, in our opinion, structurally the simplest systems: for acyclic automata 
(that do not have the ability to express all strings, and actually express only 

23 
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a finite number of strings) and for automata where all cycles are in the form 
of self-loops (which may still seem trivial in the structure, because as soon 
as the system leaves a state, it can never return to that state). 

To simplify the proofs, we first reduce current-state opacity to the lan­
guage inclusion problem. This reduction is similar to that of Wu and Lafor-
tune [50] reducing current-state opacity to language-based opacity. 

Lemma 4.2. Let G = (Q, S, 5,1) be a DES, P: S* —> S* a projection, and 
Qs, QNS ^ Q sets of secret and non-secret states, respectively. Let Ls denote 
the marked language of the automaton Gs — (Q, S, 5,1, Qs) and LNs denote 
the marked language of the automaton GNS — (Qj£, ^ I, QNS)- Then G is 
current-state opaque if and only if P(Ls) C P(LNs)-

Proof. Assume that w is such that 5(1, w) n Qs ^ 0- This is if and only if 
P(w) £ P(Ls). Then, by definition, there is a string w' such that P(w) — 
P(w') and 5(1, w') nQNS^0, which is if and only if P(w) £ P(LNS). • 

The observations from Remark 4.1 and Lemma 4.2, together with the 
results on the complexity of deciding universality and inclusion give us strong 
tools to show lower and upper complexity bounds for deciding (current-state) 
opacity. We summarized results from this chapter, together with the existing 
results, in Table 1.1. 

4.1 Simplification of the system 

In this section we provide two useful transformations that can simplify any 
system without affecting its property of being current-state opaque. As a 
result, any instance of current-state opacity decision problem can be trans­
formed in polynomial time into a deterministic system that has at most two 
observable events. Later, these simplifications will allow us to generalize 
some of the results from this chapter to other opacity notions. 

The following transformation reduces the number of observable events 
in DESs with at least three observable events. The main idea is to encode 
the transition labels in binary. In Theorems 4.4, 5.6, and 5.12, we show 
that this transformation does not affect the system's status of current-state 
opacity, initial-state opacity, and trace opacity. This way we preserve the 
number of observable events in transformations in Chapter 5 that introduce 
new observable events. 
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Figure 4.1: The replacement of three observable events {a\, a2, a^} with the 
encoding e(a\) — 00, e(a2) — 01, and e{a^) — 10, and new states po and p\. 

Transformation 4.3. Let G = (Q, E , 5, 7) be a DES modeled by an NFA, 
P: E* —> E G be the observation projection, r o C E G be an alphabet with 
at least three events, and e: r o —> {0, l}k be a binary encoding (that is, an 
injective function), where k < |~log 2(|r o|)]. We construct a DES 

r(G) = (Q',(X-To)u{0A},6',I) 

so that we start with the system G and replace every transition (p, a, q) with 
a G r o and eia) — b\b2 • • • bk € {0, l } f c by A; transitions 

where the states p\)1,... are added to the set of states Q' of the 
system r(C7). These states are created when needed for the first time, and 
reused later during the replacements, cf. Figure 4.1 illustrating a replacement 
of three observable events {ai, a2, a 3} with the encoding e(ai) = 00, e(a2) = 
01, and e(a3) = 10. Finally, we define projection P': [(E - T0) U {0,1}]* 
[ ( E o - r o ) U { 0 , l } ] * . o 

Notice that the Transformation 4.3 preserves the number of unobservable 
events and determinism, and that it can be done in polynomial time. On 
the other hand, it does not preserve partial order because the encoding of a 
self-loop transition results in a cycle over two or more states. 

The following theorem shows that the transformation does not affect the 
property of the system to be current-state opaque, and therefore we can 
reduce the number of observable events of any current-state opacity instance 
to just two. 

Theorem 4.4. A DES G is current-state opaque with respect to Qs, QNS, 
and P if and only if the DES r(G) obtained by Transformation 4-3 is current-
state opaque with respect to Q's = Qs, Q'NS ~ QNS U (Q' — Q)> and P'. 
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Proof. By Lemma 4.2, to show that the system G is current-state opaque if 
and only if the system r(G) is current-state opaque, we need to show that 
P{LS) C P(LNS) if and only if P'(L'S) C P'(L'NS), where 

• Ls = Lm(As), where As = (Q, S, 5,1, Qs), 

• L A T S = Lm(ANS), where ^ 4 N S = (Q, S, 5, 7, Qws), 

• L ' s = L m („4 ' s ) , where ^ = (Q' ; (S - T0) U {0,1}, 5', / , Q's), and 

. L ' w s = Lm(A'NS), where „4 ' w s = (Q', (S - r o ) U {0,1}, 5', I, Q ' w s ) . 

We define a morphism / : S* ->• ( (£ - T0) U {0,1})* such that f(a) = e(a) 
for a £ T 0 , and /(a) — a for a £ S — r o . By the definition of e and 
the construction of the system r(G), any string w £ 7v(G) if and only if the 
string/(ty) £ LiriG)). In particular, P(u;) £ P(Ls) if and only if P'(f(w)) £ 
F ' (L ' S ) , and P(w) £ P ( L W S ) if and only if P'(f(w)) £ P'(L'NS). Therefore, 
if P'(L'S) C P'(L'NS) then P ( L S ) C P(LNS). On the other hand, we assume 
that P ( L S ) C P(LNS), and we consider any P'(x) £ P'{L'S). Then, P'(x) is 
of the form P'(/(y)) for some string y £ £ss and P(y) £ P(L>s) ^ P(LNs) 
implies that P'(x) = P'(/(y)) £ P'(L'NS). • 

In the second transformation, we show how to transform a system mod­
eled by an NFA to a system modeled by a DFA without affecting the system's 
properties of being current-state opaque, acyclic, and partially ordered. 

Transformation 4.5. Let G = (Q,T,,S,I) be a DES modeled by an NFA 
with the secret states Qs, the non-secret states QNS, and the corresponding 
projection P : S* —> £*. We construct a deterministic DES Gdet in two steps. 

1. First, we ensure that the system has a unique initial state. From G we 
construct a DES G' — (Q', S, 5', {qo}), where Q' — Q U {g^} contains a 
new non-secret initial state c/o- Further, for each q £ I we add a new 
transition (g0, a, g) to 5', where a £ S G is an arbitrary observable event. 

2. In the second step, we determinize the transition function of the system. 
From G' we construct a DES Gdet — (Q", £ U {u}, 5", (q0, q0)) modeled 
by a DFA, where Q" — Q' x Q' is the set of pairs of states, it is a new 
unobservable event, and the pair (go, go) £ Q" is a new initial state. 
We define the transition function 5" as follows. 

(a) For every transition (p, a, q) in 5', where p,q £ Q' and a £ S, we 
add a transition ((p, g), a, (g, g)) to 5". 
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Figure 4.2: Determinization of a DES. 

(b) For every state p G Q' we define the set Rp = U a e s S'(p, a) — {p} = 
{pi,P2, • • • ,Pe} of states different from p that can be reached from 
p by a single transition. We then add transitions of the form 
{(p,P),u,(p,Pi)) and ((p,Pi),u,(p,pi+1)) for % = 1,...,I - 1, as 
shown in Figure 4.2, to create a chain of states from Rp connected 
to state (p,p). Note that the order in which we connect states 
from Rp does not affect the resulting system. 

We remove unreachable states from Gdet- Finally, we define the projection 
P': ( £ * U {u}) —> £*, and the sets of secret states Q's = {{p,q) \ p € Qs} 
and of non-secret states Q'NS — {(p,q) \ P £ QNS U {<?O}}- ° 

Notice that Transformation 4.5 can be done in polynomial time using 
at most (n + l ) 2 states, where n is the number of states in G. In fact, if 
we omit removing unreachable states at the end of the tranformation, then 
Gdet can computed in deterministic logarithmic space. Additionally, this 
transformation does not introduce any new neutral states and it preserves 
the number of observable events, acyclicity, and partial order. 

Theorem 4.6. A DES G is current-state opaque with respect to Qs, QNS, 
and P if and only if the deterministic DES Gdet obtained by Transforma­
tion 4-5 is current-state opaque with respect to Q's, Q'Ns> and P'• 

Proof The first step of Transformation 4.5 just creates a new non-secret 
initial state go that is unreachable from any other state and that is con­
nected to the original initial states by an observable event a, and so we have 
5'(q0,a) = I. Therefore, G is clearly current-state opaque with respect to 
Qs, QNS, and P if and only if G' is current-state opaque with respect to Qs, 
QNS U {<?O}, and P. 

In the second step, the number of observable steps from a state of the 
system G' is preserved in the system Gdet- By the construction of Gdet, every 
state (p, q) £ Rp is reachable from the state (p, p) by a sequence consisting 
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only of unobservable event u, and hence (p, q) is contained in every state of 
the observer that contains state (p,p); and vice versa, because every path to 
the state (p, q) goes through the state (p, p) in the system Gdet- Therefore, 
if a state of the observer contains a secret state (p, q) and a non-secret state 
(p',q'), then it also contains the original secret state (p,p) and the original 
non-secret state (p',p')- That is, the system G is current-state opaque with 
respect to Qs, QNS, and P if and only if the system Gdet is current-state 
opaque with respect to Q's, Q'NS, and P'. • 

4.2 Restriction on structure of the system 

Our first restriction concerns the number of observable and unobservable 
events in the system. The following result thus improves the general case in 
two ways: (i) compared to the general settings we keep the system determin­
istic, and, mainly, (ii) we restrict the number of observable events to two and 
the number of unobservable events to one. 

Theorem 4.7. Deciding current-state opacity of a DES modeled by a DFA 
with three events, one of which is unobservable, is PSPACE-complete. 

Proof. Membership in P S P A C E was shown by Saboori [37], and also follows 
directly from Lemma 4.2. 

To show hardness, we reduce the current-state opacity problem for a 
DES modeled by an NFA with just two observable events, which is P S P A C E -

complete by Remark 4.1 and Saboori [37]. This can be done by Transfor­
mation 4.5 which, for a DES modeled by an NFA with just two observable 
events, constructs a deterministic DES with three events, one of which is 
unobservable, without affecting the property of current-state opacity. • 

Notice that an unobservable event in the previous theorem is unavoidable 
because any DFA with all events observable is always in a unique state, and 
therefore never opaque. However, the reader may wonder what happens if 
we further restrict the number of observable events to just one. We now 
show that having only one observable event makes the problem computa­
tionally easier unless c o N P = P S P A C E . This result holds even without any 
restriction on the number of unobservable events, and for nondeterministic 
automata. 
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Theorem 4.8. Deciding current-state opacity of a DES modeled by an NFA 
with a single observable event is coNP-complete. 

Proof. Membership in c o N P follows from Lemma 4.2 and the fact that in­
clusion for unary NFAs is CONP-complete, and hardness follows from the 
complexity of deciding universality for unary NFAs. For both claims used 
here, the reader is referred to Stockmeyer and Meyer [47]. • 

We obtain the following result for DFAs by applying Transformation 4.5 
which, for a DES modeled by an NFA with a single observable event, con­
structs a deterministic DES with two events, one of which is unobservable, 
without affecting the property of current-state opacity. 

Corollary 4.9. Deciding current-state opacity of a DES modeled by a DFA 
with two events, one of which is unobservable, is coNP-complete. 

Previous results show that only restricting the number of events does not 
lead to tractable complexity. But it gives rise to another question whether 
there are structurally simpler systems for which the opacity verification prob­
lem is tractable. 

Structurally the simplest systems we could think of are acyclic DFAs with 
full observation, recognizing only finite languages. However, these systems 
are never opaque, since they are deterministic and fully observed. Nontrivial 
structures to be considered could thus be acyclic NFAs that still recognize 
only finite languages, and hence do not possess the ability to express all 
strings over the alphabet. We combine this restriction with the restriction 
on the number of events. 

Theorem 4.10. Deciding current-state opacity of a DES modeled by an 
acyclic NFA with two or more observable events is coNP-complete. 

Proof. Assume that the acyclic NFA has n states. Then any string from 
its language is of length at most n — 1. Thus, to show that the system is 
not opaque, an N P algorithm guesses a subset of secret states and a string 
of length at most n — 1 and verifies, in polynomial time, that the guessed 
subset is reachable by the guessed string. This shows that verifying opacity 
is in c o N P . Notice that membership in c o N P can also be directly derived 
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from Lemma 4.2 and the complexity of inclusion for so-called rpoNFAs 1 of 
Krotzsch et al. [32] that are more general than acyclic NFAs. 

To show coNP-hardness, we reduce the complement of C N F satisfiability. 
The proof is based on the construction showing that non-equivalence for 
regular expressions with operations union and concatenation is NP-complete 
even if one of them is of the form S n for some fixed n, see [25, 47]. 

Let {xi,..., xn} be a set of variables and (p = <pi A • • • A (pm be a formula 
in C N F , where every (pi is a disjunction of literals. Without loss of generality, 
we may assume that no clause ipi contains both x and —>x. Let —xp be the 
negation of <p obtained by de Morgan's laws. Then -up — -npi V • • • V -«pm is 
in disjunctive normal form. 

For every i = 1,..., m, we define a regular expression j3i — (3itif3it2 • • • A,n> 
where 

for j — 1,..., n. Let j3 — IJ™ i M A ) be the union of languages defined by 
expressions Then we have that w £ L(fi) if and only if w satisfies some 
-«Pi. That is, we have that L{j3) — {0, l } n if and only if -up is a tautology, 
which is if and only if ip is not satisfiable. Notice that the length of every 
string recognized by j3i is exactly n. 

Let G be an NFA consisting of m paths of length n, each corresponding to 
the language of and make the last state of each of these paths non-secret, 
that it, it is placed to QNS- m addition, add a path consisting of n+1 states 
{a 0 , CKI, . . . , an} and transitions (c^, a, a^+i), for 0 < £ < n, where a £ {0,1}. 
Let an be the sole secret state, i.e., Qs = {an}. Notice that the language of 
G marked by the states in Qs is {0, l } n , whereas the language marked by the 
states in QNS is L{j3). By Lemma 4.2, G is current-state opaque if and only 
if {0, l } n C L(/3), which is if and only if <p is not satisfiable. This completes 
the proof of coNP-completeness. • 

Again, we can show that the situation is computationally simpler if only 
one observable event is allowed. 

l r The NFA A is restricted partially ordered (rpoNFA) if the reachability relation < is a 
partial order and A is self-loop deterministic, i.e. for every state q and every event a, if 
q G S(q,a) then 8(q,a) = {q}. 

(0+1) if neither Xj nor ->Xj appear in -npi 
0 if ->xj appears in -npi 
1 if Xj appears in -npi 
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Theorem 4.11. Deciding current-state opacity of a DES modeled by an 
acyclic NFA with a single observable event is NL-complete, and hence solv­
able in polynomial time. 

Proof. Membership in N L follows from Lemma 4.2 and the complexity of 
inclusion for unary languages, see Krotzsch et al. [32]. 

To prove NL-hardness, we reduce the DAG-reachability problem. Let Q 
be a directed acyclic graph with n vertices, and let s and t be two vertices 
of Q. We define an acyclic NFA A as follows. With each node of Q, we 
associate a state in A. Whenever there is an edge from i to j in Q, we add a 
transition (i,a,j) to A. The resulting automaton A is an acyclic NFA. Let 
t be the sole secret state, i.e., Qs = {£}, and let QNS be empty. Obviously, 
A is not current-state opaque if and only if there is a string w £ {a}* such 
that 5(s, w) fl Qs ^ 0- Hence A is not current-state opaque if and only if t 
is reachable from s in Q. • 

Since Transformation 4.5 preserves acyclicity and can be computed in 
deterministic logarithmic space, we can apply it to the systems of Theo­
rems 4.10 and 4.11 to obtain hardness part of following results. Membership 
then follows from Lemma 4.2 and the corresponding results on the complexity 
of inclusion. 

Corollary 4.12. Deciding current-state opacity of a DES is 

1. coNP-complete if the system is modeled by an acyclic DFA with three 
events, one of which is unobservable, and 

2. NL-complete if the system is modeled by an acyclic DFA with two 
events, one of which is unobservable. 

Above, we considered systems generating only finitely many behaviors. 
However, real-world systems are usually not that simple and often require 
additional properties, such as deadlock freeness. Therefore, we now consider 
partially ordered automata, a kind of automata where all cycles are only in 
the form of self-loops. Such automata are, in our opinion, structurally the 
simplest DES where deadlock freeness can be ensured (by adding a self-loop). 
Their mark languages form a subclass of regular languages strictly included in 
star-free languages, see [14, 44]. Star-free languages are languages definable 
by linear temporal logic that is often used as a specification language in 
automated verification. 
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We then immediately obtain the following result for nondeterministic par­
tially ordered automata. 

Theorem 4.13. Deciding current-state opacity of a DES modeled by a poNFA 
with only two events, both of which are observable, is P'SPACE-complete. 

Proof. Membership in P S P A C E follows from Lemma 4.2 and the results on 
the complexity of inclusion for poNFAs, and hardness from the fact that 
deciding universality for poNFAs with only two events is PSPACE-complete. 
For both claims see Krotzsch et al. [32]. • 

The situation is again easier if the model has only a single observable 
event. 

Theorem 4.14. Deciding current-state opacity of a DES modeled by a poNFA 
with a single observable event is Nh-complete. 

Proof. Membership in NL follows from Lemma 4.2 and the corresponding 
complexity of inclusion, and hardness from the fact that deciding universality 
for unary poNFAs is NL-complete, see Krotzsch et al. [32]. • 

Again, we use Transformation 4.5, which preserves partial order and can 
be computed in deterministic logarithmic space, and apply it to the systems 
of Theorems 4.13 and 4.14 to obtain the hardness part of the following results. 
Membership then follows from Lemma 4.2 and the corresponding results on 
the complexity of inclusion. 

Corollary 4.15. Deciding current-state opacity of a DES is 

1. PSPACE-complete if the system is modeled by a poDFA with three events, 
one of which is unobservable, and 

2. NL-complete if the system is modeled by a poDFA with two events, one 
of which is unobservable. 



Chapter 5 

Transformations among opacity 
notions 

In this chapter, we introduce new trasnformations among the considered 
opacity decision problems. In other words, for an instance of one opacity 
notion that consists of a DES, an observation projection, and a secret de­
scription, we transform it into an instance of another opacity notion. 

Comparing different notions of opacity for automata models, Saboori and 
Hadjicostis [39] provided a language-based definition of initial-state opacity, 
Cassez et al. [17] transformed trace opacity to current-state opacity, and Wu 
and Lafortune [50] showed that current-state opacity, initial-and-final-state 
opacity, and language-based opacity can be transformed to each other. They 
further provided transformations of initial-state opacity to language-based 
opacity and to initial-and-final-state opacity, and, for prefix-closed languages, 
a transformation of language-based opacity to initial-state opacity. 

In this thesis, we extend these results by showing that, for automata mod­
els, all the discussed notions of opacity are transformable to each other. As 
well as the existing transformations, our transformations are computable in 
polynomial time and preserve the number of observable events and determin­
ism (whenever it is meaningful). In the case of state-based opacity notions, 
our goal was to design transformations that do not introduce any new neutral 
states into the system, since their existence may not be practically justified. 
However, in some cases, we may need to give a separate transformation for 
systems that already contain neutral states. The meaning of neutral states 
is not yet clear in the literature. They are fundamental in language-based 
opacity, but questionable in state-based opacity. In any case, we cannot sim-

33 
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Figure 5.1: Overview of the transformations among the notions of opacity for 
automata models. The node CSO* denotes a simplified instance of current-
state opacity modeled by a DFA with at most two observable events. 

ply handle neutral states as non-secret states. We summarize our results, 
together with the existing results, in Figure 5.1. 

There are two immediate applications of the transformations. First, the 
transformations provide a deeper understanding of the differences among 
the opacity notions from the structural point of view. For instance, the 
reader may deduce from the transformations that, for prefix-closed languages, 
the notions of language-based opacity, initial-state opacity, and current-state 
opacity coincide, or that to transform current-state opacity to weak oo-step 
opacity means to add only a single state and a few transitions. 

Second, the transformations provide a tool to obtain the complexity re­
sults for all the discussed opacity notions by studying just one of the notions. 
To illustrate, consider for example the result of Theorem 4.7 showing that de­
ciding current-state opacity for systems modeled by DFAs with three events, 
one of which is unobservable, is PSPACE-complete. Since we can transform 
the problems of deciding current-state opacity and of deciding weak /c-step 
opacity to each other in polynomial time, preserving determinism and the 
number of observable events, we obtain that deciding weak /c-step opacity for 
systems modeled by DFAs with three events, one of which is unobservable, is 
PSPACE-complete as well. In particular, combining the transformations with 
known results from Jacob et al. [27] and results from Chapter 4, we obtain a 
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complete complexity picture of verifying the discussed notions of opacity, as 
summarized in Table 1.2. 

Thus, by combining the transformations of Wu and Lafortune [50] with 
Theorems 4.7 and 4.8, we immedietly obtain new results for language-based 
opacity and initial-and-final-state opacity. In more detail, the transforma­
tions of Wu and Lafortune [50] preserve the determinism of transitions, but 
result in automata with a set of initial states. This issue can, however, be 
easily fixed by adding a new initial state, connecting it to the original ini­
tial states by new unobservable events, and making the original initial states 
non-initial. 

Corollary 5.1. The problems of deciding whether a DES satisfies language-
based opacity and initial-and-final-state opacity are PSPACE-complete. The 
problems remain P'SPACE-complete even if the system is a DFA with three 
events, one of which is unobservable. 

Corollary 5.2. The problems of deciding whether a DES with a single ob­
servable event satisfies language-based opacity and initial-and-final-state opac­
ity are coNP-complete. 

Moreover, the transformations of Wu and Lafortune [50] preserve both 
acyclicity and partial order, and hence we can generalize the results from 
Chapter 4 for acyclic and partially ordered automata in the same way. On 
the other hand, the majority of our transformations do not preserve either 
partial order, due to the utilization of Transformation 4.3, or acyclicity. Con­
sequently, our transformations do not extend these results to the remaining 
notions discussed. 

5.1 L B O to ISO 

In this section, we discuss the transformations from language-based opacity 
to initial-state opacity. The transformation for the case where both the 
secret and non-secret languages of the language-based opacity problem are 
prefix closed has been provided by Wu and Lafortune [50]. We now extend 
this transformation to the general case. We further show that the initial-
state opacity decision problem with a single observable event is NL-complete. 
Consequently, there exists no polynomial-time transformation for this case 
that preserves the number of observable events, unless P = N P . 
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Figure 5.2: Transforming language-based opacity to initial-state opacity. 

5.1.1 The general case 
Let the language-based opacity problem be represented by a DES GLBO-

We transform it to a DES GJSO m such a way that GLBO is language-based 
opaque if and only if GJSO is initial-state opaque. Our transformation pro­
ceeds in two steps: 

1. We construct a DES GJSO with one additional observable event @ using 
Transformation 5.3. 

2. We use Transformation 4.3 to reduce the number of observable events 
of GISo by one. 

Since the second step follows from Transformation 4.3, we only describe the 
first step, that is, the construction of GJSO over £ U {©}• 

Transformation 5.3. Let GLBO — {Q,^,5,1) be a DES with the corre­
sponding projection P: S* —> £*, a secret language L$ C L(GLBO) given 
by the non-blocking automaton As — (Qs,^, 5s, Is, Fs), and a non-secret 
language LNS Q L{GLBO) given by the non-blocking automaton ANS — 

{QNS, S, 5NS, INS, FNS)- We construct a DES 

GISO = (Qs U QNS U {qs, qns}, S U {@}, 5', Is U INS) 

where GJSO is a disjoint union of the automata As and ANS together with 
two new states and a new observable event @. The transition function 5' is 
initialized as 5' := 5s U 5NS and further extended as follows, see Figure 5.2 
for an illustration: 
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Figure 5.3: A n example of the transformation of the L B O problem (left) to 
the ISO problem (right). 

1. for every state q £ Fs, we add a new transition (q, @, qs) to 6'; 

2. for every state q £ FN$, we add a new transition (q, @, qns) to 5'. 

Finally, let Q'S = Is denote the set of secret initial states of GJSO-, and let 
Q'NS ~ INS denote the set of non-secret initial states of GJSO- We extend 
the projection P t o F ' : ( E U {@})* -> ( E 0 U {@})*. o 

Notice that Transformation 5.3 can be done in polynomial time and that 
it preserves determinism of transitions. 

Example 5.4. Let G over £ = {a, 6, c} depicted in Figure 5.3 (left) be an 
instance of the L B O problem from Example 3.2 with the secret language 
Ls — abb* and the non-secret language LN$ — acb*. Transformation 5.3 of 
L B O to ISO then results in the DES G' depicted in Figure 5.3 (right) with a 
new observable event @, a single secret initial state 1, and a single non-secret 
initial state 4. We distinguish two cases depending on whether event c is 
observable or not. 

In the first case, we assume that event c is unobservable. In this case, 
G is language-based opaque, because P(Ls) C P(LNs), and the reader can 
see that P'(L(G', 1)) = aMf@ C ^ @ = P'(L(G', 4)). Therefore, G' is 
initial-state opaque. 

In the second case, we assume that event c is observable. In this case, 
G is not language-based opaque, because ab £ P(L>s) whereas ab 0 P(LNs), 
and we can see that ab £ P'(L(G', 1)) and ab 0 P'(L(G',4)). Therefore, G' 
is not initial-state opaque. o 

The following theorem justifies the correctness of Transformation 5.3. 
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Theorem 5.5. A DES GLBO is language-based opaque with respect to L$, 
LNs, and P if and only if the DES GJSO obtained by Transformation 5.3 is 
initial-state opaque with respect to Q's, Q'NS, and P'. 

Proof. We show that P(LS) C P(LNS) if and only if P'{L{GISo,Q's)) Q 
P'(L(GJSO, QNS))- However, by construction, LiGjso-, Q's) = ^ s U Lg@ and 
L(GISO,Q'NS) = LNS U LNS@, and hence P(LS) C P(LNS) if and only if 
P'(L(GISo, Q's)) Q P'(L(GISo, Q'NS))> which is if and only if GISo is initial-
state opaque. • 

We now show that reducing the number of observable events by using 
Transformation 4.3 does not affect initial-state opacity of any DES. 

Theorem 5.6. A DES G = (Q, E , 6,1) is initial-state opaque with respect to 
Qs, QNS, and P if and only if the DES r{G) = (Q', (E - T0) U {0,1}, 6', I) 
obtained by Transformation 4-3 is initial-state opaque with respect to Qs, 
QNS, and P'. 

Proof. To show that G is initial-state opaque if and only if r{G) is initial-state 
opaque, we define the languages 

• Ls = Lm(As), where As = (Q, S, 5, Qs, Q), 

• LNS = Lm(ANS), where ANS = (Q, S, 5, QNS, Q), 

. L's = Lm(A's), where A's = (Q', (E - T0) U {0,1}, 8', Qs, Q'), and 

• L'NS = Lm(A'NS), where A'NS = (Q', (E - T0) U {0,1}, 5', QNS, Q'). 

Since this transforms initial-state opacity to language-based opacity [50], it 
is sufficient to show that P(LS) C P(LNS) if and only if P'(L'S) C P'(L'NS). 
However, this can be shown analogously as in the proof of Theorem 4.4. • 

Since we need at least two initial states for initial-state opacity to be non-
trivial, we generalize the weaker form of Theorem 4.7 to initial-state opacity. 
Therefore, using Transformations 5.3 and 4.3, and taking into account the 
fact that the problem of verifying initial-state opacity is in P S P A C E [37], we 
can state the following result for NFAs with deterministic transition function. 

Corollary 5.7. The problem of deciding whether a DES satisfies initial-state 
opacity is PSPACE-complete. The problem remains PSPACE-complete even if 
the system is an NFA with deterministic transition function and three events, 
one of which is unobservable. 
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5.1.2 The case of |S 0 | = 1 
To preserve the number of observable events, the general transformation 
relies on the binary encoding of events by Transformation 4.3. However, the 
encoding requires at least two observable events in GLBO-, and hence it is 
not applicable to systems with a single observable event. In fact, we show 
that there does not exist such a transformation unless P = N P , which is 
a longstanding open problem of computer science. Deciding language-based 
opacity for systems with a single observable event is coNP-complete [23, 
47]. We show that deciding initial-state opacity for systems with a single 
observable event is NL-complete, and hence efficiently solvable on a parallel 
computer [2]. In particular, the problem can be solved in polynomial time. 

Theorem 5.8. Deciding initial-state opacity of a DES with a single observ­
able event is NL-complete. 

Proof. Deciding initial-state opacity is equivalent to checking the inclusion of 
two prefix-closed languages. Namely, a DES G with E G = {a} is initial-state 
opaque with respect to the secret states Qs and the non-secret states QNS 
if and only if Ks C KNS for Ks = P(L(G, Qs)) and KNS = P(L(G, QNS)). 
Since the languages Ks and KNs are prefix-closed, they are either finite, 
consisting of at most \Q\ strings, or equal to {a}*. 

To show that the problem belongs to N L , we show how to verify Ks % 
KNS in nondeterministic logarithmic space. Then, since N L is closed under 
complement [26, 48], Ks C KNs belongs to N L . Thus, to check that Ks % 
KNs in nondeterministic logarithmic space, we guess k £ {0, . . . , | Q | } in 
binary, store it in logarithmic space, and verify that ak £ Ks and ak ^ KNs-
To verify ak £ Ks, we guess a path in G step by step, storing only the 
current state, and counting the number of steps by decreasing k by one in 
each step; logarithmic space is sufficient for this. Since ak ^ KNs belongs to 
the complement of N L , which coincides with N L , we can check ak ^ K^s in 
nondeterministic logarithmic space as well. 

To show that deciding initial-state opacity for DESs with a single observ­
able event is NL-hard, we reduce the D A G reachability problem [29]: given a 
D A G Q — (V, E) and nodes s, t £ V, the problem asks whether t is reachable 
from s. From Q, we construct a DES A — (V U {i}, {a}, 5, {s, i}), where i is 
a new initial state and a is an observable event, as follows. With each node 
of Q, we associate a state in A . Whenever there is an edge from j to k in Q, 
we add a transition (j, a, k) to A . We add a self-loop by a to state t and to 
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state i. The set of secret initial states is Qs — {i} and the set of non-secret 
initial states QNS — {$}• Then, A is initial-state opaque if and only if there 
is a path from s to t in Q. Indeed, L(A, i) — {a}* is included in L(A, s) if 
and only if L(A, s) — {a}*, which is if and only if t is reachable from s. • 

5.2 C S O to T O 

In this section, we discuss the transformations from current-state opacity to 
trace opacity. The transformation we provide results in a system with at 
least two observable events. Similar to initial-state opacity, we show that the 
trace opacity decision problem with a single observable event is NL-complete. 
Consequently, there exists no polynomial-time transformation for this case 
that preserves the number of observable events, unless P = N P . 

5.2.1 The general case 
Let the current-state opacity problem be represented by a DES Gcso- We 
transform it to a DES GTO hi such a way that Gcso is current-state opaque 
if and only if GTO is trace opaque. Our transformation proceeds in two steps: 

1. We construct a DES GTO with one additional observable event @ using 
Transformation 5.9. 

2. We use Transformation 4.3 to reduce the number of observable events 
of GTO by one. 

Since the second step follows from Transformation 4.3, we only describe the 
first step, that is, the construction of Gcso over £ U {@}. 

Transformation 5.9. Let Gcso — ( Q j E , J , / ) be a DES with the secret 
states Qs, the non-secret states QNS, and the corresponding projection 
P: £* -> £*. We construct a DES 

GTO = (Q U {qs, qns}, S U {@, a}, 5', I) 

where qs and qns are new states, @ is a new observable event, and a is a 
new unobservable secret event. The transition function 5' is initialized as the 
transition function 5 of the system Gcso and further extended as follows, 
see Figure 5.4 for an illustration: 
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Figure 5.4: Transforming current-state opacity to trace opacity. 

1. for every secret state q G Qs, we add the transition (q, @, qs) to 5', 

2. for every non-secret state q G QNS, we add the transition (q, @, qns) 
to 5', 

3. we add the secret transition (qs, a, qns) to 5', and 

4. we add one self-loop transition (q 
nsi Qns) to 6 , where a G £ 0 is an 

arbitrary observable event. 
We define the projection P ' : ( E U {@, cr})* ->• (£„ U {@})* and the set of 

secret events S — {a}. o 

Notice that Transformation 5.9 can be done in polynomial-time and that 
it preserves determinism. 

Example 5.10. Let G over £ = {a, 6, c} depicted in Figure 5.5 (left) be 
an instance of the CSO problem from Example 3.6 with the secret states 
Qs = {2} and the non-secret states QNS — {5}. Transformation 5.9 of CSO 
to T O then results in the DES G' depicted in Figure 5.5 (right) with a new 
observable event @ and a new unobservable secret event a. We distinguish 
two cases depending on whether event c is observable or not. 

If event c is unobservable, then G is current-state opaque, because the only 
string leading to the secret state, state 2, is the string a, for which the string 
ac leading to the non-secret state, state 5, satisfies that P(a) — P(ac). Then, 
the reader can see that G' is trace opaque, because all possible secret traces 
are of the form a@aal G Sec(G'), for i G N , and for every such trace there is 
a non-secret trace ac@a* G Pub(G') such that P'(a@aai) = P'(a(Mai). 

If event c is observable, then G is not current-state opaque, because the 
only string leading to the non-secret state, string ac, has a different obser-
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a 

Figure 5.5: A n example of the transformation of the CSO problem (left) to 
the T O problem (right). 

vation than the string a leading to the secret state, that is, P(ac) ^ P(a). 
Consequently, the reader can verify that G' is not trace opaque, since now 

The following theorem justifies the correctness of Transformation 5.9. 

Theorem 5.11. A DES Gcso is current-state opaque with respect to Qs, 
QNS, and P if and only if the DES GTO obtained by Transformation 5.9 is 
trace opaque with respect to S and P'. 

Proof. Assume that the DES Gcso is not current-state opaque. Then, there 
exists a string w G S* that leads the system Gcso to a secret state q, 
while every string that looks the same as the string w leads Gcso out of 
non-secret states. In GTO we have that 5'(I,w@) = 5'(q,@) = {qs} and 
w@aa £ Sec(Gro) is a secret trace. Since generating any string that looks 
the same as the string w leads the system Gcso to a state out of non-
secret states, then in GTO we have that S'(I, P'~xP'(w)@) = {qs}- Evidently, 
every extension of a trace from qs makes the trace secret, and hence we have 
P'(w@aa) G- P'{Pub(GTo))- Therefore, the system GTO is not trace opaque. 

