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ABSTRACT 
Modelling of turbine performance is a prerequisite for detailed simulation of gas 
exchange in turbocharged combustion engines. At the same time, the possibility 
to determine efficiency and mass flow capacity at arbitrary operating points is key 
to comparing different turbine stages. The objective of this work is to propose a 
single method for both purposes, so it is possible to do the comparison using 
exactly the same turbine performance model as in subsequent engine working 
cycle simulation. The source of input data is typically a gas stand measurement, 
which enables capturing of limited turbine operating range only. In this work, 
methods are proposed to improve the fidelity and robustness of turbine 
performance extrapolation, while optimization is employed to find the best fit in 
terms of agreement between the model and the input data. 

ABSTRAKT 
Modelování turbínových charakteristik je nutným předpokladem pro detailní 
simulaci výměny náplně válce turbodmychadlem přeplňovaných spalovacích 
motorů. Kromě toho je možnost stanovení účinnosti a průtokové kapacity 
v libovolných pracovních bodech klíčová pro porovnání různých turbínových 
stupňů. Cílem této práce je předložit jednotnou metodu pro oba účely tak, aby 
bylo možné provést porovnání použitím přesně stejných modelů turbín jako při 
následné simulaci pracovního oběhu motoru. Zdrojem vstupních dat je obvykle 
měření na plynové zkušebně, které však umožňuje zachycení pouze omezeného 
pracovního rozsahu turbíny. V této práci jsou navrženy metody umožňující 
zvýšení věrohodnosti a robustnosti extrapolace turbínových charakteristik, 
přičemž optimalizace je využita k určení takových parametrů hledaných funkcí, 
které vedou k nejlepší shodě mezi modelem a vstupními daty. 
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ROZŠÍŘENÝ ABSTRAKT 
Disertační práce se zabývá problematikou prokládání a extrapolace charakteristik 
turbodmychadlových turbín. Tyto mohou být získány například měřením na 
plynovém zkušebním zařízení (tzv. gas stand), turbínovém dynamometru nebo 
predikcí prostřednictvím CFD. Ve všech uvedených případech je výstupem 
soubor ustálených pracovních bodů mapující určitý rozsah provozních podmínek. 
Inženýrské aplikace však vyžadují, aby bylo možné stanovit vlastnosti turbíny 
v libovolném pracovním bodě. Typickým příkladem je porovnání účinností dvou 
různých turbín, které je třeba provést pro určitý expanzní poměr a korigované 
otáčky. Extrapolace pak hraje zásadní roli zejména při simulaci pracovního oběhu 
přeplňovaného spalovacího motoru. Turbodmychadla automobilů zpravidla 
pracují s výrazně pulsujícím přívodem spalin, který je dán počtem válců a 
otáčkovou frekvencí motoru. V takovém případě během jednoho pracovního 
cyklu výrazně kolísá expanzní poměr na turbíně, zatímco její otáčky se kvůli 
vysoké rychlosti celého děje téměř nemění. Simulační software proto musí mít 
možnost určit účinnost a hmotnostní průtok turbínou v širokém rozpětí pracovních 
podmínek, které zpravidla výrazně překračuje měřitelný rozsah na konvenčních 
zkušebních zařízeních. 

Cílem práce je vytvořit aplikaci, která umožní uživateli automatizovanou tvorbu 
modelu turbíny na základě zadaných měřených dat a následné zpracování všech 
údajů. To zahrnuje, mimo jiné, vizualizaci extrapolovaných charakteristik, jejich 
porovnání a export pro použití v simulačních programech. Jako vývojové 
prostředí je zvolen MATLAB™. Mezi jeho výhody patří podpora návrhu aplikací s 
grafickým uživatelským rozhraním, knihovna předpřipravených ovládacích a 
zobrazovacích prvků nebo možnost spuštění kódu bez předchozí kompilace. 
V prvním kroku je analyzována metoda extrapolace turbínové mapy využívaná 
v průmyslově rozšířeném nástroji pro simulaci pracovního oběhu přeplňovaného 
spalovacího motoru GT-SUITE™. Vzhledem ke komerční povaze daného 
software však není příslušný algoritmus detailně zdokumentován v dostupných 
informačních zdrojích. Proto je nutné implementovat jednotlivé fáze procesu 
s použitím vhodných numerických postupů. 
Klíčovým aspektem zkoumané metody je identifikace pracovních bodů, ve 
kterých turbína pracuje s maximální účinností. Výstupem je závislost optimálních 
korigovaných otáček na expanzním poměru. Tyto body však obecně nejsou 
obsaženy mezi výsledky měření na zkušebních zařízeních, a proto musí být 
parametry prokládaných funkcí odhadnuty. Předmětný model turbíny je tvořen 
pěti charakteristickými funkcemi, ze kterých tři popisují provoz s maximální 
účinností a dvě extrapolaci do oblastí s nižší účinností. Zatímco parametry 
určující extrapolaci do sub-optimálních pracovních režimů lze odhadnout pomocí 
lineární regrese, závislosti spojené s provozem při maximální účinnosti jsou 
nelineární a musí být stanoveny pomocí optimalizačních metod. 

V navržené implementaci výchozí metody prokládání a extrapolace turbínových 
map je využíván postup cyklické optimalizace, při které jsou nejprve hledány 
parametry lineární funkce aproximující optimální rychlostní poměr turbíny 
v závislosti na expanzním poměru. V druhém kroku je zpřesňován splajn 
charakterizující maximální účinnost v závislosti na korigovaných otáčkách. Třetí 
krok zahrnuje tutéž proceduru pro optimální korigovaný průtok. Celý proces se 



opakuje, dokud není splněna podmínka pro ukončení optimalizace. Účelovou 
funkcí je střední kvadratická odchylka měřených pracovních bodů od modelu 
turbíny, která je postupně minimalizována. 
Kvalita získaného modelu turbíny je hodnocena metodami statistické analýzy a 
vizuální kontrolou plně extrapolovaných map účinnosti a korigovaného 
hmotnostního průtoku. V prvním případě je studován rozdíl mezi měřenými daty 
a numerickým modelem, přičemž jsou vyhodnoceny minimální, maximální, 
průměrná, mediánová, průměrná absolutní a střední kvadratická odchylka. 
Vizuální kontrola pak slouží především k odhalení případné deformace 
očekávaných průběhů sledovaných veličin v extrapolovaných oblastech 
vygenerovaných map. Právě druhý z uvedených postupů umožnil identifikaci 
nežádoucího zkreslení průtokové charakteristiky vzorové radiální turbíny v oblasti 
nízkého expanzního poměru, kde se očekává výrazný pokles hmotnostního 
průtoku s rostoucími otáčkami působením odstředivých sil (vstupní data byla 
získána měřením na plynovém zkušebním zařízení). 

V důsledku výše popsaného pozorování je prozkoumána možnost použití teorie 
radiální rovnováhy v rotující tekutině pro stanovení závislosti expanzního poměru 
na otáčkách turbíny při nulovém hmotnostním průtoku. Tímto způsobem lze 
analyticky vyčíslit jeden ze dvou nezávislých parametrů charakteristické funkce 
určující extrapolaci korigovaného hmotnostního průtoku. Současně však dochází 
u vzorové turbíny ke zkreslení extrapolace při vysokém expanzním poměru. 
Zatímco odchylka měřených bodů od modelu zůstává nízká, křivky konstantních 
otáček jsou v této oblasti zhuštěny, což opět odporuje očekávanému trendu 
s účinkem odstředivých sil (korigovaný hmotnostní průtok by měl klesat 
s rostoucími otáčkami turbíny). 
Pro hlubší pochopení sledovaného fenoménu je zkoumána analogie mezi 
průtokem turbínou a izoentropickým výtokem ideální tryskou. Zásadní roli zde 
hraje především bod zahlcení, který souvisí s dosažením rychlosti zvuku 
v nejužším místě ideální trysky a má za následek limitaci korigovaného 
hmotnostního průtoku. Reálná turbína sice nemá parametry ideální trysky, lze 
však konstatovat, že při určitém expanzním poměru dosáhne proudící plyn 
v některé části turbínového stupně rychlosti zvuku a s tím souvisejícího zahlcení. 
Při nulových otáčkách turbíny navíc hmotnostní průtok neovlivňuje účinek 
odstředivých sil v rotoru. Současně lze poukázat na skutečnost, že korigovaný 
hmotnostní průtok při nulových otáčkách je určen jako násobek optimálního 
korigovaného hmotnostního průtoku. Ve stavu zahlcení tudíž musí mít korigovaný 
hmotnostní průtok konstantní průběh jak pro nulové, tak pro optimální otáčky 
turbíny. Tento závěr je však v rozporu s topologií charakteristické funkce modelu 
turbíny popisující optimální rychlostní poměr. Vzhledem ktomu, že se jedná 
zpravidla o neklesající lineární funkci, optimální korigované otáčky rostou 
s expanzním poměrem. 

Aby mohl korigovaný hmotnostní průtok při optimálních otáčkách zůstat 
konstantní, křivky konstantních korigovaných otáček turbíny by se musely 
asymptoticky sbližovat s rostoucím expanzním poměrem, což neodpovídá 
provedenému měření. Navíc, pokud by byla teorie radiální rovnováhy použita pro 
aproximaci účinku odstředivých sil za podmínek nenulového hmotnostního 
průtoku, výsledný vztah by byl nezávislý na expanzním poměru (tzn. křivky 
konstantních korigovaných otáček by byly při zahlcení turbíny paralelní). Jedinou 



možností, jak současně splnit všechny uvedené podmínky, je limitace optimálních 
korigovaných otáček v okamžiku zahlcení průtoku turbínou. 
Druhá část práce se zabývá návrhem nového modelu turbíny, který zohledňuje 
režim zahlcení a umožňuje limitaci maximálních korigovaných otáček. Hlavní 
změnou oproti referenčnímu modelu je náhrada lineární charakteristické funkce 
popisující optimální rychlostní poměr splajnem, jehož hodnota je nad kritickým 
expanzním poměrem konstantní. Současně je upravena funkce pro výpočet 
rychlostního poměru tak, že se v okamžiku zahlcení využívá kritická izoentropická 
výtoková rychlost. Díky tomu jsou konstantní také optimální korigované otáčky 
turbíny za konstantního optimálního rychlostního poměru při zahlcení. 
Na tomto místě je vhodné poukázat na skutečnost, že rychlostní poměr je také 
měřítkem pro zatížení turbíny. Tedy optimální rychlostní poměr lze interpretovat 
jako optimální otáčky pro určitý expanzní poměr, které společně představují 
optimální zatížení. Změna otáček naopak vede ke zhoršení účinnosti, což je dáno 
zejména odchýlením od ideálního náběžného úhlu proudění na lopatkách turbíny. 
V režimu zahlcení průtoku je rychlost proudění vstupujícího do turbínového kola 
nezávislá na celkovém expanzním poměru, takže pro dosažení ideálního úhlu 
náběhu by měly být konstantní také otáčky turbíny. Z toho důvodu lze považovat 
postup limitace optimálních korigovaných otáček turbíny při zahlcení průtoku za 
oprávněný. 
Nový model turbíny je testován v pěti fázích. Nejprve je použit pro aproximaci 
vzorových dat získaných měřením na plynovém zkušebním zařízení. V tomto 
případě došlo k podstatnému snížení střední kvadratické odchylky mezi zadanou 
a modelovanou účinností, na straně hmotnostního průtoku se odchylka mírně 
zvýšila. Zásadní je však průběh extrapolovaného korigovaného hmotnostního 
průtoku, který nyní splňuje požadavky na rozlišení účinku odstředivých sil a 
režimu zahlcení. 
V druhém kroku je algoritmus ověřen na datech získaných měřením na 
turbínovém dynamometru, kdy byla opět dosažena velmi dobrá shoda s modelem 
včetně očekávaných průběhů extrapolovaného korigovaného hmotnostního 
průtoku. 
Třetí fází je vykreslení složených grafů mapujících účinnost a průtokovou 
kapacitu pro různé velikosti turbínových stupňů. Tímto způsobem je nový 
aproximační algoritmus ověřen na desítkách map, přičemž získané průběhy 
sledovaných veličin potvrzují očekávané trendy maximální účinnosti v závislosti 
na velikosti rozváděči spirály (tzv. A/R parametru) a turbínového kola. 
Čtvrtou fází je import získaných modelů vzorové turbíny měřené na plynovém 
zkušebním zařízení a dynamometru do programu pro simulaci pracovního oběhu 
přeplňovaného spalovacího motoru (GT-SUITE). Na základě porovnání 
extrapolovaných charakteristik získaných modelováním výchozí metodou 
programu GT-SUITE a navrženým algoritmem lze konstatovat, že obě metody 
dosáhly podobného výsledku v případě dat pocházejících z plynového 
zkušebního zařízení, větší rozdíl je však patrný u mapy měřené na dynamometru. 
S výchozím algoritmem lze u obou map pozorovat zhuštění křivek konstantních 
korigovaných otáček v průtokových charakteristikách při nízkém expanzním 
poměru, což značí potlačení efektu odstředivých sil. V případě mapy získané 
měřením na dynamometru je navíc patrný náhlý propad účinnosti v oblasti 



nízkých korigovaných otáček, který je způsobený absencí měřených pracovních 
bodů s maximální účinností. Dále jsou mezi oběma metodami patrné odchylky 
v extrapolaci korigovaného hmotnostního průtoku při vysokém expanzním 
poměru, což lze přičíst absenci režimu zahlcení u výchozího algoritmu. 
V poslední fázi testování jsou připravené modely turbíny využity pro simulaci 
pracovního oběhu přeplňovaného spalovacího motoru pracujícího ustáleně při 
plném zatížení a v přechodových režimech. V případě map získaných měřením 
na plynovém zkušebním zařízení lze konstatovat dobrou shodu výkonových 
parametrů motoru v obou pracovních režimech pro novou i výchozí metodu 
aproximace. Při použití dat obdržených měřením na turbínovém dynamometru 
však dochází k výraznému zpomalení nárůstu točivého momentu motoru 
v přechodových režimech s výchozím modelem turbíny, které je dáno zkreslením 
účinnosti při nízkých korigovaných otáčkách. Rozdíly jsou však patrné i 
mezi dosaženým točivým momentem motoru při ustáleném provozu s plným 
zatížením v nízkých otáčkách. 

Vytvořená metodika umožňuje přípravu numerických modelů turbínových stupňů 
na základně experimentálních dat získaných měřením na plynovém zkušebním 
zařízení nebo turbínovém dynamometru. Pro usnadnění celého procesu byla na 
platformě MATLAB vyvinuta aplikace s grafickým uživatelským rozhraním, která 
disponuje nástroji jak pro vizualizaci a porovnání samotných charakteristik, tak 
pro jejich export za účelem následné simulace pracovního oběhu přeplňovaného 
spalovacího motoru ve specializovaných programech. Proces tvorby modelu je 
přitom automatizovaný a robustní vůči proměnlivosti měřených dat. Díky 
implementaci SQLite databáze je navíc aplikace připravena pro správu většího 
množství vstupních údajů i hotových modelů, které lze kombinovat s cílem 
mapování trendů napříč produktovým portfoliem. 

V rámci budoucího rozvoje práce se očekává zejména zpřesnění charakteristické 
funkce modelu turbíny, která popisuje optimální rychlostní poměr v závislosti na 
expanzním poměru. Podle současné definice je příslušný splajn složen ze tří 
částí, přičemž zakřivení středního úseku je řízeno pouze předepsanými prvními 
derivacemi v koncových bodech daného intervalu. Dalším krokem bude 
rozšíření podporovaných technologií na straně turbíny, jako jsou variabilní 
geometrie rozváděčích lopatek, zdvojená rozváděči spirála apod. V širším 
časovém horizontu bude přínosné navázat na soudobý trend odděleného řešení 
některých aspektů modelování turbodmychadla. Jedná se především o přestup 
tepla mezi jednotlivými součástmi, pracovními médii a okolím, ale také o třecí 
ztráty v uložení rotoru. Účinky těchto procesů jsou za normálních okolností 
obsaženy v mapách získaných měřením na plynové zkušebně, a proto musí být 
odebrány před zahájením takto rozšířených simulací. 
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INTRODUCTION 
Turbocharged combustion engines represent, as of today, the main building block of 
most road vehicle powertrains. Ranging from the smallest to the largest, they can be 
found in all passenger and freight means of transport, as well as in off-highway and 
stationary applications. In the context of increasing climate protection efforts, it is of 
high importance to sustain continuous improvement of our technologies. This is only 
made possible by means of accurate simulation tools, which allow engineers to predict 
the impact of their innovative ideas. 

Modelling of turbocharger performance is an important part of combustion engine 
development. Although working solutions are integrated in existing commercial 
software to enable simulations of boosted engine working cycles, tools for post­
processing of measured or CFD predicted data are less common. Therefore, the main 
objective of this work is to develop an application that will allow engineers to visualize 
and compare the performance of different turbine stages. To study the trade-offs 
between efficiency and corrected mass flow rate at equal operating conditions, 
however, the scattered input data must be fitted by a mathematical model. 

Contemporary industrial solutions include algorithms of diverse complexity. Simple 
algebraic models (e.g. Jensen et al. [17]) are commonly applied for control purposes, 
because they can be evaluated quickly even on low-power machines such as engine 
ECU's. Non-linear models, on the other hand, are used in simulation software (e.g. GT-
SUITE™ [23]) and their biggest advantage is more accurate extrapolation. The most 
complex type is based on a mean-line turbine design theory (e.g. RITAL™ [26]), which 
uses physics principles to determine the average flow conditions in each part of a turbine 
stage. While such models enable physically accurate extrapolation, their biggest 
disadvantage is the requirement of detailed geometrical inputs. 

The application in development will be equipped with a non-linear turbine performance 
model, the properties of which will be identified using optimization techniques. 
MATLAB™ is selected as the development environment, because it is suitable for both 
functional coding and graphical user interface design. In addition, an SQLite database 
will be used as storage for raw measured data and fitted models to facilitate database 
operations such as searching, filtering, or aggregation. To make sure engine 
performance is predicted using the same turbine model, an export function will be 
integrated. By this, it will be possible to generate fully extrapolated maps to be imported 
in engine simulation software (in the so-called grid format in the case of GT-SUITE). 

Another advantage of the implementation of a database system is that it will make it 
possible to study trends spanning multiple turbine stages of varying properties, like e.g. 
the relationship between the maximum efficiency and the wheel size within the 
portfolio of certain aerodynamic design. To enable the creation of such a chart, 
however, the database will have to be filled with a set of fitted turbine maps covering 
not only the complete range of wheel diameters, but also some span of volute sizes 
(described by the so-called A/R parameter). Due to this, it will be possible to estimate 
the maximum efficiency achievable with each wheel size. 

Finally, engine performance will be simulated using turbine models fitted by both the 
default and proposed methodologies. 
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1 THEORETICAL BACKGROUND 
Modelling of turbine performance of automotive turbochargers is a complex, multi-
disciplinary task. It spans the fields of turbomachinery, combustion engines, 
mathematics and computer programming. The product is, nevertheless, indispensable 
for engineering simulations and related operations, like the comparisons of turbine 
efficiency and mass flow capacity. In this work, an application is developed, the purpose 
of which is to facilitate pre-processing of measured turbine characteristics, so it is easier 
to select the best candidate for matching to a combustion engine. The basic concepts 
required to achieve this goal are explained in the following chapters. 

1.1 Turbocharging 
Turbochargers belong to a group of machines called turbomachinery. Their purpose is 
to transform the available energy of a flowing fluid into mechanical work on a shaft and 
vice versa. While the earlier is done by a turbine, the latter is the job of a pump (liquids) 
or a compressor (gases). A typical turbocharger consists of a turbine and a compressor, 
both of which are mounted on the same shaft (see Figure 1). 

The task of a turbocharger is to push air into the cylinders of a combustion engine, so it 
can burn more fuel and produce more power. The proportion between the amounts of 
air and fuel in the mixture is given by the stoichiometric ratio and the excess air ratio. 
Under these conditions, the engine power output can be expressed as [1, 3, 5] 

' • H e a t Housing 
Shield 

11. Piston 
Ring Seals 

Figure 1: Turbocharger section view [21] 

(1) 

where Pe [W] is the engine brake power, r\e [-] is the overall engine efficiency, rhair [kg/s] 
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is the air mass flow rate, Hu [J/kg] is the fuel lower heating value, Lt [-] is the 
stoichiometric ratio and A [-] is the air excess ratio. While a stoichiometric ratio 
determines the ideal amount of fuel that can be completely burned with a certain 
amount of air, a lambda is the extent to which the actual air charge exceeds or falls 
behind the theoretical demand. It is common that petrol engines (spark-ignited) are 
operated mostly close to the stoichiometric conditions, whereas diesel engines 
(compression-ignited) are always running lean (with air excess). The average air mass 
flow through a piston engine depends on several factors, including the intake air density 
and the total cylinder displacement [1, 2, 3] 

rrir. VvPintVd 
6 0 T 

(2) 

where r\v [-] is the volumetric efficiency, pint [kg/m3] is the intake air density, Vd [m3] is 
the total cylinder displacement, T [-] is the number of crankshaft revolutions per one 
engine cycle (a four-stroke engine needs two revolutions) and ne [1/min] is the engine 
speed. Volumetric efficiency is a factor that represents the effect of valve timing 
combined with the dynamics of the intake and exhaust gases, all of which influence the 
amount of charge trapped in the cylinders. It can be determined either experimentally, 
or by simulation (e.g. using ID engine gas dynamics software). The quantity that can be 
influenced by a turbocharger is the intake air density. Based on the ideal gas equation 
of state, it depends on the pressure and temperature of the intake air [1, 2, 3, 5, 9] 

Pint 
P in t 

' air1 int 
(3) 

where pint [Pa] is the intake air pressure, rair [J/(kg-K)] is the specific gas constant and 
Tint [K] i s the intake air temperature. A compressor adds energy to the intake air flow 
by increasing its pressure and temperature. A common practice is to cool the flow down 
in a heat exchanger placed upstream of the cylinder head, making the density grow even 
higher (see Figure 2). The power needed to drive the compressor is generated by the 
turbine, which is propelled by exhaust gases created as a product of combustion in the 
engine. The transfer of mechanical power is performed by a shaft. [2, 3, 5] 

Figure 2: Turbocharged engine gas flow scheme [3] 

12 



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines 

1.1.1 Working principle of turbomachinery 
Turbomachinery enables power transfer between a flowing fluid and the shaft. The solid 
parts in interaction with the working gas or liquid are typically the blades; however, 
bladeless machines exist too (e.g. the Tesla turbine). A blade row forms channels 
between each pair of blades that the working fluid must pass through and, due to the 
blade curvature, changes its direction of flow (see Figure 3). By that the vector of 
momentum of the flowing fluid is changed, which is linked to a force according to 
Newton's second law of motion [2, 4] 

Ff = 
dH f 
dt 

(4) 

where Fj [N] is the vector of force acting on the fluid, Hf [kg-m/s] is the vector of 
momentum of the fluid passing through the blade channels, t [s] stands for time. 

control volume 

Quantities: 
u - wheel circumferential velocity at the mean-flow radius 
c - absolute gas velocity (stationary frame of reference) 
w - relative gas velocity (rotating frame of reference) 
F - aerodynamic force acting on the blade row 

