
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

SYSTEM FOR RECOGNITION OF 3D HAND
GEOMETRY

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JAN SVOBODA
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

SYSTÉM PRO ROZPOZNÁVÁNÍ PODLE 3D
GEOMETRIE RUKY
SYSTEM FOR RECOGNITION OF 3D HAND

GEOMETRY

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JAN SVOBODA
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. MARTIN DRAHANSKÝ, Ph.D.
SUPERVISOR

BRNO 2014

Abstract
In the last decade, there has been an increased interest in using 3D data for biometric person
recognition. Perhaps the most widely researched application is 3D face recognition, where
several commercial products are currently available on the market. There have been some
research works on the 3D hand recognition as well, however, no commercially viable systems
are currently known. Independently, in the recent years inexpensive 3D sensors have become
a commodity, potentially enabling a wide range of 3D biometric applications. The main goal
of this work is to develop a functioning prototype of a touchless 3D hand recognition system
based on a new cheap RealSense 3D camera developed by Intel. One of the challenges in
using the RealSense camera is that due to this small form factor, it produces relatively
low quality samples in comparison to the more expensive acquisition hardware used in the
previous research on the 3D hand biometrics. We analyze the robustness of different 2D
and 3D features and study several methods for their fusion. We evaluate the performance
of the system, showing that it achieves results comparable with the state-of-the-art.

Abstrakt
V posledním desetiletí došlo ke zvýšení zájmu o užití 3D dat k biometrické identifikaci osob.
Možná vůbec největší výzkum proběhl v oblasti 3D rozpoznávání podle obličeje, přičemž
je v současné době dostupných vícero komerčních zařízení. V oblastni rozpoznávání podle
3D geometrie ruky byl v minulých letech proveden určitý výzkum jehož výsledkem však
nebylo žádné komerční zařízení. Nezávisle na tomto výzkumu se v posledních letech velmi
rozšířil trh s cenově dostupnými 3D sensory, což potenciálně umožňuje jejich nasazení v
mnoha typech biometrických systémů. Hlavním cílem této práce je vytvořit funkční vzorek
bezdotykového systému pro rozpoznávání osob podle 3D geometrie ruky, který bude použí-
vat novou levnou kameru RealSense 3D vyvíjenou v současné době firmou Intel. Jedním z
problémů při použití RealSense kamery je její velmi malý form factor, který je příčinou nižší
kvality výsledných snímků v porovnání s velmi drahými alternativami, které byly použity v
již dříve zmíněném výzkumu 3D biometrických systémů. Práce se snaží analyzovat robust-
nost různých 2D a 3D příznaků a vyzkoušet několik různých přístupů k jejich fúzi. Rovněž
je vyhodnocena výkonnost výsledného systému, kde je ukázáno, že navržené řešení dosahuje
výsledků porovnatelných se state-of-the-art.

Keywords
surface reconstruction, 3D reconstruction, computer vision, biometric systems, biometry,
3D hand, hand biometrics

Klíčová slova
rekonstrukce povrchu, 3D rekonstrukce, počítačové vidění, biometrické systémy, biometrie,
3D ruka, biometrie ruky

Citace
Jan Svoboda: System for Recognition of 3D Hand
Geometry, diplomová práce, Brno, FIT VUT v Brně, 2014

System for Recognition of 3D Hand
Geometry

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana doc.
Martina Drahanského.

. .
Jan Svoboda
July 31, 2014

Poděkování
Rád bych poděkoval Prof. Michaelu Bronsteinovi a doc. Martinu Drahanskému za odborné
vedení mé diplomové práce a mnoho cenných návrhů v průběhu řešení. Velký dík patří
rovněž výzkumné skupině STRaDe z FIT VUT v Brně a také společnosti Touchless Bio-
metric Systems s.r.o. za poskytnuní podpory a zdrojů. V neposlední řadě musím poděkovat
rovněž těm z mých přátel, kteří mi pomohli s revizí anglické gramatiky.

c© Jan Svoboda, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Hand based biometric systems 3
2.1 Acquisition devices . 3

2.1.1 Available methods for 3D data acquisition 3
2.1.2 Existing devices . 6

2.2 Human hand as biometric characteristic . 7
2.2.1 2D geometry . 8
2.2.2 3D geometry . 10

2.3 Multimodal biometric systems . 16
2.3.1 Matching score fusion . 16
2.3.2 Feacture vectors fusion . 18

2.4 Evaluation of biometric systems . 19
2.4.1 Basic terminology . 19
2.4.2 Comparison error measures . 20
2.4.3 Performance visualization . 22

2.5 Industrial systems . 23

3 Proposed 3D hand geometry recognition system 25
3.1 Acquisition device . 25
3.2 Input data acquisition . 25
3.3 Hand biometric features . 28
3.4 Feature extraction . 30
3.5 Feature matching . 35

3.5.1 Matching methods . 36

4 Experiments and results 39
4.1 System parameters estimation . 39

4.1.1 Features intraclass variability testing 39
4.1.2 Features interclass variability testing 41
4.1.3 Evaluation of components of feature vector 42
4.1.4 Biometric fusion using score normalization 43
4.1.5 Transformation by applying metric learning 45
4.1.6 Decision threshold estimation . 46
4.1.7 Testing on the problematic users subset 50

4.2 Performance evaluation . 53
4.2.1 Data acquisition experience . 53
4.2.2 Observing hand under various transformations 54

1

4.2.3 Classification according to gender . 58
4.2.4 Testing with bigger database . 60
4.2.5 Comparison to the existing research 63

5 Conclusion 64

A Capture 3D output files 68

B Implementation details 69
B.1 Used libraries and SDKs . 69
B.2 Data acquisition . 70
B.3 Hand features representation . 71
B.4 Details on feature extraction . 75
B.5 Matching feature vectors . 78

C Used testing tools 80

2

Chapter 1

Introduction

There has been a significant amount of research in the field of biometric systems in the past
few years. It has brought us new technologies and possibilities considering security systems
in general. Many parts of the human body have been studied as biometric characteristics
and there has been considerable effort towards implementing various security systems based
on those characteristics. However, we are still far from being able to say that all the
potentially good biometric characteristics can be employed for building a commercially
viable biometric system. Nowadays, the commercial biometric systems use mainly three
characteristics: fingerprints, face and hand.

This work focuses on hand biometric systems. Talking about hand based biometric
systems, there are working, commercially used solutions based on the 2D hand geometry.
Considering the 3D hand geometry, there have been several attempts to use the 3D in-
formation in the academic research community, with promising results. Besides improved
accuracy and robustness to hand pose, one practically appealing aspect of the 3D hand
recognition is a touchless scenario (as opposed to standard 2D systems in which the hand is
typically placed on a reflecting background). However, most of the academic works on 3D
hand recognition are based on high-end acquisition devices that on the one hand provide
very high (sub-millimeter) resolution, but they are too cumbersome and expensive to be
part of a viable commercial system on the other.

The main focus of this work is to develop a prototype of 3D hand recognition system
based on such an inexpensive sensor.

The rest of the thesis is organized as follows. In Chapter 2, we review some basic notions
in biometric recognition systems and current state of the art and practice. Next, in Chapter
3, we describe the proposed solution. Evaluation of the created system is documented
in Chapter 4, providing information about how well was the goal achieved. The whole
text is enclosed with a short summary, discussing several future research directions and
improvements as well.

3

Chapter 2

Hand based biometric systems

The goal of this chapter is to provide the reader with a brief introduction into the bio-
metric systems based on the human hand properties. Presented knowledge is the basis for
understanding the rest of this text.

In the first section, methods for acquisition of 3D models are explained. Also, acquisition
devices that are currently available on the market are shortly described. Then, in the
Section 2.2, focus is shifted towards the recognition of people according to their hand
geometry. It summarizes the research that has been already done in this field. Next,
Section 2.3 explains the problematics of multimodal biometric systems. In Section 2.4,
methods for the evaluation of the biometric systems are presented. At the end, Section
2.5 is dedicated to the existing industrial systems for hand geometry based recognition of
people.

2.1 Acquisition devices

The selection of the acquisition device (sensor) is one of the key decisions in the design of a
biometric system. On on hand, the form factor and cost of the sensor are important, as they
have a direct impact on the packaging and the bill of materials (BOM) of the final product.
On the other hand, the data acquired by the sensor must be of high quality, allowing to
reduce or avoid the post-processing of the acquired data. Usually, those two criteria are in
conflict (a higher quality sensor is larger and more expensive and vice versa) and one has
to carefully select a good trade-off.

The acquisition devices for 2D hand recognition systems are usually a simple cameras
(typically working in the visible, UV or IR range), mounted above (for system based on the
dorsal side of the hand) or below (for hand palm side) the area where the hand is placed.

Speaking about 3D case, there are a lot of possibilities, such as passive stereo analysis,
photometric stereo, structured light approach and many others [11]. In the following section,
a few popular approaches for the 3D data acquisition are described.

2.1.1 Available methods for 3D data acquisition

Nowadays, plenty of methods for 3D reconstruction are already known and there is still a big
ongoing research in this field. When choosing a proper method, not only its precision has
to be taken into account. There are many other aspects, such as price of the components,
constraints that each method brings, etc.

4

Passive stereo

As stated in [11], passive stereo analysis is based on principles very close to the human vision.
The human vision is fundamentally a binocular process that takes two images obtained from
a slightly different viewpoints and estimates the depth from the parallax between the two
images. Big advantage of the passive stereo methods is that no other devices are needed
for the reconstruction process, no special light sources, no pattern projectors, etc.

Passive stereo devices use that at least two cameras are capturing the scene at the same
time, or within a certain interval during which no objects are moving in the scene. The
whole reconstruction process is based on principles of so-called epipolar geometry, which is
the expression for the geometry of the stereo vision and is explained for example in [11].
As also described in [11], passive stereo pipeline usually consists of the following stages:

• Image acquisition - acquisition of the images that will be further processed;

• Camera modeling - represents the acquisition device (mainly camera) calibration;

• Feature extraction - detection of the image significant features that are needed
later on;

• Correspondence analysis - matching of the corresponding image points in images
from both cameras;

• Triangulation - position of a certain point in the 3D space can be calculated given
two corresponding points, one from each camera. For detailed description of the
triangulation please refer to [6];

• Interpolation - original calculated 3D points often have to be transformed into better
representation of the object surface.

Examples of stereo-based 3D reconstruction are shown in Figures 2.1(a), 2.1(b) and 2.1(c).For
additional details, please refer to Chapter 4 of [11].

(a) (b) (c)

Figure 2.1: (a) Input images from both cameras; (b) Disparity map between the images;
(c) 3D model of the scene reconstructed using the disparity map [4].

Photometric stereo

This method is based on SFS (Shape From Shading) methods, which are explained in detail
in [11]. It extends the SFS methods by using not only one image of the scene, but more
of them. Classic SFS methods recover the object surface from a single irradiance image
using reflection properties of the object and illumination parameters in the scene. The
photometric stereo uses multiple light sources to obtain several views of the scene with

5

a different illuminations (unlike stereo-based approaches, at least three independent light
directions are needed). The different illuminations can be captured at different times or
together using color filters. The depth reconstruction is performed by first recovering the
surface orientations from the illumination images and then integrating them into a surface.

An example of the photometric stereo processing pipeline is in Figure 2.2. For more
details about these methods, refer to chapter 8 of the book [11].

Figure 2.2: Processing pipeline of the photometric stereo approach using three light
sources. Here the photometric stereo approach is combined with previously obtained sparse
geometric data [22].

Structured light

In these systems, the camera is viewing the scene at a certain angle with respect to the
light pattern source (projector), which is designed to project special patterns onto the scene.
Thus the light pattern projected onto the object is distorted while being viewed from the
camera point of view. Knowing the parameters of the camera - light source system, the
position of the object surface 3D points can be computed.

(a) (b)

Figure 2.3: (a) Multiple parallel stripes pattern; (b) Single laser stripe pattern [11].

As stated in [11], structured light approach can be regarded as a modification of static
binocular stereo. Only in this case, one of the cameras is replaced by a light source that
projects the light pattern into the scene. The triangulation is then carried out by intersect-
ing the projection ray that is casted from the camera into the scene and the light ray (or
plane) which is going into the scene from the light source.

6

There are many light patterns that can be used. Basically, methods can be divided into
two groups. First group uses simple geometric patterns, such as dot patterns (single or
multiple dots), stripe patterns (again single or multiple lines), etc., see examples in Figure
2.3. The second group includes methods that are based on a spatial or temporal coding
of the light patterns, such as binary encoded light stripes approach or phase shifting, as
shown in Figure 2.4.

(a) (b)

Figure 2.4: (a) Two plus one phase shifting method processing pipeline;[23] (b) Binary
encoded patterns method [11].

Structured light methods are of high precision and they simplify the whole reconstruc-
tion process from the mathematical (theoretical) point of view by making the hardware
acquisition system more complex.

2.1.2 Existing devices

A variety of 3D sensors is currently available on the market. They differ not only in precision
and price, but also in the principles they are using for the 3D surface reconstruction, the
form factor, temporal, spatial, and depth resolution. Notable manufacturers include big
companies such as Microsoft as well as more of a start-up companies such as Luxembourg-
based Artec 3D, Israeli PrimeSense (recently acquired by Apple) and Belgian SoftKinetic.

Considering the high-end very precise sensors, already mentioned Artec 3D (Figure
2.5) sensors are perfect examples. These sensors are very precise and they can satisfy
very demanding customers, on the other hand the price is really high, in range of tens
of thousands of euros, which makes them almost useless in case of industrial biometric
systems. In case of biometric systems, the focus is shifted towards cheaper, yet still precise
enough sensors.

In the lower-end range one can find sensors that cost a few hundreds of euros at most.
Microsoft Kinect (Figure 2.5(c)) was the first device of its kind that provided cheap 3D
sensor, which, apart from augmented reality use, could also serve as a 3D scanner. After
Kinect was released, many other sensors based on similar approach were developed and
sold by companies like SoftKinetic (Figure 2.5), etc. Finally, there are on-going attempts
to reduce the price and dimensions of the sensors even further. A recent example includes
a 3D camera announced by Intel (Figure 2.6), which was used for this work.

7

(a) (b)

(c) (d)

Figure 2.5: Artec3D handheld sensors: (a) Artec 3D Spider; (b) Artec 3D Eva. Cheap
3D sensors: (c) Microsoft Kinect; (d) SoftKinetic DS325.

2.2 Human hand as biometric characteristic

Far back in the second half of the 19th century, Alphonse Bertillon developed anthropometry,
which describes what measurements of the human body have to be done in order to identify
individuals. These measurements include also three values obtained from the hand contour
geometry. Since then, hand geometry was used for identification of people.

The human hand provides sufficient amount of information for performing both 2D
and 3D recognition. 2D recognition is done based on the hand contour, where the precise
extraction of the contour is the most critical part. Considering 3D hand geometry, both
hand palm (and in particular, the structure of the wrinkles and epidermal ridges of the so-
called palmprint) and hand dorsal side can be used in order to extract biometric features for
the recognition process. In case of the hand palm, not only the 3D structure is available,
but so-called palmprint could be also used to get even more information from the hand
surface.

Biometric systems based on the 2D hand geometry are quite widespread nowadays. The
overall experience from the field is that users do not complain about having to use such
systems. However, there is one thing that is not accepted very well by users. It is the need
to place the hand somewhere in order to be recognized.

The biggest advantages of the hand geometry properties are:

• good user acceptance;

• easy to use;

• robust in many environments.

On the other hand, there are also a few disadvantages that have to be taken into account:

8

Figure 2.6: The Intel RealSense camera.