On the other hand, assume that the system Gcso is current-state opaque, 
and let w — w\ow2 G Sec(GTo) be a secret trace. Then, the string w\ is of the 
form w\ — v@ where v contains neither @ nor a, and — ak for k G N . By 
construction, generating the string v in Gcso ends up in a secret state. Since 
the system Gcso is current-state opaque, there is a string v' G P~xP(v) such 
that generating v' in Gcso ends up in a non-secret state. Then, generating 
the trace v'@ in GTO ends up in a state qns, and hence taking the strings 
w[ = v'@ and w'2 — w2 — ak results in trace w' — w[w2 G PubiGTo) such 
that P'{w') = P'(w[w'2) = P'(uiiaw2) = P'{w) and S'(I,w') ^ 0, showing 
that the system GTO is trace opaque. • 

P'(a@aa) = a@a G P'{Sec{G')) while a@a 0 P'(Pub{G')). o 
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We now show that reducing the number of observable events by using 
Transformation 4.3 does not affect trace opacity of any DES. 

Theorem 5.12. A DES G is trace opaque with respect to S and P if and 
only if the DES r(G) obtained by Transformation 4-3 is trace opaque with 
respect to S and P'. 

Proof. To show that G is trace opaque if and only if the system r(G) is trace 
opaque, it is sufficient to show that P(Sec(G)) C P(Pub(G)) if and only if 
P'(Sec(r(G))) C P'\PubiriG))). However, this can be shown analogously to 
Theorem 4.4. • 

Since Transformation 5.9 introduces a new unobservable secret event, we 
cannot directly generalize Theorem 4.7 to trace opacity. However, by utilizing 
Theorem 5.12 and the membership of trace opacity in P S P A C E [19], we can 
state a weaker result as follows. 

Corollary 5.13. The problem of deciding whether a DES satisfies trace opac­
ity is PSPACE-complete. The problem remains PSPACE-complete even if the 
system is a DFA with four events, two of which are unobservable. 

5.2.2 The case of |E 0 | = 1 
The second step of our transformation, that is the binary encoding repre­
sented by Transformation 4.3, requires that Gcso has at least three ob­
servable events or, equivalently, that GTO has at least two observable events. 
Consequently, our transformation does not preserve the number of observable 
events if GTO has a single observable event. We show that the trace opacity 
decision problem with a single observable event is NL-complete, and hence 
efficiently solvable on a parallel computer [2]. In particular, the problem can 
be solved in polynomial time. 

Theorem 5.14. Deciding trace opacity of a DES with a single observable 
event is NL-complete. 

Proof. Deciding trace opacity is equivalent to checking the inclusion of two 
languages. Namely, a DES G with S G = {a} is trace opaque with respect 
to the set of secret events S if and only if K$ C KN$ for K$ — P(Sec(G)) 
and KNs = P(Pub(G)). Since the language KN$ is prefix-closed, it is either 
finite, consisting of at most \Q\ strings, or equal to {a}*. Similarly, K$ is 
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either finite or K$ — {a}* — Lfin, where Lfin C {a1 \ i < \Q\} is finite, 
because for any secret trace uav G Sec(G), where a G S and u,v G £*, we 
have that uav' G Sec(G) for any v' G v. Therefore, we can use the same 
algorithm to verify Ks % K^s m nondeterministic logarithmic space as in 
the proof of Theorem 5.8. 

To show that deciding trace opacity for DESs with a single observable 
event is NL-hard, we again reduce the D A G reachability problem [29]: given 
a D A G Q — (V,E) and nodes s,t G V, the problem asks whether t is reach­
able from s. From Q, we construct a DES A — (VL){qi, q2}, {a, a}, 5, {s, qi}), 
where q\ and q2 are new states, a is an observable event, and a is an unobserv-
able secret event. With each node of G, we associate a state in A. Whenever 
there is an edge from j to k in Q, we add the transition (j, a, k) to 5. Further, 
we add the secret transition (qi, a, q2) and two self-loops (£, a, t) and (q2, a, q2) 
to 5. Then, A is trace opaque if and only if there is a path from s to t in Q. 
Indeed, we have Sec(A) = L(A,qi) = aa*, and hence P(Sec(A)) = {a}* is 
included in P(Pub(A)) = L(A,s) if and only if Pub(A) = {a}*, which is if 
and only if t is reachable from s. • 

5.3 T O to C S O 

In this section, we show how to transform trace opacity to current-state 
opacity. Previously, such a transformation was provided by Cassez et al. [17], 
but they assumed that a deterministic automaton As for the language of 
secret traces was given as input. Additionally, for a nondeterministic As 
their transformation is not polynomial. We improve this result by providing 
a transformation from trace opacity to current-state opacity that is always 
polynomial. Further, our transformation enables us to construct automata 
As and ANS representing the secret and non-secret trace languages, thus 
transforming the problem also to language-based opacity problem. 

Let the trace opacity problem be represented by a DES GTO- We trans­
form it to a DES Gcso m such a way that GTO is trace opaque if and only 
if Gcso is current-state opaque. 

Transformation 5.15. Let GTO — (Q, £ , 5, /) be a DES with the set of 
secret events S C S u o and the corresponding projection P: S* —> £*. We 
construct a DES 

Gcso = (QuQs,'2,6',I) 
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Figure 5.6: Transforming trace opacity to current-state opacity. 

as a disjoint union of G and Gs = (Qs, S, Ss, Is), where Gs is copy of G and 
Qs — {q1 | q G Q} is a disjoint copy of Q. We initialize 5' :— 5 U £ s and 
further modify it by replacing every secret transition (g, <7, r) originally in 5 
by transition (g, <r, r') in 5', where c G S* and r ' G Qs, cf. Figure 5.6 for an 
illustration. The states of Qs are the secret states of Gcso, while the rest 
of the states are non-secret, i.e., QNS — Q- Finally, we remove unreachable 
states and corresponding transitions. o 

Notice that Transformation 5.15 can be done in polynomial time and that 
it preserves determinism and the number of observable and unobservable 
events. 

Remark 5.16. To reduce GTO to language-based opacity, we set Lg = L(As) 
and LNs = L(ANS)> where As = (Q U Qs,T,,5',I,Qs) is identical to the 
DES Gcso from Transformation 5.15, except for the set of marked states, 
and ANs — (Q, 5", I, Q) is an automaton that corresponds to the original 
system GTO with all states marked and with all secret transitions removed, 
that is, 5" = 5<lQ x (S - S) x Q. 

We now provide an illustrative example. 

Example 5.17. Let G over S = {a, 6, c, a} depicted in Figure 5.7 (left) be 
an instance of the T O problem from Example 3.4 with the set of secret events 
S — {<r}. Transformation 5.15 of T O to CSO then results in the DES G' 
depicted in Figure 5.7 (right) with the set of secret states Qs — {2', 3'} and 
the set of non-secret states QNS — {1,4,5}. Note that states 2, 3, 1', 4', 
and 5' were unreachable in G', and therefore were removed at the end of the 
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Figure 5.7: A n example of the transformation of the T O problem (left) to 
the CSO problem (right). 

transformation. We distinguish two cases depending on whether event c is 
observable or not. 

First, we assume that event c is unobservable. In this case, G is trace 
opaque because P(Sec(G)) = P(Pub(G)). In G', the initial state 1 is non-
secret, and therefore, for a string consisting of only the event a, the empty 
string e is such that P(a) — P(e) and 5(1, e) n QNS — {!}• Similarly, if a 
string of the form crab* leads G' to the secret state 3', then there is a string of 
the form acb* with P(aab*) = Piacb*) that leads G' to the non-secret state 
5. Thus, G' is current-state opaque. 

In the second case, we assume that event c is observable. In this case, G 
is not trace opaque because ab £ P(Sec(G)) while ab £ P(Pub(G)), and the 
reader can see that 5'(l,aab) n Qs + 0 while 6'(1, P^lP(aab)) n QNS = 0-
Therefore, G' is not current-state opaque. o 

The following theorem justifies the correctness of Transformation 5.15. 

Theorem 5.18. A DES GTO is trace opaque with respect to S and P if 
and only if the DES Gcso obtained by Transformation 5.15 is current-state 
opaque with respect to Qs, QNS, and P. 

Proof. Assume that the system GTO is trace opaque. To show that the system 
Gcso is current-state opaque, we consider a string w such that S'(I,w) n 
Qs 7^ 0, and show that there is a string w' such that P(w) = P(w') and 
S'(I, w') fl QNS ^ 0- To reach the set of secret states Qs, the string w must 
be of the form W\aw2. By construction, there is a state q £ 5(1, w^a) in 
GTO, such that there is a state q' £ 5'(I,wia) fl Qs in the system Gcso, 
and the string u>2 can be generated from the state q'. Therefore, we can 
generate the string u>2 from the state q in GTO and 5(1, W1OW2) ^ 0, that is, 
W1OW2 £ Sec(GTo) is a secret trace of GTO- However, trace opacity of GTO 

implies that there is a string w' £ Pub(GTo) such that P(w\<JW2) — P(w') 
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and 5(1, w') ^ 0. In particular, w' does not contain a, and thus we obtain 
5'(I, w') fl QNS 7^ 0J which completes this part of the proof. 

If the system GTO is not trace opaque, then there exists a secret trace 
w = W1OW2 £ Sec(Gro) such that P(w) £" P(Pub(GTo))- i n Gcso, after 
generating a we can only reach secret states, and therefore 0 ^ S'(S'(I, Wio)0 
Qs,W2) — S''(I\w\aw2) C Qs- Since the language marked by the set QNS 
in Gcso equals to Pub(Gro), then for every string w' £ LiGcso) with 
P(w) — P(wiOW2) — Piw'), we have that 5'(I,w') fl QNS — 0- Therefore, 
the system Gcso is not current-state opaque. • 

5.4 C S O to /c-SSO 

In this section, we show how to transform current-state opacity to strong 
fc-step opacity. For systems without neutral states, strong fc-step opacity 
implies weak /c-step opacity [49], and thus the following transformations are 
also applicable to weak /c-step opacity. Again, the general transformation 
uses Transformation 4.3 to preserve the number of observable events, and 
therefore we provide a separate transformation for systems with a single 
observable event. 

5.4.1 The general case 

Let the current-state opacity problem be represented by a DES Gcso- We 
transform it to a deterministic DES Gk-sso m such a way that Gcso is 
current-state opaque if and only if Gk-sso is strongly /c-step opaque. 

Our transformation proceeds in three steps: 

1. If Gcso is not deterministic, we determinize it by Transformation 4.5. 

2. We construct a DES G^sso with one additional observable event @ 
using Transformation 5.19. 

3. We use Transformation 4.3 to reduce the number of observable events 
of Gk-sso by one. 

Since the first and third step follow from Transformations 4.5 and 4.3, we only 
describe the second step, that is, the construction of Gk-sso over S U {@}. 

file:///w/aw2
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Figure 5.8: Transforming current-state opacity to strong k-step opacity, for 
an arbitrary parameter k G N ^ . 

Transformation 5.19. Let Gcso — (Q>E,(5, go) be a deterministic DES 
with the secret states Qs, the non-secret states QNS, and the corresponding 
projection P: S* —> £*. We construct a DES 

Gksso = ( Q U {g s, q„s}, E U {@}, 5', g0) 

where g s and g n s are new states and @ is a new observable event. The 
transition function 5' is initialized as the transition function 5 of the system 
Gcso and further extended as follows, see Figure 5.8 for an illustration: 

1. for every secret state q G Qs, we add the transition (q, @, qs) to 6', and 

2. for every non-secret state q G QNS, we add the transition (q, @,qns) 
to 5'. 

We define the projection P': (S U {@})* ->• (S 0 U {@})*, and the sets of 
secret states Q's — {qs} and of non-secret states Q'NS — Q U {gVis} • o 

Notice that Transformation 5.19 can be done in polynomial time and 
that it preserves determinism. It is also independent of the parameter k, and 
therefore works for any k G N Q O without affecting the size of the resulting 
system Gk-sso-

Intuitively, since there is no extension from the unique secret state qs, 
there is always a corresponding (trivial) extension from every non-secret 
state. Consequently, we can apply Transformation 4.3 to Gk-sso and en­
code new event @ in binary without affecting strong /c-step opacity of the 
system Gk.Sso-
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Figure 5.9: A n example of the transformation of the CSO problem (left) to 
the fc-SSO problem (right). 

Remark 5.20. Transformation 5.19 can also be used to remove neutral states 
from the system, so can we think of it as a transformation from current-state 
opacity with neutral states to current-state opacity without neutral states. 

We now provide an illustrative example. 

Example 5.21. Let G over £ = {a, b, c} depicted in Figure 5.9 (left) be 
an instance of the CSO problem from Example 3.6 with the secret states 
Qs = {2} and the non-secret states QNS — {5}. Transformation 5.19 of 
CSO to /c-SSO then results in the DES G' depicted in Figure 5.9 (right) with 
a new observable event @ and two new states qs and qns, where qs is the 
unique secret state of G'. We distinguish two cases depending on whether 
event c is observable or not. 

If event c is unobservable, then G is current-state opaque, because the 
only string leading to the secret state, state 2, is the string a, for which the 
string ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac). 
Then, the reader can see that G' is strongly /c-step opaque, for any k £ Noo, 
because the only possible string leading to the secret state, state qs, is the 
string a@, for which there is the string ac@ such that P'(a@) — P'(ac@) and 
G' never enters a secret state by generating S'(l, ac@). 

If event c is observable, then G is not current-state opaque, since now 
we have Piac) ^ P(a). Consequently, the reader can verify that G' is not 
current-state opaque since S'(l, P ' _ 1 P' (a@)) = {qs}, and hence G' is neither 
strongly /c-step opaque, for any parameter k £ N Q Q . O 

The following theorem justifies the correctness of Transformation 5.19. 

Theorem 5.22. A DES Gcso is current-state opaque with respect to Qs, 
QNS, and P if and only if the DES Gk-sso obtained by Transformation 5.19 is 
strongly k-step opaque, for any parameter k £ N ^ , with respect to Q's and P'. 
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Proof. Assume that the DES Gcso is not current-state opaque. Then, there 
exists a string w G S* that leads the system Gcso to a secret state, while 
every string that looks the same as the string w leads the system Gcso out 
of non-secret states. Then, in the system Gk-sso, generating the string w@ 
ends up in the secret state qs G 5'(go, w@) n Q's. Since generating any string 
that looks the same as the string w leads the system Gcso to a state out 
of non-secret states, we have that 5'(q0, P'~xP'(w@)) H Q'NS = 0. Therefore, 
the system Gk-sso is not current-state opaque, and hence neither strongly 
fe-step opaque, for any parameter k G N Q O . 

On the other hand, assume that the system Gcso is current-state opaque, 
and let the string st G LiGk-sso) be such that the string s leads the system 
Gk-sso to a secret state and the string t may be generated from this secret 
state in Gk-sso, formally S'(6'(q, s) n Q's,t) ^ 0. Since Q's contains a single 
secret state with no outgoing transition, then the string s is of the form 
s = S\@, where Si does not contain @, and t — e. By construction, generating 
the string s\ in Gcso ends up in a secret state. Since the system Gcso is 
current-state opaque, there is a string s[ G P _ 1 P ( s i ) such that generating s\ 
in Gcso ends up in a non-secret state. Then, by generating the string s[@, 
Gk-sso ends up in the non-secret state qns and for every prefix w £ s[@ we 
have 5'(qa,w) 0 Q's. Therefore, if we take the string s' = s[@, then Gk-sso 
never enters a secret state and P'(s') = P'(s) = P'(st), showing that the 
system Gk-sso is strongly /c-step opaque, for any parameter k G N Q O . • 

In Theorem 4.7 we showed that the problem of deciding current-state 
opacity of a DES modeled by a DFA with three events, one of which is un-
observable, is PSPACE-complete . Transformations 5.19 and 4.3 allow us to 
transform instance of this problem to the problems of deciding weak and 
strong /c-step opacity while preserving determinism and the number of ob­
servable events. Thus, we can state the following result. 

Corollary 5.23. Given a natural number k represented by 0( log(/c)) bits 
and a DES G. The problems of deciding whether the system G satisfies weak 
k-step opacity and strong k-step opacity are PSPACE-hard. The problems 
remain PSPACE-hard even if the system G is a DFA with three events, one 
of which is unobservable. 

Since weak oo-step opacity is a special case of weak /c-step opacity, the 
previous corollary also implies PSPACE-hardness for weak oo-step opacity. 
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5.4.2 The case of |S 0 | = 1 
To preserve the number of observable events, the general transformation 
relies on the binary encoding of events by Transformation 4.3. However, the 
encoding requires at least two observable events in Gcso, and hence it is 
not applicable to systems with a single observable event. For these systems, 
we provide a separate transformation that requires to add k + 1 new states, 
and therefore the size of the resulting system is linear with respect to the 
parameter k G N . 

Let the current-state opacity problem with a single observable event be 
represented by a DES GQSO without neutral states. We transform it to a 
DES Gl_sso in such a way that GQSO is current-state opaque if and only if 
Gtsso 1S strongly /c-step opaque. 

Without loss of generality, we assume that GQSO is deterministic, as we 
can always use Transformation 4.5 to determinize it. We further assume that 
in GQSO , there are no non-secret states that can be reached from a secret state 
by any sequence of unobservable events, formally S(Qs, P _ 1 ( e ) ) n QNS — 0-
We describe this property with respect to current-state opacity of the system 
in the following lemma. 

Lemma 5.24. A DES G is current-state opaque with respect to Qs, QNS, 
and P if and only if G is current-state opaque with respect to Q's — Qs — R, 
Q'NS = QNS U R, and P, where R={qseQs\ S(qa, P^(e)) D QNS + 0}-

Proof. We show that any state X C Q in the observer Gobs of G contains 
a non-secret state from QNS if and only if X contains a non-secret state 
from Q'NS- Evidently, if X contains a non-secret state from QNS, then X 
also contains a non-secret state from Q'NS, since QNS =̂ Q'NS' ^ n the other 
hand, let q G X n R be a newly added state to Q'NS? then there is another 
state p G QNS such that p G 5(q, P ^(E)), and therefore p G X n QNS-

Transformation 5.25. Let GQSO — (Q,T,,5,qo) be a deterministic DES 
with a single observable event S G = {a}, the secret states Qs, the non-secret 
states QNS — Q — Qs, and the corresponding projection P: S* —> {a}*. By 
Lemma 5.24, we assume that S(Qs, P _ 1 ( e ) ) n QNS — 0- We construct a DES 

Glsso = (Q u • • •. £ u {«}, 5', qo) 

by adding k + 1 new non-secret states and a new unobservable event u. The 
transition function 5' is initialized as the transition function 5 of the system 
GQSO and further extended as follows, see Figure 5.10 for an illustration: 
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RCSO 

\(s) QNS (7); 

Figure 5.10: Transforming current-state opacity with a single observable 
event to strong k-step opacity. 

1. for every state q G Q, we add a new transition (q, u, q£) to 5'; 

2. for every state q*, where i € { 0 , . . . , k — 1}, we add a new transition 

(?f.o.?i+i) t o <*'• 

The set of secret states Qs remains unchanged in Gk-sso, while all other 
states are non-secret. We extend the projection P to P': ( E U { M } ) * —> {a}, o 

Notice that Transformation 5.25 can be done in polynomial time and that 
it preserves determinism and the number of observable events. 

Remark 5.26. It seems that adding k new states to the system cannot be 
avoided, since for k > \Q\ the problem of deciding strong k-step opacity of 
a system with a single observable event can be solved in polynomial time. 
First, we search the system for a cycle containing only non-secret states and 
at least one observable transition. Then, we verify if the system is strongly 
k-step opaque in the first \Q\ observable steps before the cycle is reached (if 
it exists). Clearly, both conditions can verified in polynomial time. 

We now provide an illustrative example. 

Example 5.27. Let G over £ = {a,u{\ depicted in Figure 5.11 (left) be an 
instance of the CSO problem with a single observable event S G = {a}, the 
set of secret states Qs — {2}, and the set of non-secret states QNS — {1)3}. 
Transformation 5.25 of CSO to 2-SSO results in the DES G' depicted in 
Figure 5.11 (right) with a new unobservable event U2, the set of secret states 
Qs, and the set of non-secret states Q'Ns — QNS U {QQ, Q*, Q^}- We consider 
two cases based on the presence of the unobservable transition (1, m, 2) in G. 
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«1 

Figure 5.11: A n example of the transformation of the CSO problem with a 
single observable event (left) to the k-SSO problem (right); the secret states 
are squared and all other states are non-secret. 

We first assume that the transition (l,ui,2) exists in G. Then, G is 
current-state opaque because the only string leading to the secret state, state 
2, is the string a, for which the string u\a leading to the non-secret state, state 
3, satisfies that P(a) — Piaui). The reader can verify that G' is strongly 
2-step opaque, because for every string s £ L(G') there is a string with the 
same observation that does not go through a secret state in last 2 observable 
steps. If |-P'(s)| < 2, then there is a string u2aa and its prefixes such that G' 
never enters a secret state. If \P'(s) \ > 2, then there are strings W\ — U\au2aa 
and w2 = aau2aa such that each prefix w\ £ Wi with \P'(wi) \ — \P'(w'A\ < 2, 
where i £ {1, 2}, leads G' to one of the non-secret states 3, q*, or q%. 

If the transition (1, u\, 2) is not present in G, then G is not current-state 
opaque, and therefore G' is not strongly 2-step opaque. Indeed, by observing 
a string aaa £ P(L(G')) the intruder knows that G' has visited the secret 
state 2 during last two steps, since for every string with the same observation, 
such as u>i = au2aa and w2 — aau2a, there exists prefix w' — a such that 
\aaa\ - \P'(w')\ < 2 and 6'(l,w') = 2 £ Qs. o 

The following theorem justifies the correctness of Transformation 5.25. 

Theorem 5.28. A DES G c s o with a single observable event SG = {a} is 
current-state opaque with respect to Qs, QNS> and P if and only if the DES 
Gtsso obtained by Transformation 5.25 is strongly k-step opaque with respect 
to Qs and P'. 

Proof. Assume that the DES GCSo is not current-state opaque. Then, there 
exists a string w £ S* that leads the system G c s o to a secret state, while 
every string that looks the same as the string w leads the system GCSo out 
of non-secret states. Since there are no neutral states in G c s o , we denote 
Z — S(qo, P~1P(w)) C Qs the set of secret states under observation of P(w). 
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In G%_sso, we have that S'(qo, P ' _ 1 P ' (u; ) ) fl Q — Z and string uak can be 
generated from every state in Z. Let s = wuak £ L(Gk-sso) be a string that 
can be generated in G%._sso. We show that by generating any v £ L(Gl_sso) 
with P'(s) = -P'(v) the system G%_sso must have visited a secret state in 
last k observable steps. If 5'(q0,v) £ Q, then there is a prefix v' £ v such 
that < % 0 , O £ Z and |P'(V)I = l p ' ( v ) l ~k = \P(w)\. On the other hand, 
if S'(qo,v) £ { ^ Q , . . . , g£}, then i> is of the form i> = Viuv2, where \uv2\ < fc. 
Thus, there is a prefix v[ £ Vi such that |P'(i>i)| = |P'(v)| — k — \P(w)\ 
and S'(qo,v[) £ Z. Since Z C Qs, the system G^sso is not strongly fc-step 
opaque. 

On the other hand, assume that the system G c s o is current-state opaque 
and let s £ L(G%._sso). We show that there is w £ L(G%._sso) such that 
P'(s) — P'iw) and for every w' £ w, if |P'(u;)| — |P'(u>')| < k, then (5'(go; W') 0 
Qs- We consider two cases depending on the length of string s. If £ = \s\ < k, 
then for w = uae we have that P'(s) = P'(w) and G%_sso does not go through 
a secret state by generating 5'(q0,w). Indeed, q$, •••,q% are non-secret by 
the construction of G%_sso and go is non-secret by Lemma 5.24, current-
state opacity of G c s o , and by the fact that 5(q0, P _ 1 (e ) ) fl Qws 7^ 0- If 
£ = |s| > k, then by current-state opacity of G c s o there is v £ L(Gcso) 
such that 5(<7OĴ ) G Qws and |P(i>)| = |P '(s)| — k. By Lemma 5.24, we 
have that S(qo,v') £ QNS for every prefix v' £ v with P(v) = Piv'). In 
^fc-ssO' ^ n e sequence i> can be extended by uak such that P'(s) = P'(vuak). 
Therefore, the string w = vuak is such that P'(s) = P'iw) and G%._sso does 
not go through a secret state in last k observable steps by generating w. 
Altogether, Gf._sso is strongly /c-step opaque. • 

In Theorem 4.8 we showed that the problem of deciding current-state 
opacity of a DES with a single observable event is coNP-complete. Trans­
formation 5.25 allows us to generalize the hardness part of this result to 
strong /c-step opacity. However, the transformation is linear with respect to 
the parameter k, and therefore we consider k to be encoded in unary in the 
following corollary. 

Corollary 5.29. Given a natural number k represented in unary and a DES 
G with a single observable event. The problem of deciding whether the system 
G satisfies strong k-step opacity is coNP-hard. 
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Figure 5.12: Transforming current-state opacity to weak k-step opacity, for 
an arbitrary parameter k G N ^ . 

5.5 C S O to k-SO 

In this section, we describe the general transformation from current-state 
opacity to weak /c-step opacity that uses neutral states to preserve the number 
of observable events without the help of Transformation 4.3. Notably, unlike 
the transformations discussed in the previous section, Transformation 5.30 is 
applicable to systems that have both neutral states and a single observable 
event, and the resulting system will still have a single observable event. 

Let the current-state opacity problem be represented by a DES Gcso-
We transform it to a DES Gk-so m such a way that Gcso is current-state 
opaque if and only if Gk-so is weakly fc-step opaque. 

Transformation 5.30. Let Gcso — (Q,^,S,I) be a DES with the se­
cret states Qs, the non-secret states QNS, and the corresponding projection 
P: £* -> £*. We construct a DES 

G ^ s o = ( Q U { g * } , £ U { « } , ( * ' , / ) 

where it is a new unobservable event and q* is a new neutral state. The 
transition function 5' is initialized as the transition function 5 of the system 
Gcso a n d further extended as follows, see Figure 5.12 for an illustration: 

1. for each state q G QNS, we add a transition (g, u, q*) to 5'; 

2. for each a G £ , we add a self-loop (g*, a, g*) to 5'. 

We extend the projection P to the projection P': (E U {u})* —> £*. The sets 
Qs and QNS remain unchanged. o 

Notice that Transformation 5.30 can be done in polynomial time and 
that it preserves determinism and the number of observable events. It is 
also independent of the parameter k, and hence it works for any parameter 
k G NQO without affecting the size of the resulting system Gk-so-
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Figure 5.13: A n example of the transformation of the CSO problem (left) to 
the k-SO problem (right). 

Example 5.31. Let G over £ = {a, 6, c} depicted in Figure 5.13 (left) be an 
instance of the CSO problem from Example 3.6 with the set of secret states 
Qs = {2} and the set of non-secret states QNS — {5}- Transformation 5.30 
of CSO to k-SO then results in the DES G' depicted in Figure 5.13 (right) 
with a new neutral state q* and a new unobservable event u. We distinguish 
two cases depending on whether event c is observable or not. 

If event c is unobservable, then G is current-state opaque, because the 
only string leading to the secret state, state 2, is the string a, for which the 
string ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac). 
Then, the reader can see that G' is weakly /c-step opaque, for any k £ Noo, 
because the only possible extensions of the string a from the secret state 2 are 
of the form bl, for i £ N , and for every such extension there is an extension 
ubl of the string ac from the non-secret state 5 such that P'iab1) — P'(acubl). 

If event c is observable, then G is not current-state opaque, because the 
only string leading to a non-secret state, string ac, has a different observation 
than the string a leading to the secret state, that is, Piac) ^ P(a). Conse­
quently, the reader can verify that G" is not current-state opaque, and hence 
neither weakly /c-step opaque, for any parameter k £ N ^ . o 

The following theorem justifies the correctness of Transformation 5.30. 

Theorem 5.32. A DES Gcso is current-state opaque with respect to Qs, 
QNS, and P if and only if the DESGuso obtained by Transformation 5.30 is 
weakly k-step opaque, for any parameter k £ N ^ , with respect to Qs, QNS, 
and P'. 

Proof. Assume first that Gcso is not current-state opaque. Since the new 
state g* is neither secret nor non-secret, we have that G^so is not current-
state opaque either. Therefore, G^so is not weakly /c-step opaque, for any 
parameter k £ NQQ. 
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On the other hand, assume that Gcso is current-state opaque. Since the 
new state q* is neither secret nor non-secret, we have that G^so is current-
state opaque as well. Let st £ LiGk-so) be such that S'(S'(I, s) n Qs, t) ^ 0: 
in particular, S'(I,s) fl Qs ^ 0- Then, since Gk-so is current-state opaque, 
there exists s' £ L(Gk.So) such that P'(s') = P'(s) and 6'(I,s') n Qws ^ 0. 
By construction, s' can be extended by the string ut using the transitions to 
state q* followed by self-loops in state q*. Therefore, S'(6'(I, S')(1QNS, ut) ^ 0 
and P'(st) = P'(s'ut), which shows that G^so is weakly A;-step opaque, for 
any parameter k £ NQO. • 

In Theorem 4.8, we showed that the problem of deciding current-state 
opacity of a DES with a single observable event is coNP-complete. Trans­
formation 5.30 allows us to generalize the hardness part of this result to 
weak fe-step opacity. Unlike strong k-step opacity, the weak notion remains 
CONP-hard even for instances with the parameter k > \Q\, and therefore we 
can consider k to encoded in binary in the following corollary. 

Corollary 5.33. Given a natural number k represented by 0(log(k)) bits and 
a DES G with a single observable event. The problem of deciding whether 
the system G satisfies weak k-step opacity is coNP-hard. 

5.6 A>SO to C S O 

In this section, we discuss the transformations from weak k-step opacity to 
current-state opacity. The general transformation takes place in four steps, 
each of which is described in a separate subsection. Initially, we show how to 
transform weak oo-step opacity to current-state opacity in Subsection 5.6.1. 
The construction of a fe-step counter automaton of size polynomial in the log­
arithm of k is described in Subsection 5.6.2. The general transformation from 
weak k-step opacity to current-state opacity for systems that allow neutral 
states is presented in Subsection 5.6.3. In Subsection 5.6.4, we further modify 
the previous transformation so that the resulting system does not use neutral 
states. Since the general transformation relies on binary encoding of observ­
able events by Transformation 4.3, we provide separate transformations for 
systems with a single observable event in Subsections 5.6.5 and 5.6.6. Again, 
we distinquish two cases depending on the presence of neutral states in the 
system. 
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5.6.1 oo-SO to CSO 
Let the weak oo-step opacity problem be represented by a DES G^so- We 
transform it to a DES Gcso in such a way that Goo-so is weakly oo-step 
opaque if and only if Gcso is current-state opaque. Our transformation 
proceeds in two steps: 

1. We construct a DES Gcso with one additional observable event @ using 
Transformation 5.34. 

2. We use Transformation 4.3 to reduce the number of observable events 
of Gcso by one. 

Since the second step follows from Transformation 4.3, we only describe the 
first step, that is, the construction of Gcso over £ U {@}. 

Transformation 5.34. Let G^so — (Q,^,S,I) be a DES with the se­
cret states Qs, the non-secret states QNS, and the corresponding projection 
P: £* -> £*. We construct a DES 

Gcso = (Q U Q+ U Q~, £ U {@}, 8\ I) 

by creating two disjoint copies of the system G^so, denoted by G+ and G~, 
with disjoint state sets Q+ — {q+ \ q £ Q} and Q~ = {q~ \ q £ Q}, and 
with an additional observable event @ that connects the system G^so to 
the copies G+ and G~ by transitions (p, for every secret state p £ Qs, 
and (</, @, g~), for every non-secret state q £ QNS, see Figure 5.14. 

We define the projection P': (S U {@})* ->• (S 0 U {@})*, and the sets of 
secret states Q's — Q+ and of non-secret states Q'NS = Q U Q~. o 

Notice that Transformation 5.34 can be done in polynomial time using 
no neutral states and that it preserves determinism. 

Example 5.35. Let G over S = {a, 6, c} depicted in Figure 5.15 (left) be 
an instance of the weak oo-step opacity problem from Example 3.9 with the 
set of secret states Qs — {2} and the set of non-secret states QNS — {4}-
Transformation 5.34 of oo-SO to CSO then results in the DES G' depicted 
in Figure 5.15 (right) with a new observable event @, the set of secret states 
Q'o, and the set of non-sccrct states Qfj^g- again consider two cases based, 
on the observability status of event c. 
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Figure 5.14: Transforming weak oo-step opacity to current-state opacity. 

If event c is unobservable, then G is weakly oo-step opaque. Indeed, 
the only string leading to the single secret state, state 2, is the string a. 
The same string leads to the single non-secret state, state 4. Then, any 
possible extension of the string a from the secret state 2 is the string 64, for 
i £ N , which reaches state 3. However, for any such extension, there is an 
extension cbl from the non-secret state 4 with P(abl) — P(acbl). The reader 
can further see that G' is current-state opaque, because it can enter a secret 
state only after generating a string of the form a@64, i £ N , in which case 
5'(l,P'-\a@)) = {2+,4-,5-} and i ' ( l , P M ( a § 6 ' ) ) = {3+,5-} for i > 1, 
where states 4~ and 5~ are non-secret. 

If event c is observable, then G is not weakly oo-step opaque, because 
after generating string ab, the intruder can deduce that the system was in the 
secret state 2 one step ago. Similarly, after observing string a@b £ P'(L(G')), 
the intruder knows that G' is in the secret state 3 + , and hence the system 
G' is not current-state opaque. o 

The following theorem justifies the correctness of Transformation 5.34. 

Theorem 5.36. A DES Gooso is weakly oo-step opaque with respect to Qs, 
QNS, and P if and only if the DES Gcso obtained by Transformation 5.34 
is current-state opaque with respect to Q's, Q'NS, and P'. 

Proof. Assume that the system G^so is weakly oo-step opaque. To show 
that the system Gcso is current-state opaque, we consider a string w such 
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Figure 5.15: A n example of the transformation of the oo-SO problem (left) 
to the CSO problem (right). 

that S'(I, w) fl Q's ^ 0, and show that there is a string w' such that P'iw) — 
P'(w') and 5'(I, w')nQ'NS ^ 0. Since the set of secret states is Q's = Q+, the 
string w must be of the form u>i@u>2. By construction, there exists a secret 
state q G 5(1, Wi) fl Qs in G^so such that the state q+ G 5'(I, W\@) fl Q's in 
the system Gcso, and the string w2 is generated from the state q+. Therefore, 
we can generate the string w2 from the state q in G^so, that is, 5(5(1, W\) n 
Qs, w2) 7^ 0, and hence weak oo-step opacity of G^so implies that there is 
a string w[w'2 G L(Gao.so) such that P(w\) = P(w[), P(w2) = P(w'2), and 
5(5(1, w[) fl QNS, W'2) 7^ 0. If we define the string w' = w[@w2, then we have 
that P'(w) = P'(w') and we obtain that 0 ̂  5'(5'(I, w[@)nQ'NS, w'2) C Q'NS, 
which completes this part of the proof. 