Indices: 
1 - wheel inlet 
2 - wheel outlet 
r - rad ia l 
u -c i rcumferent ia l 
a -ax ia l 

Figure 3: Radial turbine wheel cross-section (A) and velocity triangles in an unfolded 
blade row view (B) 

According to Newton's third law of motion, the fluid and the blade channel walls are 
subjected to forces of the same magnitude, yet acting in opposite directions [2,4] 

F = —F r (5) 

where F [N] is the vector of force acting on the blade channel walls. To get the full 
information about the aerodynamic pressure distribution on the blades, a CFD solver 
would be needed. In the early stages of turbomachinery design, the aim is usually to 
determine the overall force acting on the blading, which can be obtained as the sum of 
momentum fluxes entering or exiting the control volume (see Figure 3) [2, 4] 
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Ff overall ~ ^ Hft (6) 
i 

where Ff_overall [N] is the vector of force acting on the fluid in the control volume, i [-] 
is the index of each control volume inlet or outlet area. A momentum flux is defined as 
the amount of momentum entering or leaving the control volume per unit of time [2, 4] 

Hf = vac (7) 

where Hf [kg-m/s2] is the momentum flux, rh [kg/s] is the mass flow rate, c [m/s] is the 
vector of fluid velocity in the stationary frame of reference (assumed constant). In the 
case of a blade channel, there is one inlet and one outlet flow (see Figure 3). For the 
initial aerodynamic assessment, it is common to reduce the inlet and outlet areas to the 
so-called mean-flow points (see points 1 & 2 in Figure 3). The average fluid velocity and 
density are considered in each. This is also referred to as the mean-flow design. The 
overall momentum flux through the control volume is calculated as [2, 4] 

Hf_overall = lh\C\ + ^ 2 C 2 (8) 

where Hf overall [kg-fn/s] is the overall momentum of the fluid enclosed in the blade 
channels, 7% [kg/s] is the inlet mass flow rate, rh2 [kg/s] is the outlet mass flow rate, 
c x [m/s] is the vector of speed in the inlet to the control volume, c2 [m/s] is the vector 
of speed in the outlet from the control volume. In engineering applications, power 
transfer on the shaft is sought for in the first place. It can be calculated as a product of 
torque acting on the rotor and the angular velocity of the shaft [2, 4] 

Pshaft = Ma) (9) 

where PShaft [W] is the shaft power, M [N-m] is the vector of torque acting on the rotor, 
ft) [rad/s] is the rotor angular velocity. The torque on the blading is of the same size, but 
acting in the opposite direction compared to the overall torque acting on the working 
fluid. Following the mean-flow design approach, it can be determined at the inlet and at 
the outlet points as (see Equations 5, 6 and 8) [2, 4] 

M = -(rh1c1 xr1+ rh2c2 x r 2 ) (10) 

where rt [m] is the vector of inlet mean-flow radius and r2 [m] is the vector of outlet 
mean-flow radius. In the case of a radial turbine, the inlet mean-flow radius is one half 
of the maximum wheel diameter (see Figure 3). At the outlet, however, the mean-flow 
radius divides the annulus section in two parts of the same area (even distribution of 
mass flow is assumed). As each part is again an annulus, the mean-flow radius can be 
determined as a quadratic mean of the minimum and maximum radii [2, 4] 

1 
r 2 = 2 ( r 2 _ m t n 2 + r 2 _ m a x 2 ) 

where r 2 m i n [m] is the vector of hub radius at the outlet and r 2 [m] is the vector of 
blade tip radius at the outlet. Based on Equations 9 & 10, the shaft power is 

14 



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines 

Pshaft = - 0 % C i x rx + rh2c2 x r2)o) (12) 

Since vectors rx and r 2 are perpendicular to the shaft axis of rotation, Equation 12 can 
be simplified as follows 

Pshaft = + rh2c2u2) (13) 

where cul [m/s] is the circumferential component of fluid speed in the inlet to the 
control volume, ut [m/s] is the circumferential speed of the blading at the inlet to the 
control volume, cu2 [m/s] is the circumferential component of fluid speed in the outlet 
from the control volume and u2 [m/s] is the circumferential speed of the blading at the 
outlet from the control volume. Due to the conservation of mass 

mx = — rh2 (14) 

Putting Equations 13 and 14 together yields the Euler equation, which is also referred to 
as the basic equation of turbomachinery [2, 4] 

= -Ahtot = cuXux - cu2u2 (15) 
m 

where rh [kg/s] is the mass flow rate through a blade row, A / i t o t [J/kg] is the change of 
total enthalpy of the working fluid (at stagnation conditions, see Chapter 1.1.3). From 
Equation 15 follows that the power produced or consumed by a turbomachine depends 
on the change of swirl of the working fluid and the rotor speed. While the direction of 
flow is largely driven by the inlet and the outlet blade angles, the circumferential velocity 
of the rotor is closely related to the geometry of the stage. 

1.1.2 Main turbomachinery stage design features 
A typical automotive turbocharger consists of a radial compressor and a radial turbine, 
but there are other types of machines too, the distinguishing parameter of which is the 
main flow direction (see Figure 4). 

Figure 4: Turbine wheel types according to the main direction of flow (A - radial, 
B - mixed-flow, C - axial) 

In the case of a radial turbine, the inlet point is located at a bigger radius than the outlet, 
where the blade circumferential velocity is lower. It means that if there were an axial 
and a radial turbine with the same inlet point radii, gas and rotor angular velocities, the 
radial turbine would produce a larger specific power. [2, 3, 4, 5] 
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Another important implication of Equation 15 is that shaft power is proportional to the 
change of state of the working fluid, which is related to the total specific enthalpy 
difference. As the fluid is a gas on both the compressor and turbine sides, the process 
can be generally described as polytropic In the engineering praxis, however, it is desired 
to identify an ideal case to compare the real process with, so one can establish a gauge 
of efficiency. For this purpose, the isentropic process is usually used. [2, 3, 4, 5] 

Apart from the main flow direction, the volute design has a major implication on the 
overall performance of a turbomachine too. The so-called A/R parameter indicates the 
ratio between the volute cross section area and the distance from its centre of gravity 
to the axis of rotation (see Figure 5). It determines mainly the flow capacity, but there is 
certain impact on the efficiency too (see Chapter 5.3). [2, 3, 4, 5] 

Figure 5: Definition of the A/R parameter of a turbine volute (r is the distance from the 
axis of wheel rotation to the centre of gravity of the area A) [3] 

Another feature, which is widely used to calibrate the stage flow capacity of both 
turbines and compressors, is the trim. It indicates the blade length at the smaller end of 
the wheel (compressor inlet or turbine outlet) and impacts the complete shroud contour 
(see Figure 6). [2, 3, 5] 

Numerically is the wheel trim defined as the ratio between the squares of the smaller 
and the bigger wheel diameter [2, 3, 5] 

maximum contour 

Figure 6: Definition of the wheel trim [5] 
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d2 

Trim = 100-7- ( 1 6) 

where Trim [%] is the wheel trim, dw [mm] is the smaller wheel diameter and Dw [mm] 
is the bigger wheel diameter. 

1.1.3 Static versus total quantities 
In thermodynamics, state quantities of fluid flows can be divided in two main groups, 
namely the static and the total (also referred to as stagnation). The concept of the total 
fluid property is derived from the idea of isentropic stopping of the flow, which, 
according to the Bernoulli's principle, is related to an increase of potential energy. In 
terms of enthalpy, the relationship can be written as [2, 9] 

c2 

htot=h + - (17) 

where htot [J/(kg-K)] is the total (or stagnation) specific enthalpy, h [J/(kg-K)] is the static 
specific enthalpy and c [m/s] is the flow velocity. For ideal gases applies [2, 9] 

h = cpT (18) 

where cp [J/(kg-K)] is the specific heat capacity at constant pressure. Therefore, the total 
temperature can be derived from Equation 17 [2, 9] 

c2 

Ttot = T + — (19) 

where Ttot [K] is the total (or stagnation) temperature and T [K] is the static 
temperature. The formula for the total pressure can be derived from Equation 19 based 
on the relationships of the isentropic process [2, 9] 

Ptot _ (Ttoty-i 
p \ T ) 

(20) 

where ptot [Pa] is the total (or stagnation) pressure, p [Pa] is the static pressure and 
Y [-] is the specific heat ratio (the Poisson's constant). Finally, the total density is 
obtained with help of the ideal gas equation of state [2, 9] 

Ptot (21) 

where ptot [kg/m3] is the total (or stagnation) density and p [kg/m3] is the static density. 

It is needed to emphasize that the above described relationships are representative of 
an ideal gas behaviour only. In the case of real gases, the molecular size is not negligible, 
which means they are not perfectly compressible. Furthermore, the latent heat of 
vaporization is absorbed or released during phase changes. For both these reasons, the 
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specific gas constant r, the specific heat ratio y and the specific heat capacities cp and 
cv are generally functions of the pressure and the temperature with real gases. [9] 

Turbochargers process two different gas mixtures. The atmospheric air is pressurized by 
the compressor, while turbines are propelled by the products of combustion (see 
Chapter 1.1). These are both gas phases, the state variables of which attain values far 
enough from the respective condensation points. Furthermore, the operating pressures 
are way below the order of magnitude, where the limited compressibility starts to be 
significant. Therefore, using of ideal gas models is reasonable and adopted throughout 
this work. Nevertheless, water vapor included in the atmospheric air may impact the 
actual change of enthalpy during experimental compressor characterizations (see 
further in Chapter 1.1.4). Humid air models can be used to account for this effect. 

1.1.4 Turbocharger performance mapping 
Performance mapping is a common way to assess the efficiency and the flow capacity 
of turbomachines. It can be done either experimentally or with help of simulation tools 
(e.g. CFD). The output is an indispensable resource for important engineering 
calculations, including the matching of a turbocharger to a combustion engine. 

Hot gas stand measurement is an industry standard process, in which a complete 
turbocharger is mounted on the test rig (see Figure 7). An electrically driven compressor 
delivers fresh air to a combustion chamber, where natural gas is burnt (600°C or more). 
Pressurized hot fumes propel the turbine making the rotor spin up, while the load of the 
compressor is controlled by throttling of its outlet flow. The final speed is a result of 
power balance on the shaft. [2, 3, 5] 

Chimney 

r-U pi, pit, In 

Drum (for fuel pressure 
control) 

—C*J 

Motorized valve 

Valve 

—• Measuring point 

Figure 7: Hot gas stand scheme [12] 

The test data is acquired at steady state conditions covering the largest feasible 
operating range of the attached turbocharger. Here, the primary limiting factor is the 
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compressor aerodynamic stability, which is constrained by the surge boundary in the 
low-flow region and by the choke on the opposite side. Mechanical properties of the 
wheel restrict the maximum spinning speed and the related maximum achievable outlet 
pressure. In the typical visualization of a compressor performance map, the total 
pressure ratio is plotted over the corrected mass flow rate (see chapter 1.1.7), however 
the volumetric flow rate can be assigned to the x-axis too (see Figure 8). On top of that, 
the isentropic efficiency is displayed as a contour or in the form of iso-lines. [2, 3, 4, 5] 

Volume flow V 

Figure 8: Compressor performance map, showing highlighted boundaries of the stable 
operating range, speed lines and iso-efficiency islands [5] 

The danger of the surge phenomenon is related to mechanical loading of turbocharger 
components. A loss of aerodynamic stability in one or more blade channels results in an 
unsteady local reversal of flow that is followed by oscillations of both mass flow rate and 
pressure ratio. Not only does this impact the stability of the attached engine operation 
but induces vibration and increased load on the bearing system too. A hard surge (high 
pressure ratio and speed) can even lead to a fast system failure caused by a contact 
between the compressor or the turbine wheels with their housings. [2, 3, 4, 5] 

In the case of a turbine, reduced mass flow rate (see Chapter 1.1.7) and efficiency are 
usually displayed as functions of expansion ratio in two separate diagrams (see Figure 9 
and Figure 10 respectively). Nevertheless, turbine efficiency can be plotted as a contour 
in the mass flow rate map too (see Figure 17). It is worth noting that the mass flow rate 
reduces with the increasing spinning speed at a constant expansion ratio. This effect is 
a consequence of the centrifugal force acting on the gas. It is most pronounced with 
radial turbines, where the main direction of flow is centripetal (see Figure 4). However, 
certain impact can be identified with axial turbines too, which is driven by the 
contraction of streamlines near the shroud wall (the blade tip area). [2, 3, 4, 5] 

An important aspect of the turbocharger mapping on a hot gas stand is the fact that 
turbine load is derived from a power balance with the compressor. It means that only 
such operating points can be measured, which allow the compressor to work steadily in 

max. permissible 
TC - speed 
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its stable operating area (see Figure 8). This typically restricts the measurable turbine 
performance map to narrow intervals of expansion ratio at each speed line. 

Total_to_Static Expansion Ratio (-) 
Figure 9: Turbine mass flow rate map with extrapolated speed lines obtained on a hot 

gas stand [15] 

In Figures 9 and 10, extended speed lines are displayed to illustrate the extrapolation 
into the full range of expansion ratio. 

1 1.5 2 2.5 3 3.5 
Total_to_Static Expansion Ratio (-) 

Figure 10: Turbine efficiency map with extrapolated speed lines (hot gas stand) [15] 

Turbine dynamometer is often utilized as an alternative to the hot gas stand 
measurement for its advantage in the complete independence of the compressor. A 
turbine stage alone is mounted on an electric generator, which controls the load (see 
Figure 11). The output performance map is, however, not directly comparable to the 
one obtained on a hot gas stand due to the large difference in the turbine operating 
conditions. Firstly, the propellant gas is usually a moderately heated air (~100°C to avoid 
freezing at the outlet). Furthermore, the lower temperature gradient results in a lower 
heat loss to the environment. On a hot gas stand, turbine efficiency is calculated based 
on the power balance with the compressor, the efficiency of which is determined using 
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the boundary pressures and temperatures (see Equation 26). The measurement of the 
compressor outlet temperature is, however, influenced by the heat transfer from the 
coolant, oil or the turbine stage. As a result, the compressor efficiency at low spinning 
speeds appears lower (the compressed air temperature is lower than the coolant 
temperature) and the calculated turbine efficiency appears higher (see [19]). Bearing 
friction is typically included in the so-called turbine thermo-mechanical efficiency, as it 
is difficult to be isolated on a hot gas stand. A dynamometer, on the contrary, enables 
direct shaft power measurement, so the output efficiency corresponds more closely to 
the actual turbine aerodynamic performance. [3] 

Orifice plate Main flow 
control valve 

P.To 

- 0 -

Twin entry 
control valves P.To 

0 -

P.To 

^ pulse 

Pulse 
generator 

Air filter 

Po, P. T 0, 
Velocity 

Po, P, T0,| 
Velocity * 

N turbine 

Dynam­
ometer 

Turbine 

Orifice plates 

Figure 11: Turbine dynamometer with a pulse flow generator [3] 

The main benefit of a turbine dynamometer measurement, nonetheless, is the 
possibility to capture the performance in much wider range of expansion ratio at each 
speed line (see Figure 12). As there is no compressor with constrained stability of 
operation, the true limit is the measurable range of required thermodynamic quantities 
(the temperature, the pressure and the mass flow rate). 

1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5 

Expansion Ratio [-] Expansion Ratio [-] 

Figure 12: Turbine map obtained on a dynamometer (source: Garrett Motion Inc.) 

CFD simulation is the third most common way a turbine performance map can be 
produced. In contrast to the first two options, numerical assessment is not limited by 
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the machine size, nor measurable operating conditions. On the other hand, predicted 
turbine performance is always only an approximation of reality and must be used with 
caution. Despite that, it is a convenient way to assess different designs in early stages of 
development mainly for the possibility to isolate the aerodynamic performance from 
any disturbances related to the actual machine operation. Furthermore, the detailed 
spatial resolution of flow conditions across the complete fluid domain makes it possible 
to identify local irregularities that potentially contribute to the overall efficiency loss, 
which would otherwise be difficult in real world conditions. 

Figure 13: CFD meshes of a turbine volute and the wheel [13] 

1.1.5 Compression process 
The real thermodynamic process in gas compressors is compared to the isentropic 
compression with an associated isentropic efficiency. The outlet pressure is determined 
by the operating point (driven by boost demand), while the outlet total temperature 
includes the effect of irreversibility, which is linked to an increase of entropy. [2, 3, 4, 5] 

h 

s 
Figure 14: The ideal and real compression in the h-s diagram [3] 

From the h-s diagram in Figure 14 follows that an increase of entropy for a constant 
outlet pressure is linked to an increase of enthalpy and the corresponding gas 
temperature [2, 3, 4, 5, 9] 
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Ahtot = cpATtot (22) 

where A r t o t [K] is the change of total temperature. Therefore, a real compression is 
always more demanding in terms of power input than the ideal (isentropic) process. 
Isentropic efficiency is defined as the ratio between the ideal and the actual power 
inputs [2, 3, 4, 5] 

Vc = (23) 

where r\c [-] is the isentropic compressor efficiency, Pc_is [W] is the isentropic 
compressor power input and Pc [W] is the real compressor power input. Since the real 
power input cannot be measured directly on a hot gas stand, it is calculated using the 
boundary conditions [2, 3, 4, 5] 

Pc = 7^riCcp_air(j2C_tot ~ ^ICJtot) (24) 

where rhc [kg/s] is the compressor mass flow rate, cpair [J/(kg-K)] is the specific heat 
capacity of air at constant pressure, T2Ctot [K] i s the outlet total temperature and 
Tlctot [K] is the inlet total temperature. The isentropic power input can be calculated 
using the same formula (see Equation 24), however, the outlet total temperature must 
be derived from the isentropic process [2, 3, 4, 5] 

YajrZl 

= T , r j E ^ i ) y ' " (25) 
Vic tot) - 2C tot is — 11C tot 

where T2Ctotis [K] i s the isentropic total outlet temperature, Vic tot [pa] i s the total 
outlet pressure, Victot [pa] i s the total inlet pressure and yair [-] is the specific heat 
ratio of air. The final expression for the isentropic compressor efficiency is a ratio 
between the ideal and the measured changes of total temperatures [2, 3,4, 5] 

( Yair-1 \ 

(V2C_tOt\ Yair - I 
\Vic_tot) 1) (26) 

He = ^~ 
'2C tot '1C tot 

The important consequence of Equation 26 is that the isentropic efficiency is fully 
defined by the ratio of total pressures and by the total temperatures of the entering and 
the exiting gas. Due to its importance, the ratio of total pressures is often referred to as 
the Pressure Ratio on Compressor (PRC) [2, 3, 4, 5] 

n n „ Vic _tot , , 
P R C = ~ (27) 

Vicjot 

An example of a complete compressor performance map for a common turbocharger is 
shown in Figure 8. 
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1.1.6 Expansion process 
The real thermodynamic process in gas turbines is compared to the isentropic expansion 
with an associated isentropic efficiency. In automotive applications, the outlet pressure 
is usually higher than the atmospheric due to a pressure loss induced by the exhaust 
aftertreatment systems. The outlet total temperature, on the other hand, includes the 
effect of irreversibility, which is linked to an increase of entropy. [2, 3, 4, 5] 

ft 

s 

Figure 15: The ideal and real expansion in the h-s diagram [3] 

From the h-s diagram in Figure 15 follows that the increase of entropy for a constant 
outlet pressure is linked to an increase of enthalpy and the corresponding gas 
temperature (see Equation 22). Therefore, a real expansion is always less useful in terms 
of power output than the ideal isentropic process. Isentropic efficiency is defined as the 
ratio between the actual and the ideal power outputs [2, 3, 4, 5] 

PT 

VT=-b— (28) 
"T_is 

where r\T [-] is the isentropic turbine efficiency, PT [W] is the real turbine power output 
and PT i s [W] is the isentropic turbine power output. According to the convention, total-
to-static turbine operating conditions (inlet-to-outlet) are usually considered with 
automotive turbochargers. Therefore, expansion ratio, which is also referred to as the 
Pressure Ratio on Turbine (PRT), is defined as [2, 3, 4, 5] 

PRT = ^££ ( 2 9 ) 

PIT 

where PtTjot [pa] i s the total inlet pressure and p2j [Pa] is the static outlet pressure. 
Since the real power output cannot be measured directly on a hot gas stand, it is 
calculated using the boundary conditions [2, 3, 4, 5] 

PT — riiTcp exh(T2T — T1T tot) (30) 
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where rhT [kg/s] is the turbine mass flow rate, cpexh [J/(kg-K)] is the specific heat 
capacity of burnt gas at constant pressure, T2T [K] is the outlet static temperature and 
TIT jot [K] is the inlet total temperature. Isentropic power output can be calculated using 
the same formula (see Equation 30), however, the outlet static temperature must be 
derived from the isentropic process [2, 3, 4, 5] 

Yexh-1 

T2TJS = T 1 T 

where T2Tjs [K] is the isentropic static outlet temperature and yexh [-] is the specific 
heat ratio of burnt gas. Theoretically, isentropic turbine efficiency can be determined 
based on the measured inlet and outlet temperatures [2, 3, 4, 5] 

TlTJot T2T 

It is, however, difficult to measure an accurate turbine outlet temperature on a hot gas 
stand, because it is affected by the irregularity of temperature distribution within the 
exiting gas, as well as by the heat transfer to the walls of the turbine housing and the 
outlet piping. As a result, the measured turbine outlet temperature is usually lower than 
it should be, which yields an optimistic apparent turbine efficiency (even above 100%). 
Therefore, turbine power output is determined based on the power balance with the 
compressor of known performance as [2, 3, 4, 5] 

0 = P T - P c - P m - - I T C — J £ - (33) 

where Pm [W] is the bearing loss, ITC [kg-m2] is the rotor inertia, a)TC [rad/s] is the rotor 
angular velocity. The inertia term can be omitted in steady-state measurements, but the 
bearing loss power is typically unknown and remains in the equation. As per common 
industrial practise, mechanical losses are lumped together with the turbine power, 
which produces a so-called turbine thermo-mechanical efficiency [2, 3, 5] 

Pc 
VTTU = p— (34) 

"T_is 

Examples of turbine mass flow rate and efficiency maps for a common turbocharger are 
shown in Figure 9 and Figure 10 respectively. 

1.1.7 Corrected and reduced parameters 
Turbomachinery performance maps are measured or predicted at certain boundary 
conditions that can be significantly different during real-life operation. For example, a 
compressor may be working at high altitude, where the atmospheric pressure and 
temperature are comparatively lower. A turbocharger turbine, on the other hand, is 
supplied with pulsating burnt gas, the properties of which oscillate within a large range 

PIT 

\PlTJot, 

Yexh (31) 
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(including potentially the chemical composition). To make sure the same measured map 
can be used to describe the performance at any operating conditions, the theory of 
turbomachinery similarity must be applied. 

