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Abstract — Opacity is a security property of discrete-event systems that
asks whether, at any point of a computation, the secret is revealed to a
passive intruder. The literature has introduced several notions of opacity,
including language-based opacity, trace opacity, current-state opacity, weak
k-step opacity, weak co-step opacity, strong k-step opacity, initial-state opac-
ity, and initial-and-final-state opacity. In this work, we provide a complete
and improved complexity picture of verifying the discussed opacity notions
within the finite automata model. First, we focus on the complexity of de-
ciding current-state opacity in systems with a restricted set of events and
a restricted structure. Second, we present polynomial-time transformations
among the notions that preserve determinism and the number of observable
events, allowing the generalization of results across different notions of opac-
ity. Third, we propose three new algorithms for verifying language-based
opacity, trace opacity, weak k-step opacity, weak oco-step opacity, and strong
k-step opacity that improve their respective algorithmic complexity.
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Preface

The focus of this thesis is on opacity of discrete-event systems, examining
three key areas: the complexity of deciding opacity, the design of verification
algorithms, and the relationships among various notions of opacity. The
results presented in this thesis are mostly based on following articles:

[5] J. Balun and T. Masopust. On opacity verification for discrete-event
systems. [FAC-PapersOnLine, 53(2):2075-2080, 2020.

[7] J. Balun and T. Masopust. Comparing the notions of opacity for
discrete-event systems. Discrete FEvent Dynamic Systems, 31:553-582,
2021.

[9] J. Balun and T. Masopust. On transformations among opacity notions.
2022 IEEE International Conference on Systems, Man, and Cybernet-
ics (SMC), pages 3012-3017, 2022.

[10] J. Balun and T. Masopust. On verification of weak and strong k-step
opacity for discrete-event systems. IFAC-PapersOnLine, 55(28):108—
113, 2022. 16th IFAC Workshop on Discrete Event Systems WODES
2022.

In [5], we mainly focus on the complexity of deciding current-state opacity
in systems with a restricted set of events and a restricted structure. Most of
the results from this paper are presented in Chapter 4.

In [7], we introduce transformations between weak k-step opacity and
current-state opacity, and between language-based opacity and initial-state
opacity. Selected transformations from this article are presented in Sec-
tions 5.1, 5.5, and 5.6. We also design new algorithms for verifying language-
based opacity, weak k-step opacity and weak oo-step opacity, the first of
which is presented in Section 6.1.

In [9], we have further improved the previously presented transformations
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PREFACE 2

from weak k-step opacity to current-state opacity, which were initially intro-
duced in [7]. The updated transformations are polynomial in terms of the
parameter k. These transformations, along with others from this paper, are
discussed in Sections 5.4 and 5.6. An extended version of this paper, under
review in Discrete Fvent Dynamic Systems at the time of writing this thesis,
is available on arXiv.

In [10], we design a transformation from strong k-step opacity to weak
k-step opacity, as well as algorithms to verify both strong and weak k-step
opacity. As the algorithm for verifying weak k-step opacity is an updated
version of the algorithm presented in [7], I have included only this improved
variant in this thesis. The transformation can be found in Section 5.7, while
algorithms are presented in Sections 6.2 and 6.3. An extended version of this
paper, accepted for publication in Automatica at the time of writing this
thesis, is available on arXiv.

Furthermore, some of the transformations from Sections 5.2, 5.3, and 5.4
are not yet included in any article. I decided to include them in this thesis to
give a complete picture of the transformations among the discussed notions.

In addition to the articles listed above, I have made contributions to the
following publications:

[6] J. Balun and T. Masopust. On verification of strong periodic D-detect-
ability for discrete event systems. IFAC-PapersOnLine, 53(4):263-268,
2020. 15th IFAC Workshop on Discrete Event Systems WODES 2020.

[8] J. Balun and T. Masopust. On verification of D-detectability for dis-
crete event systems. Automatica, 133:109884, 2021.

[31] J. Komenda, D. Zorzenon, and J. Balun. Modeling of safe timed petri
nets by two-level (max,+) automata. [FAC-PapersOnLine, 55(28):212—
219, 2022. 16th IFAC Workshop on Discrete Event Systems WODES
2022.

[53] D. Zorzenon, J. Balun, and J. Raisch. Weak consistency of P-time event
graphs. IFAC-PapersOnLine, 55(40):19-24, 2022. 1st IFAC Workshop
on Control of Complex Systems COSY 2022.

No results from these articles have been included in this thesis as they do
not focus on opacity and due to space reasons.

Jirt Balun

Olomouc, June 2023



Chapter 1

Introduction

With the development of digitalization, the security is becoming an increas-
ingly important topic. Since many properties of the systems can be de-
duced from their discrete abstraction, several cybersecurity notions have
been introduced for the discrete-event systems. Namely, such properties
include anonymity of Schneider and Sidiropoulos [43], noninterference of
Hadj-Alouane et al. [11], secrecy of Alur et al. [1], security of Focardi and
Gorrieri [22], and opacity of Mazaré [36].

This thesis focuses on the opacity property, which guarantees that a sys-
tem prevents an intruder from revealing its secret. In the opacity setting,
the intruder is a passive observer that knows the structure of the system but
has only limited capability to observe its behavior. Therefore, if the intruder
wants to reveal the secret, he must estimate the current state of the system
based on his observations. Intuitively, the system is opaque if for every secret
behavior, there is a nonsecret behavior that looks the same to the intruder.
Therefore, at no point during the computation can the intruder be certain
whether or not secret behavior has occurred. The secret itself is usually mod-
eled as either a set of secret behaviors or a set of secret states. The former
option leads to language-based opacity, while the latter leads to state-based
opacity. Several notions of language-based and state-based opacity have been
discussed in the literature, from which we selected, in our opinion, the most
important and practical ones.

Defining the secret as a behavior results in two notions, that is, language-
based opacity (LBO) and trace opacity (TO). In the case of language-based
opacity, which was introduced by Badouel et al. [4] and Dubreil et al. [20], the
secret is defined as a subset of system’s behavior. This subset is known as a
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CHAPTER 1. INTRODUCTION 4

secret language and it contains compromising sequences of the system. Such a
sequence may, for example, represent the initiation of a system reboot. Trace
opacity, as introduced by Bryans et al. [12], is a special case of language-based
opacity. In trace opacity, the secret language comprises only those behaviors
that contain one of the secret events that represent the occurence of some
critical action of the system.

Regarding state-based opacity, we consider the following six notions:
current-state opacity (CSO), weak k-step opacity (k-SO), weak oco-step opac-
ity (00-SO), strong k-step opacity (k-SSO), initial-state opacity (ISO), and
initial-and-final-state opacity (IFO). In this case, each secret state represents
a vulnerable condition of the system, such as a particular part of the system
undergoing maintenance.

The most basic state-based notion is current-state opacity of Bryans et
al. [13] that prevents the intruder from revealing whether the system is cur-
rently in a secret state. However, in the future, the intruder may realize that
the system was in a secret state at some earlier point of the computation.
For example, if the intruder estimates that the system could be in one of two
possible states, and then in the following step, the system proceeds via an
observable event that is only possible from one of those states, the intruder
can deduce the state in which the system was one step ago. This issue has
been considered in the literature and led to the introduction of weak k-step
opacity and weak oco-step opacity by Saboori and Hadjicostis [38, 42]. While
weak k-step opacity requires that the intruder cannot ascertain the secret in
the current state and k subsequent observable steps, weak oo-step opacity
requires that the intruder can never ascertain that the system was in a secret
state. Note that weak 0-step opacity coincides with current-state opacity by
definition, and that an n-state automaton is weakly oo-step opaque if and
only if it is weakly (2" — 2)-step opaque [52].

Falcone and Marchand [21] have suggested that weak k-step opacity is
not as secure as it may seem. Although it may seem sufficiently confidential,
the intruder can still deduce that the system was previously in a secret state,
even if the intruder cannot determine the exact time at which the system
entered that state. To address this issue, they introduced a stronger version
of k-step opacity called strong k-step opacity, which provides a higher level
of confidentiality.

Bryans et al. [13] introduced initial-state opacity, which prevents the in-
truder from revealing, at any time instant, whether the system started in a
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Model |2, =1 |2, > 2
NFA CONP-complete PSPACE-complete [17]
DFA CONP-complete PSPACE-complete

partially ordered NFA  NL-complete PSPACE-complete
partially ordered DFA  NL-complete PSPACE-complete
acyclic NFA NL-complete CONP-complete
acyclic DFA NL-complete CONP-complete

Table 1.1: Complexity of verifying current-state opacity for different models
with ¥, being the set of observable events.

secret state. Initial-and-final-state opacity of Wu and Lafortune [50] is a gen-
eralization of both current-state opacity and initial-state opacity, where the
secret is represented as a pair of an initial and a marked state. Therefore, the
intruder can never reveal both starting and ending point of the computation
at the same time.

This thesis focuses solely on the theoretical aspects of opacity. However,
there have been successful implementations of opacity in various applications,
such as concealment of vehicle positions by Saboori and Hadjicostis [40],
and ensuring privacy of location-based services by Wu et al. [51]. For a
comprehensive overview of opacity and its applications, we recommend the
reader the work of Jacob et al. [27].

Most of the mentioned notions have been studied within the framework
of many different models, such as finite automata [38], Petri nets [13], timed
automata [16], and stochastic automata [30]. In this thesis, we model the
system as a finite automaton with partially observable behavior. In some
cases, we also consider structurally simpler variants such as partially ordered
automata or acyclic automata. In Chapter 2, we introduce relevant concepts
of automata theory and we formalize the model itself. Chapter 3 provides
an overview of all the opacity notions considered in this work together with
illustrative examples.

One of the key areas in opacity research is the complexity of deciding
whether a system satisfies a given notion of opacity. Since the verification is
often based on the observer construction, the problem belongs to PSPACE. In
fact, most of the notions are PSPACE-complete in the general case, and thus
there is no polynomial-time verification algorithm unless P = PSPACE. This
raises the question of whether the problem is easier to solve if we somehow
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Notion  |X,|=1 |Zo] > 2 Order

LBO CONP-complete PSPACE-complete O((n+m)2")
TO NL-complete PSPACE-complete O((n+m)2")
CSO CONP-complete PSPACE-complete o(e2m) [37]
k-SO CONP-complete PSPACE-complete O((n+m)2m)
00-SO  coONP-complete PSPACE-complete O((n+m)2m)
k-SSO  coNP-complete PSPACE-complete O((n+m)2m)
ISO NL-complete PSPACE-complete o(e2r ) [50]
IFO CONP-complete PSPACE-complete O0(2"*) [50]

Table 1.2: Complexity of verifying the notions of opacity for DESs following
from the transformations, algorithms, and known results; ¥, stands for the
set of observable events, n for the number of states of the input automaton, ¢
for the number of observable events of the input automaton, and m < ¢n? for
the number of transitions in the projected automaton of the input automaton.

restrict the structure of the system. Therefore, in Chapter 4, we investigate
the problem of deciding current-state opacity for systems that have a limited
number of observable events and that are represented by partially ordered
or acyclic automata. However, despite these restrictions, the problem re-
mains hard in almost all practical cases, as indicated in Table 1.1, where we
summarize our findings and existing results.

Transformations are another useful tool for analysing the complexity of
decision problems. If we can, for example, transform an instance of the
current-state opacity problem to an instance of the language-based opac-
ity problem in polynomial time and vice versa, we can derive PSPACE-
completeness of language-based opacity from the PSPACE-completeness of
current-state opacity. Such transformations were first provided by Wu and
Lafortune [50] between language-based opacity, current-state opacity, initial-
state opacity, and initial-and-final-state opacity. In Chapter 5, we extend
their results and provide transformations for trace opacity, weak k-step opac-
ity, weak oco-step opacity, and strong k-step opacity. Thus, by combining
these transformations, we show how to transform between any two notions,
allowing the generalization of results across different notions of opacity. In
particular, we show that for systems with two or more observable events,
the decision problem of any of the considered notions is PSPACE-complete.
On the other hand, if the system has only one observable event, then the
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problem is CONP-complete for all notions, except for initial-state opacity
and trace opacity, which are NL-complete. We summarize results following
from transformations, together with the existing results, in Table 1.2.

In addition to the new complexity results, the transformations also en-
abled us to design three new algorihms, which we introduce in Chapter 6.
Through the analysis of existing algorithms [34, 50, 41, 42, 52, 21, 35, 49],
we demonstrate that our algorithms improve the algorithmic complexity of
verifying language-based opacity, trace opacity, weak k-step opacity, weak
oo-step opacity, and strong k-step opacity. The right-most column of Ta-
ble 1.2 provides a summary of the complexities of the best-known algorithms
for all of the discussed notions. Note that we have not compared the algo-
rithms experimentally, and therefore in practical cases our algorithms might
be outperformed.
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Chapter 2

Preliminaries

In this chapter, we formalize the notation and model of a discrete-event
system based on finite automata. For more details on these topics see [24, 15].