If the system G^so is not weakly oo-step opaque, then there exists a 
string st G L (Goo. so) such that 5(5(1, s)DQs, t)^$ and 5(5(1, s')nQNS, f) = 
0 for every string s't' G L(Goo-so) with P(s) = P(s') and P(t) = P(t'). 
Taking the string s@t G L(GCso), we obtain that 0 ̂  s@) n Q's, t) = 
5'(I,s@t) C Q' s and, for every string s W G L ( G C s o ) with P'(s@t) = 
P'(s'@t'), we have that <*'(/, s W ) n <3'ws = 5'(5'(I, s'@) n <3'ws, £') = 0, and 
hence the system Gcso is not current-state opaque. • 
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«n-l 

Figure 5.16: The NFA Ak of Theorem 5.38. 

We now apply our transformations to solve the open problem concerning 
the complexity of deciding weak oo-step opacity. Transformation 5.34 allows 
us to transform an instance of weak oo-step opacity decision problem to 
a current-state opacity decision problem that can be solved in polynomial 
space. Combined with the PSPACE -ha rdness of weak oo-step opacity from 
Corollary 5.23, we can generalize Theorem 4.7 for weak oo-step opacity. 

Corollary 5.37. The problem of deciding whether a DES satisfies weak 
oo-step opacity is P'SPACE-complete. The problem remains P'SPACE-complete 
even if the system is a DFA with three events, one of which is unobservable. 

5.6.2 /c-step counter 
Before proceeding to the general transformation for weak fc-step opacity, we 
define an automaton to serve as a /c-step counter. Informally, we construct 
an NFA Ak of size polynomial in the logarithm of k such that the observer 
of the automaton Ak has a unique path of length k consisting solely of non-
marked states, while all the other states are marked. This path plays the 
role of a /c-step counter, which is essential in the following transformations. 

Theorem 5.38. For every integer k > 1, there is an NFA Ak with n — 
[~log2(&; + 1)] events and 2n + 1 states, such that the automaton Ak marks 
all strings except for the unique string Wk of length k and all its prefixes. 

Proof. Let k > 1 be given, and let n = [~log2(&; + 1)]. We recursively define 
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the string Zn over the alphabet £ „ = {a 0 , a i , . . . , a n_i} as follows: 

Z\ — ao and = Zi-idi-iZi-i for 1 < i < n. 

For example, Z3 — Z2a2Z2 = Z\a\Z\a2Z\a\Z\ — a0aiaoa2a0aiao. Such 
strings are known in the literature as Zimin words, and it is well-known that 
the string Zn is of length 2 n — 1 [45]. We denote the suffix of the string 
Zn of length k by W^. It is also known that the event on the £th position 
of the string Zn is a,j, where j is the number of trailing zeros in the binary 
representation of £ [46]. Since the string Zn is a palindrome, the same event 
appears on positions £ and 2n — 1 — £. For instance, since 2 is encoded as 10 
in binary, the event at the second positions from both sides of the string Z3 

is CL\. 

Let ftn-i&n-2 • • - bo be the binary representation of k, that is, k = 6 n _i • 
2«-i _j_ bn_2 • 2n~2 + • • • + bo • 2°, where the leftmost bit is the most significant 
bit; in particular, we have that bn-i — 1. We construct the NFA 

Ak = (Q,^n,5,I,F) 

where the set of states Q — {q*} U {q\, q® \ i = 0 , . . . , n — 1} consists of the 
state q* and of two states q] and qf for every bit bi of the binary representation 
of k; the state q* is the only marked state, that is, F — {q*}; and the 
transition function 5 is defined as follows, see Figure 5.16 for an illustration: 

1. For every event a £ E„, the self-loop (q*, a, q*) £ 5; 

2. For every state q], 

(a) the transition (qj,ai,q^) £ 5; 

(b) the self-loop (q\, cij, q}) £ 5, for 0 < j < i — 1; 

(c) the transition (q^1, a ,̂ qj) £ 5, for 0 < j < z — 1; 

(d) the transition (q\, cij, q*) £ 6, for z + 1 < j < n — 1; 

3. For every state q°, 

(a) the transition (q°,aj,q*) £ 5; 

(b) the self-loop (q°, a,, q°) £ 6, for 0 < j < i — 1; 

(c) the other transitions are undefined. 
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Figure 5.17: The NFA Ae, where the initial states are diamond-shaped. 

Finally, the set of initial states is defined as the set 

corresponding to the states encoding k in binary. 
Before we show that the automaton Ak marks all strings over the alphabet 

S n other than the prefixes of the string Wk, we illustrate the construction. 
We consider k = 6, for which n — 3 and the binary encoding of 6 is 110. 
Since the string Z3 — aoaia0a2a0aia0, its suffix of length 6 is the string 
We = aia 0 a 2 a 0 aiao. The automaton Ae is depicted in Figure 5.17, where 
the initial states are q\, q\, and q$ corresponding to the bits of 110. For 
the computation of the automaton Ae on the string We = aiOoo^aoaiao, see 
the observer of the automaton Ae depicted in Figure 5.18. It is clear from 
the observer that the automaton Ae does not mark any prefix of the string 
We = aia0a2a0aia0, and that it marks all strings different from the string We­

lt remains to show that the automaton Ak marks all strings except for 
the prefixes of the string Wk • We first show that the automaton Ak does not 
mark any prefix of the string Wk, and then we show that the automaton Ak 
marks all strings that do not form a prefix of the string Wk- To show that 
the automaton Ak does not mark any prefix of the string Wk, we prove the 
following lemma. 

Lemma 5.39. The observer of the automaton A^-\ having generated the 
prefix of the string ZN of length £ < 2n — 1 is in the state {q^Li , Qn"L2

2, • • •, QQ0}, 
where r n _ i r n _ 2 • • • r 0 is the number 2n — 1 — £ in binary. 

O Q , ai, a,2 

're-1 'Hn-2 : 
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Figure 5.18: The minimized observer of the NFA A% showing the behavior 
of the NFA AQ on the strings Z3 and WQ. The initial state of the automaton 
A% is denoted by the little arrow from above. 

Proof of Lemma 5.39. We prove the claim by induction on £. There is noth­
ing to prove for £ = 0, since 2 n — 1 is 11 • • • 1 in binary, corresponding to 
the initial state {<j£_i, Qn-2> • • • > Qo} °f the observer of the automaton «4 2"-i-
We now assume that the claim holds for £ > 1, and we show that it holds 
for £ + 1. By induction, we have that the observer of the NFA Ai^-\ hav­
ing generated the prefix of the string Zn of length £ < 2n — 1 is in the state 
Wn-i > > • • • > Qo°}i where r n _ i r n _ 2 • • • r 0 is 2n—1—£ in binary. Let rt be the 
rightmost non-zero bit of r n _ i r n _ 2 • • • r$. Then, there are t trailing zeros, and 
hence the event of the string Zn at position £+1 is at. By the definition of the 
NFA Ai^-i, the transition under at is undefined in states g ° _ 1 ; . . . , q^, and it 
is a self-loop in states q!^Li, • • •, cfc+i • The transitions from the state q\ under 
the event at lead to states ql_i,..., q\ and to the state q®. Thus, generating 
the event at, the observer of A^-\ moves from the state {q^-i , 0^-2 > • • • > Qo°} 
to the state {qr

n

nSi , qr

n

nS2

2, • • •, <?[+i\ q\-i, • • •, q^}, which is a non-marked 
state binary representing the number 2 n — 1 — £ — 1 = 2n — 1 — (£ + 1), 
completing the proof of Lemma 5.39. • 

In particular, Lemma 5.39 implies that the NFA Ak corresponds to the 
automaton Ai^-\ having generated the prefix of the string Zn of length 2n — 
1 — k — \Zn\ — \Wk\ (recall that Wk is the suffix of Zn of length k), since, 
in this case, the automaton A^-x is in the states encoding the number 
2n — 1 — (2 n — 1 — k) — k. Consequently, the observer of the automaton Ak 
generating the string W f e event by event goes through the respective states 
representing the numbers k, k — 1,..., 0 in binary, which are not marked, 
and therefore the automaton Ak does not mark any prefix of the string Wk-
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Finally, to show that the automaton Ak marks all strings that do not 
form a prefix of the string Wk, assume that the observer of the automaton 
Ak is in a state of the form {q^Li , q^L^\ • • •, (Zo°} reached by a prefix w of 
the string Wk- Then, either Wk — waw' or Wk — w. In the former case, if 
the automaton Ak generates an event different from a, it reaches the marked 
state q*, while in the latter case, generating any event reaches the state 
q*. In both cases, the state q* then appears in every state of the observer 
of the automaton Ak from now on, which makes the state of the observer 
marked. • 

5.6.3 The general case with neutral states 
Even though the DES Gcso that results from Transformation 5.34 applied 
to a system G^so c a n verify weak oo-step opacity of the system G^so by 
checking current-state opacity of the system Gcso, it is not suitable to verify 
weak fe-step opacity of the system G^so', indeed, the system Gcso verifies 
any number of steps from the visited secret state rather than at most k steps. 
To overcome this issue, we extend Transformation 5.34 by adding a counter 
that allows us to count up to k observable events from a visited secret state. 

However, we cannot simply add k states to model the counter, because 
adding k states requires k steps in the transformation, which is exponential 
in the size (the number of bits) of the binary representation of k. Instead, 
we model the counter with the help of the automaton Ak from Theorem 5.38 
that can be constructed in time 0 ( log 2 ( / c ) ) . 

Let the weak /c-step opacity problem be represented by a DES Gk-so-
We transform it to a DES Gcso m such a way that Gk-so is weakly A;-step 
opaque if and only if Gcso is current-state opaque. 

Transformation 5.40. Let Gk-so — (Q>£>^>-0 be a DES with the secret 
states Qs, the non-secret states QNS, the corresponding projection P: S* —> 
£*, and the parameter k G N . We construct a DES 

Gcso = (Q',^',5',I) 

consisting of the original system Gk-so along with its two modified copies 
and a /c-step counter automaton. In more detail, we consider: 

• two disjoint copies G+ and G~ of the system Gk-so-, as in Trans­
formation 5.34, with disjoint state sets Q+ — {q+ \ q G Q} and 
Q~ = {q~ | q G Q}, respectively, and 
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• the fc-step counter automaton Ak constructed in Theorem 5.38. 

By construction, Ak is of size polynomial in the logarithm of k, and its ob­
server has a unique path of length k consisting solely of non-marked states, 
while all the other states are marked. However, before we connect the au­
tomata Gk-so, G+, G~, and Ak together, we note that the automata Gk-so, 
G+, and G~ are over the alphabet £ , while the automaton Ak is over the 
alphabet £ n , which is disjoint from £ . Therefore, we change the alphabets 
of the automata to 

£ = £ U ( £ 0 x £ „ ) . 

Namely, in G+ and G~, we replace every observable transition (p, a,q) by 
|E„| transitions (p, (a, j3), q), for every event j3 £ £„ , and we denote the 
results by G+ and G~. Similarly, in the automaton Ak, we replace every 
transition (p, j3, q) by | £ 0 | transitions (p, (a, j3), q), for every observable event 
a £ E G , and we denote the result by Ak-

Now, we construct a DES 

Gcso as a disjoint union of the automata Gk-so, G+, G~, and Ak, 

over alphabet E ' = E U {@}. We connect the parts of Gcso with the transi­
tions (p, @,p+) and (p, @, go), for every secret state p £ Qs and every initial 
state go £ 7 of Ak, and the transitions (g, @,g~), for every non-secret state 
g £ QNS, cf. Figure 5.19. 

We define the projection P': (E U {@})* -> ( E 0 U {@} U E 0 x E„)*, and 
the sets of secret states Q's = Q+ and of non-secret states Q'NS — Q~ U {g*}, 
where g* is the unique marked state of Ak- The other states are neutral, o 

Notice that Transformation 5.40 can be done in polynomial time in the 
size of the system and in the number of bits of the binary representation of k. 

In Gcso, every event after generating the event @ is either unobservable 
or pair of events of E G x E n . Therefore, in the sequel we denote strings over 
E U 0 U E 0 x E n , such as s — uia, x)uib, y), simply as a pair of the form E* x E * of 
concatenated strings of the corresponding alphabets, such as s — iuaub,xy), 
where u £ E u o , a, b £ E G , and x, y £ E n . 

Example 5.41. Let G = ( {1 , . . . , 8}, {a}, 5, {1, 2}) in Figure 5.20(a) be an 
instance of the weak 6-step opacity problem with a single secret state 1 and 
a single non-secret state 2. We distinguish two cases depending on whether 
state 8 is reachable or not. 
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Figure 5.19: Transforming weak k-step opacity to current-state opacity with 
neutral states; the initial states of Ak are diamond-shaped. 

If state 8 is reachable, then G is weakly 6-step opaque, since we can make 
six observable steps from both states 1 and 2. To encode k = 6, Transfor­
mation 5.40 of 6-SO to CSO uses the automaton A§ (see Theorem 5.38 and 
Figure 5.17), and results in the system G' of Figure 5.20(b), where the non-
secret states are marked. The minimized observer of the system G' is shown 
in Figure 5.20(c). Since every state of the observer that is reachable by a 
string containing @ is marked, it contains a non-secret state of the system 
G", and hence the system G' is current-state opaque. 

If we remove state 8 and the corresponding transition from the system 
G, then G is not weakly 6-step opaque, since we can make six observable 
steps from the secret state 1, but only five steps from the corresponding non-
secret state 2. The transformation results in the system G" coinciding with 
the automaton of Figure 5.20(b) without the states 8, 8 + , 8~, and the cor­
responding transitions. The minimized observer is shown in Figure 5.20(d), 
where the unique secret state (squared) denoting the state {7 + , q®, q®, q^} is 
reachable by the string @(a, ai)(a, a0)(a, a 2)(a, a 0)(a, ai)(a, a 0), that is, the 
system G" is not current-state opaque. o 

The following theorem justifies the correctness of Transformation 5.40. 

Gcso 

Theorem 5.42. A DES Gk-so is weakly k-step opaque with respect to Qs, 
QNS, and P if and only if the DES Gcso obtained by Transformation 5.40 
is current-state opaque with respect to Q's, Q'NS, and P'. 
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(c) The minimized observer of the system G'. 
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(d) The minimized observer of the system G' without the states 

Figure 5.20: A n example of the transformation of 6-SO to CSO with neutral 
states; the secret states are squared and the non-secret states are marked. 
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Proof. Assume that the system G^so is weakly /c-step opaque. We show 
that the system Gcso is current-state opaque. To this end, we consider a 
string w £ LiGcso) such that S'(I, w) n Q's ^ 0, and we show that there is a 
string w' £ P'~lP'(w) such that S'(I,w') fl QJVS ^ 0- Since the set of secret 
states is Q's = Q+, the string w must be of the form wi@(w2, x) and, by 
construction, 5(1, W\) contains a secret state of the system Gk-so from which 
the string w2 can be generated. 

If the string x is not the prefix of the unique string not marked by the 
automaton Ak, then Ak marks the string (w2,x), and hence Gcso reaches 
the non-secret state q* for w' — w, that is, q* £ 5'(I, wi@(w2, x)) n QJVS ^ 0-

If |P(u>2)| < then weak fe-step opacity of the system Gk-so implies the 
existence of a string w[w'2 £ L(Gk-so) such that P(w'l) — P(w\), P(w'2) — 
P(w2), and 5(5(1, w[) fl QNS, W'2) ^ 0; that is, there exists a non-secret state 
q £ 5(1, w[) from which the string w'2 can be generated, reaching a state r. 
Then, for the string w' — w'1@(w2, x), where the string x is the prefix of the 
unique string not marked by the automaton Ak of length |P(-u;2)|, we obtain 
that 5'(I,w') fl Q'NS 7^ 0, since the non-secret state r~ £ Q ~ is reachable 
from the state g~ in the system Gcso by the string (w'2, x). 

If |P(t«2)| > k, then every string w[@(w2, x) £ S'* is such that the string a: 
is marked by the automaton Ak, because the automaton Ak marks all strings 
longer than k, and hence the string (w'2, x) is marked by the automaton Ak, 
that is, 5'(I, w'1@(w'2, x))nQ'NS ^ 0. Altogether, the system Gcso is current-
state opaque. 

On the other hand, assume that the system Gk-so is not weakly fe-step 
opaque, that is, there exists a string st £ L(Gk-so) such that \P(t)\ < k, 
5(5(1, s) fl Qs,t) 0 and, for every string s' £ P _ 1 P ( s ) and every string 
£' £ p-lP(t), we have that 5(5(7, s') n QNS,?) = 0. Then, in particular, 
<*'(/, s@) n Q's ^ 0. 

If 5(1, s') n QAT S = 0, then <J'(7, s'@) n Q'NS = 0, and hence the system 
Gcso is not current-state opaque. 

If 5(1, s') n QNS = Z ^ 0, we consider any string s'@(t',y) £ L(GCso), 
where the string y is a prefix of the unique string not marked by the automa­
ton Ak, which exists because \y\ = \P(t')\ < k. Then, the strings (t,y) and 
(t', y) are not marked by the automaton Ak, and hence 5'(I, s@(t, y))(lQ's ^ 0 

and 5'(I, s'@(t>, y)) n Q'NS = S'([5'(I, s'@) n Q " ] , (f, y)) = 5 ' ( Z " , (*', y)) = 0, 

where the set Z~ — {z~ \ z £ Z}. Note that the string (£', y) is not generated 
in the system Gcso from a state of the set Z~, since the string t' cannot be 
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generated in the system G^so from any state z £ Z. Hence, the system 
Gcso is not current-state opaque. • 

5.6.4 The general case without neutral states 
Finally, we show how to transform weak fc-step opacity to current-state opac­
ity without employing neutral states by modifying Transformation 5.40. 

Transformation 5.43. Let G^so — (Q>E, 5,/) be a DES with the secret 
states Qs, the non-secret states QNS, the corresponding projection P: S* —> 
£*, and the parameter k £ N . We first perform Transformation 5.40 on 
Gk-so to obtain automata G + , G~, and Au over alphabet £ . Now, we make 
all the states of the automaton G+ initial and marked, and synchronize the 
computations of the automata G+ and Ak by their synchronous product 
G+\\Ak- We construct a DES 

Gcso — (Q1, S', I) as a disjoint union of Gk-so, G~, and 

connected together by transitions under a new observable event @ as follows: 

1. we add transition (q, @, (q+, q0)) to 5', for every secret state q £ Qs 
and every initial state (<?+,<?o) of G+||^4fc, and 

2. we add transition (q, @, q~) to 5\ for every non-secret state q £ QNS-

We define the projection P ' : ( E U {@})* -> ( E 0 U {@} U S „ x E„)*. The 
secret states Q's of the system Gcso are defined as the non-marked states 
of the system G+||^4fc, that is, the states of G+||^4fe where second part is not 
equal to q*. A l l the other states are non-secret, that is, Q'NS — Q' — Q's- ° 

Notice that Transformation 5.43 can be done in polynomial time in the 
size of the system and in the number of bits of the binary representation of the 
parameter k. Since this transformation does not preserve determinisn and 
the number of the observable events, we apply Transformations 4.3 and 4.5 
on the resulting system Gcso to reduce its number of observable events and 
to determinize it. 

Example 5.44. We again consider weak 6-step opacity of the DES G — 
({1 , . . . , 8}, {a}, 5, {1, 2}) from Example 5.41 with a single secret state 1 and 
a single non-secret state 2, cf. Figure 5.20(a). Transformation 5.43 of 6-SO to 
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CSO uses the NFA A% and results in the system G' depicted in Figure 5.21(a). 
We distinguish two cases depending on whether state 8 is reachable or not. 

If state 8 is reachable, then G is weakly 6-step opaque, because we can 
make six observable steps from both states 1 and 2. The minimized observer 
of the system G' is depicted in Figure 5.21(b). Since every state of the 
observer is marked, it contains a non-secret state of the system G', that is, 
the system G' is current-state opaque. 

If we remove state 8 from the system G, then the system G is not weakly 
6-step opaque. The transformation results in the system G' that coincides 
with the NFA of Figure 5.21(a) without the states containing 8, 8 + , 8~, 
and the corresponding transitions. The minimized observer is shown in Fig­
ure 5.21(c), where the secret state {(7 + , q$), (7 + , gj), (7 + , q2))} (single cir­
cled), containing the secret states of the automaton G+||^4fc, is reachable by 
the string @(a, ai)(a, a 0)(a, a2)(a, a 0)(a, ai)(a, a 0), that is, the system G' is 
not current-state opaque. o 

The following theorem justifies the correctness of Transformation 5.43. 

Theorem 5.45. A DES Gk-so is weakly k-step opaque with respect to Qs, 
QNS, and P if and only if the DES Gcso obtained by Transformation 5.43 
is current-state opaque with respect to Q's, Q'NS, and P'. 

Proof. Assume that the system Gk-so is weakly /c-step opaque. We show 
that the system Gcso is current-state opaque. To this end, we consider a 
string w £ LiGcso) such that 5'(I, w) fl Q's ^ 0, and show that there exists 
a string w' £ P ' _ 1 P ' (u ; ) such that 5'(I, w') n Q'NS ^ 0. Since the set of secret 
states Q's consists of non-marked states of the automaton Cr+||ylfc, the string 
w must be of the form w\@(w2, x) and, by construction, 5(1, W\) contains a 
secret state of the system Gk-soi from which the string w2 can be generated. 

If |P(u>2)| < k, then weak fe-step opacity of the system Gk-so implies the 
existence of a string w[w2 £ L(Gk-so) such that P(w'1) — P(w\), P(w'2) — 
P(w2), and 5(5(1, w[)r\QNs, w2) ^ 0; in particular, there is a non-secret state 
q £ 5(1, w[) from which the string w'2 can be generated, reaching a state r. 
Then, for the string w' — w'1@(w2, x), where the string x is the prefix of the 
unique string not marked by the automaton Ak of length \P(w2)\, we obtain 
that 5'(I,w') fl Q'NS 7^ 0, since the non-secret state r~ £ Q~ is reachable 
from the state q~ in the system Gcso by the string (w'2, x). 

If |P(u>2) | > k or x is not the prefix of the unique string not marked by the 
automaton Ak, then, for every string w'1@(w'2, x) £ L(Gcso), the string x is 



CHAPTER 5. TRANSFORMATIONS AMONG OPACITY NOTIONS 72 

(a) The DES Gf with a relevant part of the automaton (5+||„4e. 

[a,o.[)) T la,floj 

fa,ai) 1@ (a,ail 

(a, 0.2) <^^. (fl) o-2 J 

I a, ao) (a, aoJ 

(a, ai) (a, ai 1 

(a, 0.2) (fl) o-2 J 

(a, ao) (a, 0.0) I a, ao J 

(a, ai) (a, ai) (a, ai 1 

(a. 0.2) 0.2) z ^ ^ , (o, « 2 ) 

(b) The minimized observer of the system Gl. 

a, a
0
 ] 

- m (a, ai) a, ai) 

a a 

a a 
(a. an) 
fa, ai) 
(a. 0.2) 

r r (a,a
0
] 

S£ L a i 

o 

(c) The minimized observer of the system G' without the states 8, 8 + , 8 . 

Figure 5.21: A n example of the transformation of 6-SO to CSO without 
neutral states; non-secret states are marked, other states are secret. 
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marked by the automaton Ak, and hence the string (w'2, x) is marked by the 
automaton G+||^4/t because Lm(G+\\Ak) = Lm(G+) \\ Lm(Ak) and (w'2,x) 
belongs to both Lm(G+) and Lm(Ak)- In particular, S'(I, Wi@(w2,x)) n 
Q'NS 7^ 0; a n ( i hence the system Gcso is current-state opaque. 

On the other hand, assume that the system Gk-so is not weakly fe-step 
opaque, that is, there exists a string st £ LiGk-so) such that \P(t)\ < k, 
5(5(1, s) fl Qs,t) ^ 0 and, for every string s' £ P~1P(s) and every string 
f £ P-xP(t), we have that 5(5(1, s')nQNS, t') = 0. Then, 5'(I,s@)nQ's ^ 0. 

Now, if 5(1, s') r\QNS = 0, then so is 5'(I, s'@) n = 0, and hence the 
system Gcso is not current-state opaque. 

Otherwise, if 5(1, s') fl QNS — Z 0, w e t a k e a n Y string s'@(t',y) £ 
L(Gcso)-> where the string y is a prefix of the unique string not marked 
by the automaton Ak, which exists because \y\ — \P(t')\ < k. Then, 
the strings (t,y) and (t',y) are not marked by the automaton C7+||^4fc, and 
hence 5'(I,s@(t,y)) n Q's ^ 0 and <J'(/, s'@(t',y)) n <9'ws = 5'([5'(I,s'@) D 
Q-],( t ' , y )) = 5'(Z-,(t',y)) = 0, where the set Z " = {z" | z £ Z}. Note 
that the string (t', y) is not generated in the system Gcso from a state of the 
set Z~, since the string t' cannot be generated in the system Gk-so from any 
state of z £ Z. Therefore, the system Gcso is not current-state opaque. • 

We now apply our transformations to solve the open problem concern­
ing the complexity of deciding weak fe-step opacity. Transformation 5.43 
allows us to transform an instance of weak /c-step opacity decision problem 
to a current-state opacity decision problem that can be solved in polynomial 
space. Combined with the PSPACE -hardness of weak /c-step opacity from 
Corollary 5.23, we can generalize Theorem 4.7 for weak /c-step opacity. 

Corollary 5.46. Given a natural number k represented by 0(log(k)) bits 
and a DES G. The problem of deciding whether the system G satisfies weak 
k-step opacity is P'SPACE-complete. The problem remains P'SPACE-complete 
even if the system G is a DFA with three events, one of which is unobservable. 

5.6.5 The case of |S 0 | = 1 with neutral states 
To preserve the number of observable events, our transformation of weak 
fe-step opacity to current-state opacity relies on binary encoding by Trans­
formation 4.3. This transformation requires at least two observable events 
in Gk-soi a n d hence it is not applicable to systems with a single observable 
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Figure 5.22: Transforming weak k-step opacity with a single observable event 
to current-state opacity. 

event. For these systems, we provide two different transformations. First 
one, which allows neutral states, requires to add at most a quadratic number 
of new states. 

Let the weak k-step opacity problem with a single observable event be 
represented by a DES G%_so. We transform it to a DES G c s o in such a 
way that Gl_so is weakly fe-step opaque if and only if G c s o is current-state 
opaque. 

Transformation 5.47. Let G%_so — (Q, S, 6,1) be a DES with a single 
observable event S G = {a}, the secret states Qs, the non-secret states QNS, 
the corresponding projection P: S* —> {a}*, and the parameter k £ N . We 
construct a DES 

Gcso = (Q',^,5',I) 

where 5' is initialized as 5 and modified as follows using the function ifk 
from Definition 2.6. For every state p £ Q with (fk{p) > 0, we add k new 
states pi,...,pk to Q' and k new transitions (p,a,pi) and (pj ,a,p i + i ) , for 
i = 1,..., A; — 1, to 6'. Finally, we replace every observable transition (p, a, r) 
in 5' by the transition (pfc, a, r). We initialize the sets Q's := Qs and Q'NS '•— 
QNS- For every state p £ with </?fc(p) = £ > 0, we add the corresponding 
states pi,... ,p£ to Q's and, for every g £ QNs with <̂ fc(g) = £ > 0, we add 
qi,... ,qe to Q'NS. o 

Notice that Transformation 5.47 preserves determinism and, by the fol­
lowing remark, requires to add at most n 2 states, and hence it can be done 
in polynomial time. 
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Figure 5.23: A n example of the transformation of the k-SO problem with a 
single observable event (left) to the CSO problem (right). 

Remark 5.48. It follows directly from Definition 2.6 of the function <pk that 
if k > \Q\, then a system with a single observable event is weakly k-step 
opaque if and only if it is weakly oo-step opaque. Therefore, we may consider 
k < \Q\, which also covers the case of weak oo-step opacity. 

We now provide an illustrative example. 

Example 5.49. Let G over £ = {a, u} depicted in Figure 5.23 (left) be an 
instance of the 2-SO problem with a single observable event E G = {a}, the 
set of secret states Qs — {1}, and the set of non-secret states QNS — {3}-
Then, ^ ( 1 ) — ̂ ( 3 ) = 2, and Transformation 5.47 of 2-SO to CSO results 
in the DES G' depicted in Figure 5.23 (right) with the set of secret states 
Q's and the set of non-secret states Q'NS. We consider two cases based on 
the presence of the unobservable transition (1, it, 3) in G. 

We first assume that the transition (1, it, 3) exists in G. Then, G is weakly 
fe-step opaque, for any k € Noo, because any string a1 leading from the secret 
state 1 is indistinguishable from the string ua1 that leads the system to 
the non-secret state 3. The reader can see that G' is current-state opaque, 
because a secret state is reachable only under a string of the form a1, for 
i € {0,1, 2}, and for any such string there is an indistinguishable string ua% 

reaching a non-secret state. 
If the transition (1, it, 3) does not exist in G, then G is not weakly 2-step 

opaque, because it is neither current-state opaque and neither G' is current-
state opaque. o 

The following theorem justifies the correctness of Transformation 5.47. 

Theorem 5.50. A DES G^,_so with a single observable event is weakly k-step 
opaque with respect to Qs, QNS, and P if and only if the DES G c s o obtained 
by Transformation 5.47 is current-state opaque with respect to Q's, Q'Ns> 
and P. 
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Proof. Assume that Gf_so is not /c-step opaque, that is, there is st G L(Gl_so) 
with \P(t)\ < k such that Ô(Ô(I, s) n Qs,ť) + 0 and Ô(Ô(I, P~1P(s)) n 
QÍV5: P _ 1 P ( ŕ ) ) = 0­ Let / : E * —> E * be a morphism such that /(a) = 
a f c + 1 and /(&) = 6, for a ^ b E E U O . Then, by construction, 0(1, s) = 
5'(I,f(s)), and hence 5'(I,f(s)) n <% ^ 0. If 5(7, P ^ s ) ) n Q w s = 0, 
then 5'(I,f(P­1P(s))) D Q'NS = 0 because 5(7, a') = 6'(I,f(s')) for any 
s' G P^1P(s), and G c s o ^ s n ° t current­state opaque. Otherwise, we de­

note by qs G ô(I, s) n Qs and g r e s G 5(1, P^1P(s)) fl Q J V S the states with 
maximal (pk(qs) and (pk(qns)­ Since Gl_so is not weakly /c­step opaque, 
'•Pk(<ls) > ¥>k(lns)­ Then, in G c s o , qs has exactly one outgoing observable 
transition and is followed by (pk(qs) — ľ secret states, while qns is followed 
by (pk(qns) < ľ non­secret states. Therefore, 5'(I, f(s)ae) n Q's ^ 0 and 
5'(I, f(s')ai)DQ'NS = 0 for any s' G P^1P(s), and hence G c s o is not current­

state opaque. 
On the other hand, assume that Gl_so is weakly /c­step opaque, and that 

5'(I, w)C\Q's ^ 0. We show that ô'(I, P­1P(w))nQ'NS ^ 0. Consider a state 
qs G 5'(I,w) fl Q's and a path 7r in G ^ S O leading to qs under w. Denote by 
p the last state of 7r that corresponds to a state of Gl_so; that is, p is not a 
new state added by the construction of G c s o . Since qs G Qs, we have, by 
construction, that p G Qs­ Then the choice of p partitions w — uv, where 
u, read along the path ir, leads to state p, and v — ae is a suffix of length 
£ < k. Let it' be a string such that f(u') = u. Then p E ô(I, u') n Qg. Since 
<Pk(p) > ^ there exists t such that P(ŕ) = a1 and 5(5(1,u') n Qs, ŕ ) ^ 0 
in Gl_so. Then weak /c­step opacity of G^_so implies that there exists u" 
and ť such that P(u') = P(u"), P(t) = P(ť), and 5(5(1, u") n Qws, í') ^ 0­

In particular, there is a state qns G 5(1,u") fl QATS with (pk(qns) > ^, and 
i '(J, / ( i i"))n(?^ ^ 0. Therefore, Í'(J, f(u")a?)nQ'NS ^ 0 and P(f(u")ae) = 
P(uv) — P(w), which completes the proof. • 

Transformation 5.47 allows us to transform an instance of weak /c­step 
opacity decision problem to a current­state opacity decision problem, while 
preserving a single observable event. Combined with the coNP­hardness 
of weak fe­step opacity with a single observable event from Corollary 5.33, 
we can generalize Theorem 4.8 for weak /c­step opacity. Additionally, Re­

mark 5.48 allows us to state the same result for weak oo­step opacity. 

Corollary 5.51. Given a natural number k represented by 0(log(k)) bits and 
a DES G with a single observable event. The problem of deciding whether 
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the system G satisfies weak k-step opacity is coNP-complete. Analogously, 
the problem of deciding whether the system G satisfies weak oo-step opacity 
is coNP-complete. 

5.6.6 The case of |S 0 | = 1 without neutral states 

To avoid introducing new neutral states into the system as in the previous 
transformation, we provide a separate transformation for cases where such 
states are not allowed. 

Let the weak k-step opacity problem with a single observable event be 
represented by a DES Ga without neutral states. Since the following trans­
formation does not change the structure of the system, we denote both the 
original and the resulting system simply by Ga. We transform the sets of 
secret and non-secret states of Ga in such a way that Ga is weakly fe-step 
opaque with respect to Qs and QNS if and only if Ga is current-state opaque 
with respect to Q's and Q'NS-

Transformation 5.52. Let Ga — (Q,T,,S,I) be a DES with a single ob­
servable event S G = {a}, the secret states Qs, the non-secret states QNS — 
Q — Qs, the corresponding projection P: S* —> {a}*, and the parameter 
k G N . We construct sets Q's and Q'Ns a s follows. We determine (in linear 
time) whether the language P(L(Ga)) is finite. 

(A) If so, we verify weak fc-step opacity of the system Ga in linear time by 
checking the subsets of states 5(1, P^1(d1)), for every i < \Q\ — 1. 

(Al) If the system Ga is weakly /c-step opaque, and hence also current-
state opaque, we define the sets of secret states Q's — Qs and of 
non-secret states Q'Ns — QNS-

(A2) If the system Ga is not weakly /c-step opaque, we define the sets 
of secret states Q's — Q and of non-secret states Q'Ns = 

(B) If the language P(L(Ga)) is infinite, we define the set of non-secret 
states Q'NS — {Q ^ QNS \ ¥>k(q) — k} using the function (pk from 
Definition 2.6, which assings to the state q the maximal number of 
observable steps that are possible from state q. Finally, we define the 
set of secret states to be Q's — Q — Q'Ns- ° 
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Notice that Transformation 5.52 can be done in polynomial time and that 
it does not change the structure of the system in any way. Analogously to 
Transformation 5.47, we can consider k < \Q\ by Remark 5.48. 

