
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SINGLE SIGN-ON WITH OPENID CONNECT
AND KEYCLOAK
JEDNOTNÉ PŘIHLAŠOVÁNÍ POMOCÍ OPENID CONNECT A KEYCLOAK

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MAKSYM KOVAL
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment |||||||||||||||
Institut: Department of Intelligent Systems (DITS) 161250
Student: Koval Maksym
Programme: Information Technology
Title: Cloud-Native Single Sign-On wi th OpenID Connect and Keycloak
Category: Security
Academic year: 2023/24

Assignment:

1. Get familiar with OpenID Connect, an identity layer for the OAuth 2.0 protocol. Focus on different
kinds of clients (public/confidential), different authentication flows, and the scopes and claims
mechanisms.

2. Investigate Keycloak, an open-source identity and access management solution. Focus on the
authorization mechanism of Keycloak.

3. Propose a demo application showcasing various features of Keycloak integrated with OpenID
Connect/OAuth2.

4. Implement a demo application and design a set of tests to evaluate the correctness of your
implementation and perform the testing.

5. Summarize and discuss the best practices discovered while creating the demo applications.

Literature:
• Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749,

October 2012, https://www.rfc-editor.org/info/rfc6749>.
• Sakimura, Nat, et al. "OpenID Connect Core 1.0 incorporating errata set 1, 2014."

Requirements for the semestral defence:
Items 1 to 4

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malinka Kamil, Mgr., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2023
Submission deadline: 16.5.2024
Approval date: 8.4.2024

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.rfc-editor.org/info/rfc6749
https://www.fit.vut.cz/study/theses/

Abstract
This thesis delves into the principles of OAuth 2.0 and OpenID Connect protocols and
explains how they should be implemented in a microservice architecture. Two Angular web
clients and two Spring Boot servers were developed as applications for the demonstration.
The paper also explains how to use Keycloak as an identity provider for the above applica
tions. The result is centralized authentication of all applications as well as implementation
of Single Sign On mechanism in a cloud-native environment.

Abstrakt
Cílem této práce je prozkoumat principy protokolů OAuth 2.0 a OpenID Connect a vysvětlit,
jak by tyto protokoly měly být implementovány v architektuře mikroslužeb. Jako demon
strační aplikace byly navrhnuty dva weboví klienty Angular a dva servery Spring Boot.
Práce také vysvětluje připojení Keycloak jako poskytovatele identit pro výše uvedené ap
likace. Výsledkem je centralizované autentizace všech aplikací a také implementace mech
anismu jednotného přihlašování v cloudovém prostředí.

Keywords
OAuth 1.0, OAuth 2.0, OpenID Connect, Keycloak, Single sign-on, Angular, Spring Boot,
Access Token, ID Token, Authorization, Authentication, Identity

Klíčová slova
OAuth 1.0, OAuth 2.0, OpenID Connect, Keycloak, Jednotné přihlašování, Angular, Spring
Boot, Autorizace, Autentifikace, Identita

Reference
K O V A L , Maksym. Single sign-on with OpenID Connect
and Keycloak. Brno, 2024. Bachelor's thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Mgr. Kamil Malinka, Ph.D.

Rozšířený abstrakt
Počet uživatelů roste, stejně jako počet aplikací a uživatelských účtů v těchto aplikacích.
Systémy jednotného přihlášení s možností využívat účty z jiných aplikací, jako je Google,
Facebook nebo Twitter, si proto nejen získávají zvýšenou potřebu uživatelů, ale stávají
se v dnešním světě standardem. S rozvojem digitálních ekosystémů a zvyšující se potře
bou jednotného uživatelského prostředí napříč aplikacemi se potřeba spolehlivých řešení
jednotného přihlašování stává nezbytnou. Poptávka po mechanismu jednotného přihlášení
a centralizované správě identit roste také mezi velkými a středními společnostmi, protože
každá společnost využívá velké množství nástrojů, služeb a integrací, které zaměstnanec
během pracovního dne používá. V kontextu firem je nutná jasná regulace a přizpůsobení
práv pracovníků, proto se rychlá a jednoduchá autorizace stává nezbytnou. Cílem tohoto
výzkumu je ukázat, jak může integrace OAuth 2.0 a OpenID Connect se správou identit
Keycloak poskytnout bezpečný, rozšiřitelný, efektivní a centralizovaný systém ověřování a
autorizace vhodný pro prostředí nativního cloudu.

Metodika výzkumu zahrnuje srovnávací analýzu autentizačních a autorizačních pro
tokolů založených na tokenech, které jsou podporovány standardy OAuth 2.0 a OpenID
Connect jako standardem pro soudobé systémy. Analyzuje také způsob centralizované
správy identit a způsoby, jak dosáhnout správné implementace systému jednotného přih
lašování v architektuře mikroslužeb. Keycloak byl zkoumán jako komplexní řešení pro
správu identit a přístupu a jeho schopnost zjednodušit nasazení jednotného přihlášení a
zvýšit bezpečnostní opatření.

Po nastudování teoretické části byla vytvořena architektura demonstračního systému,
který zahrnuje dva webové klienty napsané na frameworku Angular, z nichž každý komu
nikuje s vlastním serverem napsaným na frameworku Spring Boot. Weboví klienty byly
nakonfigurovány s autentizačními a autorizačními mechanismy pomocí knihovny 'angular-
oauth2-oidc' a připojeny k systému Keycloak pro správu identit a přístupu. Klienti jsou
schopni přijímat ID tokeny a přístupové tokeny vydané serverem Keycloak a načítat z
nich informace o sezení a uživateli a také ověřovat jejich platnost pomocí ověřování pod
pisů. Rovněž byly napsány dva servery Spring Boot obsahující rozhraní R E S T A P I pro
komunikaci s klienty. Servery jsou schopny kontrolovat platnost přístupových tokenů při
jatých během komunikace s klienty a také získávat informace o autorizaci uživatele. Klienti
i servery, stejně jako server Keycloak, byly spuštěny v cloudovém prostředí s využitím
Minikube jako prostředku pro provoz lokálního clusteru Kubernetes.

Konečným výsledkem práce jsou weboví klienty podporující mechanismus jednotného
přihlašování schopný autentizované interakce s backendovými servery na základě tokenů. V
průběhu práce byly aplikace testovány a jejich zápis byl dokumentován.

Single sign-on with OpenID Connect
and Keycloak

Declaration
I hereby declare that I have prepared this bachelor thesis independently under the supervi
sion of Mr . Kami l Malinka. The supplementary information was provided by Mr . Olivier
Rivat (RedHat). I have listed all the literary sources, publications and other sources, which
were used during the preparation of this thesis.

Maksym Koval
May 16, 2024

Acknowledgements
I would like to thank my supervisor Mr. Kami l Malinka for his support, motivation and
immediate and accurate feedback. I would also like to mention my RedHat supervisor for
this thesis Mr. Olivier Rivat. He helped me in selecting resources, information to be used
in the work and also provided feedback on the written work and motivation.

Contents

1 Introduction 4

2 Overview of Authentication and Authorization Protocols 5
2.1 S A M L 2.0 5
2.2 OAuth 1.0 protocol 6
2.3 OAuth 2.0 protocol 8
2.4 OpenID Connect Protocol 13
2.5 JSON Web Token 14

3 Introduction to Identity Management 17
3.1 Definition 17
3.2 Identity Providers 17
3.3 Single Sign-On 17
3.4 Introduction to Keycloak 18
3.5 Why to use Keycloak? 18
3.6 Distributions of Keycloak 18
3.7 Keycloak Integrations 18
3.8 Social Login 19
3.9 Keycloak Identity Management 19
3.10 Realms 19
3.11 Clients 19
3.12 Keycloak Admin A P I 19
3.13 Conclusion 19

4 Requirements 20
4.1 Functional Requirements 20

5 Design 22
5.1 System Overview 22
5.2 System Use Cases 23
5.3 Functional Architecture 23
5.4 Keycloak Clients and Realm Configuration 24
5.5 Database Design 24

6 Implementation 25
6.1 Used tools and libraries 25
6.2 Identity Provider Setup 26
6.3 Customers Application Server Setup 29

1

6.4 Notes Application Server Setup 32
6.5 Customers Application Client 33
6.6 Notes Application Client 39

7 Testing 41
7.1 User Authentication and Login 41
7.2 User Profile 42
7.3 Single Sign-On 42
7.4 Authorization 42
7.5 Separation of Access Tokens 43
7.6 Cloud Deployment 43

8 Lessons Learned 44
8.1 Technical challenges and solutions 44
8.2 Best Practices Identified 45
8.3 Identity provider selection 45

8.4 Personal and professional growth 45

9 Conclusion 46

Bibliography 47

A Authorization Code Grant with P K C E 49

B Keycloak realm creation 50

C Keycloak client creation 51

D Keycloak mapper creation 52

E Functional Architecture 53

F Notes Application Use Case Diagram 54

G Customers Application Use Case Diagram 55

H User's Profile Page with ID token 56

I Postman Application Screenshot 57

2

List of Figures

2.1 Resource Owner Password Credentials Grant 11
2.2 Client Credentials Grant 12

5.1 System block overview 22
5.2 Keycloak Configuration Diagram 24

7.1 Screenshot of Keycloak login page 41
7.2 Screenshot of user profile page 42
7.3 Screenshot of Customers Application admin page 43

A . l Authorization Code Grant with P K C E diagram 49

B. l Screenshot of Keycloak realm creation 50

C. l Screenshot of Keycloak client creation 51

D. l Screenshot of Keycloak mapper creation 52

E . l Functional Architecture Diagram 53

F . l Notes Application Use Case Diagram 54

G. l Customers Application Use Case Diagram 55

H . l Screenshot of a part of a user's profile page with his ID token 56

I. 1 Screenshot from Postman application with 401 Unauthorized response. . . . 57

3

Chapter 1

Introduction

Accounts, authorization, authentication are an integral part of the modern world of infor
mation technology. A set of data about a user required for his/her identification (authenti
cation) has become an industry standard for web applications. Along with authentication,
a certain person must be granted the right to perform certain actions - authorization. Au
thorization also occurs during the interaction between two web applications. The purpose
of these two basic mechanisms is to provide the user and the application he is using with
protection, immutability, authenticity, integrity, verifiability.

Traditional authentication and authorization methods are cumbersome for users and
difficult to manage for administrators. As the number of users, application usage time, and
user requirements for comfort and security of applications grows, new solutions are needed.
Also, nowadays the number of collaborations and partnerships of different companies is
increasing and the user needs a better solution other than creating an account for each of
them.

For secure authentication, there are protocols such as OAuth 2.0, S A M L 2.0, Kerberos,
OpenID Connect (OIDC). These protocols have different working principles, technology
chains for user authentication and different characteristics such as security, speed, imple
mentation complexity, usability and reliability.

The implementation of this SSO solution aims to enhance user experience by eliminating
multiple logins, improve security through centralized authentication and authorization, and
demonstrate the effectiveness of open source tools such as Keycloak for cloud-based identity
management.

The paper starts with chapter two which is a comprehensive review of key authentication
and authorization protocols that underpin modern security systems, including S A M L 2.0,
OAuth 1.0 and 2.0 Protocols and OpenID Connect Protocol.

Chapter three then delves further into the realm of identity management and detailed
analysis of Keycloak's features.

Chapter four lists the functional requirements that the thesis must fulfill to achieve the
goals of the work, setting the stage for system design and implementation. The remaining
chapters are mandatory for almost every work are Implementation, Testing and Conclusion.

This paper details the development of an Angular client application that uses OIDC
protocol for authentication and OAuth 2.0 for authorization, a Spring Boot server that pro
vides resource security and token validation, and the configuration of Keycloak to manage
user accounts and issue tokens.

This research provides valuable guidance to developers looking to implement secure and
user-friendly SSO solutions for their cloud applications.

4

Chapter 2

Overview of Authentication and
Authorization Protocols

This section will cover basics of the protocols that are used between applications to authen
ticate and authorise user, such as S A M L 2.0, OAuth and OAuth 2.0 and OpenID Connect
based on them. The concept of the OAuth protocol as the basis for OAuth 2.0 and its
extension - OpenID Connect will also be considered.

2.1 S A M L 2.0
The Security Assertion Markup Language (SAML) standard defines an XML-based frame
work for describing and exchanging security information applications. This security infor
mation is expressed in the form of portable S A M L assertions that applications working
across security domain boundaries can trust. The S A M L standard defines precise syntax
and rules for requesting, creating, communicating, and using these S A M L assertions [16].