For a set S, |S| denotes the cardinality of S, and 2% denotes the power set
of S. We define N to be the set of all non-negative integers, and we extend
it with its limit to No, = NU {oc}.

2.1 Languages and automata

An alphabet ¥ is a finite nonempty set of events. A string over X is a
sequence of events from Y; the empty string is denoted by €. The set of all
finite strings over X is denoted by X*. A language L over X is a subset of
¥*. The set of prefixes of strings of L is the set L = {u | Jv € ¥*, uv € L}.
For a string u € ¥*, |u| denotes the length of u, and @ denotes the set of all
prefixes of u.

Definition 2.1. A nondeterministic finite automaton (NFA) over an alpha-
bet ¥ is a structure A = (Q,X%,6,1, F), where @ is a finite set of states,
§: Q x ¥ — 29 is a transition function, 7 C @ is a set of initial states, and
F C @ is a set of marked states.

The transition function can be extended to the domain 29 x ¥* by induc-
tion. Equivalently, the transition function is a relation 6 C @ x X x ), where,
e.g., 0(q,a) = {s,t} denotes two transitions (¢, a, s) and (g, a,t). To simplify
our proofs, we use the notation §(Q, S) = Uses 0(Q, s), where S C 3*.

For a set Qy C Q, the set L,,(A, Qo) = {w € X% | 6(Qp,w) N F # B} is
the language marked by A from the states of Qy, and L(A, Qy) = {w € X* |

9



CHAPTER 2. PRELIMINARIES 10

5(Qo,w) # D} is the language generated by A from the states of Qy. The
languages marked and generated by A are defined as L,,(A) = L,,(A, I) and
L(A) = L(A,I), respectively. If L,,,(A) = L(.A) holds, then A is non-blocking
and every string generated by A can be extended to a marked string.

The NFA A is deterministic (DFA) if [I| = 1 and [6(q, a)| < 1 for every
q € @ and a € 3. In this case, we identify the singletons with their elements,
and simply write A = (Q, %, 9, q, F) if I = {qo} and (g, a) = ¢ instead of
d(q,a) ={d'}.

Let < be the reachability relation on the state set () defined as p < ¢
if there is w € ¥* such that ¢ € §(p,w). Then, the NFA A is partially
ordered (poNFA) if its reachability relation < is a partial order. If A is a
partially ordered DFA, we use the notation poDFA. The automaton is acyclic,
if ¢ € d(q,w) for every ¢ € Q and w € ¥* — {e}.

Let A; = (Qi, %4, 0, I;, F;), where i € {1,2}, be two NFAs. For A; and A;
over common alphabet ¥ = 3, = Xy, the product automaton of A; and Aj is
defined as the automaton A; x Ay = (Q1 X Q2,%,0, 11 X I, F| X Fy), where
((q1,q2),a) = 01(q1,a) X 62(qo, a) for every pair of states (q1,q2) € Q1 X Q2
and every event a € X. Notice that the definition does not restrict the
state space of the product automaton to its reachable part. In case where
Y1 # 3o, we use the synchronous product of A1 and As, which is defined as
the automaton A; || Ay = (Q1 X Q2,21 U X9, 8, [} X I, F} X Fy) where

(01(q1, @), 02(q2, a)) if a € X1 N Eg,01(q1,a)! and d2(q2, a)!
(01(q1,0a),q2) ifa € Xy —¥; and 61(qy, a)!
(q1,02(q2,0))  if a € ¥y — %y and dz(gp, a)!

undefined otherwise

(a1, q2),a) =

for (q1,q2) € Q1 X Q2 and a € X1 U Xy, and 0;(¢;, a)! denotes the fact that
there is a transition under a defined at ¢; in A;.

2.2 Discrete-event systems

In this section, we recall the standard definition of a discrete-event system.
Intuitively, we model the system as a non-deterministic finite automaton with
partially observable behavior.

Definition 2.2. A discrete-event system (DES) G over ¥ is an NFA over &
together with the partition of ¥ into X, and X, of observable and unobserv-
able events, respectively.
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If we want to specify that the DES is modeled by a DFA, we talk about
deterministic DES. If the marked states are irrelevant, we omit them and
simply write G = (Q, %, 0, I).

Definition 2.3. Let X be an alphabet and %,, ¥,, C X be its partition into
observable and unobservable events. The observation projection P: ¥* — X
is a morphism for concatenation defined by P(a) = ¢ ifa € ¥,,, and P(a) = a
if a € 3.

The action of P on a string ajas - - - a,, with a; € 3 for 1 <7 < mn, is to
erase all unobservable events, that is, P(ajas - --a,) = P(a;)P(az) -+ P(ay).
The definition can be readily extended to languages.

Definition 2.4. A projected automaton of a DES G over X with respect to
the projection P: ¥* — ¥* is the NFA P(G) obtained from G by replacing
every transition (p, a,q) by (p, P(a), q), followed by the standard elimination
of the e-transitions.

Equivalently, the transition function v: @ x 3, — 29 of P(G) can be
defined as v(q,a) = §(q, P*(a)). Note that P(G) is an NFA over ¥, with
the same states as G that recognizes the language P(L,,(G)) and can be
constructed in polynomial time, see [24] for more details.

Definition 2.5. An observer of a DES G is the accessible part of the DFA
constructed from P(G) by the standard subset construction.

We call the DFA constructed from P(G) by the standard subset construc-
tion a full observer of G. The full observer has exponentially many states
compared with G, and in the worst case, the same holds for the observer as
well, see [28] for more details.

For DESs with a single observable event we define a function ¢ that
assigns, to every state ¢, the maximal number i € {0,...,k} of observable
steps that are possible from state q.

Definition 2.6. Let G* = (Q, %, 9, I) be a DES with ¥, = {a} and P: ¥* —
{a}* be the observation projection. The function ¢;: @ — {0,...,k} with
respect to P is defined as oy (¢) = max {i € {0,...,k} | 6(q, P71 (a")) # 0}.

Evidently, if ¢r(q) > |Q| for a state ¢ € @, then pr(q) = k, since there
must be a cycle containing an observable event that is reachable from g¢.
Therefore, we can assume that k is never greater than the number of states
of the system G i.e., k < |Q)|.
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Chapter 3

Notions of opacity

In this chapter, we present the formal definitions of all considered opacity
notions within the finite automata model. For more details about opacity,
we refer the reader to the overview by Jacob et al. [27].

The opacity notions studied in this thesis can be divided into two types,
namely language-based opacity and state-based opacity. The difference be-
tween the two types is the way the secret is modeled. If the secret is modeled
as a set of behaviors, then opacity notion is referred to as language-based. In
the second case, the secret is modeled as a set of states, giving the state-based
opacity notion.

In the first two sections, we introduce the language-based notions, namely
language-based opacity and trace opacity. The rest of the chapter is dedicated
to the notions of state-based opacity, namely current-state opacity, weak
k-step opacity, strong k-step opacity, initial-state opacity, and initial-and-
final-state opacity. Aside from strong k-step opacity, which is defined only for
deterministic DESs, we define all other notions for nondeterministic systems.

3.1 Language-based opacity (LBO)

Language-based opacity was introduced by Badouel et al. [4] and Dubreil
et al. [20]. We recall the most general definition by Lin [34]. Intuitively, a
system is language-based opaque if for every string w in the secret language,
there exists a string w’ in the non-secret language with the same observation
P(w) = P(w'). In this case, the intruder cannot conclude whether the secret
string w or the non-secret string w’ has occurred.

13



CHAPTER 3. NOTIONS OF OPACITY 14

OENGEN,

Figure 3.1: Example of language-based opacity.

Definition 3.1. Given a DES G = (Q, X, 0,1), a projection P: ¥* — ¥* a
secret language Ls C L(G), and a non-secret language Lys C L(G). System
G is language-based opaque (LBO) if Lg C P~1P(Lys).

We assume that the languages Ls = L(Ag) and Lys = L(Ayg) are rep-
resented by the non-blocking automata Ag = (Qg, %, ds, Is, Fis) and Ayg =
(Qns, X, 0ns, Ins, Fing), respectively. Without loss of generality, we may as-
sume that their sets of states are disjoint, that is, Qs N Qs = 0. It is worth
mentioning that the secret and non-secret languages are often considered to
be regular; and we consider it as well. The reason is that, for non-regular
languages, the inclusion problem is undecidable; see Asveld and Nijholt [3]
for more details.

Another notion studied in the literature is weak language-based opac-
ity [34], which should not be confused with (strong) language-based opacity
defined above. In comparison, the weak notion holds if the intruder confuses
at least one secret string, formally LgNP~'P(Lyg) # (). We do not consider
the weak notion in this thesis.

Example 3.2. Let G over ¥ = {a,b,c} depicted in Figure 3.1 be an in-
stance of the language-based opacity problem with the secret language Lg =
L(As) = abb* and the non-secret language Lys = L(Ans) = acb*. We
distinguish two cases depending on whether event c is observable or not.

In the first case, we assume that event c is unobservable. In this case, G
is language-based opaque, because P(Lg) = abb* and P(Lyg) = ab*, and the
reader can see that P(Lg) C P(Lygs).

In the second case, we assume that event c is observable. In this case, G
is not language-based opaque, because ab € P(Lg) whereas ab € P(Lyg). ©
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L D)
=8

Figure 3.2: Example of trace opacity.

3.2 Trace opacity (TO)

Trace opacity was introduced by Bryans et al. [12]. A trace w € X* is secret
if it contains any event from a specified set of secret events, otherwise w
is non-secret. In accordance with [12], we consider all secret events to be
unobservable. A system is trace opaque if for every secret trace, there is a
non-secret trace that looks the same to the intruder.

Definition 3.3. Given a DES G = (Q, %, 0, 1), a projection P: ¥* — ¥
and a set of unobservable secret events S C X,,. System G is trace opaque
(TO) if P(Sec(@)) C P(Pub(G)), where Sec(G) = L(G) N £*SE* is the set
of secret traces and Pub(G) = L(G)N (X —S)* is the set of non-secret traces.

Intuitively, trace opacity is a special case of language-based opacity, where
the secret language of trace opacity is strictly defined as a set of strings
containing at least one secret event, and the non-secret language is defined
as any other behavior of the system. In Section 5.3, we present a way to
construct automata Ag and Ayg from a trace opacity problem instance G
such that L(Ag) = Sec(G) and L(Ans) = Pub(G).

Example 3.4. Let G over ¥ = {a,b,c,0} depicted in Figure 3.2 be an
instance of the trace opacity problem with the set of secret events S = {o}.
We distinguish two cases depending on whether event c is observable or not.

If event ¢ is unobservable, then G is trace opaque, because for every secret
trace w € Sec(G) = oab* there is a non-secret trace w’ € Pub(G) = acb* with
the same observation P(w) = P(w’), since we have P(Sec(G)) = P(Pub(G)).

If event c is observable, then the reader can see that G is not trace opaque.
There are non-secret traces € and a with the same observation as secret traces
o and oa, respectively, but there is no non-secret trace for the secret trace
oab with observation P(cab) = ab. ©
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Figure 3.3: Example of current-state opacity.

3.3 Current-state opacity (CSO)

Bryans et al. [13] introduced current-state opacity for systems modeled by
Petri nets and Bryans et al. [12] generalized it to transition systems. Current-
state opacity asks whether the intruder cannot decide, at any instance of time,
whether the system is currently in a secret state. Therefore, the system is
current-state opaque if, for every string leading to a secret state, there exists
another string with the same observation that leads to a non-secret state.

Definition 3.5. Given a DES G = (Q, X, 0, 1), a projection P: ¥* — ¥* a
set of secret states Qs C @, and a set of non-secret states Qg C (). System
G is current-state opaque if for every string w such that §(7,w) N Qg # 0,
there exists a string w’ such that P(w) = P(w') and §(I,w") N Qns # 0.

Note that the definition of current-state opacity does not require Qngs =
Q) — Qs, and thus the systems we consider can contain states that are neither
secret nor non-secret. We call these states neutral and we cannot simply
handle them as non-secret states.

Example 3.6. Let G over ¥ = {a, b, ¢} depicted in Figure 3.3 be an instance
of the current-state opacity problem with the set of secret states Qs = {2}
and the set of non-secret states Qns = {5}. We distinguish two cases de-
pending on whether event c is observable or not.

If event ¢ is unobservable, then G is current-state opaque, because the
only string leading to the secret state, state 2, is the string a, for which the
string ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac).

If event c is observable, then G is not current-state opaque, because the
only string leading to a non-secret state, string ac, has a different observation
than the string a leading to the secret state, that is, P(ac) # P(a). ©
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3.4 Weak k-step opacity (k-SO)

The notion of weak k-step opacity, which was introduced by Saboori and
Hadjicostis [38, 42], is a generalization of current-state opacity requiring that
the intruder cannot reveal the secret in the current state and k subsequent
observable steps.