Example 5.53. Let G over £ = {a} depicted in Figure 5.24 be an instance 
of the weak /c-step opacity problem with a single secret state Qs = {2} and 
five non-secret states QNS — {1, 3,4, 5, 6}. Notice that the language P(L(G)) 
is infinite, and hence Transformation 5.52 applies option (B) to G. 

For the parameter k = 1, the system G is weakly 1-step opaque and the 
transformation results in the set of secret states Q's — {2, 6} and the set of 
non-secret states Q'NS = {1,3,4,5}. For example, the state 6 is now secret, 
since y>i(6) = 0 < k = 1, while for every q £ Q'Ns we have that ipi(q) = 1. 
The reader can see that G is current-state opaque with respect to Q's and 
Q'NS, because both strings a and aa that lead G to secret states also lead to 
non-secret states. 

For the parameter k = 2, the system G is not weakly 2-step opaque and 
the transformation results in the set of secret states Q's — {2, 5, 6} and the 
set of non-secret states Q'NS — {1,3,4}. Therefore, G is not current-state 
opaque with respect to Q's and Q'NS, since the string a leads G to states 2 
and 5, both of which are secret. o 

The following theorem justifies the correctness of Transformation 5.52. 

Theorem 5.54. A DES Ga with a single observable event E G = {a} is weakly 
k-step opaque with respect to Qs, QNS, and P if and, only if Ga is current-
state opaque with respect to Q's, Q'NS, and P defined by Transformation 5.52. 

Proof. If the system Ga is weakly /c-step opaque with respect to Qs, QNS, 
and P, either the language P(L(Ga)) is finite, and hence the system Ga 

is current-state opaque with respect to Qs, QNS, and P, or the language 
P(L(Ga)) is infinite. In this case, for every string w £ L(Ga), there is a 

Qs QNS 

Figure 5.24: The DES G from Example 5.53. 
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state q £ 5(1, P^1P(w)), such that <fk(q) — k. Since the system Ga is 
weakly /c-step opaque with respect to Qs, QNS, and P, for every secret 
state qs £ 5(I,P~lP(w)), there is a non-secret state gw £ 5(1 ,P~lP(w)) 
such that ipk(qns) > ¥>k(qs)', in particular, there is a non-secret state £ 
5(1, P^1P(w)) such that (pk(q'ns) = k, that is, £ Q J V S ; and hence the 
system Ga is current-state opaque with respect to Q'NS, Q's, and P. 

If the system G a is not weakly /c-step opaque with respect to Qs, QNS, 
and P, then either the language P(L(Ga)) is finite, and hence the system Ga 

is not current-state opaque with respect to Q's = Q, Q'NS — 0, and P, or the 
language P(L(Ga)) is infinite. In this case, there exists a string w £ L(Ga) 
and a secret state g s £ 5(1, P^xP(w)) such that ipk(qs) > ¥>k(qns) for every 
non-secret state qns £ 5(1 ,P^1P(w)). Hence, ipk(qns) < k for every non-
secret state qns £ 5(1, P-xP(w)) n Qws. Thus 5(7, P _ 1 P(u ; ) ) n = 0, 
which shows that the system Ga is not current-state opaque with respect to 

In this section, we show how to transform strong /c-step opacity to weak 
fc-step opacity. Our transformation proceeds in two steps. The first step 
of the transformation is called normalization and we also use it to describe 
the relationship between strong 0-step opacity and current-state opacity. The 
second step then transforms the normalized system to the weak /c-step opacity 
instance. 

5.7.1 Normalization 
In what follows, we call the systems where there are no unobservable tran­
sitions from secret states to non-secret states normal. For systems that are 
not normal, we provide a construction to normalize them, that is, we elimi­
nate unobservable transitions from secret states to non-secret states without 
affecting the property of being strongly /c-step opaque. 

Transformation 5.55. Let G — (Q,T,,5,qo) be a deterministic DES with 
the secret states Qs, the non-secret states QNS — Q — Qs, the corresponding 
projection P : S* —> £*, and the parameter k £ NQO. We construct a DES 

and P . • 

5.7 fc-SSO to k-SO 

G. norm (Qni ^; On, go) 
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Figure 5.25: A deterministic DES G (left) and its normalization Gnorm 

(right); the secret states are squared. 

where Qn — Q U Q' for Q' — {q1 \ q G Q} being a disjoint copy of Q, and the 
transition function Sn is defined as follows. We initialize 5n :— 5 and further 
modify it in the following four steps: 

1. For every p £ Qs, q G QNS, and u G £ u o , we replace the transition 
{p,u,q) by (p,u,q') in 5n. 

2. For every unobservable transition (p, it, q) in 5, that is, u G S u o , we add 
the transition (p',u,q') to 5n. 

3. For every observable transition (q,a,r) in 5, that is, a G S 0 , we add 
the transition (q',a,r) to 5n. 

4. We remove unreachable states and corresponding transitions. 

The set of secret states of Gnorm is the set — QsUQ'. The set of non-secret 
states QNS remains unchanged. o 

In the sequel, we call Gnorm the normalization of G. If G and Gnorm 

coincide, we say that G is normal. 

Example 5.56. To illustrate Transformation 5.55, consider the system de­
picted in Figure 5.25 (left). Its normalization G n o r m is depicted in the same 
figure (right). States 2 and 3 of G are secret, events a and b are observ­
able, and u is unobservable. The normalization Gnorm of G initially contains 
five new secret states 1', 2', 3', 4', 5'. Step (1) of Transformation 5.55 re­
places transitions (2, it, 4) and (3, it, 4) by (2, it, 4') and (3, it, 4'), respectively, 
step (2) adds four unobservable transitions (1', it, 2'), (2', it, 4'), (3', u, 4'), and 
(4', it, 5'), and step (3) adds the observable transitions (l ' ,a,3), (2', a, 4), 
(4', a, 5) and (5', 6, 5). Finally, step (4) eliminates unreachable states 1', 2', 
3', and the corresponding transitions. o 
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The following lemma compares the behaviors of the system G and its 
normalization Gnorm. 

Lemma 5.57. Let G = (Q,T,,5,qa) be a deterministic DES with the secret 
states Qs and the non-secret states QNS — Q — Qs- Let G n o r m be the nor­
malization of G obtained by Transformation 5.55. Then, for every w G S* 
and a G S 7 the following holds: 

1. For a G S U O ; 5(q0, wa) — p if and only if 5n(q0,wa) G {p,p'}> where 
p1 G Q1 is a copy of p G Q; 

2. For a G S 0 7 5(q0, wa) = 5n(q0,wa); 

3. LiG) = LiG 
norm I • 

Proof. We prove (1) and (2) by induction on the length of w. The induc­
tion hypothesis is that either 5(q0, w) — p — 5n(q0,w), or 5(q0, w) = p and 
Sn(q0,w) =p'. 

To prove (1), let a be unobservable. We first consider the case 5(q0, w) = 
5n(qo,w) — P- First, if p is non-secret, Transformation 5.55 adds every tran­
sition ip,a,q) G 5 to 5n. On the other hand, if p is secret, 5n contains the 
transition (p,a,q') for every transition (p,a,q) G 5 with q G QNS, and the 
transition (p, a, q) for every transition (p, a, q) G 5 with q G Qs- In both 
cases, Transformation 5.55 adds no other transition from state p to 5n, and 
hence 5(q0,wa) = 5(p,a) — q if and only if 5n(q0,wa) = 5n(p,a) G {q,q'}. 
Notice that this case also covers the base case of the induction, since for 
ic = £ w e have 5(q0, w) = 5n(q0, w) = go-

Now, we consider the case Sn(qo,w) = p' and 5(q0,w) = p. Since Trans­
formation 5.55 adds the transition (p', a, q1) to 5n for every unobservable 
transition (p,a,q) G 5, we have that 5(q0, wa) = 5(p,a) — q if and only if 
Sn(q0,wa) = Sn{p',a) = Q1-

To prove (2), let a be observable. We first consider the case 5(q0,w) = 
5n(q0,w) = p. Then, from the state p, Transformation 5.55 adds to 5n all 
and only the observable transitions of 5, and hence 5(p, a) = Sn(p, a). 

Now, we consider the case 5n(qo,vj) = p' and 5(qo,w) = p. Then, Trans­
formation 5.55 adds the transition (p', a, q) to 5n for every observable transi­
tion (p, a, q) G 5, and therefore 5(q0, wa) = 5(p, a) = 5n(p', a) = 5n(q0, wa). 

Finally, LiG) — LiGnorm) of (3) follows from (1) and (2), since, for every 
w G £*, 5iq0,w) is undefined if and only if 5niq0,w) is undefined. • 
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The following lemma describes the meaning of normalization and states 
the main properties of a normalized DES. 

Lemma 5.58. For a deterministic DES G = (Q,T,,5, qo) with the secret 
states Qs, the non-secret states QNS — Q — Qs, the observation P: S* —> £*, 
and the parameter k £ Noo, let Gnorm be the normalization of G obtained by 
Transformation 5.55. Then, the following holds true: 

1- Gnorm is deterministic; 

2. In Gnorm, there is no non-secret state reachable from a secret state by a 
sequence of unobservable events, i.e., 5n(Qn, P _ 1 ( e ) ) n (Qn — Qn) = 0; 

3. G is strongly k-step opaque with respect to Qs and P if and only if 
Gn0rra is strongly k-step opaque with respect to Qn and P. 

Proof. To prove (1), we analyze the steps of Transformation 5.55 creating 6n. 
First, 5n is defined as 5, which is deterministic. Then, step (1) replaces some 
unobservable transitions, which is an operation that preserves determinism 
of Sn. Step (2) adds the transition (p',u,q') for every unobservable transi­
tion (p,u,q) in G. Similarly, step (3) adds the transition (q',a,p) for every 
observable transition (q,a,p) in G. Since G is deterministic, steps (2) and 
(3) preserve determinism. Altogether, Gn0rm is deterministic. 

To prove (2), step (1) of Transformation 5.55 replaces all unobservable 
transitions from a secret state to a non-secret state by transitions from a 
secret state to a new secret state. Step (2) adds unobservable transitions only 
between the new states, which are all secret. Since no unobservable transition 
is defined from the new states to the old states, there is no non-secret state 
in Gnorm reachable from a secret state by a sequence of unobservable events. 

To prove the first direction of (3), we assume that G is strongly A;-step 
opaque with respect to Qs and P, and show that then Gn0rm is strongly /c-step 
opaque with respect to Qn and P. To this end, we show that for every string 
s £ L(Gnorm), there exists a string w £ L(Gn0rm) such that P(s) = P(w) 
and, for every prefix w' of w, if |-P(u>)l — \P(W')\ < k, then 5n(qo,w') 0 Qn. 
Thus, let s £ L(Gn0rm) be an arbitrary string. Then, by Lemma 5.57, s £ 
L(Gnorm) = L(G), and since G is strongly fe-step opaque with respect to Qs 
and P, there is a string w £ L(G) such that P(s) — P(w) and, for every prefix 
w' of w, if |-P(u>)| — |P(u>')| < k, then 5(q0,w') ^ Qs- By defining w — w, 
we obtain that the string w £ L(G) — L(Gn0rm) and that P(s) — P(w). 
It remains to show that for every prefix w' of w, if |-P(u>)| — |-P(u>')| < k, 
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then 5n(qo,w') G- Qf- To this end, let xy — w be the decomposition of w, 
where x is the shortest prefix of w such that |P(u>)| — < k. Then, x 
is either empty or ends with an observable event. Hence, by Lemma 5.57, 
S(qo, x) = 5n(qo, x) — q G Q in G. However, for every prefix y' of y, the string 
xy' is a prefix of w satisfying \P(w)\ — \P(xy')\ < k, and hence S(qo, xy') ^ Qs-
In other words, the computation of 5(q, y) in G does not go through a secret 
state, and therefore the same sequence of transitions exists in Gnorm, that is, 
5(qo, xy') — 5n(q0, xy') ^ Q% = Qs U Q'. Since every prefix w' of w satisfying 
\P(w)\ — \P(w')\ < k is of the form w' — xy', where y' is a prefix of y, we 
have shown that 5n(q0,w') Q%, which was to be shown. 

To prove the other direction, we assume that G is not strongly fe-step 
opaque with respect to Qs and P, and show that neither the Gnorm is strongly 
fc-step opaque with respect to and P. To this end, let s G L(G) be a 
string violating strong /c-step opacity in G; that is, for every w G L(G) such 
that -P(s) = Piw), there exists a prefix w' of u> such that \P(w)\ — \P(w')\ < k 
and 5(q0,w') — qw G Qs- However, by Lemma 5.57, u; G L(Gnorm) — L(G) 
and (5n(<?0, G {q w , q^,}. Since both states qw, q'w G = U Q ' are secret 
in Gnorm, we conclude that Gnorm is not strongly /c-step opaque with respect 
to Q f and P. • 

In the following theorem, we discuss the relationship between strong 
0-step opacity and weak 0-step (current-state) opacity for normal determinis­
tic DESs. This result characterizes the relationship between these two notions 
and fixes the claim of Ma et al. [35] stating that strong 0-step opacity reduces 
to current-state opacity, which is not the case as shown in Example 3.11. 

Theorem 5.59. A normal deterministic DES G = (Q,T,, 5, q0) is strongly 
0-step opaque with respect to Qs and P if and only if G is weakly 0-step 
opaque with respect to Qs, QNS — Q — Qs, and P. 

Proof. We first assume that G = (Q, S, 5, q0) is strongly 0-step opaque with 
respect to Qs and P. To show that G is weakly 0-step opaque with respect 
to Qs and P, let st G L(G) be such that \P(t)\ < 0 and 5(q0, s) G Qs- Since 
st G L(G) and G is deterministic, 5(q0,st) is defined. Therefore, we need to 
show that there is a string s't' G L(G) such that P(s) = P(s'), P(t) = P(t'), 
and 5(q0, s') G QNS — Q — Qs- However, since G is strongly fc-step opaque 
with respect to Qs and P, there is a string w G L(G) such that Piw) — P(st) 
and, for every prefix w' of w with |P(u>)| — |P(u/)| = 0, S(qo,w') G Q — Qs-
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Let w' be any, but fixed, such prefix of w. We set s' = w' and s't' — w. 
Then, P(s') = Piw') = Piw) = P(st) = P(s), Pit') = e = Pit), and 
3(QO, s') — d(qo, W') G Q — Qs = QNS- Thus, we have shown that G is weakly 
0-step opaque with respect to Qs and P. 

For the other direction, we assume that G is not strongly 0-step opaque 
with respect to Qs and P. To show that G is neither weakly 0-step opaque 
with respect to Qs and P, we need to find a string st G LiG) with \P(t)\ < 0 
and 5(q0,s) G Qs such that, for every string s't' G LiG) with P(s) = P(s') 
and P(t) = P ( ť ) , the state S(qo,s') G Qs- However, from the assumption 
that G is not strongly 0-step opaque with respect to Qs and P , we have 
a string s i G LiG) such that 5(q0, s) G Qs, \P(t)\ < 0, and, for every 
string w G LiG) with P(st) = P(w), there is a prefix u>' of w such that 
P(u>)| — |P( i i / ) | = 0 and S(qo,w') G Qs- To complete the proof, we show 

that for every s't' G L(G) with P(s) = P(s') and P(i ) = P ( ť ) , the state 
S(qo,s') is secret. To this end, let xy = s't' be the decomposition of s't' 
such that y is the longest suffix of s't' consisting only of unobservable events. 
Notice that x is a prefix of s', because Pit') — Pit) — e. Since P(st) = 
P(x), there must be a prefix x' of x such that |P(x) | — |P(x') | = 0 and 
S(qo,x') G Qs- However, the last event of x is observable, and hence the 
only prefix x' of x for which |P(x) | — |P(x') | — 0 is x' — x, and therefore 
S(qo,x) = 6(qo,x') G Qs- Since G is normal, there are no non-secret states 
reachable from the secret state S(qo,x) under a sequence of unobservable 
events. In particular, 5(q0,s') = 5(q0,xy') G Qs, where y' is a prefix of y 
for which s' — xy'; recall that y is the longest suffix of s't' consisting only 
of unobservable events. Thus, we have shown that G is not weakly 0-step 
opaque. • 

5.7.2 Normalized /c-SSO to /c-SO 
Let the strong /c-step opacity problem be represented by a DES Gk-sso- We 
transform it to a DES G^so in such a way that G^sso is strongly fe-step 
opaque if and only if Gk-so is weakly /c-step opaque. In the construction, 
we assume that G^-sso is a normal deterministic DES. By Lemma 5.58, this 
assumption is without loss of generality, because if Gk-sso is not normal, 
then we can consider its normalization instead. 

Transformation 5.60. Let Gk-sso — {Q, £> 8, Qo) be a normal deterministic 
DES with the secret states Qs, the non-secret states QNS — Q — Qs, the 
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Gk-so 

Figure 5.26: Transforming strong /c-step opacity to weak /c-step opacity. 

corresponding projection P: S* —> £*, and the parameter k £ NQO. We 
construct a DES 

Gk.so = (Q U Q ' w s , E U { « } , 5', go) 

as a disjoint union of Gk-sso and Gns — (Q'NS,T,, 5ns, q'0), where Gns is ob­
tained from Gk-sso by removing all secret states and corresponding transi­
tions, and Q'NS — W I Q £ QNS] is a copy of Qws disjoint from Q. We 
use a new unobservable event u to connect Gns to Gk-sso so that we initial­
ize 5' := 5 U £ n s and extend 5' by additional transitions (q, u, q1) for every 
Q £ Qws, cf. Figure 5.26 for an illustration. The states of Q'NS are the only 
non-secret states of Gk-so-, that is, the set of secret states of Gk-so is the set 
Q's = Q- Finally, we define the projection P': (S U {u})* —> £*. o 

Notice that both Transformations 5.55 and 5.60 can be done in polyno­
mial time and that they preserve determinism and the number of observable 
events. In addition, they are independent of the parameter k, and hence they 
work for any k £ Noo without affecting the size of the resulting system Gk-so-

Example 5.61. Let Gnarm over S = {a, 6, u{\ depicted in Figure 5.27 (left) 
be the normalized instance of the strong fc-step opacity problem from Ex­
ample 3.11 with an unobservable event U\ and two secret states 5 and 6'. 
Since the non-secret state 6 was reachable in the original DES G only from 
the secret state 5 by an unobservable event, we replace it by the secret state 
6' in Gnorm. Transformation 5.60 of /c-SSO to k-SO then results in the DES 
G' depicted in Figure 5.27 (right) with a new unobservable event it 2 , a set 
of secret states Q'S that is equal to the set of states of the original system 
Gnorm-, and five new non-secret states Q'NS — {!'> 2', 3', 4', 7'}. We distinguish 
two cases depending on whether event b is observable or not. 
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Figure 5.27: A n example of the transformation of the /c-SSO problem (left) 
to the k-SO problem (right). 

If event b is unobservable, then Gnorm is strongly /c-step opaque for any 
k £ NQO, see Example 3.11 for an explanation. The reader can verify that in 
G', for every string st such that 5'(5'(1, s) n Q's, t) ^ 0, there is a string s't' £ 
^baa such that P'(s) = P'(s'), P'{t) = P'(t'), and S'(S('l, s') D Q'NS, t') ^ 0. 
Therefore, G " is weakly /c-step opaque, for any parameter k £ NQO. 

In the second case, we assume that event 6 is observable. In this case, 
Gnorm is not even strongly 0-step opaque as we have shown in Example 3.11 
for the original DES G. In G', we have 5'{l,P-1P{a)) = {5,6'} C Qs, 
therefore G' is not weakly 0-step opaque. o 

The following theorem describes the relationship between strong fc-step 
opacity and weak fe-step opacity, and justifies the correctness of Algorithm 4 
in Section 6.3. 

Theorem 5.62. A normal deterministic DES Gk-sso is strongly k-step 
opaque with respect to Qs and P if and only if the DES Gk-so obtained 
by Transformation 5.60 is weakly k-step opaque with respect to Q's, Q'NS, 
and P'. 

Proof. For the first implication, we assume that Gk-sso is strongly fe-step 
opaque with respect to Qs and P, and we show that Gk-so is weakly A:-step 
opaque with respect to Q's, Q'NS, and P'. To this end, let st £ LiGk-so) 
be such that |-P'(i)| < k and 5'(q0,s) £ Q's. We need to show that there 
is a string s't' £ L(Gkso) such that P'(s) = P'(s'), P'(t) = P'(t'), and 
5'(q0,s') £ Q'NS. 

Let Pu denote the projection that removes every occurrence of event u, 
that is, Pu{a) = a for a £ S, and Pu(u) = e. We first show that Pu(st) £ 
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L(Gksso)- Indeed, if st does not contain it, then Pu(st) — st £ LiGk-sso)-
If st contains it, then, by the construction of Gk-so, any string of LiGk-so) 
contains at most one occurrence of u. Since 5'(q0,s) £ Q's, we have that 
u occurs in t. Let st = stiutz- Then, there are states p, r £ Q in Gk-so 
such that (̂ (cfo,-s î) — P, 5'(p,u) = p\ and 5'(p',t2) = r'. However, by the 
construction, this means that 5(q0,sti) = p and 5(p, £2) = r in Gk-sso, and 
hence P u (s£) = st i t 2 £ L(Gk.sso)-

Since Gk-sso is strongly fc-step opaque with respect to Cjs and P , there 
exists a string u> £ LiGk-sso) such that P(Pu(st)) = P(w) and, for every 
prefix t«' of w, if |P(u>)| — |P(u>')| < k, then £(g 0,i«') ^ Qs- Since P'(st) = 
P(Pu(st)) = P(w), we define xy — w to be a (fixed) decomposition of u; such 
that P'(s) = P(s) and P'(t) = P(y). Then, \P{w)\ - \P{x)\ = \P'(st)\ -
\P'(s)\ = \P'(t)\ < k, which implies that 5(q0,x) = 5'(q0,x) = q for some 
state q that is not secret in Gk-sso- Therefore, the transition (q,u,q') £ 5', 
and hence 5'(q0,xu) = q' £ Q'NS. Since the state 5(q0,xy') £ Qs for every 
prefix y' of y, because xy' is a prefix of w with |P(u>)| — |P(xy') | < k, 
the computation of S(q,y) in Gk-sso does not go through a secret state. 
Therefore, the same sequence of transitions is enabled in G^so from state q'. 
Setting now s' — xu and t' — y implies that P'(s) — P'(s'), P'(t) — P'(t'). 
$'(QO, S') £ Q'NS, and 5'(q0, s't') is defined, which proves that Gk-so is weakly 
fc-step opaque. 

To prove the other direction, we assume that Gk-sso is not strongly /c-step 
opaque with respect to Qs and P , and we show that G^so is not weakly 
fc-step opaque with respect to Q's, Q'NS, and P'. To this end, we need to 
show that there is a string st £ LiGk-so) such that |P'(t)| < k, 5'(q0, s) £ Q's, 
and for every s't' £ L(Gk.so) such that P'(s) = P'(s') and P'(t) = P'(t'), 
the state 5'(q0, s') £ Q'NS-

However, since Gk-sso is not strongly fe-step opaque with respect to 
and P , there exists a string v £ LiGk-sso) such that, for every string w £ 
L(Gk-sso) with P(w) — P(v), there is a prefix w' of w such that |P(u>)| — 
\P(w')\ < k and 5(qo,w') £ Qs- In particular, there is a prefix v' of i> such 
that \P(v)\ - \P(v')\ < k and 5(q0,v') £ Q 5 . 

Let xy — v be the decomposition of v such that y is the longest suffix 
of v containing at most k observable events. We set s — x and t — y, for 
which we have that |P(t)| < k, S'(qo,st) is defined, and, since neither s nor 
t contains the event it, the state 5'(q0, s) £ Q's. It remains to show that for 
every string s't' £ L(Gkso) with P'(s') = P'(s) and P( t ' ) = P'(t), the state 
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fi'(Qa>s') QNS­ We distinguish two cases. 
In the first case, we assume that 5(q0, P^1P(s)) n QNS — 0, and we 

consider any string s'ť G L(Gk­so) such that P'(s') — P'(s) and P'(ť) — 
P'(t). If s' does not contain the event u, then s' G P~lP(s), and therefore 
5'(qo, s') = 5(qo, s') G Qs C Q's. If, on the other hand, s' contains the event 
it, then s1 — S1US2 where neither s\ nor s 2 contains the event u. But then 
fi'(Qa>s') — r', where r' is a copy of r — 5(q0,SiS2)- Since Sis 2 G P _ 1 P ( s ) , 
the state r = 5(go, Sis 2) G Qss and hence r' £ Q'Ns °y construction. In both 
cases, 5'(q0, s') £ Q'NS, which was to be shown. 

In the second case, let 5(q0, P _ 1 P ( s ) ) n QNS — Z ^ 0, and consider any 
string s'ť G L(Gk.so) with P'(s') = P'(s) and P ' ( ť ) = P'(t). Using the 
projection P„ removing the event u, we set z := Pu(s'ť) G LiGk­sso)­ Recall 
that the string s i does not contain the event it, that is, P'(st) = P(st), and 
therefore P(z) = P(Pu(s't')) = P'(s't') = P'(st) = P(st) = P(v). Since 
Gk­sso is not strongly /c­step opaque with respect to Qs and P , there is a 
prefix z' of z such that |P(z)l — l ^ ( z ' ) l ^ ^ and qs :— 5(q0,z') G Qs­ In 
particular, by the choice of s, we have that |P(s)| < |P(z') | . Furthermore, 
Gk­sso is normal, and hence there is no non­secret state reachable from the 
secret state qs by a sequence of unobservable events. 

In particular, the prefix Pu(s') of the string z = Pu(s')Pu(ť) satisfies 
P(Pu(s')) = P'(s') = P'(s) = P(s), where the last equality comes from 
the fact that s does not contain the event u. Then Pu(s') G P _ 1 P ( s ) , and 
hence if 5(q0, Pu(s')) G QNS, then 5(qo,Pu(s')) G QNS H Z. Thus, assume 
that S(qo, Pu(s')) G QNS H Z. Then, the string Pu(s') is a strict prefix of 
z'; otherwise, if z' was a strict prefix of Pu(s'), then we would have that 
\P(z')\ < |P(P„(s ' ) ) | = \P(s)\, which, together with \P(s)\ < \P(z')\, would 
give that |P(^')I = = and hence the non­secret state 
qns — S(qo, Pu(s')) would be reachable from the secret state qs by a sequence 
of unobservable events, which is a contradiction with the normality of Gk­sso­

Consequently, generating the string Pu(ť) from the state qns, Gk­sso must 
go through the secret state qs. In other words, qs is reachable from the state 
qns by a prefix of Pu(ť). 

Thus, in Gk­so, state S'(q0,s') G {qns,Q'ns}, where q'ns G Z' = {q' \ q G 
Z} C Q'NS. If S'(q0,s') = qns G Q's, we are done. If S'(q0,s') = q'ns G Q'NS, 
we show that S'(q'ns,ť) is undefined, which contradicts the assumption that 
s'ť G LiGk­so)­, and hence 5'(go,s') = G Q'^g cannot happen. Indeed, 
if S'(qa,s') G Q'JV5, then Pu(ť) = ť. Since the computation of S(qns,ť) = 
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S(qns, Pu(t')) in Gk-sso goes through the secret state qs, the computation 
of 5'(q'ns,t') in Gk-so has to go through the state q's, which is the primed 
copy of the state qs. But the computation S'(q'ns,t') is performed in the 
automaton Gns, which is obtained from Gk-sso by removing all secret states 
and corresponding transitions. Since q's is a copy of a secret state, it does 
not exist in Gns, and hence it does not belong to Q'NS. Therefore, S'(q'ns,t') 
is undefined. 

We have thus shown that Gk-so is not weakly /c-step opaque. • 

We now apply our transformations to solve the open problem concerning 
the complexity of deciding strong /c-step opacity. Transformation 5.60 allows 
us to transform an instance of strong /c-step opacity decision problem to a 
weak fc-step opacity decision problem. Combined with the PSPACE -hardness 
of strong fe-step opacity from Corollary 5.23 and PSPACE-completeness of 
weak fc-step opacity from Corollary 5.46, we can generalize Theorem 4.7 for 
strong /c-step opacity. 

Corollary 5.63. Given a natural number k represented by 0( log(/c)) bits 
and a DES G. The problem of deciding whether the system G satisfies strong 
k-step opacity is P'SPACE-complete. The problem remains P'SPACE-complete 
even if the system G is a DFA with three events, one of which is unobservable. 

Analogously, we generalize Theorem 4.8 for systems with a single observ­
able event using Transformation 5.60 together with coNP-hardness of strong 
k-step opacity from Corollary 5.29 and coNP-completeness of weak k-step 
opacity from Corollary 5.33. 

Corollary 5.64. Given a natural number k represented in unary and a DES 
G with a single observable event. The problem of deciding whether the system 
G satisfies strong k-step opacity is coNP-complete. 
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Chapter 6 

Verification of opacity 

In this chapter, we introduce three new algorithms for verifying language-
based opacity and trace opacity (Algorithm 1), weak fe-step opacity (Algo­
rithm 2), and strong /c-step opacity (Algorithm 4). Note that our algorithms 
for /c-step notions are applicable with the parameter k — oo, and thus can 
also verify weak and strong oo-step opacity. 

Each section contains an analysis of the complexity of the proposed algo­
rithm, as well as a comparison with previously existing results. 

6.1 Verification of L B O and T O 

The algorithmic complexity of deciding whether a given DES is language-
based opaque with respect to given secret and non-secret languages has been 
investigated in the literature. L in [34] suggested an algorithm with the com­
plexity 0 (2 2 n ) , where n is the order of the state spaces of the automata 
representing the secret and non-secret languages. The same complexity has 
been achieved by Wu and Lafortune [50] using the transformation to current-
state opacity. We improve this complexity with Algorithm 1. 

The language-based opacity verification problem consists of a DES G, a 
projection P: S* —> £*, a secret language L$ — L(As) given by the non-
blocking automaton As, and a non-secret language LN$ — L(ANS) given 
by the non-blocking automaton ANS- The complexity improvement of Algo­
rithm 1 comes from solving the language inclusion problem P{Ls) Q P(LNS) 
by the intersection of the projected automaton P(As) with the observer 
co-A^g, instead of the intersection of two observer structures as in [34]. 

91 
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Algorithm 1 Verification of language-based opacity 

Require: A DES G — (Q, E , 6,1), automata As and ANS, and E „ C E 
Ensure: true if and only if G is language-based opaque with respect to 

Ls = L(AS), LNS = L(ANS), and P: £* Z*0 

Compute the complement co-A°^s

s of A°^s

s 

Compute the instersection automaton C — P(As) H co-A^ s 

Compute the projected automaton P(As) of As 
Compute the observer A^s of ANS 

lobs 
VNS 0 1 ^NS 

if Lm(C) = 0 then 
return true 

else 
return false 

end if 

We now prove the correctness of our algorithm. 

Theorem 6.1. A DES G is language-based opaque with respect to Ls, LNs, 
and P if and only if Algorithm 1 returns true. 

Proof We have P(LS) C P(LNS) if and only if P(LS) D co-P(LNS) = 0, 
where CO-P(LNS) stands for E* — P(LNS)- We represent P(Ls) by the pro­
jected automaton P(As) and co-P(LNs) by the complement of the observer 
of ANS, denoted by co-A0^s- The problem is now equivalent to checking 
whether the language of P(As) fl co-A°^s

s is empty which means to search 
the structure for a reachable marked state. • 

We now discuss the complexity of our algorithm. 

Theorem 6.2. The space and time complexity of Algorithm 1 is Oijii2n2) 
and 0( (ni + m)2n2), respectively, where n\ is the number of states of the 
automaton As, n2 is the number of states of the automaton ANS, ond m is 
the number of transitions of P(As)- In particular, m < ln\, where I is the 
number of observable events. 

Proof. The projected automaton P(As) has n\ states and m transitions, and 
co-A^s, has at most 2™2 states and £2n2 transitions. Therefore, we search the 
automaton P(AS) n co-A^s that has at most 0 (n i2 n 2 ) states and 0(m2n2) 
transitions. Since m > £, the proof is complete. • 
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6 6 

(a) The case of c e E, (b) The case of c e E, 

Figure 6.1: The relevant part of the intersection automaton C for both ob­
servability cases of the event c. 

Notice that Algorithm 1 can be used to verify trace opacity, since Re­
mark 5.16 provides a procedure for constructing automata As and ANS from 
the trace opacity problem instance. Since the size of As is at most twice the 
size of the original n-state system and ANS has exactly n states, we obtain 
the same complexity 0((n + m)2n) also for verifying trace opacity. 

Another use of the algorithm is verification of the special case of initial-
and-final-state opacity considered in [50]. If the secret and non-secret pairs 
are of the form Qs — Is x Fs and QNS — INS x FNS, where Is, INS ^ I and 
FS,FNS ^ Q, then we use languages of As — (Q,T,,5,Is,Fs) and ANS — 

(Q, S, 6, INSI FNS) for the secret and non-secret languages, respectively. 

Example 6.3. To illustrate the algorithm, we use the DES G from Exam­
ple 3.2. Again, we distinguish two cases depending on whether event c is 
observable or not. Since As does not have any unobservable transition, then 

In the case of c € S u o , the G is language-based opaque, and hence the 
intersection automaton C does not contain any marked state, cf. Figure 6.1(a) 
for an illustration. In particular, C does not mark any string in the language 
P(Ls) H CO-P(LNS) — 0) and therefore Algorithm 1 returns true. 

On the other hand, if c G S G , then G is not language-based opaque and 
the intersection automaton C contains marked state (3, 0), see Figure 6.1(b). 
Therefore, Algorithm 1 returns fa l se because observing any string from 
P(L>s) n CO-P(LNS) — abb* violates language-based opacity. o 

This particular version of the algorithm for verifying weak fc-step opacity 
was presented in [10], which was itself a revision of our previous algorithm 
from [7]. Initially, we provide an overview of the algorithm and its use of 

P(AS) = As. 

6.2 Verification of k-SO 
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Algorithm 2 Verification of weak /c-step opacity 

Require: A DES G = (Q, £ , 5,1), Qs, QNS C f t E „ C £, and k € Noo. 
Ensure: true if and only if G is weakly /c-step opaque with respect to Qs, 

QNS, a n d P : £ * ^ £ : 

1: Set Y := 0 
2: Compute the observer G o 6 s of G 
3: Compute the projected automaton -P(G) of G 
4: for every state X of G o 6 s do 
5: for every state x E X (1 Qs do 
6: add state (x, X n Q J V S ) to set Y 
7: end for 
8: end for 
9: Construct H as the part of the full observer of G accessible from the 

states of the second components of Y 
10: Compute the product automaton C — P(G) x H 
11: Use the Breadth-First Search (BFS) of Algorithm 3 to mark all states of 

C reachable from the states of Y in at most k steps 
12: if C contains a marked state of the form (q, 0) then 
13: return false 
14: else 
15: return true 
16: end if 

Breadth-First Search. Following that, we analyse the time and space com­
plexity of the algorithm and compare it with previously existing algorithms. 