S A M L consists of building-block components that, when put together, allow a number
of use cases to be supported. The components primarily permit transfer of identity, authen
tication, attribute, and authorization information between autonomous organizations that
have an established trust relationship. The core S A M L specification defines the structure
and content of both assertions and protocol messages used to transfer this information [4].

Key features of S A M L :

• Assertions. The core of S A M L , assertions are X M L statements that assert one or
more statements about a subject (a user). S A M L assertions carry statements about a
principal that an asserting party claims to be true. The valid structure and contents
of an assertion are defined by the S A M L assertion X M L schema.

• Protocols. S A M L defines a set of request-response protocols for securely exchang
ing assertions between parties. Authentication Request Protocol is used by a service
to request authentication from an identity provider. Logout Protocol facilitates the
process of logging out users across multiple systems simultaneously.

• Bindings. These are mechanisms that define how S A M L protocol messages are
transported within SOAP, H T T P , and other protocols. For example HTTP Redirect
Binding that sends S A M L messages through H T T P redirects or HTTP POST Binding
that transmits S A M L messages within the body of an H T T P P O S T request [2].

5

Security mechanisms

S A M L implements several mechanisms to ensure the security of authentication and autho
rization data exchanged between the identity provider and the service.

Encryption Sensitive data in S A M L assertions can be encrypted to prevent unauthorized
access. Typically, the identity provider encrypts the assertion using the service provider's
public key.

Transport-Level Encryption (TSL) S A M L messages are often sent over H T T P S to
ensure encryption during transmission.

Digital Signatures Assertions are signed digitally using the private key of the iden
tity provider to ensure their integrity and authenticity. The service provider verifies this
signature using the corresponding public key.

Summary

S A M L was primarily designed for web-based applications where the exchange of S A M L
messages occurs between the user's browser and web servers. Using various security mech
anisms S A M L ensures the secure exchange of identity information across trusted services.
Using S A M L for public clients, such as mobile applications or single-page applications
(SPAs), presents certain challenges and limitations. It requires handling XML-based S A M L
assertions and responses, which can be heavy and challenging to parse in client-side envi
ronments.

2.2 OAuth 1.0 protocol

OAuth (Open Authorization) protocol was originally created by a small community of web
developers from a variety of websites and other Internet services who wanted to solve the
common problem of enabling delegated access to protected resources. The resulting OAuth
protocol was stabilized at version 1.0 in October 2007, and revised in June 2009.

OAuth is an open standard for access delegation. In a simple words: user is granting
application A access his own information from application B without sharing his credentials
from B with application A . In general this protocol offers secure method for Internet users
to allow third-party access to their resources without exposing their credentials [20].

G

Specification

Accordingly to the R F C 5849 specification1, OAuth 1.0 allows making authenticated H T T P
requests using token-based exchange. This protocol defines five terms that participate in
this exhange:

• Client - H T T P client that is capable of making OAuth-authenticated requests.

• Server - an H T T P server capable of accepting OAuth-authenticated requests cre
dentials - Credentials are a pair of a unique identifier and a matching shared secret.
OAuth defines three classes of credentials: client, temporary, and token, used to iden
tify and authenticate the client making the request, the authorization request, and
the access grant, respectively.

• Protected Resource - A n access-restricted resource that can be obtained from the
server using an OAuth-authenticated request.

• Token - A unique identifier issued by the server and used by the client to associate
authenticated requests with the resource owner whose authorization is requested or
has been obtained by the client. Tokens have a matching shared-secret that is used
by the client to establish its ownership of the token, and its authority to represent
the resource owner [5].

Security

The security mechanisms proposed by the OAuth 1.0 standard:

Digital Signature OAuth 1.0 requires digital signing of all requests, using a shared secret
client key and token key. The H M A C - S H A 1 signature algorithm is used to ensure that data
has not been altered.

Nonce and Timestamp Nonce, a random number generated by the client for each
request, prevents requests from being reused. The timestamp ensures the relevance of the
request, reducing the risk of a replay attack.

Transport-Level Encryption (TSL) As with other authorization protocols, a secure
H T T P S connection must be used to protect data and prevent man-in-the-middle attacks.

Summary

OAuth 1.0 was the first version of the OAuth protocol, designed to give third-party appli
cations limited access to a user's resources without giving them a password. The protocol
depended on the signature format, which made it difficult to adapt to different services.
Authentication and authorization are not separated, leading to confusion in their manage
ment as well as the possibility of token transfer to a third party. Despite its limitations,
OAuth 1.0 played an important role in the development of authorization standards, but its
use today is not recommended due to the availability of more modern and reliable protocols.

x

https: //www.rfc-editor.org/inf o/rf c5849

7

http://www.rfc-editor.org/inf

2.3 OAuth 2.0 protocol

Because of some limitations and complexities in OAuth 1.0 there was a need to develop a
new and more flexible protocol OAuth 2.0 that preserves OAuth 1.0 motifs. Second version
simplifies client development and provides different authorization flows for different clients
such as web applications, living room devices and mobile phones. The OAuth 2.0 protocol
is not backward compatible with OAuth 1.0.
Improvements include:

• Flexibility - OAuth 2.0 supports multiple flows (authorization code, implicit, re
source owner credentials, and client credentials), that makes it come in handy for
different types of applications.

• Security - Obtaining of the access tokens was standartized, making it more adaptive
for modern security.

Security

OAuth 2.0 includes several security mechanisms to protect data and provide secure delega
tion of access. It retains the security mechanisms used in OAuth 1.0, but also adds several
new ones.

• P K C E (Proof of Key for Code Exchange) - security enhancement for providing
an authorization code that mitigates code interception attacks. The client generates
a secret (code verifier) and a hashed version (code challenge), providing both to prove
their identity.

• Scopes - Scopes limit the level of access provided by the token. The client requests
only the necessary access scopes, following the principle of least privilege.

• Verifying token validity - Resource servers can check token validity via introspec
tion endpoints.

• Audience Restriction - Access tokens should be audience-restricted, ensuring that
they are only used by the intended resource server.

• Flows - The exchange of tokens between a service and an authorization server can
occur under different scenarios. The choice of scenario depends on the security level
of the client as well as the authorization server's level of trust to the client.

Client types

OAuth 2.0 has two types of clients: confidential and public. The client type depends on the
client's ability to keep credentials secure.

Confidential clients are able to handle their registered client secret in safe. Client
implemented on a secure server with restricted access to the client credentials and can
securely authenticate user with the authorization server .
Public clients are not able to handle their registered client secret/user's credentials in safe.
Examples of public clients are mobile or single-page applications, JavaScript-based web
applications, and native application [6].

8

Accordingly to the R F C 67492 this specification has been designed for the following
client profiles:

• Web Application - A web application is a confidential client running on a web
server. Resource owners access the client via an H T M L user interface rendered in a
user-agent on the device used by the resource owner.

• User-Agent-Based Application - A user-agent-based application is a public client
in which the client code is downloaded from a web server and executes within a user-
agent (e.g., web browser) on the device used by the resource owner. Protocol data
and credentials are easily accessible (and often visible) to the resource owner.

• Native Application - A native application is a public client installed and executed
on the device used by the resource owner. Protocol data and credentials are acces
sible to the resource owner. It is assumed that any client authentication credentials
included in the application can be extracted.

Token types

OAuth 2.0 standard uses three types of tokens. They are used in communication between
the client, server and authorization server.

• Authorization code grant - The client will get the authorization code from the
authorization server during 'Authorization Code Grant' flow. Client exchanges an
authorization code for an access token then.

• Access token - String that is being used by client to make requests to the protected
resource server.

• Refresh token - String that is being used by client to get a new access token.

Authorization code The authorization code does not contain any information and can
not be decrypted by the client. It is generated by the authorization server and sent in
response to the client after the user has allowed the client access. The generation of the
code depends entirely on the authorization server, in most cases it is a random string of
ASCII characters that the server stores in its database.

Access token

A n access token is a type of credentials that is issued by the server in response to an
authorization code and must be used to access protected resources. A n access token may
have an expiration time that is controlled by the authorization server. When the token
expires, the client can request the next one using a refresh token 2.3. Access tokens may
be either bearer tokens or sender-constrained tokens. A Bearer Token is an opaque string,
not intended to have any meaning to clients using it [11].

Sender-constrained tokens require the OAuth client to prove possession of a private key
in some way in order to use the access token, such that the access token by itself would not
be usable [10].

2

https: //www.rfc-editor.org/inf o/rf c6749

9

http://www.rfc-editor.org/inf

Refresh token

A refresh token is very similar to an access token. The only difference between them is the
purpose - the refresh token is used to get a new access token. Accordingly, when the access
token expires, the client should not repeat the authorization procedure again, but use the
refresh token and get a new access token.

Flows

To configure our client and server applications, we need to consider the types of flows and
select the one we need.

Authorization Code Grant with Proof K e y for Code Exchange

One of the Flows that can be implemented is the Authorization Code Grant Flow. It is
well suited for confidential clients. But within the scope of this paper we will consider
its improvement - Authorization Code Grant with Proof Key for Code Exchange (P K C E) .
This flow is suitable for public clients and can be used in an insecure environment.

The PKCE-enhanced Authorization Code Flow introduces a secret created by the calling
application that can be verified by the authorization server; this secret is called the Code
Verifier. Additionally, the calling app creates a transform value of the Code Verifier called
the Code Challenge and sends this value over H T T P S to retrieve an Authorization Code.
This way, a malicious attacker can only intercept the Authorization Code, and they cannot
exchange it for a token without the Code Verifier.

Client should be capable of interacting with the resource owner's user-agent and receiv
ing incoming requests from authorization server [8]. Authorization Code Grant diagram
can be found in appendix A.

The following are the steps involved in the Authorization Code Grant with P K C E flow:

1. User proceeds to login.

2. The client creates a cryptographically-random code_verif ier and from this gener
ates a code_challenge.

3. Client redirects the user to the identity provider (authorization server) along with the
code_challenge.

4. Identity provider redirects user to the login and authorization prompt.

5. The user authenticates using one of the configured login options and may see a consent
page listing the permissions identity provider will give to the application.

6. Identity provider stores the code_challenge and redirects the user back to the ap
plication with an authorization code, which is good for one use.

7. Clint sends this code and the code_verif ier (created in step 2) to the Identity
Provider.

8. Identity Provider verifies the code_challenge and code_verif ier.

9. Identity provider responds with access token (and optionally, a refresh token).

10. Client can use the access token to call an A P I to access information about the user.

10

The authorization code grant with P K C E is one of the most common and secure flows
in OAuth2.0 protocol specification.

Resource Owner Password Credentials Grant

The resource owner password credentials grant type can be applied in cases where resource
owner trusts the client and can give him his username and password [6].

Resource
Owner

Client
Application ,

Identity
Provider

Resource
Server

1. Click login link

2. Username + Password

4. Access Token

3.
Validate

Username
and

Password

5. Request user data + Access Token

6. Response

Figure 2 .1: Resource Owner Password Credentials Grant.

1. User proceeds to login.

2. Client requests an access token from the authorization server using user's credentials.

3. Authorization server authenticates the client, validates user's credentials.

4. Authorization server sends access (and optionally, a refresh token) back to the client.

5. Client can use the access token to call an A P I to access information about the user.

6. Resource Server responds with requested data.

Client Credentials Grant

The client credential grant flow can be used when the client obtains a token using its
own credentials. Credentials in this flow is a secret that must be known to both the
authentication server and the client.

1. The client authenticates with the authorization server and requests an access token
from the token endpoint.

2. Authorization server authenticates the client.

3. Authorization server issues an access token.

4. Client can use the access token to call an A P I to access information about the user.

5. Resource Server responds with requested data.

11

Client
Application

Identity
Provider

Resource
Server

1. Client Credentials

2. Validate Client
Credentials

3. Access Token

4. Request user data + Access Token

5. Response

Figure 2.2: Client Credentials Grant.

Claims

In case an Access Token is encoded as JSON Web Tokens (JWTs) [10], it may contain a set
of claims. Claims are pieces of information that are contained in the access token pay load
and may contain details about the user, session, authorization server or permissions. The
number of claims in a token depends on the configuration of the authorization server and
the Scopes that the client wants to receive.

Often an Access Token contains a set of standard claims such as:

• Issuer (iss) - Specifies the issuer of the access token. It represents the authorization
server that issued the token.

• Expiration Time (exp) - indicates the expiration time of the access token. After
this time has passed, the token should no longer be considered valid.