Definition 3.7. Given a DES G = (Q,%,6,1), a projection P: ¥* — X*
a set of secret states Qs C @, a set of non-secret states Qns C @, and a
parameter k € N. System G is weakly k-step opaque (k-SO) if for every
string st € L(G) with |P(t)] < k and 6(6(Z,s) N Qs,t) # 0, there exists a
string §'t" € L(G) such that P(s) = P(s"), P(t) = P(t'), and 0(6(,s") N
Qns, 1) # 0.

We distinguish two special cases for £ = 0 and £k = oco. By definition,
weak 0-step opacity is equivalent to current-state opacity. In the case of weak
oo-step opacity, Yin and Lafortune [52] have shown that an n-state DES is
weakly oo-step opaque if and only if it is weakly (2" — 2)-step opaque.

Below we present a separate definition of weak oo-step opacity, since
this notion is often studied independently in the literature. In addition, the
transformations of weak oco-step opacity are simpler than those of weak k-step
opacity, and so in Section 5.6 we use Transformation 5.34 from weak oco-step
opacity to current-state opacity as an intermediate step before introducing a
general transformation for any £ € N..

Definition 3.8. Given a DES G = (Q, %, 0, 1), a projection P: ¥* — ¥
a set of secret states Qg C @, and a set of non-secret states Qns C Q.
System G is weakly co-step opaque (0o-SO) if for every string st € L(QG)
such that §(6(1,s) N Qg,t) # 0, there exists a string 't € L(G) such that
P(s) = P(s'), P(t) = P(t'), and 6(6(1, ") N Qng,t') # 0.

Example 3.9. Let G over ¥ = {a, b, ¢} depicted in Figure 3.4 be an instance
of the weak k-step opacity problem with the set of secret states Qg = {2}
and the set of non-secret states Qngs = {4}. We consider two cases based on
the observability status of event c.

If event c is unobservable, then G is weakly k-step opaque for any k € N.
Indeed, the only string leading to the unique secret state, state 2, is the string
a. The same string leads to the unique non-secret state, state 4. Then, any
possible extension of the string a from the secret state 2 is the string b‘, for
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Figure 3.4: Example of weak k-step opacity.

1 € N, which reaches state 3. However, for any such extension, there is the
extension cb’ from the non-secret state 4 with P(ab’) = P(acb’).

If ¢ is observable, then the reader can see that G is weakly O-step opaque,
or in other words, current-state opaque. However, G is not weakly k-step
opaque for any k£ > 0, because after observing the string ab, the intruder can
deduce that the system was in the secret state 2 one step ago. o

3.5 Strong k-step opacity (k-SSO)

While weak k-step opacity is considered to be relatively confidential, Falcone
and Marchand [21] have shown that it is not as confidential as it may seem.
The intruder may still be able to determine that the system was previously
in a secret state, but not the exact time when this occurred. Therefore, they
introduced a stronger notion of opacity called strong k-step opacity, which
provides a higher level of confidentiality.

In accordance with Falcone and Marchand [21], we consider strong k-step
opacity only for deterministic DESs where all states that are not secret are
non-secret, that is, Qns = @ — Q5. It means that every state has its own
secret/non-secret status and there are no neutral states.

Definition 3.10. Given a deterministic DES G = (Q, %, 0, qo), a projection
P: ¥ — 37 aset of secret states Qs C @, and a parameter k € N,. System
G is strongly k-step opaque (k-SSO) if for every string s € L(G), there exists
a string w € L(G) such that P(s) = P(w) and for every prefix w’ of w, if
|P(w)| — |P(w')] <k, then 6(qo,w’) ¢ Qs.

Note that strong 0-step opacity is not equivalent to current-state opacity
as in the case of weak O-step opacity. In Theorem 5.59, we show that un-
observable transitions from secret states to non-secret states, like transition
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Figure 3.5: Example of strong k-step opacity.

(5,u,6) in Example 3.11, are the only issues making the difference between
strong O-step opacity and weak O-step (current-state) opacity. However, as
pointed out by Wintenberg et al. [49], strong k-step opacity implies weak
k-step opacity as long as no neutral states are considered.

Example 3.11. Let G over ¥ = {a,b,u} depicted in Figure 3.5 be an in-
stance of the strong k-step opacity problem with unobservable event wu, the
set of secret states Qg = {5}, and the set of non-secret states Qns = Q@ — Qs.
We consider two cases based on the observability status of event b.

If event b is unobservable, then G is strongly k-step opaque for any k €
N. Indeed, the only string leading to the unique secret state, state 5, is the
string a, while the string ba with the same observation leads to the non-secret
state, state 3, without going through any secret state. Then, any possible
extensions of the string a from the secret state 5 are the strings u and ua,
which reach states 6 and 7, respectively. However, for these extensions there
are € and a extensions of the string ba from state 3 such that P(au) = P(ba)
and P(aua) = P(baa), respectively, that do not go through a secret state.

If b is observable, then G is weakly k-step opaque for any k € N, but
not strongly 1-step opaque, because for s = aua, the only string with the
same observation as s is w = aua, and hence the prefixes w’ for which
|P(w)|—|P(w")| < 1 are the strings w’ = a, w' = au, and w’ = aua. However,
for w' = a, we obtain that §(1,a) = 5 € Qg, which violates the definition
of strong 1-step opacity. In fact, the system G is neither strongly O-step
opaque, because for s = au, the only strings w with the same observation
as s are the strings au and a, both with prefix w' = a such that |P(w)| —
|P(w")| < 0 and 6(1,a) = 5 € Qg, which violates the definition of strong
0-step opacity. On the other hand, the system is obviously current-state
opaque. Consequently, the notions of strong 0-step opacity and current-state
opacity do not coincide. o
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Figure 3.6: Example of initial-state opacity.

3.6 Initial-state opacity (ISO)

Initial-state opacity was first introduced by Bryans et al. [13] for systems
modeled by Petri nets and then Bryans et al. [12] generalized it to transition
systems. Intuitively, initial-state opacity asks whether the intruder can never
reveal whether the computation started in a secret state.

Definition 3.12. Given a DES G = (Q, X%, 6, 1), a projection P: ¥* — ¥
a set of secret initial states Qg C I, and a set of non-secret initial states
Qns C I. System G is initial-state opaque (ISO) if for every w € L(G, Qs),
there exists w’ € L(G, Qns) such that P(w) = P(w').

We consider all states that are neither secret nor non-secret to be neutral.
In particular, the secrecy status of the non-initial states do not play any role
in initial-state opacity.

Example 3.13. Let G over X = {a,b,c} depicted in Figure 3.6 be an in-
stance of the initial-state opacity problem with the set of secret initial states
Qs = {1} and the set of non-secret initial states Qng = {4}. We distinguish
two cases depending on whether event c is observable or not.

In the first case, we assume that event c is unobservable. In this case,
G is initial-state opaque, because P(L(G, 1)) = abb* and P(L(G,4)) = ab*,
and the reader can see that P(L(G,Qs)) C P(L(G,Qns)).

In the second case, we assume that event c is observable. In this case, G is
not initial-state opaque, because ab € P(L(G,1)) whereas ab ¢ P(L(G,4)),
and hence P(L(G,Qs)) € P(L(G,Qns)). ©
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Figure 3.7: Example of initial-and-final-state opacity; the states of secret pair
are square-shaped and the states of non-secret pair are diamond-shaped.

3.7 Initial-and-final-state opacity (IFO)

The last notion we consider is initial-and-final-state opacity of Wu and Lafor-
tune [50]. Initial-and-final-state opacity is a generalization of both current-
state opacity and initial-state opacity, where the secret is represented as a
pair of an initial and a marked state. Consequently, initial-state opacity is a
special case of initial-and-final-state opacity where the marked states do not
play a role, and current-state opacity is a special case where the initial states
do not play a role.

Definition 3.14. Given a DES G = (Q, X, 4, ), a projection P: ¥* — ¥,
a set of secret state pairs Qg C I x @), and a set of non-secret state pairs
Qns € I x Q. System G is initial-and-final-state opaque (IFO) if for every
secret pair (g, qr) € Qs and every w € L(G, qo) such that ¢; € 0(qo, w),
there exists a non-secret pair (¢j,q7) € Qns and w' € L(G, qp) such that
qy € 6(gp,w') and P(w) = P(w').

Wu and Lafortune [50] also consider a special case with the sets of secret
and non-secret pairs of the form Qg = Is X Fig and Qng = Inys X Fyg, where
Is,Ing C I and Fg, Fivg € Q. In this case, however, the instance of initial-
and-final-state opacity corresponds to an instance of language-based opacity,
where Ag = (Q, %, 0, Is, Fs) and Ays = (Q, %, 0, Ins, Fng) are automata for
the secret and non-secret languages, respectively.

Example 3.15. Let G over X = {a,b,c} depicted in Figure 3.7 be an in-
stance of the initial-and-final-state opacity problem with the set of secret
pairs Qs = {(1,3)} and the set of non-secret pairs Qns = {(4,6)}. We
distinguish two cases depending on whether event c is observable or not.
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In the first case, we assume that event c is unobservable. In this case,
G is initial-and-final-state opaque, because the language of sequences that
start and end in single secret pair (1,3) equals to L¢3 = abb®, while the
language of sequences of the non-secret pair (4,6) equals to L6 = acb®,
and the reader can see that P(L(13)) € P(Lg))-

In the second case, we assume that event c¢ is observable. In this case,
G is not initial-and-final-state opaque, because ab € P(L( 3)) whereas ab ¢
P(L4,)), and hence P(L13)) € P(Ls)). Notice that sequences that start
in state 4 and end in state 3 do not affect initial-and-final-state opacity, since
pair (4, 3) belongs neither to Qg nor Qys. o



Chapter 4

Properties of current-state
opacity

This chapter focuses on analyzing the complexity of verifying current-state
opacity in systems with a restricted set of events and a restricted structure.
We show that in most cases these restrictions do not make the verification
tractable, and therefore the problem remains hard in essentially all practical
cases.

The complexity of opacity verification has widely been investigated in
the literature and is often based on the computation of observer. Thus the
problem belongs to PSPACE. It is actually PSPACE-complete for most of
the discussed notions. Indeed, Cassez et al. [17] showed that the verification
of current-state opacity is at least as hard as deciding universality, which is
PSpACE-complete for nondeterministic automata as well as for deterministic
automata with partial observation.

Remark 4.1. By Cassez et al. [17], the verification of current-state opac-
ity is at least as hard as deciding universality. Indeed, for a DES G =
(Q,%,6,1,F), we have L(G) = ¥* if and only if G is current-state opaque
with respect to Qs =Q — F, Qns = F, and P: ¥ — X.

However, PSPACE-completeness of universality problem requires a non-
trivial structure of the model and the ability to express all possible strings.
This give rise to a question whether there are structurally simpler systems
for which the verification of opacity is tractable. We investigate the problem
for, in our opinion, structurally the simplest systems: for acyclic automata
(that do not have the ability to express all strings, and actually express only

23
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a finite number of strings) and for automata where all cycles are in the form
of self-loops (which may still seem trivial in the structure, because as soon
as the system leaves a state, it can never return to that state).

To simplify the proofs, we first reduce current-state opacity to the lan-
guage inclusion problem. This reduction is similar to that of Wu and Lafor-
tune [50] reducing current-state opacity to language-based opacity.

Lemma 4.2. Let G = (Q,%,0,1) be a DES, P: ¥* — ¥ a projection, and
Qs,Qns C Q sets of secret and non-secret states, respectively. Let Ls denote
the marked language of the automaton Gg = (Q,%,0,1,Qs) and Lyg denote
the marked language of the automaton Gys = (Q,%,0,1,Qns). Then G is
current-state opaque if and only if P(Lg) € P(Lns).

Proof. Assume that w is such that §(1,w) N Qg # (. This is if and only if
P(w) € P(Lg). Then, by definition, there is a string w’ such that P(w) =
P(w') and §(I,w") N Qns # O, which is if and only if P(w) € P(Lyg). O

The observations from Remark 4.1 and Lemma 4.2, together with the
results on the complexity of deciding universality and inclusion give us strong
tools to show lower and upper complexity bounds for deciding (current-state)
opacity. We summarized results from this chapter, together with the existing
results, in Table 1.1.

4.1 Simplification of the system

In this section we provide two useful transformations that can simplify any
system without affecting its property of being current-state opaque. As a
result, any instance of current-state opacity decision problem can be trans-
formed in polynomial time into a deterministic system that has at most two
observable events. Later, these simplifications will allow us to generalize
some of the results from this chapter to other opacity notions.

The following transformation reduces the number of observable events
in DESs with at least three observable events. The main idea is to encode
the transition labels in binary. In Theorems 4.4, 5.6, and 5.12, we show
that this transformation does not affect the system’s status of current-state
opacity, initial-state opacity, and trace opacity. This way we preserve the
number of observable events in transformations in Chapter 5 that introduce
new observable events.
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Figure 4.1: The replacement of three observable events {a, as, a3} with the
encoding e(a;) = 00, e(az) = 01, and e(ag) = 10, and new states py and p;.

