
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PRODUCT DATA VISUALIZATION IN PNC BUILD
SYSTEM
VIZUALIZÁCIA PRODUKTOVÝCH DÁT V BUILD SYSTÉME PNC

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PATRIK KORYTÁR
AUTOR PRÁCE

SUPERVISOR Ing. RADEK KOČÍ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (UITS)

Student: Korytár Patrik

Programme: Information Technology

Specialization: Information Technology

Category: User Interfaces

Academic year: 2022/23

Assignment:

1. Study an open-source build system PNC, React framework, and available libraries for data
visualization.

2. Analyze product-related pages and users’ requirements for product data visualization.
3. Design a new web UI components to improve product data visualization and provide a suitable

way to analyze available data.
4. Implement the solution using React framework and contribute the work to the PNC project.
5. Create a video to demonstrate the implemented features.

Literature:
Adam Wathan, Steve Schoger. Refactoring UI. 2019.
Steve Krug. Don't Make Me Think. New Riders. 2013.
ReactJS: Getting started. Online, https://reactjs.org/docs/getting-started.html, září 2022.

Requirements for the semestral defence:
Points 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Kočí Radek, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 17.5.2023

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148505

Product Data Visualization in PNC Build SystemTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The thesis aims to enhance the visualization of Product-related data of the PNC build
system on the system’s new web user interface. Main visualization elements include tables,
charts, network graphs and dashboards. The work analyses PNC user inputs to consider
the actual needs of the users. Based on the analysis, completely new UI components were
designed and some of the original ones were redesigned. To illustrate the new design,
wireframes were created. New REST API endpoints were designed for data needed by the
new components. The new features were then implemented. The implementation language
is TypeScript. The main libraries include React, Chart.js, Sigma.js and Graphology. As a
result, the new PNC system user interface now has new features that help with using the
Product-related pages. The implementation is also easily expandable for more visualization
of this kind.

Abstrakt
Cieľom tejto bakalárskej práce je zlepšiť vizualizáciu dát súvisiacich s produktami build sys-
tému PNC na jeho novom webovom používateľskom rozhraní. Hlavné vizualizačné prvky
zahŕňajú tabuľky, grafy, sieťové grafy a palubné panely. Táto práca analyzuje vstupy od
používateľov build systému PNC, aby sa zohľadnili skutočné potreby používateľov. Na zák-
lade analýzy bol vytvorený dizajn pre úplne nové komponenty používateľského rozhrania
a niektoré z už existujúcich boli prepracované. Na ilustráciu nového dizajnu sa vytvo-
rili nákresy. Navrhnuté boli nové koncové body REST API pre dáta vyžadované novými
komponentami. Nové funkcie boli následne implementované. Implementačný jazyk je Type-
Script. Hlavné knižnice zahŕňajú React, Chart.js, Sigma.js a Graphology. Ako výsledok
má teraz nové používateľské rozhranie systému PNC nové funkcie, ktoré pomáhajú s použí-
vaním stránok súvisiacich s produktami. Implementácia je tiež ľahko rozšíriteľná pre viac
vizualizácií tohto druhu.

Keywords
user interface, visualization, products, artifacts, charts, network graphs, tables, React,
Chart.js, Sigma.js, Graphology

Kľúčové slová
užívateľské rozhranie, vizualizácia, produkty, artefakty, grafy, sieťové grafy, tabuľky, React,
Chart.js, Sigma.js, Graphology

Reference
KORYTÁR, Patrik. Product data visualization in PNC build system. Brno, 2023. Bache-
lor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Radek Kočí, Ph.D.

Rozšírený abstrakt
Zameranie tejto bakalárskej práce je webové používateľské rozhranie a jeho vylepšenie.
Konkrétnejšie, cieľom je zlepšiť vizualizáciu dát súvisiacich s produktmi na novom použí-
vateľskom rozhraní build systému PNC. Hlavnými vizualizačnými prvkami sú tabuľky, grafy,
sieťové grafy a palubné panely, ktoré zlepšujú vizualizáciu súvislostí a závislostí medzi en-
titami systému PNC, konkrétne tými, ktoré súvisia s produktmi.

Systém PNC má momentálne dve používateľské rozhrania. Prvé, pôvodné, je napísané
v knižnici Angular. Táto pôvodná verzia používateľského rozhrania sa práve prepisuje do
knižnice React. Táto bakalárska práca má za cieľ vylepšiť práve toto nové rozhranie oproti
tomu pôvodnému.

Počiatok tejto práce spočíval v naštudovaní implementačného jazyka a knižníc. Imple-
mentačný jazyk je TypeScript. Najdôležitejšie knižnice sú React pre tvorbu používateľského
rozhrania, Chart.js pre tvorbu grafov, Graphology pre tvorbu dátových štruktúr sieťového
grafu a Sigma.js pre vizualizáciu sieťových grafov. Tieto boli naštudované predovšetkým
z ich dokumentácií dostupných online.

Následne bolo potrebné analyzovať entity systému PNC a vzťahy medzi nimi. Systém
PNC slúži na správu a spúšťanie buildov kódu aplikácií. Systém PNC pozostáva z viac-
erých samostatných aplikácií, ktoré sú rozdelené do verzií. Verzie samotné sa rozdeľujú do
míľnikov. Jeden z míľnikov verzie môže byť označený ako súčasný. Predtým, než sa môže
vytvoriť build, musí sa najprv vytvoriť jeho konfigurácia. Konfigurácia buildu obsahuje
odkaz na kód aplikácie, ktorá sa má preložiť. Taktiež obsahuje skript, podľa ktorého sa má
build vykonať. Konfigurácia buildu je prepojená s konkrétnou verziou produktu. Spustená
konfigurácia vytvára entitu buildu, ktorá reprezentuje spustený build proces. Build sa pre-
pojí s míľnikom, ktorý je v čase spustenia buildu označený ako súčasný vo verzii, ktorá
prislúcha konfigurácii buildu. Výsledkom buildu sú artefakty, čo sú súbory, ktoré je možné
stiahnuť. Artefakty môžu slúžiť ako závislosti iných buildov. Artefakty, ktoré boli doručené
zákazníkovi v rámci archívu produktu, sa nazývajú doručené artefakty. Doručené artefakty
sú viazané na konkrétny míľnik. Archív produktu sa skladá z artefaktov vyprodukovaných
v rámci buildov míľniku.

Po naštudovaní teórie nasledovalo spracovanie používateľských požiadaviek ohľadom
zlepšenia vizualizácie entít súvisiacich s produktmi. Medzi stránky na pôvodnom použí-
vateľskom rozhraní, ktoré bolo treba vylepšiť, patrí stránka tabuľky artefaktov, stránka
detailu verzie produktu a stránka detailu míľniku produktu.

Hlavnými nedostatkami stránky artefaktov sú zobrazenie identifikátorov artefaktov,
chýbajúce prepojenie s buildom, ktorý vyprodukoval artefakt, a fakt, že veľkú časť tabuľky
zaberajú kontrolné súčty. Identifikátory artefaktov sa skladajú z viacerých častí, a bolo by
vhodné tieto časti vizuálne zvýrazniť.

Na stránke detailu míľniku produktu sú zobrazené len detaily ohľadom položiek míľniku,
ale chýbajú štatistiky a grafy ohľadom prepojenia míľniku s entitami, ktoré mu patria,
napríklad štatistiky ohľadom doručených artefaktov. Doručené artefakty míľniku majú
rôzne vlastnosti, z ktorých sa dá spraviť graf ich distribúcie. Taktiež je možné spraviť
štatistiky o zdroji doručených artefaktov, teda o tom, z akého buildu pochádzajú. Na úrovni
verzie produktu je možné spraviť podobné štatistiky a grafy, ktoré predstavujú agregáciu
ich ekvivalentov na stránkach detailu míľnikov jednej verzie produktu. Grafy a štatistiky
by mohli pretvoriť stránku detailu do palubného panelu.

Komponenty, ktoré boli navrhnuté priamo používateľmi, zahrňujú sieťové grafy zobrazu-
júce vzťahy a závislosti medzi entitami systému PNC, ako aj komponenta na porovnávanie
míľnikov a verzií doručených artefaktov.

Po spracovaní používateľských požiadaviek boli vypracované nákresy dizajnu nových
alebo redizajnu starých stránok pôvodného používateľského rozhrania. Na základe týchto
nákresov bola vyhotovená implementácia týchto stránok na novom používateľskom rozhraní.
Taktiež bolo nutné navrhnúť rozhranie REST API pre koncové body potrebné pre získanie
dát pre nové stránky používateľského rozhrania. Koncové body však boli len navrhnuté,
ich implementácia nie je súčasťou tejto bakalárskej práce.

Navrhnuté a implementované boli nasledovné stránky: redizajn tabuľky artefaktov,
palubný panel míľniku produktu, palubný panel verzie produktu, sieťový graf zdieľaných
doručených artefaktov medzi míľnikmi produktu, sieťový graf závislostí medzi buildami
a tabuľka porovnania doručených artefaktov medzi míľnikmi produktu. Implementácia je
navyše ľahko rozšíriteľná o štatistiky podobného charakteru, napríklad nové sieťové grafy
alebo štatistiky týkajúce sa buildov míľniku produktu.

Práca bola spracovaná vo forme Pull Requestov do GitHub repozitára projektu nového
používateľského rozhrania systému PNC, celkový počet činí 20 Pull Requestov. Zadanie
bolo úspešne splnené.

Product data visualization in PNC build system

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Radek Kočí Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Patrik Korytár

May 10, 2023

Acknowledgements
I would like to thank my supervisor Ing. Radek Kočí Ph.D. for supervising this Bachelor’s
thesis. Many thanks to Ing. Jakub Barteček for the organization of this Bachelor’s thesis,
Mgr. Martin Kelnar for guidance with the design of the UI and Mgr. Jan Brázdil for
providing information regarding the current PNC backend state and relationships between
PNC entities. And I am grateful to my family and friends too.

Contents

1 Introduction 4

2 PNC build system 6
2.1 PNC build system . 6
2.2 PNC build system entities . 6
2.3 PNC build system entity relationships . 9
2.4 Build-time dependencies . 10

3 Used technologies 11
3.1 TypeScript . 11
3.2 React . 12
3.3 PatternFly . 14
3.4 Chart.js . 15
3.5 Graphology . 16
3.6 Sigma.js . 18

4 Product-related pages and user requirements 20
4.1 Product-related pages on the PNC build system original UI 20
4.2 User requirements . 25

5 UI design 27
5.1 Artifacts list . 27
5.2 Product Milestone dashboard . 28
5.3 Product Version dashboard . 29
5.4 Product Milestone interconnection graph . 31
5.5 Build Artifact dependency graph . 35
5.6 Product Milestone comparison . 36

6 REST API design 37
6.1 Pagination in the PNC REST API . 37
6.2 Product Milestone dashboard . 38
6.3 Product Version dashboard . 39
6.4 Product Milestone interconnection graph . 41
6.5 Build Artifact dependency graph . 42
6.6 Product Milestone comparison . 43

7 Implementation of the designed pages 44
7.1 Code structure . 44

1

7.2 HTTP services . 44
7.3 Old components . 45
7.4 Implemented components and functions . 46
7.5 Testing and feedback . 53

8 Conclusion 54

Bibliography 55

A Contents of the included storage media 57

B GitHub Pull Requests 58

C Final Results 59

2

List of Figures

2.1 Interconnections between Product Milestones in the PNC build system . . . 9
2.2 Build-time dependencies between Builds and Product Milestones in the PNC

build system . 10

4.1 Artifacts list on the PNC build system original UI 22
4.2 Product Milestone detail page on the PNC build system original UI 23
4.3 Product Version detail page on the PNC build system original UI 24

5.1 Artifacts list wireframe . 27
5.2 Product Milestone dashboard wireframe . 28
5.3 Product Version dashboard wireframe . 30
5.4 Product Milestone interconnection graph wireframe 31
5.5 Product Milestone interconnection graph wireframe – nesting level limitation 32
5.6 Product Milestone interconnection graph wireframe – hovering over the node 33
5.7 Product Milestone interconnection graph wireframe – shared Delivered Arti-

facts list . 34
5.8 Build Artifact dependency graph wireframe 35
5.9 Product Milestone comparison table . 36

C.1 Final result of the Product Milestone dashboard 59
C.2 Final result of the Product Version dashboard 60
C.3 Final result of the Artifacts list . 61
C.4 Final result of the Product Milestone interconnection graph 62
C.5 Final result of the Build Artifact dependency graph 63
C.6 Final result of the Product Comparison table 64

3

Chapter 1

Introduction

This Bachelor’s thesis area of focus is the improvement of the web user interface. It is
developed in collaboration with the Red Hat company. Improvements are made to the new
web user interface (UI) of the PNC build system. Namely, it focuses on the enhancement of
visualization of Product-related pages to portray relationships and interconnections between
Product-related entities in a more straightforward way.

