
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PRODUCT DATA VISUALIZATION IN PNC BUILD
SYSTEM
VIZUALIZÁCIA PRODUKTOVÝCH DÁT V BUILD SYSTÉME PNC

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

PATRIK KORYTÁR

Ing. RADEK KOČÍ, Ph.D.

BRNO 2023

BRNO FACULTY 1

r UNIVERSITY OF INFORMATION 1
• GFTECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment |||||||||||||||
148505

Institut: Department of Intelligent Systems (UITS)
Student: Korytár Patrik
Programme: Information Technology
Specialization: Information Technology
Title: Product Data Visual izat ion in PNC Build System
Category: User Interfaces
Academic year: 2022/23

Assignment:

1. Study an open-source build system PNC, React framework, and available libraries for data
visualization.

2. Analyze product-related pages and users' requirements for product data visualization.
3. Design a new web Ul components to improve product data visualization and provide a suitable

way to analyze available data.
4. Implement the solution using React framework and contribute the work to the PNC project.
5. Create a video to demonstrate the implemented features.

Literature:
• Adam Wathan, Steve Schoger. Refactoring Ul. 2019.
• Steve Krug. Don't Make Me Think. New Riders. 2013.
• ReactJS: Getting started. Online, https://reactjs.org/docs/getting-started.html, září 2022.

Requirements for the semestral defence:
Points 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Kočí Radek, Ing., Ph.D.
Hanáček Petr, doc. Dr. Ing.
1.11.2022
17.5.2023
3.11.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://reactjs.org/docs/getting-started.html
https://www.fit.vut.cz/study/theses/

Abstract
The thesis aims to enhance the visual izat ion of Product-re lated data of the P N C b u i l d
system on the system's new web user interface. M a i n visual izat ion elements include tables,
charts, network graphs and dashboards. The work analyses P N C user inputs to consider
the actual needs of the users. Based on the analysis, completely new U I components were
designed and some of the original ones were redesigned. To i l lustrate the new design,
wireframes were created. N e w R E S T A P I endpoints were designed for data needed by the
new components. The new features were then implemented. The implementat ion language
is TypeScr ipt . The m a i n libraries include React, Chart . j s , Sigma.js and Graphology. A s a
result, the new P N C system user interface now has new features that help w i t h using the
Product-re lated pages. The implementat ion is also easily expandable for more visual izat ion
of this k i n d .

Abstrakt
Cieľom tejto bakalárskej práce je zlepšiť vizualizáciu dát súvisiacich s p r o d u k t a m i b u i l d sys­
tému P N C na jeho novom webovom používateľskom rozhraní. Hlavné vizualizačné p r v k y
zahŕňajú tabuľky, grafy, sieťové grafy a palubné panely. Táto práca analyzuje vstupy od
používateľov b u i l d systému P N C , aby sa zohľadnili skutočné potreby používateľov. N a zák­
lade analýzy b o l vytvorený diza jn pre úplne nové komponenty používateľského rozhrania
a niektoré z už existujúcich bol i prepracované. N a ilustráciu nového diza jnu sa vytvo­
r i l i nákresy. Navrhnuté bol i nové koncové body R E S T A P I pre dáta vyžadované novými
komponentami. Nové funkcie bol i následne implementované. Implementačný jazyk je Type­
Script . Hlavné knižnice zahŕňajú React, Chart . j s , Sigma.js a Graphology. A k o výsledok
má teraz nové používateľské rozhranie systému P N C nové funkcie, ktoré pomáhajú s použí­
vaním stránok súvisiacich s p r o d u k t a m i . Implementácia je tiež ľahko rozšířitelná pre viac
vizualizácií tohto druhu.

Keywords
user interface, visual izat ion, products , artifacts, charts, network graphs, tables, React,
Chart . j s , Sigma.js, Graphology

Kľúčové slová
užívateľské rozhranie, vizualizácia, produkty, artefakty, grafy, sieťové grafy, tabuľky, React,
Chart . j s , Sigma.js, Graphology

Reference
K O R Y T Á R , P a t r i k . Product data visualization in PNC build system. B r n o , 2023. Bache­
lor's thesis. B r n o Universi ty of Technology, Facul ty of Information Technology. Supervisor
Ing. Radek Kočí, P h . D .

Rozšírený abstrakt
Zameranie tejto bakalárskej práce je webové používateľské rozhranie a jeho vylepšenie.
Konkrétnejšie, cieľom je zlepšiť vizualizáciu dát súvisiacich s p r o d u k t m i na novom použí­
vateľskom rozhraní b u i l d systému P N C . Hlavnými vizualizačnými p r v k a m i sú tabuľky, grafy,
sieťové grafy a palubné panely, ktoré zlepšujú vizualizáciu súvislostí a závislostí medzi en­
t i t a m i systému P N C , konkrétne tými, ktoré súvisia s p r o d u k t m i .