Transformation 4.3. Let G = (Q, 3,9, I) be a DES modeled by an NFA,
P:¥* — ¥, be the observation projection, I'y, C >, be an alphabet with
at least three events, and e: I, — {0,1}* be a binary encoding (that is, an
injective function), where k < [logy(|Ts|)]. We construct a DES

T(G) = (le (Z - Fo) U {Ov 1}7 5/7 I)

so that we start with the system G and replace every transition (p, a, q) with
a €T, and e(a) = biby - - - by, € {0,1}* by k transitions

(p7 blvpbl)v (pblv b?vpblbz)v ceey (pbl---bk,lv bk7 Q)

where the states pp,,...,Dpb,_, are added to the set of states @’ of the
system r(G). These states are created when needed for the first time, and
reused later during the replacements, cf. Figure 4.1 illustrating a replacement
of three observable events {ay, as, az} with the encoding e(a;) = 00, e(as) =
01, and e(a3) = 10. Finally, we define projection P’: [(¥ —T',) U{0,1}]* —
(50— T) U {0, 1} o

Notice that the Transformation 4.3 preserves the number of unobservable
events and determinism, and that it can be done in polynomial time. On
the other hand, it does not preserve partial order because the encoding of a
self-loop transition results in a cycle over two or more states.

The following theorem shows that the transformation does not affect the
property of the system to be current-state opaque, and therefore we can
reduce the number of observable events of any current-state opacity instance
to just two.

Theorem 4.4. A DES G is current-state opaque with respect to Qs, Qns,
and P if and only if the DES r(G) obtained by Transformation 4.3 is current-

state opaque with respect to Qs = Qs, Qg = Qns U (Q' — Q), and P'.
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Proof. By Lemma 4.2, to show that the system G is current-state opaque if
and only if the system r(G) is current-state opaque, we need to show that
P(Lg) C P(Lyg) if and only if P'(Ly) C P'(LYyg), where

o Lg= Ly(As), where As = (Q,%,0,1,Qs),

o Lns = Ly (Ansg), where Ays = (Q,%,9,1,Qns),

o L'y =L, (Ay), where A5 = (@, (X —T,) U{0,1},d,1,Q%), and
o Liyg = Lm(Aysg), where Ayg = (Q', (X —T,) U{0,1},¢", I, Qys)-

We define a morphism f: ¥* — ((¥—T,)U{0, 1})* such that f(a) = e(a)
for a € Ty, and f(a) = a for a € ¥ —T,. By the definition of e and
the construction of the system r(G), any string w € L(G) if and only if the
string f(w) € L(r(G)). In particular, P(w) € P(Lg) if and only if P'(f(w)) €
P'(LY), and P(w) € P(Lyg) if and only if P'(f(w)) € P'(L}yg). Therefore,
if P'(L) C P'(L’yg) then P(Lg) € P(Lyg). On the other hand, we assume
that P(Ls) C P(Lys), and we consider any P'(z) € P'(L%). Then, P'(z) is
of the form P’(f(y)) for some string y € Lg, and P(y) € P(Ls) € P(Lys)
implies that P'(x) = P'(f(y)) € P'(L'yg)- O

In the second transformation, we show how to transform a system mod-
eled by an NFA to a system modeled by a DFA without affecting the system’s
properties of being current-state opaque, acyclic, and partially ordered.

Transformation 4.5. Let G = (Q,X,0,1) be a DES modeled by an NFA
with the secret states (Qg, the non-secret states ()yg, and the corresponding
projection P: ¥* — 3*. We construct a deterministic DES Gge in two steps.

1. First, we ensure that the system has a unique initial state. From G we
construct a DES G' = (@', 3,8, {qo}), where Q' = Q U{qo} contains a
new non-secret initial state qg. Further, for each ¢ € I we add a new
transition (qo, a, q) to &', where a € ¥, is an arbitrary observable event.

2. In the second step, we determinize the transition function of the system.
From G’ we construct a DES Ggey = (Q", X U {u}, ", (qo, go)) modeled
by a DFA, where Q" = Q' x ' is the set of pairs of states, u is a new
unobservable event, and the pair (g, q) € Q" is a new initial state.
We define the transition function 6" as follows.

(a) For every transition (p,a,q) in ¢, where p,q € Q" and a € 3, we
add a transition ((p, q),a, (¢,q)) to 0”.
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Figure 4.2: Determinization of a DES.

a

(b) For every state p € Q" we define the set R, = Ugex 0'(p, a) —{p} =
{p1,p2, - .., pe} of states different from p that can be reached from
p by a single transition. We then add transitions of the form
((p,p),u, (p,p1)) and ((p,pi), u, (P, pis1)) for i =1,....0 =1, as
shown in Figure 4.2, to create a chain of states from R, connected
to state (p,p). Note that the order in which we connect states
from R, does not affect the resulting system.

We remove unreachable states from Gg.. Finally, we define the projection
P (2* U {u}) — X¥, and the sets of secret states Qs = {(p,q) | p € Qs}

and of non-secret states Qyg = {(p,q) | p € Qns U {q}} o

Notice that Transformation 4.5 can be done in polynomial time using
at most (n + 1)? states, where n is the number of states in G. In fact, if
we omit removing unreachable states at the end of the tranformation, then
Glaet can computed in deterministic logarithmic space. Additionally, this
transformation does not introduce any new neutral states and it preserves
the number of observable events, acyclicity, and partial order.

Theorem 4.6. A DES G is current-state opaque with respect to Qs, @Qns,
and P if and only if the deterministic DES Ggo obtained by Transforma-
tion 4.5 is current-state opaque with respect to Q, Q'yg, and P'.

Proof. The first step of Transformation 4.5 just creates a new non-secret
initial state go that is unreachable from any other state and that is con-
nected to the original initial states by an observable event a, and so we have
8'(qo,a) = I. Therefore, G is clearly current-state opaque with respect to
Qs, Qns, and P if and only if G’ is current-state opaque with respect to Qg,
QNS U {QO}v and P.

In the second step, the number of observable steps from a state of the
system G’ is preserved in the system Gy.;. By the construction of Gy, every
state (p,q) € R, is reachable from the state (p,p) by a sequence consisting
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only of unobservable event u, and hence (p, q) is contained in every state of
the observer that contains state (p,p); and vice versa, because every path to
the state (p,q) goes through the state (p,p) in the system Gge;. Therefore,
if a state of the observer contains a secret state (p, ¢) and a non-secret state
(', 4q), then it also contains the original secret state (p,p) and the original
non-secret state (p',p’). That is, the system G is current-state opaque with
respect to QQg, Qns, and P if and only if the system G is current-state
opaque with respect to Q, Q'yvg, and P’. O

4.2 Restriction on structure of the system

Our first restriction concerns the number of observable and unobservable
events in the system. The following result thus improves the general case in
two ways: (i) compared to the general settings we keep the system determin-
istic, and, mainly, (ii) we restrict the number of observable events to two and
the number of unobservable events to one.

Theorem 4.7. Deciding current-state opacity of a DES modeled by a DFA
with three events, one of which is unobservable, is PSPACE-complete.

Proof. Membership in PSPACE was shown by Saboori [37], and also follows
directly from Lemma 4.2.

To show hardness, we reduce the current-state opacity problem for a
DES modeled by an NFA with just two observable events, which is PSPACE-
complete by Remark 4.1 and Saboori [37]. This can be done by Transfor-
mation 4.5 which, for a DES modeled by an NFA with just two observable
events, constructs a deterministic DES with three events, one of which is
unobservable, without affecting the property of current-state opacity. Il

Notice that an unobservable event in the previous theorem is unavoidable
because any DFA with all events observable is always in a unique state, and
therefore never opaque. However, the reader may wonder what happens if
we further restrict the number of observable events to just one. We now
show that having only one observable event makes the problem computa-
tionally easier unless CONP = PSPACE. This result holds even without any
restriction on the number of unobservable events, and for nondeterministic
automata.
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Theorem 4.8. Deciding current-state opacity of a DES modeled by an NFA
with a single observable event is CONP-complete.

Proof. Membership in CONP follows from Lemma 4.2 and the fact that in-
clusion for unary NFAs is CONP-complete, and hardness follows from the
complexity of deciding universality for unary NFAs. For both claims used
here, the reader is referred to Stockmeyer and Meyer [47]. ]

We obtain the following result for DFAs by applying Transformation 4.5
which, for a DES modeled by an NFA with a single observable event, con-
structs a deterministic DES with two events, one of which is unobservable,
without affecting the property of current-state opacity.

Corollary 4.9. Deciding current-state opacity of a DES modeled by a DFA
with two events, one of which is unobservable, is CONP-complete.

Previous results show that only restricting the number of events does not
lead to tractable complexity. But it gives rise to another question whether
there are structurally simpler systems for which the opacity verification prob-
lem is tractable.

Structurally the simplest systems we could think of are acyclic DFAs with
full observation, recognizing only finite languages. However, these systems
are never opaque, since they are deterministic and fully observed. Nontrivial
structures to be considered could thus be acyclic NFAs that still recognize
only finite languages, and hence do not possess the ability to express all
strings over the alphabet. We combine this restriction with the restriction
on the number of events.

Theorem 4.10. Deciding current-state opacity of a DES modeled by an
acyclic NFA with two or more observable events is CONP-complete.

Proof. Assume that the acyclic NFA has n states. Then any string from
its language is of length at most n — 1. Thus, to show that the system is
not opaque, an NP algorithm guesses a subset of secret states and a string
of length at most n — 1 and verifies, in polynomial time, that the guessed
subset is reachable by the guessed string. This shows that verifying opacity
is in CONP. Notice that membership in CONP can also be directly derived
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from Lemma 4.2 and the complexity of inclusion for so-called rpoNFAs! of
Krotzsch et al. [32] that are more general than acyclic NFAs.

To show CONP-hardness, we reduce the complement of CNF satisfiability.
The proof is based on the construction showing that non-equivalence for
regular expressions with operations union and concatenation is NP-complete
even if one of them is of the form 3" for some fixed n, see [25, 47].

Let {z1,...,2,} be a set of variables and ¢ = 1 A+ -+ Ay, be a formula
in CNF, where every ¢; is a disjunction of literals. Without loss of generality,
we may assume that no clause ¢; contains both z and —z. Let —¢ be the
negation of ¢ obtained by de Morgan’s laws. Then —¢ = =@ V -+ -V gy, is
in disjunctive normal form.

For every i = 1,...,m, we define a regular expression 3; = ;1582 - Bin,
where

(O + 1) if neither T; NOr —x; appear in —(;
Bij = 0 if —x; appears in —p;
1 if z; appears in —y;

for j =1,...,n. Let 8 = J", L(5;) be the union of languages defined by
expressions ;. Then we have that w € L() if and only if w satisfies some
—;. That is, we have that L(8) = {0,1}" if and only if —y is a tautology,
which is if and only if ¢ is not satisfiable. Notice that the length of every
string recognized by f3; is exactly n.

Let G be an NFA consisting of m paths of length n, each corresponding to
the language of §;, and make the last state of each of these paths non-secret,
that it, it is placed to Qyg. In addition, add a path consisting of n+ 1 states
{ag,aq, ..., a,} and transitions (ay, a, @y 1), for 0 < ¢ < n, where a € {0, 1}.
Let v, be the sole secret state, i.e., Qs = {a,}. Notice that the language of
G marked by the states in Qg is {0, 1}", whereas the language marked by the
states in Qns is L(). By Lemma 4.2, G is current-state opaque if and only
if {0,1}™ C L(p), which is if and only if ¢ is not satisfiable. This completes
the proof of CONP-completeness. O

Again, we can show that the situation is computationally simpler if only
one observable event is allowed.

!The NFA A is restricted partially ordered (rpoNFA) if the reachability relation < is a
partial order and A is self-loop deterministic, i.e. for every state ¢ and every event a, if

q € 6(q,a) then 6(q,a) = {q}.
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Theorem 4.11. Deciding current-state opacity of a DES modeled by an
acyclic NFA with a single observable event is NL-complete, and hence solv-
able in polynomial time.

Proof. Membership in NL follows from Lemma 4.2 and the complexity of
inclusion for unary languages, see Krotzsch et al. [32].

To prove NL-hardness, we reduce the DAG-reachability problem. Let G
be a directed acyclic graph with n vertices, and let s and ¢ be two vertices
of G. We define an acyclic NFA A as follows. With each node of G, we
associate a state in A. Whenever there is an edge from ¢ to j in G, we add a
transition (7, a,j) to A. The resulting automaton A is an acyclic NFA. Let
t be the sole secret state, i.e., Qs = {t}, and let Qns be empty. Obviously,
A is not current-state opaque if and only if there is a string w € {a}* such
that d(s,w) N Qg # 0. Hence A is not current-state opaque if and only if ¢
is reachable from s in G. O

Since Transformation 4.5 preserves acyclicity and can be computed in
deterministic logarithmic space, we can apply it to the systems of Theo-
rems 4.10 and 4.11 to obtain hardness part of following results. Membership
then follows from Lemma 4.2 and the corresponding results on the complexity
of inclusion.