Currently, PNC uses outdated web UI written in the JavaScript language and the An-
gular library. This original UI is now being rewritten to the TypeScript language and the
React library. This Bachelor’s thesis is implemented for the new UI and Product-related
pages are visualized in a more enhanced way than it is done on the original UI. The original
UI of Product-related pages is mainly composed of rather simple UI components – detail
pages, list pages, and create and update pages. For example, detail of a specific Product or
a list of Artifacts. These pages contain data of entities stored directly in database tables.
It lacks visualization of inferred relationships and interconnections between the Product-
related entities. For example, there is no direct way to learn which Artifacts are shared
between Product Milestones or to see Build dependencies based on Artifacts used in them.

To address this issue, this Bachelor’s thesis implements components including tables,
charts, network graphs, and dashboards. Dashboards are made up of data cards and charts
that display statistics. Network graphs connect entities based on relationships or depen-
dencies between them. Tables list collections of entities or display relationships between
different entities in the 2D grid. A secondary goal of this Bachelor’s thesis is to create the
basis for future additional visualization so that, for example, the display of other statistics
can be easily added.

This Bachelor’s thesis analyzed user needs to determine what kind of information and
interconnections between Product-related entities would be useful to have. Then, these
were taken into account during the design process. The newly designed pages need new
data; therefore, new REST API endpoints were designed. The new endpoints were not im-
plemented, because it is not the concern of this Bachelor’s thesis. Then the implementation
was done. The implementation language is TypeScript. The main implementation libraries
include React, Chart.js, Sigma.js, and Graphology.

According to the process mentioned above, the Bachelor’s thesis is divided into the
following chapters. The second chapter explains the theory of the PNC build system and
entities from a high-level point of view. Chosen relationships between the PNC entities are
shown. The third chapter lists the most important technologies used for the implementation
side of this Bachelor’s thesis, including the language and libraries. Some concepts of the
libraries used are presented. The fourth chapter describes the current state of the Product-

4

related pages and their problems. Then, user requirements regarding the enhancement of
these pages are reported. The fifth chapter illustrates the new design for the UI components
that were implemented. The sixth chapter presents the new REST API endpoints that are
needed by the new UI components. The seventh chapter dives into implementation details
and describes the testing of the work. The eighth and final chapter is the conclusion.

5

Chapter 2

PNC build system

This chapter explains what a PNC build system is and describes its entities, mainly those
that relate to this Bachelor’s thesis. It also delves into some existing relationships between
the entities that were visualized in this Bachelor’s thesis.

When referring to the PNC system entities, their names are capitalized throughout the
entire Bachelor’s thesis. The same words as are used to name the PNC entities are written
in lowercase when the PNC entity is not addressed specifically, but instead, a generic term
is meant by the word.

2.1 PNC build system
PNC stands for Project Newcastle. It is a “system for managing, executing, and tracking
builds” [9]. The purpose of the system is to perform builds of versioned software (products)
stored in the repositories. The system allows managing versions of the software and provides
ways to analyze builds and artifacts. Artifacts are files created by the builds or used by
them. It can be, for example, the code compiled from an application. PNC consists of
multiple microservices, but this Bachelor’s thesis will not delve into it in any way.

PNC system currently has two web user interfaces (UIs) through which the system is
used. The first UI is written in an obsolete version of the Angular JavaScript library. This
original UI is now being rewritten to the React library. Through this Bachelor’s thesis, the
original version will be referred to as the original UI and the new version as the new UI.

2.2 PNC build system entities
This section clarifies the purpose of the PNC entities used in this Bachelor’s thesis.

Product

Product is a standalone application or a deliverable package1. Product is versioned by
Product Versions and Product Milestones.

Build Configuration

Build Configuration or Build Config is a set of parameters that are used when the build
process is executed. Build Configuration contains a link to an SCM repository to be built

1Information is obtained from internal PNC system documentation.

6

and a script according to which the build is executed. To manage various versions of the
software and its builds, Build Configuration is linked to one Product Version.

Build

Build entity is a record of the build process performed according to its Build Configuration
containing the build script and the link to the repository to be built. Build is linked to
a current (current at the time of build execution) Product Milestone of a Product Version
linked in its Build Configuration. The result of a performed Build is a set of Artifacts.
Artifacts can also be dependencies of other Builds.

Product Version

Product Version or Version represents a version of a Product. It is the combination of
the major and minor version numbers in the semantic versioning2 (for example, Product
Version 1.3). Build Configurations are linked to it. Product Version is divided into Product
Milestones. One of the Product Version’s Product Milestones can be marked as current.

Product Milestone

Product Milestone or Milestone represents a subversion of a Product Version. It represents
the patch version number in the semantic versioning (for example, Product Milestone 1.3.4).
Builds performed according to Build Configurations of some Product Version are linked to
that Product Version’s current Product Milestone.

Artifact

Artifact is an archive, such as jar, xml or tgz file, that is either produced by a Build (Build
result) or used by a Build (Build dependency). It is the smallest unit of dependency of
a Build, Product Milestone, Product Version, or a Product.

Artifacts can be produced by building different types of repositories. These include the
Maven, NPM, and CocoaPods repositories. Based on the type of repository Artifacts are
coming from, Artifacts have different formats of their identifiers (names).

NPM Artifact identifier is divided into two parts separated by a colon. The first part is
a package name and the second is a version of the Artifact. The name can be prefixed with
a scope. Scope enables packages to be grouped together, for example, a group of packages
of a certain organization. The scope starts with the at character (@) and ends with the
dash symbol [6, 7].

Example of a PNC NPM Artifact identifier: abbrv:1.0.1. NPM Artifact in the PNC
system is an archive of an NPM package.

Maven Artifact identifier is divided into the following parts [14, 15].

1. Group ID – groups related Artifacts or Artifacts of one organization

2. Artifact ID – unique identifier of the Artifact within the Group ID group

3. Artifact version
2https://semver.org/

7

https://semver.org/

4. Classifier – optional; used to distinguish between Artifacts of the same name that
contain different content; for example, the sources classifier is typically used for the
source code of the Artifact

In the PNC system, the Maven Artifact identifier has one additional part. After the Ar-
tifact ID, the Artifact archive type follows (for example, jar). Example of a PNC Maven Ar-
tifact identifier that has all five parts: xml-resolver:xml-resolver:jar:1.2.0:sources.

There are multiple sets of Artifacts that are related to a Build. The first set, called
Used Artifacts in this Bachelor’s thesis, contains all Artifacts which were used in a Build
and form Build’s dependencies. The second set, in this Bachelor’s thesis named Produced
Artifacts, is a set of all Artifacts produced by a Build. These may be dependencies for
other Builds. Delivered Artifacts is a set related to a Product Milestone and is described
below.

Deliverable and Delivered Artifact

Information in this section was obtained from internal PNC system documentation.
In short, a Delivered Artifact is an Artifact delivered to a customer found in a Deliverable

archive.
Deliverables are archives (such as zip files) delivered to customers. A Deliverable archive

is a compilation of Artifacts produced by one Build or multiple Builds of a certain Product
Milestone. It is up to a PNC user to compile it and then deliver it to a customer. For the
compilation of the archive, Build itself can be used to compile Artifacts into the archive,
which will be delivered.

Delivered Artifacts is a set of Artifacts linked to one Product Milestone found by the
process named Deliverables Analysis which is managed by a PNC microservice called De-
liverables Analyzer. Deliverables Analyzer receives URL links to Deliverables archives on
its input. These archives are analyzed and Artifacts are found in them. The analyzer tries
to find these Artifacts in Red Hat-approved build systems, one of which is PNC. Then
these Artifacts are connected to Builds which produced them (if any, the Artifact possibly
did not have to be found in any build system). In other words, Deliverables Analysis finds
where the content delivered to a customer comes from.

SCM Repository

Source Code Management Repository or SCM Repository or Repository is a git repository
where the application code is stored.

8

2.3 PNC build system entity relationships
This section illustrates selected relationships between the PNC entities.

2.3.1 Product Milestone interconnections

Sharing of Used or Delivered Artifacts between Product Milestones is illustrated in Fig-
ure 2.1. The figure shows distinct sources of Artifacts.

Figure 2.1: Interconnections between Product Milestones in the PNC build system

The blue circle represents a set of Used or Delivered Artifacts of a Product Milestone. In
the case of Used Artifacts, the set is a collection of all dependencies of all Builds of a Product
Milestone. For Delivered Artifacts, the set represents Artifacts delivered to a customer in
a Product Milestone. No matter whether these are Used or Delivered Artifacts, the principle
of Artifacts’ source and sharing of Artifacts between Product Milestones applies to both of
the sets.

Intersections of blue circles are sets of Artifacts shared between the two Product Mile-
stones. That means a set of Artifacts either used by the Builds of both Product Milestones
or Artifacts delivered by both Product Milestones.

There are multiple possible sources of an Artifact based on the Build that produced it.
The most common is a Build contained in a Product Milestone. The Product Milestone
which contains that Build can be the same Product Milestone to which the Delivered or
Used Artifacts set belongs. Or it can be a Product Milestone that is part of the same
Product Version or at least the same Product as the one to which the set belongs. Or

9

it can be from a different Product entirely. Some Artifacts are produced by Builds not
belonging to any Product Milestone (which is sometimes the case for Builds done in a build
system other than PNC). Another state is when Artifact was not produced by any Build
because the Artifact was imported into the system.

The same relationships exist on the Product Version or Product level. In those cases,
the sets are collections of all Used or Delivered Artifacts of all Product Milestones of the
same Product Version or the same Product.

2.4 Build-time dependencies
Build-time dependencies are dependencies that are formed when Build is performed. Fig-
ure 2.2 shows an example of build-time dependencies between Builds and Product Mile-
stones. When one Build uses an Artifact produced by another Build, the former Build
becomes dependent on the latter Build. The same build-time dependency exists on a Prod-
uct Milestone level. That means a Product Milestone which contains the dependent Build
becomes dependent on a Product Milestone which contains the dependency Build.

Figure 2.2: Build-time dependencies between Builds and Product Milestones in the PNC
build system

10

Chapter 3

Used technologies

This chapter describes the most important technologies, both languages and libraries, used
for the implementation of this Bachelor’s thesis. The selected concepts are explained.

3.1 TypeScript
This section was composed with the help of the TypeScript documentation [5].

TypeScript is a typed superset of the JavaScript programming language. TypeScript
allows code to be statically typed. “Typed” means that the language adds rules defining
how different types of values can be used. “Static” means that type checks are performed
before code execution.

TypeScript is a superset of JavaScript; therefore, the valid JavaScript code is syntacti-
cally valid TypeScript code. Still, valid JavaScript code may contain semantic errors from
the point of view of TypeScript, such as when the variable’s value is used incorrectly. For
example, the code in Listing 3.1 is valid JavaScript, but invalid TypeScript code because
TypeScript aims to catch potential errors.

// number two divided by an array
const a = 2 / [];

Listing 3.1: TypeScript code containing a semantic error

TypeScript code is compiled into JavaScript code. Simply put, during compilation, type
checks are done, and then, if the code is valid, all specified types are erased from the code,
the result being JavaScrip code. Therefore, the TypeScript code preserves the run-time
behavior of JavaScript. TypeScript does not provide any additional run-time functionality,
such as new functions.

3.1.1 Types and interfaces

In many cases, TypeScript will infer types of values and variables. For example, variable
const count = 124; is automatically detected to be a number.