We remind that the weak /c-step opacity verification problem consists of 
a DES G, a projection P: S* —> £*, a set of secret states Qs C Q , a set of 
non-secret states QNS Q Q, and parameter k £ N ^ . Note that the system 
may contain neutral states. 

In Algorithm 2 we describe our new algorithm verifying weak k-step opac­
ity. The idea of the algorithm is as follows. We first compute the observer 
of G, denoted by Gobs, and the projected automaton of G, denoted by P(G). 
Then, for every reachable state X of Gobs, we add the pairs ix,X n QNS) 
to the set Y, where x is a secret state of X and X n QNS is the set of all 
non-secret states of X. Intuitively, in these states, the intruder estimates 
that G may be in the secret state x or in the non-secret states of X n QNS-
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To verify that the intruder does not reveal the secret state, we need to check 
that every possible path of length up to k starting in x is accompanied by a 
path with the same observation starting in a non-secret state of XCIQNS- T O 

this end, we construct the automaton H as the part of the full observer of G 
consisting only of states reachable from the states forming the second com­
ponents of the pairs in Y, and the automaton C — P{G) x H as the product 
automaton of the projected automaton of G and H. In C, all transitions are 
observable, and every path from a secret state x is synchronized with all the 
possible paths with the same observation starting in the states of X n QNS-
Thus, if there is a path from the secret state x of length up to k that is not 
accompanied by a path with the same observation from a state of X n QNS, 
then this path from the state x in P(G) ends up in a state, say, q, whereas 
all paths in H with the same observation from the state X n QNS end up in 
the state 0. Here, X (1 QNS and 0 are understood as the states of the full 
observer of G. Thus, if the DES G is not weakly /c-step opaque, there is a 
state of Y from which a state of the from (q, 0) is reachable in at most k 
steps. Therefore, we search the automaton C and mark all its states that are 
reachable from a state of Y in at most k steps. If a state of the from (q, 0) 
is marked, then G is not weakly /c-step opaque; otherwise, it is. 

We prove the correctness of Algorithm 2 and analyze its complexity in 
detail below. Intuitively, the correctness follows from the fact that the BFS 
visits all nodes at distance d before visiting any nodes at distance d + 1. 
In other words, all states of C reachable from the states of Y in at most 
k steps are visited (and marked) before any state at distance k + 1. The 
implementation of the BFS is, however, the key step to obtain the claimed 
complexity. Namely, the classical BFS of [18] maintains an array to store the 
shortest distances (aka the number of hops) of every node to an initial node. 
Since storing a number less than or equal to k requires log(k) bits, using the 
classical BFS requires the space of size 0(\og(k)n2n) to store the shortest 
distance of every state of C to a state of Y, because C has 0(n2n) states. 

For our purposes, we do not need to know the shortest distance of every 
state to a state of Y, but we rather need to keep track of the number of hops 
from the states of Y made so far. 

We can achieve this by modifying the classical BFS so that we do not store 
the shortest distances for every state of C, but only the current distance. We 
store the current distance in the queue used by the BFS, see Algorithm 3. 
In particular, we first push number 0 to the queue, followed by all the states 
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Algorithm 3 The Breadth-First Search used in Algorithm 2 

Require: A DES G = (V, £ , 5,1), a set S C V, k G Noo 
Ensure: (7 with all states at distance at most k from the states of S marked 

1: Initialize the queue Q :— 0 
2: Enqueue number 0 to Q 
3: Mark every node s G S and enqueue it to Q 
4: Color every node u £ V — S white 
5: while Q ̂  0 do 
6: it := D E Q U E U E ( Q ) 

7: if u £ V and u — k then 
8: Terminate, states at distance < k were visited 
9: else if u £ V and u < k then 

10: Enqueue u + 1 to Q 
11: else if it G V is a state of G then 
12: for every state v reachable in one step from u do 
13: if the color of v is white then 
14: Mark state v and enqueue it to Q 
15: end if 
16: end for 
17: Color u black 
18: end if 
19: end while 

of Y. Assuming that k > 0, number 0 is processed in such a way that it 
is dequeued from the queue, and number 1 is enqueued. After processing 
all the states of Y from the queue, that is, having number 1 at the head of 
the queue, we know that all the elements of the queue after number 1 are 
the states at distance one from the states of Y and not less. The algorithm 
proceeds this way until it has either visited all the states of C or the number 
stored in the queue is k. The algorithm marks all states of C that it visits. 

This approach requires to store only one log(/c)-bit number at a time 
rather than n2n such numbers, and hence the complexity of the algorithm 
then basically follows from the fact that the distance is bounded by the 
number of states of C, and not by the parameter k. 

Since Algorithm 3 is a minor modification of the BFS of Cormen et al. [18], 
very similar arguments show its correctness and complexity. For this reason, 
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(a) A DES G. (b) Automata Gobs and H. 

Figure 6.2: A DES G (a) and the observer Gobs (b), the solid part. The 
automaton H forming the relevant part of the full observer of G is obtained 
from Gobs by adding the dashed part; neither state 0 nor the missing transi­
tions to it are depicted in Gobs and H. 

a. b 

Figure 6.3: The reachable part of C\, where the single state of Y is denoted 
by the little arrow. 

we do not further discuss the correctness and complexity of Algorithm 3. 
Before we prove Theorem 6.6 below showing that G is weakly /c-step 

opaque if and only if no state of the form (-,0) is marked in C, we illustrate 
Algorithm 2 in the following two examples. 

Example 6.4. We consider weak 1-step opacity of the DES G depicted in 
Figure 6.2(a) where all events are observable, state 2 is secret, and state 4 
is non-secret. The other states are neutral, meaning that they are neither 
secret nor non-secret. The observer Gobs of G is depicted in Figure 6.2(b). 

Since G has no unobservable events, the projected automaton P(G) — 
G. Now, only the state X — {2,4} of Gobs contains a secret state, and 
hence intersecting it with Qs results in the set Y — {(2, {4})}. Notice that 
state {4} is not in the observer Gobs, and therefore we need to add it to 
H together with all the states that are reachable from state {4} in the full 
observer of G. The resulting automaton H is depicted in Figure 6.2(b) and 
is formed by the observer Gobs together with the dashed state {4} and the 
dashed transition from {4} to {5}. Notice that, by the definition of the (full) 
observer, all the missing transitions in Figure 6.2(b) indeed lead to state 0, 
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a 

(b) Automata Gobs and fl\ (a) The automaton P(G). 

Figure 6.4: The automaton P(G) (a) and the observer G (b), the solid 
part. The automaton H forming the relevant part of the full observer of 
G is obtained from Gobs by adding the dashed part; neither state 0 nor the 
missing transitions to it are depicted in Gobs and H. 

for instance, 5({l},b) = 5({5},a) = 0. However, to keep the figures simple, 
we do not depict state 0 and the transitions to state 0. The marked part of 
the automaton C\ — P(G) x H reachable from the states of Y in at most 
one step is depicted in Figure 6.3. Since state (3, 0) is marked in C i , G is not 
weakly 1-step opaque; indeed, observing the string ab, the intruder reveals 
that G must have been in the secret state 2 one step ago. o 

We now illustrate the affirmative case. 

Example 6.5. Again, we consider the DES G from Example 6.4, but this 
time we assume that the event c is unobservable. We denote by G the DES 
G where events a, b are observable, the event c is unobservable, state 2 is 
secret, and state 4 is non-secret. The projected automaton P(G) and the 
observer Gobs are depicted in Figure 6.4. The only state of Gobs containing a 
secret state is the state X — {2,4, 5}, which results in the set Y — {(2, {4})}. 
Again, state {4} is not in Gobs, and hence we construct the relevant part H 
of the full observer of G by extending Gobs by state {4} and all reachable 
states from it. The result (without state 0 and the transitions to state 0) is 
depicted in Figure 6.4(b), both the solid and the dashed part. The marked 
part of C2 — P{G) x H is depicted in Figure 6.5. Since no state of the form 
(•, 0) is marked in C2, G is weakly 1-step opaque. It is worth mentioning that 
state (3, 0) remains unmarked due to the fact that we need two steps from 
state (2, {4}) to reach it. o 

We now prove the correctness of our algorithm. 

Theorem 6.6. A DES G is weakly k-step opaque with respect to Qs, QNS, 
and P if and only if Algorithm 2 returns true. 
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b a,b 

Figure 6.5: The reachable part of C2, where the single state of Y is denoted 
by the little arrow. 

Proof. If G = (Q,T,,5,I) is not weakly fe-step opaque, then there is st G 
L(G) such that \P(t)\ < k, 5(5(1,s) n Qs,t) ± 0, and 6(5(1,P~1P(s)) n 
QNS, P _ 1 P ( £ ) ) = 0- We have two cases. 

(i) If 5(1, P~1P(s)) fl QNS — 0J then G is not weakly /c-step opaque. 
Algorithm 2 detects this case, because for the state X — 5(1, P~1P(s)) of 
the observer of G, we have that XDQS 2 5(1, s) DQS ^ 0 and XnQNS = 0, 
and hence there is q G X n resulting in adding the pair (g, 0) to the set 
Y in line 6. 

(ii) If 5(1, P-1P(s)) n Q w s = Z ^ 0, then all pairs from (5(7, P-1P(s)) D 
Qs) x {^} are added to V . Since 5(5(7, s) fl Qs,t) ^ 0, there is a pair 
(z, 2 ) 6 7 such that generating the string P(t) in the automaton P(G) from 
state z changes the state to a state q. On the other hand, 5(Z, P~xP(t)) — 0 
implies that generating Pit) in the full observer of G from state Z changes 
the state to state 0, and hence the pair (q, 0) is reachable in C from the state 
(z,Z) G Y in at most ^(t)) < k steps. In both cases, Algorithm 2 marks 
(q, 0), and returns fa lse . 

On the other hand, if G is weakly /c-step opaque, we show that no pair 
of the form (q, 0) is reachable in C from a state of Y in at most k steps. 
For the sake of contradiction, we assume that a pair (q, 0) is marked in C. 
However, this means that, in G, there is a string s and a state z G Q such 
that z G 5(1, s) n Q S J the state of the observer of G reached under the string 
P(s) is X — 5(1, P~1P(s)), and, for Z — XHQNS, the pair (q, 0) is reachable 
in C from the pair (z, Z) G Y by a string u> G S* of length at most k. In 
particular, there is a string t G P _ 1 ( t « ) such that when G generates t, it 
changes its state from z to q. Therefore, q G 5(5(1, s) fl Qs, t) ^ 0- However, 
5(J(7 ,P _ 1 P(s)) n QNS,P~\W)) = 5(Z,P-\W)) = 0, because generating w 
in C changes the pair (z, Z) to (q, 0), and hence the full observer of G changes 
its state from Z to 0 when generating u>. This shows that G is not weakly 
fc-step opaque, which is a contradiction. • 

We now discuss the complexity of our algorithm. 
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Theorem 6.7. The space and time complexity of Algorithm 2 is 0{n2n) and 
0{{n + m)2n), respectively, where n is the number of states of the input DES 
G andm is the number of transitions of P(G). In particular, m < in2, where 
I is the number of observable events. 

Proof. Computing the observer and the projected NFA of G, lines 2 and 3, 
takes time 0(£2n) and 0{m + n), respectively. The cycle on lines 4-8 takes 
time 0(n2n). Constructing the part H of the full observer of G, line 9, takes 
time 0(£2n). Constructing C, line 10, takes time 0(n2n+m2n), where 0(n2n) 
is the number of states and 0{m2n) is the number of transitions of C. The 
bounds come from the fact that we create at most 2n copies of the automaton 
P(G). The BFS takes time linear in the size of C, and the condition of line 11 
can be processed during the BFS. Since m > £, the proof is complete. • 

We now briefly review the complexity of existing algorithms verifying 
weak fe-step opacity. First, notice that the complexity of existing algorithms 
is exponential, which seems unavoidable because the problem is P S P A C E -

complete by Corollary 5.46. In particular, Saboori and Hadjicostis [41] de­
signed an algorithm with complexity 0(£(£+l)k2n), where n is the number of 
states and I is the number of observable events. Considering the verification 
of weak oo-step opacity, Saboori and Hadjicostis [42] designed an algorithm 
with complexity 0(£2n2+n). Y i n and Lafortune [52] introduced the notion of 
a two-way observer and applied it to the verification of weak /c-step opacity 
with complexity 0(min{n2 2 n , n£k2n}), and to the verification of weak oo-step 
opacity with complexity 0(n2 2 n ) ; the formulae already include a correction 
by Lan et al. [33]. In [7] we designed algorithms verifying weak /c-step opac­
ity and weak oo-step opacity with complexities 0((k + l )2 n (n + mi2)) and 
0((n + mt)2n), respectively, where m < in2 is the number of transitions in 
the projected automaton. These algorithms outperform the two-way observer 
if k is polynomial in n or larger than 2n — 2, since weak (2 n — 2)-step opacity 
and weak oo-step opacity coincide [52]. Wintenberg et al. [49] discussed and 
experimentally compared four approaches to the verification of weak /c-step 
opacity based on (i) the secret observer, (ii) the reverse comparison, (iii) the 
state estimator, and (iv) the two-way observer. Their respective state com­
plexities areO(2n( f c+3)), 0(n(k+ l )3 n ) , 0((£+l)k2n), and 0(min{2 n , i k }2 n ) . 1 

x The state complexity of the two-way observer is correct. The correction of Lan et 
al. [33] consists in adding a time bound to compute the intersection of two sets, and hence 
it does not influence the number of states. 
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Notice that these bounds are formulated only in the number of states of 
the constructed automata, disregarding the number of transitions and the 
time of the construction. Therefore, the time-complexity bounds differ from 
the state-complexity bounds at least by the factor of £, if the constructed 
automata are deterministic, or by a factor of m < in2 if the construction of 
the automaton involves an NFA, such as in the case of the reverse comparison. 
Namely, the time-complexity bounds are 0(£2n(k+3'>) for the secret observer, 
where n is the number of states and £ is the number of observable events, 
0((n+m)(k+l)2>n) for the reverse comparison, where m < £n2 is the number 
of transitions in an involved NFA, 0(£(£ + l)k2n) for the state estimator, and 
0(min{n2 2 n , n£k2n}) for the two-way observer. 

As the reader may notice, the above complexities depend on the param­
eter k. A partial exception is the two-way observer that does not depend on 
k if £ k > 2 n , that is, if k is larger than the number of states divided by the 
logarithm of the number of observable events. 

Since the complexity of Algorithm 2 is 0((n + m)2n), where n is the 
number of states of the input DES G and m < £n2 is the number of transitions 
of the projected automaton of G, it does not depend on the parameter k and, 
in general, outperforms the existing algorithms. A n exception is the case of a 
very small parameter k. In particular, if k < 2 log(n)/log(£), the algorithms 
based on the state estimator and on the two-way observer are, in the worst-
case, faster than our algorithm. Notice that this theoretical result agrees 
with the experimental results of Wintenberg et al. [49]. 

6.3 Verification of fc-SSO 

Theorem 5.62 gives us a clue how to verify strong /c-step opacity of a given 
deterministic DES with the help of the verification algorithm for weak /c-step 
opacity from the previous section. Given an instance of strong fe-step opacity 
problem, we first transform it into an instance of weak k-step opacity problem 
using Transformation 5.60, and then verify the property with Algorithm 2. 
This idea is formulated as Algorithm 4. 

The input of Algorithm 4 is the strong k-step opacity verification problem, 
which consists of a deterministic DES G, a projection P: S* —> £*, a set of 
secret states Qs C Q, and a parameter k G NQO. We remind that we do not 
consider neutral states, and therefore QNS — Q — Qs-

Algorithms verifying strong k-step opacity have been investigated in the 



CHAPTER 6. VERIFICATION OF OPACITY 102 

Algorithm 4 Verification of strong k-step opacity 

Require: A deterministic DES G — (Q,T,,6,qo), Qs C Q, S G C £, and 
k £ Noo. 

Ensure: true if and only if G is strongly k-step opaque with respect to Qs 
and P: £* -> £* 

1: Let Gnorm be the normalization of G by Transformation 5.55 
2: Transform Gnorm to G" by Transformation 5.60 
3: Use Algorithm 2 on G" with the set of secret states Q's, the set of non-

secret states Q'NS, observable events £ 0 , and k 
4: return the answer of Algorithm 2 

literature. In particular, Falcone and Marchand [21] designed an algorithm 
based on a /c-delay trajectory estimation, however, they did not analyze its 
complexity, and the complexity analyses in the literature are inconsistent. 
While Ma et al. [35] state that the complexity is 0(£2n +n), where n is the 
number of states and £ is the number of observable events of the verified 
deterministic DES, Wintenberg et al. [49] state that the state complexity is 
0((£+l)k2n). According to [21, Definition 7], however, the fc-delay trajectory 
estimator has 0(2nk+1'2k) states. 

Recently, Ma et al. [35] designed another algorithm with complexity 
0(£2^k+2~>n), and even more recently, Wintenberg et al. [49] discussed and 
experimentally compared algorithms based on (i) the secret observer with 
complexity 0(£(k + 3) n), on (ii) the reverse comparison with complexity 
0((n + m)(k + l )2 n ) , where m < £n2 is the number of transitions in the in­
volved projected NFA, and on (iii) the construction of the /c-delay trajectory 
estimator of Falcone and Marchand [21], which they claim to be of complexity 
0(1(1 + l)k2n). 

We now analyze the complexity of Algorithm 4 and show that its worst-
case complexity is better than the complexity of existing algorithms. Namely, 
we show that the space and time complexity of Algorithm 4 is 0(n2n) and 
0((n+m)2n), respectively, where n is the number of states of G and m is the 
number of transitions of P(G). Notice that the complexity does not depend 
on the parameter k. 

Before we prove this result, notice that m < £n2, where £ is the number 
of observable events. Since £n2 is the maximum number of transitions in an 
n-state NFA with £ events, m is often significantly smaller than £n2. 
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For a deterministic DES with n states, Transformation 5.55 results in 
a normalized DES with up to 2n states, and hence it may seem that the 
observer of the normalized DES could have up to 2 2 n states. The following 
lemma shows that the observer of the normalized DES has in fact at most 
2n states. 

Lemma 6.8. Let G be an n-state deterministic DES, and let Gnorm be its 
normalization obtained by Transformation 5.55. Then, the observer ofGnorm 

has at most 2n states. 

Proof. Let G = (Q, E , S, qo) be a deterministic DES with n states, and let £ u o 

be the set of unobservable events. The application of Transformation 5.55 on 
G results in the deterministic DES Gnorm = (Qn, £, Sn, q0), where Qn C QuQ' 
and Q' — {q1 \ q G Q} is a disjoint copy of Q. A l l states of Qn are reachable 
in Gnorm by construction. The observer G°n

b

0

s

rm = (Xobs, E 0 , 5obs, X0) of Gnorm 

is defined as follows. The set of states is the subset of the power set of Qn, 
namely, Xobs Q 2®n. The initial state is the unobservable reach (UR) of the 
initial state of the automaton Gnorm, that is, X0 :— UR(q0) = 5„(go,E* 0). 
The transition function 5obs is defined for every X G X0bs and every observ­
able event a G E G as the unobservable reach of the states reachable in Gnorm 

from the states of X by the event a, that is, 

6obs(X,a) := UR{5n{X,a)) 

where, for every Y C Qnj URiY) — Sn(Y, E* 0 ) . By item (2) of Lemma 5.57, 

Sn(X,a)CQ, 

and hence every state of the observer of Gnorm is uniquely determined by 
a subset of Q. In particular, we define an injective mapping / : Xobs —> 2® 
assigning subsets of Q to the states of the observer of G n o r m as follows: 
f(X0) — {qo}, and for every state Y ^ X0 of the observer of Gnorm, we pick 
and fix a state X G Xobs such that 5obs(X, a) = Y, for some observable event 
a G E G , and we define f(Y) — Sn(X, a). Such a state X exists because every 
state of the observer is reachable. Then, Y — 5obs(X,a) = UR(5n(X,a)) = 
UR(fiY)), and we have that if f(Y{) = f(Y2), then Y1 = UR(f(Y{)) = 
UR(f(Y2)) = Y2, which shows that the mapping / is injective. Consequently, 
the number of states of the observer of Gnorm is bounded by the number of 
subsets of the set Q, which is 2n. • 
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Notice that Lemma 6.8 does not claim that the number of states of the 
observer of G and of the observer of its normalization Gnorm coincide. It only 
provides an upper bound on the worst-case complexity. 

Similarly, for a normal deterministic DES G with n states, Transforma­
tion 5.60 results in a deterministic DES, denoted by G', with up to 2n states. 
The second lemma shows that the observer of G' has as many states as the 
observer of G. 

Lemma 6.9. Let G be a normal deterministic DES with n states, and let G' 
be obtained from G by Transformation 5.60. Then, the numbers of states of 
the observer of G' and of the observer of G coincide. 

Proof. Let G = (Q, S, S, g0) be a normal deterministic DES, and let G' = 
(QUQ'NS, £U{it}, 5', go) be the DES obtained from G by Transformation 5.60. 
Recall that G' is obtained as a disjoint union of G and G n s , where Gns is 
a copy of G without the secret states and the corresponding transitions, 
Q'NS — W I 1 e QNS} is a copy of QNS disjoint from Q, and the event u 
is unobservable. For every reachable state S of the observer of G', we show 
that S contains a state p' £ Q'Ns if and only if S contains the corresponding 
state p £ QNS- Consequently, the observer of G' and the observer of G have 
the same number of states. 

To prove one direction, let S be a reachable state of the observer of G'. 
If S contains a state p £ QNS, then the unobservable transition (p,u,p') of 
G' implies that S also contains the state p' £ Q'NS-

To prove the other direction, let S be a reachable state of the observer 
of G", and assume that a state p' £ Q'Ns belongs to S. Then, for every 
string w £ P'(L(G')) under which the state S is reachable from the initial 
state {g0} in the observer of G", there exists a string w' £ L(G') such that 
P'(w') — w and 5'(go,tf') = p'• Since g 0 £ Q, p' £ Q'NS, a n d every string of 
L(G') contains at most one occurrence of the event u, we can partition the 
string w' — W1UW2 so that 5'(go,t«i) = r, S'(r, u) = r', and S'(r', W2) = p', 
for some state r £ Q. However, £'(?"', u>2) = p' is executed in Gns, which is 
obtained from G by removing all secret states. Therefore, 5(r, tt>2) — P must 
be defined in G. Altogether, we have shown that £(go, u>iu>2) — p is defined 
in G, and hence the string u>iu>2 £ L(G). Since w = P'iw') — P'(u>iu>2), we 
have shown that p £ S. • 

We can now prove the following result analyzing the complexity of Algo­
rithm 4. 
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Theorem 6.10. The space and time complexity of Algorithm 4 is 0(n2n) 
and 0((n + m)2n), respectively, where n is the number of states of G and m 
is the number of transitions of P(G), that is, m < in2, where £ is the number 
of observable events. 

Proof. Let G be an n-state deterministic DES. In the first step, we construct 
the normalization GnoTm of G with at most 2n states, the observer of which 
has at most 2n states by Lemma 6.8. Then, we apply Algorithm 2 to G' 
obtained from Gnorm by Transformation 5.60. In particular, by Lemma 6.9, 
we compute the observer of G with at most 2n states, and the projected 
automaton P(G) with at most 4n states. Then, for every reachable state X 
of G'°bs, and for every x £ Xf]Q's, we add the pair (x, Xr\Q'NS) to the set Y. 
This cycle takes time 0(n2n). Afterwards, we construct the automaton H 
as the part of the full observer of G accessible from the states of the second 
components of Y. Since H consists only of the subsets of Q'NS, of which 
there is at most 2 n , the automaton H has 0(2n) states. The automaton 
C — P(G) x H thus has 0(n2n) states and 0(m2n) transitions, the sum of 
which is the time complexity of the BFS applied to mark states of C reachable 
from the states of Y in at most k steps. Therefore, the state complexity of 
Algorithm 4 is 0(n2n) and the time complexity is 0(n2n + (n + m)2n) — 
0{{n + m)2n). • 

Comparing the complexity 0{{n-\-m)2n) of Algorithm 4 with the complex­
ity of the existing algorithms, the reader may see that (1) the complexity of 
Algorithm 4 does not depend on the parameter k, and (2) it is better than the 
complexity of the existing algorithms, because the minimum of the worst-case 
complexities 0(£2nk+1-2k), 0(£2^n), 0(£(k + 3)n), and 0((n + m)(k + l)2n) 
of the existing algorithms discussed at the beginning of this subsection is 
0((n + m)2n) for k = 1, and 0((n + m)(k + l )2 n ) = 0((n + m)22n) for 
k € 0(2n). Notice that the minimum worst-case complexity for large k is 
significantly higher than the complexity 0((n + m)2n) of Algorithm 4. In 
fact, the complexity of Algorithm 4, and the minimum worst-case complex­
ity of the existing algorithms for very small k, coincide. However, while the 
existing algorithms can handle only inputs with a very small k with this 
complexity, our algorithm can handle inputs with k of arbitrary value with 
this complexity. Consequently, our algorithm improves the complexity of the 
verification of strong fe-step opacity. 
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Chapter 7 

Conclusions 

In this thesis, we presented new results in three areas concerning opacity 
of discrete-event systems modeled by automata: the complexity of deciding 
opacity, the design of verification algorithms, and the relationships among 
various notions of opacity We thus provided a complete and improved com­
plexity picture of verifying the discussed notions of opacity. 

In Chapter 4, we study the properties of current-state opacity in systems 
with a restricted alphabet and a restricted structure. We showed that the 
problem of deciding current-state opacity remains hard for almost all practial 
cases, cf. Table 1.1. Most notably, we showed that current-state opacity is: 

1. P S P A C E - comple t e for systems modeled by DFAs/poDFAs with three 
events, one of which is unobservable (Theorem 4.7 and Corollary 4.15), 

2. coNP-complete for systems modeled by NFAs/DFAs with a single ob­
servable event (Theorem 4.8 and Corollary 4.9), and 

3. coNP-complete for systems modeled by acyclic NFAs/acyclic DFAs 
with two observable events (Theorem 4.10 and Corollary 4.12). 

Chapter 5 is dedicated to transformations among the considered opac­
ity notions. Our transformations are computable in polynomial time and 
preserve the number of observable events and determinism (whenever it is 
meaningful), allowing us to derive new results for corresponding opacity no­
tions, see Table 1.2 for an overview. Below we summarize the results obtained 
from the transformations. 

• Language-based opacity and initial-and-final-state opacity - By 
combining Theorems 4.7 and 4.8 with transformations of Wu and Lafor-

107 
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tune [50], we can conclude that deciding L B O and IFO is P S P A C E -

complete for systems with two or more observable events, and c o N P -
complete for systems with a single observable event. 

• Initial-state opacity - We show that deciding ISO is P S P A C E - c o m p -
lete for systems with two or more observable events. This result is 
established through Transformation 5.3 (hardness) and the membership 
result of Saboori [37]. Additionally, Theorem 5.8 shows that deciding 
ISO is NL-complete in the single observable event case. 

• Trace opacity - We show that deciding T O is PSPACE-complete for 
systems with two or more observable events. This result is established 
through Transformation 5.9 (hardness) and the membership result of 
Dubreil [19]. Additionally, Theorem 5.14 shows that deciding T O is 
NL-complete in the single observable event case. 

• Weak A;-step opacity - We show that deciding k-SO is P S P A C E -

complete for systems with two or more observable events and the pa­
rameter k £ Noo encoded in binary. This result is established through 
Transformations 5.19 (hardness) and 5.43 (membership). In the single 
observable event case, deciding k-SO is coNP-complete by Transfor­
mations 5.30 (hardness) and 5.47 (membership). 

• Strong A;-step opacity - We show that deciding k-SSO is P S P A C E -

complete for systems with two or more observable events and the pa­
rameter k £ Noo encoded in binary. This result is established through 
Transformations 5.19 (hardness) and 5.60 (membership). In the single 
observable event case, deciding k-SSO is coNP-complete by Transfor­
mations 5.25 (hardness) and 5.60 (membership). Additionally, Theo­
rem 5.59 describes the relationship of 0-SO and 0-SSO. 

In Chapter 6, we propose three algorithms for verifying language-based 
opacity and trace opacity (Algorithm 1), weak fe-step opacity (Algorithm 2), 
and strong /c-step opacity (Algorithm 4). We provide an analysis of all men­
tioned algorithms and we show that their time complexity is 0((n + m)2n). 
where n stands for the number of states of the input automaton and m for the 
number of transitions in the projected automaton of the input automaton. In 
particular, the complexity of algorithms for verifying weak and strong /c-step 
opacity does not depend on the parameter k £ Noo. However, it remains an 
open question how our algorithms would perform if tested experimentally. 
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Preface 

The focus of this paper is on opacity of discrete-event systems, examining three key 
areas: the complexity of deciding opacity, the design of verification algorithms, and the 
relationships among various notions of opacity. The results presented in this paper are 
mostly based on outcomes of the joint scientific work with Tomas Masopust, which were 
published in the following articles. 

[4] J . Balun and T. Masopust. On opacity verification for discrete-event systems. IFAC-
PapersOnLine, 53(2):2075-2080, 2020. 

[6] J . Balun and T. Masopust. Comparing the notions of opacity for discrete-event 
systems. Discrete Event Dynamic Systems, 31:553-582, 2021. 

[8] J . Balun and T. Masopust. On transformations among opacity notions. 2022 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC), pages 3012-
3017, 2022. 

[9] J . Balun and T. Masopust. On verification of weak and strong k-step opacity 
for discrete-event systems. IFAC-PapersOnLine, 55(28):108-113, 2022. 16th IFAC 
Workshop on Discrete Event Systems WODES 2022. 

In [4], we mainly focus on the complexity of deciding current-state opacity in systems 
with a restricted set of events and a restricted structure. Most of the results from this 
paper are presented in Chapter 4. 

In [6], we introduce transformations between weak /c-step opacity and current-state 
opacity, and between language-based opacity and initial-state opacity. Selected transfor­
mations from this article are presented in Sections 5.1, 5.5, and 5.6. We also design new 
algorithms for verifying language-based opacity, weak /c-step opacity and weak oo-step 
opacity, the first of which is presented in Section 6.1. 

In [8], we have further improved the previously presented transformations from weak 
fc-step opacity to current-state opacity, which were initially introduced in [6]. The updated 
transformations are polynomial in terms of the parameter k. These transformations, along 
with others from this paper, are discussed in Sections 5.4 and 5.6. A n extended version of 
this paper, under review in Discrete Event Dynamic Systems at the time of writing the 
thesis, is available on arXiv . 

In [9], we design a transformation from strong fe-step opacity to weak /c-step opacity, 
as well as algorithms to verify both strong and weak fc-step opacity. As the algorithm 
for verifying weak k-step opacity is an updated version of the algorithm presented in [6], 
I have included only this improved variant in this paper. The transformation can be 
found in Section 5.7, while algorithms are presented in Sections 6.2 and 6.3. A n extended 
version of this paper, accepted for publication in Automatica at the time of writing the 
thesis, is available on arXiv . 
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Furthermore, some of the transformations from Sections 5.2, 5.3, and 5.4 are not yet 
included in any article. I decided to include them in the thesis to give a complete picture 
of the transformations among the discussed notions. 

In addition to the articles listed above, I have made contributions to the following 
publications: 
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Chapter 1 

Introduction 

With the development of digitalization, the security is becoming an increasingly impor­
tant topic. Since many properties of the systems can be deduced from their discrete 
abstraction, several cybersecurity notions have been introduced for the discrete-event sys­
tems. Namely, such properties include anonymity of Schneider and Sidiropoulos [38], 
noninterference of Hadj-Alouane et al. [10], secrecy of Alur et al. [1], security of Focardi 
and Gorrieri [21], and opacity of Mazaré [31]. 

This paper focuses on the opacity property, which guarantees that a system prevents 
an intruder from revealing its secret. In the opacity setting, the intruder is a passive 
observer that knows the structure of the system but has only limited capability to observe 
its behavior. Therefore, if the intruder wants to reveal the secret, he must estimate the 
current state of the system based on his observations. Intuitively, the system is opaque if 
for every secret behavior, there is a nonsecret behavior that looks the same to the intruder. 
Therefore, at no point during the computation can the intruder be certain whether or not 
secret behavior has occurred. The secret itself is usually modeled as either a set of secret 
behaviors or a set of secret states. The former option leads to language-based opacity, while 
the latter leads to state-based opacity. Several notions of language-based and state-based 
opacity have been discussed in the literature, from which we selected, in our opinion, the 
most important and practical ones. 

Defining the secret as a behavior results in two notions, that is, language-based opacity 
(LBO) and trace opacity (TO). In the case of language-based opacity, which was intro­
duced by Badouel et al. [3] and Dubreil et al. [19], the secret is defined as a subset of 
system's behavior. This subset is known as a secret language and it contains compromis­
ing sequences of the system. Such a sequence may, for example, represent the initiation 
of a system reboot. Trace opacity, as introduced by Bryans et al. [11], is a special case 
of language-based opacity. In trace opacity, the secret language comprises only those be­
haviors that contain one of the secret events that represent the occurence of some critical 
action of the system. 

Regarding state-based opacity, we consider the following six notions: current-state 
opacity (CSO), weak /c-step opacity (k-SO), weak oo-step opacity (oo-SO), strong fc-step 
opacity (/c-SSO), initial-state opacity (ISO), and initial-and-final-state opacity (IFO). In 
this case, each secret state represents a vulnerable condition of the system, such as a 
particular part of the system undergoing maintenance. 

The most basic state-based notion is current-state opacity of Bryans et al. [12] that 
prevents the intruder from revealing whether the system is currently in a secret state. 
However, in the future, the intruder may realize that the system was in a secret state 
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Model |So| = 1 |£o| > 2 

N F A CONP-complete PSPACE-complete [16] 
D F A CONP-complete P SPAC E-complete 
partially ordered N F A NL-complete PSPACE-complete 
partially ordered D F A NL-complete P SPAC E-complete 
acyclic N F A NL-complete CONP-complete 
acyclic D F A NL-complete CONP-complete 

Table 1.1: Complexity of verifying current-state opacity for different models with S G being 
the set of observable events. 

at some earlier point of the computation. For example, if the intruder estimates that 
the system could be in one of two possible states, and then in the following step, the 
system proceeds via an observable event that is only possible from one of those states, 
the intruder can deduce the state in which the system was one step ago. This issue 
has been considered in the literature and led to the introduction of weak /c-step opacity 
and weak oo-step opacity by Saboori and Hadjicostis [33, 37]. While weak /c-step opacity 
requires that the intruder cannot ascertain the secret in the current state and k subsequent 
observable steps, weak oo-step opacity requires that the intruder can never ascertain that 
the system was in a secret state. Note that weak 0-step opacity coincides with current-
state opacity by definition, and that an n-state automaton is weakly oo-step opaque if 
and only if it is weakly (2 n — 2)-step opaque [44]. 