Corollary 4.12. Deciding current-state opacity of a DES is

1. CONP-complete if the system is modeled by an acyclic DFA with three
events, one of which is unobservable, and

2. NL-complete if the system is modeled by an acyclic DFA with two
events, one of which is unobservable.

Above, we considered systems generating only finitely many behaviors.
However, real-world systems are usually not that simple and often require
additional properties, such as deadlock freeness. Therefore, we now consider
partially ordered automata, a kind of automata where all cycles are only in
the form of self-loops. Such automata are, in our opinion, structurally the
simplest DES where deadlock freeness can be ensured (by adding a self-loop).
Their mark languages form a subclass of regular languages strictly included in
star-free languages, see [14, 44]. Star-free languages are languages definable
by linear temporal logic that is often used as a specification language in
automated verification.
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We then immediately obtain the following result for nondeterministic par-
tially ordered automata.

Theorem 4.13. Deciding current-state opacity of a DES modeled by a poNFA
with only two events, both of which are observable, is PSPACE-complete.

Proof. Membership in PSPACE follows from Lemma 4.2 and the results on
the complexity of inclusion for poNFAs, and hardness from the fact that
deciding universality for poNFAs with only two events is PSPACE-complete.
For both claims see Krotzsch et al. [32]. O

The situation is again easier if the model has only a single observable
event.

Theorem 4.14. Deciding current-state opacity of a DES modeled by a poNFA
with a single observable event is NL-complete.

Proof. Membership in NL follows from Lemma 4.2 and the corresponding
complexity of inclusion, and hardness from the fact that deciding universality
for unary poNFAs is NL-complete, see Krotzsch et al. [32]. O

Again, we use Transformation 4.5, which preserves partial order and can
be computed in deterministic logarithmic space, and apply it to the systems
of Theorems 4.13 and 4.14 to obtain the hardness part of the following results.
Membership then follows from Lemma 4.2 and the corresponding results on
the complexity of inclusion.

Corollary 4.15. Deciding current-state opacity of a DES is

1. PSPACE-complete if the system is modeled by a poDFA with three events,
one of which is unobservable, and

2. NL-complete if the system is modeled by a poDFA with two events, one
of which is unobservable.



Chapter 5

Transformations among opacity
notions

In this chapter, we introduce new trasnformations among the considered
opacity decision problems. In other words, for an instance of one opacity
notion that consists of a DES, an observation projection, and a secret de-
scription, we transform it into an instance of another opacity notion.

Comparing different notions of opacity for automata models, Saboori and
Hadjicostis [39] provided a language-based definition of initial-state opacity,
Cassez et al. [17] transformed trace opacity to current-state opacity, and Wu
and Lafortune [50] showed that current-state opacity, initial-and-final-state
opacity, and language-based opacity can be transformed to each other. They
further provided transformations of initial-state opacity to language-based
opacity and to initial-and-final-state opacity, and, for prefix-closed languages,
a transformation of language-based opacity to initial-state opacity.

In this thesis, we extend these results by showing that, for automata mod-
els, all the discussed notions of opacity are transformable to each other. As
well as the existing transformations, our transformations are computable in
polynomial time and preserve the number of observable events and determin-
ism (whenever it is meaningful). In the case of state-based opacity notions,
our goal was to design transformations that do not introduce any new neutral
states into the system, since their existence may not be practically justified.
However, in some cases, we may need to give a separate transformation for
systems that already contain neutral states. The meaning of neutral states
is not yet clear in the literature. They are fundamental in language-based
opacity, but questionable in state-based opacity. In any case, we cannot sim-

33
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Figure 5.1: Overview of the transformations among the notions of opacity for
automata models. The node CSO* denotes a simplified instance of current-
state opacity modeled by a DFA with at most two observable events.

ply handle neutral states as non-secret states. We summarize our results,
together with the existing results, in Figure 5.1.

There are two immediate applications of the transformations. First, the
transformations provide a deeper understanding of the differences among
the opacity notions from the structural point of view. For instance, the
reader may deduce from the transformations that, for prefix-closed languages,
the notions of language-based opacity, initial-state opacity, and current-state
opacity coincide, or that to transform current-state opacity to weak oo-step
opacity means to add only a single state and a few transitions.

Second, the transformations provide a tool to obtain the complexity re-
sults for all the discussed opacity notions by studying just one of the notions.
To illustrate, consider for example the result of Theorem 4.7 showing that de-
ciding current-state opacity for systems modeled by DFAs with three events,
one of which is unobservable, is PSPACE-complete. Since we can transform
the problems of deciding current-state opacity and of deciding weak k-step
opacity to each other in polynomial time, preserving determinism and the
number of observable events, we obtain that deciding weak k-step opacity for
systems modeled by DFAs with three events, one of which is unobservable, is
PSpPACE-complete as well. In particular, combining the transformations with
known results from Jacob et al. [27] and results from Chapter 4, we obtain a
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complete complexity picture of verifying the discussed notions of opacity, as
summarized in Table 1.2.

Thus, by combining the transformations of Wu and Lafortune [50] with
Theorems 4.7 and 4.8, we immedietly obtain new results for language-based
opacity and initial-and-final-state opacity. In more detail, the transforma-
tions of Wu and Lafortune [50] preserve the determinism of transitions, but
result in automata with a set of initial states. This issue can, however, be
easily fixed by adding a new initial state, connecting it to the original ini-
tial states by new unobservable events, and making the original initial states
non-initial.

Corollary 5.1. The problems of deciding whether a DES satisfies language-
based opacity and initial-and-final-state opacity are PSPACE-complete. The
problems remain PSPACE-complete even if the system is a DFA with three
events, one of which is unobservable.

Corollary 5.2. The problems of deciding whether a DES with a single ob-
servable event satisfies language-based opacity and initial-and-final-state opac-
1ty are CONP-complete.

Moreover, the transformations of Wu and Lafortune [50] preserve both
acyclicity and partial order, and hence we can generalize the results from
Chapter 4 for acyclic and partially ordered automata in the same way. On
the other hand, the majority of our transformations do not preserve either
partial order, due to the utilization of Transformation 4.3, or acyclicity. Con-
sequently, our transformations do not extend these results to the remaining
notions discussed.

5.1 LBO to ISO

In this section, we discuss the transformations from language-based opacity
to initial-state opacity. The transformation for the case where both the
secret and non-secret languages of the language-based opacity problem are
prefix closed has been provided by Wu and Lafortune [50]. We now extend
this transformation to the general case. We further show that the initial-
state opacity decision problem with a single observable event is NL-complete.
Consequently, there exists no polynomial-time transformation for this case
that preserves the number of observable events, unless P = NP.



CHAPTER 5. TRANSFORMATIONS AMONG OPACITY NOTIONS 36

( ) e a

GrLBo Grso

i

~(®

g D, . J

99,

________

Figure 5.2: Transforming language-based opacity to initial-state opacity.

5.1.1 The general case

Let the language-based opacity problem be represented by a DES Gppo.
We transform it to a DES Gjgo in such a way that G1po is language-based
opaque if and only if Ggp is initial-state opaque. Our transformation pro-
ceeds in two steps:

1. We construct a DES G50 with one additional observable event @ using
Transformation 5.3.

2. We use Transformation 4.3 to reduce the number of observable events
of Grgo by one.

Since the second step follows from Transformation 4.3, we only describe the
first step, that is, the construction of Gygo over X U {@}.

Transformation 5.3. Let Grpo = (Q,%,6,1) be a DES with the corre-
sponding projection P: ¥* — 3*  a secret language Ls C L(GLpo) given
by the non-blocking automaton Ag = (Qs, X, ds, Is, Fs), and a non-secret
language Lys C L(GLpo) given by the non-blocking automaton Axs =

(Qns, 2, 0ns, Ing, Fns). We construct a DES

Grso = (Qs UQns U{qs, qns}, 2 U{Q}, 0", Is U Ing)

where Gso is a disjoint union of the automata Ag and Ayg together with
two new states and a new observable event @. The transition function ¢’ is
initialized as ¢’ := dg U dyg and further extended as follows, see Figure 5.2
for an illustration:
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Figure 5.3: An example of the transformation of the LBO problem (left) to
the ISO problem (right).

1. for every state ¢ € Fg, we add a new transition (¢, @, g5) to J';

2. for every state ¢ € Fiyg, we add a new transition (¢, @, g,,s) to d'.

Finally, let Qs = Is denote the set of secret initial states of Grso, and let
Qvs = Ins denote the set of non-secret initial states of Grso. We extend
the projection P to P': (XU {@Q})* — (X, U{@})*. ©

Notice that Transformation 5.3 can be done in polynomial time and that
it preserves determinism of transitions.

Example 5.4. Let G over ¥ = {a,b,c} depicted in Figure 5.3 (left) be an
instance of the LBO problem from Example 3.2 with the secret language
Lg = abb* and the non-secret language Lyg = acb*. Transformation 5.3 of
LBO to ISO then results in the DES G’ depicted in Figure 5.3 (right) with a
new observable event @, a single secret initial state 1, and a single non-secret
initial state 4. We distinguish two cases depending on whether event c is
observable or not.

In the first case, we assume that event c¢ is unobservable. In this case,
G is language-based opaque, because P(Lg) C P(Lyg), and the reader can
see that P'(L(G',1)) = abb*Q C ab*@ = P'(L(G’,4)). Therefore, G’ is
initial-state opaque.

In the second case, we assume that event ¢ is observable. In this case,
G is not language-based opaque, because ab € P(Lg) whereas ab ¢ P(Lys),
and we can see that ab € P'(L(G’,1)) and ab ¢ P'(L(G’,4)). Therefore, G’
is not initial-state opaque. o

The following theorem justifies the correctness of Transformation 5.3.
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Theorem 5.5. A DES G o is language-based opaque with respect to Lg,
Lyg, and P if and only if the DES Grso obtained by Transformation 5.3 is
initial-state opaque with respect to Q'y, Q'yg, and P'.

Proof. We show that P(Ls) € P(Lys) if and only if P'(L(Grso, Q%)) C
P'(L(G1s0,Q's))- However, by construction, L(Grso, Q) = LsU Ls@ and
L(G1s0,Qs) = Lys U Lys@, and hence P(Lg) C P(Lyg) if and only if
P'(L(G1s0,Q%)) € P'(L(Grso,Q'ys)), which is if and only if Gso is initial-
state opaque. O

We now show that reducing the number of observable events by using
Transformation 4.3 does not affect initial-state opacity of any DES.

Theorem 5.6. A DES G = (Q, X, 6, 1) is initial-state opaque with respect to
Qs, Qns, and P if and only if the DES r(G) = (@', (X —T,) U{0,1},4',1)
obtained by Transformation 4.3 is initial-state opaque with respect to Qg,
®ns, and P'.

Proof. To show that G is initial-state opaque if and only if r(G) is initial-state
opaque, we define the languages

o Lg= Lin(Ag), where As = (Q,X,6,Qs, Q),

e Lns = Ln(Ans), where Ays = (Q, %, 6, Qns, Q),

o L= L, (Ay), where A5 = (Q', (X —T,)U{0,1},¢,Qs,Q’), and

o Liys = Ly(Ays), where Ayg = (Q', (X — ) U{0,1}, 8, Qns, Q).
Since this transforms initial-state opacity to language-based opacity [50], it

is sufficient to show that P(Lg) C P(Lyg) if and only if P'(LY) C P'(Lyg)-
However, this can be shown analogously as in the proof of Theorem 4.4. [

Since we need at least two initial states for initial-state opacity to be non-
trivial, we generalize the weaker form of Theorem 4.7 to initial-state opacity.
Therefore, using Transformations 5.3 and 4.3, and taking into account the
fact that the problem of verifying initial-state opacity is in PSPACE [37], we
can state the following result for NFAs with deterministic transition function.

Corollary 5.7. The problem of deciding whether a DES satisfies initial-state
opacity is PSPACE-complete. The problem remains PSPACE-complete even if
the system is an NFA with deterministic transition function and three events,
one of which is unobservable.
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5.1.2 The case of |X,| =1

To preserve the number of observable events, the general transformation
relies on the binary encoding of events by Transformation 4.3. However, the
encoding requires at least two observable events in GGrpo, and hence it is
not applicable to systems with a single observable event. In fact, we show
that there does not exist such a transformation unless P = NP, which is
a longstanding open problem of computer science. Deciding language-based
opacity for systems with a single observable event is CONP-complete [23,
47]. We show that deciding initial-state opacity for systems with a single
observable event is NL-complete, and hence efficiently solvable on a parallel
computer [2]. In particular, the problem can be solved in polynomial time.

Theorem 5.8. Deciding initial-state opacity of a DES with a single observ-
able event is NL-complete.

Proof. Deciding initial-state opacity is equivalent to checking the inclusion of
two prefix-closed languages. Namely, a DES G with ¥, = {a} is initial-state
opaque with respect to the secret states (Js and the non-secret states Qng
if and only if Kg C Kyg for Ks = P(L(G,Qs)) and Kys = P(L(G,Qns))-
Since the languages K¢ and Kyg are prefix-closed, they are either finite,
consisting of at most |@Q| strings, or equal to {a}*.