Systém P N C má momentálne dve používateľské rozhrania. Prvé, pôvodné, je napísané
v knižnici A n g u l a r . Táto pôvodná verzia používateľského rozhrania sa práve prepisuje do
knižnice React . Táto bakalárska práca má za cieľ vylepšiť práve toto nové rozhranie oproti
tomu pôvodnému.

Počiatok tejto práce spočíval v naštudovaní implementačného j a z y k a a knižníc. Imple-
mentačný jazyk je TypeScr ipt . Najdôležitejšie knižnice sú React pre t v o r b u používateľského
rozhrania, Chart . j s pre tvorbu grafov, Graphology pre tvorbu dátových štruktúr sieťového
grafu a Sigma.js pre vizualizáciu sieťových grafov. T ie to bol i naštudované predovšetkým
z ich dokumentácií dostupných online.

Následne bolo potrebné analyzovať entity systému P N C a vzťahy medzi n i m i . Systém
P N C slúži na správu a spúšťanie bui ldov kódu aplikácií. Systém P N C pozostáva z viac­
erých samostatných aplikácií, ktoré sú rozdelené do verzií. Verzie samotné sa rozdeľujú do
míľnikov. Jeden z míľnikov verzie môže byť označený ako súčasný. Predtým, než sa môže
vytvoriť b u i l d , musí sa na jprv vytvoriť jeho konfigurácia. Konfigurácia b u i l d u obsahuje
odkaz na kód aplikácie, ktorá sa má preložiť. Taktiež obsahuje skript , podľa ktorého sa má
b u i l d vykonať. Konfigurácia b u i l d u je prepojená s konkrétnou verziou p r o d u k t u . Spustená
konfigurácia vytvára enti tu b u i l d u , ktorá reprezentuje spustený b u i l d proces. B u i l d sa pre­
pojí s míľnikom, ktorý je v čase spustenia b u i l d u označený ako súčasný vo verzi i , ktorá
prislúcha konfigurácii b u i l d u . Výsledkom b u i l d u sú artefakty, čo sú súbory, ktoré je možné
stiahnuť. Ar te fakty môžu slúžiť ako závislosti iných bui ldov. Artefakty, ktoré bol i doručené
zákazníkovi v rámci archívu p r o d u k t u , sa nazývajú doručené artefakty. Doručené artefakty
sú viazané na konkrétny míľnik. Archív p r o d u k t u sa skladá z artefaktov vyprodukovaných
v rámci bui ldov míľniku.

Po naštudovaní teórie nasledovalo spracovanie používateľských požiadaviek ohľadom
zlepšenia vizualizácie entít súvisiacich s p r o d u k t m i . M e d z i stránky na pôvodnom použí­
vateľskom rozhraní, ktoré bolo treba vylepšiť, patrí stránka tabuľky artefaktov, stránka
detai lu verzie p r o d u k t u a stránka detai lu míľniku p r o d u k t u .

Hlavnými nedostatkami stránky artefaktov sú zobrazenie identifikátorov artefaktov,
chýbajúce prepojenie s b u i l d o m , ktorý vyprodukoval artefakt, a fakt, že veľkú časť tabuľky
zaberajú kontrolné súčty. Identifikátory artefaktov sa skladajú z viacerých častí, a bolo by
vhodné tieto časti vizuálne zvýrazniť.

N a stránke detai lu míľniku p r o d u k t u sú zobrazené len detaily ohľadom položiek míľniku,
ale chýbajú štatistiky a grafy ohľadom prepojenia míľniku s ent i tami, ktoré m u patr ia ,
napríklad štatistiky ohľadom doručených artefaktov. Doručené artefakty míľniku majú
rôzne vlastnosti , z ktorých sa dá spraviť graf ich distribúcie. Taktiež je možné spraviť
štatistiky o zdroj i doručených artefaktov, teda o tom, z akého b u i l d u pochádzajú. N a úrovni
verzie p r o d u k t u je možné spraviť podobné štatistiky a grafy, ktoré predstavujú agregáciu
ich ekvivalentov na stránkach detai lu míľnikov jednej verzie p r o d u k t u . G r a f y a štatistiky
by moh l i pretvoriť stránku detai lu do palubného panelu.

Komponenty, ktoré bol i navrhnuté pr iamo používateľmi, zahrňujú sieťové grafy zobrazu­
júce vzťahy a závislosti medzi ent i tami systému P N C , ako aj komponenta na porovnávanie
míľnikov a verzií doručených artefaktov.