Falcone and Marchand [20] have suggested that weak /c-step opacity is not as secure as 
it may seem. Although it may seem sufficiently confidential, the intruder can still deduce 
that the system was previously in a secret state, even if the intruder cannot determine the 
exact time at which the system entered that state. To address this issue, they introduced 
a stronger version of /c-step opacity called strong /c-step opacity, which provides a higher 
level of confidentiality. 

Bryans et al. [12] introduced initial-state opacity, which prevents the intruder from 
revealing, at any time instant, whether the system started in a secret state. Initial-
and-final-state opacity of Wu and Lafortune [42] is a generalization of both current-state 
opacity and initial-state opacity, where the secret is represented as a pair of an initial and 
a marked state. Therefore, the intruder can never reveal both starting and ending point 
of the computation at the same time. 

This paper focuses solely on the theoretical aspects of opacity. However, there have 
been successful implementations of opacity in various applications, such as concealment of 
vehicle positions by Saboori and Hadjicostis [35], and ensuring privacy of location-based 
services by Wu et al. [43]. For a comprehensive overview of opacity and its applications, 
we recommend the reader the work of Jacob et al. [23]. 

Most of the mentioned notions have been studied within the framework of many dif­
ferent models, such as finite automata [33], Petri nets [12], timed automata [15], and 
stochastic automata [25]. In this paper, we model the system as a finite automaton with 
partially observable behavior. In some cases, we also consider structurally simpler variants 
such as partially ordered automata or acyclic automata. In Chapter 2, we introduce rele­
vant concepts of automata theory and we formalize the model itself. Chapter 3 provides 
an overview of all the opacity notions considered in this work. 

One of the key areas in opacity research is the complexity of deciding whether a system 
satisfies a given notion of opacity. Since the verification is often based on the observer 
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Notion Pol = 1 |£o| > 2 Order 

LBO CONP-complete P S PACE-complete 0((n + m)2n) 
TO NL-complete P S PACE-complete 0{{n + m)2n) 
CSO CONP-complete P S PACE-complete 0{£2n) [32] 
fc-SO CONP-complete PS PACE-complete 0{{n + m)2n) 
oo-SO CONP-complete PS PACE-complete 0{{n + m)2n) 
fc-SSO CONP-complete PS PACE-complete 0{{n + m)2n) 
ISO NL-complete PS PACE-complete 0{£2n) [42] 
IFO CONP-complete PS PACE-complete 0(£2n2) [42] 

Table 1.2: Complexity of verifying the notions of opacity for DESs following from the 
transformations, algorithms, and known results; S G stands for the set of observable events, 
n for the number of states of the input automaton, £ for the number of observable events 
of the input automaton, and m < £n2 for the number of transitions in the projected 
automaton of the input automaton. 

construction, the problem belongs to P S P A C E . In fact, most of the notions are P S P A C E -

complete in the general case, and thus there is no polynomial-time verification algorithm 
unless P = P S P A C E . This raises the question of whether the problem is easier to solve if 
we somehow restrict the structure of the system. Therefore, in Chapter 4, we investigate 
the problem of deciding current-state opacity for systems that have a limited number 
of observable events and that are represented by partially ordered or acyclic automata. 
However, despite these restrictions, the problem remains hard in almost all practical cases, 
as indicated in Table 1.1, where we summarize our findings and existing results. 

Transformations are another useful tool for analysing the complexity of decision prob­
lems. If we can, for example, transform an instance of the current-state opacity prob­
lem to an instance of the language-based opacity problem in polynomial time and vice 
versa, we can derive PSPACE-completeness of language-based opacity from the P S P A C E -

completeness of current-state opacity. Such transformations were first provided by Wu 
and Lafortune [42] between language-based opacity, current-state opacity, initial-state 
opacity, and initial-and-final-state opacity. In Chapter 5, we extend their results and 
provide transformations for trace opacity, weak /c-step opacity, and strong /c-step opac­
ity. Thus, by combining these transformations, we show how to transform between any 
two notions, allowing the generalization of results across different notions of opacity. In 
particular, we show that for systems with two or more observable events, the decision 
problem of any of the considered notions is PSPACE-complete. On the other hand, if the 
system has only one observable event, then the problem is CONP-complete for all notions, 
except for initial-state opacity and trace opacity, which are NL-complete. We summarize 
results following from transformations, together with the existing results, in Table 1.2. 

In addition to the new complexity results, the transformations also enabled us to design 
three new algorihms, which we introduce in Chapter 6. Through the analysis of existing 
algorithms [29, 4 2 , 36, 37, 44, 20, 30, 41], we demonstrate that our algorithms improve 
the algorithmic complexity of verifying language-based opacity, trace opacity, weak k-
step opacity, weak oo-step opacity, and strong fe-step opacity. The right-most column of 
Table 1.2 provides a summary of the complexities of the best-known algorithms for all of 
the discussed notions. Note that we have not compared the algorithms experimentally, 
and therefore in practical cases our algorithms might be outperformed. 



Chapter 2 

Preliminaries 

In this chapter, we formalize the notation and model of a discrete-event system based on 
finite automata. For more details on these topics see [14]. 

For a set S, \S\ denotes the cardinality of S, and 2s denotes the power set of S. We 
define N to be the set of all non-negative integers, and we extend it with its limit to 
Noo = N U {oo}. 

2.1 Languages and automata 

A n alphabet X is a finite nonempty set of events. A string over £ is a sequence of events 
from X; the empty string is denoted by e. The set of all finite strings over X is denoted 
by X*. A language L over X is a subset of X*. The set of prefixes of strings of L is the 
set L — {u | 3v G X*, uv £ L}. For a string u £ X*, \u\ denotes the length of u, and u 
denotes the set of all prefixes of u. 

Definition 2.1. A nondeterministic finite automaton (NFA) over an alphabet X is a 
structure A = (Q,T,,5,I,F), where Q is a finite set of states, 5: Q x X —> 2$ is a 
transition function, / C Q is a set of initial states, and F C Q is a set of marked states. 

The transition function can be extended to the domain 2^ x X* by induction. Equiv-
alently, the transition function is a relation 5 C Q x S x Q, where, e.g., 5(q, a) = {s,t} 
denotes two transitions (q, a, s) and (q, a, t). 

For a set Q0 C Q, the set Lm(A, Qo) — {w G S* | £(C}o, t«) H F ^ 0} is the language 
marked by .A from the states of Q0, and L(A, Qo) — {w G S* | 5(C}o,i«) ^ 0} is the 
language generated by A from the states of Q0. The languages marked and generated by 
4̂ are defined as L m ( . A ) = Lm(A, I) and L(.A) = L(^4, / ) , respectively. If Lm(A) = L(A) 

holds, then A is non-blocking and every string generated by A can be extended to a 
marked string. 

The NFA A is deterministic (DFA) if | / | = 1 and \S(q,a)\ < 1 for every q £ Q and 
a £ S. In this case, we identify the singletons with their elements, and simply write 
4̂ = (Q, S, 5, F) if ^ — {̂ o} and a) = g' instead of S(q, a) = {q'}-

Let < be the reachability relation on the state set Q defined as p < q if there is w G S* 
such that q G S(p, w). Then, the NFA A is partially ordered (poNFA) if its reachability 
relation < is a partial order. If A is a partially ordered DFA, we use the notation poDFA. 
The automaton is acyclic, if q £ S(q, w) for every q G Q and w G S* — {e}. 

Let .Aj = (Qi,T,i, 5i, Ii, Fi), where i G {1,2}, be two NFAs. For A\ and Ai over 
common alphabet S — S i = S 2 , the product automaton of A i and A 2 is defined as the 
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automaton A\ x A2 — (Qi x Q2,S,(!), 7i x 7 2 ,7\ x F 2 ) , where 5((gi, g2), a) = Si(qi,a) x 
^ 2 ( ^ 2 , 0 ) for every pair of states (gi,g 2) G Q i x Q 2 and every event a 6 S. Notice that 
the definition does not restrict the state space of the product automaton to its reachable 
part. In case where S i ^ S 2 , we use the synchronous product of Ai and A2, which is 
defined as the automaton Ai \\ A2 = (Qi x Q2, S i U S 2 , 5, I\ x 72, 7\ x F2) where 

{ (#i(gi, a), £ 2 (g 2 , a)) if a G S i n S 2 , <5i(gi, a)! and £ 2(g 2 , a)! 

(5i(gi, a), g2) if a G S i - S 2 and 5i(gi, a)! 
(<Zi,52(g2,a)) i f a G S 2 - S i a n d 5 2 ( g 2 , a ) ! 
undefined otherwise 

for (gi,g 2) £ Q i x Q 2 and a G S i U S 2 , and 5j(gj,a)! denotes the fact that there is a 
transition under a defined at g» in Ai-2.2 Discrete-event systems 

In this section, we recall the standard definition of a discrete-event system. Intuitively, 
we model the system as a non-deterministic finite automaton with partially observable 
behavior. 

Definition 2.2. A discrete-event system (DES) G over S is an NFA over S together with 
the partition of S into S G and S u o of observable and unobservable events, respectively. 

If we want to specify that the DES is modeled by a DFA, we talk about deterministic 
DES. If the marked states are irrelevant, we omit them and simply write G — {Q, S, 5,1). 

The observation projection P: S* —> S* is a morphism for concatenation defined by 
P(a) — e if a G S u o , and P(a) = a if a G S G . The action of P on a string a ia 2 • • • an, 
with ai G S for 1 < i < n, is to erase all unobservable events, that is, P(aia2 • • • an) = 
F(ai )P(a 2 ) • • • P(an). The definition can be readily extended to languages. 

Definition 2.3. A projected automaton of a DES G over S with respect to the projection 
P: S* —> S* is the NFA P{G) obtained from G by replacing every transition {p, a, q) by 
(p, P(a),q), followed by the standard elimination of the e-transitions. 

Equivalently, the transition function 7 : Q x S G —> 2® of T-'(G) can be defined as 
j(q, a) = 5(q, P _ 1 ( a ) ) . Note that P(G) is an NFA over S G with the same states as G that 
recognizes the language P{Lm{G)) and can be constructed in polynomial time. 

Definition 2.4. A n observer of a DES G is the accessible part of the DFA constructed 
from P{G) by the standard subset construction. 

We call the DFA constructed from P{G) by the standard subset construction a full 
observer of G The full observer has exponentially many states compared with G, and in 
the worst case, the same holds for the observer as well, see [24] for more details. 

For DESs with a single observable event we define a function (pk that assigns, to every 
state g, the maximal number i G { 0 , . . . , k} of observable steps that are possible from g. 

Definition 2.5. Let Ga = (Q, S, 6,1) be a DES with S 0 = {a} and P: S* ->• {a}* be the 
observation projection. The function <pk: Q —> { 0 , . . . , k} with respect to P is defined as 
ipk(q) = max {i G { 0 , . . . , k} | S(q, P'1^)) + 0}. 

Evidently, if ipk(q) > |Q| for a state q £ Q, then <£fc(g) = &;, since there must be a 
cycle containing an observable event that is reachable from g. Therefore, we can assume 
that k is never greater than the number of states of the system Ga, i.e., k < \Q\. 



Chapter 3 

Notions of opacity 

In this chapter, we present the formal definitions of all considered opacity notions within 
the finite automata model. For more details about opacity, we refer the reader to the 
overview by Jacob et al. [23]. 

In the first two sections, we introduce the language-based notions, namely language-
based opacity and trace opacity. The rest of the chapter is dedicated to the notions 
of state-based opacity, namely current-state opacity, weak /c-step opacity, strong /c-step 
opacity, initial-state opacity, and initial-and-final-state opacity. Aside from strong fe-step 
opacity, which is defined only for deterministic DESs, we define all other notions for 
nondeterministic systems. 

Language-based opacity (LBO) 
Language-based opacity was introduced by Badouel et al. [3] and Dubreil et al. [19]. We 
recall the most general definition by Lin [29]. Intuitively, a system is language-based 
opaque if for every string w in the secret language, there exists a string w' in the non-
secret language with the same observation P(u>) = P(w'). In this case, the intruder 
cannot conclude whether the secret string w or the non-secret string w' has occurred. 

Definition 3.1. Given a DES G — (Q,T,,S, I), a projection P : S* —> £*, a secret 
language L$ C L(G), and a non-secret language LNs C L(G). System G is language-based 
opaque (LBO) if Ls C p-LP(LNS). 

We assume that the languages L$ — L(As) and LNs — L(ANS) are represented by 
the non-blocking automata As = (Qs, S, SS, Is, Ps) and ANS = (QNS, S, SNS, INS, FNS), 
respectively. Without loss of generality, we may assume that their sets of states are 
disjoint, that is, Qs H QNS — 0- It is worth mentioning that the secret and non-secret 
languages are often considered to be regular; and we consider it as well. The reason 
is that, for non-regular languages, the inclusion problem is undecidable; see Asveld and 
Nijholt [2] for more details. 

Another notion studied in the literature is weak language-based opacity [29], which 
should not be confused with (strong) language-based opacity defined above. In compar­
ison, the weak notion holds if the intruder confuses at least one secret string, formally 
Ls n P~1P(LNS) 7^ 0- We do not consider the weak notion in this paper. 

8 
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Trace opacity (TO) 
Trace opacity was introduced by Bryans et al. [11]. A trace w £ S* is secret if it contains 
any event from a specified set of secret events, otherwise w is non-secret. In accordance 
with [11], we consider all secret events to be unobservable. A system is trace opaque if 
for every secret trace, there is a non-secret trace that looks the same to the intruder. 

Definition 3.2. Given a DES G — (Q,T,,5,I), a projection P: S* —> £*, and a set of 
unobservable secret events S C T,uo. System G is trace opaque (TO) if P(Sec(G)) C 
P(Pub(G)), where Sec(G) = L(G) n E ' S E * is the set of secret traces and Pub(G) = 
L(G) fl (S — S)* is the set of non-secret traces. 

Intuitively, trace opacity is a special case of language-based opacity, where the secret 
language of trace opacity is strictly defined as a set of strings containing at least one 
secret event, and the non-secret language is defined as any other behavior of the system. 
In Section 5.3, we present a way to construct automata As and ANS from a trace opacity 
problem instance G such that L(As) — Sec(G) and L(ANS) — PubiG). 

Current-state opacity (CSO) 
Bryans et al. [12] introduced current-state opacity for systems modeled by Petri nets and 
Bryans et al. [11] generalized it to transition systems. Current-state opacity asks whether 
the intruder cannot decide, at any instance of time, whether the system is currently in 
a secret state. Therefore, the system is current-state opaque if, for every string leading 
to a secret state, there exists another string with the same observation that leads to a 
non-secret state. 

Definition 3.3. Given a DES G — (Q, S, 5,I), a projection P: S* —> £*, a set of secret 
states Qs C Q, and a set of non-secret states QNS ^ Q- System G is current-state 
opaque if for every string w such that 5(1, w) fl Qs ^ 0, there exists a string w' such that 
P(w) = P(w') and 5(1, w') n QNS ± 0. 

Note that the definition of current-state opacity does not require QNS — Q — Qs, and 
thus the systems we consider can contain states that are neither secret nor non-secret. 
We call these states neutral and we cannot simply handle them as non-secret states. 

Weak /c-step opacity (/c-SO) 
The notion of weak fc-step opacity, which was introduced by Saboori and Hadjicostis [33, 
37], is a generalization of current-state opacity requiring that the intruder cannot reveal 
the secret in the current state and k subsequent observable steps. 

Definition 3.4. Given a DES G = (Q,T,,5,I), a projection P: S* —> £*, a set of 
secret states Qs C Q, a set of non-secret states QNS ^ Q, and a parameter k £ NQO. 
System G is weakly k-step opaque (k-SO) if for every string st £ L(G) with \P(t)\ < k 
and 5(5(1, s) n Qs,t) ^ 0, there exists a string s't' £ L(G) such that P(s) = P(s'), 
P(t) = P(t'), and 5(5(1, s')nQNS,t') ±%. 

We distinguish two special cases for k — 0 and k — oo. By definition, weak 0-step 
opacity is equivalent to current-state opacity. In the case of weak oo-step opacity, Y i n 
and Lafortune [44] have shown that an n-state DES is weakly oo-step opaque if and only 
if it is weakly (2 n — 2)-step opaque. 
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Strong /c-step opacity (/c-SSO) 
While weak k-step opacity is considered to be relatively confidential, Falcone and Marc-
hand [20] have shown that it is not as confidential as it may seem. The intruder may still 
be able to determine that the system was previously in a secret state, but not the exact 
time when this occurred. Therefore, they introduced a stronger notion of opacity called 
strong k-step opacity, which provides a higher level of confidentiality. 

In accordance with [20], we consider strong k-step opacity only for deterministic DESs 
where all states that are not secret are non-secret, that is, QNS — Q — Qs-

Definition 3.5. Given a deterministic DES G — (Q,T,,S,qo), a projection P: S* —> £*, 
a set of secret states Qs C Q, and a parameter k £ NQO. System G is strongly k-step 
opaque (/c-SSO) if for every string s £ L(G), there exists a string w £ L(G) such that 
P(s) — Piw) and for every prefix w' of u>, if |-P(u>)| — |P(u/) | < k, then 5(qo, w') ^ Qs-

Note that strong 0-step opacity is not equivalent to current-state opacity as in the 
case of weak 0-step opacity. In Theorem 5.47, we show that unobservable transitions 
from secret states to non-secret states are the only issues making the difference between 
strong 0-step opacity and weak 0-step (current-state) opacity. However, as pointed out 
by Wintenberg et al. [41], strong fc-step opacity implies weak k-step opacity as long as no 
neutral states are considered. 

Initial-state opacity (ISO) 
Initial-state opacity was first introduced by Bryans et al. [12] for systems modeled by 
Petri nets and then Bryans et al. [11] generalized it to transition systems. Intuitively, 
initial-state opacity asks whether the intruder can never reveal whether the computation 
started in a secret state. 

Definition 3.6. Given a DES G — (Q, S, 5,1), a projection P: S* —> E*, a set of secret 
initial states Qs C 7, and a set of non-secret initial states QNS Q I- System G is initial-
state opaque (ISO) if for every w £ L(G,Qs), there exists w' £ L(G,QNS) such that 
P(w) = P(w'). 

We consider all states that are neither secret nor non-secret to be neutral. In particular, 
the secrecy status of the non-initial states do not play any role in initial-state opacity. 

Initial-and-final-state opacity (IFO) 
The last notion we consider is initial-and-final-state opacity of Wu and Lafortune [42]. 
Initial-and-final-state opacity is a generalization of both current-state opacity and initial-
state opacity, where the secret is represented as a pair of an initial and a marked state. 
Consequently, initial-state opacity is a special case of initial-and-final-state opacity where 
the marked states do not play a role, and current-state opacity is a special case where the 
initial states do not play a role. 

Definition 3.7. Given a DES G — (Q, S, 5,1), a projection P: S* —> E*, a set of secret 
state pairs Qs C I x Q, and a set of non-secret state pairs OJVS C. I x Q. System G 
is initial-and-final-state opaque (IFO) if for every secret pair (qo,qf) £ Qs and every 
w £ L(G,q0) such that qf £ 5(q0,w), there exists a non-secret pair (q'0,q'f) £ QNS and 
w' £ L(G, q'Q) such that q'f £ S(q'Q, w') and P(w) = P(w'). 



Chapter 4 

Properties of current-state opacity 

This chapter focuses on analyzing the complexity of verifying current-state opacity in 
systems with a restricted set of events and a restricted structure. We show that in most 
cases these restrictions do not make the verification tractable, and therefore the problem 
remains hard in essentially all practical cases. 

The complexity of opacity verification has widely been investigated in the literature 
and is often based on the computation of observer. Thus the problem belongs to P S P A C E . 

It is actually PSPACE-complete for most of the discussed notions. Indeed, Cassez et 
al. [16] showed that the verification of current-state opacity is at least as hard as decid­
ing universality, which is PSPACE-complete for nondeterministic automata as well as for 
deterministic automata with partial observation. 

Remark 4.1. By Cassez et al. [16], the verification of current-state opacity is at least as 
hard as deciding universality. Indeed, for a DES G — (Q, S, 5,1, F), we have L(G) — S* 
if and only if G is current-state opaque with respect to Qs — Q — F, QNS — F, and 
P: £ ->• £. 

However, PSPACE-completeness of universality problem requires a nontrivial structure 
of the model and the ability to express all possible strings. This give rise to a question 
whether there are structurally simpler systems for which the verification of opacity is 
tractable. We investigate the problem for, in our opinion, structurally the simplest sys­
tems: for acyclic automata (that do not have the ability to express all strings, and actually 
express only a finite number of strings) and for automata where all cycles are in the form 
of self-loops (which may still seem trivial in the structure, because as soon as the system 
leaves a state, it can never return to that state). 

First, we reduce current-state opacity to the language inclusion problem. This re­
duction is similar to that of Wu and Lafortune [42] reducing current-state opacity to 
language-based opacity. 

Lemma 4.2. Let G — (Q, S, 5,1) be a DES, P: S* —> E* a projection, and Qs, QNS <~ Q 
sets of secret and non-secret states. Let Ls denote the marked language of the automaton 
Gs — (QjE,J,7 ,Qs) and LNs denote the marked language of the automaton GNS — 
(Q,T,,5, I,QNS)- Then G is current-state opaque if and only if P(Ls) C P(LNs). • 

The observations from Remark 4.1 and Lemma 4.2, together with the results on the 
complexity of deciding universality and inclusion give us strong tools to show lower and 
upper complexity bounds for deciding (current-state) opacity. We summarized results 
from this chapter, together with the existing results, in Table 1.1. 

11 
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Figure 4.1: The replacement of three observable events {a i ,a 2 , a 3 } with the encoding 
e(ai) = 00, e(a2) = 01, and e(a3) = 10, and new states po and pi . 

4.1 Simplification of the system 

In this section we provide two useful transformations that can simplify any system without 
affecting its property of being current-state opaque. As a result, any instance of current-
state opacity decision problem can be transformed in polynomial time into a deterministic 
system that has at most two observable events. Later, these simplifications will allow us 
to generalize some of the results from this chapter to other opacity notions. 

The following transformation reduces the number of observable events in DESs with 
at least three observable events. The main idea is to encode the transition labels in 
binary. In Theorems 4.4, 5.5, and 5.10, we show that this transformation does not affect 
the system's status of current-state opacity, initial-state opacity, and trace opacity. This 
way we preserve the number of observable events in transformations in Chapter 5 that 
introduce new observable events. 

Transformation 4.3. Let G = (Q, S, 5,1) be a DES modeled by an NFA, P : £* ->• S 0 be 
the observation projection, T0 C S G be an alphabet with at least three events, and e: T0 —> 
{0, l } f c be a binary encoding (that is, an injective function), where k < |~log 2(|r o|)]. We 
construct a DES 

r(G) = (Q',(^-To)U{0,l},d',I) 

so that we start with the system G and replace every transition (p, a, q) with a G T0 and 
eia) — &i&2 • • • bk € {0, l } f e by k transitions 

(p,bi,Ptn), (PbiM,Pbibi), ( P 6 i - 6 F C - ! A,<?) 

where the states p^,... ,pb1-bk_1 are added to the set of states Q' of the system r(G). 
These states are created when needed for the first time, and reused later during the re­
placements, cf. Figure 4.1 illustrating a replacement of three observable events {ai, a 2 , a3} 
with the encoding e(ai) = 00, e(a2) = 01, and e(a3) = 10. Finally, we define projection 
P ' : [ ( £ - r o ) U { 0 , l } ] * ^ [ ( £ o - r o ) U { 0 , l } ] * . ' o 

Notice that the Transformation 4.3 preserves the number of unobservable events and 
determinism, and that it can be done in polynomial time. On the other hand, it does not 
preserve partial order because the encoding of a self-loop transition results in a cycle over 
two or more states. 

The following theorem states that the transformation does not affect the property 
of the system to be current-state opaque, and therefore we can reduce the number of 
observable events of any current-state opacity instance to just two. 

Theorem 4.4. A DES G is current-state opaque with respect to Qs, QNS, and P if and 
only if the DES r{G) obtained by Transformation 4-3 is current-state opaque with respect 
to Q's = Qs, Q'NS = QNS U (Q' - Q), and P'. • 
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Figure 4.2: Determinization of a DES. 

In the second transformation, we show how to transform a system modeled by an 
NFA to a system modeled by a DFA without affecting the system's properties of being 
current-state opaque, acyclic, and partially ordered. 

Transformation 4.5. Let G — (Q, S, 5,1) be a DES modeled by an N F A with the secret 
states Qs, the non-secret states QNS, and the corresponding projection P : S* —> £*. We 
construct a deterministic DES Gdet in two steps. 

1. First, we ensure that the system has a unique initial state. From G we construct 
a DES G' — (Q1, E , 5', {qo}), where Q' — Q U {q0} contains a new non-secret initial 
state go. Further, for each q G I we add a new transition (go,a, g) to 6', where 
a G S G is an arbitrary observable event. 

2. In the second step, we determinize the transition function of the system. From 
G' we construct a DES Gdet — (Q", £ U {it}, 5", (go, go)) modeled by a DFA, where 
Q" — Q' xQ' is the set of pairs of states, it is a new unobservable event, and the pair 
((to: Qo) ^ Q" is a new initial state. We define the transition function 5" as follows. 

(a) For every transition (p, a, g) in 5', where p, g G Q' and a G S, we add a 
transition ((p, g), a, (g, g)) to 5". 

(b) For every state p G Q' we define the set Rp = U a £ E S'{p, a)—{p} = {pi,P2, • • • ,Pe} 
of states different from p that can be reached from p by a single transition. We 
then add transitions of the form ((p,p), u, (p,Pi)) and ((p,Pi),u, (p,pi+i)) for 
i — 1, . . . , £ — 1, as shown in Figure 4.2, to create a chain of states from Rp 

connected to state (p,p). Note that the order in which we connect states from 
Rp does not affect the resulting system. 

We remove unreachable states from Gdet- Finally, we define the projection P ' : (S* U 
{u}) —> £*, and the sets of secret states Q's = {(p, q) | p G Qs} and of non-secret states 
Q'NS = {(p> v)\p£ QNS U {q0}}- O 

Notice that Transformation 4.5 can be done in polynomial time using at most (n+ l ) 2 

states, where n is the number of states in G. In fact, if we omit removing unreachable 
states at the end of the tranformation, then Gdet can computed in deterministic logarith­
mic space. Additionally, this transformation does not introduce any new neutral states 
and it preserves the number of observable events, acyclicity, and partial order. 

Theorem 4.6. A DES G is current-state opaque with respect to Qs, QNS, and P if and 
only if the deterministic DES Gdet obtained by Transformation 4-5 is current-state opaque 
with respect to Q's, Q'Ns> and P'• C 
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4.2 Restriction on structure of the system 

Our first restriction concerns the number of observable and unobservable events in the 
system. The following result thus improves the general case in two ways: (i) compared 
to the general settings we keep the system deterministic, and, mainly, (ii) we restrict the 
number of observable events to two and the number of unobservable events to one. 

Theorem 4.7. Deciding current-state opacity of a DES modeled by a DFA with three 
events, one of which is unobservable, is PSPACE-complete. 

Proof. Membership in P S P A C E was shown by Saboori [32], and also follows directly from 
Lemma 4 .2. 

To show hardness, we reduce the current-state opacity problem for a DES modeled by 
an NFA with just two observable events, which is PSPACE-complete by Remark 4.1 and 
Saboori [32]. This can be done by Transformation 4.5 which, for a DES modeled by an 
NFA with just two observable events, constructs a deterministic DES with three events, 
one of which is unobservable, without affecting the property of current-state opacity. • 

Notice that an unobservable event in the previous theorem is unavoidable because any 
DFA with all events observable is always in a unique state, and therefore never opaque. 
However, the reader may wonder what happens if we further restrict the number of ob­
servable events to just one. We now show that having only one observable event makes the 
problem computationally easier unless c o N P = P S P A C E . This result holds even without 
any restriction on the number of unobservable events, and for nondeterministic automata. 

Theorem 4.8. Deciding current-state opacity of a DES modeled by an NFA with a single 
observable event is CONP-complete. 

Proof. Membership in CONP follows from Lemma 4.2 and the fact that inclusion for unary 
NFAs is CONP-complete, and hardness follows from the complexity of deciding univer­
sality for unary NFAs. For both claims used here, the reader is referred to Stockmeyer 
and Meyer [40]. • 

We obtain the following result for DFAs by applying Transformation 4.5 which, for 
a DES modeled by an NFA with a single observable event, constructs a deterministic 
DES with two events, one of which is unobservable, without affecting the property of 
current-state opacity. 

Corollary 4.9. Deciding current-state opacity of a DES modeled by a DFA with two 
events, one of which is unobservable, is coNP-complete. 

Previous results show that only restricting the number of events does not lead to 
tractable complexity. But it gives rise to another question whether there are structurally 
simpler systems for which the opacity verification problem is tractable. 

Structurally the simplest systems we could think of are acyclic DFAs with full obser­
vation, recognizing only finite languages. However, these systems are never opaque, since 
they are deterministic and fully observed. Nontrivial structures to be considered could 
thus be acyclic NFAs that still recognize only finite languages, and hence do not possess 
the ability to express all strings over the alphabet. We combine this restriction with the 
restriction on the number of events. 

Theorem 4.10. Deciding current-state opacity of a DES modeled by an acyclic NFA with 
two or more observable events is CONP-complete. • 
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Again, we can show that the situation is computationally simpler if only one observable 
event is allowed. 

Theorem 4.11. Deciding current-state opacity of a DES modeled by an acyclic NFA with 
a single observable event is NL-complete, and hence solvable in polynomial time. • 

Since Transformation 4.5 preserves acyclicity and can be computed in deterministic 
logarithmic space, we can apply it to the systems of Theorems 4 . 1 0 and 4 .11 to obtain 
hardness part of following results. Membership then follows from Lemma 4.2 and the 
corresponding results on the complexity of inclusion. 

Corollary 4.12. Deciding current-state opacity of a DES is 

1. coNP-complete if the system is modeled by an acyclic DFA with three events, one 
of which is unobservable, and 

2. Nh-complete if the system is modeled by an acyclic DFA with two events, one of 
which is unobservable. 

Above, we considered systems generating only finitely many behaviors. However, real-
world systems are usually not that simple and often require additional properties, such 
as deadlock freeness. Therefore, we now consider partially ordered automata, a kind of 
automata where all cycles are only in the form of self-loops. Such automata are, in our 
opinion, structurally the simplest DES where deadlock freeness can be ensured (by adding 
a self-loop). Their mark languages form a subclass of regular languages strictly included 
in star-free languages, see [13, 39]. Star-free languages are languages definable by linear 
temporal logic that is often used as a specification language in automated verification. 

We then immediately obtain the following result for nondeterministic partially ordered 
automata. 

Theorem 4.13. Deciding current-state opacity of a DES modeled by a poNFA with only 
two events, both of which are observable, is PSPACE-complete. 

Proof. Membership in P S P A C E follows from Lemma 4.2 and the results on the complexity 
of inclusion for poNFAs, and hardness from the fact that deciding universality for poNFAs 
with only two events is PSPACE-complete . For both claims see Krotzsch et al. [27]. • 

The situation is again easier if the model has only a single observable event. 

Theorem 4.14. Deciding current-state opacity of a DES modeled by a poNFA with a 
single observable event is Nh-complete. • 

Again, we use Transformation 4 .5 , which preserves partial order and can be com­
puted in deterministic logarithmic space, and apply it to the systems of Theorems 4 . 13 
and 4 . 14 to obtain the hardness part of the following results. Membership then follows 
from Lemma 4.2 and the corresponding results on the complexity of inclusion. 

Corollary 4.15. Deciding current-state opacity of a DES is 

1. PSPACE-complete if the system is modeled by a poDFA with three events, one of 
which is unobservable, and 

2. Nh-complete if the system is modeled by a poDFA with two events, one of which is 
unobservable. 



Chapter 5 

Transformations among opacity 
notions 

In this chapter, we introduce new trasnformations among the considered opacity decision 
problems. In other words, for an instance of one opacity notion that consists of a DES, 
an observation projection, and a secret description, we transform it into an instance of 
another opacity notion. 

Comparing different notions of opacity for automata models, Saboori and Hadji-
costis [34] provided a language-based definition of initial-state opacity, Cassez et al. [16] 
transformed trace opacity to current-state opacity, and Wu and Lafortune [42] showed 
that current-state opacity, initial-and-final-state opacity, and language-based opacity can 
be transformed to each other. They further provided transformations of initial-state opac­
ity to language-based opacity and to initial-and-final-state opacity, and, for prefix-closed 
languages, a transformation of language-based opacity to initial-state opacity. 

In this work, we extend these results by showing that, for automata models, all the 
discussed notions of opacity are transformable to each other. As well as the existing 
transformations, our transformations are computable in polynomial time and preserve the 
number of observable events and determinism (whenever it is meaningful). In the case of 
state-based opacity notions, our goal was to design transformations that do not introduce 
any new neutral states into the system, since their existence may not be practically 
justified. However, in some cases, we may need to give a separate transformation for 
systems that already contain neutral states. The meaning of neutral states is not yet 
clear in the literature. They are fundamental in language-based opacity, but questionable 
in state-based opacity. In any case, we cannot simply handle neutral states as non-secret 
states. We summarize our results, together with the existing results, in Figure 5.1. 

There are two immediate applications of the transformations. First, the transforma­
tions provide a deeper understanding of the differences among the opacity notions from 
the structural point of view. For instance, the reader may deduce from the transforma­
tions that, for prefix-closed languages, the notions of language-based opacity, initial-state 
opacity, and current-state opacity coincide, or that to transform current-state opacity to 
weak oo-step opacity means to add only a single state and a few transitions. 

Second, the transformations provide a tool to obtain the complexity results for all the 
discussed opacity notions by studying just one of the notions. To illustrate, consider for 
example the result of Theorem 4.7 showing that deciding current-state opacity for systems 
modeled by DFAs with three events, one of which is unobservable, is PSPACE-complete. 
Since we can transform the problems of deciding current-state opacity and of deciding 
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Figure 5.1: Overview of the transformations among the notions of opacity for automata 
models. The node CSO* denotes a simplified instance of current-state opacity modeled 
by a DFA with at most two observable events. 

weak fc-step opacity to each other in polynomial time, preserving determinism and the 
number of observable events, we obtain that deciding weak /c-step opacity for systems 
modeled by DFAs with three events, one of which is unobservable, is PSPACE-complete 
as well. In particular, combining the transformations with known results from Jacob et 
al. [23] and results from Chapter 4, we obtain a complete complexity picture of verifying 
the discussed notions of opacity, as summarized in Table 1.2. 

Thus, by combining the transformations of Wu and Lafortune [42] with Theorems 4.7 
and 4.8, we immedietly obtain new results for language-based opacity and initial-and-
final-state opacity. In more detail, the transformations of Wu and Lafortune [42] preserve 
the determinism of transitions, but result in automata with a set of initial states. This 
issue can, however, be easily fixed by adding a new initial state, connecting it to the 
original initial states by new unobservable events, and making the original initial states 
non-initial. 