To show that the problem belongs to NL, we show how to verify Kg €
Kys in nondeterministic logarithmic space. Then, since NL is closed under
complement [26, 48], Kg C Kyg belongs to NL. Thus, to check that Kg &
Kys in nondeterministic logarithmic space, we guess k& € {0,...,|Q|} in
binary, store it in logarithmic space, and verify that a* € Kg and a* ¢ Kyg.
To verify a* € Kg, we guess a path in G step by step, storing only the
current state, and counting the number of steps by decreasing k by one in
each step; logarithmic space is sufficient for this. Since a* ¢ Kyg belongs to
the complement of NL, which coincides with NL, we can check a* ¢ Kyg in
nondeterministic logarithmic space as well.

To show that deciding initial-state opacity for DESs with a single observ-
able event is NL-hard, we reduce the DAG reachability problem [29]: given a
DAG G = (V, E) and nodes s,t € V, the problem asks whether ¢ is reachable
from s. From G, we construct a DES A = (V U {i},{a},d,{s,i}), where i is
a new initial state and a is an observable event, as follows. With each node
of G, we associate a state in A. Whenever there is an edge from j to k in G,
we add a transition (j,a, k) to A. We add a self-loop by a to state ¢ and to
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state i. The set of secret initial states is Qg = {i} and the set of non-secret
initial states Qns = {s}. Then, A is initial-state opaque if and only if there
is a path from s to ¢ in G. Indeed, L(A,7) = {a}* is included in L(A,s) if
and only if L(A, s) = {a}*, which is if and only if ¢ is reachable from s. O

5.2 CSO to TO

In this section, we discuss the transformations from current-state opacity to
trace opacity. The transformation we provide results in a system with at
least two observable events. Similar to initial-state opacity, we show that the
trace opacity decision problem with a single observable event is N L-complete.
Consequently, there exists no polynomial-time transformation for this case
that preserves the number of observable events, unless P = NP.

5.2.1 The general case

Let the current-state opacity problem be represented by a DES Ggcso. We
transform it to a DES Go in such a way that Gogp is current-state opaque
if and only if G is trace opaque. Our transformation proceeds in two steps:

1. We construct a DES G1o with one additional observable event @ using
Transformation 5.9.

2. We use Transformation 4.3 to reduce the number of observable events
of Gro by one.

Since the second step follows from Transformation 4.3, we only describe the
first step, that is, the construction of Gogo over X U {@}.

Transformation 5.9. Let Geso = (Q,%,0,1) be a DES with the secret
states (Qg, the non-secret states (Jyg, and the corresponding projection
P:¥* — 3% We construct a DES

GTO = (Q U {QSv Qns}a XU {@, 0'}, (S/, I)

where ¢; and ¢,, are new states, @ is a new observable event, and o is a
new unobservable secret event. The transition function ¢’ is initialized as the
transition function 6 of the system Gggo and further extended as follows,
see Figure 5.4 for an illustration:
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Figure 5.4: Transforming current-state opacity to trace opacity.

1. for every secret state ¢ € Qg, we add the transition (¢, @, g,) to ¢,

2. for every non-secret state ¢ € Qng, we add the transition (g, Q, g,s)
to ¢,

3. we add the secret transition (gs, o, gns) to ¢, and

4. we add one self-loop transition (gns, @, gns) to &', where a € ¥, is an
arbitrary observable event.

We define the projection P': (X U{Q,0})* — (X,U{@})* and the set of
secret events S = {o}. o

Notice that Transformation 5.9 can be done in polynomial-time and that
it preserves determinism.

Example 5.10. Let G over ¥ = {a,b,c} depicted in Figure 5.5 (left) be
an instance of the CSO problem from Example 3.6 with the secret states
Qs = {2} and the non-secret states Qng = {5}. Transformation 5.9 of CSO
to TO then results in the DES G’ depicted in Figure 5.5 (right) with a new
observable event @ and a new unobservable secret event o. We distinguish
two cases depending on whether event c is observable or not.

If event ¢ is unobservable, then G is current-state opaque, because the only
string leading to the secret state, state 2, is the string a, for which the string
ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac). Then,
the reader can see that G’ is trace opaque, because all possible secret traces
are of the form a@aa’ € Sec(G'), for i € N, and for every such trace there is
a non-secret trace acQa’ € Pub(G’) such that P'(aQca') = P'(ac@Qa’).

If event c is observable, then G is not current-state opaque, because the
only string leading to the non-secret state, string ac, has a different obser-
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Figure 5.5: An example of the transformation of the CSO problem (left) to
the TO problem (right).

vation than the string a leading to the secret state, that is, P(ac) # P(a).
Consequently, the reader can verify that G’ is not trace opaque, since now
P'(a@Qcoa) = aQa € P'(Sec(G")) while a@Qa ¢ P'(Pub(G")). ©

The following theorem justifies the correctness of Transformation 5.9.

Theorem 5.11. A DES Gego is current-state opaque with respect to Qg,
Qns, and P if and only if the DES Gro obtained by Transformation 5.9 is
trace opaque with respect to S and P’.

Proof. Assume that the DES G¢go is not current-state opaque. Then, there
exists a string w € X* that leads the system Ggso to a secret state ¢,
while every string that looks the same as the string w leads Gcgo out of
non-secret states. In Gro we have that §'(I,w@) = §'(¢q,@) = {gs} and
w@Qoa € Sec(Grp) is a secret trace. Since generating any string that looks
the same as the string w leads the system Gggo to a state out of non-
secret states, then in Gro we have that §' (I, P71 P'(w)@Q) = {q,}. Evidently,
every extension of a trace from ¢, makes the trace secret, and hence we have
P'(wQoa) & P'(Pub(Gro)). Therefore, the system Gro is not trace opaque.

On the other hand, assume that the system G¢so is current-state opaque,
and let w = wiowy € Sec(Gro) be asecret trace. Then, the string wy is of the
form w, = v@ where v contains neither @ nor ¢, and wy, = a* for k € N. By
construction, generating the string v in G¢gp ends up in a secret state. Since
the system G¢so is current-state opaque, there is a string ' € P71 P(v) such
that generating v’ in Gggo ends up in a non-secret state. Then, generating
the trace v'Q in Gpo ends up in a state ¢,,s, and hence taking the strings
w) = 9@ and wh = wy = a* results in trace w' = wiwh € Pub(Gro) such
that P'(w') = P'(wjw}) = P'(wiows) = P'(w) and 0'(I,w’) # 0, showing
that the system Gro is trace opaque. [l
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We now show that reducing the number of observable events by using
Transformation 4.3 does not affect trace opacity of any DES.

Theorem 5.12. A DES G is trace opaque with respect to S and P if and
only if the DES r(G) obtained by Transformation 4.3 is trace opaque with
respect to S and P'.

Proof. To show that G is trace opaque if and only if the system r(G) is trace
opaque, it is sufficient to show that P(Sec(G)) C P(Pub(G)) if and only if
P'(Sec(r(G))) € P'(Pub(r(G))). However, this can be shown analogously to
Theorem 4.4. O

Since Transformation 5.9 introduces a new unobservable secret event, we
cannot directly generalize Theorem 4.7 to trace opacity. However, by utilizing
Theorem 5.12 and the membership of trace opacity in PSPACE [19], we can
state a weaker result as follows.

Corollary 5.13. The problem of deciding whether a DES satisfies trace opac-
ity is PSPACE-complete. The problem remains PSPACE-complete even if the
system is a DFA with four events, two of which are unobservable.

5.2.2 The case of |¥,| =1

The second step of our transformation, that is the binary encoding repre-
sented by Transformation 4.3, requires that Gogo has at least three ob-
servable events or, equivalently, that Gpo has at least two observable events.
Consequently, our transformation does not preserve the number of observable
events if Gro has a single observable event. We show that the trace opacity
decision problem with a single observable event is NL-complete, and hence
efficiently solvable on a parallel computer [2]. In particular, the problem can
be solved in polynomial time.

Theorem 5.14. Deciding trace opacity of a DES with a single observable
event is NL-complete.

Proof. Deciding trace opacity is equivalent to checking the inclusion of two
languages. Namely, a DES G with X, = {a} is trace opaque with respect
to the set of secret events S if and only if Kg C Kyg for Kg = P(Sec(G))
and Kygs = P(Pub(@)). Since the language K g is prefix-closed, it is either
finite, consisting of at most |Q| strings, or equal to {a}*. Similarly, Kg is
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either finite or Kg = {a}* — Ly, where Ly, C {a' | ¢ < |Q|} is finite,
because for any secret trace uocv € Sec(G), where o € S and u,v € ¥*, we
have that uov’ € Sec(G) for any v' € T. Therefore, we can use the same
algorithm to verify Kg ¢ Kpyg in nondeterministic logarithmic space as in
the proof of Theorem 5.8.

To show that deciding trace opacity for DESs with a single observable
event is NL-hard, we again reduce the DAG reachability problem [29]: given
a DAG G = (V, E) and nodes s,t € V, the problem asks whether ¢ is reach-
able from s. From G, we construct a DES A = (VU{q1, ¢2},{a,0},0,{s,q1}),
where ¢, and ¢, are new states, a is an observable event, and ¢ is an unobserv-
able secret event. With each node of G, we associate a state in A. Whenever
there is an edge from j to k in G, we add the transition (j, a, k) to 4. Further,
we add the secret transition (¢, 0, ¢2) and two self-loops (¢, a, t) and (g2, a, ¢2)
to . Then, A is trace opaque if and only if there is a path from s to t in G.
Indeed, we have Sec(A) = L(A, ¢) = oa*, and hence P(Sec(A)) = {a}* is
included in P(Pub(A)) = L(A, s) if and only if Pub(A) = {a}*, which is if
and only if ¢ is reachable from s. O

5.3 TO to CSO

In this section, we show how to transform trace opacity to current-state
opacity. Previously, such a transformation was provided by Cassez et al. [17],
but they assumed that a deterministic automaton Ag for the language of
secret traces was given as input. Additionally, for a nondeterministic Ag
their transformation is not polynomial. We improve this result by providing
a transformation from trace opacity to current-state opacity that is always
polynomial. Further, our transformation enables us to construct automata
Ag and Apyg representing the secret and non-secret trace languages, thus
transforming the problem also to language-based opacity problem.

Let the trace opacity problem be represented by a DES Gro. We trans-
form it to a DES G¢so in such a way that Gro is trace opaque if and only
if Ggso is current-state opaque.

Transformation 5.15. Let Gro = (Q,%,9,1) be a DES with the set of
secret events S C X, and the corresponding projection P: ¥* — ¥*. We
construct a DES

Geso = (QUQs, %, 8, 1)
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Figure 5.6: Transforming trace opacity to current-state opacity.

as a disjoint union of G’ and G5 = (Qs, X, ds, Is), where Gy is copy of G and
Qs ={d | ¢ € Q} is a disjoint copy of Q). We initialize ¢’ := § U ds and
further modify it by replacing every secret transition (g, o, r) originally in ¢
by transition (g, o,7’) in ¢’, where o0 € S and ' € Qg, cf. Figure 5.6 for an
illustration. The states of Qg are the secret states of Gogp, while the rest
of the states are non-secret, i.e., Qygs = Q). Finally, we remove unreachable
states and corresponding transitions. o

Notice that Transformation 5.15 can be done in polynomial time and that
it preserves determinism and the number of observable and unobservable
events.

Remark 5.16. To reduce Gro to language-based opacity, we set Lg = L(Ag)
and Lys = L(Ans), where As = (Q U Qg,%,0",1,Qg) is identical to the
DES Geso from Transformation 5.15, except for the set of marked states,
and Ans = (Q,%,0",1,Q) is an automaton that corresponds to the original

system Gro with all states marked and with all secret transitions removed,
that is, " =dNQ x (X —9) x Q.

We now provide an illustrative example.

Example 5.17. Let G over ¥ = {a,b,c,0} depicted in Figure 5.7 (left) be
an instance of the TO problem from Example 3.4 with the set of secret events
S = {o}. Transformation 5.15 of TO to CSO then results in the DES G’
depicted in Figure 5.7 (right) with the set of secret states Qg = {2/,3'} and
the set of non-secret states Qns = {1,4,5}. Note that states 2, 3, 1/, 4/,
and 5 were unreachable in G/, and therefore were removed at the end of the
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Figure 5.7: An example of the transformation of the TO problem (left) to
the CSO problem (right).

transformation. We distinguish two cases depending on whether event c is
observable or not.

First, we assume that event ¢ is unobservable. In this case, GG is trace
opaque because P(Sec(G)) = P(Pub(G)). In G’, the initial state 1 is non-
secret, and therefore, for a string consisting of only the event o, the empty
string € is such that P(o) = P(e) and d(1,e) N Qns = {1}. Similarly, if a
string of the form oab* leads G’ to the secret state 3', then there is a string of
the form achb* with P(cab*) = P(acb*) that leads G’ to the non-secret state
5. Thus, G’ is current-state opaque.