Po spracovaní používateľských požiadaviek bol i vypracované nákresy diza jnu nových
alebo redizajnu starých stránok pôvodného používateľského rozhrania. N a základe týchto
nákresov bola vyhotovená implementácia týchto stránok na novom používateľskom rozhraní.
Taktiež bolo nutné navrhnúť rozhranie R E S T A P I pre koncové body potrebné pre získanie
dát pre nové stránky používateľského rozhrania. Koncové body však bol i len navrhnuté,
ich implementácia nie je súčasťou tejto bakalárskej práce.

Navrhnuté a implementované bol i nasledovné stránky: redizajn tabuľky artefaktov,
palubný panel míľniku p r o d u k t u , palubný panel verzie p r o d u k t u , sieťový graf zdieľaných
doručených artefaktov medzi míľnikmi p r o d u k t u , sieťový graf závislostí medzi b u i l d a m i
a tabulka porovnania doručených artefaktov medzi míľnikmi p r o d u k t u . Implementácia je
navyše ľahko rozšířitelná o štatistiky podobného charakteru, napríklad nové sieťové grafy
alebo štatistiky týkajúce sa bui ldov míľniku p r o d u k t u .

Práca bola spracovaná vo forme P u l l Requestov do G i t H u b repozitára projektu nového
používateľského rozhrania systému P N C , celkový počet činí 20 P u l l Requestov. Zadanie
bolo úspešne splnené.

Product data visualization in P N C bui ld system

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Radek Kočí P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used dur ing the preparation of this thesis.

P a t r i k Korytár
M a y 10, 2023

Acknowledgements
I would like to thank my supervisor Ing. Radek Kočí P h . D . for supervising this Bachelor's
thesis. M a n y thanks to Ing. Jakub Barteček for the organization of this Bachelor's thesis,
M g r . M a r t i n K e l n a r for guidance w i t h the design of the U I and M g r . Jan Brázdil for
providing information regarding the current P N C backend state and relationships between
P N C entities. A n d I a m grateful to m y family and friends too.

Contents

1 Introduction 4

2 P N C build system 6
2.1 P N C b u i l d system 6
2.2 P N C b u i l d system entities 6
2.3 P N C b u i l d system entity relationships 9
2.4 B u i l d - t i m e dependencies 10

3 U s e d technologies 11
3.1 TypeScr ipt 11
3.2 React 12
3.3 P a t t e r n F l y 14
3.4 Chart . js 15
3.5 Graphology 16
3.6 Sigma.js 18

4 Product-related pages and user requirements 20
4.1 Product-re lated pages on the P N C b u i l d system original U I 20
4.2 User requirements 25

5 U I design 27
5.1 Art i fac ts list 27
5.2 Product Milestone dashboard 28
5.3 Product Version dashboard 29
5.4 Product Milestone interconnection graph 31
5.5 B u i l d Ar t i fac t dependency graph 35
5.6 Product Milestone comparison 36

6 R E S T A P I design 37
6.1 Paginat ion in the P N C R E S T A P I 37
6.2 Product Milestone dashboard 38
6.3 Product Version dashboard 39
6.4 Product Milestone interconnection graph 41
6.5 B u i l d Ar t i fac t dependency graph 42
6.6 Product Milestone comparison 43

7 Implementation of the designed pages 44
7.1 Code structure 44

1

7.2 H T T P services
7.3 O l d components
7.4 Implemented components and functions

7.5 Testing and feedback

8 Conclusion

Bibliography

A Contents of the included storage media

B G i t H u b P u l l Requests

C F i n a l Results

List of Figures

2.1 Interconnections between P r o d u c t Milestones i n the P N C b u i l d system . . . 9
2.2 B u i l d - t i m e dependencies between Bui lds and P r o d u c t Milestones in the P N C

bui ld system 10

4.1 Art i fac ts list on the P N C b u i l d system original U I 22
4.2 Product Milestone detai l page on the P N C b u i l d system original U I 23
4.3 Product Version detai l page on the P N C b u i l d system original U I 24

5.1 Art i fac ts list wireframe 27
5.2 Product Milestone dashboard wireframe 28
5.3 Product Version dashboard wireframe 30
5.4 Product Milestone interconnection graph wireframe 31
5.5 Product Milestone interconnection graph wireframe - nesting level l imi ta t ion 32
5.6 Product Milestone interconnection graph wireframe - hovering over the node 33
5.7 Product Milestone interconnection graph wireframe - shared Delivered A r t i ­

facts list 34
5.8 B u i l d Ar t i fac t dependency graph wireframe 35
5.9 Product Milestone comparison table 36