• bigger acquisition devices in comparison with some other approaches (e.g. finger-
prints, etc.);

• using only 2D hand geometry does not provide enough distinctive power for larger
groups of people;

• users may complain about having to place their hand on a particular surface.

Much of exploration of the 3D hand recognition systems has been motivated by the two
latter limitations. The use of additional 3D geometric structure of the hand, in combination
with already existing 2D hand geometry, can improve the recognition accuracy, and also
eliminate the need of hand placement on a particular surface, making the system touchless.

Recognition is based on the assumption that human hand is unique. As listed in [2], to
recognize individuals, the following features are currently used:

• finger length;

• finger width;

• finger height;

• curvatures and local anomalies.

2.2.1 2D geometry

As stated in [2], there are three main approaches to recognition based on the 2D hand
geometry. They are based either on direct measurements, hand alignment or analysis of
finger widths.

Direct measurements

In this approach, some significant proportions of the human hand are measured. Based on
those proportions, the actual recognition is done afterwards. During the image acquisition,
hand has to be placed on a surface that sometimes also has a few guide pins that help to
position the hand and the fingers properly.

9

Typically, the measured proportions are finger lengths, finger widths at different parts
of the finger, palm width, etc. as shown in Figure 2.7. These proportions can be extracted
from the hand image captured by the camera (due to the use of reflective surface, the
hand is clearly segmented from the background) and constitute the feature vector that
characterizes a hand.

Recognition is done taking two templates that contain the feature vectors and computing
a distance measure between those two templates. As shown in [2], given two feature vectors
x and y, the comparison score is computed using some standard distance, such as L1 or L2.

Figure 2.7: Proportions of the hand measured in the direct measurements approach [2].

Hand alignment

Hand alignment is essentially template matching. First, each captured image is aligned
into predefined position and then the original template and then compared to the template
image. For each alignment, the so-called mean alignment error (MAE) is computed, which is
the average distance between the corresponding points. If the MAE value is below specified
threshold, hands are considered as similar. The whole process is illustrated in Figure 2.8.
This method is usually used only for verification.

Approach based on analysis of finger widths

First of all, Otsu’s algorithm [2] is used to separate the hand region from the background.
Next, axes of the hand are estimated, as shown on Figure 2.9(c). Using these axes, positions
of the finger tips and finger valleys are found, see Figure 2.9(d). Using this information,
hand blob is divided into separate fingers. Now, as the fingers are separated, the distance
from each finger edge point to the finger center axis is computed. This is visualized in Figure
2.9(f). For each finger, from all the distances computed on it, histogram that represents
the probability distribution of the distances is created. The feature vector describing the
hand comprises these histograms.

During comparison the divergence between the histograms representing each finger is
computed using Kullback-Leibler [1] distance. The final distance is the sum of the three
smallest distances. More detailed description of this method can be found again in [2].

10

Figure 2.8: Processing pipeline of the hand alignment method [2].

2.2.2 3D geometry

To best of our knowledge, all the hand recognition systems available nowadays on the market
are 2D. However, during the last few years, there was a big research that has brought a few
new methods and shown some possibilities of dealing with 3D hand geometry information
that can be used for recognition of people.

A few most promising approaches are presented in the following subsections.

Finger 3D profile based approach

This method was proposed by Vivek Kanhangad, Ajay Kumar and David Zhang in [9].
Their system uses contactless 3D scanner to obtain the 3D information of the hand surface.
It does not define any restrictions regarding hand positioning either. For the recognition
itself, they use a fusion of 2D and 3D hand biometric features, which turn out to significantly
improve the resulting performance of the system.

First, let us shortly describe the acquisition device they use. It is the commercial 3D
laser scanner Minolta Vivid 910. Thank to this device, they are able to do the reconstruction
in a contactless way, without requiring the user to place his hand somewhere and touch any
surface. However, on the other hand, such a scanner is not really a cheap device and also,
the acquisition system requires the background behind the hand to be of the black color.
Because of these two restrictions, the final solution is not a candidate for future commercial
use.

11

(a) (b) (c) (d)

(e) (f)

Figure 2.9: (a) Original image; (b) Result of segmentation; (c) Estimated axes of the
hand; (d) Finger tips and finger valleys; (e) Separated hand fingers; (f) Distances from the
finger center axis [2].

(a) (b) (c) (d)

(e)

Figure 2.10: (a) Intensity image; (b) Result of segmentation; (c) Finger tips and finger
valleys; (d) Finger orientations; (e) Extracted separate fingers [9].

The feature extraction is as follows. Input intensity images are first thresholded and then
hand contour is extracted. Next, finger tips and finger valleys are located in the contour

12

image. Using the detected points, orientation of each finger is estimated and separate fingers
are extracted from the image. The stages are depicted in Figure 2.10. Based on the fingers
extracted from the intensity images, finger can be extracted also from the range images
and visualized in 3D, as shown in Figure 2.11(a). For each finger, several of cross sectional
segments are obtained at uniformly spaced distances along the finger length, according to
in [9]. These segments are shown in Figure 2.11(b). Next, mean curvature and unit normal
vector are computed for each data point on the particular segments, see example in Figures
2.11(c), 2.11(d) and 2.11(e). Based on these values, the final feature vector is created.

(a) (b) (c)

(d) (e)

Figure 2.11: (a) Acquired 3D finger model; (b) Finger cross sectional segments; (c) 2D
cross sectional segment; (d) Segment curvature; (e) Segment unit normal vectors [9].

The recognition is based on the comparison of the aforementioned feature vectors. The
final score is created as a combination of results of matching the features on each finger
separately. Curvature features matching for each pair of corresponding fingers is based on
cosine similarity, as shown in [9]. Matching of unit normals is performed in a similar way.
Details of the method are described in [9].

3D palm structure

An advantage of this method is the pose invariance and the fact that it can be used in
the touchless scenario. Hence it is even more user friendly than classic 2D hand approach.
Similarly to the previous approach, it uses 2D hand geometry and 3D hand geometry
mentioned in the previous section, but on top of that, it also adds 3D and 2D information
in the palmprint.

First, the hand has to be detected in the intensity and range images. Detection is based
on the intensity image information and the approach is the same as the one presented in
the previous section.

Hand pose correction is done the following way. First of all, palm center is detected using
distance transform [10]. Distance transform appears to be more robust than approaches

13

Figure 2.12: Pose correction processing pipeline [10].

based on finger tips and valleys if we consider that it can be quite difficult or, in particular
cases even impossible, to detect finger valleys when the hand is rotated by a bigger angle.
A circular region around the detected center is then taken. This region is approximated by
a plane, which is fit using the iteratively reweighted least squares (IRLS) technique [10],
which allows to assign a weight to each data point. The weight defines how far the point is
from the fitted plane. Therefore the IRLS approach that they employed is less influenced
by the outliers in the data, which may in their case arise from the bend or the deformations
of the hand. Next, the normal to the estimated plane is computed. The normal describes
the orientation of the hand in the 3D space. Using obtained information, pose correction
is carried out and the results are pose corrected 3D points that have to be converted into
range and intensity images for further processing. The whole process is described in detail
in [10]. The whole correction process is illustrated in Figure 2.12.

Feature extraction is based on the the pose-corrected intensity and range images and
includes [10]:

14

• 3D palmprint - it is extracted from the range images of the hand from the palmprint
ROI (Region Of Interest). These features, mainly depth and curvature of the palm
lines and wrinkles, are highly discriminatory;

• 2D palmprint - identification using 2D palmprint has already developed in the past
and there are many methods. In this case, approach based on Gabor filtering is used;

• 3D hand geometry - same features as described in the previous section are used;

• 2D hand geometry - this approach is already widely used in the industry. For the
available methods, see Section 2.2.1.

The complete system is done as a dynamic fusion based on the weighted sum rule in
order to combine match scores of each individual method into the final score. Block diagram
of their system is shown in Figure 2.13.

15

Figure 2.13: Block diagram of the proposed system based on the fusion of multiple
biometric properties [10].

16

2.3 Multimodal biometric systems

As stated in [17], humans recognize one another using information presented by multiple
biometric characteristics. It would be much harder for people to recognize others using
only one biometric characteristic, but when the characteristics are put together, it makes
it much easier and more reliable.

This is true also for the the biometric systems. Combining more biometric characteristics
together results in a higher reliability. The main advantages of the multimodal biometric
systems are in the following list:

• substantial improvement in the matching accuracy of the biometric system;

• flexibility of use due to the fact that more biometrics are enrolled in the system;

• it is more difficult for an impostor to spoof multiple biometric traits;

• reduction of the impact of noisy data from some biometric sensors under specific
conditions;

• higher fault tolerance of the biometric sensors - if one sensor is broken, there are other
that can be used.

More detailed description of the advantages can be found in [17] as well as much more
detailed introduction into the problematics of the multimodal biometric systems in general
including also the issues that have to be faced when designing such systems.

One of the main issues that has to be faced during the design of the multimodal biometric
system is how to create the final match score by combining match scores from all the
available sources. This is further described in the following subsection.

2.3.1 Matching score fusion

In order to be able to combine match scores obtained from different feature vectors, it is
important to consider the meaning of the score for each particular system. That means,
whether the higher score equals higher similarity or the opposite. Also, it has to be taken
into account that the scores from the different biometric systems are usually in different
ranges. Therefore a method to normalize the score values so that they can be easily com-
bined together has to be used.

The complete list of the possibilities and their mathematical description can be found
in [17]. One of the possible solutions is to use the score normalization methods. That is,
changing the location and scale parameters of the match score distributions at the outputs
of the individual matchers so that the match scores of different matchers are transformed
into a common domain as stated in [17].

All the parameters used for the normalization can be estimated either using fixed train-
ing set (so-called fixed score normalization [17]) or they can be estimated based on the
match score of the current sample (so called adaptive score normalization [17]).

As written in [17], for a good normalization scheme, the estimates of the location and
scale parameters of the match score distribution must be robust and efficient. Robustness
is the insensitivity to the presence of outliers. The efficiency is the proximity of the
obtained estimates to the optimal estimates when the distribution of the data is known.

17

There are several normalization techniques. Probably the simplest normalization tech-
nique is called Min-max normalization and it is described by Equation 2.1

nsj =
sj − smin

smax − smin
(2.1)

where smin refers to the minimal obtained match score, smax is the maximal obtained
match score, sj is the match score of the jth sample and nsj is the normalized score of the
jth sample.

Another method is called Z-score normalization, which works with the mean and
the standard deviation values obtained from the training data samples. It is described by
Equation 2.2

nsj =
sj − µ
σ

(2.2)

where µ is the mean value, the σ is the standard deviation and nsj and sj have the same
meaning as before.

Next one is for example so-called Median and MAD normalization, which uses the
median of the matching scores and MAD (Median Absolute Deviation) of the matching
scores, which is defined as

MAD = median |sj −med|, (2.3)

where the median is the median function, sj is the matching score of the current sample
and med is the median of all the training samples. Having MAD defined, the normalized
match score can be easily computed using Equation 2.4

nsj =
sj −med

MAD
, (2.4)

where nsj is the normalized match score and the other values have the same meaning as in
Equation 2.3 earlier.

Apart from the three methods mentioned above, there are many more like so-called
Decimal scaling, Double sigmoid normalization or Tanh estimators. It is important
to note that not all of the methods are both robust and efficient. The overview of the
efficiency and robustness properties of the normalization methods is shown in Table 2.1.
For more detailed description of all the methods, please refer to [17].

Table 2.1: Overview of the robustness and efficiency of the available match score normal-
ization methods taken from [17].

Normalization Technique Robustness Efficiency

Min-max No High
Decimal scaling No High

Z-score No High
Median and MAD Yes Moderate

Double sigmoid Yes High
Tanh-estimators Yes High

18

2.3.2 Feacture vectors fusion

Another possible solution for a multimodal biometric system is to perform the fusion on
the feature vector level. In this case, the fusion is done before computing the matching
score and therefore there is no need to solve the matching score fusion problem. However,
the feature vector combination is not an easy task. It has to be taken into account that
both feature vectors most probably contain values in a different range as already mentioned
before in this section. Thus, this issue has to be addressed either when the feature vectors
are combined or when they are compared. Otherwise, computing the distance between the
two feature vectors would be completely dominated by the largest component [12].

The source [12] further says that at least appropriate data scaling, for example data
whitening and then applying the Euclidean distance measure, is one of the possible solutions.
It is also stated that the combination of whitening and Euclidean distance is in the end
exactly Mahalanobis distance measure. Data whitening is represented by the following
equation:

wwh = Σ−1/2 (w − µ) (2.5)

where w is a random vector with mean µ and covariance matrix Σ defined as
Σ =

∑
(i,j)∈S (xi − xj) (xi − xj)T , finally wwh is the whitened version of the vector.

Distance metric learning

But [12] also mentions that such an unsupervised scaling is generally not good enough and
in order to get a good performance, it is strongly suggested to use supervised learning of
the feature weighting in order to transform the data from one space to another.

One of the possible solutions is to use the metric learning, where the goal would be
to learn the transformation of the data based on the supervised information regarding the
distances of the transformed data, as stated in [12].

The source [12] says that one of the both simplest and most popular approaches to
learning metrics is so-called “Mahalanobis distance learning” which tries to learn distances
of the form

dA (x, y) = (x− y)T A (x− y) , (2.6)

where A is a positive definite matrix. The matrix A can be easily viewed as applying a
linear transformation of the input data. Because A is positive definite, it can be factorized
as A = GTG and it can be easily derived that dA (x, y) = ||Gx−Gy||22.

One of the most popular methods for metric learning is the Large-Margin Nearest
Neighbors (LMNN). It combines relative distance constraints and regularizer of Xing.
et al. [12]. The method finds A by solving the optimization problem

min
A�0

∑
(i,j)∈S

dA (xi, xj) + λ
∑

(i,j,k)∈R

[1 + dA (xi, xj)− dA (xi, xk)]+ , (2.7)

where λ ≥ 0 is a parameter, the notation [z]+ = max(0, z) is used for the standard hinge
loss and S is the set containing all the pairs (i, j) of target neighbors and the set R on the
other hand is the set of all the triplets (i, j, k) such that xi and xj are the target neighbors
and xk is a point with a different label.

The goal of the method is that a given data point should have the same label as its
nearest neighbors and the points with different labels should be as far from that point as
possible. The aim of the LMNN approach shown in Figure 2.14 is therefore to minimize
the number of impostors using the relative distance constraints as described in [12].

19

Figure 2.14: LMNN metric learning principle visualization.[12]

2.4 Evaluation of biometric systems

The aim of this section is to introduce the basic terminology and methods that are used for
the evaluation of the biometric system performance. The first subsection explains the used
terminology to the reader. After that, the most commonly used performance measures are
introduced. In the end of this section, several options for visualization of the performance
are shown.

2.4.1 Basic terminology

As stated in [2], the following three basic types of classification are considered speaking
about biometric systems.

• verification - the task is to determine, whether the presented set of biometric traits
belongs to a previously marked user;

• identification - apart from verification, here the task is to determine to which user
in the database the presented set of biometric traits belongs;

• recognition - the goal is to say to which class the semantic content of the biometric
traits belongs.

In the ideal case, the error of the just presented types of classification is 0. But that is
never the case in the real world applications. Therefore there is a need to have particular
measures that describe how good the biometric system is.

Speaking about biometric traits in particular, there are a few very important terms that
have to be considered. Those terms are shortly described next.

The first is intraclass variability, which describes the changes in the traits that
occurs during multiple acquisitions of the same user. These changes can arise due to the
current physical state of the individual, his mental state or just due to the changes in the
surrounding environment. This variability is never desired and in ideal case, it would be 0.