Corollary 5.1. The problems of deciding whether a DES satisfies language-based opacity 
and initial-and-final-state opacity are PSPACE-complete. The problems remain P S P A C E -

complete even if the system is a DFA with three events, one of which is unobservable. 

Corollary 5.2. The problems of deciding whether a DES with a single observable event 
satisfies language-based opacity and initial-and-final-state opacity are coNP-complete. 

Moreover, the transformations of Wu and Lafortune [42] preserve both acyclicity and 
partial order, and hence we can generalize the results from Chapter 4 for acyclic and 
partially ordered automata in the same way. On the other hand, the majority of our 
transformations do not preserve either partial order, due to the utilization of Transfor­
mation 4 .3 , or acyclicity. Consequently, our transformations do not extend these results 
to the remaining notions discussed. 
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Figure 5.2: Transforming language-based opacity to initial-state opacity. 

5.1 L B O to ISO 

In this section, we discuss the transformations from language-based opacity to initial-
state opacity. The transformation for the case where both the secret and non-secret 
languages of the language-based opacity problem are prefix closed has been provided by 
Wu and Lafortune [42]. We now extend this transformation to the general case. We 
further show that the initial-state opacity decision problem with a single observable event 
is NL-complete. Consequently, there exists no polynomial-time transformation for this 
case that preserves the number of observable events, unless P = N P . 

Let the language-based opacity problem be represented by a DES GLBO- We transform 
it to a DES Giso m such a way that GLBO is language-based opaque if and only if GJSO 
is initial-state opaque. Our transformation proceeds in two steps: 

1. We construct a DES GJSO with one additional observable event @ using Transfor­
mation 5.3. 

2. We use Transformation 4.3 to reduce the number of observable events of Giso by 
one. 

Since the second step follows from Transformation 4.3, we only describe the first step, 
that is, the construction of Giso over £ U {@}. 

Transformation 5.3. Let GLBO — (Q, E , 5,I) be a DES with the corresponding projec­
tion P: £* —> £*, a secret language Lg C L(GLBO) given by the non-blocking automaton 
As — (Qs,^,^s, Is, Ps), a n d a non-secret language LNs Q L(GLBO) given by the non-
blocking automaton ANS — (QNS, E , 5NS, INS, PNS)- We construct a DES 

GISo = (Qs U QNS U {qs, qns}, £ U {@}, 5', Is U INS) 

where Giso is a disjoint union of the automata As and ANS together with two new states 
and a new observable event @. The transition function 5' is initialized as 5' :— 5s U 5NS 
and further extended as follows, see Figure 5.2 for an illustration: 

1. for every state q £ Fs, we add a new transition (q, @, qs) to 5': 

2. for every state q £ FNS, we add a new transition (q, @, qns) to 5'. 
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Finally, let Q's = Is denote the set of secret initial states of GJSO, and let Q'NS — 
INS denote the set of non-secret initial states of GJSO- We extend the projection P to 

Notice that Transformation 5.3 can be done in polynomial time and that it preserves 
determinism of transitions. 

The following theorem justifies the correctness of Transformation 5.3. 

Theorem 5.4. A DES GLBO is language-based opaque with respect to Ls, LNs, and P 
if and only if the DES GJSO obtained by Transformation 5.3 is initial-state opaque with 
respect to Q's, Q'NS, and P' • C 

By the following theorem, reducing the number of observable events by using Trans­
formation 4.3 does not affect initial-state opacity of any DES. 

Theorem 5.5. A DES G — (Q,T,,5,I) is initial-state opaque with respect to Qs, QNS, 
and P if and only if the DES r(G) — (Q', (S — r o ) U {0,1}, 6', I) obtained by Transforma­
tion 4-3 is initial-state opaque with respect to Qs, QNS, and P'. • 

Since we need at least two initial states for initial-state opacity to be non-trivial, 
we generalize the weaker form of Theorem 4.7 to initial-state opacity. Therefore, using 
Transformations 5.3 and 4.3, and taking into account the fact that the problem of verifying 
initial-state opacity is in P S P A C E [32], we can state the following result for NFAs with 
deterministic transition function. 

Corollary 5.6. The problem of deciding whether a DES satisfies initial-state opacity is 
PSPACE-complete. The problem remains PSPACE-complete even if the system is an NFA 
with deterministic transition function and three events, one of which is unobservable. 

To preserve the number of observable events, the general transformation relies on the 
binary encoding of events by Transformation 4.3. However, the encoding requires at least 
two observable events in GLBO, and hence it is not applicable to systems with a single 
observable event. In fact, we show that there does not exist such a transformation unless 
P = N P , which is a longstanding open problem of computer science. Deciding language-
based opacity for systems with a single observable event is coNP-complete [22, 40]. We 
show that deciding initial-state opacity for systems with a single observable event is N L -
complete. In particular, the problem can be solved in polynomial time. 

Theorem 5.7. Deciding initial-state opacity of a DES with a single observable event is 
Nh-complete. • 

In this section, we discuss the transformations from current-state opacity to trace opacity. 
The transformation we provide results in a system with at least two observable events. 
Similar to initial-state opacity, we show that the trace opacity decision problem with a 
single observable event is NL-complete. Consequently, there is no polynomial-time trans­
formation for this case that preserves the number of observable events, unless P = N P . 

Let the current-state opacity problem be represented by a DES Gcso- We transform 
it to a DES GTO in such a way that Gcso is current-state opaque if and only if GTO is 
trace opaque. Our transformation proceeds in two steps: 

o 

5.2 C S O to T O 
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Figure 5.3: Transforming current-state opacity to trace opacity. 

1. We construct a DES GTO with one additional observable event @ using Transfor­
mation 5.8. 

2. We use Transformation 4.3 to reduce the number of observable events of GTO by 
one. 

Since the second step follows from Transformation 4.3, we only describe the first step, 
that is, the construction of Gcso over £ U {@}. 

Transformation 5.8. Let Gcso — (Q, 5,1) be a DES with the secret states Qs, the 
non-secret states QNS, and the corresponding projection P: £* —> £*. We construct a 
DES 

GTO = ( Q U {q„, qns}, £ U {@, a}, 5\ I) 

where qs and qns are new states, @ is a new observable event, and a is a new unobservable 
secret event. The transition function 5' is initialized as the transition function 5 of the 
system Gcso and further extended as follows, see Figure 5.3 for an illustration: 

1. for every secret state q £ Qs, we add the transition (q, @, qs) to 5', 

2. for every non-secret state q £ QNS, we add the transition (q, @, qns) to 5', 

3. we add the secret transition (qs, a, qns) to 5', and 

4. we add one self-loop transition (qns,a,Qns) to 5', where a £ £ G is an arbitrary 
observable event. 

We define the projection P': (£ U {@, a})* —> ( £ G U {@})* and the set of secret events 
S = {a}. o 

Notice that Transformation 5.8 can be done in polynomial-time and that it preserves 
determinism. 

The following theorem justifies the correctness of Transformation 5.8. 

Theorem 5.9. A DES Gcso is current-state opaque with respect to Qs, QNS, and P if 
and only if the DES GTO obtained by Transformation 5.8 is trace opaque with respect to 
S and P'. • 

By the following theorem, reducing the number of observable events by using Trans­
formation 4.3 does not affect trace opacity of any DES. 
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Theorem 5.10. A DES G is trace opaque with respect to S and P if and only if the DES 
r(G) obtained by Transformation 4-3 is trace opaque with respect to S and P'. • 

Since Transformation 5.8 introduces a new unobservable secret event, we cannot di­
rectly generalize Theorem 4.7 to trace opacity. However, by utilizing Theorem 5.10 and 
the membership of trace opacity in P S P A C E [18], we can state a weaker result as follows. 

Corollary 5.11. The problem of deciding whether a DES satisfies trace opacity is P S P A C E -

complete. The problem remains PSPACE-complete even if the system is a DFA with four 
events, two of which are unobservable. 

The second step of our transformation, that is the binary encoding represented by 
Transformation 4.3, requires that Gcso has at least three observable events or, equiva-
lently, that GTO has at least two observable events. Consequently, our transformation 
does not preserve the number of observable events if GTO has a single observable event. 
We show that the trace opacity decision problem with a single observable event is N L -
complete. In particular, the problem can be solved in polynomial time. 

Theorem 5.12. Deciding trace opacity of a DES with a single observable event is N L -
complete. • 

5.3 T O to C S O 

In this section, we show how to transform trace opacity to current-state opacity. Previ­
ously, such a transformation was provided by Cassez et al. [16], but they assumed that a 
deterministic automaton As for the language of secret traces was given as input. Addi­
tionally, for a nondeterministic As their transformation is not polynomial. We improve 
this result by providing a transformation from trace opacity to current-state opacity that 
is always polynomial. Further, our transformation enables us to construct automata As 
and ANS representing the secret and non-secret trace languages, thus transforming the 
problem also to language-based opacity problem. 

Let the trace opacity problem be represented by a DES GTO- We transform it to a 
DES Gcso hi such a way that GTO is trace opaque if and only if Gcso is current-state 
opaque. 

Transformation 5.13. Let GTO — (Q ,£ ,# , /) be a DES with the set of secret events 
S C T,uo and the corresponding projection P : S* —> £*. We construct a DES 

GCso = ( Q U Q S , S , 5', I) 

as a disjoint union of G and Gs = (Qs, S, Ss, Is), where Gs is copy of G and Qs = {q' \ 
q £ Q} is a disjoint copy of Q. We initialize 5' :— 5L)5s and further modify it by replacing 
every secret transition (q, a, r) originally in 5 by transition (q, a, r') in 5', where a £ S and 
r > £ Qs, cf. Figure 5.4 for an illustration. The states of Qs are the secret states of Gcso, 
while the rest of the states are non-secret, i.e., QNS — Q- Finally, we remove unreachable 
states and corresponding transitions. o 

Notice that Transformation 5.13 can be done in polynomial time and that it preserves 
determinism and the number of observable and unobservable events. 
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Figure 5.4: Transforming trace opacity to current-state opacity. 

Remark 5.14. To reduce GTO to language-based opacity, we set L$ — L(As) and 
LNs — L(ANS)> where As — (Q U Qs,^,S',I,Qs) is identical to the DES Gcso from 
Transformation 5.13, except for the set of marked states, and ANS — (Q, S, 6", I, Q) is an 
automaton that corresponds to the original system GTO with all states marked and with 
all secret transitions removed, that is, 5" — 5 n Q x (S — S) x Q. 

The following theorem justifies the correctness of Transformation 5.13. 

Theorem 5.15. A DES GTO is trace opaque with respect to S and P if and only if the 
DES Gcso obtained by Transformation 5.13 is current-state opaque with respect to Qs, 
QNS, and P- C 

5.4 C S O to /c-SSO 

In this section, we show how to transform current-state opacity to strong /c-step opacity. 
For systems without neutral states, strong /c-step opacity implies weak /c-step opacity [41], 
and thus the following transformations are also applicable to weak /c-step opacity. Again, 
the general transformation uses Transformation 4.3 to preserve the number of observable 
events, and therefore we provide a separate transformation for systems with a single 
observable event. 

5.4.1 The general case 
Let the current-state opacity problem be represented by a DES Gcso- We transform it 
to a deterministic DES G^sso in such a way that Gcso is current-state opaque if and 
only if Gk-sso is strongly /c-step opaque. 

Our transformation proceeds in three steps: 

1. If Gcso is not deterministic, we determinize it by Transformation 4.5. 

2. We construct a DES Gk-sso with one additional observable event @ using Transfor­
mation 5.16. 

3. We use Transformation 4.3 to reduce the number of observable events of Gk-sso by 
one. 
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Figure 5.5: Transforming current-state opacity to strong /c-step opacity, for an arbitrary 
parameter k G NQQ. 

Since the first and third step follow from Transformations 4.5 and 4.3, we only describe 
the second step, that is, the construction of Gk-sso over £ U {©}• 

Transformation 5.16. Let Gcso — (Q, 5, go) be a deterministic DES with the secret 
states Qs, the non-secret states QNS, and the corresponding projection P: S* —> £*. We 
construct a DES 

Gk.sso = ( Q U {qs, qns}, S U {@}, 6', q0) 

where qs and qns are new states and @ is a new observable event. The transition function 
6' is initialized as the transition function 5 of the system Gcso and further extended as 
follows, see Figure 5.5 for an illustration: 

1. for every secret state q G Qs, we add the transition (q, @, qs) to 6', and 

2. for every non-secret state q G QNS, we add the transition (g, @, qns) to 5'. 

We define the projection P': (S U {@})* —> (£„ U {@})*, and the sets of secret states 
Q's = {qs} and of non-secret states Q'Ns - Q U {qns} • o 

Notice that Transformation 5.16 can be done in polynomial time and that it preserves 
determinism. It is also independent of the parameter k, and therefore works for any 
k G Noo without affecting the size of the resulting system Gk-sso-

Intuitively, since there is no extension from the unique secret state qs, there is always 
a corresponding (trivial) extension from every non-secret state. Consequently, we can 
apply Transformation 4.3 to Gk-sso and encode new event @ in binary without affecting 
strong /c-step opacity of the system Gk-sso-

Remark 5.17. Transformation 5.16 can also be used to remove neutral states from the 
system, so can we think of it as a transformation from current-state opacity with neutral 
states to current-state opacity without neutral states. 

The following theorem justifies the correctness of Transformation 5.16. 

Theorem 5.18. A DES Gcso is current-state opaque with respect to Qs, QNS, and P 
if and only if the DES Gk-sso obtained by Transformation 5.16 is strongly k-step opaque, 
for any parameter k G N ^ , with respect to Q's and P'. • 
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In Theorem 4.7 we showed that the problem of deciding current-state opacity of a 
DES modeled by a DFA with three events, one of which is unobservable, is P S P A C E -

complete. Transformations 5.16 and 4.3 allow us to transform instance of this problem 
to the problems of deciding weak and strong k-step opacity while preserving determinism 
and the number of observable events. Thus, we can state the following result. 

Corollary 5.19. Given a natural number k represented by 0(log(k)) bits and a DES G. 
The problems of deciding whether the system G satisfies weak k-step opacity and strong 
k-step opacity are PSPACE-hard. The problems remain PSPACE-hard even if the system 
G is a DFA with three events, one of which is unobservable. 

Since weak oo-step opacity is a special case of weak k-step opacity, the previous corol­
lary also implies PSPACE-hardness for weak oo-step opacity. 

5.4.2 The case of | E 0 | = 1 
To preserve the number of observable events, the general transformation relies on the 
binary encoding of events by Transformation 4.3. However, the encoding requires at least 
two observable events in Gcso, and hence it is not applicable to systems with a single 
observable event. For these systems, we provide a separate transformation that requires 
to add k + 1 new states, and therefore the size of the resulting system is linear with respect 
to the parameter fceN. 

Let the current-state opacity problem with a single observable event be represented 
by a DES G c s o without neutral states. We transform it to a DES Gl_sso in such a way 
that G c s o is current-state opaque if and only if Gl_sso is strongly k-step opaque. 

Without loss of generality, we assume that G c s o is deterministic, as we can always 
use Transformation 4.5 to determinize it. We further assume that in G c s o , there are no 
non-secret states that can be reached from a secret state by any sequence of unobservable 
events, formally S(Qs, P _ 1 ( e ) ) H QNS — 0- We describe this property with respect to 
current-state opacity of the system in the following lemma. 

Lemma 5.20. A DES G is current-state opaque with respect to Qs, QNS, and P if and 
only if G is current-state opaque with respect to Q's = Qs — R, Q'NS ~ QNS U R, and P, 
where R={qseQs\ 5(q„, P _ 100) n QNS + 0}- • 

Transformation 5.21. Let G c s o — (Q,T,,5,qo) be a deterministic DES with a single 
observable event S G = {a}, the secret states Qs, the non-secret states QNS — Q — 
Qs, and the corresponding projection P: S* —> {a}*. By Lemma 5.20, we assume that 
$(Qs, P^(e)) n QNS = 0- We construct a DES 

GLsso = ( Q U K , . . . , qt}, S U {u}, 5', q0) 

by adding k + 1 new non-secret states and a new unobservable event u. The transition 
function 5' is initialized as the transition function 5 of the system GCSo and further 
extended as follows, see Figure 5.6 for an illustration: 

1. for every state q G Q, we add a new transition (q, u, q$) to 6'; 

2. for every state q*, where i £ { 0 , . . . , k — 1}, we add a new transition (q*,a,q*+1) 
to 5'. 
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k-SSO 

cso 

Q QNS Q 

© Qs 0 

Figure 5.6: Transforming current-state opacity with a single observable event to strong 
fe-step opacity. 

The set of secret states Qs remains unchanged in Gk-sso, while all other states are non-

Notice that Transformation 5.21 can be done in polynomial time and that it preserves 
determinism and the number of observable events. 

Remark 5.22. It seems that adding k new states to the system cannot be avoided, since for 
k > \Q\ the problem of deciding strong k-step opacity of a system with a single observable 
event can be solved in polynomial time. First, we search the system for a cycle containing 
only non-secret states and at least one observable transition. Then, we verify if the system 
is strongly k-step opaque in the first \Q\ observable steps before the cycle is reached (if it 
exists). Clearly, both conditions can verified in polynomial time. 

The following theorem justifies the correctness of Transformation 5.21. 

Theorem 5.23. A DES G c s o with a single observable event SG = {a} is current-state 
opaque with respect to Qs, QNS, and P if and only if the DES G%_sso obtained by Trans­
formation 5.21 is strongly k-step opaque with respect to Qs and P'. • 

In Theorem 4.8 we showed that the problem of deciding current-state opacity of a 
DES with a single observable event is coNP-complete. Transformation 5.21 allows us 
to generalize the hardness part of this result to strong fc-step opacity. However, the 
transformation is linear with respect to the parameter k, and therefore we consider k to 
be encoded in unary in the following corollary. 

Corollary 5.24. Given a natural number k represented in unary and a DES G with a 
single observable event. The problem of deciding whether the system G satisfies strong 
k-step opacity is CONP-hard. 

In this section, we describe the general transformation from current-state opacity to weak 
k-step opacity that uses neutral states to preserve the number of observable events without 
the help of Transformation 4.3. Notably, unlike the transformations discussed in the 
previous section, Transformation 5.25 is applicable to systems that have both neutral 
states and a single observable event, and the resulting system will still have a single 
observable event. 

o 

5.5 C S O to fc-SO 
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Figure 5.7: Transforming current-state opacity to weak k-step opacity for an arbitrary 
parameter k G NQQ. 

Let the current-state opacity problem be represented by a DES Gcso- We transform 
it to a DES Gk-so m such a way that Gcso is current-state opaque if and only if G^so 
is weakly fc-step opaque. 

Transformation 5.25. Let Gcso — (Q, S, 5,1) be a DES with the secret states Qs, the 
non-secret states QNS, and the corresponding projection P : £* —> £*. We construct a 
DES 

Gk-So = (QU{q*},Xu{u},5',I) 

where it is a new unobservable event and g* is a new neutral state. The transition function 
5' is initialized as the transition function 5 of the system Gcso and further extended as 
follows, see Figure 5.7 for an illustration: 

1. for each state q G QNS, we add a transition (g, it, g*) to 5': 

2. for each a G E, we add a self-loop (g*, a, g*) to 5'. 

We extend the projection P to the projection P ' : (E U {"u})* —> £*. The sets and 
QNS remain unchanged. o 

Notice that Transformation 5.25 can be done in polynomial time and that it preserves 
determinism and the number of observable events. It is also independent of the parameter 
k, and hence it works for any parameter k G NQO without affecting the size of the resulting 
system Gk-so-

Theorem 5.26. A DES Gcso is current-state opaque with respect to Qs, QNS, and P if 
and only if the DES Guso obtained by Transformation 5.25 is weakly k-step opaque, for 
any parameter k G Noo, with respect to Qs, QNS, and P'. • 

In Theorem 4.8, we showed that the problem of deciding current-state opacity of a 
DES with a single observable event is coNP-complete. Transformation 5.25 allows us 
to generalize the hardness part of this result to weak k-step opacity. Unlike strong k-
step opacity, the weak notion remains coNP-hard even for instances with the parameter 
k > \Q\, and therefore we can consider k to encoded in binary in the following corollary. 

Corollary 5.27. Given a natural number k represented by 0(log(k)) bits and a DES G 
with a single observable event. The problem of deciding whether the system G satisfies 
weak k-step opacity is coNP-hard. 
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5.6 k-SO to C S O 

In this section, we discuss the transformations from weak /c-step opacity to current-state 
opacity. The general transformation takes place in four steps, each of which is described 
in a separate subsection. Initially, we show how to transform weak oo-step opacity to 
current-state opacity in Subsection 5.6.1. The construction of a /c-step counter automa­
ton of size polynomial in the logarithm of k is described in Subsection 5.6.2. The general 
transformation from weak k-step opacity to current-state opacity for systems that allow 
neutral states is presented in Subsection 5.6.3. In Subsection 5.6.4, we further modify the 
previous transformation so that the resulting system does not use neutral states. Since 
the general transformation relies on binary encoding of observable events by Transforma­
tion 4.3, we provide separate transformations for systems with a single observable event 
in Subsections 5.6.5 and 5.6.6. Again, we distinquish two cases depending on the presence 
of neutral states in the system. 

5.6.1 oo-SO to CSO 

Let the weak oo-step opacity problem be represented by a DES Goo-so- We transform it 
to a DES Gcso in such a way that Goo-so is weakly oo-step opaque if and only if Gcso 
is current-state opaque. Our transformation proceeds in two steps: 

1. We construct a DES Gcso with one additional observable event @ using Transfor­
mation 5.28. 

2. We use Transformation 4.3 to reduce the number of observable events of Gcso by 
one. 

Since the second step follows from Transformation 4.3, we only describe the first step, 
that is, the construction of Gcso over £ U {@}. 

Transformation 5.28. Let Goo-so — (Q, £> <̂> -0 be a DES with the secret states Qs, the 
non-secret states QNS, and the corresponding projection P: S* —> £*. We construct a 
DES 

Gcso = (Q U Q+ U Q~, £ U {@}, 5', I) 

by creating two disjoint copies of the system Goo-so, denoted by G + and G~, with disjoint 
state sets Q+ — {q+ \ q G Q} and Q~ = {q~ \ q G Q}, and with an additional observable 
event @ that connects the system G^so to the copies G + and G~ by transitions (p, @, p+), 
for every secret state p G Qs, and (q, @,q~), for every non-secret state q G QNS, see 
Figure 5.8. 

We define the projection P': ( £ U {@})* -> ( £ 0 U {@})*, and the sets of secret states 
Q's — Q+ and of non-secret states Q'NS — Q U Q~. o 

Notice that Transformation 5.28 can be done in polynomial time using no neutral 
states and that it preserves determinism. 

The following theorem justifies the correctness of Transformation 5.28. 

Theorem 5.29. A DES G^-so is weakly oo-step opaque with respect to Qs, QNS, and 
P if and only if the DES Gcso obtained by Transformation 5.28 is current-state opaque 
with respect to Q's, Q'NS, and P'. • 
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Figure 5.8: Transforming weak oo-step opacity to current-state opacity. 

We now apply our transformations to solve the open problem concerning the com­
plexity of deciding weak oo-step opacity. Transformation 5.28 allows us to transform 
an instance of weak oo-step opacity decision problem to a current-state opacity decision 
problem that can be solved in polynomial space. Combined with the PSPACE -ha rdness of 
weak oo-step opacity from Corollary 5.19, we can generalize Theorem 4 . 7 for weak oo-step 
opacity. 

Corollary 5.30. The problem of deciding whether a DES satisfies weak oo-step opacity 
is PSPACE-complete. The problem remains P'SPACE-complete even if the system is a DFA 
with three events, one of which is unobservable. 

5.6.2 /c-step counter 
Before proceeding to the general transformation for weak k-step opacity, we define an 
automaton to serve as a /c-step counter. Informally, we construct an NFA Ak of size 
polynomial in the logarithm of k such that the observer of the automaton Ak has a 
unique path of length k consisting solely of non-marked states, while all the other states 
are marked. This path plays the role of a /c-step counter, which is essential in the following 
transformations. 

Theorem 5.31. For every integer k > 1, there is an NFA Ak with n = [~log2(&; + 1 ) ] 
events and 2n + 1 states, such that the automaton Ak marks all strings except for the 
unique string Wk of length k and all its prefixes. • 

We now describe the construction of the automaton Ak from Theorem 5 .31. Let k > 1 
be given, and let n = \log2(k + 1 ) ] . We recursively define the string Zn over the alphabet 
S n = {a 0 , a i , . . . , a n_i} as follows: 

Zi — a0 and Zi = Zj_iaj_iZj_i for 1 < i < n. 

For example, Z3 — Z2a2Z2 = Z\a\Z\a2Z\a\Z\ — a0aia0a2a0aia0. Such strings are known 
in the literature as Zimin words, and it is well-known that the string Zn is of length 
2 n — l.We denote the suffix of the string Zn of length k by Wk- Since the string Zn is a 
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an-i 

Figure 5.9: The NFA Ak of Theorem 5.31. 

palindrome, the same event appears on positions £ and 2 n — 1 — £. For instance, since 2 
is encoded as 10 in binary, the event at the second positions from both sides of the string 
Z3 is CL\. 

Let 6 n -i&n-2 • • • bo be the binary representation of k, that is, k = 6 n _i • 2 n ~ 1 + 6 n _ 2 • 
2™ + • • • + bo • 2 , where the leftmost bit is the most significant bit; in particular, we 
have that 6 n _i = 1. We construct the NFA 

Ak = (Q,'Zn,6,I,F) 

where the set of states Q — {q*} U {qj, q® \ i = 0 , . . . , n— 1} consists of the state q* and of 
two states qj and q® for every bit 6j of the binary representation of k; the state q* is the 
only marked state, that is, F — {g*}; and the transition function 5 is defined as follows, 
see Figure 5.9 for an illustration: 

1. For every event a £ £„ , the self-loop (g*, a, g*) £ 5; 

2. For every state q\, 

(a) the transition (ql,a,i,qf) £ 5; 

(b) the self-loop (g^1, a,j, ql) £ 5, for 0 < j < i — 1; 

(c) the transition (g^1, a ,̂ gj) £ 5, for 0 < j < i — 1; 

(d) the transition (ql, cij, q*) £ 5, for i + 1 < j < n — 1; 

3. For every state g°, 

(a) the transition (g4°,aj,g*) £ 5; 

(b) the self-loop (g°, a,, g°) £ 5, for 0 < j < i — 1; 

(c) the other transitions are undefined. 

Finally, the set of initial states is defined as the set 

1 — \1n-l ' Hn-2 ) • • • ) % J 

corresponding to the states encoding k in binary. The automaton Ak marks all strings 
over the alphabet E n other than the prefixes of the string Wk. 

file:///1n-l
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a2 

ao, cii,a,2 

Figure 5.10: The NFA AQ, where the initial states are diamond-shaped. 

Figure 5.11: The minimized observer of the NFA A% showing the behavior of the NFA A% 
on the strings Z% and WQ. The initial state of the automaton A% is denoted by the little 
arrow from above. 

Example 5.32. We consider k — 6, for which n — 3 and the binary encoding of 6 is 110. 
Since the string Z3 — a 0aia 0a 2aoaiao, its suffix of length 6 is the string We = aia 0 a2a 0 aia 0 . 
The automaton AQ is depicted in Figure 5.10, where the initial states are q\, q\, and q$ 
corresponding to the bits of 110. For the computation of the automaton A% on the string 
We = aiOoo^aoaiao, see the observer of the automaton A% depicted in Figure 5.11. It is 
clear from the observer that the automaton A% does not mark any prefix of the string 
We = aia0a2a0aia0, and that it marks all strings different from the string We. o 

5.6.3 The general case with neutral states 
Even though the DES Gcso that results from Transformation 5.28 applied to a system 
Goo-so can verify weak oo-step opacity of the system G^so by checking current-state 
opacity of the system Gcso, it is not suitable to verify weak /c-step opacity of the system 
Goo-so; indeed, the system Gcso verifies any number of steps from the visited secret state 
rather than at most k steps. To overcome this issue, we extend Transformation 5.28 by 
adding a counter that allows us to count up to k observable events from a visited secret 
state. 

However, we cannot simply add k states to model the counter, because adding k states 
requires k steps in the transformation, which is exponential in the size (the number of 
bits) of the binary representation of k. Instead, we model the counter with the help of 
the automaton Ak from Theorem 5.31 that can be constructed in time 0(log (k)). 
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Let the weak fc-step opacity problem be represented by a DES G^so- We transform 
it to a DES Gcso m such a way that Gk-so is weakly fc-step opaque if and only if Gcso 
is current-state opaque. 

Transformation 5.33. Let G^so — (Q ,£ ,# , I) be a DES with the secret states Qs: 

the non-secret states QNS> the corresponding projection P: £* —> £*, and the parameter 
fc £ N . We construct a DES 

consisting of the original system Gk-so along with its two modified copies and a /c-step 
counter automaton. In more detail, we consider: 

• two disjoint copies G+ and G~ of the system Gk-so, a s in Transformation 5.28, with 
disjoint state sets Q+ — {q+ \ q G Q} and Q~ = {q~ \ q G Q}, respectively, and 

• the fe-step counter automaton Ak constructed in Theorem 5.31. 

By construction, Ak is of size polynomial in the logarithm of k, and its observer has a 
unique path of length k consisting solely of non-marked states, while all the other states are 
marked. However, before we connect the automata Gk-so-, G+, C7~, and Ak together, we 
note that the automata Gk-so, G+, and G~ are over the alphabet £ , while the automaton 
Ak is over the alphabet £„ , which is disjoint from £ . Therefore, we change the alphabets 
of the automata to 

£ = E U ( E 0 x £ „ ) . 

Namely, in G+ and G~, we replace every observable transition (p, a, q) by | E n | transitions 
(p, (a, /?), q), for every event j3 G E n , and we denote the results by G+ and G~. Similarly, 
in the automaton Ak, we replace every transition (p, j3, q) by | E 0 | transitions (p, (a, /3),q), 
for every observable event a G E G , and we denote the result by Afe-

Now, we construct a DES 

Gcso as a disjoint union of the automata Gk-so, G + , and Afe, 

over alphabet £ ' = EU{@}. We connect the parts of Gcso with the transitions (p, @,p+) 
and (p, @, qo), for every secret state p G C}s and every initial state qo G / of Afc, and the 
transitions (q, @,q~), for every non-secret state q G QNS, cf. Figure 5.12. 

We define the projection P ' : (E U {@})* ( E 0 U {@} U E 0 x £„)*, and the sets of 
secret states Q's — Q+ and of non-secret states Q'NS — Q~ U {q*}, where q* is the unique 
marked state of Ak- The other states are neutral. o 

Notice that Transformation 5.33 can be done in polynomial time in the size of the 
system and in the number of bits of the binary representation of k. 

In Gcso, every event after generating the event @ is either unobservable or pair of 
events of E Q x E n . Therefore, in the sequel we denote strings over E u o U E Q x E n , such 
as s — u(a, x)u(b, y), simply as a pair of the form E* x E* of concatenated strings of the 
corresponding alphabets, such as s — (uaub, xy), where u G E u o , a, b G E G , and x, y G E n . 

The following theorem justifies the correctness of Transformation 5.33. 

Theorem 5.34. A DES Gk-so is weakly k-step opaque with respect to Qs, QNS, and P if 
and only if the DES Gcso obtained by Transformation 5.33 is current-state opaque with 
respect to Q's, Q'NS, and P'. • 
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Gcso 

Figure 5.12: Transforming weak fe-step opacity to current-state opacity with neutral 
states; the initial states of Ak are diamond-shaped. 

5.6.4 The general case without neutral states 
Finally, we show how to transform weak /c-step opacity to current-state opacity without 
employing neutral states by modifying Transformation 5.33. 

Transformation 5.35. Let Gk-so — (Q,^,8,I) be a DES with the secret states Qs, 
the non-secret states QNS, the corresponding projection P: S* —> £*, and the parameter 
k G N . We first perform Transformation 5.33 on Gk-so to obtain automata G+, G~, 
and Ak over alphabet £ . Now, we make all the states of the automaton G+ initial 
and marked, and synchronize the computations of the automata G+ and Ak by their 
synchronous product G+||^4fc. We construct a DES 

Gcso = (Q', I) as a disjoint union of Gk-so-, G~, and G+||^4fc, 

connected together by transitions under a new observable event @ as follows: 

1. we add transition (q, @, (q+, q0)) to 5', for every secret state q G Qs and every initial 
state (q+,qo) of G+||^4fc, and 

2. we add transition (q, @, q~) to 5\ for every non-secret state q G QNS-

We define the projection P ' : ( E U {@})* ->• (S 0 U {@} U S „ x E„)*. The secret states 
Q's of the system Gcso are defined as the non-marked states of the system G+||̂ 4fe, that 
is, the states of G+||̂ 4fc where second part is not equal to q*. A l l the other states are 
non-secret, that is, Q'NS = Q' — Q's. o 

Notice that Transformation 5.35 can be done in polynomial time in the size of the sys­
tem and in the number of bits of the binary representation of the parameter k. Since this 
transformation does not preserve determinisn and the number of the observable events, 
we apply Transformations 4.3 and 4.5 on the resulting system Gcso to reduce its number 
of observable events and to determinize it. 

The following theorem justifies the correctness of Transformation 5.35. 

Theorem 5.36. A DES Gk-so is weakly k-step opaque with respect to Qs, QNS, and P if 
and only if the DES Gcso obtained by Transformation 5.35 is current-state opaque with 
respect to Q's, Q'Ns> and P' • C 
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We now apply our transformations to solve the open problem concerning the com­
plexity of deciding weak /c-step opacity. Transformation 5.35 allows us to transform an 
instance of weak k-step opacity decision problem to a current-state opacity decision prob­
lem that can be solved in polynomial space. Combined with the PSPACE-hardness of 
weak k-step opacity from Corollary 5.19, we can generalize Theorem 4.7 for weak k-step 
opacity. 

Corollary 5.37. Given a natural number k represented by 0(log(k)) bits and a DES G. 
The problem of deciding whether the system G satisfies weak k-step opacity is P S P A C E -

complete. The problem remains PSPACE-complete even if the system G is a DFA with 
three events, one of which is unobservable. 

5.6.5 The case of |S 0 | = 1 with neutral states 
To preserve the number of observable events, our transformation of weak k-step opacity 
to current-state opacity relies on binary encoding by Transformation 4.3. This transfor­
mation requires at least two observable events in Gkso, and hence it is not applicable to 
systems with a single observable event. For these systems, we provide two different trans­
formations. First one, which allows neutral states, requires to add at most a quadratic 
number of new states. 

Let the weak fc-step opacity problem with a single observable event be represented by 
a DES Gl_so. We transform it to a DES G c s o in such a way that Gl_so is weakly k-step 
opaque if and only if G c s o is current-state opaque. 