The other way to determine the types of values and variables is by type annotations.
Type annotations assign a type to values, functions (both parameters and return value), or
variables. TypeScript offers basic types, including string, number, or boolean. The array
is a type that signifies a list of values of the same type. Listing 3.2 demonstrates the type
annotations.

11

const name: string = "A1";
// function accepting two numbers and returning their sum
const addNumbers = (x: number; y: number): number => x + y;
const values: number[] = [1, 2, 3]; // number[] => array of numbers

Listing 3.2: TypeScript type annotations example

TypeScript also provides a way to declare object types which are composed of primitive
types and/or other object types. One of the multiple ways to declare the object type is
by interfaces. Interfaces describe the structure of the object and its properties, whether
optional or required. The code in Listing 3.3 shows how to declare an interface and apply
it on a variable.

interface Project {
id: number;
name: string;
version?: string; // ? = optional

}

const project: Project = { id: 12, name: "Random project" };

Listing 3.3: TypeScript interface example

TypeScript uses duck typing. This means that the object’s shape is taken into account,
and when types have the same shape (the same properties), they are considered to be of
the same type, despite the different type annotations. In the valid code in Listing 3.4, the
given object is passed to the printPerson function as its parameter, even though it was
not given any type annotation. The code is valid because the function parameter and the
object have the same structure.

interface Person {
name: string;
age: number;

}

const printPerson = (person: Person) => {
console.log(person.name, person.age);

}

printPerson({ name: "Peter", age: 72 });

Listing 3.4: TypeScript duck typing example

3.2 React
This section was written with the help of the React site and documentation [4].

React is a JavaScript and TypeScript library whose goal is to create and render user
interfaces. The building block of the user interfaces in React is a component. The compo-
nent is a piece of a user interface, for example, a button, text, or a page. Components are

12

reusable, and they can be combined and nested in order to create more complex compo-
nents.

3.2.1 Components

The component is a building block of the user interface. In React, the component is
implemented as a JavaScript function. The component has its own UI logic and visual
output (markup). Markup is represented in a syntax extension called JSX. The syntax of
JSX is similar to that of HTML.

Components can have a state storing various data, for example, a text in a text input.
To remember a value, the useState function (hook) is used. useState accepts the initial
value of the stored value and returns an array containing a state variable and state setter
function. The state variable is the stored value. The state setter function updates the
stored value.

Listing 3.5 illustrates how to create a state in React.

const [count, setCount] = useState(0);

Listing 3.5: React state example

React renders a component by calling a function that represents the component. This
works recursively. If the component returns some other component, React will also render
that component. The component is rendered on its initial render when the root compo-
nent and its child components were rendered for the first time. The root component is
the starting point of the rendering of React components. When the component’s state is
changed (with the state setter function), the component is re-rendered, and UI is updated
accordingly to the new state.

Listing 3.6 displays how to create React components, their state, and nest them.

3.2.2 Hooks

Hooks are means to share the state logic between components. Hooks are implemented as
functions. They can have their own states. They implement the logic of those states and
return some states. Hooks are called inside components, and states returned by the hooks
can be used inside the components. This way the state logic has been extracted to a single
place (hook) that can be reused in multiple components.

React offers built-in hooks, useState is one of them, but custom hooks can be created.
Custom hooks can be used to fetch data or keep track of whether the full-screen mode is
active, for example.

3.2.3 useEffect hook

useEffect is a built-in hook that is used to synchronize with or connect to external systems.
For example, fetching server data, controlling non-React code, or sending logs to the server.

useEffect hook accepts a function and an array of dependencies. The array of depen-
dencies is a list of states. The function passed to the hook is executed after the component
re-render that is caused by an update of some of those states. The passed function is also
executed after the first render of the component. If no array of dependencies is provided,
the passed function executes after every render of the component.

13

// onClick, children - properties of a component
// children - child component(s)
const Button = ({children, onClick}) => {
// rendered UI
return (

// {children} - curly braces are used to include JavaScript code in JSX
<button onClick={onClick}>{children}</button>

)
}

const Card = () => {
const [count, setCount] = useState(0);

return (
<div>

<p>Button has been pressed {count} times.</p>
<Button onClick={() => setCount(count + 1)}>Press me!</Button>

</div>
)

}

Listing 3.6: Example of React components and their nesting

Sample in Listing 3.7 demonstrates the useEffect hook, which sends a log to the server
each time the data are updated.

useEffect(() => {
// if data are non-empty
if(data) {

// run function to send a log to the server
sendLog(data);

}
}, [data]);

Listing 3.7: React useEffect hook example

3.3 PatternFly
PatternFly is an open-source design system providing standards, guidelines, and tools to
develop and build user interfaces. It provides UI components which are modular building
blocks of the UI. It also offers layouts that help to create the page structure. PatternFly
is implemented as a React library providing components to build the UI, although HTML
and CSS variants of the components are also provided. Components offered by PatternFly
include buttons, selects, forms, flex and grid containers, cards, tables, popovers, and many
others [11].

14

3.4 Chart.js
The source of this section is the Chart.js documentation [1].

Chart.js is a JavaScript library for the creation and rendering of charts. Chart.js offers
multiple types of charts, including doughnut charts, bar charts, and line charts. There are
also multiple plugins available, and Chart.js charts are customizable. Charts are rendered
into an HTML5 canvas1 unlike some other libraries rendering as SVG. The positive conse-
quence of that is better performance since there are not thousands of SVG nodes created
in the Document Object Model2 tree for large datasets.

3.4.1 Doughnut chart example

An example of a Chart.js doughnut chart configuration is included in Listing 3.8.

const config = {
type: 'doughnut',
data: {

labels: [
'Red'
'Green',
'Blue',

],
datasets: [{

label: 'Dataset1',
data: [12, 130, 94],

}]
}

};

Listing 3.8: Chart.js doughnut chart configuration example

type in a Chart.js configuration specifies the type of the chart, in this case, it is a dough-
nut chart. For the doughnut chart, data is composed of labels and a dataset. The labels
are the names of the segments that display the proportional values of the data. The dataset
is the set of proportional values of the data. The dataset is composed of its label and
an array of values of that dataset. In the provided example, 12 corresponds to the “Red”
label, 130 to the “Green” label, and 94 to the “Blue” label.

In the Document Object Model, a canvas element must exist into which the chart will
be rendered. Then, with reference to the canvas and the chart configuration, the chart can
be created and rendered, as can be seen in Listing 3.9.

// 'example-chart' = id of the canvas
const ctx = document.getElementById('example-chart');
const chart = new Chart(ctx, config);

Listing 3.9: Chart.js chart creation example

1https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
2https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

15

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

3.5 Graphology
This section was written with information extracted from the documentation of the Graphol-
ogy library [8].

Graphology is a JavaScript and TypeScript library that provides a multipurpose data
structure for a network graph. It supports various kinds of graphs, including directed or
undirected graphs, and all types of graphs share the same interface. The library provides
methods to manipulate, traverse, and analyze the graph, such as adding or removing nodes
and edges. The library also has multiple extending libraries offering graph theory algorithms
and utilities, such as graph layouts. The entire graph is represented by a single Graph object.

To be more specific, Graphology is a specification for a library, but a reference im-
plementation is also proposed. The reference implementation is used in this Bachelor’s
thesis.

3.5.1 Introduction to the Graphology library

The graph is created by instantiating the Graph object. The node is added to the graph
using the addNode method and the edge is created using the addEdge method. The addNode
method accepts the name of the node and an optional object of the node’s attributes, for
example, the node’s label. In the graph, the node is referred to by its name assigned to
it at its creation. Arguments passed to the addEdge method are names of two nodes and
optionally an object of edge’s attributes. All edges have a key, and the addEdge method
automatically generates it. addEdgeWithKey method allows an edge to be created with
a specific key. The nodes and edges can be deleted using the dropNode and dropEdge
methods. clear method deletes all nodes and edges from the graph. Listing 3.10 portrays
how to create the graph in Graphology.

const graph = new Graph();
graph.addNode('BuildA', { label: 'Build A' });
graph.addNode('BuildB', { label: 'Build B' });
// edge interconnecting BuildA and BuildB
graph.addEdge('BuildA', 'BuildB', { sharedArtifacts: 4 });
graph.clear();

Listing 3.10: Example of creation of the Graphology graph

hasNode method returns a boolean whether the passed node exists in the graph. hasEdge
method returns whether there is an edge that connects two passed nodes. To find out
whether some edge is connected to a node, hasExtremity can be used. extremities
method returns the nodes that are interconnected by the passed edge. Listing 3.11 demon-
strates some of these methods.

16

const edge = graph.addEdge('BuildC', 'BuildD');
// returns true
graph.hasEdge('BuildC', 'BuildD');
// returns true
graph.hasExtremity(edge, 'BuildD');
// returns ['BuildC', 'BuildD']
graph.extremities(edge);

Listing 3.11: Example of reading Graphology methods

To set a node attribute to a specific value, setNodeAttribute can be used to create
a new attribute or update an old one. updateNodeAttribute does not set an attribute to
a specific value, but accepts a callback which accepts the current value of the attribute and
returns the new one. getNodeAttribute method returns the specific attribute of the node.
getNodeAttributes returns all attributes of the node. The same set of methods exists also
for edges – setEdgeAttribute, etc. An example is shown in Listing 3.12.

graph.setNodeAttribute('BuildA', 'x', 500);
// increase 'x' by one
graph.updateNodeAttribute('BuildA', 'x', x => x + 1);
// returns 501
graph.getNodeAttribute('BuildA', 'x');
// returns the object of all node attributes
graph.getNodeAttributes('BuildA');

Listing 3.12: Example of node attribute methods in the Graphology library

Graphology offers multiple methods to iterate over a set of nodes and edges. Some of
them accept a callback that is executed for each node or edge of some set. This is the case
for, for example, the following methods. forEachNode iterates over each node of the graph.
forEachEdge iterates over all edges of the graph. forEachNeighbor iterates over neighbors
of the passed node, and a demonstration of this is presented in Listing 3.13.

// prints neighbors of the node 'BuildA'
graph.forEachNeighbor('BuildA', (neighbor) => {

console.log(neighbor);
});

Listing 3.13: Example of iteration over neighbors of a node in the Graphology library

3.5.2 ForceAtlas2 layout algorithm

Graphology offers extending libraries implementing graph layout algorithms. One of them
is ForceAtlas2.

ForceAtlas2 is a graph layout algorithm that simulates a physical system of attractive
and repulsive forces to position nodes and edges. The nodes are repulsed by each other,
but the edges attract their nodes [2].

The code in Listing 3.14 displays the Webworker variant of the ForceAtlas2 layout and
its usage.

17

const layout = new FA2Layout(graph, {
settings: { gravity: 1 }

});

// start the layout
layout.start();
// stop the layout
layout.stop();
// is the layout running?
layout.isRunning();

Listing 3.14: ForceAtlas2 Graphology example (Webworker implementation)

Webworker is used to run scripts in background threads that perform tasks without
interfering with the user interface [3]. Graphology also has a synchronous variant of the
layout.

3.6 Sigma.js
Sigma.js does not provide comprehensive documentation. This section was composed by
means of help from the Sigma.js GitHub repository, including code and README files
contained in the repository [13].

Sigma.js is a JavaScript library that aims to visualize network graphs. It manages
the graph rendering and interaction with it. The graph data structure is managed by the
Graphology library. For rendering, Sigma.js uses WebGL. Sigma.js is accustomed to the
rendering of thousands of nodes and edges.

3.6.1 Introduction to the Sigma.js library

An example of the creation of the Sigma.js network graph is displayed in the code in
Listing 3.15.

const sigmaDiv = document.getElementById('sigma-div');
// graph - Graphology graph
const renderer = new Sigma(graph, sigmaDiv, { /* settings */);

Listing 3.15: Sigma.js graph creation example

Graphology graph must be created first. Also, the container to which the graph will be
rendered must exist in the Document Object Model, for example, a div container. Then the
Sigma object can be instantiated. The Sigma object represents the renderer of the graph.