The second term is called interclass variability. Apart from intraclass variability, the
interclass variability stands for the differences in a particular biometric trait for different
users. This measure is always desired to be as high as possible. If it is not high enough,

20

the particular trait is not a good candidate to be used for the recognition between different
individuals. This term is closely related to the biometric entropy, which says how much
information does the particular biometric trait contains. The higher the biometric entropy
is, the higher the interclass variability is.

In case of verification, the biometric system can give wrong results, which can be basi-
cally divided into the following two groups, as listed in [2].

• false rejection - rejection of the right hypothesis (the user had the right to enter the
system, however he was rejected);

• false accept - acceptance of the wrong hypothesis (the user had no right to enter
the system, however he was accepted).

The just introduced terms can be expressed using multiple measures that are explained
in the next section.

2.4.2 Comparison error measures

One of the most important things regarding the behavior of a biometric system is the so-
called decision threshold. The decision threshold is a value that divides the matching
scores into two groups. The threshold defines which matching scores are interpreted as
matches and which ones as non-matches. The meaning of the decision score is illustrated
in Figure 2.15.

Figure 2.15: The result is either accept or reject depending on the current matching
score value s and how the decision threshold T is set [2].

When the matching score is compared with the decision threshold, the biometric system
returns a result that can be either right or wrong decision. The result of the biometric
system for the verification (identification) can be one of the following:

• True Accept - the person A is accepted as A;

• True Reject - the person A is rejected as B;

• False Accept - the person A is accepted as B;

• False Reject - the person A is rejected as A.

For estimating the error measures in the biometric systems, mainly the False Accept
and False Reject cases are important. Based on those values, the following measures can
be computed.

The first measure is False Accept Rate (FAR [2]), and it represents the amount of
the verification attempts with false biometric traits presented that are accepted by the
biometric system. It is the probability that the biometric system will classify two different

21

biometric samples as the same and thus fail to reject a possible intruder. FAR can be
computed as

FAR =
dmctrue
dmcall

(2.8)

where dmctrue stands for the number of comparisons of different samples with result match
and dmcall is the number of all the comparisons of different samples.

Figure 2.16: An example of the genuine and impostor score distributions with the FAR
and FRR marked [2].

Another very important measure is the so-called False Reject Rate (FRR [2]) that
represents the amount of the verification attempts with true biometric traits presented that
are rejected by the biometric system. Therefore it is the probability that the biometric
system will classify two biometric samples from the same person as different and thus fail
to accept a user that is enrolled in the system. FRR computation is represented by the
following equation

FAR =
umcAfalse
umcAall

(2.9)

where, the umcAfalse is the number of comparisons of samples from user A with result non-

match and umcAall is the number of all comparisons of samples from the user A.
The last measure mentioned in this text is Equal Error Rate (EER [2]), which is

theoretically defined by condition FAR = FRR and in the real applications it is the part
of the distribution plots, where the both FAR and FRR equals. If the decision threshold T
is set to the EER value, the number of false accepts and false rejects will be the same. As
said in [2], it is therefore possible to set the decision threshold T according to the needs of
the particular application.

Apart from FAR, FRR and EER there are many more measures (e.g. FMR, FNMR,
FTE, FTA, etc.) that are described in more detail in [2].

22

2.4.3 Performance visualization

The performance of the system is usually visualized using the so-called Receiver Oper-
ating Curve (ROC). This curve is derived from the dependency of the FAR and FRR
values on the decision threshold value. With the change of the decision threshold, one of
the FAR and FRR values is increased and the other one decreased. Both values are changed
together, but always in the other direction - when one increases, the other decreases). The
ROC curves represent the detection ability of the FAR in relation to FRR, as stated in [2].
An example of the ROC curve is shown in Figure 2.17.

Figure 2.17: An example of the ROC curve [2].

As you can see from the Figure 2.17, the better the performance of the system is, the
closer the ROC curve gets to the top left corner of the graph.

Another alternative to the ROC curve might be the so-called Detection Error Trade-
off (DET) curve, which is basically the same, just with a different values on the axes. For
more information about the DET curve, please refer to [2].

23

2.5 Industrial systems

So far, there are only 2D geometry based biometric systems available on the market. No
3D geometry based system has been released yet.

As listed in [2], the first 2D hand recognition device was deployed in 1970’s under the
brand Identimat. From that time, it was used in many industrial applications. In a few
cases, it is still in use, only with some modifications according to the development of the
2D hand geometry systems.

(a) (b)

(c)

Figure 2.18: HandKey II biometric system: (a) schematics of the HandKey II; (b)
HandKey II real photo; (c) Digi-2 biometric systems by Biomet Partners company [2].

Another commercially offered device is HandKey II, shown in Figure 2.18(b), which
is currently used as a part of the security system in the Dukovany nuclear power plant in
the Czech republic. The device uses low-level infrared light and CMOS camera to capture
images of the hand. Mirrors are mounted in the device on the sides of the platen where the
hand has to be placed. Thanks to those mirrors, a pseudo-3D information can be obtained
by observing the hand not only from the top, but also from the sides (the reflections in the

24

mirrors). Input images are converted into nine byte template and stored in the database.
Device can operate either as a standalone unit, in a network with other HandKey devices
or in a network with a computer.

Another system that is worth mentioning is called the Digi-2 (Figure 2.18(c)) and was
released in 1995. This device uses CCD camera to capture hand finger images. Fingers are
captured from two directions so it is again possible to get a pseudo-3D information about
the fingers. Features are extracted from the input images using a microprocessor, which is
part of the device. The comparison can be done afterwards. Template size is 20 bytes.

25

Chapter 3

Proposed 3D hand geometry
recognition system

As shown in the previous chapter in Section 2.2, a lot of research has already been done in
this field. However, those systems usually do not pay so much attention to the final price
and their usability in the real world applications. Because of that, all the research that has
been done uses either very expensive acquisition device or it arises some constraints that
makes it impossible to be used commercially. Apart from that, the system presented in
this section uses acquisition devices that can be obtained at reasonable prices and it does
not tend to define any constraints that would be problematic to reach in the real world
applications. To compensate the problems that arise from not having many constraints, it
uses fusion of both 2D and 3D hand geometric information for the recognition task.

3.1 Acquisition device

As 3D sensor, the soon to be released Intel RealSense camera shown in Figure 2.6 was used.
The RealSense camera is based on the time-multiplexed structured light projected in

the near-IR spectrum.
The depth information comes in 640× 480 resolution at up to 60fps. The camera has a

tiny form factor (3.5mm thickness) and is intended to be embedded into laptop computers.

3.2 Input data acquisition

The input data are obtained using the 3D camera described in the previous section. This
section describes which images are collected during the capture process and how they are
stored.

Capture process output

There are five output data files that are created with each successful capture. Namely,
those are:

• intensity.png - intensity image captured by the IR camera;

• depth.png - depth map obtained by the 3D camera;

26

• mask.png - mask of the image region that contains hand created from the depth
map;

• vertices.yml - hand surface 3D model vertices stored in YAML file format for easier
serialization/deserialization;

• model.ply - hand surface 3D model vertices stored in PLY format.

Example of the three output images plus the visualized point cloud are shown in Figure
3.1.

Figure 3.1: System input data. Top left: visualized point cloud; Top right: depth map;
Bottom left: IR camera intensity image; Bottom right: hand mask.

Hand positioning

The most important part during the input data acquisition phase is to define the constraints
that has to be satisfied in order to get a sufficient input data. This can be done by either
only verbally instructing the users how to place their hand before they start using the
device or by combining those verbal instructions with a positioning application, in which
the program tries to navigate the users to reach the correct positioning of the hand in the
scene.

The proposed system chooses the latter approach. Therefore, the constraints can be
divided into two groups. The verbal ones, which are not checked by the positioning appli-
cation and the application constraints, which are checked automatically by the input data
acquisition application.

The verbal constraints arise from how the device is designed to be used. Those
constraints are:

27

• hand dorsal side constraint - defines that the hand dorsal side, instead of the hand
palm, has to be presented to the camera;

• fingers constraint - defines that the fingers have to be presented stretched with
some tolerance, which means that they can be bend, but just to the extent that the
user feels comfortable when presenting the hand to the device;

• hand axis weak constraint - defines that the axis that goes through the mid-
dle finger fingertip and is perpendicular to the wrist line has to be approximately
perpendicular to the optical axis of the 3D camera.

In order to use the device correctly, satisfying all three listed constraints is a must.
When all verbal constraints are met, the positioning application is expected to work

correctly and navigate user to place his hand the proper way in the scene. To achieve the
proper hand placement, another set of constraints has been created. Those are so-called
application constraints and they define how to place the hand into the scene so that the
positioning application accepts the position and does the input data capture. List of the
application constraints follows.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Hand positioning application constraints: (a) Well positioned hand; (b)
Mean depth constraint violated; (c) Centroid position constraint violated; (d) Fingertip
count constraint violated; (e) Fingertip distance constraint violated; (f) Hand axis strong
constraint violated.

• mean depth constraint - defines the accepted distance of the hand surface from
the 3D camera by checking the mean depth of the hand surface that can be obtained
from the depth map image (Figure 3.2(b));

28

• centroid position constraint - defines the required rectangular area in which the
hand centroid must lie (Figure 3.2(c));

• fingertip count constraint - defines that exactly five fingertips have to be detected
on the hand surface in order to be accepted by the application (Figure 3.2(d));

• fingertip distance constraint - defines that the distances between little to ring,
ring to middle and middle to index fingertips have to be approximately the same
(Figure 3.2(e));

• hand axis strong constraint - it is the same as hand axis weak constraint,
but in this case the orientation is checked against allowed range by the application
(Figure 3.2(f)).

To satisfy all the application constraints, the user is led towards the good hand position
by a few markers displayed on the screen during the positioning. As shown in Figure 3.2(a),
the markers are the green rectangle that defines where the hand centroid should lie, the
blue dot that marks the computed hand centroid, the lines between the fingers that indicate
whether the fingers are spread enough (green lines) or some of them are too close to each
other (red lines) and also the text indication that shows user the current status of the hand
positioning.

When the hand position is correct, capture of the data could be done either automat-
ically or manually by clicking a button on the keyboard. The decision whether to do the
capture automatically or not depends on a particular use case.

3.3 Hand biometric features

Human hand biometric features used in this system can be basically divided into two groups
according to the dimensionality of the space they are observed in. These groups are namely
the 2D features, which are observed in the 2D space and the 3D features, which can be
measured in the 3D space. For both of these groups, it is a proven fact that they provide
sufficient amount of information for the biometric recognition of people. Both groups are
described in more detail in the following subsections.

2D features

The biometric features measured in the 2D space are usually based on the analysis of the
hand contour extracted from a hand image. The list of basic measures that are usually
obtained from 2D image of the human hand in the industrial applications was presented
earlier in Section 2.2.

In this particular solution, the following distances were measured over the hand surface:

• finger length - length of the finger is measured as a distance between fingertip and
center of the finger valleys (Figure 3.3(a));

• finger valleys distance - distance between the finger valleys of a particular finger
(Figure 3.3(b));

• finger widths - widths of a particular finger in predefined positions along the finger
axis (Figure 3.3(c)). The predefined positions are approximate locations of the finger
joints;

29

• wrist width - width of the hand wrist (Figure 3.3(e));

• wrist - valley distances - distances between the wrist points and the finger valley
points (Figure 3.3(d)).

(a) (b) (c) (d)

(e)

Figure 3.3: Measured 2D features: (a) Finger length (red line); (b) Finger valleys
distance (yellow line); (c) Finger widths (yellow lines); (d) Wrist - valley distances (red
lines);
(e) Wrist width (purple line).

3D features

Considering the 3D space, hand model contains also the depth information. In the 3D
space, all the distances measured in the 2D space could be measured again. However,
in this case, it is not just computing a distance between two points, but the distance is
computed by traversing through each point on a specific line over the surface. This way,
more robust measure that does not suffer so much from the hand transformations can be
obtained. Apart from the distances, it is also possible to get new features like normal
vectors or curvatures.

The 3D features can be obtained by analyzing either the depth map image or the vertices
of the hand point cloud. This solution uses the latter, so the 3D features are obtained by
performing analysis of the hand point cloud.

In this work, the following set of 3D features is used:

30

• 3D finger widths - widths of a particular finger (a cross sectional segments) in
predefined positions along the finger axis. The predefined positions are as well as in
case of 2D finger widths the approximate locations of the finger joints. The difference
is that in the 3D case, width is measured by traversing all the points along the line
that is perpendicular to the finger axis (Figure 3.4(a));

• finger segment axis - surface distance - distance between finger axis at the cross
sectional segment and the points on the finger surface. The finger axis at the cross
sectional segment is computed using two neighboring cross sectional segments (Figure
3.4(b)).

(a) (b)

Figure 3.4: Measured 3D features: (a) 3D finger widths; (b) 3D finger segment axis
- surface distance (red line is the axis, green lines are the distances measured between the
blue points).

3.4 Feature extraction

As the system is based on a 3D camera, some phases of the hand detection can be signifi-
cantly simplified by taking advantage of the depth information. The most important steps
of the feature extraction are described in the next few subsections.

Hand detection

This is always the first phase of the feature extraction algorithm. To be able to extract
good features, hand object has to be detected in the scene image as precisely as possible.
Apart from the previously used approaches, where the hand has to be placed in front of
a dark or very reflective homogeneous surface in order to be detected precisely, this new
approach does not have any requirements on the capturing environment at all.

As mentioned previously in Section 3.2, one of the input images in this solution is the
depth map that can be used easily to separate the background from the foreground using
the depth information (Figure 3.5(a)). A range of accepted depth values is specified and
only the depth values that satisfy the following equation zmin ≤ z ≤ zmax, where z is the
depth value of a particular pixel, and [zmin, zmax] is the range of the accepted depth values,
are marked as the hand surface (Figure 3.5(b)).

31

(a) (b)

Figure 3.5: Foreground - background separation using the depth information: (a) Input
depth map; (b) Output hand mask.

The proposed foreground - background separation method can produce some outliers.
Those are removed in the next step.

Contour detection

When the hand region is detected in the input images, the next step is to obtain the contour
of the hand that will serve as an input for all the next processing steps.

(a) (b)

Figure 3.6: Contour detection using hand mask: (a) Input hand region mask; (b)
Output hand contour.

As an input, this step takes the hand mask that was created in the previous step (Figure
3.6(a)). At the beginning, all the contours in the mask image are detected. To remove the
possible outliers, the area is computed for every detected contour. The following equation
A ≥ Amin, where A is size of the contour that is currently checked and Amin is the smallest
size of the contour that is accepted, is used to decide, whether the contour is a hand
contour or not. If the equation presented above is not satisfied, the contour is considered
as an outlier, otherwise the contour is marked as a hand contour. The resulting detected
contour might look like the one in Figure 3.6(b).

32

(a) (b)

(c) (d)

Figure 3.7: Hand centroid detection: (a) Input hand region mask; (b) Hand region after
distance transform; (c) Thresholded result of the distance transform; Visualization of the
detected hand centroid.

Hand centroid detection

Detection of the hand centroid is fundamental, because it affects the detection of the other
important points such as the fingertips, the finger valleys and the wrist points. That implies
a need for robustness of the chosen centroid detection method. The approach used in this
solution is inspired by article [10]. Based on the article, distance transform is used in order
to detect the center of the hand.