Equivalent aerodynamic conditions are achieved, when the rotor inlet velocity triangle 
is similar in both modes of operation. The criteria of similarity include the flow angles 
and the Mach number (see Figure 3). These are satisfied if the Mach numbers of both 
the inlet flow and the wheel circumferential speed are conserved. The flow Mach 
number at the rotor inlet can be expressed as [4] 

c i 
Mac = — (35) 

at 

where Mac [-] is the Mach number of the rotor inlet flow, ct [m/s] is the flow speed at 
the rotor inlet in the stationary reference frame and ax [m/s] is the speed of sound at 
the conditions of the rotor inlet flow. The average flow speed can be determined based 
on the conservation of mass criterion [2, 3, 4, 5, 9] 

rh rhrTi 
(36) P i - ^ i P i - ^ i 

where rh [kg/s] is the mass flow rate, px [kg/m3] is the rotor inlet gas density, Ax [m2] is 
the effective cross section area in the rotor inlet, r [J/(kg-K)] is the specific gas constant, 
T1 [K] is the static gas temperature at the rotor inlet and p x [Pa] is the static gas pressure 
at the rotor inlet. The definition of the speed of sound is [2, 3, 4, 5, 9] 

at = yJrrT\ (37) 

With the above mentioned, the Mach number of the rotor inlet flow in the stationary 
reference frame can be rewritten as [2, 3, 4, 5] 

Mac = m ^ (38) 
Y 

Measurement of flow conditions at the rotor inlet is, however, difficult, so it is usually 
done in the inducer. It can be shown that if the Mach number in the inducer is 
conserved, the Mach number at the rotor inlet is conserved too (under the assumption 
of isentropic flow). Nevertheless, the industry standard procedure uses total gas 
properties in the inlet, which, as per the definition, are representative of a standing flow 
condition. Because the corresponding Mach number would equal zero, the so-called 
reduced mass flow rate is used as a replacement criterion of similarity [2, 3, 4, 5] 

m 
Pljot ^ 

rTijot (39) 

where rhred [(kg/s)-(K°-5/Pa)] is the reduced mass flow rate, Tltot [K] is the total 
temperature in the stage inlet and p l t o t [Pa] is the total pressure in the stage inlet. It 
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can be shown that the conservation of the reduced mass flow rate results in the 
conservation of the rotor inlet Mach number (under the assumption of isentropic flow). 
Furthermore, the final formula is independent of the flow area (see Equation 39). 
Nevertheless, one drawback is that the reduced mass flow rate has a different unit from 
the original physical mass flow rate. Therefore, it is commonly referred to the standard 
atmospheric conditions, so that the comparison of a measured mass flow capacity with 
the intended application requirement is easier. This way, the corrected mass flow rate 
is established [2, 3, 4, 5] 

. Pref 
m-PlJOt y 

Tl_tot r Yref ( 4 0 ) 

Tref rref Y 

where rhcor [kg/s] is the corrected mass flow rate, plref [Pa] is the reference pressure 
(usually 100 kPa for the compressor and 101.325 kPa for the turbine), Trej [K] is the 
reference temperature (usually 298 K for the compressor and 288 K for the turbine), 
rref P/(kg-K)] is the reference gas constant (usually 287 J/(kg-K) for the air and 
289 J/(kg-K) for the burnt gas) and Yref H i s the reference specific heat ratio (usually 1.4 
for the air and 1.35 for the burnt gas). 

The other criterion of similarity, that must be conserved, is the Mach number related to 
the wheel circumferential speed. It is defined as [4] 

Mau = — (41) 

where Mau [-] is the Mach number of rotor circumferential speed, ux [m/s] is the wheel 
circumferential speed at the inlet mean-flow radius. As it is more practical to measure 
the frequency of rotation and the temperature, the formula can be rewritten [2, 3, 4, 5] 

lluml .„„, 
Mau = ° U (42) 

where Dml [m] is the mean-flow diameter at the wheel inlet and nTC [1/min] is the rotor 
speed. In line with the principles mentioned earlier, the inlet flow temperature is usually 
measured in the inducer. It can be shown that the conservation of the Mach number 
related to the rotor circumferential velocity calculated using the speed of sound in the 
inducer leads to the conservation of the same at the rotor inlet conditions (assuming an 
isentropic flow). Like in the case of the mass flow rate, the industry standard procedure 
uses the total inlet temperature, while the constants are omitted (including the wheel 
diameter, see Equation 42). By that, the so-called reduced speed is established as a 
replacement criterion of turbomachinery similarity [2, 3, 4, 5] 

NTC 

n " d = w u : 1 4 3 1 

where nred [l/(min-K05)] is the reduced rotor speed. It can be shown that the 
conservation of the reduced speed results in the conservation of the Mach number of 
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wheel circumferential velocity (under the assumption of an isentropic flow). Reference 
to the standard atmospheric conditions gives the corrected rotor speed [2, 3, 4, 5] 

ncor — NTC 
Tref Yref ^ref (44) 

tot 

where ncor [1/min] is the corrected rotor speed. For the sake of universal applicability, 
the standard turbomachinery performance maps present either the reduced or the 
corrected mass flow rate and rotor speed (see Figures 8, 9,10 & 12). 

1.1.8 Blade speed ratio 
Blade Speed Ratio (BSR) is defined as the proportion between the circumferential 
velocity of a turbine wheel and the isentropic spouting velocity that would be obtained 
by an ideal expansion of the working gas between the entry and the exit pressures of 
the stage. It is a non-dimensional parameter that can be interpreted as a factor of 
turbine load. The lower the BSR, the higher the turbine load and vice versa [2, 3, 4, 5] 

u 
BSR = — = 

c0 

TlD- n TC 
60 

2 c p_exhllT_tot 
. ( PIT \ 

\PlT_totJ 

Yexhzl. 
Yexh 

(45) 

where BSR [-] is the blade speed ratio, u [m/s] is the turbine wheel inlet circumferential 
velocity, c 0 [m/s] is the isentropic spouting velocity and DT [m] is the mean-flow 
diameter at the wheel inlet. From the above equation follows that the turbine load 
depends on three operating parameters, namely the angular velocity, the expansion 
ratio and the inlet total temperature (usually controlled to remain constant on a hot gas 
stand). Radial turbines work with the highest efficiency typically at BSR~0.7, which can 
be interpreted as the optimum load. It means that for the best efficiency to be reached, 
the angular velocity must increase together with the expansion ratio. This is well 
recognizable in Figure 10, which shows an extrapolated turbine efficiency map. [2, 4] 

It is important to note that the same value of blade speed ratio is obtained using both 
the actual and corrected operating conditions (as measured or simulated). This can be 
proved by substituting the physical turbine speed with the corrected one and the turbine 
inlet temperature with its reference value in Equation 45 

BSRcor 

n N T 

2Cp_exhTiT_ref -( irH 
\PlT_totJ 

Yexh-1 
Yexh 

(46) 

where BSRcor [-] is the blade speed ratio obtained using the corrected speed and the 
reference inlet total temperature. By inserting the expression for corrected speed (see 
Equation 44) the following formula is obtained 
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jiD 
nTC yjTlT_ref 

T~6Ö~ 
BSRcor — IT tot 

N 
2Cp_exhTiT_ref 

( PIT \ 
\VlT_tot) 

Yexh 

(47) 

Further simplification leads back to Equation 45, which confirms the equality 

BSRcor = BSR (48) 

1.1.9 Engine-turbocharger interaction 
Turbochargers are propelled by exhaust gases produced by the attached combustion 
engine (unless installed on a test stand). Piston engines, however, operate with an 
intermittent working cycle, which is followed by strong pulsations in the exhaust system 
upstream of the turbine (see Figure 16). With the opening of the exhaust valves, 
instantaneous pressure and temperature increase rapidly in the ports and propagate 
further in the form of a pressure wave. The subsequent expansion through a turbine 
causes the pressure in the exhaust manifold to fall again until the next event begins. The 
entire process repeats with a frequency corresponding to the engine speed and the 
number of the attached cylinders. Furthermore, the longer the period, the more time is 
available for the gas to exit through the turbine, which results in a higher pressure 
amplitude. Such a situation is typical for the turbocharging of engines with a low number 
of cylinders (three or less). On the contrary, a higher number of cylinders (four or more) 
results in steadier turbine operation during one engine working cycle. [2, 3] 

BDC TDCF BDC TDC BDC 

Crank Angle [deg] 

Figure 16: Expansion ratio, corrected mass flow rate and corrected turbine speed traces 
obtained as part of a small three-cylinder engine cycle simulation in GT-SUITE™ 

(TDCF-top dead centre firing, TDC-top dead centre, BDC - bottom dead centre) 

While the expansion ratio follows the pulsating inlet pressure, the rotor speed changes 
only a little due to inertia (see Figures 16 & 17). It means that for a turbocharged engine 
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gas dynamics simulation to be enabled, turbine performance must be defined in a wide 
range of expansion ratios at each speed line. This is, however, in a large contrast to the 
outputs of a hot gas stand measurement (see Figures 9, 10 & 17). Therefore, a way to 
substantially extrapolate the measured turbine performance is needed. 

0' ' 
1.0 1.5 2.0 2.5 3.0 

Expansion Ratio [-] 
Figure 17: Turbine mass flow rate map with a trace of instantaneous operating points 

during one engine cycle simulated in GT-SUITE 

The situation described above is typical for pulse turbocharging, where the system is 
intentionally designed to maximize the pressure amplitude (by making the exhaust 
manifold as compact as possible). This way, the turbine can use a certain portion of the 
potential energy of compressed gases remaining in the cylinders at the time of opening 
of the exhaust valves (see Figure 18). 

Crank angle 6 

Figure 18: Pulse turbocharging [3] 

Constant pressure turbocharging, on the contrary, uses exhaust manifolds of substantial 
volume as a buffer, so the amplitude of pressure oscillation in the turbine inlet is 
minimized (see Figure 19). On the one hand, the potential energy of the compressed 
gases remaining in the cylinders at the end of combustion is largely lost due to the 
expansion on the exhaust valves, but on the other hand, turbine operation is much 
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steadier. This is beneficial for certain engines, because the cycle-average turbine 
efficiency may be higher. 

0 

Crank angle G 

Figure 19: Constant pressure turbocharging [3] 

1.1.10 State-of-the-art turbine fitting process 
As mentioned in Chapter 1.1.9, extrapolated turbine performance maps are needed for 
engineering simulations of turbocharged combustion engine working cycles. Therefore, 
state-of-the-art commercial software is equipped with fitting methods designed for this 
purpose. To the established products in this group belong the GT-SIUTE™, the Ricardo 
WAVE™ or the AVL BOOST™. 

As the main goal of this work is to make the selection of suitable matching candidates 
easier, it would be of an advantage to treat turbocharger maps in a way that is 
compatible with the target program solution. Not only would it enable a transparent 
performance prediction at extrapolated operating points but facilitate data import too. 

Because the GT-SUITE is available to the author of this work, its turbine performance 
map fitting algorithm is taken as the baseline and described in the following text. Based 
on the available information sources, the properties of five characteristic functions are 
determined in a process consisting of seven main steps. [10, 20] 

Pre-processing of turbine performance data 

Input data is loaded and blade speed ratio (BSR) calculated at every operating point (see 
Chapter 1.1.8). Depending on the measurement/simulation procedure, operating points 
are grouped either by corrected speed (speed lines) or by expansion ratio (expansion 
ratio lines). A maximum-efficiency point is identified within each group. [10, 20] 

Fitting the optimum blade speed ratio 

The BSR's at operating points of maximum efficiency per group are considered the 
optimum ones. The fitting function is linear with respect to the expansion ratio. [10, 20] 

Fitting the maximum efficiency 

Operating points of maximum efficiency, which were identified in the first step of the 
process, are fitted with respect to corrected speed (in the case of a grouping to speed 
lines) or expansion ratio (a grouping to constant PRT lines). Then, normalized efficiency 
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is calculated at every operating point of the original map using the maximum efficiency 
interpolated at the same levels of expansion ratio. [10, 20] 

Fitting the normalized efficiency 

All turbine operating points are supposed to lie on a single curve, when plotted in a 
diagram of normalized efficiency versus normalized blade speed ratio. The optimum BSR 
needed to normalize the BSR at each operating point is determined using the first fitting 
function. [10, 20] 

Fitting the optimum corrected mass flow rate 

Corrected mass flow rate at the operating points of maximum efficiency within each 
speed line or constant expansion ratio line is fitted with respect to corrected speed or 
expansion ratio, respectively. Thereafter, a normalized mass flow rate is calculated at 
every operating point of the original map using the optimum mass flow rate values 
interpolated at the same levels of expansion ratio. [10, 20] 

Fitting the normalized mass flow rate 

All operating points are supposed to lie on a single curve, when plotted in a diagram of 
normalized mass flow rate versus normalized blade speed ratio. The optimum BSR 
needed to normalize the BSR at each operating point is determined using the first fitting 
function. [10, 20] 

Saving of turbine performance model 

A complete turbine performance model consists of five fitting functions describing the 
optimum BSR, the maximum efficiency, the normalized efficiency, the optimum 
corrected mass flow rate and the normalized mass flow rate. [10, 20] 

1.2 Interpolation 
Interpolation is the name for a group of methods that are used to estimate functional 
relationships described by sets of discrete points. An interpolant is a function that passes 
through the original data points. The evaluation of it enables the creation of new points 
at intermediate values of the independent variable(s). The main distinguishing feature 
is the type of an interpolant used. A few common methods are selected and described 
further in the following chapters. 

1.2.1 Polynomial interpolation 
Polynomials are a very popular type of interpolants, because they are easy to construct 
and evaluate (in terms of computational demands). Furthermore, it is easy to obtain 
their derivatives and integrals too. On the other hand, higher-order polynomials tend to 
be oscillatory, which makes them unsuitable for fitting of bigger numbers of points. A 
general expression for a polynomial interpolant is [7] 

n 

(49) 
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where x [-] is the independent variable, n [-] is the number of known points (also called 
knots) and Ct [-] is the coefficient of an i-th polynomial term (i = 1,2,..., n). In this case, 
the polynomial order is marked with n — 1, which corresponds to the fact that it is 
determined by the number of knots. For example, two points are enough to fully define 
a line in space, which can be described by a first-order polynomial (i.e. a linear function). 
A common approach to the construction of a polynomial interpolant is the Lagrange 
method. It can be described mathematically by a formula [7] 

it 

Ln-1(x) = Yjyih(x) (50) 
i=i 

where yt [-] is the function value at an t-th knot and lt [-] is the so-called fundamental 
polynomial. The definition of a fundamental polynomial is [7] 

( x - x 1 ) ( x - x 2 ) . . . ( x - x i _ 1 ) ( x - x i + 1 ) . . . ( x - x n ) 
h{x) = -—-———-—-—-— — — — - — - — - (51) 

(Xj X-J^Xj X 2 J . . . (Xj Xj- j J^Xj X i + 1 J . . . (Xj xn) 

where xt [-] is the independent coordinate of an t-th knot. 

From the other methods of polynomial interpolation, the Newton's can be mentioned 
for its benefit in simpler addition of new knots. The Hermit's approach, on the other 
hand, introduces derivatives at each knot that the interpolant must accommodate to. 

1.2.2 Linear spline interpolation 
The idea behind splines is that the independent variable domain, which contains a finite 
set of knots, is divided into sub-intervals that the interpolant is defined on. This way a 
piecewise polynomial is created. Linear spline is the simplest example, where each pair 
of neighbouring knots is interpolated by a line [7] 

Si(x) =Yi + _ yj\ (x - xt) (52) 
\xi+l xi) 

where St(x) [-] is the polynomial piece defined on an t-th interval (t = 1,2,...,n — 1). 
To the features of linear splines belong a zeroth order continuity (i.e. continuity in 
value), but the derivatives are generally discontinuous. To cope with that, higher-order 
splines must be used. The order of a spline is determined by the highest order of its 
polynomial pieces, but the order of continuity can only be as high as the spline order 
minus one (or smaller) [7] 

5(x) G Ck~1(a, b) (53) 

where k [-] is the spline order, a [-] and b [-] are the end-points of the complete interval 
the spline is defined on. The interpretation of Equation 53 is that a spline 5(x) belongs 
to a set of functions defined on an interval (a, b), which are continuous together with 
the derivatives up to the order of k — 1. 
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1.2.3 Cubic spline interpolation 
The advantage of a cubic spline over the linear is that it can have continuous derivatives 
up to the second order. 

Figure 20: Drawing of a spline using an elastic ruler [22] 

Particularly popular is a form, in which the continuity of the second derivative is 
enforced. In such a case, the shape of the spline is equivalent to that of a homogeneous 
elastic beam with a constant cross section, which is bent to pass through several 
predefined points (see Figure 20). It can be shown that this shape yields the lowest 
potential bending energy, which is the naturally stable state every elastic object 
converges to when subjected to external forces. 

Generally, a cubic spline with prescribed first derivatives (also called the Hermit's cubic 
spline) can be formulated as [7] 

Si(x) =yi + (x- Xi)di + (x - Xi) 
3 ^ ' + 1 ^} 2d( dj+i 

2 Xi + 1 Xi 

d,- — 2 Vi+i - Yi 
+ (x - x r ) ; x, i+i Xi 

( X j + 1 Xj) 

+ di+1 

( X j + 1 X j ) 2 

(54) 

where dt [-] is the first derivative of a spline at the i-th knot (i = 1,2,..., n — 1). 
To make sure even the second derivative is continuous, another condition must be 
added [7] 

ixi+2 xi+i)d-i + 2(Xj+ 2 X j ) d j + 1 + ( x j + 1 X j ) d j + 2 

= 3 ( X j + 2 — X j + 1 ) + (,Xj + 1 XjJ • 
t+1 X: x í+2 x, t+1 

(55) 
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where i = 1,2, ...,n — 2. With the above expression a system of n — 2 equations 
containing n unknown variables (derivatives dt) is created. It means that two more 
equations are needed to obtain a unique solution. These are the end-point first 
derivatives, which can be interpreted as geometric constraints (see Figure 20). 

In many cases, however, it is desired to construct a spline that corresponds to the shape 
of a bent elastic beam with rotating supports at each end. This is the situation of the so-
called natural cubic spline, the second derivatives of which equal zero at each endpoint 
(i.e. there is zero curvature). The formula for the second derivative of a cubic spline can 
be obtained by derivation of Equation 54 [7] 

S't'Oc) = 
[6(xi+1 -xt) - 1 2 0 Vi+i ~ Yi 

x i+i Xi 
(xi+l xi)2 

[ 6 0 - xt) - 40 i+ i - xt)]di 
Oi+i x{)2 

[ 6 0 - xt) - 20i+ i - Xi)]di+1 

Oi+i Xi)2 

(56) 

By setting the second derivative to zero for indices i = 1 and i = n — 1, which 
correspond to the end-points xx and xn respectively, an extended system of equations 
is obtained. It has a single unique solution (see Equations 55 and 56). 

1.3 Curve Fitting 
The main difference between interpolation and curve fitting is that a fitted function does 
not necessarily pass through the input data points. Instead, the goal is to capture the 
overall trend using a typically rather simple function. 

V M 

i-i 

t„ '2 V l li 

Figure 21: Illustration of the least squares method [7] 
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In statistics, this process is called a regression and the fitted model is supposed to 
approximate the mean value of the experimental data, which has been obtained with 
random errors. The same is true for the technical measurements, where the size of 
deviations is related to the accuracy of applied sensors. A common goal of regression 
algorithms is to find such a set of fitted function parameters that minimizes the overall 
quadratic error between the model and the input data. This approach is also referred to 
as the least squares method (see Figure 21). 

The reason for modelling of empirical relationships is to enable an unbiased estimation 
of the target quantity at any point of its domain of definition, potentially including areas 
outside of the input data range. Depending on the model complexity, there can be one 
or multiple parameters to identify. Two common methods applied for this purpose are 
described in the following chapters. 

1.3.1 Linear least squares fitting 
The method of least squares is based on the principle that the sum of squared deviations 
of data points from the fitted function is minimized [7] 

n 

^ rdi -> rain. (57) 
i=l 

where rdi [-] is the deviation of the t-th data point from the fitted function (a residual) 
and n [-] is the number of all data points. In the case of the linear least squares method, 
the model can be described by a linear combination of the so-called basis functions [7] 

m 

R(X)=Y4PJ<PJ(X-) (58) 
7 = 1 

where R(x) [-] is the fitted function (also called regression function), x [-] is the 
independent variable, /? [-] is the linear coefficient and <p(x) [-] is the basis function. The 
number of basis functions (m) must be smaller than or equal to the number of data 
points (n). The deviation at each data point is defined as [7] 

rdi =yt- R(xd (59) 

where yt [-] is the dependent coordinate of the data point xt [-] identified by the index 
i [-]. For the overall squared deviation applies [7] 

n n I m \ 2 

IM 2 = Z r * = Z * ~ Z P m & d (6°) 
i=l i=l \ ;'=1 ) 

where \\rd ||2 [-] is the overall squared deviation. At the minimum of the overall squared 
deviation, the first derivative with respect to each basis function coefficient must equal 
zero [7] 
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d\\ra\\: 
n 

1=1 
Vi 

7 = 1 

[-<Pk(xi)] = 0 (61) 

where k [-] is the index of a basis function coefficient (k = 1 ,2, . . . , m). By reorganizing 
Equation 61 is obtained [7] 

III IL IL 
(62) 

j = l u=i 

Equation 62 can be expressed in a matrix form [7] 

i=i 

(63) 

where <I> [-] is the system of basis functions, /? [-] is the vector of unknown coefficients 
and y [-] is the vector of dependent coordinates of the known data points. For 
completeness, the matrix <I> is defined as [7] 

<PlOl) 
<Pi(x2) P2O2) 

.<Pl(.Xn) (p2(Xn) 

(pm(Xl) 

(Pm(x2) 

(Pm(xn) 

(64) 

If the columns of the matrix <I> are linearly independent, Equation 63 has a unique 
solution, which is such a vector /? that yields the minimum overall squared deviation of 
known data points from the fitted function. 

The most common application of the linear least squares method is the fitting of a 
polynomial to known data points. In such a case, the regression function has the 
following form (compare to Equation 58) [7] 

Rr .1{x) = Yjßj x m—j (65) 
7 = 1 

where the degree of the polynomial can only be as high as the number of known points 
minus one (i.e. m — 1), which corresponds to the previously mentioned condition 
m < n. In the case the polynomial degree is exactly by one smaller than the number of 
known points (i.e. m = n), the function passes through all the data points with zero 
deviation, which is equivalent to polynomial interpolation. This is, however, 
counterproductive, if the polynomial least squares fitting was intended to smooth out 
the input data (e.g. obtained by measurement). Therefore, it is important to select such 
a polynomial degree that is expected to model the behaviour of the measured system. 

1.3.2 Least squares fitting using optimization 
It was mentioned in Chapter 1.3.1 that the principle of the least squares method is to 
find such a set of model properties, which results in the minimum overall squared 
deviation from the known data points. As such, it is a minimization task that can be 
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addressed by an optimization algorithm. This is particularly relevant in cases, when the 
relationship between the fitting function and the unknown parameter(s) is non-linear 
(also referred to as non-linear least squares). A commonly occurring example is the 
exponential function [8] 

R(x) = aePx (66) 

where a [-] and /? [-] are the unknown parameters. On the one hand, the expression in 
Equation 66 can be linearized by logarithmic transformation as 

ln(/?0)) = ln(a) + /?x (67) 

On the other hand, the overall quadratic deviation in logarithmic coordinates would 
differ from the one in linear coordinates 

n 

\\rd\\2 = ^[\n(yt) ~ ln(a) - /?X;]2 (68) 
i=l 

It can be shown that the overall quadratic deviation in Equation 68 attains its minimum 
for different values of a and /? than the original function (without logarithmic 
transformation). Therefore, applying an optimization method to find the non-linear 
coefficients is a better solution. 