• Token Identifier (jti) - unique identifier for the access token.

In addition to the standard tokens, a token may contain custom tokens. As mentioned
earlier, the authorization server can configure the content of the tokens and create new
ones. For example, the authorization server can add a custom token that contains the role
of the user who received the token. It can name it role and use a mapper that will add
the role value [3].

Claims example:

"https://authorization-server.com/",
1637344572,
"1637337372.2051.620f5a3dc0ebaa097312",

"iss"
"exp"
"jti"
"role": "admin"

12

https://authorization-server.com/

Scopes

Scopes in OAuth 2.0 is a mechanism for the client to request specific claims to be included
in the access token by the authorization server. Users must understand what level of access
they are granting to the client. In turn, clients should only access specific user and session
information, not all of it. The client sets the Scopes it needs before it begins authorizing
the user. After the user is authorized, the user sees a list of scopes that the client requires
from the authorization server. The client can then accept them and access will be granted,
or refuse [11].

Problems

The main drawback of this protocol is that it does not authenticate the user. It gains
delegated access to the user's information. The motivations of authentication and autho
rization participants are different. In the case of authorization, the client is entrusted with
an access token, as he does not intend to share it with anyone. But the client can still share
the access token with a third party and give them access to the information (protected
resource). The user and the authorization server cannot naively assume that the client will
not share information with a third party after the token is issued. Thus any site to which
a user logs in with a Google or Facebook account can impersonate that user on any other
site that accepts Google or Facebook logins.

2.4 OpenID Connect Protocol

OpenID Connect is a simple identity layer on top of the OAuth 2.0 protocol. It enables
clients to verify the identity of the user based on the authentication performed by identity
provider, as well as well as to obtain basic user profile information [17]. This protocol
extends OAuth 2.0 by adding another token to the process - ID Token. It is encrypted in
JSON Web Token (JWT)[10] format and contains information about the user's authenti
cation status and profile information.

Core components of OIDC:

• ID Token - contains encoded information about the user's authentication, such as
the time of his authentication, who issued the token, and user information.

• Discovery - A provider supporting the OIDC protocol publishes an endpoint with
the configuration. This in turn facilitates client configuration. The client can for
example verify the token using the published information.

• Userlnfo Endpoint - The provider also publishes an endpoint that returns stigmas
about the authenticated user.

Security

The use of OIDC also includes defense mechanisms, such as the use of a nonce parameter
to prevent a replay attack. It is also possible to use an at_hash parameter in the ID token,
which is needed to validate the access token. Both parameters are stored in the token as
claims 2.3.

13

Single Sign O n

Since the user session is centralized and its information is stored in the identity provider
and can be transmitted using the token ID in a secure manner, a single sign on is possible.
Single Sign On is the process of user authentication using a single set of credentials for
many applications at once. To implement it, a single centralized provider is needed to store
all user session information and a protocol that can securely share session information with
other applications. This mechanism is often found in large companies where employees need
access to many applications simultaneously or during a working day. In order to avoid the
risk of an employee password leak in one of the applications, a single identity provider is
used that manages the sessions and the employee account. The application no longer needs
to store information about session, taking a risk of this data being leaked. It is enough to
contact the identity provider, which will create a session in case of its absence or transfer
information about an existing one.

Flows

OpenID Connect defines three types of authentication flows for different clients: the Au
thorization Code Flow, the Implicit Flow and the Hybrid Flow.
In this work will only be considered the first one, the Authorization Code Flow, and more
specifically its enhancement - Authorization Code Flow with P K C E A , will be discussed.
It is essentially identical to the flow of the same name from OAuth 2.0. The only difference
is that in addition to the access token, the identity provider also issues an ID Token to
the client in response to the authorization code, which can then be verified. The client can
also use the Userlnfo point to retrieve new information about the user.

Summary

OpenID Connect (OIDC) issues ID tokens, which contain user identity information in a
secure, JSON Web Token (JWT) 2.5 format. It also provides mechanisms for single sign-on
(SSO), making it easier for users to access multiple applications. By incorporating features
like scopes, claims, and standard user info endpoints, OIDC offers a flexible, interoperable
solution that simplifies identity management and enhances security for web, mobile, and
desktop applications.

2.5 J S O N Web Token

JSON Web Token, or J W T for short, is a standard for secure transmission of claims in inse
cure environments in JSON format. The main features of its architecture are compactness,
simplicity, usability and security. The token format, signature and encryption capabilities,
and ease of use provide these features. Although much more complex systems are still in
use, JWTs have a broad range of applications.

14

Format

A JSON Web Token looks like this (newlines inserted for readability):

eyJhbGci0iJIUUzIlNiIsInR5cCI6IkpXVCJ9.

eyJzdWIiO iIxMj M0NTY30DkwIiwibmFt ZS16IkpvaG4gRG911iwiYWRt aW4i0nRydWV9.

TJVA950rM7E2cBab30RMHrHDcEfxjoYZgeF0NFh7HgQ

In its compact form, JSON Web Tokens consist of three parts separated by dots (".").
These three parts called Header, Payload and Signature are arranged one by one as
"aaaaaa.bbbbbb.cccccc" where Header, Payload are encoded in Base64Url format [7]
and the last one is the signature which will be described later.

A n example of an unencoded token:

{

"alg": "HS256",

"typ": "JWT"

}.
{

"sub": "1234567890"

"name": "John Doe",

"admin": true

}

Header and Payload contain claims 2.3. Some of these claims and their meaning are
defined as part of the J W T spec. Others are user defined. One of the features of J T W tokens
is the standardisation of claims that can be used in an application. Some of the standardised
claims are discussed in section 2.3. Another key aspect of JWTs is the possiblity of signing
them using JSON Web Signatures (JWS, RFC7515'^), and/or encrypting them, using
JSON Web Encryption (JWE, RFC7516 1) . Together with JWS and J W E , JWTs provide
a powerful, secure solution to many different problems [18].

J S O N Web Signatures

There are several types of signing algorithms available. The JWS specification requires a
single algorithm to be supported by all conforming implementations:

. H M A C using SHA-256, called HS256 in the JSON Web Algorithms specification5.

The JWS specification also defines a series of recommended and supported algorithms such
as:

. R S A S S A P K C S 1 vl .5 using SHA-256, called RS256

In this study we will look at using the RS256 algorithm. The difference between it and
H M A C (which uses shared secret) is the use of public and private R S A key pairs [9].

In the course of its work the signature is performed using the private key and the further
validation is performed using the public key. Thus base64Url encoded Header and Payload

3

https://datatracker.ietf.org/doc/rfc7515
4

https://datatracker.ietf.org/doc/rfc7516
5

https://datatracker.ietf.org/doc/rfc7518

15

https://datatracker.ietf.org/doc/rfc7515
https://datatracker.ietf.org/doc/rfc7516
https://datatracker.ietf.org/doc/rfc7518

as well as private key are inputs for R S A signing function. The signature output is also
encoded in base64Url format and concatenated to the Header and Payload, resulting in the
J W T token structure 2.5.

J S O N Web Encryption

While JSON Web Signature (JWS) provides a means to validate data, JSON Web Encryp
tion (JWE) provides a means to make data opaque to third parties [12]. Opaque in this
case means unreadable. Encrypted tokens cannot be verified by third parties. This allows
tokens to be used more freely, given that only trusted resources will be able to retrieve
the information. At the same time, this makes it difficult to implement J W T in public
clients, since public clients cannot store any secrets or private keys on their side. The use
of encryption implies a secure environment and confidential clients.

The shared secret scheme works by having all parties know the shared secret. Each
party in possession shared secret can both encrypt and decrypt the information.

While in JWS, the party holding the private key can sign and verify tokens, while the
parties holding the public key can only verify those tokens. In J W E the party holding the
private key is the only party that can decrypt the token [18]. In other words, public
key holders can encrypt data, but only the party holding the private key can decrypt
(and encrypt) that data.

Since this project will demonstrate the implementation of public clients, encryption will
not be used.

Encryption algorithms recommended by the J W A specification6:

• R S A E S - P K C S 1 (marked for removal of the recommendation in the future).

• R S A E S - O A E P with defaults (marked to become required in the future).

. AES-128 and AES-256 Key Wraps.

• Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES) using Concat
K D F (marked to become required in the future).

. E C D H - E S + AES-128 or AES-256 Key Wrap.

J W T s and O A u t h 2.0

JWTs are well suited to the requirements of the OAuth 2.0 protocol 2.3. Signed JWTs are
good access tokens because they can be encoded with all the necessary data to distinguish
access levels to a resource, can have an expiry date, and are signed to avoid validation queries
against the authorisation server. Several federated identity providers issue access tokens in
J W T format. JWTs can also be used for refresh tokens. However, there are fewer reasons
to use them for this purpose.

J W T s and OpenID Connect

JSON Web Token is also used in OpenID Connect 2.4. This data format is used to transfer
the ID token. Using this format allows authenticated user data to be quickly transferred
to clients in a signed and encrypted format. In this way the client can verify that the user
session data has not been altered and contains legitimate information.

6

https://datatracker.ietf.org/doc/rfc7518

16

https://datatracker.ietf.org/doc/rfc7518

Chapter 3

Introduction to Identity
Management

This chapter will describe the theoretical part related to the identity management topic.
The concept of identity management and why it is necessary for the implementation of single
sign-on mechanism will be discussed. Since the purpose of this paper is to use Keycloak as
an identity provider it will be discussed why it is used in the project, the concepts of how
it works, and how to integrate it into the application.

3.1 Definition

Identity management encompasses the management of individual identities and their au
thentication, authorization, roles, and privileges and permissions within or across system
and enterprise boundaries, with the goal of increasing security and productivity while de
creasing cost, downtime, and repetitive tasks. Identity management thus constitutes an
essential capability for attaining trusted clouds [21].

3.2 Identity Providers

Identity Providers (IdPs) play a key role in identity management by authenticating the
identity of users and providing this information to service providers. This process, utilizing
standards such as OpenID Connect, allows service providers to provide appropriate access
to users based on authenticated identities without directly managing user credentials.

3.3 Single Sign-On

IdM systems provide a centralized platform for managing user identities and attributes
across multiple systems and applications. This centralization is essential for single sign-on
since it allows users to access multiple services with a single set of credentials, simplifying
the login process and reducing the cognitive load on users. Centralization ensures that
user identity information is consistent across all systems. Any changes, such as updating a
user role or changing a password, are propagated across all services, improving security and
operational efficiency In an SSO scenario, the IdP is responsible for validating user creden
tials and issuing authentication tokens that other applications can trust. This centralized

17

approach not only improves user experience and productivity by reducing the number of
times users need to log in, but also strengthens security in the organization's environment.

3.4 Introduction to Keycloak

Keycloak is an open source Identity and Access Management (IAM) tool licensed under the
Apache License 2.0. There is also a downstream project called RedHat SSO. It can be
used as a centralized identity manager allowing you to store user data, manage user roles,
groups, sessions. Keycloak also allows you to categorize users into two different realms.
For example, when writing an application for a bank, we can separate users and employees
into two different realms to simplify management. There is support for three protocols -
OpenID Connect, OAuth 2.0 and S A M L 2.0.

3.5 W h y to use Keycloak?

There are plenty of alternatives such as Gluu, FreelPA, WS02 , FusionAuth, and Ory Hydra.
Although their feature sets are quite similar, some of them will work well in specific use-
cases. This paper focuses on Keycloak because it has the ability to be deployed in cloud
environments, has a huge community and a large number of configuration guides and books.
Also a lot of features are supported out of the box which makes it easy to configure. The
most important thing to note is that it can be deployed with Docker or Kubernetes, which
is certainly important in today's container world. Keycloak supports different kinds of
encryption methods and has built-in features such as Brute Force Detection.

3.6 Distributions of Keycloak

There are currently three types of Keycloak server distributions available:

• Keycloak on Quarkus.

• Keycloak on Docker.

• Keycloak Operator for Kubernetes and OpenShift.

Keycloak Operator also supports clustering, so it is possible to create a number of
Keycloak servers that run as a single identity center, with Kubernetes distributing the load
between the servers.