The nodes and edges of the graph are rendered on the basis of the attributes of the
nodes and edges. These include the sizes, labels, colors, and coordinates of the nodes or
edges. Listing 3.16 provides a code adding a node and an edge to the graph with these
attributes specified.

The example node will display the “Build A” label, its size will be 6, its color black,
and it will have a set position. The example edge will be of size 5 and black in color.

18

graph.addNode('BuildA', {
label: 'Build A',
size: 6,
color: 'black',
x: 45,
y: 30

});

/* BuildB is added too */

graph.addEdge('BuildA', 'BuildB', {
size: 5,
color: 'black'

});

Listing 3.16: Graphology nodes with Sigma.js attributes

An event handler can be added to the rendered graph, like in Listing 3.17.

renderer.on('enterNode', ({ node }) => {
// print node entered with the mouse cursor
console.log(node);

});

Listing 3.17: Sigma.js event handler example

The event handler is a function executed when a user performs a certain interaction
with the rendered graph. Sigma.js provides multiple types of event handlers. The example
above includes the enterNode event handler, which occurs when a node is entered with the
mouse cursor. Other events include leaving the node with the cursor, clicking the node, or
entering an edge with the cursor. Event handlers can be used to manage the state of the
graph based on user interactions. For example, the mentioned enterNode event handler
could be utilized to highlight hovered nodes.

19

Chapter 4

Product-related pages and user
requirements

This chapter presents the state of the original UI on Product-related pages. Product-related
pages contain information about Products and entities that are related to Products, i.e.
Product Versions, Product Milestones, Builds, and Artifacts. This Bachelor’s thesis aims to
improve the visualization of mentioned Product-related entities and to portray relationships
between them and their statistics; therefore, this chapter illustrates how this is handled on
the original UI. Then, a description of user requirements regarding the improvement of
those pages follows. The user requirements include issues PNC users complained about or
suggestions made by PNC developers.

4.1 Product-related pages on the PNC build system original
UI

This section describes the current state of Product-related pages on the original UI.

4.1.1 Artifacts list

Artifacts list is a table listing Artifacts. The table can contain all Artifacts in the PNC
build system or a smaller set, such as Delivered Artifacts of a Product Milestone. Figure 4.1
shows the look of the list on the original UI.

The first column of the table does not parse the Artifact identifier in order to make
it easy for the user to distinguish individual parts of it, such as the name and version of
NPM Artifact, but rather the whole identifier is displayed as a plain string. Because of
this, namely, Maven Artifact identifiers are hard to read.

A large part of the table is taken up by a column of checksums, even though it is not
the most important column from the user’s point of view, and checksums typically do not
consume most of this column’s width.

To see a Build that produced an Artifact, the user first needs to open the Artifact detail
page (the link to it is in the list) where the link to the Build is contained. The link to the
Build is not included in the list itself.

The list is paginated (divided into multiple pages) and has filtering and sorting options.
The issue with all lists on the original UI is that the current page displayed by the list or the

20

configured filtering and sorting options of the list are not persisted in the URL. Therefore,
the URL of the list cannot be bookmarked or sent to someone else to display the same data.

21

Fi
gu

re
4.

1:
A

rt
ifa

ct
s

lis
t

on
th

e
PN

C
bu

ild
sy

st
em

or
ig

in
al

U
I

22

4.1.2 Product Milestone pages

Specific Product Milestone has a set of its own pages divided into tabs. They contain Prod-
uct Milestone’s properties and lists of entities belonging to a Product Milestone. Figure 4.2
shows one of Product Milestone’s pages, the detail page, on the original UI. The detail
page’s content is mostly empty. It includes only the most important properties of a Prod-
uct Milestone, so-called Product Milestone details. All other data related to the Product
Milestone are on their separate tabs, such as the Delivered Artifacts list, for example.

The Delivered Artifacts list provides the Delivered Artifacts of one Product Milestone.
The original UI does not provide a way to compare Delivered Artifacts of two or multiple
Product Milestones or to display a list of shared Delivered Artifacts between Product Mile-
stones. To do that, it is required to go through Product Milestones of interest and their
Delivered Artifacts lists manually.

Product Milestone pages also offers no summary of data about one Product Milestone
and its related entities, for example, Builds and Produced or Delivered Artifacts, in the
form of statistics and charts of their counts and properties. To get these data about related
entities on the original UI it is necessary to analyze these entities manually. Therefore, open
their detail pages and extract the information individually. For example, to see the source
of Delivered Artifacts of a Product Milestones, the user must open their detail pages and
find which Build they were produced by (if any) and then open Build detail pages to find
out what Product Milestone that Builds belong to (if any). And to find out the statistics of
Produced Artifacts, the user has to go through all Builds belonging to a Product Milestone
and there through all their Artifacts produced by the Build.

Figure 4.2: Product Milestone detail page on the PNC build system original UI

23

4.1.3 Product Version page

Unlike Product Milestone, the specific Product Version is not divided into multiple pages
on their own tabs, as is illustrated in Figure 4.3. Rather, there is only one detail page
containing important properties (the so-called Product Version details) in the key-pair list
along with tables of entities belonging to the Product Version.

The Product Version page faces the same problem as the Product Milestone pages.
There is no direct way to get the statistics about one Product Version or the summary of
Produced or Delivered Artifacts of all Product Milestones of the Product Version. On the
Product Version level, the user would need to collect the data manually, and it is more
inefficient since it needs to be done for all Product Milestones of a Product Version.

Figure 4.3: Product Version detail page on the PNC build system original UI

24

4.2 User requirements
This section lists user requirements regarding the improvement of the Product-related pages.
The requirements were either suggested by PNC users or by developers.

4.2.1 Artifacts list

There are three requirements for the new Artifacts list that would improve its usage.

• an option to dissect the Artifact identifier and its individual parts and separate the
parts visually – that way, the user can easily see specific parts of the identifier, such
as the Artifact archive type or Artifact version

• a column of checksums needs to be shrunk; checksums could be hidden in an expand-
able row, too

• a link to the Build that produced an Artifact in the list

• pagination, sorting, and filtering options of the list need to be persisted in the URL

4.2.2 Product Milestone pages

The requirement for the Product Milestone page is to convert the Product Milestone detail
page into a dashboard. The dashboard needs to contain statistics and charts summarizing
information about a Product Milestone and entities belonging to it.

Information users find useful is related to Used, Produced, and Delivered Artifacts of
a Product Milestone. More specifically summary of their source and distribution of their
properties. The data can be visualized in the form of data cards and charts. Charts need
to be accompanied by legends.

The source of Artifacts can be visualized as the number of Artifacts coming from specific
sources, for example, the number of Artifacts produced by a Build in a Milestone or the
number of Artifacts not produced by any Build.

The distribution of properties of Artifacts includes the distribution of Artifact quality
or the distribution of repository type. With those distributions, users would be able to see,
for example, whether there is a higher amount of Artifacts with problematic quality (such
as deprecated). Also, for quick reference, the distribution of repository type would help
the user to learn from which type of repository (such as Maven or NPM) Artifacts came.

Different users use different screen sizes; therefore, the dashboard should be respon-
sive to at least a certain degree so that the charts and statistics are responsively resized.
Additionally, the dashboard layout should change responsively to better fit certain screens.

4.2.3 Product Version pages

To keep the page structure consistent with the Product Milestone pages, Product Version
details need to be separated from the tables of related entities. Tables of entities belonging
to the Product Version would have separate pages.

In place of tables, new statistics and charts would come to build a new dashboard. The
Product Version dashboard should mainly aggregate data from Product Milestones of the
Product Version. For example, in the distribution of the source of Delivered Artifacts,
Delivered Artifacts in all Product Milestones of the Product Version would be aggregated.

25

4.2.4 Network graphs

Some users asked for a new feature of network graphs that visualizes relationships between
PNC entities. Nodes would represent entities and edges relationships between them. These
include the following:

• Sharing of Used or Delivered Artifacts between Product Milestones

• Sharing of Used or Delivered Artifacts between Product Versions

• Build-time dependencies between Builds

• Build-time dependencies between Product Milestones

In the graph, the user should be able to open either the list of shared Artifacts between
entities or a list of dependencies forming the dependency of one entity on another.

Should the graph contain hundreds of entities and relationships between those entities,
creating a big web of nodes in the graph, there needs to be a way to highlight certain data
and de-emphasize other. Therefore, the requirement is to provide ways to highlight or hide
nodes in order to make the graph more readable. Furthermore, filtering of nodes would be
beneficial.

4.2.5 Product Milestone comparison

Product Milestone Comparison is a UI component directly suggested by a PNC user. The
component is a table allowing users to compare Delivered Artifacts of two or more selected
Product Milestones and their versions. The table would list Delivered Artifacts shared
between at least two of the selected Product Milestones.

The first column would display the identifiers of the Delivered Artifacts (without the
Artifact version). Other columns would represent the selected Product Milestones. These
columns would list versions of the Delivered Artifacts in the corresponding Product Mile-
stones. Links to the pages of the Delivered Artifact versions should be provided, along with
links to the Builds that produced them.

26

Chapter 5

UI design

This chapter presents the new Product-related pages or the original ones which were re-
designed. Their design adheres to the user requirements specified in Chapter 4. These
designs are implemented on the new UI.

Wireframes1 are provided to illustrate the design along with the description. Wireframes
were created in the Figma2 web application.

5.1 Artifacts list
The new design of the Artifacts list is included in Figure 5.1.

Figure 5.1: Artifacts list wireframe

Each row in a list represents an Artifact. The rows in the table are expandable and row
expansion is controlled by the button on the left side of the row. The expandable row area
contains all checksums including a brand new link to a Build which produced an Artifact.
The “expand all” button in the top-left corner of the table expands all rows of the table at

1https://en.wikipedia.org/wiki/Website_wireframe
2https://figma.com/

27

https://en.wikipedia.org/wiki/Website_wireframe
https://figma.com/

once. There is also a toggle element to expand all Artifact rows which contain a link to the
Build, therefore it expands Artifacts produced in the PNC build system.

Another toggle in the table makes Artifact identifiers parsed and their individual parts
distinguished by a different color. When Artifact identifier parsing is on, a link to the
Artifact detail is included in the form of a button located to the right of the identifier.
When the feature is off, the identifier string itself represents the link.

Some values in the table rows are differentiated by distinct colors, such as repository
type or Artifact quality. For example, blacklisted Artifact quality is highlighted in red
color.

5.2 Product Milestone dashboard
The wireframe in Figure 5.2 depicts the design of the Product Milestone dashboard.

Figure 5.2: Product Milestone dashboard wireframe

The Product Milestone dashboard extends the Product Milestone detail page to fill in
empty spaces and provide statistics about a Product Milestone. The entire dashboard is
divided into visually separated boxes. The page begins with a box of the original Product
Milestone details. The new dashboard’s content is placed under the details. First, there is
a set of data cards of various statistics about Produced and Delivered Artifacts of a Product
Milestone. Then two charts of the distribution of Delivered Artifacts follow. Data cards
and chart boxes have a tooltip in the top right corner to provide additional explanations
on the meaning of the data they represent.

The data cards hold data about the Produced Artifacts and the source of Delivered
Artifacts. Section 2.3.1 provides information about the source of Artifacts. In the end, the
following statistics were chosen.

28

• first card – the number of Artifacts produced by Builds contained in the Product
Milestone of the detail page

• second card – the number of Delivered Artifacts produced by Builds contained in
the Product Milestone of the detail page

• third card – the number of Delivered Artifacts produced by Builds contained in Prod-
uct Milestones which belong to the same Product as the Product Milestone of the
detail page

• fourth card – the number of Delivered Artifacts produced by Builds contained in
Product Milestones which belong to different Products than the Product Milestone
of the detail page

• fifth card – the number of Delivered Artifacts produced by Builds not contained in
any Product Milestone

• sixth card – the number of the Delivered Artifacts that were not built at all in the
PNC build system

On the card, the number is highlighted by a larger font, and the card description is
de-emphasized by gray color. This is because data are the most important information and
descriptions are secondary [12, pp. 50-51].

Both charts display the distribution of Delivered Artifacts. The first chart shows the
distribution of Artifact quality of Delivered Artifacts. The second one represents the dis-
tribution of repository type of Delivered Artifacts.