There are many algorithms that can be used to find the optimum fit (see Chapter 1.4). 
The top-level process, which is common to most optimization methods, starts from a set 
of initial values of the unknown parameters. Subsequent iteration steps involve 
incremental changes to the unknown parameters such that the objective function (the 
overall squared deviation) decreases in value. Finally, the optimization process is 
finished after termination criteria are met (these usually include the minimum iteration 
step size and/or the minimum change in the objective function value). 

1.3.3 Descriptive statistics 
In the context of data fitting, the initial step of any statistical analysis is to determine the 
error between each source data point and the model. This process is described 
mathematically by Equation 59. 

To the basic statistics belong the maximum, the minimum and the arithmetic mean 
error. The latter can be calculated using a formula [8] 

1 n 

rmean = ~~ / rdi (69) 
t=i 

where r m e a n [-] is the arithmetic mean of the error and n [-] is the number of samples in 
the source data set. The arithmetic mean error can be interpreted as a factor describing 
how well the fit is centred with the source data. A positive value suggests that, on 
average, the data is located above the fitted function and vice versa. 
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Another quantity with a similar meaning is the median error. It is the middle value of an 
ordered data set, where a half of the data has a bigger value and the other a smaller 
one. In the case the number of samples is even, the median error is calculated as the 
mean of the middle two values [8] 

^median = ^ ( r d - ° r d e r e d / i o o r ( n + l ) + rdordered ceiUng^^j (70) 

where r m e d i a n [-] is the median of the error and r d o r d e r e d i [-] is the error at the t-th 
data point (ordered from the smallest to the largest). In contrast to the arithmetic mean 
error, the median error is not affected by the presence of a few points with very big error 
in the source data set. 

In mathematical regression, the most used measure of fit quality is the mean squared 
error (MSE). It can be calculated as [8] 

n 

rMsE = -Y(rdd2 (71) n Z_i 
;=i 

The advantage of the MSE over the arithmetic mean is that it yields non-negative values. 
In other words, the task of a fitting algorithm is to minimize it. On the other hand, errors 
of big magnitude are more pronounced in it compared to the arithmetic mean. Also, the 
unit of the MSE is different from the source data variable, which is commonly solved by 
calculating its square root. By that, the root-mean-square error (RMSE) is obtained [8] 

rRMSE = VrM5£ (72) 

where rRMSE [-] is the root-mean-square error. The above described relationship is 
analogical to the one between the variance and the standard deviation. 

Another convenient way to visualize the distribution of error size is the histogram. It can 
be described as a discrete function that counts the number of observations falling into 
each of several pre-defined finite intervals (see Figure 22). These intervals are called bins 
and they are distributed over the range of the observed variable. Mathematically 
is a histogram usually formulated indirectly using the summation operator [8] 

k 
n = ^ rij (73) 

i=l 

where k [-] is the number of bins and [-] is the number of samples falling into the 
t-th bin. Although multiple methods can be found in the literature for the definition of 
bin size, they are often distributed evenly in engineering applications. Also, their number 
is usually determined iteratively based on the assessment of the resulting chart 
usefulness. 
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Figure 22: Histogram of child birth weight with normalized y-axis [18] 

1.4 Optimization 
The goal of optimization methods is to find the minimum of the so-called objective 
function, which is a mathematical operation on a set of independent variables. In the 
case of curve fitting (see Chapter 1.3.2), the objective is to calibrate the fit properties, 
such that the overall quadratic deviation from known data points is minimized. 

Any function can have one global and multiple local minima. A global minimum is the 
lowest achievable value of a function. It can be isolated or represented by an 
n-dimensional area in the domain of definition. Local minima, on the other hand, may 
be of any amount, while their function value is bigger than the global minimum. 

A specific example is the convex function, which only has one minimum. In the case of 
a strictly convex function, the minimum is isolated to a single point in the domain of 
definition. The opposite is a strictly concave function that has exactly one maximum. As 
per the definition, a convex function (generally n-dimensional) always lies below a line 
segment constructed between any two points of the graph (see Figure 23). 

X l Xx 1 +(l-X)x 2

 A 2 A 1 Xx,+ (l-X)Xa

 A 2 

Figure 23: One-dimensional example of a convex function (left), a concave function 
(middle) and a general case (right) [6] 

The advantage of convex functions is that the applied optimization method does not 
need to distinguish between global and local minima. Furthermore, it is common in 
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many application fields that the objective function is convex at least in certain vicinity of 
the optimum. Therefore, the convergence towards the true global minimum depends 
on the convenient selection of the starting point. That is, why in some algorithms one 
or more starting points are identified before the main optimization begins. One way to 
do that is by mapping of the objective function using a discrete grid of points covering 
the domain of definition. Then, local minima are located using standard optimization 
methods (e.g. gradient-based); the lowest is suspected of being the global minimum. 

One-dimensional optimization methods are applied to one independent variable only. 
The solution is sought on an interval (a, b), which is also called the uncertainty interval. 
The process is finished after the termination criteria are met. These usually involve the 
minimum iteration step and/or the minimum change in the objective function value. 

The purpose of multi-dimensional optimization methods is the same, just with multiple 
independent variables. The extremum of the objective function is sought in an 
n-dimensional space (x 6 W1). A handful of common one- and multi-dimensional 
methods is described in the following chapters. 

1.4.1 Golden-section search 
As part of the golden-section search one-dimensional objective function is evaluated at 
four points covering the entire initial interval of uncertainty. In each iteration step one 
of the boundary points is removed, so the interval is narrowed down. A new point is 
constructed in such a way that it is possible to reduce the new interval of uncertainty by 
the same factor of size in the subsequent process (see Figure 24). 

ak K Hk bk 

ak+l k̂+1 Mk+I bk+] 

ak+l -̂k+l Mk+l D

k 4 1 

Figure 24: Possible reductions of the interval of uncertainty as part of golden-section 
search [6] 

To make sure the factor of reduction of the uncertainty interval is constant in all 
iterations, the internal points must be distributed according to the golden-section ratio. 
It means that in a set of subintervals constructed from either of the boundary points, 
dividing each ordered pair of nearest size yields the golden-section ratio. The same can 
be described mathematically by the following system of equations [6] 

A-dk ~ ak V-dk ~ ak V-dk ~ bk kdk — bk 

= t = i r = T = A (74> 

Mdfc ~ ak Dk~ ak Adk ~ Dk ak ~ Dk 
where ak [-] and bk [-] are the boundary points, Xdk [-] and [idk [-] are the internal points, 
k [-] is the index of the iteration step and a [-] is the golden-section ratio (see Figure 24). 
Assuming the initial boundaries are known, locations of the internal points can be 
derived from Equation 74 as 
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kdk = h + <*Ofc - h) (75) 

and 

Mdfc = ak + a(bk - ak) (76) 

The value of the golden-section ratio a can either be found in the literature, or obtained 
by adding a simple identity 

b k - iik+ i i k - ak = b k - ak (77) 

A suitable treatment of Equations 74 and 77 produces an expression 

a2 + a - 1 = 0 (78) 

the solution of which is 

a = 0.618 (79) 

Reduction of the interval of uncertainty in each iteration step is performed based on the 
comparison of the function values at the internal points. If the lower value is obtained 
at the point Xk, it suggests that the objective function decreases in the direction towards 
the point ak, so the other boundary bk can be removed and vice versa (see Figure 24). 
A new internal point is determined using Equations 75 or 76. The algorithm is terminated 
once the size of the uncertainty interval is smaller than a predefined threshold. 

For the sake of robustness, it is convenient to consider an eventuality that the initial 
boundaries of the uncertainty interval were selected too narrow, so it did not allow for 
the true optimum to be found. If the minimum objective function value is obtained at a 
boundary point (ak or bk), the algorithm needs to be capable of widening the 
uncertainty interval. Following the golden-section rule, the new boundary can be 
determined as either 

h+i = ak + - (bk - ak) (80) 
a 

or 

1 

a-k+i = h + - (ak - bk) (81) 

Golden-section search is applicable on strictly quasi-convex functions only. 

1.4.2 Quadratic fit method 
The idea behind quadratic fit optimization is to approximate the unknown objective 
function by a parabola, the peak of which is the estimated location of the optimum. To 
construct a parabola, three distinct points of known function values are needed. The 
corresponding polynomial interpolation can be obtained using the Lagrange method 
(see Chapter 1.2.1) [6] 
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(x — X?)(x — X 3 ) (x — Xi)(x — x 3 ) 

( x l x 2 ) ( x l x3) ( x 2 x l ) ( x 2 x
3 ) /on) 

I / ( X ) ( X ~ X l ) ( * ~ X 2 ) 
(x 3 — x 1 ) (x 3 — x 2 ) 

where L(x) [-] is the value of the Lagrange polynomial at point x [-]; f{xt) [-], 
f(x2) [-]> / f e ) [-] a r e the three known function values at the points x x [-], x 2 [-] and 
x3 [-]. 

The minimum of the interpolant is located at such an x-coordinate, where the first 
derivative of L(x) equals zero. It can be calculated as [6] 

, , r . f f . 2 x - ( x 2 + x 3 ) 2 x - ( x 1 + x 3 ) 
L (x) = f(xt) - + /(x 2 ) 

(Xl X2)(X\ x 3 ) (x 2 x x ) (x 2 x 3 ) 
2x (Xi X 9 ) 

+ /(x 3 ) ^ ^ - = 0 
vx3 XiJ(_x3 x2) 

where L'(x) [-] is the first derivative of the interpolant. The x in the above equation can 
be extracted as [6] 

l / " O i ) 0 2

2 - x l ) + /(*2)(*i - *i) + / 0 3 ) O i - ^2

2) , Q / n 

X = 

2 / (x 1 ) (x 2 - x 3 ) + / (x 2 ) (x 3 - x x ) + / (x 3 ) (x 1 - x 2 ) 
The goal of the next optimization step is to refine the approximation of the objective 
function near its optimum. If the triplet of points was ordered, such that xx < x2 < x 3 , 
the newly obtained candidate for the optimum can fit either in the first, or in the second 
subinterval. 

If x1 < x < x2 and /"(x^ > /(x) < / (x 2 ) , the point x 3 is omitted and the new triplet 
is fitted as part of the next iteration step. In the case /(x) > x 2 , the points x, x 2 and x 3 

become the new triplet. 

The other option is x 2 < x < x 3 . If / (x 2 ) > /(x) < / (x 3 ) , the point xx is omitted and 
the new triplet is fitted as part of the next iteration step. In the case f{x) > x 2 , the 
points xlt x2 and x become the new triplet. 

Optimization is finished after the convergence criteria are met. This is typically the size 
of the interval of uncertainty, but another condition limiting the maximum allowable 
objective function difference within the triplet can be added too. The quadratic fit 
method is applicable on strictly quasi-convex functions only. 

1.4.3 Simplex method 
Simplex method, also called the Nelder-Mead method, belongs to a group of derivative-
free algorithms. The direction of search is determined by the comparison of the 
objective function value within a group of selected points. It is designed for searching 
for a local minimum of a multi-dimensional objective function, so a starting point is 
needed (x0 6 Rn). The main idea is that in each iteration step the objective function is 
evaluated in vertices of the so-called simplex, which is an n-dimensional object 
constructed from the starting point by adding the initial discretization distance 8 to each 
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of its coordinates (one at a time). Therefore, it has exactly n + 1 vertices, which makes 
it a triangle in 2D, a tetrahedron in 3D etc. [7] 

Figure 25: The simplex method (Nelder-Mead) in 2D, where 0) is the original triangle, 1) 
is expansion, 2) is reflection, 3) is external contraction, 4) is internal contraction, 5) 

stands for reduction [7] 

The vertex with the highest objective function value is labelled xw (worst) and the one 
with the lowest xb (best). A new point of search x is constructed on the line connecting 
the xw with the centre of mass (x) of all remaining points belonging to the simplex. In 
2D, for example, it is the line connecting the "worst" vertex and the centre of the 
opposite side of the simplex triangle (see Figure 25). Then, the location of x is 
determined in a few steps. 

First, the objective function is evaluated at a point obtained by mirroring xw with the 
centre of symmetry in point x. This process is called reflection and it can be described 
mathematically as xr = x + (x — xw). If f(xr) < f(xb), it means that this is a 
direction of significant objective function value reduction. Therefore, one more point is 
constructed further away from x. This is called expansion, which can be described 
mathematically as xe = x + 2(x — xw). If f(xe) < f(xb), then xe is selected as the 
new vertex x = xe. Otherwise, x = xr under the condition that f(xr) < f{xg), where 
xg (good) is any existing vertex other than xw. [7] 

In the case neither xe nor xr satisfy the criteria for becoming the new vertex, the new 
simplex is contracted in one of the following ways. If f(xr) < f(xw), the objective 
function is evaluated at point xce = -(x + xr). If f(xce) < f(xr), then x = xce 
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(external contraction). The other possibility is that f(xr) > f(xw) and the objective 
function is evaluated at xci = ~(xw +x). If f(xci) < f(xw), then x = xci (internal 
contraction). 

In the event none of the preceding candidates for the new vertex were successful, it 
suggests that point xb is reasonably close to the optimum. Therefore, the simplex is 
reduced in such a way that point xb remains in its location, while all other vertices are 

moved closer to it by a half of the original distance. That is xt = - (xb + x{), where i is 
the index spanning all vertices. All the five possible transformations of the simplex are 
summarized in Table 1. [7] 

Table 1: Modes of transformation of the simplex [7] 

Mode Conditions New vertex 

1 Expansion [f(xr) < /(*„)] & [f(xe) < /(*„)] XtQ — iX 1 2 ^̂ w) 

2 Reflection [/Or) < f(xg)] & (*g * xw) 

3 
External 
contraction [f(xr) < f(xw)] & \f{xce) < f(xr)] 

1 _ 
XCQ ~ [x "F Xj^) 

4 Internal 
contraction 

[f(xr) > f(xw)] & [f(xci) < f(xw)] 
1 _ 

XCl ~ (X + XyJ) 

5 Reduction None of the preceding conditions is met 
1 

x i — 2 (Xb + xi) 

x i ^ xb 

1.4.4 Gradient descent method 
The gradient descent method is suitable for the optimization of strictly convex multi­
dimensional functions. The initial step is to calculate the gradient of the objective 
function at the starting point. Then, a new point is determined by searching for the 
minimum in the direction of the steepest descent (one-dimensional optimization). The 
process repeats until the termination criteria are met. The gradient of a function is the 
vector of its first partial derivatives defined as [7] 

V / O ) = 
fdf{x) dfix) dfixy 

dxx ' dx2 

(85) 

where f(x) [-] is the function of A:, X [-] is the vector of coordinates in an n-dimensional 
space (the domain) and xt [-] is the t-th component of the vector x (i = 1,2,..., n). 

If the objective function cannot be expressed explicitly, each partial derivative in 
Equation 85 must be computed numerically using finite differences. The most common 
ones are the forward, the central and the backward. Using the forward difference, the 
partial derivative in an n-dimensional space can be approximated as [7] 

df(x) f(x + hgUj) - f{x) 
dXi hrl 

(86) 
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where hd [-] is the size of the discrete step and ut [-] is the standard unit vector in the 
direction of the t-th cartesian coordinate. The formula using the backward difference is 
obtained analogically as [7] 

df(x) f{x) - f(x-hdUj) 
dxt hd 

Finally, the derivative approximated by the central difference is [7] 

df(x) / ( * + ^ f u i ) - / ( * - ^ f u i ) 
dXi krl 

(87) 

(88) 

Each evaluation of the objective function is linked to certain processing time. Therefore, 
it is desirable to keep their number at the minimum. Calculation of the gradient using 
the forward and the backward difference requires n +1 evaluations in an 
n-dimensional space. The central difference method, on the other hand, involves 2n 
evaluations, so it is less convenient (see Figure 26). 

Forward differences Backward differences Central differences 

Figure 26: Visualization of the finite differences in 3-dimensional space 

For completeness, the ratio of the computational effort linked to the forward/backward 
and the central difference depends on the number of dimensions in the following way 

_ n + 1 _ 1 1 

2n 2 2n 
(89) 

where K [-] is the ratio of the numbers of evaluations between the forward/backward 
and the central difference methods. It can be noted that all methods are equally 
demanding in a one-dimensional space. 

The next step involves minimization of the objective function in the direction of the 
gradient. The new coordinates of x are obtained as [6] 

xk+l — xk Ä-c 
v/(*) 

liv/0)|| 
(90) 

where Xd [-] is the distance in the direction of negative gradient (to be optimized) and 
k [-] is the index of the iteration step. A range of methods can be employed to find the 
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value of the parameter Xd. The quadratic fit can be recommended for its fast 
convergence, especially when the objective function has near parabolic shape in certain 
vicinity of the optimum (see Chapter 1.4.2). The whole process is repeated until the 
required resolution is achieved (usually defined as the maximum size of the gradient). 

To the drawbacks of the gradient descent method belongs its tendency to zigzagging, 
which significantly impacts the required number of iterations and the overall speed of 
convergence (see Figure 27). It occurs in cases, when the objective function has the 
shape of a long narrow valley. Since the gradient contains the information about the 
slope in an isolated point only, the algorithm cannot react to its change along the way 
to the local minimum. Among the methods addressing this issue, the Newton's can be 
named (see Chapter 1.4.5). 

0 1 2 3 

Figure 27: Zigzagging of the gradient descent method [6] 

1.4.5 Newton's multi-dimensional method 
The Newton's method is suitable for the optimization of strictly convex multi­
dimensional functions. In contrast to the gradient descent, the Newton's algorithm uses 
the quadratic approximation (the first two members of the Taylor series) of the objective 
function to determine the next iteration point [6] 

1 
q(x) = f(xk) + Vf(xk)T(x -xk)+-(x- xk)TH(xk)(x - xk) (91) 

where q(x) [-] is the quadratic local approximation of the objective function, H(xk) [-] 
is the Hessian of the objective function at coordinates defined by the vector xk. At the 
optimum, the gradient of the quadratic function must equal zero (Vq(x) = 0; see 
Equation 91). Therefore, the following condition must be fulfilled [6] 

H(xk)(x-xk) = -Vf(xk) (92) 

In the next iteration step, the new coordinate of x can be derived from Equation 92 as 
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xk+l — xk — H(.xk) ^f&k) (93) 

The Newton's algorithm terminates as soon as the size of the Hessian is smaller than a 
pre-defined threshold. While the process to determine the gradient has been explained 
in the previous chapter (see Equation 85), the Hessian of fix) is defined below [6] 

Hix) 

d2fix) d2fix) d2fix) 
dx2 dxtdx2 dxxdxn 

d2fix) d2fix) d2fix) 
dx2dxt dx2 dx2dxn 

d2fix) d2fix) d2fix) 
dxndx1 dxndx2 dx2 

(94) 

The Hessian is a matrix of the second-order partial derivatives. Unidirectional derivatives 
are present on the main diagonal, mixed derivatives can be found in the remaining 
positions. In the case the evaluation must be done numerically, finite differences can be 
employed (see Chapter 1.4.4 for the definition of the first partial derivatives). To 
calculate a second-order derivative with respect to one variable numerically, a three-
point discretization of the function is needed. The formula using the central difference 
can be recommended for its concentricity with respect to x. It can be expressed as [7] 

d2fix) fix + hdUi) - 2fix) + fix - hdUi) 

dxf h2 

ad 

(95) 

The mixed second-order derivative can be interpreted as two subsequent derivations 
with respect to two different variables. Therefore, four points with known function 
values are needed to calculate it numerically. The forward, the backward and the central 
difference are applicable again. However, to keep the necessary number of the objective 
function evaluations at the minimum, the central difference method should be avoided. 
The formula for the mixed second-order derivative using the forward difference can be 
obtained by repeating the process described in Equation 86 twice in a row. The resulting 
equation is 

d2fix) 
dxtdxj 

_ /(* + hgjUj + hdjUj) - f(x + hdjUj) - fjx + hdiuj) + fjx) 

h-dih-dj 

where i [-] and j [-] are the indices of the space dimensions, while i 

(96) 
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Figure 28: Discretization of the Hessian in 2D, A) is the forward difference in both 
directions of the x- and y-axes, B) is the central difference in the direction of the x-axis 
and the forward difference in the direction of the y-axis, C) is the central difference in 

both directions of the x- and y-axes) 

To calculate the Hessian per the modification (A), 2n + 1 + evaluations of the 

objective function are needed. If the central differences were used to calculate the 

mixed derivatives, 2n + 1 + 2 Qj evaluations would be needed for the modification (B) 

and 2n + 1 + 4 Qj for the modification (C) (see Figure 28). 

Figure 29: Illustration of the Newton's method [6] 
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2 BASIC TURBINE FITTING METHOD 
The top-level process of the turbine performance map fitting has been described in 
Chapter 1.1.10. To verify it can be applied to solve real-life engineering tasks, its 
implementation and testing in an interactive computational environment is needed. 
MATLAB™ has been selected for this purpose, because it provides the required 
functionality and it is available to the author of this work. In the first place, a satisfactory 
agreement between the fitted turbine performance model and the raw data must be 
confirmed. Also, the algorithm should be robust with respect to varying input data 
source and quality. After the fully extrapolated performance maps are generated, they 
will have to be validated in terms of expected thermodynamic behaviour at borderline 
operating conditions. 

2.1 Fitting the Performance Model 
The turbine performance model, as described in the literature (see [10, 20]) and in 
Chapter 1.1.10, consists of five characteristic functions for the key thermodynamic 
properties of the turbomachine. These are the optimum blade speed ratio, the 
maximum efficiency, the optimum corrected mass flow rate, the normalized efficiency 
and the normalized mass flow rate. The process to determine the properties of each 
function to best fit the source data is described in the following chapters. A sample hot 
gas stand map produced at the Garrett Motion Inc. is used for this purpose. It must be 
noted, however, that some aspects of the baseline algorithm are not explicitly described 
in the available information sources. Therefore, custom solutions are suggested, which 
proved to be working as part of the demonstrator MATLAB application. 

2.1.1 Pre-processing of input data 
A typical turbine map has the form of a text file with the operating points organized into 
rows of data, where each column represents one characteristic variable. These include 
the corrected or reduced speed, the expansion ratio, the corrected or the reduced mass 
flow rate and the efficiency. Each operating point describes the turbine stage behaviour 
at steady state conditions. The environments, in which the data is obtained, can be very 
different though (see Chapter 1.1.4). 

After the map file is loaded, the first step is to calculate the blade speed ratio at every 
operating point (see Chapter 1.1.8), so it can be used later in the fitting process. 
Depending on the procedure that was followed to generate the data, operating points 
might be grouped by either the corrected (or reduced) speed or the expansion ratio. 
Each is expected to be non-decreasing with the row number, while the other must be 
non-decreasing within a group. 

In the most common case, the turbine map is generated using a hot gas stand rig and 
the testing procedure is programmed to keep the corrected (or reduced) speed constant 
within each group of operating points. Thus, speed lines can be recognized in the data. 