3.7 Keycloak Integrations

How do you integrate keycloak into your application? It is possible to integrate Keycloak
into almost any popular programming language such as Java, Python. C# , Scala and
frameworks like Quarkus, Angular and so on. Integration into Java is done using the
Spring Boot framework library. Until 2022, integration into Java was done using special
adapters such as Keycloak Spring Boot Adapter or WildFly Subsystem Adapter. But in
2022 developers announced deprecation of adapters. They were replaced by more flexible
libraries such as keycloak-core.
The transition from adapters to libraries unified work with all kinds of Java applications

18

and no longer tied developers hands by developing a separate adapter for each framework.
A shift from adapters to libraries replaced the approach to integrating Keycloak into an
application. The architecture of libraries is different from Keycloak adapters. It is more
oriented to work with standard protocols such as OAuth 2.0 and OIDC.

3.8 Social Login

Keycloak also allows you to use various social identity providers such as Google, Twitter,
Facebook, Github and so on. Their use can be configured in the admin panel.

3.9 Keycloak Identity Management

Keycloak offers a web-based user interface where developer can configure access or user
settings. There is a possibility create groups, roles, assign access to specific clients, or set
the password complexity level.

3.10 Realms

Once you have an administrative account for the Admin Console, you can configure realms.
A realm is a space where you manage objects, including users, applications, roles, and
groups. A user belongs to and logs into a realm. One Keycloak deployment can define,
store, and manage as many realms as there is space for in the database [15].

3.11 Clients

Clients are entities that can request Keycloak to authenticate a user. Most often, clients
are applications and services that want to use Keycloak to secure themselves and provide
a single sign-on solution. Clients can also be entities that just want to request identity
information or an access token so that they can securely invoke other services on the network
that are secured by Keycloak [15].

3.12 Keycloak A d m i n A P I

Keycloak provides the ability to manage users in a RESTful manner by sending requests
to an A P I . This requires configuring a special admin account that will have access to
the requests. For example, you can query all database users by sending G E T request to
"/admin/realms/realm/users". It will return a stream of users, filtered according to query
parameters [13].

3.13 Conclusion

The choice of an Identity and Access Management (IAM) solution depends on the use case
and project requirements such as security, protocol support, and extensibility. Keycloak
provides a large number of features, fine-grained and at the same time easy customization,
a large community and ease of deployment. It is well suited for the role of identity manager
based on OpenID Connect protocol and SSO implementation.

19

Chapter 4

Requirements

This section will cover all the requirements for this thesis assignment. This section includes
parts that must be fulfilled in full, but there will also be parts that are only partially fulfilled.
In this project a prototype application will be developed that will not be used and deployed
in the real world. The programs developed under this thesis are of an observational nature
and serve as a showcase for other developers who wish to learn the protocols and tools
used to implement them in applications. In general, there are two parts to all requirements.
One part describes functional requirements and the other part sheds light on non-functional
requirements.

4.1 Functional Requirements

The application's functionalities and behaviour are described in the functional requirements.
It is the application's bare minimum need. The project cannot be completed without those
prerequisites.

User Authentication and Login

The user authentication procedure is as follows: the user accesses the base U R L of the
application in the browser. To authenticate the user, the user will be sent to the authenti
cation page of the authorization server. To authenticate, the user must enter their username
and password. If the user is authenticated, the user will be logged in and wil l be able to
view the secure application home page. If authentication fails, the user will receive an error
message stating that the credentials are incorrect. Without authentication, the user will
not be able to access any of the application's protected resources.

Authorization

To specify that a group of users has the right to do or see certain things in the application,
the system uses a customizable authorization restriction structure. Without proper autho
rization, a user cannot perform actions or access protected application resources. There
should be functions that only certain types of users with proper authorization can perform.
For example, a system user is authorized to view the application home page. However,
he/she will not be able to modify any protected data due to lack of authorization. On the
other hand, an administrator can create and edit existing application functions.

20

Single Sign-On

After the user has authenticated, his session should be stored with the identity provider.
Further, if he has an active session in any of the client applications he should be able to
authenticate in another application without having to re-enter his credentials. His session
information should be available in any of the applications. The session and user data must
be identical in both client applications.

Separation of Access Tokens

Each client is configured such that the identity provider issues different access tokens for
each client. Thus the access tokens for client application A must be different from the
access token for client application B. In case a user has gone through the authenticated
process and received an access token for service A , his access token cannot be used to make
a request to server B and vice versa.

Single Logout

The user must be able to logout of the system if they want to. The user must first log
in before attempting to log out. When a user logs out, they will not be able to access
protected application resources until they log in again.

Cloud Deployment

Both web clients, Keycloak as well as two servers should be run in a cloud-native environ
ment and tests should be conducted based on the above requirements. The applications
must be easily scalable, comply with cloud application standards such as endpoints for
health checks and sessionless operation.

21

Chapter 5

Design

This chapter describes the design procedures for all applications needed to demonstrate and
implement the OpenID Connect protocol, the Keycloak connection as identity manager and
the single sign-on mechanism itself.

5.1 System Overview

A prototype of four applications was developed to demonstrate this project. Two of them
act as a client web application, the other two respectively play the role of a server for them.
The first application works as a user portal, the second one is a note-taking application.
Customers Application and Notes Application for the notes application. The block
architecture of the entire prototype is indicated in 5.1.

Database

Notes
Application

Client
-Access Token-

Notes
Application

Server

Access & ID Token Verify access token

-Credentials- Identity Provider I
GET

UPDATE
DELETE

/realm/users
Access & ID Token Verify access token

Customers
Application

Client
-Access Token-

Customers
Application

Server
Admin API

Figure 5.1: System block overview.

22

In this architecture, the user is a resource owner. He uses client applications to obtain
resources from resource servers. In this case, customers application and notes application
access separate servers. Both clients and both servers are standalone applications and
have their own port. Communication between them takes place via H T T P protocol. This
architecture was chosen in order to separate the access tokens. Accordingly, a token received
in the customers Application cannot be used to access the notes application server and
vice versa. Both client applications redirect the user to the identity provider endpoint,
where the user can be authenticated using his credentials.

There are two resource servers, Customers Application Server and Notes Appli
cation Server. Both are RESTful Spring Boot applications. Notes application server has
a database connection and A P I that supports C R U D operations. Customers application
server uses the Keycloak Admin Client to retrieve data about all users using admin api
3.12. In fact, you can manage users directly using Keycloak as a user data manager. But
in the real world, more flexible LDAP-based systems are often used.

5.2 System Use Cases

Since the main point of the work is to configure application security and demonstrate the
use of authentication protocol, there are not many use cases in general. There are four
types of users: anonymous, user, admin and superadmin. The super admin role is used to
configure the use cases and assign administrators to the application. A n unauthenticated
user, anonymous, has the ability to login or register. The user can also create an account
using Google or GitHub.

In Customers Application, an authenticated user can only get the full list of users.
Admin has full permissions in the application and can create, delete, modify any users.
Customers application use case diagram can be found in appendix G

In Notes Application, an authenticated user can manage their notes and create new
notes. Admin has full rights in the application and can retrieve, create, delete, modify any
notes. Notes application use case diagram can be found in appendix F

5.3 Functional Architecture

The functional architecture of this project describes how clients access user information on
resource servers. There are 6 objects involved in the process. The user is the owner of the
resource and communicates with clients through a browser. Identity provider in the system
is the Keycloak server. Client application A and B are Notes application and Customer
application respectively. Both clients configured with Authorization Code Grant with Proof
Key for Code Exchange, its detailed description can be found in section 2.3. Functional
architectire diagram can be found in appendix E.

After the user presses the login button in client application A , it starts the authentication
process. Next, the client application sends a request for an authorization code to the
identity provider. The identity provider redirects the user to its endpoint, where the user
authenticates. After successful authentication, the user is redirected back to the client page
and the client receives access token A along with the ID token. The user's browser stores
the session information. The client can then request data from server A's resource. The
resource server in turn validates the access token using the server's identity provider and

23

decodes it. The server then finds the claim aud, which contains information about which
client the token was issued to. If the aud field contains the value client-application-a,
the server sends a successful response to the client along with the necessary data.

The user can also go to client-application B and click the login button. The client will
then try to find the session information in the browser cookie. If the cookie is found, the
client authentication is successful without entering user credentials. The client also requests
the access token B from the identity provider of the server. In case the user session is still
active, it issues the access token B to the client. The client can query the data resource
of server B using the token. The process of token validation is similar. First, the server
validates the access token using the server's identity provider and decodes it. If the aud
field contains the value client-application-b, the server sends a successful response to
the client along with the data it needs.

5.4 Keycloak Clients and Realm Configuration

By default, the root realm in Keycloak is called the master realm. In it, a child client
called demo will be created. In this realm will exist users from all the applications, their
roles and clients. There will be a total of two clients in the realm. One client for customers
application and one for notes application.

Customers
Application

Public Client

Notes
Application

Public Client

Demo Realm

Master Realm

Figure 5.2: Keycloak Configuration Diagram.

5.5 Database Design

There is only one note database object. Primary key is the id field of type Long. The content
field is of type String and contains note data. The owner field contains the username of
the user who created the note. The username of the user in Keycloak is immutable, so it
can be used for the database.

24

Chapter 6

Implementation

6.1 Used tools and libraries

This section provides an overview of the main tools and technologies selected for applica
tion development. Each tool was selected for its specific features that meet the needs of
developing, managing, and deploying a modern scalable web application.

Angular

Angular is a powerful front-end web application platform led by the Angular Team at
Google and a community of individuals and corporations. Angular was chosen for its robust
data binding capabilities, extensive H T T P communication tools, and its material design
interface components which provide a sleek, modern UI. Angular also supports the modular
organization of functionality through services and dependency injection, streamlining the
development of large-scale applications. This project will use Angular 17.3.6.

Angular C L I

Angular Command Line Interface (CLI) is a tool that simplifies the development of an
Angular project. It allows developers to create different application modules and config
ure them automatically. The decision to use Angular C L I in this project was driven by
its efficiency in handling routine tasks, allowing more focus on business logic and feature
development. The version of Angular C L I used is 17.3.6.

Angular O I D C Library

angular-oauth2-oidc library [19] is required to handle authentication and authorization
through OpenID Connect (OIDC) and OAuth 2.0 protocols. It abstracts away the complex
ity of implementing mechanisms implementing these protocols, but also provides a clear and
flexible interface to work with them. This includes managing the details of token acquisi
tion, renewal, and expiration seamlessly. angular-oauth2-oidc adheres to the OAuth 2.0
and OIDC specifications, ensuring that implementation is compliant with these standards,
which is crucial for interoperability with various identity providers. It supports various
OAuth 2.0 flows and features like the Authorization Code Flow with P K C E , which is rec
ommended for web applications due to its enhanced security properties. Using this library
allows you to customize application security regardless of the type of identity provider used
in the overall architecture. Thus, the built application will be able to interact not only

25

with Keycloak, but also with other identity providers. In summary, using angular-oauth2-
oidc in this project helps streamline authentication processes, ensures adherence to security
standards, and enhances the overall security and maintainability of the application.

Spring Boot

Spring Boot is an extension to the Spring framework that simplifies the writing and con
figuration of Spring applications. It was chosen for its ability to rapidly set up standalone,
production-grade Spring based applications with minimal Spring configuration. Spring
Boot's embedded server, configuration, and wide range of starters make it an ideal choice
for building microservice architectures. This project will use Spring Boot 3.2.5.

Spring Security

Spring Security is a powerful and highly customizable authentication and access-control
framework. It is the de-facto standard for securing Spring-based applications [1].

Spring Data J P A

Spring Data Java Persistence A P I (JPA), part of the larger Spring Data family, makes it
easy to easily implement JPA-based repositories. It greatly improves the implementation
of data access layers by providing clear and flexible interfaces and beans.

Maven

Apache Maven is a build automation and project management tool used primarily for
Java projects. It helps to manage the dependencies, build, configure and deploy Java
applications. Its use of Project Object Model (POM) files ensures that project setups are
simple and reusable. Apache Maven Apache Maven 3.9.6 was used for this project.

Minikube

Minikube is chosen for its ability to run Kubernetes locally on a personal computer, pro
viding a platform to test and develop Kubernetes-based applications without the overhead
of setting up a Kubernetes cluster. It is well suited for this project because it is designed
for development and testing, allowing developers to see how applications would behave in
a production-like environment on their local machine. The minikube version: vl.32.0 was
used, as well as the hyperkit driver.

6.2 Identity Provider Setup

To begin, the configuration of the Keycloak server will be discussed. For this project, the
keycloak build for the container is ideal. This project will use the latest version of Keycloak
24.0.3.

The Identity Provider must be configured according to the diagram 5.2. That is, a
child realm must be created in which clients must be configured for each of our client
applications. Roles and users for testing and administration must also be created. The
clients configuration will allow the client applications to be connected to them and split

26

into separate configurations. In this way it will be possible to manage the information
contained in the tokens issued for a particular client.