Transformation 5.38. Let G1_so — (Q, S, 5,1) be a DES with a single observable event 
S 0 = {a}, the secret states Qs, the non-secret states QNS, the corresponding projection 
P : E* —> {a}*, and the parameter k G N . We construct a DES 

Gcso = (Q', S, 5', I) 

where 5' is initialized as 5 and modified as follows using the function ipk from Definition 2.5. 
For every state p G Q with <fk(p) > 0, we add k new states p\,...,pk to Q' and k 
new transitions (p, a,pi) and (pi, a,pi+{), for i = 1,..., k — 1, to 5'. Finally, we replace 
every observable transition (p, a, r) in 5' by the transition (pk, a, r). We initialize the sets 
Q's :— Qs and Q'NS •— QNS- For every state p G Qs with ifkip) — £ > 0, we add the 
corresponding states pi,... ,pt to Q's and, for every q G QNS with (fk(q) — £ > 0, we add 
qi,... ,qe to Q'NS. o 

Notice that Transformation 5.38 preserves determinism and, by the following remark, 
requires to add at most n 2 states, and hence it can be done in polynomial time. 

Remark 5.39. It follows directly from Definition 2.5 of the function (pk that if k > \Q\, 
then a system with a single observable event is weakly k-step opaque if and only if it is 
weakly oo-step opaque. Therefore, we may consider k < \Q\, which also covers the case 
of weak oo-step opacity. 

The following theorem justifies the correctness of Transformation 5.38. 

Theorem 5.40. A DES Gl_so with a single observable event is weakly k-step opaque with 
respect to Qs, QNS, and P if and only if the DES G c s o obtained by Transformation 5.38 
is current-state opaque with respect to Q's, Q'Ns, and ^• ^ 
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Figure 5.13: Transforming weak k-step opacity with a single observable event to current-
state opacity. 

Transformation 5.38 allows us to transform an instance of weak k-step opacity decision 
problem to a current-state opacity decision problem, while preserving a single observable 
event. Combined with the coNP-hardness of weak /c-step opacity with a single observ­
able event from Corollary 5.27, we can generalize Theorem 4.8 for weak /c-step opacity. 
Additionally, Remark 5.39 allows us to state the same result for weak oo-step opacity. 

Corollary 5.41. Given a natural number k represented by 0( log(/c)) bits and a DES G 
with a single observable event. The problem of deciding whether the system G satisfies 
weak k-step opacity is coNP-complete. Analogously, the problem of deciding whether the 
system G satisfies weak oo-step opacity is coNP-complete. 

5.6.6 The case of |S 0 | = 1 without neutral states 
To avoid introducing new neutral states into the system as in the previous transformation, 
we provide a separate transformation for cases where such states are not allowed. 

Let the weak fc-step opacity problem with a single observable event be represented by 
a DES Ga without neutral states. Since the following transformation does not change the 
structure of the system, we denote both the original and the resulting system simply by 
Ga. We transform the sets of secret and non-secret states of Ga in such a way that Ga 

is weakly /c-step opaque with respect to Qs and QNS if and only if Ga is current-state 
opaque with respect to Q's and Q'NS. 

Transformation 5.42. Let Ga — (Q,T,,S,I) be a DES with a single observable event 
S 0 = {a}, the secret states Qs, the non-secret states QNS — Q — Qs, the corresponding 
projection P: S* —> {a}*, and the parameter k EN. We construct sets Q's and Q'Ns as 
follows. We determine (in linear time) whether the language P(L(Ga)) is finite. 

(A) If so, we verify weak /c-step opacity of the system Ga in linear time by checking the 
subsets of states 5(1, P _ 1 ( a 4 ) ) , for every i < \Q\ — 1. 

(Al) If the system Ga is weakly /c-step opaque, and hence also current-state opaque, 
we define the sets of secret states Q's = Qs and of non-secret states Q'Ns = 

QNS-

(A2) If the system Ga is not weakly /c-step opaque, we define the sets of secret states 
Q's = Q and of non-secret states Q'Ns — 
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(B) If the language P(L(Ga)) is infinite, we define the set of non-secret states Q'NS = 
{q £ QNS I y>k{q) — k} using the function (pk from Definition 2.5, which assings to 
the state q the maximal number of observable steps that are possible from state q. 
Finally, we define the set of secret states to be Q's — Q — Q'NS. o 

Notice that Transformation 5.42 can be done in polynomial time and that it does not 
change the structure of the system in any way. Analogously to Transformation 5.38, we 
can consider k < \Q\ by Remark 5.39. 

The following theorem justifies the correctness of Transformation 5.42. 

Theorem 5.43. A DES Ga with a single observable event £0 = {a} is weakly k-step 
opaque with respect to Qs, QNS, and P if and only if Ga is current-state opaque with 
respect to Q's, Q'NS, and P defined by Transformation 5.42. • 

5.7 fc-SSO to fc-SO 

In this section, we show how to transform strong /c-step opacity to weak /c-step opacity. 
Our transformation proceeds in two steps. The first step of the transformation is called 
normalization and we also use it to describe the relationship between strong 0-step opacity 
and current-state opacity. The second step then transforms the normalized system to the 
weak /c-step opacity instance. 

In what follows, we call the systems where there are no unobservable transitions from 
secret states to non-secret states normal. For systems that are not normal, we provide a 
construction to normalize them, that is, we eliminate unobservable transitions from secret 
states to non-secret states without affecting the property of being strongly /c-step opaque. 

Transformation 5.44. Let G — (Q, £ , 5, qo) be a deterministic DES with the secret states 
Qs, the non-secret states QNS — Q — Qs, the corresponding projection P: E* —> £*, and 
the parameter k £ Noo. We construct a DES 

Gn0rm (Qn, E , Sn, ̂ o) 

where Qn — Q U Q' for Q' — {q1 \ q £ Q} being a disjoint copy of Q, and the transition 
function 5n is defined as follows. We initialize 5n :— 5 and further modify it in the following 
four steps: 

1. For every p £ Qs, q £ QNS, and u £ E u o , we replace the transition (p,u,q) by 
{p,u,q') in Sn. 

2. For every unobservable transition (p, u, q) in 5, that is, u £ E u o , we add the transition 
{p',u,q') to Sn. 

3. For every observable transition (q, a, r) in S, that is, a £ E G , we add the transition 
{q',a,r) to Sn. 

4. We remove unreachable states and corresponding transitions. 

The set of secret states of G n o r m is the set = Qs U Q'. The set of non-secret states 
QNS remains unchanged. o 

In the sequel, we call Gnorm the normalization of G. If G and Gnorm coincide, we say 
that G is normal. 
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b 

Figure 5.14: A deterministic DES G (left) and its normalization G n o r m (right); the secret 
states are squared. 

Example 5.45. To illustrate Transformation 5.44, consider the system depicted in Fig­
ure 5.14 (left). Its normalization G n o r m is depicted in the same figure (right). States 2 
and 3 of G are secret, events a and b are observable, and u is unobservable. The nor­
malization G n o r m of G initially contains five new secret states 1', 2', 3', 4', 5'. Step (1) 
of Transformation 5.44 replaces transitions (2, it, 4) and (3, it, 4) by (2, it, 4') and (3, it, 4'), 
respectively, step (2) adds four unobservable transitions (l',u, 2'), (2', it, 4'), (3', it, 4'), 
and (4', it, 5'), and step (3) adds the observable transitions (1', a, 3), (2', a, 4), (4', a, 5) and 
(5', 6, 5). Finally, step (4) eliminates unreachable states 1', 2', 3', and the corresponding 
transitions. o 

The following lemma describes the meaning of normalization and states the main 
properties of a normalized DES. 

Lemma 5.46. For a deterministic DES G = (Q,T,,5,q0) with the secret states Qs, the 
non-secret states QNS = Q—Qs, the observation P: S* —> T,*Q, and the parameter k £ Noo, 
let Gnorm be the normalization ofG obtained by Transformation 5.44- Then, the following 
holds true: 

1. LiG) = LiG 
norm ) , 

2. Gnorm is deterministic; 
3. In Gnorm, there is no non-secret state reachable from a secret state by a sequence of 

unobservable events, i.e., 5n(Qn\ P1^)) H (Qn — Qn) — 

4- G is strongly k-step opaque with respect to Qs and P if and only if Gn0rm is strongly 
k-step opaque with respect to Qn and P. • 

In the following theorem, we discuss the relationship between strong 0-step opacity 
and weak 0-step (current-state) opacity for normal deterministic DESs. 

Theorem 5.47. A normal deterministic DES G = (Q, S, 5, q0) is strongly 0-step opaque 
with respect to Qs and P if and only if G is weakly 0-step opaque with respect to Qs, 
QNS = Q — QS, and P. • 

Let the strong /c-step opacity problem be represented by a DES Gk-sso- We transform 
it to a DES Gk-so in such a way that Gk-sso is strongly k-step opaque if and only if 
Gk-so is weakly fc-step opaque. In the construction, we assume that Gk-sso is a normal 
deterministic DES. By Lemma 5.46, this assumption is without loss of generality, because 
if Gk-sso is not normal, then we can consider its normalization instead. 
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Figure 5.15: Transforming strong k-step opacity to weak k-step opacity. 

Transformation 5.48. Let G^sso — (Q,^,^,Qo) be a normal deterministic D E S with 
the secret states Qs, the non-secret states QNS — Q — Qs, the corresponding projection 
P: S * —> £*, and the parameter k £ Noo. We construct a D E S 

Gfc-so = ( Q U Q'NS, S U 5', g0) 

as a disjoint union of Gk-sso and G n s = (Q'NS,T,, 5ns, q'0), where Gns is obtained from 
Gk-sso by removing all secret states and corresponding transitions, and Q'NS — {q1 \ q £ 
QNS} is a copy of CJATS disjoint from Q. We use a new unobservable event u to connect 
Gns to Gk-sso so that we initialize 5' := 5 U £ n s and extend 5' by additional transitions 
(q,u,q') for every g £ QMSS cf. Figure 5 .15 for an illustration. The states of Q'Ns are the 
only non-secret states of G^so, that is, the set of secret states of Gk-so is the set Q's = Q. 
Finally, we define the projection P': (S U {u})* —> £*. o 

Notice that both Transformations 5 .44 and 5 .48 can be done in polynomial time and 
that they preserve determinism and the number of observable events. In addition, they are 
independent of the parameter k, and hence they work for any k £ Noo without affecting 
the size of the resulting system G^-so-

The following theorem justifies the correctness of Transformation 5.48. 

Theorem 5.49. A normal deterministic DES G^sso is strongly k-step opaque with re­
spect to Qs and P if and only if the DESGk-so obtained by Transformation 5.48 is weakly 
k-step opaque with respect to Q's, Q'Ns> and P' • '-' 

We now apply our transformations to solve the open problem concerning the com­
plexity of deciding strong fc-step opacity. Transformation 5 .48 allows us to transform an 
instance of strong fe-step opacity decision problem to a weak /c-step opacity decision prob­
lem. Combined with the PSPACE-hardness of strong fc-step opacity from Corollary 5 .19 
and PSPACE-completeness of weak /c-step opacity from Corollary 5.37, we can generalize 
Theorem 4.7 for strong /c-step opacity. 

Corollary 5.50. Given a natural number k represented by 0(log(A;)) bits and a DES G. 
The problem of deciding whether the system G satisfies strong k-step opacity is P S P A C E -

complete. The problem remains PSPACE-complete even if the system G is a DFA with 
three events, one of which is unobservable. 

Analogously, we generalize Theorem 4 .8 for systems with a single observable event 
using Transformation 5 .48 together with coNP-hardness of strong k-step opacity from 
Corollary 5 .24 and coNP-completeness of weak k-step opacity from Corollary 5.27. 

Corollary 5.51. Given a natural number k represented in unary and a DES G with a 
single observable event. The problem of deciding whether the system G satisfies strong 
k-step opacity is CONP-complete. 



Chapter 6 

Verification of opacity 

In this chapter, we introduce three new algorithms for verifying language-based opacity 
and trace opacity (Algorithm 1), weak /c-step opacity (Algorithm 2), and strong fc-step 
opacity (Algorithm 4). Note that our algorithms for /c-step notions are applicable with 
the parameter k — oo, and thus can also verify weak and strong oo-step opacity. 

Each section contains an analysis of the complexity of the proposed algorithm, as well 
as a comparison with previously existing results. 

6.1 Verification of L B O and T O 

The algorithmic complexity of deciding whether a given DES is language-based opaque 
with respect to given secret and non-secret languages has been investigated in the litera­
ture. L in [29] suggested an algorithm with the complexity 0 (2 2 n ) , where n is the order of 
the state spaces of the automata representing the secret and non-secret languages. The 
same complexity has been achieved by Wu and Lafortune [42] using the transformation 
to current-state opacity. We improve this complexity with Algorithm 1. 

The language-based opacity verification problem consists of a DES G, a projection 
P: S* —> £*, a secret language L$ = L(As) given by the non-blocking automaton As, 
and a non-secret language LNs = L(ANS) given by the non-blocking automaton ANS-
The complexity improvement of Algorithm 1 comes from solving the language inclusion 
problem P(Ls) Q P(LNs) by the intersection of the projected automaton P(As) with 
the observer co-A°^s

s, instead of the intersection of two observer structures as in [29]. 
We now discuss the complexity of our algorithm. 

Theorem 6.1. The space and time complexity of Algorithm 1 is 0(ni2n2) and 0((n\ + 
m)2n2), respectively, where n\ is the number of states of the automaton As, n2 is the 
number of states of the automaton ANS, and m is the number of transitions of P(As)-
In particular, m < £n\, where £ is the number of observable events. 

Proof. The projected automaton P(As) has ri\ states and m transitions, and co-A0^S: 
has at most 2™2 states and £2n2 transitions. Therefore, we search the automaton P(As) H 
co-A^s that has at most 0(n\2n2) states and 0(m2n2) transitions. Since m > £, the proof 
is complete. • 

Notice that Algorithm 1 can be used to verify trace opacity, since Remark 5.14 provides 
a procedure for constructing automata As and ANS from the trace opacity problem 
instance. Since the size of As is at most twice the size of the original n-state system and 

3 8 
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Algorithm 1 Verification of language-based opacity 

Require: A DES G — (Q, £ , 6,I), automata As and ANS, and E „ C E 
Ensure: true if and only if G is language-based opaque with respect to Lg = L(As), 

LNS = L(ANs), a n d P : £* ^ £^ 

1: Compute the projected automaton P(As) of As 
2: Compute the observer A^s of ANS 
3: Compute the complement co-A^s of A°NS 

4: Compute the instersection automaton C — P(As) H co-A°^s

s 

5: if Lm(C) = 0 then 
6: return true 
7: else 
8: return false 
9: end if 

ANS has exactly n states, we obtain the same complexity 0((n + m)2n) also for verifying 
trace opacity. 

Another use of the algorithm is verification of the special case of initial-and-final-state 
opacity considered in [42]. If the secret and non-secret pairs are of the form Qs — Is x Ps 
and QNS — INS X P/VS , where Is, INS Q I and Fs,FNs Q Q, then we use languages 
of As = (Q,^,S, Is, Fs) and ANS — (Q,^,8, INS, FNS) for the secret and non-secret 
languages, respectively. 

6.2 Verification of k-SO 

This particular version of the algorithm for verifying weak k-step opacity was presented 
in [9], which was itself a revision of our previous algorithm from [6]. Initially, we provide 
an overview of the algorithm and its use of Breadth-First Search. Following that, we 
analyse the time and space complexity of the algorithm and compare it with previously 
existing algorithms. 

We remind that the weak /c-step opacity verification problem consists of a DES G, a 
projection P : £*—>£*, a set of secret states Qs C Q, a set of non-secret states QNS ^ Q, 
and parameter k £ NQO. Note that the system may contain neutral states. 

In Algorithm 2 we describe our new algorithm verifying weak /c-step opacity. The idea 
of the algorithm is as follows. We first compute the observer of G, denoted by Gobs, and 
the projected automaton of G, denoted by P(G). Then, for every reachable state X of 
Gobs, we add the pairs (x, X n QNS) to the set V , where x is a secret state of X and 
X fl QNS is the set of all non-secret states of X. Intuitively, in these states, the intruder 
estimates that G may be in the secret state x or in the non-secret states of X n QNS-
To verify that the intruder does not reveal the secret state, we need to check that every 
possible path of length up to k starting in x is accompanied by a path with the same 
observation starting in a non-secret state of X n QNS- TO this end, we construct the 
automaton H as the part of the full observer of G consisting only of states reachable 
from the states forming the second components of the pairs in Y, and the automaton 
C — P(G) x H as the product automaton of the projected automaton of G and H. In C. 
all transitions are observable, and every path from a secret state x is synchronized with 
all the possible paths with the same observation starting in the states of X CIQNS- Thus, 
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Algorithm 2 Verification of weak /c-step opacity 

Require: A DES G = (Q, £ , 5,1), Qs, QNS C f t E „ C £, and k e Noo. 
Ensure: true if and only if G is weakly /c-step opaque with respect to Qs, QNS, and 

P: £* -> £* 

1: Set V := 0 
2: Compute the observer GOBS of G 
3: Compute the projected automaton P(G) of G 
4: for every state X of G o f c s do 
5: for every state x e X HQs do 
6: add state (x, X n Qws) to set Y 
7: end for 
8: end for 
9: Construct H as the part of the full observer of G accessible from the states of the 

second components of Y 
10: Compute the product automaton C — P(G) x H 
11: Use the Breadth-First Search (BFS) of Algorithm 3 to mark all states of C reachable 

from the states of Y in at most k steps 
12: if C contains a marked state of the form (q, 0) then 
13: return false 
14: else 
15: return true 
16: end if 

if there is a path from the secret state x of length up to k that is not accompanied by a 
path with the same observation from a state of X n QNS, then this path from the state 
x in P(G) ends up in a state, say, q, whereas all paths in H with the same observation 
from the state X (IQNS end up in the state 0. Here, X n QNS and 0 are understood as 
the states of the full observer of G. Thus, if the DES G is not weakly /c-step opaque, 
there is a state of Y from which a state of the from (g, 0) is reachable in at most k steps. 
Therefore, we search the automaton C and mark all its states that are reachable from a 
state of Y in at most k steps. If a state of the from (g, 0) is marked, then G is not weakly 
fe-step opaque; otherwise, it is. 

Intuitively, the correctness follows from the fact that the BFS visits all nodes at 
distance d before visiting any nodes at distance d + 1. In other words, all states of C 
reachable from the states of Y in at most k steps are visited (and marked) before any 
state at distance k + 1. The implementation of the BFS is, however, the key step to obtain 
the claimed complexity. Namely, the classical BFS of [17] maintains an array to store the 
shortest distances (aka the number of hops) of every node to an initial node. Since storing 
a number less than or equal to k requires \og(k) bits, using the classical BFS requires the 
space of size 0(\og(k)n2n) to store the shortest distance of every state of C to a state of 
Y , because C has 0(n2n) states. 

For our purposes, we do not need to know the shortest distance of every state to a 
state of Y , but we rather need to keep track of the number of hops from the states of Y 
made so far. 

We can achieve this by modifying the classical BFS so that we do not store the shortest 
distances for every state of C, but only the current distance. We store the current distance 
in the queue used by the BFS, see Algorithm 3 . In particular, we first push number 0 to 
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Algorithm 3 The Breadth-First Search used in Algorithm 2 

Require: A DES G = (V, £ , 5,1), a set S C V, k £ Noo 
Ensure: G with all states at distance at most k from the states of S marked 

1: Initialize the queue Q :— 0 
2: Enqueue number 0 to Q 
3: Mark every node s G S and enqueue it to Q 
4: Color every node u £ V — S white 
5: while Q ̂  0 do 
6: It := D E Q U E U E ( Q ) 

7: if u £ V and u — k then 
8: Terminate, states at distance < k were visited 
9: else if u £ V and u < k then 

10: Enqueue u + 1 to Q 
11: else if i t G V is a state of G then 
12: for every state v reachable in one step from u do 
13: if the color of v is white then 
14: Mark state v and enqueue it to Q 
15: end if 
16: end for 
17: Color u black 
18: end if 
19: end while 

the queue, followed by all the states of Y. Assuming that k > 0, number 0 is processed 
in such a way that it is dequeued from the queue, and number 1 is enqueued. After 
processing all the states of Y from the queue, that is, having number 1 at the head of 
the queue, we know that all the elements of the queue after number 1 are the states at 
distance one from the states of Y and not less. The algorithm proceeds this way until it 
has either visited all the states of C or the number stored in the queue is k. The algorithm 
marks all states of C that it visits. 

This approach requires to store only one log(/c)-bit number at a time rather than n2 r a 

such numbers, and hence the complexity of the algorithm then basically follows from the 
fact that the distance is bounded by the number of states of C, and not by the parameter k. 

Since Algorithm 3 is a minor modification of the BFS of Cormen et al. [17], very 
similar arguments show its correctness and complexity. For this reason, we do not further 
discuss the correctness and complexity of Algorithm 3. 

We now discuss the complexity of our algorithm. 

Theorem 6.2. The space and time complexity of Algorithm 2 is 0(n2n) and 0(in+m)2n), 
respectively, where n is the number of states of the input DES G and m is the number of 
transitions of P(G). In particular, m < in2, where £ is the number of observable events. 

Proof. Computing the observer and the projected NFA of G, lines 2 and 3, takes time 
0(£2n) and 0{m+n), respectively. The cycle on lines 4-8 takes time 0(n2n). Constructing 
the part H of the full observer of G, line 9, takes time 0(£2n). Constructing C, line 10, 
takes time 0(n2n+m2n), where 0(n2n) is the number of states and 0(m2n) is the number 
of transitions of C. The bounds come from the fact that we create at most 2n copies of 
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the automaton P{G). The BFS takes time linear in the size of C, and the condition of 
line 11 can be processed during the BFS. Since m > £, the proof is complete. • 

We now briefly review the complexity of existing algorithms verifying weak /c-step 
opacity. First, notice that the complexity of existing algorithms is exponential, which 
seems unavoidable because the problem is PSPACE-complete by Corollary 5.37. In par­
ticular, Saboori and Hadjicostis [36] designed an algorithm with complexity 0(£(£+l)k2n). 
where n is the number of states and £ is the number of observable events. Considering 
the verification of weak oo-step opacity, Saboori and Hadjicostis [37] designed an algo­
rithm with complexity 0{£2n + n ) . Y i n and Lafortune [44] introduced the notion of a 
two-way observer and applied it to the verification of weak /c-step opacity with complex­
ity 0(min{n2 2 n , n£k2n}), and to the verification of weak oo-step opacity with complexity 
0(n2 2 n ) ; the formulae already include a correction by Lan et al. [28]. In [6] we designed 
algorithms verifying weak k-step opacity and weak oo-step opacity with complexities 
0((k + l )2 n (n + m£2)) and 0((n + m£)2n), respectively, where m < £n2 is the number 
of transitions in the projected automaton. These algorithms outperform the two-way ob­
server if k is polynomial in n or larger than 2n — 2, since weak (2 n — 2)-step opacity and 
weak oo-step opacity coincide [44]. Wintenberg et al. [41] discussed and experimentally 
compared four approaches to the verification of weak /c-step opacity based on (i) the se­
cret observer, (ii) the reverse comparison, (iii) the state estimator, and (iv) the two-way 
observer. Their respective state complexities are 0(2 n ( f c + 3 )) , 0(n(k + l )3 n ) , 0((£+l)k2n), 
and 0 (min{2 n , £ f c }2 n ) . 1 

Notice that these bounds are formulated only in the number of states of the constructed 
automata, disregarding the number of transitions and the time of the construction. There­
fore, the time-complexity bounds differ from the state-complexity bounds at least by the 
factor of £, if the constructed automata are deterministic, or by a factor of m < £n2 if the 
construction of the automaton involves an NFA, such as in the case of the reverse compar­
ison. Namely, the time-complexity bounds are 0(^2 n( f e + 3)) for the secret observer, where 
n is the number of states and £ is the number of observable events, 0((n + m)(k + 1)3") 
for the reverse comparison, where m < £n2 is the number of transitions in an involved 
NFA, 0{£{£+ l)k2n) for the state estimator, and 0(min{n2 2 n , n£k2n}) for the two-way 
observer. 

As the reader may notice, the above complexities depend on the parameter k. A 
partial exception is the two-way observer that does not depend on k if £ k > 2 n , that is, if 
k is larger than the number of states divided by the logarithm of the number of observable 
events. 

Since the complexity of Algorithm 2 is 0((n + m)2 n), where n is the number of states 
of the input DES G and m < £n2 is the number of transitions of the projected automaton 
of G, it does not depend on the parameter k and, in general, outperforms the existing 
algorithms. A n exception is the case of a very small parameter k. In particular, if 
k < 21og(n)/log(£), the algorithms based on the state estimator and on the two-way 
observer are, in the worst-case, faster than our algorithm. Notice that this theoretical 
result agrees with the experimental results of Wintenberg et al. [41]. 

1The state complexity of the two-way observer is correct. The correction of L a n et al. [28] consists in 
adding a time bound to compute the intersection of two sets, and hence it does not influence the number 
of states. 
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Algorithm 4 Verification of strong k-step opacity 

Require: A deterministic DES G — (Q, £ , 6, go), Qs C E„ C £, and k £ NQQ. 
Ensure: true if and only if G is strongly k-step opaque with respect to Qs and P: S* 

Let Gnorm be the normalization of G by Transformation 5.44 
Transform Gnorm to G' by Transformation 5.48 
Use Algorithm 2 on G' with the set of secret states Q's, the set of non-secret states 
Q'NS, observable events E G , and k 
return the answer of Algorithm 2 

6.3 Verification of fc-SSO 

Theorem 5.49 gives us a clue how to verify strong k-step opacity of a given deterministic 
DES with the help of the verification algorithm for weak k-step opacity from the previous 
section. Given an instance of strong k-step opacity problem, we first transform it into an 
instance of weak /c-step opacity problem using Transformation 5.48, and then verify the 
property with Algorithm 2. This idea is formulated as Algorithm 4. 

The input of Algorithm 4 is the strong k-step opacity verification problem, which 
consists of a deterministic DES G, a projection P: E* —> £*, a set of secret states Qs Q Q, 
and a parameter k £ NQO. 

Algorithms verifying strong k-step opacity have been investigated in the literature. In 
particular, Falcone and Marchand [20] designed an algorithm based on a /c-delay trajectory 
estimation, however, they did not analyze its complexity, and the complexity analyses in 
the literature are inconsistent. While Ma et al. [30] state that the complexity is 0{£2n +n), 
where n is the number of states and £ is the number of observable events of the verified 
deterministic DES, Wintenberg et al. [41] state that the state complexity is 0((£+ ljk2n). 
According to [20, Definition 7], however, the /c-delay trajectory estimator has 0(2n 2 ) 
states. 

Recently, Ma et al. [30] designed another algorithm with complexity 0(£2^k+2'>n), and 
even more recently, Wintenberg et al. [41] discussed and experimentally compared algo­
rithms based on (i) the secret observer with complexity 0(£(k + 3) n), on (ii) the reverse 
comparison with complexity 0((n + m)(k + l )2 n ) , where m < £n2 is the number of 
transitions in the involved projected NFA, and on (iii) the construction of the /c-delay 
trajectory estimator of Falcone and Marchand [20], which they claim to be of complexity 
0{£{£+ l)k2n). 

We now analyze the complexity of Algorithm 4 and show that its worst-case complexity 
is better than the complexity of existing algorithms. Namely, we show that the space and 
time complexity of Algorithm 4 is 0{n2n) and 0((n + m)2 n), respectively, where n is 
the number of states of G and m is the number of transitions of P{G). Notice that the 
complexity does not depend on the parameter k. 

Before we formally state this result, notice that m < £n2, where £ is the number of 
observable events. Since £n2 is the maximum number of transitions in an n-state NFA 
with £ events, m is often significantly smaller than £n . 

For a deterministic DES with n states, Transformation 5.44 results in a normalized 
DES with up to 2n states, and hence it may seem that the observer of the normalized 
DES could have up to 22n states. The following lemma states that the observer of the 
normalized DES has in fact at most 2n states. 
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Lemma 6.3. Let G be an n-state deterministic DES, and let Gnorm be its normalization 
obtained by Transformation 5.44- Then, the observer of Gnorm has at most 2n states. • 

Notice that Lemma 6.3 does not claim that the number of states of the observer of G 
and of the observer of its normalization Gnorm coincide. It only provides an upper bound 
on the worst-case complexity. 

Similarly, for a normal deterministic DES G with n states, Transformation 5.48 results 
in a deterministic DES, denoted by G', with up to 2n states. The second lemma states 
that the observer of G' has as many states as the observer of G. 

Lemma 6.4. Let G be a normal deterministic DES with n states, and let G' be obtained 
from G by Transformation 5.48. Then, the numbers of states of the observer of G1 and of 
the observer of G coincide. • 

We can now state the following result analyzing the complexity of Algorithm 4. 

Theorem 6.5. The space and time complexity of Algorithm 4 is 0(n2n) and 0(in+m)2n), 
respectively, where n is the number of states of G and m is the number of transitions of 
P(G), that is, m < in2, where £ is the number of observable events. 

Proof. Let G be an n-state deterministic DES. In the first step, we construct the normal­
ization Gnorm of G with at most 2n states, the observer of which has at most 2n states 
by Lemma 6.3. Then, we apply Algorithm 2 to G' obtained from Gn0rm by Transfor­
mation 5.48. In particular, by Lemma 6.4, we compute the observer of G' with at most 
2n states, and the projected automaton P(G') with at most 4n states. Then, for every 
reachable state X of G'obs, and for every i G l f l Q's, we add the pair (x, X n Q'NS) to the 
set Y. This cycle takes time 0(n2n). Afterwards, we construct the automaton H as the 
part of the full observer of G' accessible from the states of the second components of Y. 
Since H consists only of the subsets of Q'Ng, of which there is at most 2n, the automaton 
H has 0(2n) states. The automaton C = P(G') x H thus has Oin2n) states and 0(m2n) 
transitions, the sum of which is the time complexity of the BFS applied to mark states of 
C reachable from the states of Y in at most k steps. Therefore, the state complexity of 
Algorithm 4 is 0(n2n) and the time complexity is 0(n2n+(n+m)2n) — 0((n+m)2n). • 

Comparing the complexity 0((n + m)2n) of Algorithm 4 with the complexity of the 
existing algorithms, the reader may see that (1) the complexity of Algorithm 4 does 
not depend on the parameter k, and (2) it is better than the complexity of the existing 
algorithms, because the minimum of the worst-case complexities 0{£2nk+1-2k), 0{£2^n), 
0(£(k+3)n), and 0((n+m)(k+l)2n) of the existing algorithms discussed at the beginning 
of this subsection is 0((n + m)2n) for k = 1, and 0((n + m)(k + l )2 n ) = 0((n + m)22n) 
for k £ 0(2n). Notice that the minimum worst-case complexity for large k is significantly 
higher than the complexity 0((n + m)2n) of Algorithm 4. In fact, the complexity of 
Algorithm 4, and the minimum worst-case complexity of the existing algorithms for very 
small k, coincide. However, while the existing algorithms can handle only inputs with a 
very small k with this complexity, our algorithm can handle inputs with k of arbitrary 
value with this complexity. Consequently, our algorithm improves the complexity of the 
verification of strong fe-step opacity. 



Chapter 7 

Conclusions 

In this paper, we presented new results in three areas concerning opacity of discrete-
event systems modeled by automata: the complexity of deciding opacity, the design of 
verification algorithms, and the relationships among various notions of opacity We thus 
provided a complete and improved complexity picture of verifying the discussed notions 
of opacity. 

In Chapter 4, we study the properties of current-state opacity in systems with a 
restricted alphabet and a restricted structure. We showed that the problem of deciding 
current-state opacity remains hard for almost all practial cases, cf. Table 1.1. Most 
notably, we showed that current-state opacity is: 

1. P S P A C E - c o m p l e t e for systems modeled by DFAs/poDFAs with three events, one of 
which is unobservable (Theorem 4.7 and Corollary 4.15), 

2. coNP-complete for systems modeled by NFAs/DFAs with a single observable event 
(Theorem 4.8 and Corollary 4.9), and 

3. coNP-complete for systems modeled by acyclic NFAs/acyclic DFAs with two ob­
servable events (Theorem 4.10 and Corollary 4.12). 

Chapter 5 is dedicated to transformations among the considered opacity notions. Our 
transformations are computable in polynomial time and preserve the number of observable 
events and determinism (whenever it is meaningful), allowing us to derive new results for 
corresponding opacity notions, see Table 1.2 for an overview. Below we summarize the 
results obtained from the transformations. 

• Language-based opacity and initial-and-final-state opacity - By combining 
Theorems 4.7 and 4.8 with transformations of Wu and Lafortune [42], we can con­
clude that deciding L B O and IFO is P S P A C E - c o m p l e t e for systems with two or more 
observable events, and coNP-complete for systems with a single observable event. 

• Initial-state opacity - We show that deciding ISO is P S P A C E - c o m p - l e t e for sys­
tems with two or more observable events. This result is established through Trans­
formation 5.3 (hardness) and the membership result of Saboori [32]. Additionally, 
Theorem 5.7 shows that deciding ISO is NL-complete in the single observable event 
case. 

• Trace opacity - We show that deciding T O is P S P A C E - c o m p l e t e for systems with 
two or more observable events. This result is established through Transformation 5.8 
(hardness) and the membership result of Dubreil [18]. Additionally, Theorem 5.12 
shows that deciding T O is NL-complete in the single observable event case. 

45 
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• Weak /c-step opacity - We show that deciding k-SO is PSPACE-complete for 
systems with two or more observable events and the parameter k £ NQO encoded in 
binary. This result is established through Transformations 5.16 (hardness) and 5.35 
(membership). In the single observable event case, deciding k-SO is coNP-complete 
by Transformations 5.25 (hardness) and 5.38 (membership). 

• Strong &>step opacity - We show that deciding k-SSO is PSPACE-complete 
for systems with two or more observable events and the parameter k £ NQO en­
coded in binary. This result is established through Transformations 5.16 (hardness) 
and 5.48 (membership). In the single observable event case, deciding k-SSO is 
coNP-complete by Transformations 5.21 (hardness) and 5.48 (membership). Ad­
ditionally, Theorem 5.47 describes the relationship of 0-SO and 0-SSO. 

In Chapter 6, we propose three algorithms for verifying language-based opacity and 
trace opacity (Algorithm 1), weak /c-step opacity (Algorithm 2), and strong /c-step opacity 
(Algorithm 4). We provide an analysis of all mentioned algorithms and we show that their 
time complexity is 0((n + m)2n), where n stands for the number of states of the input 
automaton and m for the number of transitions in the projected automaton of the input 
automaton. In particular, the complexity of algorithms for verifying weak and strong 
fc-step opacity does not depend on the parameter k £ NQQ. However, it remains an open 
question how our algorithms would perform if tested experimentally. 
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