The implemented fitting algorithm is programmed to read one row of the input map file 
after another. As soon as the corrected speed increases by a bigger value than the 
predefined threshold, a new speed line is marked. Once the end of the file has been 
reached, the operating point with the highest efficiency is identified at each speed line 
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and its index is saved for a later use. A similar approach would be followed, if the map 
data was organized into groups of a constant expansion ratio. 
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Figure 30: Efficiency vs. PRT with coloured speed lines and highlighted maxima 

2.1.2 Fitting the optimum blade speed ratio 
The relationship between the optimum blade speed ratio (BSRopt) and the expansion 
ratio (PRT) is key to the fitting process (see Chapter 1.1.10). A BSRopt is such a value of 
BSR, at which the maximum turbine efficiency is reached at certain level of PRT (i.e. it 
corresponds to the points of maximum efficiency identified in Chapter 2.1.1). 
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Figure 31: Efficiency vs. BSR with coloured speed lines and highlighted maxima 

It is apparent that a different value of BSRopt is obtained at each speed line in 
Figure 31. According to the literature, the relationship between BSRopt and PRT should 
be linear [10, 20] 

BSRopt = kPRT + q (97) 
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where BSRopt [-] is the optimum blade speed ratio, k [-] is the slope and q [-] the 
elevation of the fitted line. Constants k and q are determined using the least squares 
method (see Chapter 1.2.1). 
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Figure 32: Linear regression of the optimum BSR relative to PRT 

As soon as the fitting function for BSRopt is known, the normalized blade speed ratio 
(BSRnorm) can be calculated at each operating point of the turbine map. BSRnorm is 
defined as the ratio between the BSR at given operating point and the optimum BSR 
at the same level of PRT [10, 20] 

BSRr 
BSR 

BSR 
(98) 

opt 

2.1.3 Fitting the maximum efficiency 
The maximum efficiency points identified at each speed line during the pre-processing 
of the turbine map (see chapter 2.1.1) together form an envelope that all turbine 
operating points must lie below. This relationship is modelled with respect to the 
corrected speed, yet the available information sources do not suggest a specific function 
(except that it should be smooth; see [10, 20]). A polynomial can be named as one of 
the simplest options. However, with an increasing degree, the polynomial 
approximation (in the least squares sense) tends to be oscillatory. A spline curve, on the 
other hand, can be recommended for its stability and an easy definition of extrapolation 
modes (due to its piece-wise polynomial form). As a conservative strategy, a flat 
extrapolation can be applied, which is the default option in GT-SUITE too (see Figure 33). 
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Figure 33: Maximum turbine efficiency as a cubic spline with flat extrapolation 

With the fitting function for the peak efficiency available, the normalized efficiency can 
be calculated at each operating point of the map. Normalized efficiency (ETATMnorm) 
is defined as the ratio between the efficiency at the given operating point (ETATM) and 
the maximum efficiency at the same level of expansion ratio (ETATMmax) [10, 20] 

ETATMr 
ETATM 

ETATMmn 
(99) 

The maximum efficiency function is, however, defined relative to corrected speed, so 
the optimum corrected speed at given expansion ratio must be found for each turbine 
operating point first. To do that, the optimum BSR function (see Equation 97) can be 
combined with the definition of BSR (see Equation 46). To make sure the corrected 
speed is obtained, reference gas properties must be used (see Chapter 1.1.8) 

NTopt = (kPRT + q) 
(100) 

2.1.4 Fitting the normalized efficiency 
According to the available information sources all turbine operating points should lie on 
a single curve when plotted in the normalized efficiency versus normalized blade speed 
ratio diagram. In GT-SUITE, the fitting function has two parts. For BSRnorm < 1, 
exponentiation is defined in the form [10, 20] 

ETATMnorm = 1 - (1 - BSRnorm)bf* (101) 

where the exponent bjit [-] is the fitted parameter. It needs to be noted that the linear 
least-squares approach (as explained in Chapter 1.2.1) cannot be used to find the value 
of bfit, because its relationship to the root-mean-square error is non-linear. The 
quadratic fit optimization method can be recommended instead. 
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The other part of the normalized efficiency curve, where BSRnorm > 1, is fitted by a 
parabola of the form [10, 20] 

ET AT M„ — 1 — cfit(.BSRnorm — 1)' (102) 

where the coefficient cy i t [-] is related to the intercept with the x-axis and can be found 
using the least-squares method. The value of BSRnorm, at which the x-axis is crossed, 
can be determined using the equation 

BSR norm ETA int = — +1 

cfit 

(103) 

The complete curve of normalized efficiency versus normalized blade speed ratio passes 
through the point with coordinates [1,1]. It can be interpreted as the generalized 
optimum operating point that the turbine works with the highest efficiency at. 
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Figure 34: Normalized efficiency fitted with respect to normalized blade speed ratio 

2.1.5 Fitting the optimum corrected mass flow rate 
An optimum corrected mass flow rate is associated with each operating point of the 
maximum efficiency at each speed line or constant expansion ratio line (see Chapter 
2.1.1). Similarly to the case of the maximum efficiency (see Chapter 2.1.3), these points 
are fitted with respect to the corrected speed, but the available information sources 
only suggest the function should be smooth and pass through the origin of the 
coordinate system (see [10, 20]). Therefore, a spline curve is recommended again. 
Extrapolation is needed in the direction of high corrected speeds only. In line with the 
conservative approach applied before (ETATMmax), the flat extrapolation is used (by 
default in GT-SUITE). 
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origin of the coordinate system (flat extrapolation to high corrected speeds) 

With the fitting function for the optimum corrected mass flow rate (WTopt) available, 
the normalized mass flow rate (WTnorm) can be calculated at each operating point of 
the map. WTnorm is defined as the ratio between the corrected mass flow rate at given 
operating point (WT) and the optimum corrected mass flow rate at the same level of 
expansion ratio [10, 20] 

WT 

Similarly to the case of the maximum efficiency (see Chapter 2.1.3), the fitting function 
for WTopt is defined with respect to the corrected speed, so the optimum corrected 
speed at each expansion ratio must be found first using Equation 100. 

2.1.6 Fitting the normalized mass flow rate 
According to the literature all turbine operating points should lie on a single curve when 
plotted in the normalized mass flow rate versus normalized blade speed ratio diagram. 
In GT-SUITE, the fitting function is exponentiation in the form [10, 20] 

WTnorm = Cm + BSRnorm
mf*(l - Cm) (105) 

where the constant cm [-] and the exponent m^it [-] are fitted parameters. Again, an 
optimization method must be used to determine their values, because the m^it is in the 
exponent of BSRnorm. As it is a curve fitting problem (the minimization of RMSE), 
gradient based methods can be used (a convex objective function is expected), among 
which the Newton's can be recommended for its fast convergence and resistance to 
zigzagging (see Chapter 1.4.5). At the same time, the cm is the value of WTnorm, where 
they-axis is crossed. Similarly, the exponent rrifit determines the curvature of the fitting 
function and thus the intercept with the x-axis 

1 

BSRnorm W T int = I -1 \ I 
- - \cm - 1/ 
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where BSRnorm_WTint [-] is the value of BSRnorm, at which zero WTnorm is reached. It 
should be noted that normalized mass flow rate usually reaches zero at a much higher 
value of BSRnorm than normalized efficiency. 
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Figure 36: Normalized mass flow rate as a function of normalized blade speed ratio 

2.2 Back-Calculation of Turbine Performance 
Once the model is fitted, it can be used to generate the turbine performance data at any 
operating point from the supported range of speed and pressure ratio, which is the main 
purpose it was developed for. Thanks to this functionality, it is possible to compare the 
efficiency and the mass flow capacity of different turbine stages at equal operating 
conditions, or to carry out a working cycle simulation of a turbocharged engine (see 
Chapters 1.1.9 & 1.1.10). As the first step, however, it is convenient to visualize the fitted 
model in the form of fully extrapolated efficiency and corrected mass flow rate maps. 

The process of generating a fully extrapolated turbine performance map involves 
evaluation of the fitted functions over a set of pre-defined operating points. A common 
practice is to group them into speed lines (i.e. points with the same corrected speed). It 
is convenient to select the same speeds that were identified in the source data, so it is 
easy to assess their alignment with the fit. In the case the source map consists of lines 
of a constant expansion ratio, an arbitrary set of corrected speeds covering the useful 
turbine speed range can be selected. 

Turbine efficiency (ETATM) is obtained as a product of the normalized efficiency 
(ETATMnorm) and the maximum efficiency (ETATMmax) at certain expansion ratio (see 
Equation 99). The fitting function for ETATMmax is, however, defined with respect to 
the optimum corrected speed, so it must be calculated using Equation 100 first. 
ETATMnorm, on the other hand, depends on the normalized blade speed ratio 
(BSRnorm) according to Equations 101 and 102. Finally, BSRnorm is defined by 

56 



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines 

Equation 98 and depends on the BSR (see Equation 46) and the BSRopt (see Equation 
97). The expansion ratio (PRT), therefore, remains the only independent variable and 
enters the process as a generated set of equidistant values. 
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Figure 37: Fully extrapolated turbine efficiency map with equally distributed PRT points 

The same procedure can be followed to generate a fully extrapolated map of corrected 
mass flow rate (WT), only with the difference that it is obtained as a product of the 
normalized mass flow rate (WTnorm) and the optimum corrected mass flow rate (WTopt) 
at each expansion ratio (see Equation 104). 
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Figure 38: Fully extrapolated mass flow rate map with equally distributed PRT points 
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The fitting function for WTopt is defined with respect to the optimum corrected speed, 
which must be calculated using Equation 100 first. WTnorm, on the other hand, depends 
on the normalized blade speed ratio (BSRnorm) according to Equations 101 and 102. 
The remaining steps are the same for both the efficiency and corrected mass flow rate. 
BSRr is obtained from Equation 98 and depends on BSR (see Equation 46) and 
BSRopt (see Equation 97). The expansion ratio (PRT) is the only independent variable 
and enters the process as a generated set of equidistant values. 

The map in Figure 38 was generated with a limitation of the minimum corrected mass 
flow rate, which is the reason why all speed lines appear to meet at the expansion ratio 
one and the zero corrected mass flow rate. At the same time it is apparent that the 
distribution of operating points at low expansion ratios is disadvantageous for a good 
resolution of both the efficiency and corrected mass flow rate in Figures 37 and 38. An 
efficient way to improve this is by creating a set of equidistant isentropic spouting 
velocity values, which are used to determine the corresponding expansion ratio. 
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Figure 39: Fully extrapolated turbine efficiency map with PRT points derived from an 
equally spaced set of isentropic spouting velocity (co) 

A formula for the isentropic spouting velocity can be derived from Equation 46 as 

C 0 — \2cpexhT1T _ref 

Yexh-1 
PIT 

\PlT_tot, 

Yexh 
(107) 

A simple reorganisation gives the expansion ratio 

PRT= 1 -

Yexh 
A~Yexh 

2cpex}iT1T_ref / 

(108) 
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In Figure 39, the number of points per speed line is the same or lower than in Figure 37. 
The same approach can be followed to generate the corrected mass flow rate map. 
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Figure 40: Fully extrapolated turbine mass flow rate map with PRT points derived from 
an equally spaced set ofisentropic spouting velocity (co) 

2.3 Fit Quality Assessment 
The quality of a turbine performance model can be evaluated in terms of the difference 
between the source data and the fit. The corresponding values must be obtained using 
the same set of independent variables (the corrected speed and the expansion ratio). A 
common way to do the assessment is by means of descriptive statistics. Nevertheless, 
performing a visual analysis of characteristic parts of each extrapolated map is 
worthwhile too. The fitting algorithm is supposed to be applicable on a large scale of 
engineering tasks, so it needs to be robust to varying type and quality of source data. 

2.3.1 Statistical analysis 
The two key turbine performance parameters are the efficiency and the corrected mass 
flow rate. As the first step of a statistical analysis, the error between the model and the 
source data must be evaluated at each operating point (see Equation 59 for the 
definition of error and Chapter 2.2 for the interpretation of the model). Then, it is 
convenient to quantify the overall fit error using suitable indicators, which are called the 
statistics. To the basic ones belong the minimum, the maximum, the mean, the median, 
the mean squared error (MSE) and the root-mean-square error (RMSE, see Chapter 
1.3.3). 
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Table 2: Statistics of the sample turbine map fit quality 

Efficiency 
Corrected mass 

flow rate 

Minimum error -5.09% -1.28% 

Maximum error 2.85% 0.50% 

Mean error -0.42% -0.28% 

Median error -0.27% -0.07% 

Mean absolute error 0.77% 0.43% 

MSE 1.48 0.34 

RMSE 1.22% 0.58% 

The fit is not perfectly centralized as both the mean and the median error are different 
from zero for both the efficiency and corrected mass flow rate (see Table 2). 
Nevertheless, the difference is lower than a half of a percentage point, which is one 
tenth of the biggest efficiency deviation. The distribution of error sizes can also be 
visualised by means of a histogram. Figure 41 shows that most of the efficiency errors 
fall in the interval from -1% to 1%, which corresponds to approximately three quarters 
of the total number of data points. The relative corrected mass flow rate error is even 
less scattered with zero occurrence below -2% and above 1%. 
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Figure 41: Histograms of fit error size for the efficiency (left) and the corrected mass 
flow rate (right) 

A few data points, on the other hand, fall into the bins of efficiency error bigger than 
3%. It is useful to visualize, what speed lines they belong to. This can be done by plotting 
the error values relative to the index of each operating point (see Figure 42). 
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Figure 42: Fit error size as a function of data point index for the efficiency (left) and the 
corrected mass flow rate (right) 

From the assessment of Figure 42 follows that the biggest efficiency errors are mostly 
connected with the lowest-speed lines. This is partly caused by the fact that the shape 
of the low-speed lines is sharp in the efficiency map (see Figure 39) and steep in the 
corrected mass flow rate map (see Figure 38). Therefore, a relatively small error in PRT 
results in a big error of the dependent variable. Mass flow rate can be measured directly 
on a gas stand, so this data is less noisy. 

2.3.2 Analytical approach 
Apart from the statistical evaluation, it is useful to visually check the shape of the 
extrapolated turbine performance maps too. One way to do that is by examining the 
maximum efficiency curve plotted over the expansion ratio in the fully extrapolated 
efficiency diagram (see Figure 43). 

A discrepancy can be seen between the location of the maximum efficiency points 
derived from the model and those in the source map. The reason for the shift in the PRT 
coordinates is that the optimum BSR function is defined by linear regression (in the 
least squares sense) of the source-map operating points of the maximum efficiency, so 
the fit does not necessarily pass through all of them (see Figure 32). The Corresponding 
PRT coordinates at each maximum efficiency point can be determined using 
Equations 97 and 108 

Yexh 

PRT = (kPRT + q) -l 
n N T 

ehx1 \T_ref 

1-Yexh 

(109) 

Further, the areas A and B in Figure 43 mark the points, where the maximum efficiency 
curve transitions from the main spline part defined by the source map data to the 
extrapolation regions (see Figure 33). One benefit of the flat extrapolation is that 
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outlying input map points are still reasonably represented by the turbine performance 
model (see operating points to the right of the area B in Figure 43). This is possible, since 
end-point efficiencies of the main spline part were defined using the peak efficiency 
points of the lowest and the highest speed line in the source map, so the extrapolated 
curve must pass through them. 

1 1.5 2 2.5 3 3.5 4 4.5 5 
Expansion Ratio [-] 

Figure 43: Fully extrapolated efficiency map, showing the highlighted maximum 
efficiency curve and points. The areas A and B mark the end-points of the main spline 

part of the maximum efficiency curve; the tangential extrapolation is dashed 

The disadvantage of the flat extrapolation is that two sharp break points can be 
identified on the peak efficiency curve in Figure 43 (marked as the areas A and B), which 
is unphysical. One way to cope with it would be a tangential linear extrapolation instead 
of the flat one. The issue is, however, that the maximum efficiency curve may no longer 
pass through the operating points of the maximum efficiency at the highest and the 
lowest speed line, which impacts the agreement between the fitted model and the 
source data (see the dashed lines in Figure 43). Furthermore, the extrapolated efficiency 
may, in some cases, rise above one or fall below zero (where it is not desired). 

The two areas of extrapolation can be identified in the corrected mass flow rate chart 
too (see Figure 44). The optimum corrected mass flow curve is, however, defined for the 
corrected speeds starting at zero (corresponds to PRT = 1), so the area A does not mark 
any break point. Although the extrapolation to high corrected speeds is still flat, the 
slope of the optimum corrected mass flow rate is almost zero there, so the transition is 
smooth again in the area B in Figure 44. 
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Figure 44: Fully extrapolated corrected mass flow rate map. The areas A and B mark 
the end-points of the main spline part of the optimum corrected mass flow rate curve 

2.3.3 Robustness check 
The above described methodology proved to be reasonable for modelling the sample 
turbine stage performance, the input data of which was acquired on a hot gas stand. 
Now, it should be checked that the same process can be repeated for a different data 
source too. 
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Figure 45: Fully extrapolated efficiency and mass flow rate maps for the turbine data 
obtained on a dynamometer 

Another common way to obtain a turbine performance map is by means of a 
dynamometer measurement. A turbine stage alone (without the compressor) is 
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mounted on the rig, while the power output is measured directly on the shaft (see 
Chapter 1.1.4). A sample fitted turbine dyno map is shown in Figure 45. The fitting 
method failed in determining the maximum efficiency at low corrected speeds, where 
the measured data include the sub-optimal operating points only (see Figure 45). As a 
result, the extrapolated efficiency and mass flow rate maps include areas of significant 
distortion. This makes the models useless for engine thermodynamics simulations or 
other modes of use. 

2.4 Sensitivity Study 
Once the baseline fitting algorithm has been implemented, the relationship between 
the properties of the turbine performance model and the shape of the corresponding 
extrapolated maps can be studied. Out of the five fitted functions, two are determined 
directly by the input map data. These describe the maximum efficiency and the optimum 
corrected mass flow rate. Their modification would result in a proportional shift of the 
corresponding maps. The normalized efficiency and the normalized mass flow rate 
functions are linked to the first two and play the most important role in extrapolation. 
Finally, the optimum blade speed ratio is central to the turbine performance model and 
influences the complete shape of it. 

The properties of the optimum BSR function are determined using the input map data 
directly (least squares approximation). Nevertheless, only a few operating points are 
selected for this purpose, which are supposed to capture the maximum efficiency at 
each speed line (see Figures 31 & 32). However, the standard mapping processes (e.g. 
on a hot gas stand) are not designed to look for the maximum turbine efficiency, so 
a significant uncertainty is associated with the resulting fit. 

2.4.1 The shape of the optimum BSR function 
The function of the optimum blade speed ratio over the expansion ratio is key to the 
turbine performance model. It influences the shape of both the efficiency and corrected 
mass flow rate maps. The most significant is the relationship to the location of the peak 
efficiency points at each speed line (see Figures 46 & 47). These can be interpreted as 
the anchor points for extrapolation, which means that complete speed lines are affected 
by any modification to the optimum BSR function. 

It can be noted that the maximum efficiency curve is stretched with respect to expansion 
ratio for the modified optimum BSR function (see Figure 46). Although it is defined the 
same way in both cases, the independent variable of the maximum efficiency function 
is the corrected speed, so the link to PRT is affected by a change of the optimum BSR 
function. It is a general rule that lowering the BSR results in an increase of PRT (for a 
constant speed). The same is true for the optimum corrected mass flow rate. 
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Expansion Ratio [-] 

Figure 46: Fully extrapolated efficiency map for the original (full lines) and the modified 
(dashed lines) optimum BSR function 

The shift of the optimum BSR function had a strong impact on the complete efficiency 
map (see Figure 46). Also, the sensitivity is bigger with an increasing expansion ratio. 
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Figure 47: Fully extrapolated corrected mass flow rate map for the original (full lines) 
and the modified (dashed lines) optimum BSR function 
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Another important effect the modification of the optimum BSR fit has, is the altered 
relationship between the normalized efficiency and the normalized blade speed ratio of 
the map operating points. The maximum efficiency function is unchanged again in 
Figure 48. 
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Figure 48: Normalized efficiency diagrams for the original (left) and the modified (right) 
optimum BSR function 

The source map operating points displayed in Figure 48 are shifted towards the higher 
normalized BSR in reaction to the previously described optimum BSR function 
modification (corresponds with Equation 98 for the normalized BSR). Normalized 
ETATM, on the other hand, changes because the maximum efficiency function is 
defined relative to the corrected speed. Similar is the situation with the normalized mass 
flow rate in Figure 49. 
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Figure 49: Normalized mass flow rate diagrams for the original (left) and the modified 
(right) optimum BSR function 

From the presented analysis follows that it is possible to adjust a turbine fit by modifying 
the optimum BSR function. This operation, as described above, had a positive effect on 
the match between the source map points and the extrapolated efficiency at the lowest 
speed lines, but negatively impacted the same at the high speed lines (see Figure 46 and 
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Figure 47). Another issue is that the shape of the maximum efficiency and the optimum 
corrected mass flow rate can be affected in a potentially unwanted way with respect to 
the expansion ratio. One option to overcome this would be an appropriate scaling of the 
corresponding functions to make sure the relationship to PRT remains unchanged. 
Alternatively, the maximum efficiency and the optimum corrected mass flow rate can 
be defined directly as functions of PRT. 

2.4.2 The shape of the normalized ETATM function 
The normalized efficiency fit plays the most important role in extrapolation. It defines 
the slope of speed lines to the left and to the right from the maximum efficiency points 
(see Figure 50). As per the definition, the function has two-pieces (see Chapter 2.1.4), 
both of which can be modified independently. 

Expansion Ratio [-] 

Figure 50: Fully extrapolated efficiency map for the original (full lines) and the modified 
(dashed lines) normalized efficiency fit 

Extrapolation into the low BSR area influences the level of efficiency above the 
optimum expansion ratio for certain corrected speed and vice versa. Also, the 
normalized efficiency intercept at high normalized blade speed ratio (see Chapter 2.1.4) 
denotes the expansion ratio, at which the efficiency reaches zero for certain corrected 
speed. These are the points, where speed lines cross the x-axis in Figure 50. 

By modifying the normalized efficiency function, it is possible to adjust the efficiency fit 
outside of the optimum point at each speed line (i.e. without affecting its position). 
Nevertheless, such a change impacts all speed lines at once, so it cannot be used to 
tweak local deviations. 
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2.4.3 The shape of the normalized WT function 
Analogically to the normalized efficiency, the function of normalized mass flow rate 
versus normalized blade speed ratio defines the extrapolation outside of the optimum 
operating point at each speed line. However, the value of expansion ratio, at which the 
corrected mass flow rate reaches zero, is usually much lower compared to the case of 
efficiency. That is because the intercept of normalized mass flow rate with the x-axis is 
located at a much higher value of normalized BSR (see Chapter 2.1.6). 
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Figure 51: Fully extrapolated corrected mass flow rate map for the original (full lines) 
and the modified (dashed lines) normalized mass flow rate fit 

The fact that mass flow rate can be zero or negative at PRT above one is caused by the 
centrifugal force acting on the gas against its direction of flow in radial and mixed-flow 
turbines. The higherthe spinning speed, the biggerthe force. One important conclusion, 
which can be drawn from the comparison of Figures 50 and 51, is that for certain turbine 
operating points with a positive mass flow rate the extrapolation of efficiency yields 
already negative values (just after the speed lines cross the x-axis in Figure 50). It means 
that although the flow direction remains unchanged, the turbine performs work on the 
fluid. This is caused mainly by the friction in the working gas, which is related to the 
gradient of speed between the wheel and the stator (e.g. in the gap between the wheel 
back disk and the centre housing). Therefore, the friction power increases with the 
wheel speed, as well as the pressure ratio, at which zero efficiency is reached (see Figure 
50). Similar is the effect of bearing friction in the case of gas stand maps, where thermo-
mechanical efficiency is usually evaluated. 
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3 OPTIMIZATION OF TURBINE MODEL PROPERTIES 
A turbine performance model, as described in Chapter 1.1.10, consists of five 
characteristic functions. Three define the operating properties at peak efficiency, the 
other two control the extrapolation to sub-optimal conditions. It is, therefore, critical to 
the fitting process that the location of the maximum-efficiency operating points with 
respect to the independent variables (the expansion ratio and the corrected/reduced 
speed) is identified correctly. The issue is that the input map data, typically obtained on 
a hot gas stand, consist of scattered operating points that the peak efficiency is generally 
not included in. For this reason, the corresponding functions of the performance model 
must be estimated. 