To start the server with the docker it is required to use the command:

docker run -p 8080:8080 \
-e KEYCLOAK_ADMIN=admin \

-e KEYCLOAK_ADMIN_PASSWORD=admin \

quay.io/keycloak/keycloak:24.0.3 start-dev

By default, Key cloak starts on port 8080. With the -p 8080:8080 option
it is hostPort: containerPort. It is also required to set a username and password for
the superadmin who has access to the „master" realm. After a successful launch there is
an opportunity to go to Keycloak Admin Console at the link http://keycloak:8080 and
login using admin username and password specified earlier.

Create New Realm

Best practice is to create child realms from the master realm. This way it is possible to
separate users of different projects. After successful login using admin's credentials using
the drop-down menu of realms in the upper left part of the window it is possible to create
a new realm. It is required to enter the name of a new realm and to enable it. There is also
an option of importing a realm in JSON format, which will be described later. The realm
for this project will be called demo. The screenshot of the realm creation is in the apendix
part of the work, which can be viewed here B.

Create New Client

The following section describes how to create two public clients for client applications in
the Clients section. When configuring the client in the Access Settings section, the Valid
redirect URIs and Web origins parameters must be set to service U R L . The first parameter
means a valid URI pattern to which the browser can redirect the user after a successful
login. This protects the user from being redirected to a malicious URI after a successful
login, as the client application can choose the redirect url itself. The Web origins parameter
defines the allowed C O R S sources.

Next, Standard flow and Implicit flow should be enabled under Capability config.
This will allow the client application to use Authorization Code Flow with P K C E and to
retrieve session information from browser cookies in case a session already exists.

Thus, notes-public-client and customers-public-client clients will be created.
The screenshot of the client creation can be viewed here C.

Custom Scopes and Claims

To separate the access tokens for the two microservices, we need to create a custom
scope for each of them. The developer should create a new scope named notes-app and
customer-app. Then assign a custom requirement to each scope. This can be imple
mented using Keycloak mappers. A mapper is a mechanism that allows us to automate
the assignment of statement values to our scopes. For example, a mapper can be used to
assign a user's date of birth to an access token assertion. To create a custom mapper, go
to Clients scopes -> Client scope details -> Mappers -> Add mapper. Then we need to

27

http://keycloak:8080

specify the mapper type, name, its value, and choose which token it will be bound to. In
our case, the mapper type will be Audience. In the Included Client Audience field,
there is a need to select the name of the client that will be included in the value of the
assertion. In case of a custom scope named notes-app, it is required to select the name
of the client notes-public-client created in the previous step. This operation should
also be performed for the customer-app. In the Included Client Audience field specify
customer-public-client. The screenshot of the mapper creation can be viewed here D.

As a result of these actions, two scopes notes-app and customer-app were created,
each of which stores the name of the corresponding client in the aud field.

The next step is to add the created scopes to the client's default scopes so that they
are displayed in the payload of access token. To do this, go to Clients -> Client details
-> Clients scopes -> Add client scope and select the newly created notes-app scope. The
same operation should be repeated for the customers-public-client client. This is how
the access token payload looks like after these operations:

{

"exp": 1714926394,

"iat": 1714926094,

" j t i " : "bb39fd03-3ce4-4b31-9f46-536f2fde604a",

"iss": "http://keycloak:8080/realms/demo",

"aud": [

"notes-public-client",

"account",

].
"sub": "886b8e5f-0220-4fbb-ab97-4263ef23b9d9",

"typ": "Bearer"

Create Roles

In Keycloak, it is possible to configure roles on a realm or client scale. Thus, it is possible
to separate the roles of different application users for more efficient management. Roles can
be assigned to specific groups of users or to individual users. As part of the configuration
of this project, an administrator role will be created within the „demo" realm. Thus the
administrator role will be displayed in any access token issued to this user. User permissions
depending on the role can be configured in the application that receives the access token.
In order to create a role, it is necessary to go to Realm roles -> Create Role and assign the
value ADMIN to the Role name field.

Create Users

After creating the necessary roles, the first users should be created. Within the framework
of this project three users were created: admin, user, realm-admin. The user admin was
assigned the role ADMIN created in the previous step. The user with username user has
no roles and is similar to the one that will be registered in the client application. The
user realm-admin was assigned the role realm-management: realm-admin. This user is
required to use the Keycloak Admin A P I 3.12 in the Customers Application.

28

http://keycloak:8080/realms/demo

6.3 Customers Applicat ion Server Setup

This section will describe the most important parts and interesting details of the server
implementation for the Customers Application. The server will be a standalone microservice
and will communicate with the client via H T T P protocol via R E S T A P I . Then it should
be configured as a Resource Server in terms of OAuth 2.0. The resource server will be
receiving requests from applications with an H T T P Authorization header containing an
access token. The resource server needs to be able to verify the access token to determine
whether to process the request.

Security Config

The first thing to do is to protect the server from unauthorized access. For this purpose,
the class SecurityConfig with annotations ©Configuration and OEnableWebSecurity
was created. This will make the class configurable and also allow to configure the security
behavior using the SecurityFilterChain bean. This code snippet contains the configura
tion of the bean:

©Bean

public SecurityFilterChain filterChain(HttpSecurity http)

throws Exception {

http.csrf(t -> t.disable());

http.authorizeHttpRequests(authorize ->

authorize

.requestMatchers(ALLOWED_PATTERNS)

.permitAll()

.anyRequest()

.authenticatedO);

http.sessionManagement(session -> session

.sessionCreationPolicy(SessionCreationPolicy.STATELESS));

http.oauth2ResourceServer(oauth2 -> oauth.2.jwt()

.decoder(jwtDecoder()));

return http.buildO ;

}

Requests matching patterns in ALLOWEDPATTERNS are allowed without authen
tication. Within this application, healthcheck and OpenAPI endpoints are in the list of
allowed patterns.

A l l other requesters are required to provide an access token.
The sessionManagement () method configures the session management policy to be

stateless. This means that each requester must go through the authentication process
independently and the server will not store information about its session.

The oauth2ResourceServer method designates the server as an OAuth 2.0 Resource
Server and assigns a custom J W T decoder, which will be discussed next.

29

http://http.csrf(t
http://http.authorizeHttpRequests(authorize
http://http.sessionManagement(session
http://http.oauth2ResourceServer(oauth2
http://http.buildO

A CORS filter was also used, the code of which is taken from public source .

Access Token Validation

This code section shows the configuration of the J W T token decoder.

public NimbusJwtDecoder jwtDecoderO {

NimbusJwtDecoder JwtDecoder =

JwtDecoders.fromOidcIssuerLocation(issuer);

JwtDecoder.setJwtValidator(new DelegatingOAuth2TokenValidator<>(

JwtValidators.createDefault(),

new AudienceValidator(audience)

)) ;
return JwtDecoder;

}

This decoder is specifically set up for validating JSON Web Tokens in a Spring Security
OAuth 2.0 resource server environment.

Instantiating a Jwt Decoder

The decoder is initialized using the factory method fromOidcIssuerLocationO. Thus
the J W T decoder will automatically configure itself using the OpenID Connect discovery
document published at a U R L derived from the issuer. The issuer variable contains the
U R L of the Keycloak realm as http://keycloak:8080/realms/demo. This way the decoder
can find an endpoint [14] containing public keys enabled by the realm, encoded as a JSON
Web Key (JWK) , and the Keycloak server signature algorithm used. In this case RS256
algorithm is used, which is the most secure practice.

Setting the J W T Validator

The method set Jwt Validator () allows to assign a number of validators for the received
token. Default validators typically include checks for the token expiration, the token not
being used before its validity period starts and the issuer.
A new class called AudienceValidator was also created. This validator ensures that the
J W T is intended for the current resource server by checking the audience claim created in
section 6.2 of the token against the expected value. In the case of customers application,
the value of the audience field should be customer-public-client.

Jwt Authentication Converter

The main purpose of the JwtAuthenticationConverter bean is to configure Spring Secu
rity to work with J W T tokens for authentication and authority mapping in applications
that use Keycloak as an identity provider. By extracting roles from the realm_access

statement, it effectively maps Keycloak roles to Spring Security authorities, allowing fine
grained access control based on the user roles defined in Keycloak. Thus the ADMIN role

x

https: / / stackoverflow. com/questions/36809528/spring-boot-cors-filter- cor s-pref light-

channel-did-not-succeed

30

http://keycloak:8080/realms/demo

created in section 6.2 will be converted to a GrantedAuthority class, which will be used
to protect the application.

RestController Class

In general the application has two R E S T controllers, one for the administrator and one for
the normal user.

Service Layer Interface

Both controllers use the CustomerService interface, which plays the role of a contract for
the service layer of the application. This abstraction allows for flexibility in how the services
are implemented and makes it easier to modify or replace the service logic without affecting
the controller that depends on it. Interface-based design supports the use of different service
implementations if needed, such as switching from a database to a web service for retrieving
customer data without changing the controller logic.

Service Implementation

The CustomerService is implemented by the CustomerServicelmpl class providing the
concrete functionalities outlined by the interface. The CustomerServicelmpl is tagged
using the ©Service annotation making it a Spring-managed service bean. By using the
©Service annotation, Spring will automatically detect this class during component scan
ning and will manage its lifecycle, including creating and injecting it wherever the
CustomerService interface is required.

Role-based Access

The entire admin controller is annotated with OPreAuthorize (
M
hasAuthority (' ADMIN')").

Thus, only a user with an access token that specifies the administrator role can access any
method of this controller.

The regular user controller also uses the OPreAuthorize annotation, but to verify that
the user is only requesting their own data. The implementation of the user data update
method is shown in the following code snippet:

@PreAuthorize("(#jwt.getClaim('sub') == #id.toString())")

@RequestMapping(value= "{id]-/update/", method = RequestMethod.PUT)

public ResponseEntity<CustomerDTO> updateCustomer(

OPathVariable UUID i d ,

©AuthenticationPrincipal Jwt jwt,

CustomerDTO customer) {

boolean isUpdated = CustomerService.updateCustomer(id, customer);

if (isUpdated) {

return new ResponseEntityO(HttpStatus.OK);

}

return new ResponseEntityO(HttpStatus.N0T_F0UND);

}

31

The rule specified in the ©PreAuthorize anotation checks that the requested user id is
equal to the user id in the user's access token. To get the user id contained in the claim
sub the method getClaimO is used.

Keycloak A d m i n Client

For user management, Keycloak can be integrated into the application as a Spring-managed
bean. The following code snippets describe this process:

©Bean

public Keycloak getKeycloakO {

return KeycloakBuilder.builder()

.serverUrl(serverUrl)

.realm(realm)

.clientld(clientld)

.grantType(0Auth2Constants.PASSWORD)

.username(name)

.password(password)

.buildO ;

}

Using Keycloak Admin Client the developer can retrieve and modify user information.
The following code snippet shows the implementation of the method to get all users in
J S O N format:

©Override

public List<CustomerDT0> findAllO {

List<UserRepresentation> reps = keycloak.realm(realm).users().list();

List<CustomerDT0> customers = CustomerMapper.mapRepToCustomers(reps);

return customers;

}

The Admin Client is used to interface with Keycloak programmatically for administra
tive purposes such as creating, modifying, and deleting user accounts. The admin client
does not interfere with or replace the standard authentication and authorization processes
that are handled via OpenID Connect. Instead, it complements these processes by provid
ing a means to manage user data and roles, which are crucial for maintaining the security
and integrity of user information.

6.4 Notes Applicat ion Server Setup

In the Customers Application Server Setup section of the thesis it was described in detail
how the resource server is configured in terms of security, work with tokens and the archi
tecture of the server itself. The Notes Application Server is configured in a similar way,
except for some details that will be described below. Since the main purpose of the work is
the OpenID Connect protocol, the work with databases is rather an auxiliary component.
Therefore, this part of the application will be described briefly.

32

Security Configuration

The security configuration of this application completely repeats the configuration of the
previous one with the exception of the audience claim check. In this application the
AudienceValidator class checks for the presence of the notes-public-client value in
the claim field.

Database Setup

The notes application server does not use the Keycloak Admin Client because it is not
designed to work with users. Since its main purpose is to create notes, a database needs to
be configured. Java H2 database was chosen for this purpose.