As an input, the hand mask image is used. This image is processed by the distance
transform to get the distance of each point on the hand surface to the edge of the surface
(Figure 3.7(b)). The pixels with the highest values are the ones lying in the center of
the hand. Central hand area (Figure 3.7(c)) is then defined as all the points that satisfy
the following equation i ≥ T , where i is the distance transformed intensity value of a
particular point in the result of the distance transform and T is the decision threshold that
distinguishes between the central and the non-central points.

To get one centroid point (Figure 3.7(d)), average x- and y-coordinates of all the central
points are obtained and point lying on this coordinate is taken as the hand centroid. Since
there are only few points in the central area obtained from the distance transform, taking
point lying on the average coordinates is sufficient solution.

33

Fingertip detection

After the hand centroid is detected, the focus moves on to the fingertip detection. In this
phase, prepared hand contour is finally used instead of hand mask image.

First of all, the hand contour is approximated by a convex hull (Figure 3.8(a)). Points
of the hull are further filtered so that only those satisfying the following equation x0 ≥ x,
where x0 is the hand centroid x -coordinate, x is the x -coordinate of a candidate point that
is being checked, are left as the candidates. During the filtering, basic check against surface
curvature is done to ensure that the candidate point will not pass in case it lies on a straight
part of the contour.

The group of the filtered candidates still contains a lot of points. However those points
tend to group into clusters around the candidate fingertip positions. Because of that, points
are divided into a few clusters by using an algorithm for splitting a set of N elements into
equivalency classes as described in [16]. In each cluster, a point with the lowest x -coordinate
in the cluster is taken as the candidate point and then its neighborhood is searched for the
point with the highest curvature. The resulting point is marked as a fingertip (Figure
3.8(b)).

If there are more than five clusters, the five ones with the lowest x -coordinates are taken
and the rest is discarded.

(a) (b)

Figure 3.8: Fingertip detection: (a) Hand contour approximated by convex hull; (b)
Hand contour with detected fingertips.

Finger valleys detection

Detection of the finger valleys comes as the next step after the detection of fingertips. It is
done in this order as the fingertips are required to detect the finger valleys.

All the five detected fingertips are taken and traversed from the first one to the last
one. The part of the hand contour between each two neighbor fingertips is searched for the
place with the highest x -coordinate. The detected points are marked as the finger valley
candidates and further processed. In order to clarify that the point is really a finger valley,
an elliptical area around the hand centroid is defined. The finger valley points must lie in
the elliptical area. Therefore, one more check is performed using the following equation

x− x0
a2

+
y − y0
b2

≤ 1 (3.1)

34

where [x0, y0] is the hand centroid and [x, y] is the point to be checked. If the equation is
satisfied, the point is marked as a finger valley, otherwise the point is discarded.

This way, the four main finger valley points are obtained. However, to be able to process
all the fingers of the hand individually at a later stage, it is required to obtain seven finger
valley points in total. Using this approach, each finger has two precise finger valleys. The
missing points are namely left finger valley of the little finger, right finger valley of the
index finger and right finger valley of the thumb.

(a) (b)

Figure 3.9: Finger valleys detection: (a) Green lines used to define three more finger
valleys after base finger valley detection; (b) Result of finger valleys detection.

To detect these points, an approach inspired by [2] is applied. Using the finger valleys
that have already been detected, three lines going through two particular finger valleys can
be defined as shown in Figure 3.9(a). By finding intersections of those lines and the hand
contour, the missing finger valley points can be found.

In total, there are seven finger valleys that define the area of the contour belonging to
a particular fingers. Results of the finger valley detection process can be seen in Figure
3.9(b).

(a) (b)

Figure 3.10: Wrist line detection: (a) Green line is the one used to obtain direction
vector of the wrist line; (b) Result of wrist line detection.

35

Wrist line detection

The last thing that has to be detected to get the full description of the human hand is the
wrist line. The wrist line is a line marking where the wrist of the hand is. To detect the
wrist line, the previously obtained information are used.

Knowing the positions of the fingertips and having the hand centroid detected, an
approximate axis of the hand going through the centroid and the middle finger fingertip
can be drawn assuming that the direction vector from Equation 3.2

daxis = tmiddle − (x0, y0) (3.2)

where daxis is the direction vector and tmiddle is the middle finger fingertip, is also known.
It can be assumed that the wrist line goes through a point that lies in a particular distance
from the hand centroid in the opposite direction than the middle fingertip, expressed by
the following equation

pwrist = (x0, y0)− s · daxis (3.3)

where s defines how far from the hand centroid the wrist point is. Taking this information
into account, it is now only needed to obtain the direction vector of the wrist line. From
many observations of the human hands, knowing the positions of the finger valleys, it can
be seen that the orientation of the wrist line corresponds to the orientation of the line that
is going through the 2nd finger valley and the hand centroid point as visualized in Figure
3.10(a). Thus the direction vector can be obtained using the following equation

dwrist = (x0, y0)− v2 (3.4)

where v2 is the finger valley point with index two and dwrist is the direction vector of the
wrist line.

The wrist line is described by two points on the hand contour in the end. Those points
are computed by intersecting a line defined by the previously mentioned point on the finger
axis and the just obtained direction vector with the hand contour. The line can be expressed
by the following equation

dwrist
y x− dwrist

x y − (dwrist
y pwrist

x − dwrist
x pwrist

y) = 0 (3.5)

where pwrist is a point that lies on the wrist line.
An example of the detected wrist line is shown in Figure 3.10(b).

3.5 Feature matching

The extracted features that were described in the previous section are compared using the
methods presented in this section. First of all, the feature vectors that are created from the
extracted features are described. Next, the comparison methods used for the 2D geometric
features are described. After that, the methods used for matching of the 3D geometric
features are introduced. At the end of this section, the fusion of both the 2D geometry
matching score and the 3D geometry matching score is explained.

Feature vectors

To create a common representation of the extracted features, all the computed features are
put into one dimensional feature vector that has a length of the number of measured values.

36

There are two feature vectors created for each input sample. A vector of the 2D geomet-
ric features and a vector of the 3D geometric features. Both vectors are basically composed
of a specific amount of floating point numbers.

The 2D feature vector is described first. It has the length of 41 values. All the values
are expressed in pixel units and represent lengths measured over the hand. The structure
of the vector is shown in Figure 3.11.

Figure 3.11: 2D feature vector data visualization. The numbers denote the vector
dimensions.

In case of the 3D feature vector, both the length and the values are different. This
vector is 138 values long. The values of the distances and the widths are expressed in
millimeters. The structure of the 3D feature vector is visualized in Figure 3.12.

Figure 3.12: 3D feature vector data visualization. The numbers denote the vector
dimensions.

Both vectors use only the good features. From all the features available after the feature
extraction, only the ones that have a good separability are used. The so-called good features
are selected according to the analysis described in Section 4.1.

3.5.1 Matching methods

Many methods to compute similarity or dissimilarity of two vectors have been proposed
in the past. One of the possible solutions is to use some distance measure. When using
a distance measure, all the components of the feature vectors should be expressed in the
same units and they should have a similar range. Otherwise, the components having the
highest values would dominate the final distance and the matching would most probably
not have a good performance.

In this work, two different solutions for the feature matching are available and it can be
always chosen which one to apply. The first solution, probably the simplest one, is using
separate matching of the 2D and 3D feature vectors with simple distance measure followed
by the matching score fusion. The second approach works again with both the 2D and 3D
feature vectors, however it applies metric learning in order to learn a transformation that
converts the feature data into a better space for the comparison. Both are described in the
following subsections.

37

Separate 2D and 3D feature matching using simple distance measure

In case of the separate 2D and 3D feature vectors comparison, different distance mea-
sures can be considered. The simplest and well known distance measure is the Euclidean
distance[2]. There are however more sophisticated distance measures like the Hamming
distance[2], the Mahalanobis distance[2], the Manhattan distance[2] and many more. For
the purpose of both 2D and 3D feature vector comparison, the Mahalanobis distance is
used.

The Mahalanobis distance is given by

d (x, y) =

√
(x− y)T S−1 (x− y) (3.6)

where x and y are the two compared feature vectors, S is the covariance matrix of the
features.

Typically, the full covariance matrix S is approximated by a diagonal-only matrix. That
actually degrades the Mahalanobis distance to so-called normalized Euclidean distance. The
covariance matrix is in this case used to assign a weight to every component of the feature
vectors according to how valuable information is carried in the particular components. The
weights are computed using the analysis of the testing data described later in Section 4.1.

2D and 3D match score fusion

It is required to compare the 2D and 3D feature vectors separately. This arises from the
fact that the comparison of the values stored in the 2D and 3D feature vectors gives totally
different ranges of the matching scores. Thus, those scores cannot be merged together
directly by just summing them up.

There are many methods for the match score fusion that have been proposed for the
multimodal biometric systems in the past. In this solution, methods based on the score
normalization using fixed training set were chosen. As stated in [17], in order to get a good
normalization scheme, the estimates of the location and scale parameters of the match score
distribution must be robust and efficient. The robustness represents the insensitivity to the
presence of the outliers. The efficiency is the proximity of the obtained estimates to the
optimal estimates when the distribution of the data is known.

There are many methods for the score normalization that have different properties.
For this work, three different score normalization techniques were evaluated. Those are
namely the Min-max normalization technique[17], Z-score normalization technique[17] and
the Median and MAD normalization[17]. After the evaluation described in more detail
later in Section 4.1.4, the Median and MAD normalization technique represented by
Equation 3.7 was chosen.

nsi =
si −med

MAD
(3.7)

In the Equation 3.7, nsi is the normalized score of input sample i, si is the original score of
input sample i, med is the median value of the scores of all the training samples and MAD
is so-called median absolute deviation. The equation was described more in Section 2.3.

After the score normalization process, both scores can be summed up to get the final
match score. In order to do that, weighted sum expressed by the following equation

ms = w2D · ns2D + w3D · ns3D (3.8)

38

where w2D and w3D are the weights of the 2D and 3D matching scores respectively and
ns2D and ns3D are the normalized matching scores of the 2D and 3D matcher respectively,
is used. Both scores are assigned different weights according to how well they perform on
the evaluation dataset. The process of the weight estimation is further described in Section
4.1.

Metric learning based matching

Apart from the simple distance computation, metric learning performs the necessary nor-
malization of the values internally. Therefore, even if the features do not have the same
ranges of values and not even the same units, they can be directly compared by first trans-
forming those features into a space that is better for the comparison and then computing
the distance.

In order to be able to transform the features into another space, the data transformation
matrix has to be estimated. This is the point where the metric learning comes into play.
In order to compute the transformation matrix, a set of training samples is provided and
the supervised LMNN method described earlier in Section 2.3 is used.

To compute the distance, the Equation 3.6 described in the previous section was used.
In this case, the covariance matrix S represents the transformation matrix trained by using
the metric learning.

The transformation matrix is trained separately for the 2D feature vector and the 3D
feature vector. Thus the distance computation represented by Equation 3.6 is done twice,
separately for 2D and for 3D feature vectors. The final score is then the lower of the 2D
and 3D matching scores as described by Equation 3.9.

dist (x, y)final = min (dist (x, y)2D ,dist (x, y)3D) (3.9)

As presented later in Section 4.1.6, this supervised metric learning approach generally
provides much better results than the simple weighting and distance computation, and
therefore, it is used by default.

39

Chapter 4

Experiments and results

In this chapter, experiments that were done in order to evaluate the created solution are
documented and their results are presented. At the beginning the tools that were used are
mentioned. Afterwards, the experiments themselves are described.

The experiments can be basically divided into two groups. The first group are exper-
iments done using a smaller database. Those are done in order to evaluate the selected
feature vectors and get some parameters that can be incorporated into the system in order
to increase its performance. The second group on the other hand contains experiments
done on a bigger database, which are done in order to evaluate the overall performance of
the system on a more reliable set of data, while keeping the parameters obtained during
the previous experiments already incorporated into the system.

This chapter is further divided into two main sections according to the pattern men-
tioned in the previous article. Therefore the first section provides information about how
the parameters used in the system were estimated. The latter section provides details on
the overall performance of the created system.

4.1 System parameters estimation

As already mentioned at the beginning of this chapter, small database is enough for the
parameters estimation. In this case, small database means 25 people with ten samples for
each one of them.

There are several parameters that have to be estimated in order to get a good per-
formance of the final system. The following subsections are devoted to the description of
estimation of the particular parameters.

4.1.1 Features intraclass variability testing

One of the very important things that has to be tested is the stability of the selected
features. First of all, the features have to be extracted from the input images and put into
the feature vectors. Those feature vectors are saved into a file that was described in Section
C.

This evaluation has to be done separately for 2D and 3D feature vectors for the following
simple reason. The 2D feature extraction is done using 2D images and extracted distances
are in units of pixels. On the other hand, 3D feature extraction is done using the 3D point
cloud that is in millimetres.

40

To perform the evaluation, an approach using the statistical variance of the feature
vector components is chosen. The statistical variance of a set of values is computed using
the following equation

var(x) =
1

n

n∑
i=1

(xi − µ)2 (4.1)

where x is the set of numbers and µ is the mean value of the set. It expresses how much
are the values spread from the mean value of that set. Therefore the variance values of the
components of the feature vector directly correspond to the stability of those components.
The lower the variance for a particular component is, the more stable that component is.

The variances, however, are not obtained by computing the variance separately for each
component of the vector. They are rather extracted from the covariance matrix. All the
vectors are put into a matrix and then covariance matrix is computed. On the diagonal,
the covariance matrix contains the variances for the feature vector components.

The covariance matrix is visualized as a 2D plot in Figure 4.1(a) for the 2D feature
vector, where blue, yellow and red means low, medium and high variance respectively. The
darker the color is, the higher the number is. For better visualization, the diagonal of that
covariance matrix is shown separately in Figure 4.1(b). The same plots are shown in Figure
4.2(a) and 4.2(b) for the 3D feature vector.

Features

F
ea

tu
re

s

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Features

In
tr

ac
la

ss
 v

ar
ia

nc
e

[p
x]

finger lengths (1 − 5)
index widths (6 − 13)
middle widths (14 − 21)
ring widths (22 − 29)
little widths (30 − 37)
wrist width (38)
wrist valleys dists. (39 − 41)

(b)

Figure 4.1: Intraclass variance for 2D feature vector: (a) Covariance matrix; (b)
Covariance matrix diagonal.

In case of the 2D feature vector, the first components are finger lengths, then it comes
to finger widths and the end of the vector represents wrist distances. Thus it can be easily
deduced from the Figure 4.1(a) that most stable features are the finger widths and the least
stable ones are the wrist distances.

For the 3D feature vector, the first components are finger widths and then the distances
between finger segment axis and the finger surface. Therefore the most stable components
are the axis-surface distances, while the less stable ones are finger widths.

However the intraclass variability is not the only important property of the features.
Before the final decision, which features are good and which are bad, was made, interclass
variability was also tested. This is described in the following subsection.

41

Features

F
ea

tu
re

s

20 40 60 80 100 120

20

40

60

80

100

120

(a)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Features

In
tr

ac
la

ss
 v

ar
ia

nc
e

[m
m

]

index widths (1 − 12)
middle widths (13−24)
ring widths (25 − 36)
little widths (37 − 48)
index axis−surf. dist. (49 − 78)
middle axis−surf. dist. (79 − 108)
ring axis−surf. dist. (109 − 138)

(b)

Figure 4.2: Intraclass variance for 3D feature vector: (a) Covariance matrix; (b)
Covariance matrix diagonal.

4.1.2 Features interclass variability testing

Another important thing of the extracted features that has to be tested is how much does
the feature change for input samples from different individuals. As in case of the intraclass
variability testing, feature vectors are created first and saved in the file described earlier in
Appendix C.