5.3 Product Version dashboard
The wireframe for the Product Version Dashboard is included in Figure 5.3. Delivered
Artifacts set in this section refers to all Delivered Artifacts of all Product Milestones of the
Product Version to which the dashboard corresponds.

The new Product Version detail page design separates the original detail page into
multiple pages. This way, the page structure is consistent with the Product Milestone
variant. Overall, the Product Version detail page/dashboard follows the same design as the
Product Milestone one. The Product Version dashboard extends the detail page, so the
first box holds the Product Version details. Some of the data cards are aggregated forms
of their counterparts on the dashboards of Product Milestones of the Product Version the
detail page belongs to.

The following values were chosen for the data cards.

• first card – the number of Products that contain dependency Milestones; dependency
Milestone contains Build or Builds that produced some of the Delivered Artifacts

• second card – the number of dependency Milestones

• third card – the number of Artifacts produced by Builds contained in Product Mile-
stones of the Product Version of the detail page

• fourth card – the number of Delivered Artifacts produced by Builds contained in
Product Milestones of the Product Version of the detail page

29

Figure 5.3: Product Version dashboard wireframe

• fifth card – the number of Delivered Artifacts produced by Builds contained in Prod-
uct Milestones of other Product Versions than the Product Version of the detail page,
but contained in the same Product

• sixth card – the number of Delivered Artifacts produced by Builds contained in Prod-
uct Milestones of different Products than the one the Product Version of the detail
page belongs to

Charts aggregate their counterparts on dashboards of Product Milestones of the Product
Version of the detail page.

30

5.4 Product Milestone interconnection graph
Out of various graphs suggested in the discussion with users and developers (listed in
Section 4.2.4), two were designed to be implemented, the first being the Product Milestone
interconnection graph. The wireframe for it is displayed in Figure 5.4. The design of this
graph will serve as an example model of the network graph, and other graphs will follow
it. Section 2.3.1 explains relationships between Product Milestones.

Figure 5.4: Product Milestone interconnection graph wireframe

The Product Milestone interconnection graph was devised to be put on its separate
page in the Product Milestone pages structure since the graph belongs to a single Product
Milestone. The Product Milestone to which the graph page corresponds will be referred to
as the main Product Milestone.

The network graph visualizes Product Milestones sharing Delivered Artifacts with the
main Product Milestone. The same sharing of the Delivered Artifacts is visualized also
for Product Milestones the main Product Milestone shares Delivered Artifacts with. It
needs to be noted that there is no transitive relationship between these interconnections
in the graph – if Product Milestone A shares Delivered Artifacts with Product Milestone B
and Product Milestone B shares Delivered Artifacts with Product Milestone C, it does not
implicate sharing of Delivered Artifacts between Product Milestones A and C.

Each Product Milestone is represented as one graph node. The node displays the name of
the Product Milestone along with the name of the Product to which the Product Milestone
belongs. The main Product Milestone is highlighted in the graph (by a darker color in the
wireframe). Edges interconnecting Product Milestones sharing Delivered Artifacts have
labels on them, providing the count of shared Delivered Artifacts.

31

The wireframe portrayed in Figure 5.5 illustrates a feature that allows limiting the
nesting of the graph from the main node.

Figure 5.5: Product Milestone interconnection graph wireframe – nesting level limitation

This feature restricts to what level from the main Product Milestone interconnections
of the Product Milestones are nested. For example, the nesting level with value 1 shows
only interconnections of the main Product Milestone, and the nesting level with value 2
also interconnections of those Product Milestones which share Delivered Artifacts with the
main Product Milestone. This feature is useful especially when the user is interested to see
only which Product Milestones share Delivered Artifacts with the main Product Milestone
(for which scenario nesting level 1 would be set). Another use case is to make the graph
more readable should it contain a large number of nodes.

32

To satisfy the need to make the graph cleaner in situations when the graph contains
a great number of nodes, other features were designed.

The wireframe in Figure 5.6 presents the ability of the user to hover over a graph node
to highlight the node including its neighbors. The other nodes in the graph are grayed out.
A similar feature is node selection. By clicking on the node, the node is marked as selected.
Selected nodes are displayed as hovered nodes, that is, the nodes and their neighbors are
highlighted, and other nodes are grayed out. This allows the user to explore the graph and
de-emphasize the data the user finds less interesting.

Figure 5.6: Product Milestone interconnection graph wireframe – hovering over the node

The graph page also has two search bars. The first search bar looks for Product Mile-
stones belonging to a certain Product. The second search bar matches Product Milestone’s
name. The matched Product Milestones are highlighted by a special color. If both search
bars are used, the intersection of matched Product Milestones is highlighted.

33

Another important feature is a list of Delivered Artifacts shared between two Product
Milestones, displayed on the wireframe in Figure 5.7. The list is displayed by clicking
on any edge connecting two Product Milestones and contains Delivered Artifacts shared
between these two Product Milestones. The list, along with an identifier of the Delivered
Artifact, includes a link to a Build that produced the Delivered Artifact (source Build),
a link to a Product Milestone in which that Build is contained (source Product Milestone),
and a link to a Product to which that Product Milestone belongs (source Product).

Figure 5.7: Product Milestone interconnection graph wireframe – shared Delivered Artifacts
list

34

5.5 Build Artifact dependency graph
The second of two designed network graphs is the Build Artifact dependency graph of
build-time dependencies. Its wireframe is shown in Figure 5.8. Section 2.4 describes the
build-time dependencies.

Nodes represent the Builds. This graph is directed, so Builds point to other Builds. The
edge arrow points from dependent Build to Build it depends on. The edge label displays
the count of Artifacts dependent Build uses from Build it depends on.

The design of features follows the same pattern as the Product Milestone interconnection
graph. It has the same feature of node highlighting by hovering over nodes or selecting
nodes. Limitation of nesting level is also present. Users can search for Build by its name
or the name of the Build Configuration. By clicking on the edge, the list of Used Artifacts
is shown.

Figure 5.8: Build Artifact dependency graph wireframe

35

5.6 Product Milestone comparison
The Product Milestone comparison is depicted in the wireframe in Figure 5.9. The table
compares the versions of Delivered Artifacts of Product Milestone the user selects.

Figure 5.9: Product Milestone comparison table

Firstly, the user needs to select Product Milestones to be compared. By using three
search bars for Product, Product Version, and Product Milestone, respectively, Product
Milestones of interest are found. Found Product Milestone can be added to the table
header by the “Add column” button. Then, when the Product Milestones were selected,
the “Fetch” button can be used to fetch the table data.

An alternative to this approach would be to fetch the table data each time the Product
Milestone is selected in the search bar, and no fetch button would be necessary. But this
would lead to needless requests if more than two Product Milestones were selected, so it
was avoided.

Product Milestones can be also deselected from the table, or new Product Milestones
can be added to the table, and then the table data can be fetched again.

36

Chapter 6

REST API design

This chapter describes the REST API1 designed for endpoints needed by the pages designed
in Chapter 5 including the chosen HTTP method and their data format. An important
note is that this Bachelor’s thesis does not implement the final backend for these endpoints,
just their design is laid out. TypeScript syntax for interfaces describes the data format of
the endpoints.

6.1 Pagination in the PNC REST API
PNC REST API uses the following structure for the pagination of mostly tabular data.
This data structure (Page) is referred to later in this chapter when the pagination of some
endpoint data is needed.

interface Page {
content?: any[];
totalPages?: number;
pageIndex?: number;
pageSize?: number;
totalHits?: number;

}

Properties of the page of data:

• totalPages – the count of pages data are divided into

• pageIndex – the index of one page currently returned by the backend

• pageSize – the number of data entities that are maximally returned in one page

• totalHits – the total count of all existing data entities for a specific endpoint

• content – an array of data entities corresponding to the endpoint; for example, for
the Artifacts list endpoint, it is an array of Artifacts

1https://www.redhat.com/en/topics/api/what-is-a-rest-api

37

https://www.redhat.com/en/topics/api/what-is-a-rest-api

6.2 Product Milestone dashboard
The existing GET endpoint /product-milestones/:id gets the details of a Product Mile-
stone on the Product Milestone dashboard. New dashboard statistics, including data cards
and charts, were designed to have their own endpoint rather than extending the existing
detail endpoint with new data.

GET /product-milestones/:id/statistics

This endpoint returns data card statistics and chart data.
Returned data format (ProductMilestoneStatistics):

interface ProductMilestoneStatistics {
artifactSource: {

// the number of Artifacts produced by Builds
// contained in the requested Milestone
thisMilestone: number;

}
deliveredArtifactsSource: {

// the number of the Delivered Artifacts produced by Builds
// contained in the requested Milestone
thisMilestone: number;
// the number of the Delivered Artifacts produced by Builds
// contained in Milestones which belong to the same Product
// as the requested Milestone
previousMilestones: number;
// the number of the Delivered Artifacts produced by Builds
// contained in Milestones of other Products
otherProducts: number;
// the number of the Delivered Artifacts produced by Builds
// not contained in any Milestone
noMilestone: number;
// the number of the Delivered Artifacts not produced by any Build
noBuild: number;

}
// proportion of quality of Delivered Artifacts
artifactQuality: {

[key: string]: number;
}
// proportion of repository type of Delivered Artifacts
repositoryType: {

[key: string]: number;
}

}

The whole data structure is nested and the properties are grouped logically. Artifact
quality and repository type properties are objects whose keys are individual Artifact quali-
ties or repository types and values are numbers of Delivered Artifacts corresponding to the
Artifact quality or repository type.

38

6.3 Product Version dashboard
On the Product Version dashboard, three new endpoints for dashboard statistics were
designed rather than extending existing detail GET endpoint /product-versions/:id.

GET /product-versions/:id/statistics

This endpoint returns data card statistics (not chart data).
Returned data format (ProductVersionStatistics):

interface ProductVersionStatistics {
// the number of Milestones created in the requested Version
milestones: number;
// the number of Products which contain Milestones
// containing Builds which produced the Delivered Artifacts
productDependencies: number;
// the number of Milestones which contain Builds which produced
// the Delivered Artifacts
milestoneDependencies: number;
artifactSource: {

// the number of Artifacts produced by Builds contained
// in Milestones of the requested Version
thisVersion: number;

}
deliveredArtifactsSource: {

// the number of the Delivered Artifacts produced by Builds
// contained in Milestone of the requested Version
thisVersion: number;
// the number of the Delivered Artifacts produced by Builds
// contained in Milestones of other Versions of the same Product
previousVersions: number;
// the number of the Delivered Artifacts produced by Builds
// contained in Milestones of other Products
otherProducts: number;
// the number of the Delivered Artifacts produced by Builds
// not contained in any Milestone
noMilestone: number;
// the number of the Delivered Artifacts not produced by any Build
noBuild: number;

}
}

Once again, the structure is logically nested. Not all of the data provided by this
endpoint are used in the final dashboard design but providing them allows UI to be easily
expandable for some new information if such need arises. Artifact quality and repository
type distribution charts were separated into their own endpoints.

39

GET /product-versions/:id/artifact-quality-statistics

This endpoint returns Artifact quality distribution chart data.
Returned data format (ProductVersionArtifactQualityStatisticsPage):

interface ProductVersionArtifactQualityStatisticsPage extends Page {
content?: ProductVersionArtifactQualityStatistics[];

}

interface ProductVersionArtifactQualityStatistics
extends ProductMilestoneRef {

artifactQuality: {
[key: string]: number;

}
}

The endpoint returns an array of objects containing Artifact quality distribution for
Product Milestones of a Product Version. Also, the shorter version of the Product Mile-
stone detail is included (ProductMilestoneRef extending chart data). This endpoint was
separated from the data card statistics endpoint due to its pagination. If it was merged with
the that endpoint, the same data card statistics would be returned each time a new page
is requested. The reason for the pagination of this endpoint is that Product Version can
contain an unlimited amount of Product Milestones, therefore unpaginated endpoint could
return a large batch of data. The other chart needs to be paginated too, and both charts
are paginated separately, so the repository type distribution chart has its own endpoint too.