Repository Layer

NoteRepository interface was created to work with the database. This interface is an
extension of Spring Data JPA's JpaRepository, which simplifies the data access layer by
automating C R U D operations (Create, Read, Update, Delete).

To work with the methods of the interface, the NoteServicelmpl class uses constructor
injection to receive an instance of NoteRepository. By separating concerns into different
layers (repository and service), the application follows a clean architecture approach, which
decouples the data access logic from business logic. This separation makes the system easier
to maintain and evolve.

Docker Image

Both servers have the ability to package the application as Docker image, which is then
required to run in the cloud. This was implemented by using the Maven utility and config
uring the pom.xml file.

To package the application, all that is required is to enter the command:

mvn spring-boot:build-image

Image will be created and added to the local repository with the tag latest.

6.5 Customers Applicat ion Client

This part of the paper will describe a web application for customer management. The
application is written in Type Script language using Angular framework. The client con
figuration for working with OAuth 2.0 and OpenID Connect protocols, role-based access,
working with ID and access tokens and communication with the server will be described in
detail.

O I D C Setup

This part of the paper will describe a web application for customer management. The
application is written in TypeScript language using Angular framework. The client con
figuration for working with OAuth 2.0 and OpenID Connect protocols, role-based access,
working with ID and access tokens and communication with the server will be described in

33

detail. This client uses the library angular-oauth2-oidc to work with the protocol and
tokens.

AuthConfig Setup

To begin with, the configuration should be created using the AuthConfig class. This class
is imported from angular-oauth2-oidc library which simplifies client configuration. The
code below reflects the configuration of this class:

export const authCodeFlowConfig: AuthConfig = {

issuer: 'http://keycloak:8080/realms/demo',

useldTokenHintForSilentRefresh: true,

redirectUri: window.location.origin,

clientld: 'customers-public-client',

responseType: 'code',

scope: 'openid profile email',

showDebuglnformation: true,

}

Key points of this configuration:

• issuer - contains the U R L of the Keycloak server that the client can access and
request configuration using the OpenID Connect discovery document published at a
U R L derived from the issuer.

• useldTokenHintForSilentRef resh - allows the client to extend the session on its
own without having to interact with the user.

• clientld - The client ID registered in Keycloak.

• responseType - Specifies the OIDC response type to code for the authorization code
flow. In case of a public client, the angular-oauth2-oidc library will use authoriza
tion code flow with P K C E automatically.

• scope - Requests OpenID Connect openid, profile, and email scopes.

Using this configuration the application will communicate with the identity provider
server using authorization code flow with P K C E .

OAuthService Setup

The authentication service needs to be initialized to handle the tokens directly, as well
as manage the authentication process. The method for initialization is illustrated in the
following code snippet:

function initOAuth(oauthService: OAuthService): Promise<void> {

return new Promise((resolve) => {

oauthService.configure(authCodeFlowConfig);

oauthService.setupAutomaticSilentRefresh()

oauthService.tokenValidationHandler = new JwksValidationHandler();

oauthService.loadDiscoveryDocumentAndTryLoginQ

34

http://keycloak:8080/realms/demo'

.theri(() => resolveO);

}) ;
}

Thus the service is initialized and also receives the configuration created earlier. The
setupAutomaticSilentRefresh() method sets the automatic refresh of the access token,
if the user session is active. JwksValidationHandler () class allows validating tokens from
identity provider. The final step is the loadDiscoveryDocumentAndTryLoginO method,
which loads the discovery document from the identity provider. The method will handle
the redirections to Keycloak for login, handle the authentication response, and perform the
code exchange for tokens using P K C E .

To initialize the initOAuthO method, it is required to specify it in the list of providers
in the app.module.ts file.

Requests with Access Token

In order for the client to use access tokens to access the server, the server URLs should
be added to the allowedUrls field in the root configuration. This code snippet further
demonstrates this setting:

imports: [

OAuthModule.forRoot({

resourceServer: {

allowedUrls: ['http://customers-server:8082/'] ,
sendAccessToken: true,

}.
}) .

]

Any H T T P requests sent to URLs that start with any of the strings in this array will
have OAuth2 access tokens automatically attached to them. In your case, all requests to
http://customers-server:8082/ will include the access token. This is crucial for APIs
that require authentication, ensuring that only requests to specified URLs carry the access
token, thereby avoiding unnecessary or unsafe token exposure. The token is typically added
in the H T T P Authorization header as a Bearer token. This setting simplifies the process
of making authenticated A P I calls by handling the token injection process automatically,
reducing boilerplate code and potential for errors.

35

http://customers-server:8082/'
http://customers-server:8082/

Components Generation

In order to generate a component in Angular, the command below was used: ng generate
component example-component

The following components were generated during the creation of the application:

• HomeComponent - the home page of the application.

• Prof ileComponent - user's profile page, where data from his ID token and access
token will be reflected.

• HeaderComponent - component for header management in the application. It will have
a login button in case the user has not been authenticated yet or a logout button in
case the authentication was successful.

• Footer Component - footer part of the page.

• CustomersViewComponent - a component that can be accessed only by users who are
authenticated but do not have admin privileges.

• AdminViewComponent - component with page for user administration. Only users
with ADMIN role will be able to access it.

Components break the application into modules that are easy to modify and separate
different logic.

Decode ID Token

Using the getldTokenO method from the angular-oauth2-oidc library, the developer can
access the token in the application code itself. Using the method getldentityClaims() it
is possible to access the token and use them in any client component in which an instance
of OAuthService class is imported.

Claims are of type Record<string, any>, which means we can access any claim in a
similar fashion:

this.givenName = claims['given_name'];

To decode the token and get it in JSON format this application also uses also the
JwtHelperService class from the angular-jwt library.

This is done as follows:

const helper = new JwtHelperService();

this.idTokenDecoded = helper.decodeToken(this.oauthService.getldTokenO)

36

Routing Configuration

In order for the user to be able to navigate through the various components created in the
previous section, a routing configuration must be created.

The following code snippet demonstrates how this is done in
the app-routing.module.ts file:

export const routes: Routes = [

{ path:
 1 1

, redirectTo: 'home', pathMatch: ' f u l l ' },

{ path: 'home', component: HomeComponent }

{ path: 'profile', component: ProfileComponent,

canActivate: [AuthGuard].

}.
{ path: 'customers-view', component: CustomersViewComponent,

canActivate: [AuthGuard] }

}.
{ path: 'admin-view', component: AdminViewComponent,

canActivate: [AuthGuard],

data: { role : 'ADMIN'}

}.
{ path: '**', redirectTo: 'home' }

];

Routes

Paths like 'home', 'profile', 'customer-view', and 'admin-view' are set up with corresponding
components. The canActivate property uses AuthGuard to protect the routes, ensuring
that only authenticated users with the appropriate roles can access certain parts of the
application like profile, customers view, and admins view. We should pay attention to
setting the path to AdminViewComponent, more precisely to the data parameter. Using
this parameter we can get this field in the AuthGuard class and find out what role is required
for this page.

37

AuthGuard

This section specifies the implementation of the AuthGuard class that implements the
CanActivate interface from Angular's Router package, providing a way to decide if
a route can be activated based on certain conditions.

export class AuthGuard implements CanActivate {

canActivate(route: ActivatedRouteSnapshot,

state: RouterStateSnapshot): boolean {

if (this.oauthService.hasValidldTokenO &&

this.oauthService.hasValidAccessTokenO) {

const claims : any = this.oauthService.getldentityClaims();

const roles : any = claims.role ? claims.role :
 1 1

;

if (route.data?, ['role']) {

if (roles.indexOf('ADMIN') === -1) {

this.router.navigate(['/home']);

return false;

}

}

return true;

}

this.router.navigate(['/home']);

return false;

}

}

It then retrieves identity claims from the token using the hasValidldTokenO method,
which typically include user information and roles. The code extracts roles from the claims.
If no roles are found, it defaults to an empty string. It checks if the user has the admin
role by searching the roles string. If a route has a specific role requirement (e.g., ADMIN
for certain routes), and the user does not have this role, they are redirected to the /home
route, and access to the target route is denied. If the user is not authenticated (no valid ID
token and access token), or if they lack the required role, they are redirected to the /home
page.

Service Class

In order to implement methods that interact with the server-side A P I , a service class called
CustomerService was created. The class uses Angular's HttpClient to send H T T P
requests and handle asynchronous responses via observables.
It uses environment. apiBaseUrl to determine the base U R L of the A P I , which ensures
that the application can adapt to different environments (development, production, etc.)
without code changes. The implementation of the getCustomers () method is specified in
the following code snippet:

38

public getCustomers(): Observable<Customer []> {

return this.http.get<Customer[]>(~${this.apiServerUrl}/customers~);

}

The method sends the request to the server, and receives the response in the form of
users in JSON format. Users are converted into Customer object and can be used in the
application.

Implementation of deleteCustomer () method code snippet:

public deleteCustomer(id : string): Observable<void> {

return this.http.delete<void>C${this.apiUrl}/admin/customers/${id}~);

}

The access token configured in the 6.5 section is also automatically added to the requests
made to the server.

View Components

Since the service described in the last section is a layer for the implementation of the
communication logic, the interaction with the service at the component level was also
implemented. To interact with a service in any of the components, a constructor injection
is used. Then the component can implement its methods based on the service. For example,
this is how a method from the CustomersViewComponent class looks like to get the list of
users from the service:

public getCustomers(): void {

this.customerService.getCustomers().subscribe(

(response: Customer[]) => {

this.customers = response;

}.
(error: HttpErrorResponse) => {

alert(error.message)

>
)

}

This way the method can be assigned to a button in the component's H T M L templat-
ing. To display user objects in H T M L , a structural directive NgFor is used that renders a
template for each item in a collection. The directive is placed on an element, which becomes
the parent of the cloned templates.

6.6 Notes Applicat ion Client

The Notes client application is configured identically to the user management application.
The client works with entity notes and provides information about them to the user. A l
though they manage different data entities, the pattern for fetching, displaying, updating,
and deleting data via A P I calls is consistent across both clients. While the core applica
tion configuration might be similar (e.g., authentication, routing), each client has unique
environment variables and A P I endpoints.

39

http://http.get%3cCustomer%5b%5d%3e(~$%7bthis.apiServerUrl%7d/customers~
http://http.delete%3cvoid%3eC$%7bthis.apiUrl%7d/admin/customers/$%7bid%7d~

This approach allows the system to scale easily, either by adding new features to existing
clients or by using the same architectural blueprint to build new clients for different data
entities in the future. Any updates to shared components or services can be propagated
easily across both clients, enhancing maintainability. This design principle is inherent in the
real world of enterprise applications, as often applications follow the same design pattern
but perform different functions.

Docker Image

The client application for customer and note management can be packaged as a Docker
image. This is essential in the case of deploying applications in a cloud environment. For
this purpose a Dockerfile has been created in which the Docker image configuration is
located. In order to run an Angular application in a container it is required to use an image
framework that contains node.js as well as an nginx server. The Dockerfile configuration is
shown below:

FROM node:18-alpine as build

WORKDIR /app

COPY package*.json ./

RUN npm install

RUN npm install -g @angular/cli

COPY . .

RUN npm run build

FROM nginx:latest

RUN rm -rf /usr/share/nginx/html/*

COPY —from=build app/dist/customers-client/* /usr/share/nginx/html

COPY nginx/nginx.conf /etc/nginx/conf.d/default.conf

CMD ["nginx",
 M

-g", "daemon off;"]

EXPOSE 80

At the beginning, the package, j son file is copied, which contains the Angular project's
dependencies. After that, all dependencies are installed and the project build is started.
Then all the contents of the dist folder (it contains the build result) are copied to the nginx
directory /usr/share/nginx/html. There is also a configuration file for the nginx server,
which contains a very basic configuration. Then the nginx server is started.

40

Chapter 7

Testing

This project will not be used for the real world and serves only as a prototype in one
possible way to implement OAuth 2.0 and OpenID Connect in a cloud environment. Since
this project serves as a concept for implementing protocols and not microservices in general,
the testing part does not contain unit or integration tests. A l l tests were performed on
applications running on Minukube. This section investigates whether the requirements of
the project have been achieved.

7.1 User Authentication and Login

One of the main functional requirements was user authentication using Authorization Code
Grant with Proof Key for Code Exchange flow using the OpenID Connect protocol. Once
a user gets to the root page of any of the clients, they can start on the login button. He
will then be redirected to the Keycloak server U R L where he can authenticate or create a
new account. A new account can also be created using Google or Github. After the user
has successfully entered his data, he will be presented with a window with the scopes that
the application requires from Keycloak. If the user agrees to the requirements, they will be
redirected back to the client page where they can access the secure pages.