The evaluation has been done again separately for the 2D feature vectors and the 3D
feature vectors for the same reason that was described in the previous section.

To measure how much the value of a particular feature changes for samples from different
individuals as well as for the previous test, statistical variance was used . Also here, the
statistical variance directly corresponds to the ability of the feature to differentiate between
multiple individuals. However, in this case, the meaning is opposite than in the previous
section. That means, the higher the variance is, the higher the value of that particular
feature is.

Statistical variances for each component of the feature vector are again obtained using
covariance matrix by following the same approach that was described in the previous section.

For the 2D feature vector, the covariance matrix is visualized in Figure 4.3(a). The
coloring of the plots is the same as in the previous section. The separated diagonal that
contains the variances is shown in Figure 4.3(b). Those plots for the 3D features are shown
in the two figures above, namely Figure 4.4(a) and 4.4(b).

As said already in the previous section, in case of the 2D feature vector, the first
components are finger lengths, then it comes to finger widths and the end of the vector
represents wrist distances. Considering what was just said, the most distinctive features
can be seen in the Figure 4.3(a), in this case finger lengths and wrist distances.

The 3D feature vector is composed from different features than the 2D one. First
components are finger widths and then the axis-surface distances. As it is visualized in
Figure 4.4(a), the most distinctive components are the finger widths, while the axis-surface
distances are the less distinctive ones.

At this point, the intraclass variabilities as well as the interclass variabilities are known,

42

Features

F
ea

tu
re

s

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a)

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

Features

In
te

rc
la

ss
 v

ar
ia

nc
e

[p
x]

finger lengths (1 − 5)
index widths (6 − 13)
middle widths (14 − 21)
ring widths (22 − 29)
little widths (30 − 37)
wrist width (38)
wrist valleys dists. (39 − 41)

(b)

Figure 4.3: Interclass variance for 2D feature vector: (a) Covariance matrix; (b)
Covariance matrix diagonal.

Features

F
ea

tu
re

s

20 40 60 80 100 120

20

40

60

80

100

120

(a)

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6
x 10

−3

Features

In
te

rc
la

ss
 v

ar
ia

nc
e

[m
m

]

index widths (1 − 12)
middle widths (13 − 24)
ring widths (25 − 36)
little widths (37 − 48)
index axis−surf. dist. (49 − 78)
middle axis−surf. dist. (79 − 108)
ring axis−surf. dist. (109 − 138)

(b)

Figure 4.4: Interclass variance for 3D feature vector: (a) Covariance matrix; (b)
Covariance matrix diagonal.

and therefore they can be analyzed together. This is described in the following section.

4.1.3 Evaluation of components of feature vector

Using both the intraclass variability and the interclass variability information, which were
obtained by applying the methods described in the previous two sections, the overall sepa-
rability can be computed for each of the feature vector components.

Separability is a term that was in this case chosen to describe how good each particular
component of the feature vector is. Two properties that are desired for all features were
mentioned in the previous two sections. Those are namely low intraclass variability, which
guarantees good stability of the feature, and high interclass variability, which describes

43

the ability of the feature to differentiate between samples from different users. Taking
those facts into account, the separability of a feature vector component is defined using the
following equation

sep =
varinterclass
varintraclass

, (4.2)

where varintraclass is the variance of a feature computed from multiple samples of the same
class described in Subsection 4.1.1, varinterclass is the variance of a feature computed from
multiple samples all from different classes, as described in Subsection 4.1.2 and sep is the
separability value.

Using the Equation 4.2, and knowing the separability for each component of the feature
vector, the features that performed really badly were excluded so that they do not decrease
the final matching score.

After the feature vector components were filtered and only the good features left, a
weight value was assigned to each feature according to how high separability it has. The
weight corresponds to the separability value. In order to keep the weights around 1.0,
the separability for each feature is divided by the mean separability computed for all the
features. Therefore, the weights are computed simply using the equation

weight =
sep
µsep

(4.3)

where sep describes the separability value for a particular feature and µsep is the mean
separability computed from separabilities of all the features.

The following Table 4.1 shows some interesting examples of the intraclass variabilities,
the interclass variabilities and the resulting weights. It can be seen that the finger lengths
have good ability to distinguish between different classes however they are also very un-
stable. On the other hand, finger widths does not have such a good ability to distinguish
between different classes but on the other hand they are very stable. Therefore, all the
features shown below in the table provide valuable information and they are only weighted
according to how much information they carry.

Table 4.1: Examples of variance evaluation results and weight computation results.

Value index f. middle f. f. width 1 f. width 2 wrist 1 wrist 2

varinterclass 398.80 283.77 9.14 9.17 172.82 218.56
varintraclass 16.99 11.43 1.96 1.46 16.30 18.27
weight 2.34 2.48 0.46 0.62 1.05 1.19

4.1.4 Biometric fusion using score normalization

As already explained in Section 3.5.1, the fusion is done using score normalization approach.
In order to obtain high performance, several methods were chosen and their results were
compared to find the most suitable one.

All the methods are basically based on estimation of some parameters that are then
used for the normalization of the matching score. Those parameters are by default never
known and therefore a training set of matching scores, which they can be trained on, has
to be available. This set should contain both genuine and impostor scores and it should
represent the possible distribution of the matching scores as well as possible.

44

For the purpose of this evaluation, the small database was used. This database, as
already said earlier, contains 25 users with ten samples per each user. From those ten
samples, first four samples are used to create the user template feature vector and the
remaining six are used for the testing. Thus there are seven feature vectors for each user
in the end. In order to obtain as many scores as possible, both genuine and impostor, each
testing feature vector is compared with the template feature vectors from all users. This
way there are in total 3,675 scores; where 147 scores are genuine and 3,528 are impostor.

The estimation of the parameters has to be done separately for 2D and 3D feature vectors
since they are not directly comparable, which is the reason why the whole normalization
process is done.

Min-max normalization

The method called min-max normalization relies on the knowledge of the smin and smax

parameters, which represent the minimal and the maximal score obtained from a set of
matching scores respectively.

The set of scores described at the beginning of this section was used. All the scores are
saved as one vector and therefore the parameters were computed using very basic Matlab
functions as

smin = min(scores) (4.4)

smax = max(scores) (4.5)

where scores is a set of matching scores.
Table 4.2 shows the results of the recognition using this method evaluated on the small

database of 25 people. As you can see from the table, for the small database, this method
has shown the worst performance of all three tested methods. Moreover, the min-max
method is not even robust.

Z-score normalization

Another solution is to use the so called Z-score normalization. In this case, normalization
is based on two parameters, namely µ that describe the mean value of the matching score
set and σ, which represents the statistical standard deviation of the matching scores.

Again, the set of scores is saved as one vector and can be easily processed using Matlab
to get the desired parameters using the following functions

µ = mean(scores) (4.6)

σ = std(scores) (4.7)

where scores is a set of matching scores, µ is the mean score value and σ represents the
standard deviation of the score values.

The results of recognition using Z-score normalization are shown in Table 4.2. It can be
seen that the performance is better in comparison to the min-max method. However the
problem is that this method does not guarantee the same numerical range for the normalized
scores of the different systems. Moreover, the distribution of the set of scores is preserved
only if it is Gaussian. As well as Min-max normalization, the method is efficient, but not
robust.

45

Median and MAD normalization

Last of the methods evaluated in this text is the Median and MAD normalization. This
technique is based on computation of scores, which stands for Median Absolute Deviation,
and estimation of scores parameter, which is the median of the set of scores. Those two
parameters were obtained in Matlab using the following two lines

med = median(scores) (4.8)

MAD = median(abs(scores−med)) (4.9)

where scores is a set of matching scores. Results of the recognition using this approach
are shown in Table 4.2. This method is insensitive to the presence of outliers, however in
comparison to the Z-score normalization, its efficiency is low. Also, the distribution of the
data has to be Gaussian, otherwise the scores and scores parameters used by this method
represent the properties of the dataset very poorly.

But still, as you can see from the Table 4.2, this method gives the best results on the
testing dataset in overall and therefore it is the one being used in this solution.

Table 4.2: Recognition performance using different score normalization methods. Min
score and max score are minimum and maximum matching scores respectively. The Error
is the number of wrongly recognized samples on the test dataset using simply the lowest
distance based classification and EER is the equal error rate computed from the results on
the testing dataset.

Method min score max score Error EER

Min-max 0.00 6.74 1.36% 2.69%
Z-score -3.28 33.53 1.36% 2.72%

Median and MAD -5.29 57.50 0.68% 2.69%

4.1.5 Transformation by applying metric learning

From what was shown in the previous section, one can see that using score normalization
methods provides acceptable performance of the resulting system. Using the Median and
MAD score normalization method, the results are quite good, however errorneous of the
system on the testing set is not the only criteria, it is also very important that the genuine
and impostor scores are well separable so that a good decision threshold can be chosen.
As it is presented later in Subsection 4.1.6, the separability using the score normalization
methods is not always very good.

Therefore, there were attempts to come up with a different solution to the fusion of 2D
and 3D biometric recognition. The strive was to get better results and thus a supervised
learning method for distance computation was chosen. Namely, it is the LMNN metric
learning method, which was explained earlier in Section 2.3.

The approach is based on using a transformation matrix that has to be trained on a
training dataset. The training dataset was chosen as a subset of the small database and it
contains only 12 users. For the training, four samples of each user from the subset are used,
therefore in total it is 48 samples for the training purposes. The learning was done using

46

existing code from prof. Weinberger[20] for LMNN metric learning in Matlab as already
mentioned in Section C.

To be able to compare the LMNN metric learning approach to some other approach
that does transformation of the data, PCA method was used. The comparison is shown
below in Table 4.3.

The evaluation is done again on the whole small database of 25 people, separately
for 2D and 3D biometric features. However, in this case, there is no need to weight the
components of the feature vectors since using this method, the weighting is done internally
by the trained transformation.

In the real world applications, it is however very important to be able to enroll new
users into the database continuously throughout the system lifetime. In such cases, it
is not possible to train the transformation matrix on all the users in the database. The
transformation matrix is trained on provided training dataset that does not contain all the
users since they can be enrolled anytime in the future. Therefore the transformation matrix
is used also with the new unknown users, which it was not trained on. As already said,
the transformation was trained only on a small subset of the testing data. Therefore the
results shown in Table 4.3 also prove that even if the transformation matrix is not trained
using all the data, it performs well and therefore it can be used also in the systems, where
the database is being extended continuously during the system lifetime.

Table 4.3: Recognition performance using metric learning approach. Min score and max
score are minimum and maximum genuine matching scores respectively. The Error is the
number of wrongly recognized samples on the test dataset using simply the lowest distance
based classification and EER is the equal error rate computed from the results on the
testing dataset.

Method Features min score max score Error EER

PCA 2D + 3D 0.03 5.55 5.47% 5.13%
LMNN 2D 0.20 169.54 2.05% 2.06%
LMNN 3D 1.14 172.31 4.10% 4.70%
LMNN 2D + 3D 0.20 154.14 0.68% 2.04%

4.1.6 Decision threshold estimation

Decision threshold is one of the most important things when it comes to biometric system.
It defines how the system evaluates the computed matching scores that it gets from the
matcher. To have a good performance of the system, the threshold has to be set appro-
priately according to the current requirements of the application. The requirements may
change with different applications and therefore there is not a single threshold that would
always be the best one.

In case of this work, the goal was to estimate a decision threshold that balances the
FAR and FRR values, which is the most commonly used criteria. The threshold is usually
being estimated using the ROC or DET curves that were described in Section 2.4. The
following two subsections describe the score estimation in more detail.

47

Score distribution histograms

Before actually plotting the ROC curves, the obtained matching scores were visualized using
a histogram. For both genuine and impostor scores, a histogram of 100 bins was created
to visualize the score distribution. The histograms of genuine and impostor scores were
in the end put together to emphasize the overlapping of the genuine and impostor score
distributions. By analysis of this overlapping, the proper decision threshold can be found.

The histograms created for each of the tested methods are shown in the Figures 4.7
and 4.6. First of the figures shows the histograms using metric learning approach. The
second figure shows the histograms for the different score normalization methods. In each
histogram, blue colored distribution are the genuine scores and the red colored distribution
are the impostor scores.

With a closer look at the histograms in Figure 4.6 and 4.7, one can clearly see that
the score distributions of the genuine and impostor scores have a big overlap and therefore
selecting a decision threshold that would guarantee perfect performance in means of number
of mistakes in the recognition process is not very well possible.

Apart from that, by analyzing histograms in Figure 4.6, it is obvious that metric learning
approach improves the separability of the score distributions . The results will never be
ideal. That means the scores cannot be separated without making any mistakes. However,
the decision threshold can be still set so that the performance of the system is very high.

ROC curve based threshold selection

Usually it is not very suitable to estimate the decision threshold from the score distribution
histogram. The histogram is a good visualization to see the overlapping of the distributions,
however in order to estimate the precise decision threshold, it is much better to plot the
ROC curve and get the threshold value by its analysis.

As already said in Section 2.4, in order to balance the FAR and FRR values, the aim
is to select such a decision threshold that corresponds to the top-left most point on the
ROC curve. However, the manual analysis of the ROC curve is not the best and not
even the easiest way to get the desired threshold value and therefore Matlab was used and
the threshold was estimated automatically. Extraction of such a threshold can be easily
implemented in Matlab. Plots of the generated ROC curves are shown in the Figure 4.5
above. The coloring is explained in the legend attached to each graph. As you can see from
the ROC curves, the metric learning approach performs better than the score normalization
methods in case the combination of 2D and 3D features is used.

48

0 0.02 0.04 0.06 0.08 0.1

0.88

0.9

0.92

0.94

0.96

0.98

1

FAR

1
−

 F
R

R

LMNN 2D + 3D
LMNN 2D
LMNN 3D
Median and MAD 2D + 3D
Min−Max 2D + 3D
Z−score 2D + 3D

Figure 4.5: ROC curves of the system using different fusion methods.

Figure 4.6: Histograms of genuine and impostor distribution overlapping for metric
learning approach.

49

(a)

(b)

(c)

Figure 4.7: Histograms of genuine and impostor distribution overlapping for different
score normalization methods (a) Min-max normalization; (b) Z-score normalization; (c)
Median and MAD normalization.

50

The solution will never be perfect, i.e. the EER will never be 0. In such a case that
perfect results might even indicate that the system is most probably overfitted on the train-
ing data set. To make sure this is avoided, the final transformation matrix is created using
metric learning in combination with cross validation on the small database, i.e. repeating
the training process by selection different samples for the training for each user from the
small database.

It might seem from Table 4.3 and Figure 4.5 that the combination of 2D + 3D does
not improve the overall performance as much as expected. Therefore more tests were done
in order to prove that it is not so and that the 3D features provide important information
that can improve the performance significantly. This test is described in the following
subsection.

4.1.7 Testing on the problematic users subset

Even if the overall performance of the system is good, its sensitivity to the problems during
the feature extraction can be high and performance in such particular cases might get much
worse.

Using multiple feature vectors can decrease the impact of those problems. In this
solution, both 2D and 3D geometric information are extracted from the hand surface and
two feature vectors are created. Matching scores obtained from the separate comparison
of the 2D and 3D feature vectors are in the end combined as described earlier in Section
3.5.1. This fusion of the 2D and 3D geometry recognition helps in case there are so-called
problematic users in the dataset, i.e. users whose hand are more difficult to process.

For the purpose of performance evaluation in such a special case, new dataset was
selected as a subset of the big database of 100 users. This dataset contains mainly users
whose samples are more difficult to process in means of feature extraction. The special
dataset contains 17 users with 173 samples in total. The first four samples of each user are
used for the creation of the template, the other samples are used for the testing.