In the baseline fitting algorithm (see Chapter 2.1), the most efficient operating point is 
identified at each speed line or constant-expansion-ratio line. The functions for the 
maximum efficiency and the optimum corrected mass flow rate are defined by these 
points directly (see Chapters 2.1.3 and 2.1.5). On the contrary, the optimum BSR, the 
normalized efficiency and the normalized mass flow rate fits are determined using the 
least-squares method (see Chapters 2.1.2, 2.1.4 and 2.1.6). There is, however, no 
mechanism to check or fine-tune the quality of the resulting turbine performance 
model. The application of optimization methods can bring an additional value. 

3.1 Optimum BSR Function 
The optimum BSR function is key to the fitting process (see Chapter 2.4.1). The highest-
efficiency operating points from the input map are approximated by a line in the least-
squares sense in the baseline algorithm (see Chapter 2.1.2). An optimization method can 
be applied with the goal to minimize the root-mean-square error between the map 
operating points and the model (see Chapters 1.3.2 and 2.3.1). 

Since the optimum BSR function is linear (see Equation 97), there are two independent 
parameters to be identified, so a multi-dimensional optimization method is needed. 
Also, the relationship between the root-mean-square error and the independent 
variables is strongly non-linear (five fitting functions must be evaluated), so the linear 
least-squares method cannot be applied. Therefore, the simplex, the gradient descent 
and the Newton's method will be considered (see Chapter 1.4). The best algorithm 
should not only find the solution but require the lowest number of the objective function 
evaluations too (to minimize the computing time). 

To get a better idea about the features of the optimization problem, it is convenient to 
map and visualize the objective function in certain vicinity of the optimum. The 
corresponding intervals of the independent variables can be defined relative to the 
initial solution identified using the least-squares fit (see Chapter 2.1.2). The visualization 
is further simplified by the fact that the fitting function has only two independent 
parameters, so the response surface can easily be plotted in a 3D chart. 

In the case of a data fitting, there is usually only one optimum that yields the lowest 
root-mean-square error of the model, unless a complex fitting function is selected, 
which can lead to the ambiguity of the solution. Furthermore, a monotonie increase in 
the objective function is expected together with the increasing distance from the 
optimum. 
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Figure 52: Mapping of the objective function relative to the optimum BSR fit properties 

In Figure 52, the objective function appears to be convex near the optimum. At the same 
time, however, it seems to have the shape of a long narrow valley, which may lead to 
zigzagging when the gradient descent method is applied. 

Constant k [-] 

Figure 53: Performance of the simplex method (Nelder-Mead) 
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The simplex method can find the optimum, but it does not follow the shortest route 
from the starting point, which might suggest an unnecessarily high computing effort is 
needed (see Figure 53). In the case of a convex objective function, the shortest way to 
the optimum should follow the direction of the steepest descent. Therefore, the 
gradient descent method might be a good candidate. 
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Figure 54: Performance of the gradient descent method 

The test case confirmed that the gradient descent method was successful in selecting a 
convenient initial direction of search (see Figure 54). The subsequent iteration steps 
were, however, impacted by the so-called zigzagging, which makes the process 
significantly inefficient in terms of the speed of convergence and the computational 
demands. It is expected that this drawback would be eliminated using the Newton's 
multi-dimensional method. By approximating the local curvature of the objective 
function, it is possible to estimate, how the direction of the steepest descent changes 
with an increasing distance from the last discretization point, and to adapt the direction 
of search accordingly (see Chapter 1.4.5). 

71 



Ing. Adam Vondrák Fitting and Extrapolation of Turbocharger Turbine Maps 

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 
Constant k [-] 

Figure 55: Performance of the Newton's multi-dimensional method 

Based on the visualization of the Newton's multi-dimensional optimization, it can be 
concluded that the zigzagging is successfully mitigated (see Figure 55). Also, out of the 
tested options, this is the most efficient method in terms of the required number of 
iterations. The amount of overall objective function evaluations is comparable to the 
simplex method, nonetheless (see Table 3). 

Table 3: Computational demands of each optimization method 

Method 
Number 

of 
iterations 

Total 
objective 
function 

evaluations 

Final 
objective 
function 

value 

Final k Final q 

Simplex 26 51 0.783621% 0.02308 0.55234 
Gradient descent 
+ golden-section sr. 

20 241 0.783626% 0.02250 0.55371 

Gradient descent 
+ quadratic fit 

11 178 0.783610% 0.02284 0.55317 

Newton's method 
+ golden-section sr. 

4 63 0.783612% 0.02299 0.55266 

Newton's method 
+ quadratic fit 

4 50 0.783610% 0.02298 0.55285 

The best overall performance is delivered by the Newton's method combined with the 
quadratic fit search, which is used to find local minima in the directions identified by the 
higher-level algorithm in each iteration step. The impact of the optimum BSR fit 
optimization on the overall map fit quality is summarized in Table 4. 
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Table 4: Fit quality statistics for the cases with and without optimization of the 
optimum BSR function (simplex method) 

With optimization Without optimization 
Efficiency Mass flow Efficiency Mass flow 

Minimum error -2.37% -0.64% -5.09% -1.25% 
Maximum error 2.15% 0.60% 2.85% 0.49% 
Mean absolute 0.62% 0.36% 0.77% 0.42% 
error 
Mean (raw) 0.15% 0.03% -0.42% -0.27% 
error 
Median (raw) 0.24% 0.13% -0.27% -0.07% 
error 
RMSE 0.78% 0.40% 1.22% 0.57% 

It can be concluded that the optimization of the optimum BSR fit enables a significant 
improvement of the overall fit quality with the sample measured turbine map. In the 
case of the thermo-mechanical efficiency, the standard deviation from the input data is 
lower by 0.44%. Comparison of extrapolated efficiency maps is included in Figure 56. 
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Figure 56: Fully extrapolated efficiency maps for the baseline (dashed) and the 
optimized (full lines) optimum BSR functions 

The standard deviation of the corrected mass flow rate from the input data is lower by 
0.17% with the optimized optimum BSR fit, however the overall appearance of the 
extrapolated mass flow map changed rather significantly as shown in Figure 57. This 
behaviour indicates low correlation between the standard deviation from the input data 
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and the shape of the corrected mass flow rate extrapolation to sub-optimal operating 
conditions. That is an important conclusion, which is discussed further in Chapter 4. 
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Figure 57: Fully extrapolated mass flow rate maps for the baseline (dashed) and the 
optimized (full lines) optimum BSR functions 

3.2 Maximum Efficiency Function 
Once the optimum BSR function has been identified, it can be checked, whether the 
maximum efficiency curve enables the best overall fit quality. It has been shown in 
Chapter 2.1.3 that a spline is a convenient interpolant, while the number of its nodes 
corresponds to the number of speed lines identified in the source map data. An 
optimization algorithm can be employed to minimize the root-mean-square error 
between the map operating points and the model by shifting the node efficiencies. To 
do that, a multi-dimensional method is needed. Therefore, the simplex, the gradient 
descent and the Newton's method will be tested. 

Before the optimization begins, it is necessary to deal with the unphysical sharp bend of 
the maximum efficiency curve at the point of extrapolation to high corrected speeds 
(see Figures 56 & 43). On the one hand, the flat extrapolation approach is conservative, 
which is useful at low pressure ratios, where there is a risk of running above 100% with 
gas stand maps (see the area A in Figure 43). On the other hand, a linear extrapolation 
of the maximum efficiency at high pressure ratios is of low risk as long as a reasonable 
range is considered. A synergy with the maximum efficiency curve optimization should 
eliminate the large fitting error at the highest speed line, which was identified in Chapter 
2.3.2 (see the area B in Figure 43). 

74 



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines 

V >> 

1 \ 1 \ 

Original 
Optimized 

0.5 1 1.5 
Corrected Speed [rpm] 

Tm > 
x10 3 

TT 

• 53201 rpm 
o 67866 rpm 
o 82462 rpm • 97149 rpm 
o 111673 rpm • 126376 rpm • 140849 rpm • 153633 rpm 

•Max. ETATM 
V Max. ETATM 

1.5 2.5 3 3.5 
Expansion Ratio [-] 

4.5 

Figure 58: Fully extrapolated efficiency map after the optimization of the maximum 
efficiency spline (full lines) versus the initial fit (dashed lines) 

In Figure 58, it can be seen that the optimization targeting the lowest RMS error caused 
lowering of the maximum efficiency curve at certain points. This may be undesired 
especially in the cases, where the efficiency at the actual measured points rises above 
the maximum efficiency curve (see the low-speed lines in Figure 58). Therefore, it is 
convenient to define an additional penalty function to make sure no measured point 
shows a higher efficiency than the maximum efficiency function at the same expansion 
ratio. To do that a sum of squared positive efficiency differences can be added to the 
overall mean square error as shown in the following equation 

MSE = Y^ETA™datai ~ ETATMmodeli)2 

Z (110) 
(ETATMdatai-ETATMmaXi)2 

ETATM DATAI>ETATMmaxi 

where ETATMdata [-] is the efficiency at a map data point, ETATMmodei [-] is the 
modelled efficiency at the same operating conditions (corrected speed and expansion 
ratio), ETATMmax [-] is the maximum efficiency at the expansion ratio of the 
corresponding map data point. Following this approach, a compromise between the 
lowest overall fit error and the smallest maximum efficiency underestimation is targeted 
by the applied optimization algorithm. The result can be assessed in Figure 59. 
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Figure 59: Fully extrapolated efficiency map after the improved maximum efficiency 
spline optimization (full lines) versus the initial fit (dashed lines) 

The refined maximum efficiency optimization provides satisfactory results in terms of 
both the overall extrapolated map shape and individual data point deviations (see 
Figure 59). Further, the numerical performance of all the three tested optimization 
algorithms can be compared in Table 5. 

Table 5: Computational demands of each optimization method 

Method 
Number of 
iterations 

Total objective 
function 

evaluations 

Final objective 
function value 

(efficiency/overall) 
Simplex 136 215 0.7198%/1.1198% 
Gradient descent 
+ golden-section sr. 

24 446 0.7244%/ 1.1244% 

Gradient descent 
+ quadratic fit 

21 337 0.7241%/ 1.1241% 

Newton's 
+ golden-section sr. 

11 609 0.7214%/ 1.1214% 

Newton's 
+ quadratic fit 

11 579 0.7219%/ 1.1219% 

From the outcomes of the numerical methods assessment follows that although the 
simplex method required the highest number of iterations to converge to the optimum, 
it needed the least objective function evaluations. A detailed view at each method's 
speed of convergence is provided in Figure 60. 
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Figure 60: Convergence of the maximum efficiency spline optimization (the objective 
function is a sum of the efficiency and corrected mass flow rate RMS deviations) 

3.3 Optimum Corrected Mass Flow Rate Function 
The optimum corrected mass flow rate fit can be optimized in a similar fashion as the 
maximum efficiency function. 
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Figure 61: Fully extrapolated corrected mass flow rate map after the optimization of 
the optimum corrected mass flow rate spline (full lines) vs. the initial fit (dashed lines) 
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A multi-dimensional algorithm is employed to find such a corrected mass flow rate at 
each node of the corresponding spline that minimizes the overall root-mean-square-
error between the map operating points and the model. At the same time, a linear 
extrapolation to high corrected speeds is applied to reduce the fit error of high-pressure-
ratio data points. Despite the agreement with all the input data points is good, a big 
change in the overall corrected mass flow rate map appearance can be observed (see 
Figure 61). This re-confirms the low sensitivity of the standard deviation from the input 
data to the shape of the corrected mass flow rate extrapolation to sub-optimal operating 
conditions mentioned in Chapter 3.1 and further developed in Chapter 4. 

Table 6: Computational demands of each optimization method 

Method 
Number of 
iterations 

Total objective 
function 

Final objective 
function value 

Number of 
iterations 

evaluations (mass fl./overall) 
Simplex 89 163 0.3609%/1.1409% 
Gradient descent 
+ golden-section sr. 20 384 0.3623%/1.1423% 

Gradient descent 
+ quadratic fit 

31 604 0.3624%/ 1.1424% 

Newton's 
+ golden-section sr. 

7 386 0.3610%/ 1.1410% 

Newton's 
+ quadratic fit 

18 950 0.3610%/ 1.1410% 

The comparison of the different optimization algorithms leads to a conclusion that the 
simplex method features the biggest robustness against variations in the task definition. 
It required less than a half of the objective function evaluations of the next best 
alternative among the tested algorithms (see Table 6). A detailed view at each method's 
speed of convergence is provided in Figure 62. 
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Figure 62: Convergence of the optimum corr. mass flow rate spline optimization (the 
objective function is a sum of the efficiency and corr. mass flow rate RMS deviations) 
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3.4 Complete Turbine Fitting Algorithm 
As the three main sources of uncertainty related to the turbine map fit quality have been 
addressed one-by-one using optimization techniques, it is convenient to take a more 
global look at the overall process. In the first place, all optimization steps cannot be 
performed simultaneously, because they would influence each other and the algorithm 
would diverge. On the other hand, as the subsequent optimization steps backward-
influence the earlier ones (in terms of the location of the optimum), higher fit quality 
can be achieved by repeating the process multiple times. Therefore, the complete 
turbine map fitting algorithm consists of three optimization tasks repeated in a loop, in 
which the best properties of the functions describing the optimum BSR, the maximum 
efficiency and the optimum mass flow rate are sought. This procedure finishes after the 
change of the RMS deviations of both the efficiency and corrected mass flow rate 
between two subsequent loops is lower than 0.001% (see Figure 63). 
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Figure 63: Convergence of the complete turbine map fitting algorithm (the objective 
function is a sum of the efficiency and corrected mass flow rate RMS deviations) 

Plotting of the objective function value at the end of each main loop confirmes that 
repeated optimization enables gradual reduction of the overall model error (see 
Figure 63). An evaluation of the final map fit quality is provided in Table 7. 

Table 7: Statistics of the map fit quality with the complete algorithm 

With optimization Without optimization 
Efficiency Mass flow Efficiency Mass flow 

Minimum error -2.65% -0.208% -5.09% -1.25% 
Maximum error 1.86% 0.146% 2.85% 0.49% 
Mean absolute 0.50% 0.067% 0.77% 0.42% 
error 
Mean (raw) -0.19% 0.005% -0.42% -0.27% 
error 
Median (raw) -0.10% 0.010% -0.27% -0.07% 
error 
RMSE 0.710% 0.085% 1.22% 0.57% 
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Based on the comparison with the initial map fit optimization (see Chapters 3.1, 3.2 and 
3.3), it can be concluded that the repeated process helped to improve mainly the 
corrected mass flow rate fit quality. Its RMS deviation lowered from 0.361% to 0.085%, 
while the overall efficiency error reduced from 0.720% to 0.710% (see Chapters 3.3 and 
3.2). The final and the original optimum BSR functions are compared in Figure 64. 
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Figure 64: Comparison of the optimum BSR function at the end of the complete turbine 
fitting process (full line) with the initial non-optimized one (dashed) 

The corresponding fully extrapolated efficiency map is shown in Figure 65. It can be 
noted that now the maximum efficiency curve is located further away from the data 
points of the highest speed line (compare to Figure 59). 
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Figure 65: Fully extrapolated efficiency map at the end of the complete turbine fitting 
process (full lines) and the initial non-optimized one (dashed) 
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The fully extrapolated corrected mass flow rate map is included in Figure 66. Compared 
to the initial optimization (see Figure 61) the speed lines are even more condensed at 
low expansion ratios. Also, the distance of the optimum corrected mass flow rate curve 
from the data points of the highest speed line is increased again (like in the case of 
efficiency). 
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Figure 66: Fully extrapolated mass flow rate map at the end of the complete turbine 
fitting process (full lines) and the initial non-optimized one (dashed) 

3.5 Evaluation 
After the complete turbine performance fitting algorithm has been implemented, it can 
be concluded that optimization is a useful tool to improve the overall map fit quality. 
Further, it has been demonstrated that among the tested options the simplex method 
provides the biggest robustness, although the trajectory of search for the optimum is 
not necessarily the shortest. Overall, the computing time needed to fit the sample gas 
stand map using the above described procedure is less than half a minute on a 
moderately powerful contemporary PC. 

In terms of fit quality, the standard procedure (as inspired by the existing commercial 
solution - see Chapter 1.1.10) shows a good performance with respect to capturing of 
both the overall trend of efficiency and the corrected mass flow rate near the optimum 
points. However, the shape of the corrected mass flow rate map in the extrapolated 
regions is not always satisfactory, which is discussed further in the following chapter. 
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4 NEW TURBINE FITTING ALGORITHM 
Fitting a turbine map obtained by hot gas stand measurement is a particularly difficult 
task mainly for the low range of measurable operating conditions (see Chapter 1.1.4). It 
is, therefore, highly desirable to find ways to improve the accuracy of extrapolation 
based on physics principles. In Figure 61, for example, the speed lines are highly 
condensed at high expansion ratios, which is unexpected for a radial turbine. At the 
same time, Chapter 2.4.3 shows a strong correlation between the shape of the 
normalized mass flow rate function and the spread of speed lines in the corrected mass 
flow rate map, so it would be convenient to refine it. One possibility is to focus on the 
intercept of the normalized mass flow rate function with the normalized BSR-ax\s, 
which is linked to the points where speed lines cross the PRT-ax\s in a corrected mass 
flow rate map. In other words, it links the expansion ratio at zero mass flow rate to the 
spinning speed. Since most automotive turbochargers use radial turbines, the expansion 
ratio at zero mass flow rate increases with spinning speed due to the centrifugal force. 
The theory of radial equilibrium can be used to describe this relationship (see [11]). 

4.1 Radial Equilibrium 
The main idea of the radial equilibrium theory is that the pressure at the inlet of 
a turbine wheel is increased due to the centrifugal force acting on the mass of fluid 
enclosed in blade channels (see Figure 67). 

Figure 67: Radial equilibrium of a fluid element in the turbine blade channel 

As there is zero mass flow rate, the system is assumed to be in equilibrium state. This 
simplifies the determination of the pressure distribution across the fluid, because the 
only force to balance is the centrifugal. It acts on every fluid element only in the radial 
direction (see Figure 67), so the equation of equilibrium can be written as [11] 

(pR + ^<^) dxdcp — pRdxd(p = dFc (111) 

where p [Pa] is the pressure, pR [Pa] is the pressure at the radius R [m], x [m] is the axial 
coordinate, <p [rad] is the polar coordinate and dFc [N] is the centrifugal force acting on 
the fluid element. The latter can be calculated based on the second law of motion 
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dFc = pdxdcpdRa)2R (112) 

where p [kg/m3] is the local fluid density and a) [rad/s] is the angular velocity. At this 
point, it is good to emphasize that the objective of the centrifugal effect evaluation is to 
improve the fidelity of extrapolation of corrected mass flow rate. Therefore, the 
reference fluid properties are used in line with the theory of turbomachinery similarity. 
Any differences from the actual working fluid properties are accounted for by the 
correction of the mass flow rate and the wheel spinning speed (see Chapter 1.1.7). 