D E M O

3r5ig-ihA'i

Google

o

Figure 7.1: Screenshot of Keycloak login page.

41

7.2 User Profile

One of the pages of both client applications is the user profile. The user profile contains the
user data taken from the access token and the token ID. Also at the bottom of the profile
are the tokens themselves in plain and decoded states.

User name: max Home Profile Customers Admin

max@gmail.com

Maksym Koval
Roles:

of f l ine_access ř ADMIN r uma_author izat ior i r defai j l t
ro les-demo

Access Token:

eyJhbGciOiJSUzl1NilslnR5cClgOiAi
SldUliwia2lkl iA6ICJmYmRNc2ZOTm

xpU285My1lcEG4Wm44RmFHcDIP
YUVXZC10dEQ2OWZpSUJVIn0.eyJI

eHAiQjE3MTUyMjM3NDQslmlhdCI6
MTcxNTIyMzQ0NCwiYXVOaF90aW

1ll joxNzE1MjlyNTMyLCJqdGkiOiJÍN

2YyMj"E2YÍQ5Y2RjLTRhZGľtYTVkYS1
YTE2NzFjMDI3ZjMiLCJpc3MiOiJod

H RwQ i8 v b G 9j YWxob 3N O OjgwODA
vcmVhbG1zL2RlbW8il_CJhdWQiOlsi

ZnJvbnRIbmGtcHVibGl jLWNsaWVu
dClslmFjY291bnGiXSwic3Vil joiMGZj

Y2lyYjAtZWIwOS00NDFILThmYzYt
MDYlMiMdNGViZGRi l iwidHlwl io iQm

Decoded Access Token:

" e x p " : 1715223744,
" i a t " : 1715223444,
" a u t ľ i _ t i m e , - i 1715222532,
" j t i " : , , b7f2216b-9cdc-4adb-a5
" i s s h t t p : / / l B . 1 0 8 . 1 4 4 . 3 8 :
"aud 1 - : [

" c u s t o m e r s - p u b l i c - c t i e n t l r ,
"accoun t "

I,
sub'
t y p " azp:

nonce

"0 fccb2b0-eb09-441e-8 f
" B e a r e r " ,
" e u s t & m e r s - p u b l i c - c l i e

1 : "SUlNzZWeUIBSzBsNXV
s e s s i o n _ s t a t e " : "74 f3ec7b- ;

a l l o w e d - o r i g i n s " : [

Figure 7.2: Screenshot of user profile page.

7.3 Single Sign-On

After the user authenticates to the client application, they can go to the U R L of the notes
application and click the login button. Since Keycloak already has this user's session in
cookies, the user will be automatically authenticated without going to the Keycloak page.
The session bound to the user will be transferred using an ID Token and also stored in
cookies. The authentication and authorization procedure will be separated: the ID Token
will pass the session information to the client application, and the access token will give
the right to request the server. In case the user authenticates for the first time, he will be
redirected to an agreement to provide scopes to this client. Screenshot of a part of a user's
profile page with his ID Token can be found in appendix H.

If a user logs out of one of the applications, the session is deleted and all tokens bound
to it become invalid after 5 minutes. To check this case, you should authenticate in both
clients and then press the logout button in one of them. After that, going to the admin
panel of Keycloak in the Sessions section you can make sure that the session bound to the
user has been deleted.

7.4 Authorization

Authorization is based on the user's access tokens, which store information about the user's
role. If a user has the ADMIN role in the advertisement mashup, he/she will be able to
access the admin page of the application. After the user goes to the admin panel of the

42

mailto:max@gmail.com
http://lB.108

application, he can delete any user in the case of customers application. A user without the
admin role cannot delete users. Authorization takes place at the client application level -
that is, a user without the admin role will not be able to access the admin panel, as well as
the server application - a request with an access token without the ADMIN role will result
in a negative response from the server.

Us8mam6: max Home Profile Customers Admin

First Last
Id name name Username Email

Of c c b 2b 0-e t>0 9-H 41e-8fc6-
0652384ebddb

Maksym Koval max maxtaiQmail.com

8a 7 8e2f1 -a dfd- 4 Sa 4-a 8 54-
6addbd75rjecl6

realm-
admin

realm-
it in

realm-admin
realm-
admlntacimail.com

0

Figure 7.3: Screenshot of Customers Application admin page.

7.5 Separation of Access Tokens

In order to prevent the token from being passed to third parties by any other application
connected to the same identity provider, it was decided to separate access tokens for each
application. Thus the token received in customers application cannot be used to access
the notes application server. Tokens have different audience so they can be used only
for their own services. In order to check this, it is enough to get the token in customers
application and then apply it in a request for the notes service. The result will be H T T P
401 Unauthorized response as on the screenshot in appendix 1.1.

7.6 Cloud Deployment

It is also possible to build a Docker image based on each of the created applications. Using
these images, as well as the publicly available Keycloak server image, it is possible to run
all applications using the docker compose utility or create a cluster using Minikube. A l l
applications were run in a Minikube cluster at the same time and all functionality listed in
the sections above was tested.

43

http://maxtaiQmail.com

Chapter 8

Lessons Learned

While working on this thesis implementing a cloud-based single sign-on (SSO) system us
ing OAuth 2.0 and OpenID Connect with Keycloak, a number of valuable lessons were
learned that not only deepened the understanding of identity management systems, but
also provided a foundation for best practices in the field.

8.1 Technical challenges and solutions

One of the main challenges of this work is my lack of experience in building system archi
tecture. One of the first and key points in developing this kind of prototypes is to plan the
system architecture. Since my experience in this area is limited, I often wrote applications
and then completely changed the architecture, so I had to partially rewrite existing appli
cations as well as create new ones. Thanks to this problem, I realized the importance of
careful planning of the environment before full integration. The solution to this problem
was to study a large number of sources related to this topic, as well as the advice of a more
experienced engineers.

The Angular framework also turned out to be quite a difficult technical problem. Ini
tially it was chosen as a framework well suited for writing a client to a Java service. In
the course of writing the work it turned out that this framework is quite difficult to master
and requires more careful study. Quite simple things, such as creating forms require a lot
of effort and often incorrect configuration of just one component can affect the rest. The
angular-oauth2-oidc library, on the contrary, pleased with its simple customization, as
well as a large number of all sorts of sources on customization in the public domain.

Also, one of the problems inherent in all systems with a large number of services that
need to be written in a cloud environment is the C I / C D pipline and a single configuration
manager. This problem was not addressed within the scope of this work. Its solution is
the use of DevOps platforms such as GitLab or Ansible, which facilitate the deployment,
configuration and monitoring of a large number of microservices.

44

8.2 Best Practices Identified

Token separation

A best practice was the use of minimum access principles. By limiting access to tokens
based on the exact requirements of different parts of the application, security was greatly
improved and the potential impact of compromised tokens was reduced.

Number of scopes

Developers should also minimize the number of scopes issued to the client by default from
identity provider, since most of this information is not required by the client.

Using P K C E

Using P K C E allows to avoid C S R F and interception attacks, which also increases applica
tion security.

Enforcing exact paths in identity provider configurations

After a client has been registered with identity providers the Valid redirect URIs and Web
origins settings must be set. Setting these parameters in the production release of the
application is mandatory and protects the user from potential redirection of the client to a
malicious site.

8.3 Identity provider selection

The choice of Keycloak as the identity provider was crucial due to its broad support for
OAuth 2.0 and OpenID Connect, as well as its adaptability to cloud environments. This
choice confirmed the project's initial hypothesis that Keycloak could simplify the imple
mentation of SSO between services, although it required adjustments to address the specific
challenges within the work.

8.4 Personal and professional growth

This project has greatly enhanced my technical skills, especially in the areas of security
and cloud native architectures. It also improved my problem solving skills as I dealt with
complex integration and architectural issues and learned to adapt theoretical knowledge to
practical problems.

As the world of technology is rapidly evolving, new security protocols and standards
are emerging, so application developers must not only become more knowledgeable and
experienced in application development, but also in the security and proper configuration
of products such as Keycloak.

45

Chapter 9

Conclusion

The objective of this thesis was to implement and evaluate a cloud-native Single Sign-On
(SSO) solution using OAuth 2.0 and OpenID Connect protocols, with Keycloak serving
as the central Identity and Access Management system. Functional tasks of the project
included implementation of these protocols into modern client and service applications
capable of running in the cloud, setting up Keycloak server, user authentication and au
thorisation capability and establishing a secure and scalable SSO architecture.

The implementation of the demonstration system includes two client and two service
applications as well as a Keycloak server. This architecture allowed to test user authenti
cation and authorisation on the client side as well as authorisation on the service side. The
use of two different clients allowed the single sign-on scheme to be configured and tested,
as well as the separation of access to the service applications. Also during the solution the
Keycloak server was studied and configured, which allowed to centralise the identity and
access management, which is necessary in the implementation of the single sign-on scheme.

The result of the implementation was the ability for a user to authenticate once to use
two client applications without revealing his credentials to either of them. After successful
user authentication on the Keycloak server side, clients receive session information in the
form of an ID token, as well as an access token for communicating with services. Both client
applications receive different tokens from the Keycloak server to access their microservices,
which minimises the chances of unauthorised access in case the tokens of one of the clients
are compromised. The entire system was deployed on a local Kubernetes cluster using
Minikube, and its functionality was tested both manually and using tools like Postman.

The process of writing all applications as well as the configuration of the Keycloak server
was carefully documented. Configuration files were created to deploy all applications in the
cluster.

The requirements for this thesis were fully met. The project deepened my understanding
of the security protocols underlying modern authentication systems. The experience gained
from this project is valuable not only for understanding the complex details of identity and
access management, but also for applying these concepts to real-world applications. Further
extensions of the project may include more complex examples of applying the technologies
used, such as cross domain SSO in a cloud environment or connecting L D A P to Keycloak
as a centralised user data storage and management system.

46

Bibliography

[1] B R O A D C O M . Spring Security online. Available at:
https: / / spring, io/pro jects/spring-security.

[2] C A N T O R , S.; H I R S C H , F . ; K E M P , J . ; M A L E R , E . and P H I L P O T T , R . Security

Assertion Markup Language (SAML) V2.0 Technical Overview online. 15. march
2005. Available at:
https: //docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf.

[3] G A U T I E R , E . Understanding OAuth 2 Access Token Claims online. 26. february 2023.
Available at:
https: //www. cerberauth.com/understanding-oauth2-access-token-claims.

[4] G U E V A R A , H . How SAML Authentication Works online. 2021. Available at:
https: //authO.com/blog/how-saml-authentication-works/.

[5] H A M M E R L A H A V , E . The OAuth 1.0 Protocol R F C 5849. R F C Editor, april 2010.
Available at: https://doi.org/10.17487/RFC5849.

[6] H A R D T , D . The OAuth 2.0 Authorization Framework R F C 6749. R F C Editor,
October 2012. Available at: https://doi.org/10.17487/RFC6749.

[7] I N C . , A . HOW SAML Authentication Works online. AuthO Inc. Available at:
https: / / j wt.io/introduction.

[8] I N C . , A . Authorization Code Flow with Proof Key for Code Exchange (PKCE) online.
AuthO Inc., 2024. Available at: https://authO.com/docs/get-started/
authentication-and-authorization-flow/authorization-code-flow-with-pkce.

[9] J O N E S , M . B . JSON Web Algorithms (JWA) R F C 7518. R F C Editor, may 2015.
Available at: https://doi.org/10.17487/RFC7518.

[10] J O N E S , M . B . ; B R A D L E Y , J . and S A K I M U R A , N . JSON Web Token (JWT) R F C 7519.
R F C Editor, may 2015. Available at: https://doi.org/10.17487/RFC7519.

[11] J O N E S , M . B . and H A R D T , D. The OAuth 2.0 Authorization Framework: Bearer
Token Usage R F C 6750. R F C Editor, October 2012. Available at:
https: //doi.org/10.17487/RFC6750.

[12] J O N E S , M . B . and H I L D E B R A N D , J . JSON Web Encryption (JWE) R F C 7516. R F C

Editor, may 2015. Available at: https://doi.org/10.17487/RFC7516.

[13] K E Y C L O A K . Keycloak Admin REST API online. Keycloak Authors, 2024. Available
at: https: //www.keycloak.org/docs-api/24.0.3/rest-api/.