GET /product-versions/:id/repository-type-statistics

This endpoint returns repository type distribution chart data.
Returned data format (ProductVersionRepositoryTypeStatisticsPage):

interface ProductVersionRepositoryTypeStatisticsPage extends Page {
content?: ProductVersionRepositoryTypeStatistics[];

}

interface ProductVersionRepositoryTypeStatistics
extends ProductMilestoneRef {

repositoryType: {
[key: string]: number;

}
}

This endpoint is separated from the data card statistics endpoint for the same reason
as the Artifact quality distribution chart endpoint. The data structure is the same, except,
instead of Artifact quality distribution, repository type distribution is included for Product
Milestones of a Product Version.

40

6.4 Product Milestone interconnection graph
For the Product Milestone interconnection graph, one endpoint was designed for returning
the interconnection graph of a Product Milestone and one endpoint for returning shared
Delivered Artifacts between two Product Milestones.

GET /product-milestones/:id/interconnection-graph

This endpoint returns the graph.
Returned data format (ProductMilestoneInterconnectionGraph):

interface ProductMilestoneInterconnectionGraph {
vertices: {

[key: string]: {
// Milestone ID
name: string;
// Milestone data
data: ProductMilestone;

};
}
edges: ProductMilestoneInterconnectionGraphEdge[];

}

interface ProductMilestoneInterconnectionGraphEdge {
source: string;
target: string;
// number of Delivered Artifacts shared between Milestones of the edge
sharedDeliveredArtifacts: number;

}

The data structure is divided into vertices and edges. This fits the way nodes and
edges are added to the graph in Sigma.js – they are added separately. vertices is an object
whose keys are IDs of Product Milestones included in the graph and values are data of
those Product Milestones. Theoretically, this could be an array of Product Milestones, but
the object allows a specific Product Milestone to be found by its ID directly. The edge
has its source node and its target node. source and target contain IDs of the Product
Milestones that the edge interconnects.

GET /product-milestone-shared-delivered-artifacts

This endpoint returns the list of shared Delivered Artifacts. The endpoint accepts two
query parameters to determine the Product Milestones for which the list should be fetched –
milestone1 and milestone2, each containing ID of the Product Milestone.
Returned data format (ProductMilestoneSharedDeliveredArtifactsPage):

interface ProductMilestoneSharedDeliveredArtifactsPage extends Page {
content?: ProductMilestoneSharedDeliveredArtifact[];

}

interface ProductMilestoneSharedDeliveredArtifact

41

extends Artifact {
product: ProductRef;
productVersion: ProductVersionRef;
productMilestone: ProductMilestoneRef;

}

The endpoint returns a list of Delivered Artifacts. Delivered Artifact is extended
by short detail of a Product (ProductRef), Product Version (ProductVersionRef), and
a Product Milestone (ProductMilestoneRef) to which the Delivered Artifact belongs.

6.5 Build Artifact dependency graph
Build Artifact dependency graph needs two new endpoints, one for the graph itself and one
for the list of Artifact dependencies.

GET /builds/:id/artifact-dependency-graph

This endpoint returns the graph.
Returned data format (BuildArtifactDependencyGraph):

interface BuildArtifactDependencyGraph {
vertices: {

[key: string]: {
// Build ID
name: string;
// Build data
data: Build;

};
}
edges: BuildArtifactDependencyGraphEdge[];

}

interface BuildArtifactDependencyGraphEdge {
source: string;
target: string;
// number of Artifacts source Build depends on
artifactDependencies: number;

}

This graph follows the same data pattern as the Product Milestone interconnection
graph. The keys of vertices object are IDs of Builds and values are data of the Builds.
source and target of the edge are IDs of the Builds.

GET /build-artifact-dependencies

This endpoint returns the list of Artifact dependencies of one Build depending on another.
The endpoint accepts two query parameters – dependentBuild and dependencyBuild which
determine edge of the graph.
Returned data format (BuildArtifactDependenciesPage):

42

interface BuildArtifactDependenciesPage extends Page {
content?: Artifact[];

}

6.6 Product Milestone comparison
For the Product Milestone comparison table, one POST endpoint was designed.

POST /product-milestone-comparison

This endpoint returns the compared Delivered Artifacts in selected Product Milestones.
Input data format (ProductMilestoneComparisonInputData):

interface ProductMilestoneComparisonInputData {
productMilestones: string[];

}

Product Milestones to be compared are sent as a list of their IDs. Due to this fact, the
POST HTTP method was selected for the endpoint.
Returned data format (ProductMilestoneComparisonPage):

interface ProductMilestoneComparisonPage extends Page {
content?: ComparedArtifact[];

}

interface ComparedArtifact {
// Artifact identifier without the version
identifier: string;
productMilestones: {

[key: string]: ArtifactWithVersion;
}

}

interface ArtifactWithVersion extends Artifact {
// version of the Artifact
artifactVersion: string;

}

The endpoint returns an array of Delivered Artifacts and their versions in selected Prod-
uct Milestones. productMilestones object’s keys are IDs of the Product Milestones and
values are concrete Delivered Artifacts of the corresponding Product Milestone extended
by the name of their version (artifactVersion).

43

Chapter 7

Implementation of the designed
pages

This chapter explains the implementation of the pages designed in Chapter 5. The first
section lists the structure of the code. The second section describes HTTP services used by
the new UI project. The third section provides information about components implemented
before this Bachelor’s thesis. The first three sections summarize the state before the imple-
mentation part of this Bachelor’s thesis started. The fourth section of this chapter delves
into the implementation part by describing a chosen set of implemented React components
and functions. The last section outlines the testing of the implemented features.

7.1 Code structure
The new PNC UI project is developed in an open-source GitHub repository [10]. The code
is structured in the following directory tree:

• .github/

– workflows/ – Github Workflows

• documentation/ – Documentation and READMEs

• src/ – Application source code

– common/ – Code and constants used in the whole project
– components/ – React components
– hooks/ – Custom React hooks
– libs/ – Code to use with third-party libraries
– services/ – HTTP services
– utils/ – Various helper functions, data transformations, etc.

7.2 HTTP services
The new UI project implements a connection to the REST API of the HTTP servers through
Axios instances. These hold base URLs to which all HTTP requests will be sent and provide

44

methods to send specific HTTP requests, such as the get method. Axios instances are then
encapsulated in singleton objects. An example is pncClient creating an interface for the
PNC REST API.

Some Axios instances also have interceptors preprocessing HTTP requests. The inter-
ceptor in pncClient, for example, adds authentication headers identifying the PNC user to
the HTTP request or sets the correct content type of HTTP PATCH and POST requests.

Service functions (or services) then implement connections to specific REST endpoints.
All services create HTTP requests with the help of Axios instances inside client single-
ton objects. Service fetching the Product Milestone interconnection graph is included in
Listing 7.1.

export const getInterconnectionGraph = ({ id }, requestConfig) => {
return mockClient

.getHttpClient() // returns Axios instance

.get(`/product-milestones/${id}/interconnection-graph`,
requestConfig);

};

Listing 7.1: Product Milestone interconnection graph service in the new UI project

Since endpoints used by newly implemented components are not implemented as part
of this Bachelor’s thesis, their HTTP services use mockClient which sends all requests to
the localhost port where mocked backend server should run.

7.2.1 Service containers

useServiceContainer is a custom hook that the new UI project uses to manage the ex-
ecution, state, and data of HTTP services. The hook accepts a callback of a service as
a parameter. It returns an object containing data that were returned by a backend (if any
were loaded), an error (if any occurred), a boolean state as to whether the service is cur-
rently in a loading state, and a function to execute the service with (run function). When
the run function is executed, it runs the input service callback to fetch the data. The object
returned by the useServiceContainer hook is referred to as a service container.

A ServiceContainerLoading component receives the service container as its parameter
and the child component instance. The child component is typically dependent on the data
returned by the service. ServiceContainerLoading does not run the service but detects
its state and displays adequate content. For example, if the service is in a loading state
for the first time, the spinner is displayed. If the data were loaded, the child component
is rendered. If the service is in a loading state and the data were loaded before, the child
component is grayed out, and the loading bar is displayed on top of it.

7.3 Old components
This section briefly introduces components in the new PNC UI project that were not im-
plemented as part of this Bachelor’s thesis.

45

Pagination component

A Pagination component is used to display a pagination UI element allowing users to nav-
igate the pages of the paginated endpoints. Paginated endpoints are those endpoints whose
data are not returned in one batch but are divided into multiple pages. The component is
mainly dedicated to tables. The component persists the pagination in the URL.

ContentBox component

A ContentBox component is a box encapsulating other components. It provides multiple
parameters, such as displaying the white background and padding around the content of
the box.

SearchSelect component

A SearchSelect component is a select whose options are dynamically fetched. It accepts
a callback that fetches the options of the select. It also provides a search bar to narrow
down the select options. Its UI is rendered by the Select PatternFly component.

7.4 Implemented components and functions
This section describes the implementation part of this Bachelor’s thesis and the chosen set
of components and functions.

Components whose names end with Page represent pages of the website. Each page
has its own title and URL route, optionally a description.

7.4.1 Artifacts list

The Artifacts list page is created by an ArtifactsPage component.

ArtifactsList component

An ArtifactsList component’s table is implemented using the TableComposable Pat-
ternFly component. The component is meant to be reusable on multiple pages; therefore,
it is configurable and it is possible to choose the columns included in the displayed list.
The component accepts a list of column identifiers to be displayed in the list, but the list
has a default preset of shown columns. The component also accepts the service container
of Artifacts to be listed in the table. The list conditionally renders the columns that are
included in the input list of column identifiers.

Each Artifact row has its expandable row, where checksums and source Build are dis-
played. The component holds the state of currently expanded Artifact rows in an array of
Artifact identifiers. When a button expanding row is clicked, the identifier is added to the
array. Expanded rows are then conditionally rendered based on whether the identifier of
an Artifact is included in that list. To ease up work with expandable rows, a button for
expanding all rows and a toggle for expanding rows of Artifacts containing links to a Build
are included in the list’s toolbar. The button updates a state areAllArtifactsExpanded
and the toggle updates a state areBuildArtifactsExpanded. useEffect hooks, containing
those states and state of service container’s data in a dependency array, are then used to
include all respective Artifacts in the array of expanded Artifacts. This pattern guarantees

46

that the Artifacts are expanded even when a page of the list is changed (and therefore new
data are loaded).

The pagination of the table is handled by the Pagination component.

ParsedArtifactIdentifier component

For the highlighting of the identifier of an Artifact, a ParsedArtifactIdentifier compo-
nent was implemented. The component accepts Artifact as its parameter.

If the Artifact is from a repository type other than NPM or Maven, the component just
returns the Artifact identifier with a link to the Artifact detail page. For NPM and Maven
Artifact, the identifier is split by a colon character with the JavaScript split function.
All parts of the identifier, including the colons separating them, are then transformed into
PatternFly Label components, each having a distinct color. All Label components are laid
out using PatternFly Flex components in one row. Also, a link to the Artifact detail page
is included as a link button.

ArtifactsPage component

An ArtifactsPage component is the page of Artifacts rendering the ArtifactsList com-
ponent.

7.4.2 Dashboards

For the dashboards, multiple components were created. ProductMilestoneDetailPage
and ProductVersionDetailPage components compose the Product Milestone and Version
dashboard pages.

CardFlex component

A CardFlex component is a container for data cards. It is implemented as a flex container
using the Flex PatternFly component positioning data cards in a row. It adds gaps between
cards and wraps the row if one row is not enough to hold all the cards. A CardFlexItem is
a flex container item representing one data card. The component sets the minimum width
and height of the card. All cards in one row have the same width, while all cards together
span the entire available width of one row by setting the flex property of the flex item
to 1. It is implemented using the FlexItem PatternFly component and also creates a card
background with the help of the ContentBox component.

The CardFlexItem component itself is just a card box. For card value and title, two ad-
ditional components are meant to be used as children inside it: CardValue and CardTitle.
CardTitle holds the title of the card value. CardValue displays the actual value corre-
sponding to the title. The titles of cards in one row are aligned vertically using fixed
padding and height.

Listing 7.2 portrays the usage of the CardFlexItem component in the code.