By the combination of Equations 111 and 112 is obtained 

dp 
— dxd(pdR = pdxd(pdRa>2 R (113) 
dR 

Further simplification leads to an expression for the pressure difference in a fluid 
element 

dp = po)2RdR (114) 

Local fluid density in Equation 114 can be approximated by the adiabatic compression 
process [11] 

P_2 _ (PAVexh 

Pi W 
(115) 

where px [kg/m3] and p x [Pa] are the density and the pressure (respectively) at the 
beginning of compression, p2 [kg/m3] and p 2 [Pa] denote the corresponding quantities 
at the end of compression. Introduction of the adiabatic process in Equation 114 gives 

dp=p1(^J^ha)
2RdR (116) 

^Pi 

The complete pressure difference between the wheel inlet and outlet points can be 
obtained by integration after the separation of variables 

p Yexhdp = p1p1 yexhO)2RdR ( H ? ) 

It needs to be emphasized that the fluids in the volumes adjacent to the turbine wheel 
are assumed to be stationary, which means that there are no pressure gradients. This is 
particularly important at the turbine wheel outlet, where the radius of the blade channel 
spans from the hub to the blade tip (see Figure 67). To obtain the correct pressure 
difference, mean-flow radii (both inlet and outlet) must be used as integration limits. 
The mean-flow radius is defined as the root-mean-square of the minimum and the 
maximum radii [11] 

RRMS — jRmin + Rmax (118) 
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where RMIN [m] is the radius of the blade channel at the hub and RMAX [m] is the blade 
tip radius (see Figure 67). Integration of Equation 117 gives 

Yexh 

yexh ( Yexhzl Yexhzl\ 1 L_ 
- l p 2 Yexh — p1 Yexh I = — p 1 p 1 YexhQ) (̂ ?f RMS RLRMS) (119) 

where R2_RMS [m] i s the bigger mean-flow radius and i?i RMS [m] i s the smaller mean-
flow radius. Reorganization of Equation 120 enables the isolation of the expression for 
the overall pressure ratio induced by the centrifugal force as follows 

Yexh 

Yexh 

Yexh-í 
(V2\ Yexh _ fPl\ 

\ p j \ p j 

Yexh-1 
Yexh 

= 2 PIPI'^^RIRMS - RLRMS) (I20) 

Further simplification produces the final formula [11] 

Yexh - 1 1 
Yexh 

Pi 

Pi 
1 + 

^•Yexh rexhJi 

( . 2 ( R 2 _ R 2 \]Yexh 1 (121) 
KK2_RMS Ki_RMS)\ K ' 

where Tt [K] is the temperature at the turbine wheel outlet. It can be shown that the 
same pressure ratio is obtained using the corrected turbine speed and the reference 
outlet temperature, which are available in the standard turbine map. The modified 
equation is 

P_2 

Pi 
1 + 

Yexh ~ 1 

Yexh 

- ŕ — V r / ? 2 -R2 ^ 
V 30 / ^ 2 - R M S Ki-RMs) 27, exh ^"exhTlT re 

Yexh-1 
(122) 

The blade speed ratio at zero mass flow rate can be derived from Equations 46 and 122. 
On top of that, a significant simplification of the resulting formula is possible as 

BSR Ri RMS 
WTJnt 

2 _ R 2 
RÍ 

(123) 
RMS 2 RMS 

where BSRWT INT [-] is the blade speed ratio related to the intercepts of speed lines with 
the x-axis in the corrected mass flow rate map. To implement the theory of radial 
equilibrium in the turbine performance model, the normalized mass flow rate must 
reach zero at the appropriate normalized blade speed ratio (see Figure 68). The latter is 
obtained from Equation 98, while the optimum blade speed ratio is defined by 
Equation 97 and the expansion ratio at zero mass flow rate for the highest corrected 
speed in the map data (see Equation 122). The properties of the affected fitting function 
are given by Equation 106. 
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Figure 68: Normalized mass flow rate function with the intercept at zero mass flow rate 
determined using the theory of radial equilibrium (full line) and the baseline fit (dashed) 

Figure 68 shows that the shape of the normalized mass flow rate function changed 
significantly after the introduction of the equilibrium point. The resulting fully 
extrapolated corrected mass flow rate map is displayed in Figure 69. 
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Figure 69: Fully extrapolated corrected mass flow rate map generated using the 
updated algorithm constrained by the radial equilibrium point (full lines) versus the 

baseline fit (dashed) 

The newly extrapolated speed lines are condensed at high PRTs, which is not the desired 
state (see Figure 69). Therefore, further research is needed to investigate the context of 
the high-end corrected mass flow rate extrapolation. A convenient way is to compare 
the actual turbine behaviour with that of an ideal nozzle. 
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4.2 Ideal Nozzle Analogy 
In the concept of ideal nozzle, the isentropic expansion of an ideal gas through an orifice 
of a fixed cross section is assumed. The ratio of the inlet and outlet pressures is constant 
and determines the spouting velocity (see Equation 106). The mass flow rate is obtained 
as a product of flow velocity, orifice area and gas density (all referred to the critical cross 
section). The latter can be derived from the isentropic expansion process (see 
Equation 115) 

m 0 = c0Anp1 

Pi 

J?l_tot, 
(124) 

where rh 0 [kg/s] is the mass flow rate and An [m2] is the orifice cross section. Corrected 
mass flow rate is obtained according to Equation 40 

r^l0_corr — coAnPl 
( Pi V V'TIJO t Pre f ( 1 2 5) 

\Pl_totJ Pljot yjTref 

It must be emphasized that the actual spouting velocity cannot rise above the speed of 
sound in the orifice, which is commonly referred to as choke. Under the conditions of 
choke, further increase of the expansion ratio does not lead to any increase of the flow 
velocity in the orifice, unless the gas temperature increases too. This effectively limits 
the minimum static pressure in the orifice, which is commonly referred to as the critical 
pressure. It can be determined using the formula for the critical pressure ratio [9] 

^ - ^ r 11261 

where B c r i t [-] is the ratio of the static pressure inside the orifice and the inlet total 
pressure. Although the maximum effective expansion ratio at choke is limited, the mass 
flow rate still increases together with the inlet pressure due to the increasing gas density 
(see Equation 124). The corrected mass flow rate, on the other hand, cannot increase 
further, because the effects of the inlet gas pressure and temperature are eliminated in 
it. This is shown by the following rearrangement of Equation 125 

m0_ 
corr_crit ~ 

2Cp 
y - i 

1 - ßcrit Y 
A \ R J V r e f (127) 
nn Pent' r= * ' 

where r [J/(kg-K)] is the specific gas constant (the inlet gas density is no longer part of 
the formula). The relationship between the corrected mass flow rate through an ideal 
nozzle and the expansion ratio is visualized in Figure 70. 

86 

file:///Pl_totJ


INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines 

0 
1 1,5 2 2,5 3 3,5 4 4,5 5 

Expansion Ratio [-] 

Figure 70: Corrected mass flow rate through the ideal nozzle 

The fact that a real turbine cannot be modelled as the ideal nozzle has two major 
implications. First, a real turbine is choked at a different expansion ratio. Second, the 
corrected mass flow rate is affected by the centrifugal force and decreases with the 
spinning speed at a constant expansion ratio. The latter effect is, however, negated at 
zero turbine speed. 
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Figure 71: Fully extrapolated corrected mass flow rate map with non-decreasing 
optimum corrected mass flow rate (full lines) vs. the baseline fit (dashed) 

Because the corrected mass flow rate at zero turbine speed is proportional to the 
optimum corrected mass flow rate (see Equation 105), it can be concluded that the 
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optimum corrected mass flow rate must be non-decreasing with respect to expansion 
ratio. Once this condition is implemented in the fitting algorithm, the fully extrapolated 
corrected mass flow rate map shown in Figure 71 is obtained. At the same time, 
however, the input data points at the highest speed line are no longer fitted. Although 
the optimum corrected mass flow rate no longer increases above the expansion ratio at 
choke, the optimum corrected turbine speed does, which is in alignment with the linear 
shape of the optimum BSR function (see Figures 32 & 76). Therefore, every speed line 
must cross the optimum corrected mass flow rate at certain expansion ratio, which 
means that the corrected mass flow rate at every non-zero speed line must be 
monotonically increasing with respect to expansion ratio. However, this behaviour is in 
contradiction to the measurement. Furthermore, if the theory of radial equilibrium were 
assumed to approximate the centrifugal effect at non-zero mass flow rates, it would 
imply that the offset with respect to expansion ratio is independent of the turbine inlet 
pressure (see Equation 122) and all speed lines should be parallel at choke. The only way 
all these constraints can be satisfied at the same time is by keeping the optimum 
corrected speed constant above the expansion ratio at choke. 

4.3 Optimum Corrected Speed Limitation 
Based on the findings introduced in Chapter 4.2, the optimum corrected speed should 
remain constant above the expansion ratio at choke to enable proper fitting of the 
corrected mass flow rate. This means that the optimum blade speed ratio no longer 
depends on expansion ratio under the conditions of choke, because the corresponding 
isentropic spouting velocity is limited (see Equation 45). Therefore, the topology of the 
affected characteristic function of the turbine performance model must be updated. For 
this purpose, a piece-wise polynomial is a convenient solution (see Figure 72). 
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Figure 72: Optimum blade speed ratio spline with the limitation at choke 

Also, the blade speed ratio at every operating point of the map must be calculated 
respecting the isentropic spouting velocity limit too. On the contrary, normalized blade 
speed ratio is independent of the isentropic spouting velocity and can be determined 
simply as the ratio of the actual and optimum corrected speeds (see Equation 98) 
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Turbine operating points of the same speed line are associated with the same 
normalized blade speed ratio under the conditions of choke. Furthermore, the 
maximum turbine efficiency is defined relative to the corrected speed in the standard 
algorithm introduced in Chapter 1.1.10 (see also Chapter 2.1.3). This would produce a 
constant maximum efficiency at choke. To interpret such a behaviour, it is convenient 
to take a closer look at the loss mechanisms in a turbine stage. 

At choke, it is assumed that the wheel-inlet flow velocity and the absolute flow angle (in 
stationary frame of reference) are independent of expansion ratio. Therefore, it can be 
concluded that the highest efficiency is achieved at such a wheel circumferential speed, 
which results in the most convenient relative flow angle at the leading edge of the 
turbine blades (see Figure 3). On the one hand, this concept would support the idea of 
a constant optimum corrected speed at choke, while on the other hand there are further 
loss mechanisms, which must be considered too. 

Most importantly, certain loss is always related to the velocity and density of the wheel 
exiting gas, which take away otherwise useful kinetic energy. Although the fluid cannot 
accelerate beyond the speed of sound in and upstream of the critical cross section, it 
can do so in the downstream channel provided its cross-section area is larger. In such a 
case, the working gas can either finish the expansion before exiting the turbine wheel, 
or it can expand further in the outlet diffuser. Based on the specific turbine stage 
geometry, this process is related to a bigger or a smaller overall efficiency loss. 

Based on the above analysis, it can be concluded that the idea of a constant optimum 
corrected speed at choke is feasible, but the maximum turbine efficiency must remain 
variable with expansion ratio. This can be achieved by making the spline a function of 
expansion ratio directly. Although the optimum corrected mass flow rate should stay 
constant at choke, it is beneficial to be defined relative to the isentropic spouting 
velocity, since a strong correlation is expected there (see Figure 73). Another advantage 
of this approach is that the relationship between the isentropic spouting velocity and 
expansion ratio involves a square root, so that the output is tangent to the vertical for a 
zero-valued argument (with respect to the expansion ratio). That is very important, 
because the curve of optimum corrected mass flow rate must be vertical at the intercept 
with the expansion ratio axis (at PRT = 1, see Figure 71). This process can be 
interpreted as a transformation of coordinates. 

It needs to be emphasized that the expansion ratio at choke is unknown in the beginning 
of the fitting process and must be obtained by optimization. An assumption that the 
optimum corrected mass flow rate is tangent to the horizontal at choke determines the 
required topology of the corresponding fitting function. The initial spline is defined by 
two end-points and two end-slopes. The first end-point is placed in the origin of 
coordinates and the second end-slope is set to zero (horizontal tangency). The first end-
slope, the isentropic spouting velocity at choke and the relative corrected mass flow rate 
at choke are obtained using the simplex method, the objective of which is to minimize 
the average squared deviation from the measured data (least squares fitting). 
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Figure 73: Optimum corrected mass flow rate as a function of isentropic spouting 
velocity (c0) 

As an important consequence, there is no optimum expansion ratio associated with the 
speed lines above the choke speed limit, so they cannot intersect with the maximum 
efficiency curve (see Figure 74). 
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Figure 74: Fully extrapolated efficiency map with a sharp limitation of the optimum BSR 

A simple limitation of the optimum blade speed ratio results in sharp bends of speed 
lines at the choke expansion ratio (see Figure 74). Therefore, the transition to the choke 
region must be made smooth. The easiest way is to split the optimum blade speed ratio 
curve in three intervals that a piece-wise polynomial is defined on. 
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Figure 75: Extrapolated efficiency map with a smooth limitation of the optimum BSR 

In Figure 75 it is shown that even a smoothed out optimum BSR function is no guarantee 
for smooth speed lines in the fully extrapolated efficiency map. 
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Figure 76: Optimum corrected speed for the smooth limitation of the optimum BSR 

To avoid the sharp changes in normalized efficiency, there must be no sharp changes in 
the normalized BSR (see Equation 128). Therefore, the optimum BSR function must be 
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tangent to the curve of constant corrected speed at choke (see Figure 76). Nevertheless, 
the optimum BSR must remain constant at the expansion ratios above the choke point 
(see Figure 77). 
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Figure 77: Fully extrapolated efficiency map with a tangential limitation of the opt. BSR 

The impact on the corrected mass flow rate extrapolation can be assessed in Figure 78. 
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Figure 78: Fully extrapolated mass flow rate map with the tangential limitation of the 
optimum BSR 
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It has been confirmed that the measured data points can be reasonably fitted using the 
algorithm with the limited optimum corrected speed. Furthermore, the fully 
extrapolated corrected mass flow rate map meets the requirements identified in 
Chapter 4.2 (see Figure 78). 

4.4 Fit Quality 
After the sample turbine map obtained by a hot gas stand measurement is fitted, the 
quality of the new performance model can be evaluated. The deviations of the efficiency 
and the corrected mass flow rate at each operating point are evaluated to enable the 
calculation of the standard statistics (see Table 8). 

Table 8: Statistics of the sample turbine map fit quality (the new algorithm used) 

Efficiency 
Corrected mass 

flow rate 

Minimum error -1.04% -0.29% 

Maximum error 1.13% 0.40% 

Mean error -0.04% 0.01% 

Median error 0.00% -0.02% 

Mean absolute error 0.31% 0.13% 

MSE 0.18 0.03 

RMSE 0.43% 0.16% 

Compared to the initial non-optimized fitting of the sample turbine map (see Table 2), 
the new algorithm enabled the reduction of the efficiency root-mean-square error from 
1.22% to 0.43% and from 0.58% to 0.16% for the corrected mass flow rate. The 
distribution of error size is displayed in Figure 79. 
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Figure 79: Histograms of fit error size for the efficiency (left) and the corrected mass 
flow rate (right) 
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It can be concluded that the measured efficiency is noisier than the corrected mass flow 
rate. Also, a more detailed view at the error at each operating point is provided in 
Figure 80, where it is made possible to distinguish between each speed line. 
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Figure 80: Fit error size as a function of data point index for the efficiency (left) and the 
corrected mass flow rate (right) 

The biggest uncertainty is related to the lowest speed lines (see Figure 80), which is a 
similar conclusion as in the case of the initial fit (see Chapter 2.3.1). Nevertheless, almost 
all operating points deviate by less than one percentage point on efficiency and by less 
than zero-point-four percent on corrected mass flow rate, which is a very good fit. 

4.5 Remarks on Implementation 
The new turbine fitting algorithm is initialized by the identification of speed lines and 
the operating points with the highest efficiency in the input data (see Chapter 2.1.1). 
The five fitting functions model the same variables as in the baseline method, but the 
way they are defined is different. First, the maximum efficiency and the optimum 
corrected mass flow rate are functions of isentropic spouting velocity. The latter has a 
topology adjusted according to the theory of choke with the critical expansion ratio 
determined by optimization (see Chapter 4.3). The optimum BSR is initially fitted by a 
line and transformed into a spline after the critical expansion ratio is introduced. The 
linear part, nevertheless, retains its initial slope and the intersection with the y-axis (see 
Figure 77). Then, the normalized efficiency and mass flow rate are fitted in the standard 
way, except that the theory of radial equilibrium is accounted for with the latter (see 
Chapter 4.1). Optimization is applied to find the best properties of the characteristic 
functions, such that the minimum mean square error of the efficiency and the corrected 
mass flow rate is obtained. The complete process is iterative as described in Chapter 3.4. 
In the new algorithm, however, each main step consists of five successive optimization 
loops. 

94 



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines 

Maximum efficiency spline 

The process of maximum efficiency spline optimization is described in Chapter 3.2. With 
the new fitting algorithm, no optimum points are linked to the speed lines above the 
corrected speed at choke, but the highest-expansion-ratio operating point at each speed 
line can be used to substitute the missing spline nodes. Further, a linear extrapolation is 
applied to cover the full range of expansion ratio. Only in the case the maximum 
efficiency spline would have negative slope at its lower end, a flat extrapolation is used 
to avoid the extension above one (see Figure 77). 

Lower end-point of the optimum BSR spline 

The three parts of the optimum BSR spline are identified in Figure 81. The slope of the 
linear piece is determined by the key-points A and B, while the optimum BSR at the 
expansion ratio one (the point A) is the value to be optimized. The y-coordinate of the 
key-point B is defined by the optimum BSR at choke, which can be determined based 
on the expansion ratio and the optimum corrected speed at choke. In the initial iteration 
step, the expansion ratio (x-coordinate) at the second key-point is equal to the one at 
choke. Later, it is determined by an independent optimization process. 
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Figure 81: Optimum blade speed ratio spline 

Choke point 

Adjustment of the expansion ratio at choke has impact on the optimum BSR spline and 
the optimum relative corrected mass flow rate spline. The optimization process involves 
searching for both the expansion ratio and the optimum corrected speed at choke, 
which are translated into the blade speed ratio at choke. Therefore, the optimum BSR 
spline must be updated, but its linear part remains unaffected (the line connecting the 
point A and the transition point in Figure 81). The control point B is newly defined as a 
cross section between an extended linear part starting in the point A and a constant 
BSR line passing through the choke point. Since the adjustment of the optimum 
corrected speed at choke impacts the high-end corrected mass flow rate fit, the relative 
corrected mass flow rate at choke must be part of the optimization process. Its new 
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value is implemented in the corresponding spline in such a way that only the last piece 
is affected. The current algorithm uses only a subset of the optimum operating points 
linked to each speed line to define the nodes. By selecting the first four optimum points, 
where the expansion ratio is lower than two, it is safeguarded that the optimum relative 
corrected mass flow rate spline is non-decreasing (see Figures 72 & 78). 

Control point B of the optimum BSR spline 

To make sure the extended linear piece (the red dashed line in Figure 81) does not fall 
below the BSR at choke at the corresponding expansion ratio, a constrained one-
dimensional optimization is applied (see Chapter 1.4.2). The x-coordinate of the control 
point B can vary between the expansion ratio two and the one at choke, while the 
y-coordinate is kept at the choke BSR level. By this, the slope of the linear piece is 
updated (the control point A remains unchanged) and the coordinates of the transition 
point are determined as the mid-point of the line segment AB. 

Optimum relative corrected mass flow rate 

The spline is defined on the interval delimited by the origin of the coordinate system 
from the left and the choke point from the right. The breakpoints correspond to the 
optimum operating points at each speed line. However, above the isentropic spouting 
velocity at the expansion ratio two, no more breakpoints are included to make sure the 
transition to choke is non-decreasing (see Figure 73). 

4.6 Robustness Check 
The new turbine map fitting algorithm proved to be reasonable at modelling the sample 
turbine stage performance, the source data of which was acquired on a hot gas stand. 
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Figure 82: Dyno data fitted using the new algorithm (fully extrapolated efficiency map) 
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To check the robustness of the method, the same dyno map was fitted as in the case of 
the baseline algorithm (see Chapter 2.3.3). Based on the assessment of the fully 
extrapolated efficiency map, it can be concluded that a good fit quality is achieved with 
the dyno map too (see Figure 82, the root-mean-square error is 0.38%). Furthermore, 
the new algorithm demonstrated to be capable of predicting the maximum turbine 
efficiency in areas, where sub-optimal measured data points only are available (see the 
first two speed lines in Figure 82). This is made possible by the application of 
optimization methods and the rule that all turbine operating points should lie on the 
same curve in the normalized efficiency versus normalized blade speed ratio diagram. 
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Figure 83: Fully extrapolated corrected mass flow rate map generated using the data 
obtained on a turbine dynamometer (fitting with the help of the new algorithm) 

The extrapolated corrected mass flow rate map in Figure 83 shows a good agreement 
between the model and the input data too, although some points are deviated more 
than in the case of efficiency (the root-mean-square error is 0.59%). 

All in all, the new turbine performance fitting algorithm proved to be effective at dealing 
with both the hot gas stand and dyno maps. Especially in the latter case, a huge fit quality 
improvement could be observed compared to the baseline algorithm, which did not use 
optimization (see Chapter 2.3.3). 

97 



Ing. Adam Vondrák Fitting and Extrapolation of Turbocharger Turbine Maps 

5 APPLICATIONS OF FITTED TURBINE MAPS 
A fitted turbine model makes it possible to interpolate or extrapolate the performance 
properties at any operating point within its domain of definition. This is particularly 
important in conjunction with engine thermodynamics simulations as explained in 
Chapter 1.1.9. Another big advantage, though, is the possibility to compare different 
turbine stages at equal operating conditions. 

5.1 Map Database & Fitting Workflow 
To compare multiple turbine stages at a time, the corresponding performance maps and 
the fitted models must be available to the application. Required data can be stored 
either as variables (e.g. using the .mat file) or in a database. The main difference is that 
a database system is equipped with built-in data management tools, which provide 
enhanced functionality. To the frequently used belong the searching, the filtering, the 
merging of related entries or the ordering according to selected parameters. On top of 
that, database systems include multi-access management, which makes it possible for 
multiple users to work with the same database file in the same time. 

In this work, the SQLite 3 database was selected for its availability and an easy 
implementation in a MATLAB application (see [25]). It has a tabular structure, where 
each type of input is represented by one table (e.g. gas stand maps, dyno maps, fitted 
performance models). Within a table, variables are organized in columns, while the data 
related to each entry is stored at a row. In the user interface, the database content is 
listed to facilitate the selection of desired inputs (see the left-hand-side column in 
Figure 87). 
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Figure 84: User interface for the database interactions related to gas stand maps 

The developed application is equipped with a dedicated interface for a user-friendly 
creation of new database entries. In the case a measured map is needed to be entered, 
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the user must provide information required to identify the origin and the features of the 
related hardware. Then, measured operating points are inserted in a tabular format (see 
Figure 84). Once raw data is fed into the database, it can be fitted by a turbine 
performance model to enable all postprocessing features built in the application. The 
initiation of this process takes one click, but the quality of the output must be checked 
before saving (see Figure 85). In the case individual outlying points are identified, it 
should be considered that they might be measurement errors (especially if there is a 
clear misalignment with an overall trend). In such a situation, selected operating points 
can be ignored to avoid model distortion after a repeated fitting. This feature supports 
mouse picking, while the associated points are immediately marked in the database. 
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Figure 85: Initial fit quality assessment with the possibility to ignore outlying operating 
points (highlighted by the red circle) 

The process of a gas stand map fitting takes about half a minute on a contemporary 
personal computer. However, additional time is needed to feed the raw measured data 
into the database (see Figure 84). Altogether, one measured map can be entered, fitted 
and saved in the database in a couple of minutes. That is ok, unless a large number of 
maps must be processed at once. Nevertheless, subsequent postprocessing operations 
are automated and require only the selection of desired database entries (e.g. to 
compare turbine efficiencies). 

For the eventuality it is needed to apply a fitted turbine performance model outside of 
the developed application, an export function is integrated. The output is a fully 
extrapolated map in a tabular form, which can be copied and pasted in other software 
tools. The user can define the number of speed lines to be generated, as well as the 
number of operating points at each. Among the uses of this output is the simulation of 
a turbocharged combustion engine working cycle. In the case of the GT-SUITE, the so-
called grid map format is used to import the data, see further in Chapter 5.5. 
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Figure 86: Exporting of a fully extrapolated turbine performance map 

5.2 Comparison of Turbine Performance 
To the standard methods of turbine stage aerodynamic adaptation to specific engine 
requirements belong the selection of the wheel size, the trim and the A/R parameter of 
the volute (see Chapter 1.1.2). The purpose of each feature is mainly to define the mass 
flow capacity (ordered from the most effective to the least effective), however there is 
certain impact on the efficiency pattern too. In a typical case, turbine wheel diameter is 
selected based on both the flow capacity requirement and the convenient speed 
matching with the compressor. Further, turbine trim is usually an inherent property of 
a specific blade design and cannot be easily changed (complete mechanical qualification 
would be required). Adaptation of the A/R parameter, on the other hand, can be done 
freely within certain range, which makes it the most frequently used method of turbine 
flow capacity fine-tuning. Therefore, the visualization of its implications on turbine 
performance is a commonly requested task. 

The necessary first step is to gather a set of turbine maps of the same blade design and 
wheel diameter that cover certain range of A/R (see Figure 87). In the next phase, 
performance models are fitted to the measured data to enable all postprocessing 
features, which is possible only under the conditions an agile data management system 
is available. This requirement is addressed by the implementation of the SQLite 3 
database, which proved to be advantageous in multiple ways (see [25]). 
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Figure 87: Raw corrected mass flow rate linked to the selected database entries 

Plotting of raw corrected mass flow rate for a common range of A/R shows that the flow 
capacity of the largest option is roughly by a half bigger than the smallest (see Figure 
87). The comparison of raw efficiency is less straightforward though (see Figure 88). 
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Figure 88: Raw efficiency linked to the selected database entries 

Since the maximum-efficiency operating points are generally not included among 
measured data, it may be difficult to draw a clear conclusion about the performance 
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trade-offs between multiple turbine options. That is where fitting may help to better 
understand the overall trends provided the quality is sufficient for the required level of 
resolution. An advantage worth mentioning is that a turbine performance model 
inherently contains information about the location of the maximum-efficiency operating 
points, which makes it easy to plot. 