Examples of the typical problems during the feature extraction process are shown in
Figure 4.8, 4.9 and 4.10.

Figure 4.8: Errorneous finger valley extraction due to the middle and ring finger being
too close together in combination with a noise during the acquisition.

51

Figure 4.9: Errorneous finger valley distance computation due to the hand being too
close to some surface under it. That caused problems with foreground and background
separation which has this particular effect.

Figure 4.10: Errorneous finger widths computation due to the noise during the image
acquisition.

The performance was tested again for all the methods presented earlier. The results are
shown in Figure 4.11 below.

As you can clearly see from the ROC curves in Figure 4.11 and Table 4.4, the score
normalization methods are the average on this dataset. On the other hand, the LMNN
metric learning approach using only 2D information has very bad performance, which is
caused by the problems during the feature extraction. The standalone 2D matching is very
sensitive to the problems during the feature detection process. However, this problem is
balanced by the standalone 3D feature matching, which performs much better in case of
problematic users dataset. As an outcome, the fusion of 2D and 3D information using the
LMNN metric learning gives very good final performance of the system.

52

Table 4.4: Performance of the recognition on the problematic users dataset. The EER is
the equal error rate computed from the results on the testing dataset.

Method Features EER

Z-score 2D + 3D 3.83%
Median and MAD 2D + 3D 3.77%

Min-Max 2D + 3D 4.00%
LMNN 2D 5.36%
LMNN 3D 3.77%
LMNN 2D + 3D 2.83%

0 0.02 0.04 0.06 0.08 0.1 0.12

0.88

0.9

0.92

0.94

0.96

0.98

1

FAR

1
−

 F
R

R

LMNN 2D + 3D
LMNN 2D
LMNN 3D
Median and MAD 2D + 3D
Min−Max 2D + 3D
Z−score 2D + 3D

Figure 4.11: ROC curves of the system using different fusion methods on the problematic
users dataset.

The point is, that in this case, using the 3D features improved the overall performance
a lot and therefore it demonstrates the importance of using not only 2D, but also the 3D
information.

53

4.2 Performance evaluation

After all the parameters were estimated and set, performance evaluation of the system was
done. In order to do reliable performance evaluation, it is required to have a bigger set of
testing data, i.e. database of at least approximately 100 users.

However, the small database used mainly in the previous section was used also for one
performance test. This test is described in the Subsection 4.2.2.

First of all, a short summary of the experience with the data acquisition is presented in
the following subsection.

4.2.1 Data acquisition experience

A lot of data were collected in order to create a bigger testing dataset of approximately
100 users. During this process, many different individuals interacted with the system and
their experience with data acquisition could have been observed. From the observations,
the following important rules that should be satisfied by the data acquisition process were
imposed:

• the user should be informed how to interact with the device;

• the hand should be presented in a way that the position of the hand feels natural for
the user;

• the device should be mounted in the height between chest and abdomen of the user.

Since the system described in this text is completely new, the first rule is quite obvious.
In general, new users have never seen a device like that in the past and they have no idea
how to interact with it. It is therefore needed to show them how to put the hand in front of
the sensor and what information to follow on the screen. However, if the users are informed,
it was observed that the device is very easy to use and in general the users did not have
any problems presenting their hands.

(a) (b)

Figure 4.12: Possible setups for the hand acquisition: (a) Hand vertical placement
(poorly accepted by the users); (b) Hand horizontal placement (well accepted by the users).

The second rule was raised in the early phase of the development. At first, the hand
was supposed to be presented vertically, with the fingers pointing up and hand palm facing
the user as shown in Figure 4.12(a). However, when non-experienced people were asked to
place their hands in front of the camera properly, it took them very long time to do so, and

54

moreover, for some of them it was nearly impossible. Thus, a different approach was carried
out. The camera faces the ground and the hand is supposed to be placed horizontally below
the camera with fingers pointing away from the user and the hand palm facing the ground
(see Figure 4.12(b)). In this case, having the camera placed in the proper height, it was
observed that the usage is very simple and feels natural for the users.

The last rule is directly derived from the previous article and the need to have the
camera placed in the proper height. If the camera is placed too low, the users tend to lean
the whole hand down and that creates a problem with the correct hand positioning. Similar
problem arises when the camera is placed too high, the users tend to lean the whole hand
up and that again creates a problem with the correct hand positioning. From multiple
observations of users interacting with the camera, it was observed that the proper height
is approximately between the abdomen and chest of a user.

4.2.2 Observing hand under various transformations

In this solution, hand is captured in the air, without being placed on some surface. As
presented in Section 3.2, there are some constraints for the hand positioning. There is
even so-called positioning loop that leads the user to the correct positioning of their hand.
However in order to be able to use the system without serious issues, these constraints
cannot be very limiting. Therefore it can happen that the hand is sometimes not placed
really parallely with the camera, but a bit rotated to one of the sides.

(a) (b) (c) (d)

Figure 4.13: Hand observed under different transformations: (a) Bent fingers; (b) Leant
down; (c) Leant right; (d) Leant left.

In order to evaluate behavior of the system under such circumstances, one individual
was captured with multiple different rotations of the hand in front of the camera. This
individual was also previously captured for the small database and therefore the system
has been trained to recognize his hand from the images where it is placed properly. Then,
the images with different rotations are presented to the system and the recognition is
performed.

As already said, there are several different rotations of the hand. All the introduced
rotations are listed below. Examples of all the transformations are also visualized in Figure
4.13.

• bent fingers - hand is placed more or less parallely, but the fingers are bent;

• leant down - hand is leant in a way that the fingers are pointing a bit down;

55

• leant left - hand is leant to the left;

• leant right - hand is leant to the right.

Particularly, two levels of transformations were experimented with. The first group are
transformations, which are still in tolerance of the introduced positioning system or which
are on the edge of the tolerance. The second group of transformations are the same types,
however this time the hand is transformed more and the positioning constraints are not
satisfied anymore.

The first group of transformations was captured in order to confirm that the positioning
tolerance is reasonable, i.e. it is still possible to position the hand easily but also the small
transformations that are allowed are handled properly by the system.

The second group of transformations was obtained so that it can be observed what
would happen in case the positioning tolerance would be increased.

The captured input images were added into the small database and recognition was
performed. The histogram in Figure 4.14 shows the distribution of the genuine and impostor
scores for the smaller transformations. Having a closer look at the histogram, one may see
that there are some genuine scores far above the decision threshold. However, in this case,
the decision threshold can be still set so that the genuine and impostor scores are separated
in an acceptable way. One way or the other, the overall performance of the system is
significantly decreased.

Figure 4.14: Histograms of genuine and impostor distribution overlapping for the
smaller transformations dataset.

Histogram in Figure 4.15 shows the genuine and impostor score distributions in case
the samples with bigger transformations are inserted into the database. By observing the
histogram, it is clear that with bigger transformations of the hand in the input images,
the distributions are not so separable anymore and performance of the system is decreased
dramatically.

56

Figure 4.15: Histograms of genuine and impostor distribution overlapping for the bigger
transformations dataset.

The ROC curves in Figure 4.16 show how the performance of the system is decreased
from smaller to the bigger transformations. It is clearly visible that the system has serious
issues when it comes to processing of samples that contain bigger transformations of the
hand.

For the smaller transformations dataset, the EER is 8.47%, for the bigger transforma-
tions, the EER is 9.38%. It may seem that the difference is not so big. This is however not
true. It is obvious from the ROC curve that by trying to decrease the FAR for the bigger
transformations dataset, the FRR would be increased dramatically.

To show which transformations are the most problematic, a few samples were chosen
from the smaller transformations dataset and they are shown in Table 4.5. As you can see,
the most problematic case is when the hand is leant left. On the other hand, when the
fingers are bent just a bit, the system can deal with it as well as with the cases of leaning
down or leaning right.

It can be clearly observed that the transformations of the hand make the recognition
process very unstable. In case of the bigger transformations dataset, the recognition of-
ten does not give a correct result. However, even if the result is correct, in many cases the
matching score is too high and it would probably be over the decision threshold. This means
that the system would fail to recognize the sample in the end. In case of smaller transfor-
mations dataset, the system is able to deal with the changes quite well, but the scores are
getting closer to the decision threshold, which indicates that the system is becoming unsure
about its decisions.

This experiment has shown that in the current implementation, it is very important to
pay attention to the positioning of the hand in order to keep the good performance of the
system. Therefore, the positioning phase and the process called positioning loop introduced
in Section B.2 are very important.

57

0 0.02 0.04 0.06 0.08 0.1 0.12
0.75

0.8

0.85

0.9

0.95

1

FAR

1
−

 F
R

R

Bigger transformations
Smaller transformations
No transformations

Figure 4.16: ROC curve obtained from the datasets that contain smaller and bigger
transformations.

Table 4.5: Results of the recognition with input samples under different transformations.
All the input samples are from class 1. All the results of the recognition are shown in the
format

”
class (score)“.

Transformation sample 1 sample 2 sample 3 sample 4

bent fingers 1 (6.56) 1 (2.45) 1 (2.48) 1 (2.73)
leant left 1 (6.56) 10 (7.47) 10 (8.09) 1 (9.02)

leant right 1 (8.72) 1 (2.56) 1 (2.34) 1 (2.77)

58

4.2.3 Classification according to gender

To experiment with general capabilities of the system, a special test was performed. The
aim of the test was to recognize the gender of an individual according to the geometry of
his/her hand.

(a)

0 0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

1

FAR

1
−

 F
R

R

LMNN 2D + 3D
LMNN 2D
LMNN 3D
Median and MAD 2D + 3D

(b)

Figure 4.17: Results of the classification according to the gender (a) Histogram of the
positive and negative score distributions; (b) ROC curves.

A part of the bigger testing database that was used for evaluation of the system per-
formance contains also information about the gender of the captured individual. This set
is 52 users out of the total size of 100.

Naturally, the gender can be either male of female, nothing else, and therefore in this
case the problem degrades to only two class classification.

To observe the differences between the hand geometry of the male and female individ-

59

uals, variability was computed in order to show which features differ the most between a
male and a female individual. The computed variabilities for each feature are visualized in
Figure 4.18.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

Features

In
te

rc
la

ss
 v

ar
ia

nc
e

/ I
nt

ra
cl

as
s

va
ria

nc
e

[p
x]

finger lengths (1 − 5)
index widths (6 − 13)
middle widths (14 − 21)
ring widths (22 − 29)
little widths (30 − 37)
wrist width (38)
wrist valleys dists. (39 − 41)

(a)

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

20

Features

In
te

rc
la

ss
 v

ar
ia

nc
e

/ I
nt

ra
cl

as
s

va
ria

nc
e

[m
m

]

index widths (1 − 12)
middle widths (13 − 24)
ring widths (25 − 36)
little widths (37 − 48)
index axis−surf. dist. (49 − 78)
middle axis−surf. dist. (79 − 108)
ring axis−surf. dist. (109 − 138)

(b)

Figure 4.18: Variabilities between male and female classes: (a) 2D features variabilities;
(b) 3D features variabilities.

The classification was again done using all the available approaches, which means either
score normalization methods (only the best performing one - Median and MAD normaliza-
tion) or the metric learning approach. The male and female classes are quite well separable
as the histogram in Figure 4.17(a) demonstrates. Performance of the classification according
to the gender is represented by the ROC curve in Figure 4.17(b).

As you can see, paradoxly, in case of classification according to the gender, the LMNN
approach performs worse than the Median and MAD score normalization approach, which
is the best available for the classification according to the gender.

60

4.2.4 Testing with bigger database

The final performance evaluation on the bigger database is again done for both available
approaches, i.e. the score normalization methods and metric learning.

In case the score normalization methods are used, the performance was expected to be
lower than using the metric learning. This fact was proved and it is demonstrated in the
following subsection. Therefore the score normalization approaches were used only for the
verification purposes.

On the other hand, using metric learning, the performance was expected to be very
good. The results are demonstrated in the Subsection 4.2.4 and they show that the metric
learning approach is sufficiently good to be used for both identification and verification
purposes on the database of approximately 100 users.

Weighting of features using Mahalanobis distance

As already said, the testing was done using also the score normalization methods. However,
apart from the previous evaluation, histogram of only the best performing method from
the previous evaluation is shown.

The previous tests have proven that the best performing out of the three evaluated
score normalization methods was the Median and MAD normalization method. Thus, this
method’s histogram was chosen and visualized in Figure 4.19.

Figure 4.19: Histogram of the genuine and impostor matching score distribution
obtained from the evaluation on the big database using the Median and MAD score nor-
malization method.

The ROC curves of all the three score normalization methods, representing their per-
formance can be seen in Figure 4.21. The Table 4.6 at the end of this section shows FAR
and FRR values and also their decision threshold setups.

It can be easily seen from the Table 4.6 that for a bigger dataset, the score normalization
approaches can still provide satisfying results. Having the EER value about 2.2% makes
the system usable for the real world applications. However, the evaluation of the score
normalization approaches was added just for completeness and the bad performance was

61

Table 4.6: Results of the recognition on the big dataset using all three score normalization
approaches.

Normalization method Features EER

Min-max 2D + 3D 2.11%
Median and MAD 2D + 3D 2.05%

Z-score 2D + 3D 2.02%

expected. This was not proved in the end. Even though they perform worse than LMNN
metric learning approach in general, they still perform considerably well. This fact was
noticed already during experiments on the small dataset. However, in order to improve the
performance of the system, another approach that provides much better results was carried
out. This approach is evaluated in the next subsection.

Metric learning approach

As already said, the score normalization methods were not expected to be good enough to
handle bigger datasets and therefore another approach was carried out. It is the metric
learning based approach described earlier in Section 3.5.

Figure 4.20: Histogram of the genuine and impostor matching score distribution
obtained from the evaluation on the big database using the LMNN metric learning.

Using a training set that contains only a few users from the whole dataset, it was proved
that it is sufficient to train the transformation matrix on a small subset of the whole dataset
and then do the recognition on a much bigger dataset with a lot of unknown users that the
transformation matrix has never been trained for. This way, the metric learning approach
is able to handle bigger dataset without the need to retrain the transformation matrix every
time the dataset changes.

The distribution of the genuine and impostor matching scores obtained from the eval-

62

uation on the bigger dataset can be seen in Figure 4.20. From the overlapping of the
histograms, it is clear that the distributions are not well separable anymore. However, a
decision threshold can be still chosen so that the EER is reasonably low.

The overall performance of the system is again visualized using the ROC curve in Figure
4.21. The ROC curve shows that the system is performing very well.

The EER values and the corresponding decision threshold are then shown in Table 4.7.
Those results are shown for standalone 2D recognition, standalone 3D recognition and also
for the fusion of both 2D and 3D.

Table 4.7: Results of the recognition on the big dataset using LMNN metric learning
approach.

Features EER

2D 2.45%
3D 2.68%

2D + 3D 1.42%

0 0.01 0.02 0.03 0.04 0.05 0.06

0.94

0.95

0.96

0.97

0.98

0.99

1

FAR

1
−

 F
R

R

LMNN 2D + 3D
LMNN 2D
LMNN 3D
Median and MAD 2D + 3D
Min−Max 2D + 3D
Z−score 2D + 3D

Figure 4.21: ROC curves of the system using six different matching methods.