<CardFlexItem>
<CardValue>{deliveredArtifactsCount}</CardValue>
<CardTitle>Delivered Artifacts in this Milestone</CardTitle>

</CardFlexItem>

Listing 7.2: CardFlexItem component usage

47

CardFlexItem also accepts an optional description as its parameter, which is then dis-
played using a BoxDescription component as a tooltip icon in the upper right corner of
the card.

ChartBox component

ChartBox is a box that was implemented to be used in specific chart implementations. It
accepts a child component as its parameter, which should be a canvas element in which the
chart is rendered. The component itself is a div element inheriting width and height from
the parent element. It adds some spacing around its child component and centers it via
the usage of flex CSS properties. It also accepts the chart description as its parameter and
displays it in the form of a tooltip icon in the upper right corner of the box. For description,
a BoxDescription component is used.

DoughnutChart component

A DoughnutChart component uses Chart.js to implement the doughnut chart. The compo-
nent accepts a list of numbers (doughnut data) and a list of strings (titles corresponding to
the data). This is the format of data and labels used by Chart.js. The component returns
a canvas element inside the ChartBox component. Chart.js uses the canvas element to draw
the chart into it.

The component’s rendering logic is as follows. On the first render, the chart is created
and rendered in the canvas. When the input data are changed, the configuration of the
doughnut chart is updated to reflect the new data and the canvas is re-rendered using the
Chart.js update method. That means that the component is not static and accepts data
changes. It also means that data need to be saved inside the state or memoized, lest the
chart not be unnecessarily refreshed because the updating logic is inside an useEffect hook
executed when the chart data changes.

Transformation of Product Milestone statistics

The DoughnutChart component accepts the data and labels in a different format than was
designed to be returned by the Product Milestone statistics endpoint as portrayed in Sec-
tion 6.2. To transform the backend data into chart data, a doughnutChartDataTransform
function was implemented. The implementation of the function is simple and utilizes the
JavaScript Object.values function to transform the backend data.

A doughnutChartLabelTransform function was implemented to transform backend
data into the labels using the JavaScript Object.keys function.

StackedBarChart component

A StackedBarChart implements the stacked bar chart in the Chart.js library. Stacked bars
are set to be columns. The stacked bar chart is rendered into a canvas returned by the
component and encapsulated by the ChartBox component. Its rendering logic is the same
as that of DoughnutChart, except that it renders a stacked bar chart. The component
accepts a list of labels of individual stacked bar columns. Another parameter is data in the
format of a list of objects, each containing a label of a characteristic and a list of values of
that characteristic in each of the stacked bar columns. This label and data format satisfies
the format used by the Chart.js configuration.

48

Transformation of Product Version statistics

The StackedBarChart component also uses a different format of the data and labels than
returned by the backend for Product Version statistics. Section 6.3 provides the design
of the statistics endpoint. However, the endpoints were designed to be more generic –
different chart implementations might use different data formats, and the endpoints were
not designed for the specific chart implementation.

A stackedBarChartDataTransform function was created to transform backend data
into chart data and a stackedBarChartLabelTransform function to transform backend
data into chart labels. Their implementation is slightly more complex than their doughnut
chart variant. The code of the data transformation function is included in Listing 7.3.

// statisticsGroup - for example, "artifactQuality"
export const stackedBarChartDataTransform = (data, statisticsGroup) =>

data &&
data.length &&
Object.keys(data[0][statisticsGroup]).map((statisticsName) => ({

label: statisticsName,
data: data.map((productMilestoneData) =>

productMilestoneData[statisticsGroup][statisticsName]),
}));

Listing 7.3: Function transforming Product Version statistics data into a form accepted by
the Chart.js stacked bar chart

The function iterates over all characteristics, for example, over all possible Artifact
qualities, with the help of the map JavaScript method to create an array of objects. For
each of these characteristics (statisticsName), the object is created. Another map method
call is used to extract all values of this characteristic in all Product Milestones.

BoxDescription component

A BoxDescription component creates an icon that displays the description on the hover
event. The icon is implemented as a div element with text aligned to the right. The
component supports two variants of the component displayed when hovering over the icon.
The first is a tooltip, and the second is a popover.

The component accepts description as its property. If the description is a string, the
tooltip implemented using the PatternFly Tooltip component is used. In the case where
the description is a React component instance, the popover is used that is implemented
using the PatternFly Popover component. The tooltip displays just plain strings, whereas
the popover allows the description to be styled.

ProductMilestoneDetailPage component

A ProductMilestoneDetailPage component composes the detail page of a Product Mile-
stone. The PatternFly Grid component is used to create the layout of the page. Grid
component is a grid container that places the layout in the 2D grid and is divided into
twelve columns. For a container item, the GridItem component is used. The width of
the GridItem component is set as an integer number of columns it spans. The first grid

49

container item spanning twelve columns on the page contains the key-value list of Product
Milestone details.

The second grid container item holds data cards implemented using the CardFlex com-
ponent. If there were an odd number of data cards, the GridItem components themselves
would not suffice to make cards of equal width, since twelve is not divisible by an odd
number. This is the reason why the CardFlex is used within one grid container item that
spans the entire twelve columns.

The third and fourth grid container items contain the charts (the DoughnutChart com-
ponent). These grid container items span a responsive number of columns. On small
browser windows, each spans twelve columns, and the charts are on top of each other. On
large browser windows, each spans six columns, so both charts are displayed side by side.

ProductVersionDetailPage component

A ProductVersionDetailPage component represents the Product Version detail page. It
uses the same layout structure as the ProductMilestoneDetailPage component. It only
displays different data and stacked bar charts (the StackedBarChart component) instead
of doughnut charts. The endpoints for the Product Version charts are paginated; therefore,
the Pagination component allows users to navigate the pages.

7.4.3 Network graphs

For the network graphs, one hook was created. The Product Milestone interconnection
graph page is contained in a ProductMilestoneInterconnectionGraphPage component
and the Build Artifact dependency graph in a BuildArtifactDependencyGraphPage com-
ponent.

useNetworkGraph custom hook

A useNetworkGraph is a custom hook for the creation and management of the state of the
network graph and its rendering. The ID of the div container into which the graph will be
rendered is passed to the hook. The hook returns a createNetworkGraph function which
creates the graph and renders it inside the div container mentioned above. The graph data
structure is created and managed by the Graphology library. The rendering part is handled
by the Sigma.js library. The creation function accepts a callback as its parameter. This
callback is called inside the creation function once the graph is created. The purpose of the
callback is to add nodes and edges to the graph. Therefore, the set of nodes and edges is
not directly passed to the hook. The callback also sets the color and labels of the nodes
and edges. After this callback is run, the graph is laid out using the ForceAtlas2 algorithm,
which is part of the Graphology library.

In addition, the name of the main node is passed to the component. Relative to this
main node, nesting level functionality is applied. To apply the nesting level, the breadth-
first graph search algorithm1 is used. It traverses the whole graph of nodes, and nodes,
whose distance is larger than the set nesting level, are hidden. The algorithm is run inside
the useEffect hook each time the nesting level is changed.

The useNetworkGraph hook states include hovered node, dragged node, selected edge,
and a set of selected nodes. These states are managed by the Sigma.js event handlers

1https://en.wikipedia.org/wiki/Breadth-first_search

50

https://en.wikipedia.org/wiki/Breadth-first_search

that were created by the createNetworkGraph function. Some states of the graph are
inputted into the hook from outside since they are managed by outside components. These
include primary filter text (managed by the search bar component), secondary filter text
(managed by the search bar too), and the nesting level (managed by toggle and number
input components). All of these states (internal or external) modify the visualization of
nodes and edges. To reflect the current states, the Sigma.js node and edge reducers are
executed in the useEffect hook. Dependencies of this useEffect hook include the states
mentioned. The node and edge reducers then iterate over all nodes and edges and apply
visual changes appropriate to the states; for example, the selected nodes are highlighted.

The ForceAtlas2 layout algorithm is managed by its Webworker Graphology implemen-
tation. The layout is controllable and can be started or stopped. The hook returns the
function to start and the function to stop the layout algorithm. This allows the parent
component to control the algorithm.

ProductMilestoneInterconnectionGraph component

A ProductMilestoneInterconnectionGraph component is responsible for the UI of the
graph. The component renders a div container in which the Sigma.js graph is rendered. The
management of the graph data structures and rendering is done by the useNetworkGraph
hook. The creation of a graph is achieved with the help of the createNetworkGraph function
returned by the mentioned hook. The component accepts graph data as its parameter; once
the data are loaded, the createNetworkGraph function is called to create the graph. Into
the createNetworkGraph function, a callback is passed, adding nodes and edges contained
in the input data into the graph.

The component also displays the button that controls the graph layout algorithm. The
component receives strings of search bars and the nesting level states via parameters which
are then passed to the mentioned hook.

ProductMilestoneInterconnectionGraphPage component

A ProductMilestoneInterconnectionGraphPage component composes the whole Prod-
uct Milestone interconnection graph page. The ProductMilestoneInterconnectionGraph
component renders the graph.

The ArtifactsList renders the list of shared Delivered Artifacts between the Product
Milestones and the list of displayed columns is configured to include columns that were
designed to be here in the corresponding wireframe.

The component manages the state of search bars and nesting level input. The search
bars are implemented by the SearchInput PatternFly component. The nesting level is
toggled by the Switch PatternFly component. The NumberInput PatternFly component
handles the nesting level value.

BuildArtifactDependencyGraph component

A BuildArtifactDependencyGraph component creates the UI of the network graph of the
Build Artifact dependencies. The structure of the component is the same as that of the
ProductMilestoneInterconnectionGraph component.

51

BuildArtifactDependencyGraphPage component

A BuildArtifactDependencyGraphPage component composes the Build Artifact depen-
dency graph page. It follows the same structure as its Product Milestone interconnection
graph counterpart. The ArtifactsList component renders the list of Artifact dependen-
cies.

7.4.4 Product Milestone comparison

The Product Milestone comparison is implemented in one table component. Page compo-
nent containing the table is ProductMilestoneComparisonPage.

ProductMilestoneComparisonTable component

A ProductMilestoneComparisonTable is a table of Product Milestone Comparison. The
table is implemented by the TableComposable PatternFly component. The SearchSelect
components provide the tree select elements which are used to find the Product, Product
Version, and Product Milestone, respectively.

A service container that fetches the data of the table is passed to the component. At
first, only three mentioned select elements, and the “Add Column” and “Fetch” buttons
are displayed. Once a Product Milestone is selected in the appropriate select element, the
“Add Column” button can be used to add a column of a Product Milestone to the table.
When the first Product Milestone is added, a table header is displayed. The “Fetch” button
fetches the data of the table with the passed service container. The list of IDs of selected
Product Milestones is passed to the run function of the service container. Once the data
are loaded, the component iterates over the fetched data with the map JavaScript method
and displays the individual rows, each containing versions of a Delivered Artifact in selected
Product Milestones.

The InnerScrollContainer PatternFly component encapsulates the table. It creates
a horizontal scrollbar if all columns do not fit into the table.

ProductMilestoneComparisonPage component

A ProductMilestoneComparisonPage component creates the page of the Product Mile-
stone comparison with the help of the ProductMilestoneComparisonTable component.

52

7.5 Testing and feedback
The new UI project is currently in development and it is not yet in production. It only has
a development environment (the master environment). Also, the backend for the designed
REST API was not yet implemented.

Because of these reasons, the work of this Bachelor’s thesis was not yet tested by the
users of the PNC system. Instead, feedback was provided by the PNC team. The code was
developed in the GitHub repository using the GitHub flow2. Therefore, the code was added
to the repository through Pull Requests. Each Pull Request of this thesis was reviewed by
other developers. This includes the code review.

Throughout the implementation process, the work of the thesis was consulted with
members of the PNC team. After the code was merged into the repository, the code was
tested manually in the master environment. If any bugs were found during the testing,
or if any UI features were visibly missing, new Pull Requests were created to address
these issues. Some of the developers reported some small problems, such as the format of
tooltip descriptions. Also, the author of this very thesis presented a demonstration of the
implemented UI components to the members of the team.