In the second case, we assume that event c is observable. In this case, G
is not trace opaque because ab € P(Sec(G)) while ab ¢ P(Pub(G)), and the
reader can see that §'(1,0ab) N Qg # O while §'(1, P~'P(cab)) N Qns = 0.
Therefore, G’ is not current-state opaque. o

The following theorem justifies the correctness of Transformation 5.15.

Theorem 5.18. A DES Gro is trace opaque with respect to S and P if
and only if the DES Gcso obtained by Transformation 5.15 is current-state
opaque with respect to Qg, Qng, and P.

Proof. Assume that the system Gro is trace opaque. To show that the system
Geso 1s current-state opaque, we consider a string w such that §'(7,w) N
Qs # 0, and show that there is a string w’ such that P(w) = P(w’') and
8 (I,w') N Qns # B. To reach the set of secret states Qg, the string w must
be of the form wyow,. By construction, there is a state ¢ € 6(I,w0) in
G0, such that there is a state ¢ € 0'(I,wy0) N Qg in the system Gego,
and the string ws can be generated from the state ¢’. Therefore, we can
generate the string w, from the state g in Gro and §(1, wiows) # 0, that is,
wiowy € Sec(Gro) is a secret trace of Gro. However, trace opacity of Gro
implies that there is a string w’ € Pub(Gro) such that P(w,owy) = P(w')
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and §(1,w") # (. In particular, w’ does not contain o, and thus we obtain
8 (I,w'") N Qns # O, which completes this part of the proof.

If the system Gro is not trace opaque, then there exists a secret trace
w = wiowy € Sec(Grp) such that P(w) € P(Pub(Gro)). In Gegso, after
generating o we can only reach secret states, and therefore () # 6'(6' (1, wy0)N
Qs,wy) = 0'(I,wiows) C Qg. Since the language marked by the set Qg
in Geso equals to Pub(Grp), then for every string w' € L(Ggso) with
P(w) = P(wiows) = P(w'), we have that ¢'(1,w') N Qns = 0. Therefore,
the system G¢go is not current-state opaque. Ul

5.4 CSO to k-SSO

In this section, we show how to transform current-state opacity to strong
k-step opacity. For systems without neutral states, strong k-step opacity
implies weak k-step opacity [49], and thus the following transformations are
also applicable to weak k-step opacity. Again, the general transformation
uses Transformation 4.3 to preserve the number of observable events, and
therefore we provide a separate transformation for systems with a single
observable event.

5.4.1 The general case

Let the current-state opacity problem be represented by a DES Gego. We
transform it to a deterministic DES Gj.sso in such a way that Gggo is
current-state opaque if and only if G_gsg0 is strongly k-step opaque.

Our transformation proceeds in three steps:

1. If Gego is not deterministic, we determinize it by Transformation 4.5.

2. We construct a DES Gj_g50 with one additional observable event @
using Transformation 5.19.

3. We use Transformation 4.3 to reduce the number of observable events

of Gk.sso by one.

Since the first and third step follow from Transformations 4.5 and 4.3, we only
describe the second step, that is, the construction of Gy.gso over X U {@}.
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Figure 5.8: Transforming current-state opacity to strong k-step opacity, for
an arbitrary parameter k € N..

Transformation 5.19. Let Geso = (Q,%,0,q9) be a deterministic DES
with the secret states (Qg, the non-secret states ()yg, and the corresponding
projection P: ¥* — ¥*. We construct a DES

Gk-SSO - (Q U {an Qns}v Z U {@}7 5/7 QO)

where ¢, and ¢,, are new states and @ is a new observable event. The
transition function ¢’ is initialized as the transition function § of the system
Gcso and further extended as follows, see Figure 5.8 for an illustration:

1. for every secret state ¢ € g, we add the transition (g, @, ¢5) to ¢, and

2. for every non-secret state ¢ € Qyg, we add the transition (¢, Q, g,s)
to &'

We define the projection P': (X U {@})* — (X, U {@})*, and the sets of
secret states Qs = {¢s} and of non-secret states Qyg = Q U {qns} - ©

Notice that Transformation 5.19 can be done in polynomial time and
that it preserves determinism. It is also independent of the parameter k, and
therefore works for any k& € N, without affecting the size of the resulting
system Gi.ss0.

Intuitively, since there is no extension from the unique secret state s,
there is always a corresponding (trivial) extension from every non-secret
state. Consequently, we can apply Transformation 4.3 to Gj.gso and en-
code new event @ in binary without affecting strong k-step opacity of the
system Gi.s50.-
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Figure 5.9: An example of the transformation of the CSO problem (left) to
the £-SSO problem (right).

Remark 5.20. Transformation 5.19 can also be used to remove neutral states
from the system, so can we think of it as a transformation from current-state
opacity with neutral states to current-state opacity without neutral states.

We now provide an illustrative example.

Example 5.21. Let G over ¥ = {a,b,c} depicted in Figure 5.9 (left) be
an instance of the CSO problem from Example 3.6 with the secret states
Qs = {2} and the non-secret states Qys = {5}. Transformation 5.19 of
CSO to k-SSO then results in the DES G’ depicted in Figure 5.9 (right) with
a new observable event @ and two new states ¢, and ¢,s, where ¢, is the
unique secret state of G'. We distinguish two cases depending on whether
event c is observable or not.

If event ¢ is unobservable, then G is current-state opaque, because the
only string leading to the secret state, state 2, is the string a, for which the
string ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac).
Then, the reader can see that GG’ is strongly k-step opaque, for any k € N,
because the only possible string leading to the secret state, state ¢, is the
string a@, for which there is the string ac@ such that P'(a@) = P'(ac@) and
G’ never enters a secret state by generating 0'(1, ac@).

If event ¢ is observable, then G is not current-state opaque, since now
we have P(ac) # P(a). Consequently, the reader can verify that G’ is not
current-state opaque since ¢'(1, P~ P'(a@)) = {q,}, and hence G’ is neither
strongly k-step opaque, for any parameter k € N.. o

The following theorem justifies the correctness of Transformation 5.19.

Theorem 5.22. A DES Gego is current-state opaque with respect to Qg,
Qns, and P if and only if the DES Gy,_gso obtained by Transformation 5.19 is
strongly k-step opaque, for any parameter k € Ny, with respect to Qg and P'.
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Proof. Assume that the DES G¢go is not current-state opaque. Then, there
exists a string w € ¥* that leads the system Gggo to a secret state, while
every string that looks the same as the string w leads the system Gggo out
of non-secret states. Then, in the system Gi.sso, generating the string w@
ends up in the secret state g5 € 0'(go, w@) N Q. Since generating any string
that looks the same as the string w leads the system Gggo to a state out
of non-secret states, we have that ¢'(qo, P! P'(w@)) N Qyg = 0. Therefore,
the system Gj_gso is not current-state opaque, and hence neither strongly
k-step opaque, for any parameter k € N.

On the other hand, assume that the system G¢so is current-state opaque,
and let the string st € L(Gy.sso) be such that the string s leads the system
G.sso to a secret state and the string ¢ may be generated from this secret
state in Gj.sso, formally ¢'(0'(¢, s) N Q. t) # 0. Since Qs contains a single
secret state with no outgoing transition, then the string s is of the form
s = $1@, where s; does not contain @, and t = . By construction, generating
the string s; in Ggogo ends up in a secret state. Since the system Gego is
current-state opaque, there is a string sj € P71 P(s;) such that generating s/
in Gego ends up in a non-secret state. Then, by generating the string s|@Q,
G).sso ends up in the non-secret state g,s and for every prefix w € s,@ we
have §'(qo, w) € Q. Therefore, if we take the string s’ = s/@, then Gj.ss0
never enters a secret state and P'(s') = P'(s) = P'(st), showing that the
system Gy.s50 is strongly k-step opaque, for any parameter k € N. O

In Theorem 4.7 we showed that the problem of deciding current-state
opacity of a DES modeled by a DFA with three events, one of which is un-
observable, is PSPACE-complete. Transformations 5.19 and 4.3 allow us to
transform instance of this problem to the problems of deciding weak and
strong k-step opacity while preserving determinism and the number of ob-
servable events. Thus, we can state the following result.

Corollary 5.23. Given a natural number k represented by O(log(k)) bits
and a DES G. The problems of deciding whether the system G satisfies weak
k-step opacity and strong k-step opacity are PSPACE-hard. The problems
remain PSPACE-hard even if the system G is a DFA with three events, one
of which is unobservable.

Since weak oco-step opacity is a special case of weak k-step opacity, the
previous corollary also implies PSPACE-hardness for weak oco-step opacity.
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5.4.2 The case of |X,| =1

To preserve the number of observable events, the general transformation
relies on the binary encoding of events by Transformation 4.3. However, the
encoding requires at least two observable events in G¢go, and hence it is
not applicable to systems with a single observable event. For these systems,
we provide a separate transformation that requires to add k + 1 new states,
and therefore the size of the resulting system is linear with respect to the
parameter k£ € N.

Let the current-state opacity problem with a single observable event be
represented by a DES G¢.g, without neutral states. We transform it to a
DES Gf_g50 in such a way that G¢gp is current-state opaque if and only if
G _gg0 is strongly k-step opaque.

Without loss of generality, we assume that G¢.g, is deterministic, as we
can always use Transformation 4.5 to determinize it. We further assume that
in G¢.gp, there are no non-secret states that can be reached from a secret state
by any sequence of unobservable events, formally 6(Qg, P'()) N Qng = 0.
We describe this property with respect to current-state opacity of the system
in the following lemma.

Lemma 5.24. A DES G is current-state opaque with respect to Qgs, Qns,
and P if and only if G is current-state opaque with respect to Q' = Qs — R,
Qvs = QnsUR, and P, where R = {qs € Qs | d(qs, P~ (c)) N Qns # 0}.

Proof. We show that any state X C @ in the observer G°* of G contains
a non-secret state from @Qng if and only if X contains a non-secret state
from @Qyg. Evidently, if X contains a non-secret state from @Qyg, then X
also contains a non-secret state from @Q'yg, since Qns € Q’yg. On the other
hand, let ¢ € X N R be a newly added state to @y, then there is another
state p € Qs such that p € §(¢q, P~*(¢)), and therefore p € X N Qns. O

Transformation 5.25. Let G&gp = (Q,%,0,q) be a deterministic DES
with a single observable event ¥, = {a}, the secret states Qg, the non-secret
states Qns = Q — Qg, and the corresponding projection P: ¥* — {a}*. By
Lemma 5.24, we assume that §(Qgs, P~(g))NQns = 0. We construct a DES

Z-SSO - (Q U {qav BRI QI:}v XU {U}, 5/7 QO)

by adding k + 1 new non-secret states and a new unobservable event u. The
transition function ¢’ is initialized as the transition function § of the system
Gt.go and further extended as follows, see Figure 5.10 for an illustration:
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Figure 5.10: Transforming current-state opacity with a single observable
event to strong k-step opacity.

1. for every state ¢ € @, we add a new transition (g, u, ¢j) to ¢';

2. for every state ¢f, where i € {0,...,k — 1}, we add a new transition
(qz*v a, q;+1) to 5/'

The set of secret states Qs remains unchanged in Gj_ggo, while all other
states are non-secret. We extend the projection P to P': (XU{u})* — {a}. ¢

Notice that Transformation 5.25 can be done in polynomial time and that
it preserves determinism and the number of observable events.

Remark 5.26. It seems that adding k new states to the system cannot be
avoided, since for k > |Q| the problem of deciding strong k-step opacity of
a system with a single observable event can be solved in polynomial time.
First, we search the system for a cycle containing only non-secret states and
at least one observable transition. Then, we verify if the system is strongly
k-step opaque in the first |Q| observable steps before the cycle is reached (if
it exists). Clearly, both conditions can verified in polynomial time.

We now provide an illustrative example.

Example 5.27. Let G over X = {a,u;} depicted in Figure 5.11 (left) be an
instance of the CSO problem with a single observable event ¥, = {a}, the
set of secret states Qg = {2}, and the set of non-secret states Qys = {1, 3}.
Transformation 5.25 of CSO to 2-SSO results in the DES G’ depicted in
Figure 5.11 (right) with a new unobservable event uy, the set of secret states
Qs, and the set of non-secret states Qv = Qns U {q}, ¢, ¢5}. We consider
two cases based on the presence of the unobservable transition (1, u1,2) in G.
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Figure 5.11: An example of the transformation of the CSO problem with a
single observable event (left) to the k-SSO problem (right); the secret states
are squared and all other states are non-secret.