As you can see in Table 4.7, the fusion of 2D and 3D biometric features provides the best
results. The EER value for system that uses only 2D hand geometry is approximately 2.6%.
System that uses only 3D hand geometry performs a bit worse, the EER is approximately
2.9%. However, by combining the 2D and the 3D hand geometry, the performance of the
system is increased by approximately 45% and the resulting EER is approximately 1.42%.
This confirms that what was proved earlier in Section 4.1.7 applies even for the bigger
dataset (using also 3D information increases the final performance significantly).

In this section, it was also proved that the LMNN metric learning approach further
improves the already good results obtained by using the score normalization methods.
By examining the Figure 4.19 and 4.20, you can notice that using LMNN metric learning

63

approach, the gap between the distributions increases a bit which shows that the separation
ability using LMNN metric learning approach is really better.

4.2.5 Comparison to the existing research

To compare the performance of the system to the existing research that had been done in
the past, a list of different proposed methods mentioned in [9] from 2009 was taken. This
list contains different methods that process either 2D, 3D or both 2D and 3D information
that can be obtained from the hand surface.

The Table 4.8 inspired by [9] lists all the approaches that were compared with the one
presented in this text. The first two approaches described further in [8] and [7] consider
only 2D geometric information and they require the user to put the hand on a specific
surface. The latter four approaches explained in [21], [15], [13] and [9] use both 2D and 3D
geometric information and the last approach does not even impose any special requirements
regarding the hand placement. However all the mentioned approaches either do not use the
3D information at all or they consider an expensive very precise 3D camera to be used.

Before consulting the actual results, it has to be mentioned that such a comparison
cannot be taken as the direct reliable comparison of the methods listed in the table below.
This is due to the fact that the results for each method were obtained using different
datasets with different sizes. Therefore, this comparison is just approximate and it cannot
be taken officially since it might be a bit misleading.

Table 4.8: Comparison of the existing approaches to the novel approach proposed in this
article.

Author Type No. of Templates FAR FRR Database size

Jain and Duta[7] 2D 1 - 14 2% 3.5% 53
Jain et al.[8] 2D 1 (Avg.) 2% 15% 50

Woodard and Flynn[21] 2D + 3D 1 (Avg.) 5.5% 5.5% 177
Malassiotis et al.[15] 2D + 3D 4 3.6% 3.6% 73

Kumar et al.[13] 2D + 3D 5 5.3% 8.2% 100
Kanhangad et al.[9] 2D + 3D 5 2.6% 2.6% 177

Our solution 2D + 3D 1 (Avg.) 1.42% 1.42% 100

The solution presented in this text tries to combine the best out of the mentioned
approaches, therefore it does not require the user to put the hand on some surface and it
uses both 2D and 3D geometric information. Moreover, this solution uses mainstream 3D
camera that should be available for very affordable price later this year.

The actual comparison of the performances of the different solutions is summarized by
the Table 4.8 using the FAR and FRR values.

As it can be easily observed in Table 4.8, the approach proposed in this text performs
comparably well, in most cases even better than the previous research. The results seem
to be even a bit better than in the approach proposed by [9], however, as it was already
mentioned, the results cannot be directly compared due to the fact that the evaluation of
each method used its own testing dataset and moreover the datasets have different sizes.

64

Chapter 5

Conclusion

In this text, a novel biometric system for recognition according to the hand geometry was
proposed. Together with already well known 2D geometric information, which is used
in industrial devices, e.g. HandKey II, etc., a 3D camera is used to obtain also the 3D
geometric information and use it in order to improve the performance of the system. The
system reuses some of the principles that were already carried out by the previous research
in the field of the 3D hand based biometric systems. However, apart from the previous
research, this solution tends to use hardware and methods that are applicable in the real
world applications.

Therefore, instead of preferirng precision of the acquisition device, its price is of far
higher importance. The higher inaccuracy of the acquisition device is compensated by so-
called positioning loop that was created to restrict the position of the hand in front of the
sensor. Also, in order to use the device properly, the users have to be instructed how to do
so.

Speaking about the processing methods, namely feature extraction and matching, this
solution is based on existing methods. The 2D measurements are done reusing the ap-
proaches proposed in the past. On the other hand, 3D measurements are based on the
existing research, however particular changes were done in order to be applicable also for
the less precise 3D cameras. Both types of information, i.e. 2D and 3D, are in the end
combined using either score normalization methods or metric learning.

For testing, a database of 1033 samples from 100 individuals was collected. In order
to evaluate the system behavior and estimate the important parameters, a few subsets of
this database were created and particular tests were done. For the training of the LMNN
metric learning transformation matrix, again, a small training subset of the whole database
was used.

First of all, it was shown which features are valuable and which are not. The less
valuable features were removed from the final 2D and 3D feature vectors. Afterwards,
evaluation of both score normalization methods and metric learning approach was done on
the subset of the whole database first. It has shown that both approaches are usable and
provide acceptable results. However, using metric learning approach, the performance of
the system can be improved in comparison to the score normalization methods.

Another important thing that was analyzed is the sensitivity of the system to the dif-
ferent transformations of the hand under the sensor. Those transformations are partially
avoided by having already mentioned positioning loop, but still, some transformations may
occur. The analysis has shown that when the transformations are present in the samples,
the system is becoming more unsure about the results, however if the transformations are

65

low enough, the system still gives acceptable results. When the transformations are bigger,
usually on the edge of the correct positioning, the system starts to get confused. One way
or the other, these transformations should be avoided as much as possible.

In the end, the evaluation of the system on the whole database was done. The param-
eters of the system were trained on a small training subset of the whole database. In case
of score normalization methods, only fusion of 2D + 3D hand geometric information was
evaluated. In this case, the EER is approximately 2.15%, which is generally very good.
Using the metric learning approach, the performance was evaluated for three particular
cases, 2D only, 3D only and fusion of 2D + 3D information. In case of 2D only, the EER is
approximately 2.5%, in case of 3D only, approximately 2.7%. However, fusion of both 2D
+ 3D geometric information using metric learning gives the EER of approximately 1.42%,
which is very good result.

The performance of the system is comparable to the previously done research, as shown
in the last subsection of this text. However, as mentioned there, all the approaches were
evaluated using different datasets, so the comparison is only illustrative and not really
reliable.

This solution gives a very good basis for further development of the 2D + 3D hand
geometry based biometric systems for industrial applications. However, as it can be seen,
there are still many flaws and questions. Therefore, future work on the project will include
further evaluation of the selected features and improvement of their extraction in order to
make it more robust. Also, another fusion possibilities will be analyzed. Another task will
be to make the system more robust to the effects of different hand transformations as well
as improving the positioning loop. Different sensors as alternatives to the one currently
used will be tested as well.

All the planned work, experiments and improvements will be done with the goal to
make the device a real commercial product that can be put onto the market and create
another alternative to the already existing biometric systems.

66

Bibliography

[1] I. Csiszar and P. C. Shields. Information theory and statistics: A tutorial.
Foundations and Trends in Communications and Information Theory, 1(4):417–528,
2004. ISSN 1567-2328.

[2] M. Drahansky, F. Orsag, and et al. Biometrie. Computer Press a.s., 2011.
ISBN 978-80-254-8979-6.

[3] Python Software Foundation. Python. https://www.python.org/.

[4] M. Gelautz, M. Bleyer, L. He, and N. Brosch. Evaluation and design of energy
functions for global stereo matching.
https://www.ims.tuwien.ac.at/projects/stereo-matching/.

[5] Applied Informatics Software Engineering GmbH. Poco c++ libraries.
http://pocoproject.org/.

[6] R. I. Hartley and P. Sturm. Triangulation. CVIU - Computer Vision and Image
Understanding, 68(2):146–157, 1997. ISSN 1077-3142.

[7] A. K. Jain and N. Duta. Deformable matching of hand shapes for verification. ICIP -
International Conference on Image Processing, pages 857–861, 1999. ISSN 1522-4880.

[8] A. K. Jain, A. Ross, and S. Pankanti. A prototype hand geometry-based verification
system. Proceedings of AVBPA, Washington DC, pages 166–171, 1999.

[9] V. Kanhangad, A. Kumar, and D. Zhang. Combining 2d and 3d hand geometry
features for biometric verification. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, pages 39–44,
2009.

[10] V. Kanhangad, A. Kumar, and D. Zhang. Contactless and pose invariant biometric
identification using hand surface. IEEE Transactions On Image Processing,
20(5):1415–1423, 2011. ISSN 1057-7149.

[11] R. Klette, K. Schluns, and A. Koschan. Computer Vision: Three-Dimensional Data
from Images. Springer, 1998. ISBN 9813083719.

[12] B. Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning,
5(4):287–364, 2013. ISSN 1935-8245.

[13] A. Kumar, D. C. M. Wong, H. C. Shen, , and A. K. Jain. Personal verification using
palmprint and hand geometry biometric. Proceedings of AVBPA, Guildford, U.K,
pages 668–675, 2003.

67

https://www.python.org/
https://www.ims.tuwien.ac.at/projects/stereo-matching/
http://pocoproject.org/

[14] R. Laganičre. OpenCV 2 Computer Vision Application Programming Cookbook.
Packt Publishing, Ltd., 2011. ISBN 978-1-849513-24-1.

[15] S. Malassiotis, N. Aifanti, and M. G. Strintzis. Personal authentication using 3-d
finger geometry. IEEE Trans. Info. Forensics and Security, 1:12–21, 2006.
ISSN 1556-6013.

[16] A. A. Puntambekar. Advanced Data Structures. Technical Publications, 2007.
ISBN 978-8-184-31269-0.

[17] A. A. Ross, K. Nandakumar, and A. K. Jain. Handbook of Multibiometrics. Springer,
2006. ISBN 978-0-387-22296-7.

[18] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China,
May 9-13 2011.

[19] Inc. The MathWorks. Matlab. http://www.mathworks.com/products/matlab/.

[20] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest
neighbor classification. The Journal of Machine Learning Research, 10:207–244, 2009.

[21] D. L. Woodard and P. J. Flynn. Finger surface as a biometric identifier. CVIU,
100:357–384, 2005. ISSN 1077-3142.

[22] Y. Xu and D. Aliaga. High-resolution modeling of moving and deforming objects
using sparse geometric and dense photometric measurements. IEEE Conference on
Computer Vision and Pattern Recognition, pages 1237–1244, 2010.

[23] S. Zhang and S.-T. Yau. High-speed three-dimensional shape measurement system
using a modified two-plus-one phase-shifting algorithm. Opt. Eng., 46(11), 2007.

68

http://www.mathworks.com/products/matlab/

Appendix A

Capture 3D output files

The structure of the PLY file that stores the hand vertices is shown below. Each vertex
consists only of three floating point values that are its x-, y- and z-coordinates.

p ly
format a s c i i 1 . 0
element ver tex 96367 ; Number o f v e r t i c e s in the model
property f l o a t x ; Vertex e lements d e f i n i t i o n
property f l o a t y
property f l o a t z
end header ; End o f ply header
0 .997179 2.72276 6.49693 ; Vertex data
1 .0066 2.70994 6.46569
. . .

Model point cloud vertices are also stored in the YAML format, which allows for easy
serialization and deserialization of the data. The structure of the YAML file follows.

%YAML: 1 . 0
v e r t i c e s : ! ! opencv−matrix

rows : 480
c o l s : 640
dt : ”3 f ”
data : [0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,

. . .
0 . , 0 .]

Elements of the YAML file are easy to understand. It stores an OpenCV matrix in the
element called vertices. The matrix is described by number of rows, number of columns,
data type of each element and then by array of the matrix data itself.

69

Appendix B

Implementation details

This appendix presents important implementation details that are worth to be mentioned
to the reader.

B.1 Used libraries and SDKs

To avoid spending a lot of time reinventing the wheel, well known computer vision and image
processing libraries were used wherever possible. In order to have a support for events,
memory management, etc. some other libraries were used as well. This section continues
with a short description of each library that was used and provides some references to get
more information.

OpenCV

OpenCV is an abbreviation for the Open Source Computer Vision that is a powerful li-
brary for programming computer vision and image processing applications. It consists of
several modules and provides functions for image transformations and segmentation, feature
detection, camera calibration and much more.

In this project, OpenCV is generally used for working with matrices and vectors as well
as for all the image processing that has to be done.

For more information about OpenCV, please refer to [14].

Poco

The library called Poco is one of the choices when it comes to making a cross-compatible
network or Internet applications using the C++ programming language. It is also a good
choice when designing applications targeted for an embedded device. It provides classes for
dynamic typing, memory management, events and notifications, etc.

This solution takes advantage of Poco in order to ease the memory management by
using smart pointers. It also uses the Poco notification system.

More information about Poco can be found at [5].

PCL

PCL stands for Point Cloud Library that is a standalone open source API for 2D or 3D
image and point cloud processing. It is distributed under a BSD license. The API is cross-
platform and was successfully used on Linux, MacOS, Windows, Android and iOS operating

70

systems. PCL is composed of many smaller modules that can be compiled independently,
which makes it possible to use PCL also on platforms with limited resources.

PCL is used in this project for processing 3D hand point cloud data, in order to compute
normals and curvatures, etc.

In order to get more detailed information about PCL, please visit [18].

B.2 Data acquisition

As mentioned in Section 3.1, this project uses the prototype of Intel RealSense camera that
is currently being developed by Intel. In order to be able to operate with the camera, the
internal Intel RealSense library is used. This library allows to obtain both color and depth
streams from the 3D camera. It also provides support for projection operations to get a 3D
point cloud out of the depth map image.

Intel RealSense 3D camera streaming

The camera depth streaming provides the IR intensity image and the depth map image. It
is run with the following parameters:

• resolution 640× 480;

• 60 frames per second;

• IR intensity format UINT8 (range 0 - 255);

• depth map format UINT16 (range 0 - 65535).

Using the projection functions provided by the Intel RealSense (IVCAM) library, a point
cloud composed of the floating point 3D vertex coordinates is obtained from the depth map.

With every frame in the depth stream, a notification that contains the SensorOutput
structure data is sent. The SensorOutput structure is defined as follows:

s t r u c t SensorOutput {
cv : : Mat depth ; // UINT16 2D depth map image
cv : : Mat i n t e n s i t y ; // UINT8 2D IR i n t e n s i t y image
cv : : Mat v e r t i c e s ; // FLOAT 3D v e r t i c e s

} ;

Camera stream processing

As noted in the previous paragraph, with every new frame in the camera stream, a notifi-
cation that contains the sensor output data is sent. There is an input processor that has
an observer registered for that notification. With every notification it receives, it analyzes
the input data carried by the notification and processes it accordingly. The communication
between the IVCAM stream provider and the input processor is illustrated in Figure B.1.

The input processor implements so-called “positioning loop” that takes the input images
and processes them in order to analyze the hand position in the image. According to the
current hand position it either indicates that the hand is positioned correctly or it leads
the user how to correct the hand position.

Before the hand position can be analyzed, some points of interest have to be detected
first. For the purpose of position check, first the hand contour, the approximate position of

71

Figure B.1: Connection between IVCAM stream provider and input processor via
notification center.

the hand centroid and the fingertips are found. Methods used to get those information are
the same as the ones used during the feature extraction process. For more details about
these methods, please see Section B.4.

Having the required points of interest, the hand position for the current frame is ana-
lyzed. The diagram in Figure B.2 illustrates how the analysis is done.

B.3 Hand features representation

A few structures were designed in the application in order to describe the human hand
surface using the points of interest described earlier in Section 3.3.

These structures can be basically divided into two groups. The first group consists of
structures that encapsulates the positions of the interest points. The second group stores
the actual features, which means the distances computed during the analysis of the hand
surface. Both groups are described in more detail in the following two subsections.

Hand surface interest points

The hand surface is described by a set of structures that contain x- and y- coordinates of
the interest points as well as indices of those points in the hand contour array.