2.5 3 3.5 
Expansion Ratio [-] 

Figure 89: Fitted maximum efficiency vs. expansion ratio for a range ofA/R 

From the comparison in Figure 89 can be concluded that increasing value of A/R 
parameter results in tilting of the maximum-efficiency curves. While at low expansion 
ratios the highest maximum turbine efficiency can be achieved with the largest volute, 
the opposite is true at the high end. An interesting behaviour can be identified near the 
expansion ratio two, where the maximum turbine efficiency is almost independent of 
the A/R parameter. 

Another clear trend, that can be identified, is a sudden increase of the maximum 
efficiency below the expansion ratio one point five. This is not a true behaviour of the 
turbine, but an implication of heat transfer that influences the measured compressor 
outlet temperature on a hot gas stand. The studied turbochargers are equipped with 
water cooling, but the coolant temperature is kept at ninety degrees Celsius to emulate 
on-engine conditions. That is higher than the compressed air temperature during low-
speed mapping. Therefore, higher compressor outlet temperature is measured due to a 
heat inleak from the centre housing. As a result, the calculated compressor efficiency 
appears lower and the turbine efficiency determined from power balance with the 
compressor appears higher (see [19]). 

Optimum corrected mass flow rate can be plotted over expansion ratio in a similar way 
to the maximum efficiency. In this case, the appearance of such a chart is very similar to 
the one showing the raw data (see Figures 87 and 90). Nevertheless, the constraints of 
the constant optimum corrected mass flow rate at high expansion ratios and the 
crossing of the origin of coordinates are well illustrated in it. 
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To the remaining functions constituting a turbine performance model belong the 
optimum BSR, the normalized efficiency and the normalized mass flow rate. They are 
visualized for the same set of turbine maps like in the above charts (see Figure 91). 

Normalized BSR [-] Normalized BSR [-] 

Figure 91: Normalized efficiency (left) and normalized mass flow rate (right) vs. 
normalized blade speed ratio for a range ofA/R 

The functions of normalized efficiency and normalized mass flow rate in Figure 91 show 
the important turbine behaviour at sub-optimal operating conditions. The flatter the 
normalized efficiency, the more robust is the turbine stage against variation of operating 
conditions (pulsation, speed match, altitude etc.). In the case of the normalized mass 
flow rate, a steeper relationship means a bigger variation of corrected mass flow rate 
with the spinning speed (i.e. stronger centrifugal effect). 
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Figure 92: Optimum blade speed ratio (left) and optimum corrected speed (right) versus 
expansion ratio for a range of A/R 

In some cases, however, it is desired to display these relationships in the physical scale 
(not normalized). For this purpose, a fixed expansion ratio must be selected. 
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Figure 93: Efficiency vs. blade speed ratio at the expansion ratio two for a range of A/R 

Although there is blade speed ratio on the x-axis in Figure 93, a constant expansion ratio 
causes that BSR is directly proportional to spinning speed (see Equation 46). Therefore, 
a lower BSR at the peak means the maximum efficiency would be achieved at lower 
spinning speed. Similar is the situation in the case of corrected mass flow rate (see 
Figure 94). 
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Figure 94: Optimum corrected mass flow rate vs. blade speed ratio at the expansion 
ratio two for a range ofA/R 

5.3 Compound Charts 
Another common way to compare different turbine stages is by combining the efficiency 
and the corrected mass flow rate at the same operating conditions into a single chart 
(sometimes referred to as an "eyebrow chart"). In a typical case, the maximum efficiency 
is plotted against the optimum corrected mass flow rate at a constant expansion ratio 
for a set of maps distinguished by the A/R parameter (see Figure 95). 
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Figure 95: Max. efficiency vs. opt. corr. mass flow rate at PRT = 2for a range of A/R 

It is possible to generate a similar chart as in Figure 95, but extended by another 
dimension for the expansion ratio (see Figure 96). 
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Figure 96: Maximum efficiency vs. expansion ratio vs. A/R parameter 

The comparison of maximum efficiency curves for a range of A/R parameter in Figure 96 
confirms that their slope decreases together with the A/R. The corresponding optimum 
corrected mass flow rate surface is displayed in Figure 97. 

Figure 97: Optimum corrected mass flow rate vs. expansion ratio vs. A/R parameter 

Figure 97 shows an almost linear relationship between the flow capacity and the A/R 
parameter. Also, the higher-positioned curves are notably sharper bent, which suggests 
an increasing effect of centrifugal forces on the mass flow rate with larger volutes. 
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5.4 Size Effect 
After the relationship between the maximum turbine efficiency and the volute size has 
been resolved, the investigation can be extended by another important parameter, 
which is the wheel diameter. The product is sometimes referred to as the size effect. 
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Figure 98: Composition of eyebrow charts generated at the expansion ratio two for 
a range of turbine sizes sharing the same wheel aerodynamic design 

The above diagram was created with the help of 53 fitted turbine maps. It is possible to 
generate a similar chart for the optimum performance with the wheel size on the x-axis. 
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Figure 99: The optimum corrected mass flow rate and the maximum efficiency vs. the 
turbine wheel diameter at the expansion ratio two 
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5.5 Engine Simulation 
The ultimate application of a turbine performance model is an engine performance 
simulation. In GT-SUITE™, which is a commonly used simulation tool, fitted turbine 
maps can be imported in the so-called grid format. It consists of the same data as a 
standard turbine map (corrected speed, expansion ratio, reduced mass flow rate and 
efficiency), but it is extrapolated to the full operating range (see Chapter 2.2). Thanks to 
that, the application can use this data to simply interpolate required turbine 
performance properties without the need to perform any further fitting. 

To compare the impacts of a default (GT-SUITE) and the proposed fitting algorithms on 
engine performance, a 1.2 L three-cylinder engine model was selected. The example 
turbine stage studied in the previous chapters (35.5 mm wheel diameter) well matches 
to this engine and will continue to be used in the following paragraphs. 

An important feature of the selected engine is that its low-end performance is limited 
by the available turbine power (wastegate closed). Therefore, any difference in the 
fitted turbine efficiencies is expected to have impact on the achievable break torque. 

5.5.1 Steady-state performance with the gas stand map 
For purpose of a steady state comparison, an engine simulation mapping the full load 
performance was selected. At these conditions, the throttle valve is fully opened and 
brake torque is controlled by the boost pressure. In the low-end region, the turbine is 
supplied by an insufficient exhaust gas mass flow rate, which results in the power deficit 
to drive the compressor and deliver the required boost pressure. Therefore, the 
maximum torque cannot be reached. At higher engine speeds, boost pressure is 
controlled by the wastegate (turbine by-pass regulation). 

- G a s Stand - GT Fit~Gas Stand - Grid „ , r - G a s Stand - GT Fit~Gas Stand - Grid 

1000 2000 3000 4000 5000 6000 1000 1200 1400 1600 1800 

Engine Speed [RPM] Engine Speed [RPM] 

Figure 100: Full load simulation with the fitted turbine maps obtained by a hot gas 
stand measurement (red - the default fit, blue - the proposed algorithm) 

The biggest difference in the full-load performance can be observed at 1600 rpm1, 
where the default fit gives by 7 Nm lower brake torque compared to the proposed 
algorithm (see Figure 100). That corresponds to an approximately 3% difference, which 
can be evaluated as a good agreement between the two methods. Nevertheless, it is 
worth tracking back the root cause for the difference. 

1 The unit rpm stands for revolutions per minute (equivalent to 1/min). 
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Figure 101: Turbine efficiency (ETATM), expansion ratio & corrected mass flow rate 

Although the proposed fit yields a lower average efficiency (isentropic power weighted) 
at 1600 rpm, the expansion ratio is higher (see Figure 101). Corrected mass flow rate is 
almost the same though, which suggests there is a difference between the maps. 
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Figure 102: Comparison of the corrected mass flow rate maps generated using the 
default (left) and the proposed (right) algorithms 

Corrected mass flow rate map with the default fit features condensed speed lines at low 
expansion ratios, where the proposed algorithm resolves the centrifugal force effect 
(see Chapter 4.1 & Figure 102). This must be evaluated over a complete engine cycle. 

Expansion Ratio [-] Expansion Ratio [-] 

Figure 103: Instantaneous turbine operating points during one engine cycle (left) and 
the extrapolated mass flow map as per the default fit (right) 
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The analysis of instantaneous turbine operation confirms that the difference in average 
expansion ratio is related to the resolution of centrifugal forces effect (see Figure 103). 
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Figure 104: Efficiency maps for the default (full lines) & the proposed fits (dashed) 

In terms of efficiency, the default and the proposed fits are similar (see Figure 104). The 
biggest difference is in the shift of the peak efficiency operating points with respect to 
expansion ratio, which is caused by the specific optimum blade speed ratio fitting. 

5.5.2 Steady-state performance with the dyno map 
Mapping using a turbine dynamometer is different from a hot gas stand as explained in 
Chapters 1.1.4, 2.3.3 and 4.6. To compare the turbine models fitted using the default 
and the proposed algorithms, the same engine simulation is used as in Chapter 5.5.1. 
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Figure 105: Full load torque (green - the default fit, pink - the proposed algorithm) 

The impact of a fitting method on the achievable low-end torque is bigger with the dyno 
map compared to the case of the gas stand map in the previous chapter (see Figures 100 
& 105). The biggest difference can be observed at 1500 rpm, where it is as high as 
16.5 Nm or 7.7%. Such a gap is already significant and needs to be further analysed. 
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Figure 106: Turbine efficiency (ETATM), expansion ratio & corrected mass flow rate 

A non-negligible difference between the two map fits can be observed with respect to 
both efficiency and mass flow rate (see Figure 106). In this case, however, an increased 
expansion ratio corelates with a higher corrected mass flow rate, which suggests that 
efficiency might be the main driver of the low-end torque misalignment. 
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Figure 107: Comparison of the default (left) and the proposed (right) fits 

Speed lines are condensed again at low expansion ratios in the default fit of corrected 
mas flow rate (see Figure 107). The centrifugal effect is, therefore, not properly 
captured, which was the case with the gas stand map too (see Figure 102). 
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Figure 108: Instantaneous turbine operating points during one engine cycle (left) and 
the extrapolated efficiency map as per the default fit (right) 
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Plotting of the instantaneous turbine efficiency during one engine cycle showed that the 
default fit features an unusual drop at low expansion ratios (see Figure 108). 
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Figure 109: Efficiency maps for the default (full lines) & the proposed fits (dashed) 

With the default algorithm, maximum turbine efficiency is fitted in such a way that the 
highest measured point at any speed line is not exceeded. This enables a conservative 
extrapolation, but it may be a disadvantage in the cases, when the maximum efficiency 
is not captured by the measurement at one or more speed lines (see Figure 109). 

5.5.3 Transient load step with the gas stand map 
The speed of a turbocharged engine response to a load step request is critical to the 
driver's perception of a car's dynamics. At the same time, simulation of transient 
turbocharger performance is rather challenging, because the initial spinning speed is 
low, while the turbine is fully loaded. This is a difficult-to-capture combination for 
conventional mapping techniques and substantial extrapolation must be applied. For 
consistency of the results, the same engine model is used as in the full-load simulations. 
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Figure 110: Engine brake torque (left) and compressor operating points (right) at a 
constant engine speed (gas stand map) 
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Overall, the transient performance with the default and the proposed fitting of the gas 
stand map is very similar, which, together with the steady-state comparison, confirms a 
good agreement between both methods (see Figures 100 & 110). Despite that, a small 
advantage can still be identified with the proposed fitting algorithm. 
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Figure 111: Turbine performance during the transient operation (gas stand map) 

A detailed analysis of the transient turbine operation leads to a conclusion that the 
advantage of the grid map is caused by higher efficiency in the beginning of the load 
steps and by higher expansion ratio in the end. The first is due to a difference in the 
fitted efficiency at expansion ratios above the peak-efficiency point at each speed line, 
where the turbine generates the biggest power during pulsating operation (see the 
difference in Figure 104). Higher expansion ratio in the end of the transient engine load 
steps with the grid map is caused by both higher spinning speed (the better performing 
turbocharger spools up faster) and by the difference in corrected mass flow rate maps 
(see Figure 102). 

5.5.4 Transient load step with the dyno map 
The same engine model is used for the simulation of transient engine load steps with 
the dyno map (compare to Chapter 5.5.3). In this case, however, a much bigger 
difference can be recognized between the speed of brake torque increase with the 
default and the proposed fits. Nevertheless, an interesting conclusion is that the 
transient engine performance simulated with the turbine maps obtained by the hot gas 
stand and the dynamometer measurement is comparable (see Figures 110 & 112). 
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Figure 112: Engine brake torque (left) and compressor operating points (right) at 
constant engine speed (dyno map) 

The default fitting of the dyno map results in a bit slower response at all engine speeds. 
A detailed view at the instantaneous turbine performance during the transient load 
steps is provided in Figure 113. 
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Figure 113: Turbine performance during the transient operation (dyno map) 

Turbine efficiency increases very slowly with the default fit in the beginning of the 
engine load steps (see Figure 113). This is caused by the unwanted limitation of the 
maximum efficiency at low corrected speeds as identified in Chapter 5.5.2. After the 
rotor speed increases, turbine efficiency sharply recovers to an expected level. However, 
the delay already caused the engine brake torque to rise more slowly compared to the 
case of the dyno map fitted by the proposed algorithm. 
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CONCLUSION 
At the beginning of this dissertation project was the need for a tool that would facilitate 
postprocessing of measured turbine maps of automotive turbochargers. This involves 
performance data management in the first place, but also its visualisation and numerical 
treatment to enable back-to-back comparisons. Furthermore, to assess the differences 
at equal operating conditions, efficiency and corrected mass flow rate must be 
interpolated or extrapolated depending on the distribution of measured operating 
points. Therefore, the input data must first be fitted by a convenient turbine model. 

The implementation of a turbine fitting algorithm is the main objective of this work. For 
that purpose, a MATLAB™ application has been developed, which enabled testing of 
different numerical procedures. The first step was to understand the existing industrial 
practice and use it to establish the baseline method (also studied in [Al]). The algorithm 
included in GT-SUITE™ was chosen, because it represents a state-of-the-art solution 
that is widely used in the industry. However, the process is not exhaustively documented 
in available information sources, so custom procedures had to be proposed where 
necessary (see [10, 20]). Therefore, the baseline turbine fitting method, as implemented 
in the MATLAB application, is not fully representative of the one integrated in GT-SUITE. 
Nevertheless, it was possible to conclude that the declared linear relationship between 
the optimum blade speed ratio and the expansion ratio does not allow the proper 
extrapolation of the corrected mass flow rate. This was the main motivation for the 
development of a custom process. 

The main difference between the proposed and baseline turbine models is that the new 
model features the choke phenomenon. Consequently, optimum blade speed ratio is 
limited above the critical expansion ratio in such a way that optimum corrected speed 
remains constant. Also, emphasis is placed on the implementation of physics principles 
to improve the fidelity of extrapolation. The theory of radial equilibrium is used to 
quantify the effect of centrifugal force on the corrected mass flow rate at low expansion 
ratios. Further, by the new structure of characteristic functions, it is ensured that 
corrected mass flow rate at each speed line is non-decreasing with expansion ratio. That 
is the expected behaviour based on an analogy with the discharge through an ideal 
nozzle. 

Thanks to the application of optimization methods to identify the properties of turbine 
performance models, it is possible to estimate the maximum efficiency in situations, 
where this maximum is not included among input data points. The mechanism is based 
on the assumption that minimization of fit error at sub-optimal operating points can be 
used to determine the maximum efficiency at the same expansion ratio. Repetitive 
refinement of this relationship during the complete fitting process ensures reasonable 
results without impacting convergence. 

Initial testing confirmed that the method is functional and robust when fitting the 
outputs of hot gas stand and turbine dynamometer measurements. With the help of a 
higher-level approximation, it is possible to visualize performance trends related to the 
variability of the A/R parameter. A similar approach is followed to plot the relationship 
between maximum efficiency and optimum corrected mass flow rate across multiple 
turbine sizes. As the last step, exported turbine performance models are used within 
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engine steady state and transient load step simulations in GT-SUITE (in the so-called grid 
format). In the case of the sample gas stand map, both algorithms (GT-SUITE default and 
the proposed one) result in similar engine performance at steady state and transients. 
However, with the default fit of the dyno map, transient engine performance is 
compromised by overly conservative efficiency extrapolation to low corrected turbine 
speeds. 

The further evolution of the proposed turbine fitting procedure will involve mainly a 
refinement of the middle part of the optimum blade speed ratio spline (the section 
between the transition and the choke points in Figure 81). As per the current definition, 
the end-slopes are controlled, but the curvature is not. Besides, the MATLAB application 
will be extended with additional post-processing features. As of now, variable nozzle 
geometry, twin-scroll and sector-divided technologies are not supported, but the 
proposed methodology is well suited for this extension. A strong new trend calls for a 
separate treatment of the different aspects of turbocharger modelling. Namely, the heat 
transfer and bearing friction, both of which are normally included in compressor and 
turbine maps obtained by hot gas stand measurements. It will be advantageous to 
remove and model these effects independently to use gas stand maps in simulations. 
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DEFINITIONS/ABBREVIATIONS 

Symbol Unit Meaning 

a [-] lower boundary of an interval 

a [m/s] speed of sound 

A [m2] area (cross section) 

[m2] orifice cross section area 

b [-] upper boundary of an interval 

bfit [-] exponent of normalized efficiency fit 

BSR [-] blade speed ratio 

BSRcor [-] 
blade speed ratio obtained using corrected 
speed and reference temperature 

BSRnorm_ETA_int [-] normalized BSR at zero efficiency 

BSRnormJVTJnt [-] normalized BSR at zero mass flow rate 

BSRWT i n t [-] blade speed ratio at zero mass flow rate 

C [m/s] fluid velocity in stationary frame of reference 

C [m/s] 
vector of fluid velocity in stationary frame of 
reference 

C [-] polynomial coefficient 

cfit [-] coefficient of normalized efficiency fit 

Co [m/s] isentropic spouting velocity 

C-rn [-] constant part of normalized mass flow rate fit 

Cp D/(kg-K)] specific heat at constant pressure 

[m/s] 
circumferential component of fluid velocity in 
stationary frame of reference 

d [-] first derivative of a function 

dw [-] 
smaller wheel diameter (turbine outlet or 
compressor inlet) 

Dw 
[m] 

bigger wheel diameter (turbine inlet or 
compressor outlet) 

Dm 
[m] mean-flow diameter of a wheel 

DT [m] turbine wheel diameter (inlet, mean-flow) 

ETATM [-] thermo-mechanical turbine efficiency 

F [N] vector of fluid force acting on blades 
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/(*) [-] function value at location x 

Fe [N] centrifugal force (acting on fluid element) 

Ff [N] 
vector of force acting on the fluid in a blade 
channel 

Ff overall [N] 
vector of overall force acting on the fluid in a 
control volume 

h [J/kg] specific enthalpy 

hd [-] discretization length 

H(x) [-] Hessian matrix at location x 

tif [kg-m/s2] vector of momentum flux 

Flf overall [kg-m/s2] 
vector of overall momentum flux in or out of 
a control volume 

Hf [kg-m/s] 
momentum vector of the fluid in a blade 
channel 

Hu [J/kg] fuel lower heating value 

hc [kg-m2] rotor moment of inertia 

k [-] constant 

L(x) [-] Lagrange's polynomial value at location x 

m [-] 
Lagrange's fundamental polynomial value at 
location x 

Lt [-] stoichiometric air-fuel ratio 

M [N-m] torque vector 

m [-] natural number (summation limit) 

"Vit [-] exponent of normalized mass flow fit 

rh [kg/s] mass flow rate 

m0 [kg/s] mass flow rate through an ideal nozzle 

Tncor [kg/s] corrected mass flow rate 

rhred 

[(kg/s)-
(K°- 5 /Pa)] reduced mass flow rate 

Mac [-] Mach number of rotor inlet flow 

Mau [-] Mach number of rotor circumferential speed 

n [-] natural number (summation limit) 

W-cor [1/min] corrected speed 

ne [1/min], [rpm] engine speed 
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^•red [ l/ (min-K°- 5 ) ] reduced speed 

NT [1/min] corrected turbine speed 

NTC [1/min] rotor speed 

P [W] power 

V [Pa] pressure 

P(x) [-] polynomial value at location x 

Pe [W] engine brake power 

Pint [Pa] intake (manifold) air pressure 

P 
1 m 

[W] bearing friction loss power 

PR [Pa] pressure at radius R 

PRC [-] pressure ratio on compressor 

Pref [Pa] 
reference pressure (1 bar for compressor, 
1.01325 bar for turbine) 

PRT [-] expansion ratio on turbine 

Pshaft [W] shaft power (of a turbomachine) 

q [-] constant 

q(x) [-] function value at location x 

r [J/(kg-K)] specific gas constant 

rref [J/(kg-K)] 
reference specific gas constant (287 J/(kg-K) 
for air and 289 J/(kg-K) for burnt gas) 

r [m] location vector (radius) 

R [m] radius 

R(x) [-] regression function above x 

rd [-] data point deviation from fit (residual) 

^d_ordered [-] ordered residuals (ascending order) 

Six) [-] spline interpolant 

t [s] time 

T [K] temperature 

Tref [K] 
reference temperature (298 K for 
compressor, 288 K for turbine) 

Trim [-] wheel trim 

u [m/s] 
circumferential (rotor) velocity in stationary 
frame of reference 
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11 [-] unit vector 

Vd [m3] engine displacement volume 

WT [kg/s] corrected turbine mass flow rate 

X [-] independent variable (e.g. in a polynomial) 

X [-] vector of independent variables 

y [-] function value 

y [-] vector of function values 

a [-] coefficient 

ß [-] coefficient 

ß [-] vector of unknown coefficients 

ßcrit [-] critical expansion ratio 

Y [-] Specific heat ratio (Poisson constant) 

Yref [-] 
Reference specific heat ratio (1.4 for air and 
1.35 for burnt gas) 

K [-] ratio of numbers 

V [-] efficiency 

Ve [-] engine brake efficiency 

VTm [-] turbine thermo-mechanical efficiency 

Vv [-] engine volumetric efficiency 

X [-] air excess ratio 

^d [-] 
selected point of a function domain of 
definition 

y-d [-] 
selected point of a function domain of 
definition 

p [kg/m3] density 

Pint [kg/m3] intake (manifold) air density 

T [-] 
number of crankshaft revolutions per engine 
cycle 

[-] system of basis functions 

[rad] polar coordinate 

(p(x) [-] basis function value at location x 

[rad/s] angular velocity vector 

0)TC [rad/s] rotor angular velocity 
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Subscripts 

Index Meaning 

1 inlet 

2 outlet 

i summation index 

j summation index 

k summation index 

air for air 

exh for exhaust/burnt gas 

C compressor 

T turbine 

tot total 

is isentropic 

opt optimum 

norm normalized 

min minimum 

max maximum 

mean arithmetic mean 

median median 

RMS root-mean-square 

MSE mean-square error 

RMSE root-mean-square error 

124 