We first assume that the transition (1,uq,2) exists in G. Then, G is
current-state opaque because the only string leading to the secret state, state
2, is the string a, for which the string u;a leading to the non-secret state, state
3, satisfies that P(a) = P(au;). The reader can verify that G’ is strongly
2-step opaque, because for every string s € L(G’) there is a string with the
same observation that does not go through a secret state in last 2 observable
steps. If |P'(s)| < 2, then there is a string usaa and its prefixes such that G’
never enters a secret state. If |P'(s)| > 2, then there are strings w; = ujausaa
and wy = aaugaa such that each prefix w; € w; with |P'(w;)| — |P'(w})| < 2,
where ¢ € {1,2}, leads G’ to one of the non-secret states 3, ¢f, ¢}, or .

If the transition (1,uy,2) is not present in G, then G is not current-state
opaque, and therefore G’ is not strongly 2-step opaque. Indeed, by observing
a string aaa € P(L(G’)) the intruder knows that G’ has visited the secret
state 2 during last two steps, since for every string with the same observation,
such as wy; = augaa and we = aausa, there exists prefix w’' = a such that
laaa| — |P'(w'")] < 2 and §'(1,w') =2 € Qs. o

The following theorem justifies the correctness of Transformation 5.25.

Theorem 5.28. A DES Glg, with a single observable event ¥, = {a} is
current-state opaque with respect to Qg, Qns, and P if and only if the DES

G _sso obtained by Transformation 5.25 is strongly k-step opaque with respect
to Qg and P'.

Proof. Assume that the DES G¢.g, is not current-state opaque. Then, there
exists a string w € ¥* that leads the system G¢g, to a secret state, while
every string that looks the same as the string w leads the system G¢gp out
of non-secret states. Since there are no neutral states in G¢g,, we denote
Z = 6(qo, P7'P(w)) C Qg the set of secret states under observation of P(w).
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In G¢ 450, we have that &(go, P"'P'(w)) N Q = Z and string ua® can be
generated from every state in Z. Let s = wua® € L(GY 450) be a string that
can be generated in G§_gq,. We show that by generating any v € L(G%_g50)
with P'(s) = P'(v) the system G} ggqo must have visited a secret state in
last k observable steps. If ¢'(qo,v) € @, then there is a prefix v/ € T such
that ¢'(qo,v’) € Z and |P'(v")| = |P'(v)| — k = |P(w)|. On the other hand,
if 0'(qo,v) € {q,--.,q;}, then v is of the form v = vyuvy, where |uvy| < k.
Thus, there is a prefix v € 7y such that |P'(v})| = |P'(v)] — k = |P(w)|
and 0'(qo,v}) € Z. Since Z C Qg, the system G g, is not strongly k-step
opaque.

On the other hand, assume that the system G¢ ¢, is current-state opaque
and let s € L(G} g50). We show that there is w € L(G{ gg0) such that
P'(s) = P'(w) and for every w’ € w, if | P'(w)|—|P'(w")| < k, then ¢'(qo, w') &
Qs. We consider two cases depending on the length of string s. If ¢ = |s| < k,
then for w = ua® we have that P'(s) = P'(w) and G¢ 4, does not go through
a secret state by generating ¢'(qo,w). Indeed, ¢f,...,q} are non-secret by
the construction of G} gqp and go is non-secret by Lemma 5.24, current-
state opacity of G%gp, and by the fact that 6(qgo, P71(g)) N Qns # 0. If
¢ = |s| > k, then by current-state opacity of G¢g, there is v € L(G&gp)
such that 0(qo,v) € Qng and |P(v)| = |P'(s)| — k. By Lemma 5.24, we
have that d(qy,v") € Qns for every prefix v € v with P(v) = P(¢'). In
G4 ¢50, the sequence v can be extended by ua® such that P'(s) = P'(vua®).
Therefore, the string w = vua® is such that P'(s) = P'(w) and G 45, does
not go through a secret state in last k observable steps by generating w.
Altogether, Gf_gg0 is strongly k-step opaque. O

In Theorem 4.8 we showed that the problem of deciding current-state
opacity of a DES with a single observable event is CONP-complete. Trans-
formation 5.25 allows us to generalize the hardness part of this result to
strong k-step opacity. However, the transformation is linear with respect to
the parameter k, and therefore we consider k to be encoded in unary in the
following corollary.

Corollary 5.29. Given a natural number k represented in unary and a DES
G with a single observable event. The problem of deciding whether the system
G satisfies strong k-step opacity is CONP-hard.
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Figure 5.12: Transforming current-state opacity to weak k-step opacity, for
an arbitrary parameter k € N..

5.5 CSO to k-SO

In this section, we describe the general transformation from current-state
opacity to weak k-step opacity that uses neutral states to preserve the number
of observable events without the help of Transformation 4.3. Notably, unlike
the transformations discussed in the previous section, Transformation 5.30 is
applicable to systems that have both neutral states and a single observable
event, and the resulting system will still have a single observable event.

Let the current-state opacity problem be represented by a DES Geso.
We transform it to a DES Gj_so in such a way that Gggo is current-state
opaque if and only if Gj_so is weakly k-step opaque.

Transformation 5.30. Let Goso = (@,%,0,1) be a DES with the se-
cret states (Qg, the non-secret states QQys, and the corresponding projection
P: ¥ — %! We construct a DES

Gk-SO - (Q U {q*}v NG {u}v 5/7 I)

where u is a new unobservable event and ¢* is a new neutral state. The
transition function ¢’ is initialized as the transition function § of the system
Gcso and further extended as follows, see Figure 5.12 for an illustration:

1. for each state ¢ € Qng, we add a transition (g, u, ¢*) to J';
2. for each a € X, we add a self-loop (¢*, a, ¢*) to §'.

We extend the projection P to the projection P': (Y U{u})" — £*. The sets
Qs and () ns remain unchanged. o

Notice that Transformation 5.30 can be done in polynomial time and
that it preserves determinism and the number of observable events. It is
also independent of the parameter k, and hence it works for any parameter
k € Ny without affecting the size of the resulting system Gj_so.
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Figure 5.13: An example of the transformation of the CSO problem (left) to
the k-SO problem (right).

Example 5.31. Let G over ¥ = {a, b, ¢} depicted in Figure 5.13 (left) be an
instance of the CSO problem from Example 3.6 with the set of secret states
Qs = {2} and the set of non-secret states Qng = {5}. Transformation 5.30
of CSO to k-SO then results in the DES G’ depicted in Figure 5.13 (right)
with a new neutral state ¢* and a new unobservable event u. We distinguish
two cases depending on whether event c is observable or not.

If event ¢ is unobservable, then G is current-state opaque, because the
only string leading to the secret state, state 2, is the string a, for which the
string ac leading to the non-secret state, state 5, satisfies that P(a) = P(ac).
Then, the reader can see that G’ is weakly k-step opaque, for any k € N,
because the only possible extensions of the string a from the secret state 2 are
of the form ¥, for i € N, and for every such extension there is an extension
ub® of the string ac from the non-secret state 5 such that P’'(ab’) = P'(acub’).

If event c is observable, then G is not current-state opaque, because the
only string leading to a non-secret state, string ac, has a different observation
than the string a leading to the secret state, that is, P(ac) # P(a). Conse-
quently, the reader can verify that G’ is not current-state opaque, and hence
neither weakly k-step opaque, for any parameter k € N. o

The following theorem justifies the correctness of Transformation 5.30.

Theorem 5.32. A DES Gego is current-state opaque with respect to Qg,
Qns, and P if and only if the DES Gi.so obtained by Transformation 5.30 is
weakly k-step opaque, for any parameter k € Ny, with respect to Qg, Qns,
and P'.

Proof. Assume first that Gogo is not current-state opaque. Since the new
state ¢* is neither secret nor non-secret, we have that Gy.go is not current-
state opaque either. Therefore, Gy.50 is not weakly k-step opaque, for any
parameter k € N..
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On the other hand, assume that G¢gp is current-state opaque. Since the
new state ¢* is neither secret nor non-secret, we have that Gj_go is current-
state opaque as well. Let st € L(Gy.s0) be such that §'(6'(1,s) N Qs,t) # 0
in particular, 6'(1,s) N Qs # 0. Then, since Gi.so is current-state opaque,
there exists s’ € L(Gj.s0) such that P'(s") = P'(s) and §'(I,s") N Qns # 0.
By construction, s’ can be extended by the string ut using the transitions to
state ¢* followed by self-loops in state ¢*. Therefore, §'(8' (I, s')NQnsg, ut) # 0
and P’'(st) = P'(s'ut), which shows that Gy.so is weakly k-step opaque, for
any parameter k € N. O

In Theorem 4.8, we showed that the problem of deciding current-state
opacity of a DES with a single observable event is CONP-complete. Trans-
formation 5.30 allows us to generalize the hardness part of this result to
weak k-step opacity. Unlike strong k-step opacity, the weak notion remains
CcONP-hard even for instances with the parameter £ > |Q|, and therefore we
can consider k to encoded in binary in the following corollary.

Corollary 5.33. Given a natural number k represented by O(log(k)) bits and
a DES G with a single observable event. The problem of deciding whether
the system G satisfies weak k-step opacity is CONP-hard.

5.6 £k-SO to CSO

In this section, we discuss the transformations from weak k-step opacity to
current-state opacity. The general transformation takes place in four steps,
each of which is described in a separate subsection. Initially, we show how to
transform weak oo-step opacity to current-state opacity in Subsection 5.6.1.
The construction of a k-step counter automaton of size polynomial in the log-
arithm of k is described in Subsection 5.6.2. The general transformation from
weak k-step opacity to current-state opacity for systems that allow neutral
states is presented in Subsection 5.6.3. In Subsection 5.6.4, we further modify
the previous transformation so that the resulting system does not use neutral
states. Since the general transformation relies on binary encoding of observ-
able events by Transformation 4.3, we provide separate transformations for
systems with a single observable event in Subsections 5.6.5 and 5.6.6. Again,
we distinquish two cases depending on the presence of neutral states in the
system.
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5.6.1 00-SO to CSO

Let the weak oo-step opacity problem be represented by a DES Gg.s0. We
transform it to a DES Ggso in such a way that Go.so is weakly oo-step
opaque if and only if Ggso is current-state opaque. Our transformation
proceeds in two steps:

1. We construct a DES G ¢gp with one additional observable event @ using
Transformation 5.34.

2. We use Transformation 4.3 to reduce the number of observable events
of Gogo by one.

Since the second step follows from Transformation 4.3, we only describe the
first step, that is, the construction of Gogo over X U {@}.

Transformation 5.34. Let G50 = (@,%,0,1) be a DES with the se-
cret states (Qg, the non-secret states (Qys, and the corresponding projection
P:¥* — X% We construct a DES

Geso=(QUQTUQ ™, X u{@}, ¥, 1)

by creating two disjoint copies of the system Guo.g0, denoted by G and G,
with disjoint state sets QT = {¢" | ¢ € Q} and @~ = {¢~ | ¢ € Q}, and
with an additional observable event @ that connects the system G50 to
the copies G and G~ by transitions (p, @, p*), for every secret state p € Qg,
and (¢, @, ¢7), for every non-secret state ¢ € Qyg, see Figure 5.14.

We define the projection P': (X U {@})* — (X, U {@})*, and the sets of
secret states Qs = QT and of non-secret states Qyg = Q U Q™. o

Notice that Transformation 5.34 can be done in polynomial time using
no neutral states and that it preserves determinism.

Example 5.35. Let G over ¥ = {a,b,c} depicted in Figure 5.15 (left) be
an instance of the weak oco-step opacity problem from Example 3.9 with the
set of secret states Qs = {2} and the set of non-secret states Qnys = {4}.
Transformation 5.34 of co-SO to CSO then results in the DES G’ depicted
in Figure 5.15 (right) with a new observable event @, the set of secret states

s, and the set of non-secret states (Qyg. We again consider two cases based
on the observability status of event c.
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Geso

Goo-s50 i@ Qs @]:

___________

Figure 5.14: Transforming weak oo-step opacity to current-state opacity.

If event ¢ is unobservable, then G is weakly oo-step opaque. Indeed,
the only string leading to the single secret state, state 2, is the string a.
The same string leads to the single non-secret state, state 4. Then, any
possible extension of the string a from the secret state 2 is the string b‘, for
1 € N, which reaches state 3. However, for any such extension, there is an
extension cb’ from the non-secret state 4 with P(ab’) = P(acb'). The reader
can further see that G’ is current-state opaque, because it can enter a secret
state only after generating a string of the form a@b’, i € N, in which case
§(1, P71 (a@)) = {27,47,57} and &'(1, P! (a@b?)) = {37,57} for i > 1,
where states 4~ and 5~ are non-secret.

If event ¢ is observable, then G is not weakly oco-step opaque, because
after generating string ab, the intruder can deduce that the system was in the
secret state 2 one step ago. Similarly, after observing string a@b € P'(L(G")),
the intruder knows that G’ is in the secret state 3%, and hence the system
(' is not current-state opaque. <o

The following theorem justifies the correctness of Transformation 5.34.

Theorem 5.36. A DES G..so is weakly co-step opaque with respect to Qg,
Qns, and P if and only if the DES Gcso obtained by Transformation 5.5/
is current-state opaque with respect to Q, Q'yg, and P'.
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