The three basic structures are FingerTip structure, FingerValleys structure and Wrist-
Line structure and they are described next.

The first of the structures, the FingerTip structure is used to describe the fingertip of
a particular finger. As you can see in the UML diagram in Figure B.3, it consists of two
components. The pt component is a 2D point that represents the fingertip 2D coordinates
and the index is the index of the fingertip point in the hand contour array.

The second of the three basic structures is the FingerValleys structure. It describes
the finger valleys corresponding to a particular finger and its UML diagram is shown in
Figure B.4. In the diagram, the pts is an array of two elements that contains 2D coordinates
of the right and the left finger valley point of a particular finger, the indices is an array of
integers that contains indices of the finger valley points in the hand contour array and the
center point is the middle point of the line that is connecting the two finger valley points.

The WristLine structure is the last one of the three basic structures and it is shown
as an UML diagram in Figure B.5. The wrist line is described by two points on the hand
wrist that represents the starting and the ending point of the line. The 2D coordinates of
those points are represented by ptLeft and ptRight in the WristLine structure.

72

Figure B.2: The positioning loop is used to lead the user towards the proper hand
position.

Figure B.3: UML diagram of the FingerTip structure.

To describe all the fingers on the hand surface, two more structures are created using
the previously defined structures. Those are namely the Finger structure and the Fingers
structure. Definitions of those structures are described next.

The Finger structure is designed to group all the properties of one finger. The structure
is visualized as UML diagram in Figure B.6. Therefore, the tip component is describing
the fingertip, the valleys component the finger valley points and the axis is the direction
vector of the finger axis.

73

Figure B.4: UML diagram of the FingerValleys structure.

Figure B.5: UML diagram of the WristLine structure.

Figure B.6: UML diagram of the Finger structure.

The Fingers structure is then grouping the Finger structures for all the five fingers of
a hand and its UML diagram is shown in Figure B.7.

Figure B.7: UML diagram of the Fingers structure.

The hand surface is in the end described by taking all the previously defined structures
and creating one final structure that contains all the feature points. This structure is called
Hand and it is defined by the UML diagram in Figure B.8. In the UML diagram, the
centroid is the centroid point of the hand surface.

Figure B.8: UML diagram of the Hand structure.

74

During each input processing, the structures introduced above are taken and filled
with information. The output of feature detection is therefore the Hand structure, which
describes the whole hand surface using the important features.

However, for the purpose of matching, such a description is not sufficient and therefore,
another set of structures was defined. Those are described in the following subsection.

Hand surface distances

During the feature extraction process, the structures defined in the previous subsection are
taken and particular distances are computed on the hand surface. In order to store those
distances in some readable objects, a few structures for representation of the distances were
defined.

One structure was defined for the representation of the finger lengths and therefore it is
called FingerLengths structure. Its definition is represented by the UML in Figure B.9.

Figure B.9: UML diagram of the FingerLengths structure.

Another structure called FingerWidths was defined in order to represent the finger
widths measured over the hand surface at a particular position on the fingers. It is described
as UML in Figure B.10. The valleyDist is the distance between finger valley points, w is an
array of eight measured width values, the w3D is the array of the cross sectional segments,
i.e. the widths, measured on the 3D model. The last component, the axisSurfaceDist 2D
array is an array of the five distances from the surface to the cross sectional segment finger
axis measured on the last six cross sectional segments of the finger.

Figure B.10: UML diagram of the FingerWidths structure.

The next one is the Widths structure, which was defined in order to encapsulate the
FingerWidths structures for all five fingers. It is represented by the UML in Figure B.11.

The last structure is called Wrist and it is used to store the distances related to the
wrist of the hand. It is described by the UML diagram shown in Figure B.12, where the
wristWidth is the width of the wrist of the hand and wristV alley is array of few measured
distances between particular wrist points and finger valley points.

All the four structures introduced above are encapsulated in one more structure called
Hand that stores all the distances computed on the hand surface. This structure also

75

Figure B.11: UML diagram of the Widths structure.

Figure B.12: UML diagram of the Wrist structure.

provides methods to create one dimensional feature vectors that consist of all the computed
distances. It is represented as UML in Figure B.13. Description of particular elements of
the feature vector can be found in Section 3.5.

Figure B.13: UML diagram of the Hand structure for the distances.

B.4 Details on feature extraction

Detection and extraction of the hand features consist of a few steps that have to be done
in a particular order.

First of all, the hand contour is extracted. Based on the hand contour information,
the hand centroid point is detected. Using the hand contour and the hand centroid point,
the fingertip points are found. Next, based on the fingertip position knowledge, the finger
valley points can be computed. In the end, the wrist line position is estimated based on
the already obtained information.

All the methods created for the purpose of feature detection take advantage of the
OpenCV and PCL libraries mentioned earlier in Section B.1.

There are few parameters that are set manually and influence the whole feature extrac-
tion process. The UML representing Setup structure that encapsulates those parameters
can be found in the Figure B.14 below. The depthThresh is the depth value threshold

76

Figure B.14: UML diagram of the Setup structure that stores the parameters of the
system.

for the foreground - background separation, resolution is the resolution of the 2D input
images. The fingertipNbhood stands for the diameter of the fingertip neighborhood area
in pixels. The parameter centroidNbhoodAxes holds the lengths of the axes of the elliptical
hand centroid neighborhood in the units of pixels. The point centroidShift represents the
shift of the centroid point along the x- and y-axes.

Those parameters are set by the user before the processing starts. It is very important
to set them properly, otherwise the feature detection process may fail.

Fingertip detection

As an input, the fingertip detection algorithm receives the hand contour and the hand
centroid point. At the beginning, the hand contour is approximated by convex hull using
OpenCV function cv::convexHull(. . .). Next, fingertip candidates are filtered using the
centroid point and they get assigned an angle that approximately represents their curvature.
Those points are segmented into multiple groups using OpenCV function cv::partition(. . .).
In each cluster, the point with the lowest x-coordinate is taken as the final candidate
representing the cluster. If there are more than five clusters after the segmentation, the
representatives of the five clusters with the lowest x-coordinates are taken as the fingertips.
In the end, a check against point with a better curvature is done in close proximity of each
fingertip. If there is such a point, it is exchanged and set to be the fingertip instead. The
whole process is represented by the Algorithm 1.

When all the five fingertips are found, their indices in the hand contour array are
extracted and they are saved together with the fingertip coordinates.

Finger valleys detection

In addition to the hand contour and the hand centroid point, in case of the finger valleys
detection algorithm, the fingertip points are on the input as well. For each two fingertip
points, the hand contour area between them is traversed and point with the highest x-
coordinate is taken as a finger valley candidate, if it lies within a defined distance from the
hand centroid point. This way, four main finger valley points are detected. As described in
Section 3.4, based on the four main finger valley points, another three finger valley points
are obtained to get the full description of all the fingers. The finger valley detection process
is described by the Algorithm 2.

As well as in the case of fingertips, after all the finger valleys are found, their indices in
the hand contour array are computed too and they are both stored.

77

Algorithm 1 Fingertip detection
1: FindConvexHull()
2: for all points in convexHull do
3: if point.x ¡ handCentroid.x then
4: CurvatureEstimate(point)
5: if curvature big enough then
6: fingertipCandidates.add(point)
7: end if
8: end if
9: end for
10: PartitionIntoClusters(fingertipCandidates)
11: for all clusters do
12: GetPointWithLowestXCoordinate(clusterPoints)
13: fingertips.add(pointWithLowestXCoord)
14: end for
15: for all fingertips do
16: CheckFingertipNeighborhoodCurvatures(fingertipPoint)
17: end for

Algorithm 2 Finger valleys detection
1: for all fingertips do
2: GetContourPointsSegment(fingertip[i], fingertip[i + 1])
3: for all points on contour segment do
4: if point.x ¿ candidate.x then
5: candidate = point
6: end if
7: end for
8: if IsCandidateInRange(candidate, handCentroid) then
9: valleyPoints.add(candidate)
10: end if
11: end for
12: if valleyPoints.size() == 4 then
13: ComputeAdditionalFingerValleys()
14: end if

78

Curvature estimation

A really simple approach was used for the curvature estimation for a given point on the
hand contour surface in order to verify that the point is not lying on a flat part of the
contour.

There is no need for precision in this case. Therefore, for each point with the index i
that the curvature should be computed for, its neighbor points from the left and from the
right with indices i − 30 and i + 30 are taken and two vectors are computed. The first
vector is defined by taking points with the indices i and i − 30, the second one is defined
by the points with the indices i and i+ 30. In the end, the angle between the two vectors
is computed and taken as a value representing the curvature at the point with index i.

3D length computation

Various lengths are computed as the 3D features on the 3D hand model surface. The
computation of a 3D length completely differs from the computation of a length on the 2D
hand contour.

For every point on the hand in the 2D image, its coordinates in the 3D hand model are
known. This way, the 3D lengths are computed for the same segments as the 2D lengths
on the hand contour. In order to compute the 3D length, a line is defined in the 2D image.
For each point on the defined line, its 3D coordinates in the 3D hand model are taken
and distances between the neighbor ones are computed. Those distances are in the end
summed up in order to get the resulting 3D length. This procedure is shortly described by
Algorithm 3.

Algorithm 3 3D length computation
1: DefineLineIn2DImage()
2: Get3DCoordinates(linePoints)
3: finalDistance = 0
4: for all coordinates in linePoints3DCoordinates do
5: dist = ComputeDistance(coordinates[i], coordinates[i + 1])
6: finalDistance = finalDistance + dist
7: end for

B.5 Matching feature vectors

The implementation of the feature matching is very much simplified by taking advantage
of OpenCV support for working with vectors and matrices.

As mentioned in Section B.4, after the feature detection, a structure describing the hand
surface is available. For the purpose of comparison, this structure is converted into the
feature vector. The feature vector is always represented by the OpenCV matrix (cv::Mat),
which has one row and the number of columns corresponds to the number of components
of the feature vector.

Section 3.5 describes different methods for the feature vector comparison. The imple-
mentation of those methods is shortly described below.

79

Mahalanobis distance

One of the possible solutions is that the comparison of the feature vectors is done using the
Mahalanobis distance as said in Section 3.5. The equation for the Mahalanobis distance
computation is easily expressed using the OpenCV matrix arithmetic operations as shown
below.

(fv1 − fv2) · scale · (fv1 − fv2)
T (B.1)

In the computation B.1 above, fv1 and fv2 are two matrices with the size of 1×N and the
scale is an inverted diagonal matrix of size N ×N carrying the feature vector components
weights.

The vector of weights is loaded from a CSV file using the OpenCV ML (Machine Learn-
ing) module that provides easy support for loading matrices stored in the CSV file for-
mat. This vector of weights is then converted into a square diagonal matrix using function
cv::diag. As mentioned in the previous article, the scale matrix is an inverted diagonal ma-
trix. When the matrix is diagonal, it can be easily inverted by just inverting every single
element on the diagonal, which is done in this case.

Basically the same applies when it comes to 2D and 3D matching score fusion. It is
again very easily expressed taking advantage of the OpenCV support for matrix and vector
arithmetic.

Metric learning based transformation

The second solution uses a transformation matrix that was trained using the LMNN metric
learning approach as explained in Section 2.3. The learning process itself was described
in Section 4.1.5. It is assumed that a CSV file, which stores the transformation matrix, is
available. As well as in the previous subsection, the OpenCV ML module was used in order
to load the transformation matrix from the CSV file.

Apart from the first method, in this case the feature vectors are expected to have the
size N × 1. The application by default works with the feature vectors of size 1 × N and
therefore, before the distance computation itself is performed, the vectors are transposed
to get the vector with the required dimensions.

In the end, the distance is computed using the equation shown earlier in Section 3.5.1,
which can be easily implemented with the help of the OpenCV library again. The compu-
tation is shown below.

(fv1 − fv2)
T · transfT · transf · (fv1 − fv2) (B.2)

In the Equation B.2 fv1 and fv2 are the transposed input feature vectors and transf is the
loaded transformation matrix.

80

Appendix C

Used testing tools

When it comes to experiments, it usually means evaluating the same equations many times
with different parameters in order to obtain the best results. For that purpose, it is ideal to
create some scripts that does the evaluation automatically without repeating it manually
every time the parameters are changed.

In case of this project, Python[3] scripting language and Matlab[19] were used. Their
purpose is shortly described in the following two subsections.

Python

During the experiments, a bigger database of users is used for the evaluation of the system.
However, the database of users is provided as a folder structure where each folder contains
images from one person. For the evaluation purposes, it is required to merge all the data
into one folder and label them. This is where Python comes in handy.

The Python scripting language was used mainly for the following two reasons. It pro-
vides good structures for easy data labeling and moreover it has a good module for platform
independent management of files and directories. Using this module, folder structure that
contains the input data is traversed and merged into one folder. During the folder traversal,
data labelling is performed too.

Labeled data are in the end described by four text files. The following list shortly
describes the text files:

• all.txt - contains all samples with their labels. One row corresponds to one sample.
Each row has the format

”
imageNum imageLabel“;

• labels.txt - contains the image labels and corresponding user IDs. One row corre-
sponds to one image label. The row format is

”
imageLabel userID“;

• train.txt - has the same format as all.txt, but includes only samples that were used
for the training;

• test.txt - also has the same format as all.txt, but includes only samples that were
used for the testing.

Matlab

Matlab is the right tool to be used when it comes to statistical data analysis, data visual-
ization, etc.

81

Apart from Python, which was used in order to prepare the input data, Matlab was used
for evaluation of the output data, which are either the extracted features (i.e. distances)
or the matching scores.

It was also used for the metric learning process. For this task, specifically Matlab
implementation of the LMNN by Kilian Q. Weinberger was used. For more information
about the implementation, please refer to [20].

The input data for created Matlab scripts were always stored as a CSV file. List of the
input files for the Matlab evaluation is shown below.

• featureVectors2D.csv - extracted feature vectors for the 2D features. One row
corresponds to one feature vector. Each row has the following format

”
label fvCom-

ponent1 . . . fvComponentN“;

• featureVectors3D.csv -the same as the featureVectors2D.csv, but in this case for
the 3D features;

• scores2D.csv - obtained scores from 2D feature vector comparison for 2D matching
score normalization;

• scores3D.csv -obtained scores from 3D feature vector comparison for 3D matching
score normalization;

• genuine.csv - scores for genuine samples for threshold estimation;

• impostor.csv - scores for impostor samples for threshold estimation.

82

	Introduction
	Hand based biometric systems
	Acquisition devices
	Available methods for 3D data acquisition
	Existing devices

	Human hand as biometric characteristic
	2D geometry
	3D geometry

	Multimodal biometric systems
	Matching score fusion
	Feacture vectors fusion

	Evaluation of biometric systems
	Basic terminology
	Comparison error measures
	Performance visualization

	Industrial systems

	Proposed 3D hand geometry recognition system
	Acquisition device
	Input data acquisition
	Hand biometric features
	Feature extraction
	Feature matching
	Matching methods

	Experiments and results
	System parameters estimation
	Features intraclass variability testing
	Features interclass variability testing
	Evaluation of components of feature vector
	Biometric fusion using score normalization
	Transformation by applying metric learning
	Decision threshold estimation
	Testing on the problematic users subset

	Performance evaluation
	Data acquisition experience
	Observing hand under various transformations
	Classification according to gender
	Testing with bigger database
	Comparison to the existing research

	Conclusion
	Capture 3D output files
	Implementation details
	Used libraries and SDKs
	Data acquisition
	Hand features representation
	Details on feature extraction
	Matching feature vectors

	Used testing tools