Overall, six members of the PNC team shared their opinions and provided feedback
during or after the development of the thesis. Specifically, feedback was provided by the
Product Owner3 of the PNC project, who oversaw the development of this Bachelor’s thesis
and oftentimes presented user requirements.

“PNC build system contains lots of various information about products and de-
pendencies between those products. The system has the information, but it is
not easily readable in the current form. Patrik’s work helps with the visual-
ization of the data, highlighting various statistics and discovering dependencies
between products, which might be sometimes hidden even to its developers. The
work meets my expectations and it delivers new features, which were requested
by PNC users.”
— Ing. Jakub Barteček, Manager, Software Engineering, PNC Product Owner

PNC UI lead, who helped with the UI aspect of the thesis, also offered his views.

“The current version of PNC provides no way to visualize Product-related data,
forcing users to manually explore the available data to get a better overview and
find important relationships between individual entities. Patrik’s work success-
fully and significantly improved the current state. For example, I would like to
highlight that the dashboards are well structured, the readability of the Artifact
list is improved and the network graphs provide a unique and easy-to-navigate
way of displaying the required information. Patrik also listened and responded
to feedback, resulting in an improved solution.”
— Mgr. Martin Kelnar, Senior Software Engineer, PNC UI lead

2https://docs.github.com/en/get-started/quickstart/github-flow
3https://www.scrum.org/resources/what-is-a-product-owner

53

https://docs.github.com/en/get-started/quickstart/github-flow
https://www.scrum.org/resources/what-is-a-product-owner

Chapter 8

Conclusion

The goal of this Bachelor’s thesis was to enhance the visualization of Product-related pages
on the new UI of the PNC build system, namely the visualization of relationships between
PNC entities, including Products, Product Versions, Product Milestones, Builds, and Ar-
tifacts. This goal was achieved successfully.

Firstly, the TypeScript language and multiple libraries were studied. The libraries
including React, Chart.js, Sigma.js, and Graphology, were explored, mainly from their doc-
umentation. PNC build system was analyzed including its entities and their relationships.
Internal PNC documentation and discussion with developers of the system, but also expe-
rience with the usage of the system, helped with learning about the PNC system. Also,
Product-related pages on the original PNC UI were examined.

Then, user requirements were acquired regarding the enhancements of the related UI,
but developers also provided feedback. With all of this information, wireframes were created
to illustrate new designs. The new visualization was designed in the form of tables, charts,
network graphs, and dashboards. For the designed pages, REST API was designed, but
since the implementation of endpoints was not part of this Bachelor’s thesis, designed
endpoints were not implemented. The implementation of the pages was fulfilled using the
language and libraries mentioned. Lastly, a video was recorded that demonstrates the newly
implemented UI components.

Overall, one page was redesigned, two pages were extended, and three new pages were
created. The Artifacts list is now more readable, mainly because of the Artifact identifier
parsing option. The Product Milestone and Product Version detail pages were extended
into dashboards of statistics and charts. Two network graphs were created. The first
is the Product Milestone interconnection graph visualizing sharing of Delivered Artifacts
between Product Milestones. The second is the Build Artifact dependency graph displaying
build-time dependencies between Builds. The last implemented component is the Product
Milestone comparison which allows users to compare Delivered Artifacts of selected Product
Milestones. All code was contributed to an open-source repository on GitHub. The whole
work of this Bachelor’s thesis is composed of 20 GitHub Pull Requests.

The newly created code provides a way to implement other visualizations of this kind
since the code is easily expandable and editable. The UI components form a basis for future
needs. For example, a new network graph to display build-time dependencies between
Product Milestones could be added, or dashboards could be created for other PNC entities,
or existing ones could be extended with new charts.

54

Bibliography

[1] Downie, N. Chart.js documentation [online]. April 2023 [cit. 2023-05-02]. Available
at: https://www.chartjs.org/docs/latest/.

[2] Jacomy, M., Venturini, T., Heymann, S. et al. ForceAtlas2, a Continuous Graph
Layout Algorithm for Handy Network Visualization Designed for the Gephi Software.
PLOS ONE [online]. 2014, vol. 9, no. 6, [cit. 2023-05-03]. Available at:
https://doi.org/10.1371/journal.pone.0098679.

[3] MDN. Using Web Workers [online]. [cit. 2023-05-03]. Available at: https:
//developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers.

[4] Meta Platforms, Inc. React documentation [online]. 2023 [cit. 2023-04-22].
Available at: https://react.dev/.

[5] Microsoft. TypeScript documentation [online]. 2023 [cit. 2023-05-01]. Available at:
https://www.typescriptlang.org/docs/.

[6] npm. npm Docs: package.json [online]. [cit. 2023-04-29]. Available at:
https://docs.npmjs.com/cli/v9/configuring-npm/package-json.

[7] npm. npm Docs: scope [online]. [cit. 2023-04-29]. Available at:
https://docs.npmjs.com/cli/v9/using-npm/scope.

[8] Plique, G. Graphology, a robust and multipurpose Graph object for JavaScript
[online]. Zenodo, 2023 [cit. 2023-05-01]. Available at:
https://doi.org/10.5281/zenodo.5681257.

[9] PNC development team. Project Newcastle Orchestrator GitHub repository
[online]. [cit. 2023-04-29]. Available at: https://github.com/project-ncl/pnc.

[10] PNC development team. Project Newcastle React UI Github repository [online].
[cit. 2023-05-02]. Available at: https://github.com/project-ncl/pnc-web-ui-react.

[11] Red Hat, Inc. Patternfly [online]. 2022 [cit. 2023-05-02]. Available at:
https://www.patternfly.org/v4/.

[12] Schoger, S. and Wathan, A. Refactoring UI. Self-published, 2018.

[13] Sigma.js development team. Sigma.js GitHub repository [online]. [cit. 2023-05-01].
Available at: https://github.com/jacomyal/sigma.js.

[14] The Apache Software Foundation. Guide to naming conventions on groupId,
artifactId, and version [online]. 27. april 2023 [cit. 2023-04-29]. Available at:
https://maven.apache.org/guides/mini/guide-naming-conventions.html.

55

https://www.chartjs.org/docs/latest/
https://doi.org/10.1371/journal.pone.0098679
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://react.dev/
https://www.typescriptlang.org/docs/
https://docs.npmjs.com/cli/v9/configuring-npm/package-json
https://docs.npmjs.com/cli/v9/using-npm/scope
https://doi.org/10.5281/zenodo.5681257
https://github.com/project-ncl/pnc
https://github.com/project-ncl/pnc-web-ui-react
https://www.patternfly.org/v4/
https://github.com/jacomyal/sigma.js
https://maven.apache.org/guides/mini/guide-naming-conventions.html

[15] The Apache Software Foundation. POM Reference [online]. 27. april 2023 [cit.
2023-04-29]. Available at: https://maven.apache.org/pom.html.

56

https://maven.apache.org/pom.html

Appendix A

Contents of the included storage
media

The storage media has the following structure.

• git-patch-files/ – git patch files of the source code implemented in this Bachelor’s
thesis

• technical-report-source/ – source code of the technical report of this Bachelor’s
thesis

• xkoryt04-technical-report.pdf – normal version of the technical report of this
Bachelor’s thesis

• xkoryt04-technical-report-print.pdf – print version of the technical report of
this Bachelor’s thesis

• demo-video.mkv – demonstration video of the implementation part of this Bachelor’s
thesis

• README – file describing the storage media

57

Appendix B

GitHub Pull Requests

The following GitHub Pull Requests implement features of this Bachelor’s thesis.

• https://github.com/project-ncl/pnc-web-ui-react/pull/166

• https://github.com/project-ncl/pnc-web-ui-react/pull/170

• https://github.com/project-ncl/pnc-web-ui-react/pull/173

• https://github.com/project-ncl/pnc-web-ui-react/pull/176

• https://github.com/project-ncl/pnc-web-ui-react/pull/183

• https://github.com/project-ncl/pnc-web-ui-react/pull/184

• https://github.com/project-ncl/pnc-web-ui-react/pull/186

• https://github.com/project-ncl/pnc-web-ui-react/pull/187

• https://github.com/project-ncl/pnc-web-ui-react/pull/189

• https://github.com/project-ncl/pnc-web-ui-react/pull/190

• https://github.com/project-ncl/pnc-web-ui-react/pull/191

• https://github.com/project-ncl/pnc-web-ui-react/pull/195

• https://github.com/project-ncl/pnc-web-ui-react/pull/198

• https://github.com/project-ncl/pnc-web-ui-react/pull/199

• https://github.com/project-ncl/pnc-web-ui-react/pull/200

• https://github.com/project-ncl/pnc-web-ui-react/pull/201

• https://github.com/project-ncl/pnc-web-ui-react/pull/206

• https://github.com/project-ncl/pnc-web-ui-react/pull/210

• https://github.com/project-ncl/pnc-web-ui-react/pull/211

• https://github.com/project-ncl/pnc-web-ui-react/pull/220

58

https://github.com/project-ncl/pnc-web-ui-react/pull/166
https://github.com/project-ncl/pnc-web-ui-react/pull/170
https://github.com/project-ncl/pnc-web-ui-react/pull/173
https://github.com/project-ncl/pnc-web-ui-react/pull/176
https://github.com/project-ncl/pnc-web-ui-react/pull/183
https://github.com/project-ncl/pnc-web-ui-react/pull/184
https://github.com/project-ncl/pnc-web-ui-react/pull/186
https://github.com/project-ncl/pnc-web-ui-react/pull/187
https://github.com/project-ncl/pnc-web-ui-react/pull/189
https://github.com/project-ncl/pnc-web-ui-react/pull/190
https://github.com/project-ncl/pnc-web-ui-react/pull/191
https://github.com/project-ncl/pnc-web-ui-react/pull/195
https://github.com/project-ncl/pnc-web-ui-react/pull/198
https://github.com/project-ncl/pnc-web-ui-react/pull/199
https://github.com/project-ncl/pnc-web-ui-react/pull/200
https://github.com/project-ncl/pnc-web-ui-react/pull/201
https://github.com/project-ncl/pnc-web-ui-react/pull/206
https://github.com/project-ncl/pnc-web-ui-react/pull/210
https://github.com/project-ncl/pnc-web-ui-react/pull/211
https://github.com/project-ncl/pnc-web-ui-react/pull/220

Appendix C

Final Results

In this appendix, the final results of the implemented Product-related pages on the new UI
of the PNC build system are shown. Data on them are not real, they are mocked.

Figure C.1: Final result of the Product Milestone dashboard

59

Figure C.2: Final result of the Product Version dashboard

60

Fi
gu

re
C

.3
:

Fi
na

lr
es

ul
t

of
th

e
A

rt
ifa

ct
s

lis
t

61

Fi
gu

re
C

.4
:

Fi
na

lr
es

ul
t

of
th

e
Pr

od
uc

t
M

ile
st

on
e

in
te

rc
on

ne
ct

io
n

gr
ap

h

62

Fi
gu

re
C

.5
:

Fi
na

lr
es

ul
t

of
th

e
Bu

ild
A

rt
ifa

ct
de

pe
nd

en
cy

gr
ap

h

63

Fi
gu

re
C

.6
:

Fi
na

lr
es

ul
t

of
th

e
Pr

od
uc

t
C

om
pa

ris
on

ta
bl

e

64

	Introduction
	PNC build system
	PNC build system
	PNC build system entities
	PNC build system entity relationships
	Build-time dependencies

	Used technologies
	TypeScript
	React
	PatternFly
	Chart.js
	Graphology
	Sigma.js

	Product-related pages and user requirements
	Product-related pages on the PNC build system original UI
	User requirements

	UI design
	Artifacts list
	Product Milestone dashboard
	Product Version dashboard
	Product Milestone interconnection graph
	Build Artifact dependency graph
	Product Milestone comparison

	REST API design
	Pagination in the PNC REST API
	Product Milestone dashboard
	Product Version dashboard
	Product Milestone interconnection graph
	Build Artifact dependency graph
	Product Milestone comparison

	Implementation of the designed pages
	Code structure
	HTTP services
	Old components
	Implemented components and functions
	Testing and feedback

	Conclusion
	Bibliography
	Contents of the included storage media
	GitHub Pull Requests
	Final Results