47

http://open.org/
http://cerberauth.com/understanding-oauth2-
https://doi.org/10.17487/RFC5849
https://doi.org/10.17487/RFC6749
https://authO.com/docs/get-started/
https://doi.org/10.17487/RFC7518
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC7516
http://www.keycloak.org/docs-api/24.0.3/rest-api/

[14] K E Y C L O A K . Securing Applications and Services Guide online. Keycloak Authors,
2024. Available at:
https: //www.keycloak.org/docs/latest/securing_apps/#endpoints.

[15] K E Y C L O A K . Server Administration Guide online. Keycloak Authors, 2024. Available
at: https : //www.keycloak.org/docs/latest/server_admin/.

[16] R A G O U Z I S , N . ; H U G H E S , J . ; P H I L P O T T , R . ; M A L E R , E . ; M A D S E N , P . et al. Security
Assertion Markup Language (SAML) V2.0 Technical Overview online. 25. march
2008. Available at: https:

//docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html.

[17] S A K I M U R A , N . ; B R A D L E Y , J . ; J O N E S , M . B. ; M E D E I R O S , B . de and M O R T I M O R E , C .
OpenID Connect Core 1.0 online. The OpenID Foundation, 2014. Available at:
https: / / openid.net/specs/openid- connect- core- l_0.html.

[18] S E B A S T I A N E . P E Y R O T T , A . I. The JWT Handbook online. AuthO Inc., 2016-2018.
Available at: https://authO.com/resources/ebooks/jwt-handbook.

[19] S T E Y E R , M . Angular-oauth2-oidc Library online. Manfred Steyer. Available at:
https://manfredsteyer.github.io/angular-oauth2-oidc/docs/.

[20] V A P E N , A . Web Authentication Using Third-Parties in Untrusted Environments. 1st
ed. Linkopings Universitet, 2016. ISBN 9789176857533. Available at:
https: //ebookcentral.proquest.com/lib/vutbrno/detail.action?docID=30401342.

[21] Y E L U R I , R . and C A S T R O L E O N , E . Building the Infrastructure for Cloud Security.
1st ed. Apress L . P . , march 2014. ISBN 9781430261469. Available at:
http ://ebookcentral.proquest.com/lib/vutbrno/detail.action?docID=6422525.

18

http://www.keycloak.org/docs/latest/securing_apps/%23endpoints
http://www.keycloak.org/docs/latest/server_admin/
http://openid.net/
https://authO.com/resources/ebooks/jwt-handbook
https://manfredsteyer.github.io/angular-oauth2-oidc/docs/

Appendix A

Authorization Code Grant with
P K C E

Resource
Owner

Client
Application

Identity
Provider

1. Click login link

2. Generate
Code Verifier

and Code Challenge

3. Authorization Code Request
and Code Challenge

4. Redirect to login prompt

5. Authenticate arid Consent

6. Authorization Code

Authorization Code + Code Verifier

Resource
Server

3. Access Token

8 Validate Code
Verifier and Challenge

10. Request user data + Access Token

11. Response

Figure A . l : Authorization Code Grant with P K C E diagram.

19

Appendix B

Keycloak realm creation

= fMKEYCLOAK

Create realm
A realm manages a set of users, credentials, roles, and groups. A user belongs "to and logs into a realm, Realms are isolated f r o m one another and ca

nanage and authent icate the users that they control .

Drag a f i le here or browse t o upload Browse... Clear

Upload a JSON file

Figure B . l : Screenshot of Keycloak realm creation.

50

Appendix C

Keycloak client creation

= «»KEYCLOAK © admin T

demo •*
Clients > Client details

nO teS-pUb l iC -CHen t OpenID Connect Enabled © Act ion •• nOteS-pUb l iC -CHen t OpenID Connect Enabled © Act ion ••

Manage Clients are appl icat ions and services that can request authent icat ion of a user.

Set t ings Roles Client scopes Sessions Advanced

General settings

Client ID " © notes-publ ic-c l ient

Name © Public Client For Notes Appl icat ion

Description ©

Always display in Ul © Off

Access settings

Root URL ©

Home URL ©

Valid redirect URIs © ht tp : / / loca lhost :4201/*

Q Add valid redirect URIs

Revert

Figure C . l : Screenshot of Keycloak client creation.

J u m p to sect ion

| General sett ings

Access sett ings

Capabi l i ty config

Login sett ings

Logout sett ings

Cl ient scopes

Realm roles

Users

Groups

Sessions

Events

Realm set t ings

Authent icat ion

Ident i ty providers

User federat ion

51

http://localhost:4201/*

Appendix D

Keycloak mapper creation

© admin w

Client scopes > Client scope details > Mapper details

Audience
a4409e06 -a64 f -455d -a0c0 -520e1a53142b

Included Client

Audience ©

notes-pub lie-client

Included Custom

Audience ©

Add to ID token ©

Add to access token

®

Add to lightweight

access token ©

Add to token

introspection ©

(_ 9 off

c
 0n

Figure D . l : Screenshot of Keycloak mapper creation.

52

Appendix E

Functional Architecture

Resource
Owner

Client
Application A

1. Click login link

Client
Application B

Identity
Provider

Resou rce
Server A

2. Authorization Code Request

Redirect to login prompt

4, Authenticate and Consent

8. Stars
session
identity
in the

browser

5. Authorisation Code

>s Token A

8. Stars
session
identity
in the

browser

6. AuthoriJ ation Code

>s Token A

8. Stars
session
identity
in the

browser

7. Access Token A and ID Token

>s Token A

8. Stars
session
identity
in the

browser

9. Reques t user data A + Acce: >s Token A

12. Click

9. Reques t user data A + Acce: >s Token A

12. Click

11. Response

. Verify Access Token A

12. Click

11. Response

12. Click login link

13. Get session identity From cookie

14. Provide session

15. Access Token B

16. Request user data B + Access Token B

17. Verify Access

18. Response

Token B

Resource
Server B

Figure E . l : Functional Architecture Diagram.

53

Appendix F

Notes Applicat ion Use Case
Diagram

Figure F . l : Notes Application Use Case Diagram.

54

Appendix G

Customers Applicat ion Use Case
Diagram

Figure G . l : Customers Application Use Case Diagram.

55

Appendix H

User's Profile Page with ID token

OIDC Token:

eyJhbGciOiJSUzl1NilslnR5cClgOJAJSIdUliwia2lkliA6l
CJmYmRNc2ZOTmxpU285My1lcEQ4Wm44RrriFHcD
IPYUVXZC10dEQ2OWZpSUJVIn0.eyJleHAiOjE3MTU
yMjM3NDQslmlhdCI6MTcxNTIyMzQ0NCwiYXV0aF9
0aW1llj"oxNzE1MjlyNTMyLCJqdGkJOJI0NjhlZTc1NS02
YjhjLTQyOTktOGRIZi0yMjM2ZWQ5MGMxNTkil_CJpc
3MiOiJodHRwOi8vbG9jYWxob3N0OjgwODAvcmVh
bG1zL2RlbW8iLCJhdWQiOiJmcm9udGVuZC1wdWJs
aWMtY2xpZW50liwic3ViljoJMGZjY2lyYjAtZWIwOS00
NDFILThmYzYtMDY1MjM4NGViZGRilJwJdHlwljoiSUQi
LCJhenAiOUmcm9udGVuZC1wdWJsaWMtY2xpZW5
0Nwibm9uY2UiOJJTMUoxTnpaV2VVSTBTekJzTlhWT
2FVVk5iazFxWIZsZINsOWxiV2Q2U2xaaFExWnJjWE
EOTIhwTUOwOXEiLCJzZXNzaW9uX3NOYXRIIjoiNzR
mM2VjN2ltYWQ2Zi00ZTg5LTkwNjQtOTc3Mjg1MGF
mMjE3liwJYXRfaGFzaCI6lmFNanlEcUQ2UWR3bnhG
bG5PRW45VkEiLCJhY3NOilxliwic2lkljoiNzRmM2VjN
2ltYWQ2ZJ00ZTg5LTkwNjQtOTc3Mjg1MGFmMj"E3liw
iZWIhaWxfdmVyaWZpZWQiOnRydWUsInJvbGUiOls
ib2ZmbGluZV9hY2Nlc3MiLCJBRE1JTilslnVtYV9hdX
Rob3JpemF0aW9uliwiZGVmYXVsdC1yb2xlcy1kZW1
vll0slnJIYWxtX2FjY2Vzcyl6eyJyb2xlcyl6WyJvZmZsa
W5IX2FjY2VzcylslkFETUIOIiwidW1hX2F1dGhvcml6Y
XRpb24iLCJkZWZhdWx0LXJvbGVzLWRIbW8iXX0sl
m5hbWUiOiJNYWtzeW0gS292YWwiLCJwcmVmZXJ
yZWRfdXNIcm5hbWUiOUtYXgiLCJnaXZIbl9uYW1lljo
iTWFrc3ltliwiZmFtaWx5X25hbWUiOJJLb3ZhbClslmV
tYWIsljoibWF4QGdtYWIsLmNvbSJ9.nmRWISX2VAL
hbTQDDS_lowlhVgvhWqZ6B0xlvJma-
PZ04Hu1XXZYUcAu6QMaOEUvbqcDZOnKQR5rpJtA
YI8o74p0ibsuA2xJ9lr5DlizuUlvxlw_AWie368kM0Bd
3WQr2cihfLYS0CQWwCRaJMwyelphdjXRggzZqWvj
Y - URirnWI iiflYsfikrFnfNPI Fr.n-

Decoded OIDC Token:

{
"exp": 1715223744,
" i a t " : 1715223444,
"auth_time": 1715222532,
" j t i " : "468ee755-6b8c-4299-8def-2236ed90cl5!
" i s s " : "http://10.10B.144.36:8080/realms/dei
"aud": "customers-public-client",
"sub": "0fccb2b0-eb09-441e-Bfc6-0652384ebddl
"typ": "ID",
"azp": " c u s t o m e r s - p j b l i c - c l i e n t " ,
"nonce": "SlJlNzZWeUI0SzBsNXVOaUVNbklqZVlfS
"session_state": "74f3ec7b-ad6f-4eB9-9064-9;
"at_hash": "aMjyDqD6()dwnxFlnOEn9VA",
"acr": "1",
" s i d " : "74f3ec7b-ad6f-4e89-9064-9772850af2i;
" e m a i l _ v e r i f i e d " : true,
" r o l e " : [

" o f f l i n e _ a c c e s s " ,
"ADMIN",
"uma_authorization",
"default-roles-demo"

],
"realm_access": i

" r o l e s " : [
"o f f l i n e _ a c c e s s " ,
"ADMIN",
"uma_authorization",
"default-roles-demo"

I
},
"name": "Haksym Koval",
"preferred_username": "max",
"given_tiame": "Maksym",
"family_name": "Koval",
"email": "max@gmail.com"

Figure H . l : Screenshot of a part of a user's profile page with his ID token.

56

http://10.10B
mailto:max@gmail.com

Appendix I

Postman Applicat ion Screenshot

My W o r k s p a c e New Import < |c POST R e d * CET Get t • CET Get t • P O ü P o s « C > + No environmen!

n

E
FJurlronmantS

•9
History

J Asse t

J Cus tomer

v Keycloak

POST Get taken

POST In t rospect token

N 0 POST Logout
n +

POST Ref resh t o k e n

GET New Request

OET New Request Copy

OCT N e w Request

) Log Level

v Note

OFT Get All

OET Get All API

OCT GetBy ld

OCT GetByOwner

POST Post data

DEL Delete data

PUT Upda te data

> Port fo l io

ID © O n l i n e Q Find and replace D Console

UÜE Nc te • Get All if 0

GEI hltpztflO.111_2.163:Saa2/nrjtes

3 a r a m s Auth • Headers (7) Body Pre- req . T e s t s « Set t ings

Query Params

Key

Key

Value

Value

Desc r i p t i on

Descr ip t ion

Pret ty

§ J 401 Unauthorized 231 ms 609 B

401 Unauthorized

Similar to 403 Forb idden, bu t speci f ica l ly for use
when authent ica t ion is poss ib le but has fai led or
not yet been prov ided. The response must
include a WYuW-Aulhent icate header f ielc
c^ i r .d in iny a cr-allsiiLie a p a l i c a b e Ic the
reques ted resource.

I Save as example

B Q

£5 Postbot 0 Runner t£ Start Proxy © Cookies |M| Trash Hü

Figure 1.1: Screenshot from Postman application with 401 Unauthorized response.

57