C . l F i n a l result of the P r o d u c t Milestone dashboard 59
C.2 F i n a l result of the P r o d u c t Version dashboard 60
C .3 F i n a l result of the Art i fac ts list 61
C.4 F i n a l result of the P r o d u c t Milestone interconnection graph 62
C.5 F i n a l result of the B u i l d Ar t i fac t dependency graph 63
C.6 F i n a l result of the P r o d u c t Compar ison table 64

3

Chapter 1

Introduction

This Bachelor's thesis area of focus is the improvement of the web user interface. It is
developed i n col laboration w i t h the R e d H a t company. Improvements are made to the new
web user interface (UI) of the P N C b u i l d system. Namely, it focuses on the enhancement of
visual izat ion of Product-re lated pages to portray relationships and interconnections between
Product-re lated entities in a more straightforward way.

Currently, P N C uses outdated web U I wr i t ten in the JavaScript language and the A n ­
gular l ibrary. Th is original U I is now being rewrit ten to the TypeScr ipt language and the
React l ibrary. This Bachelor's thesis is implemented for the new U I and Product-re lated
pages are visualized i n a more enhanced way than it is done on the original U I . The original
U I of Product-re lated pages is main ly composed of rather simple U I components - detai l
pages, list pages, and create and update pages. For example, detai l of a specific P r o d u c t or
a list of Art i fac ts . These pages contain data of entities stored directly in database tables.
It lacks visual izat ion of inferred relationships and interconnections between the Product -
related entities. For example, there is no direct way to learn which Art i fac ts are shared
between Product Milestones or to see B u i l d dependencies based on Art i fac ts used in them.

To address this issue, this Bachelor's thesis implements components inc luding tables,
charts, network graphs, and dashboards. Dashboards are made up of data cards and charts
that display statistics. Network graphs connect entities based on relationships or depen­
dencies between them. Tables list collections of entities or display relationships between
different entities in the 2D gr id . A secondary goal of this Bachelor's thesis is to create the
basis for future addi t ional visual izat ion so that , for example, the display of other statistics
can be easily added.

This Bachelor's thesis analyzed user needs to determine what k i n d of information and
interconnections between Product-re lated entities would be useful to have. Then , these
were taken into account dur ing the design process. The newly designed pages need new
data; therefore, new R E S T A P I endpoints were designed. T h e new endpoints were not i m ­
plemented, because it is not the concern of this Bachelor's thesis. T h e n the implementat ion
was done. The implementat ion language is TypeScr ipt . The m a i n implementat ion libraries
include React, Chart . j s , Sigma.js, and Graphology.

According to the process mentioned above, the Bachelor's thesis is d iv ided into the
following chapters. The second chapter explains the theory of the P N C b u i l d system and
entities from a high-level point of view. Chosen relationships between the P N C entities are
shown. The t h i r d chapter lists the most important technologies used for the implementat ion
side of this Bachelor's thesis, inc luding the language and libraries. Some concepts of the
libraries used are presented. T h e fourth chapter describes the current state of the Product -

4

related pages and their problems. Then , user requirements regarding the enhancement of
these pages are reported. The fifth chapter illustrates the new design for the U I components
that were implemented. The s ix th chapter presents the new R E S T A P I endpoints that are
needed by the new U I components. The seventh chapter dives into implementat ion details
and describes the testing of the work. The eighth and final chapter is the conclusion.

5

Chapter 2

P N C build system

This chapter explains what a P N C b u i l d system is and describes its entities, main ly those
that relate to this Bachelor's thesis. It also delves into some existing relationships between
the entities that were visualized i n this Bachelor's thesis.

W h e n referring to the P N C system entities, their names are capital ized throughout the
entire Bachelor's thesis. The same words as are used to name the P N C entities are wri t ten
in lowercase when the P N C entity is not addressed specifically, but instead, a generic term
is meant by the word.

2.1 P N C b u i l d system

P N C stands for Project Newcastle. It is a "system for managing, executing, and tracking
builds " [9]. The purpose of the system is to perform builds of versioned software (products)
stored i n the repositories. The system allows managing versions of the software and provides
ways to analyze builds and artifacts. Art i fac ts are files created by the builds or used by
them. It can be, for example, the code compiled from an applicat ion. P N C consists of
mult iple microservices, but this Bachelor's thesis w i l l not delve into it in any way.

P N C system currently has two web user interfaces (UIs) through which the system is
used. The first U I is wri t ten in an obsolete version of the A n g u l a r JavaScript l ibrary. This
original U I is now being rewrit ten to the React l ibrary. T h r o u g h this Bachelor's thesis, the
original version w i l l be referred to as the original U I and the new version as the new U I .

2.2 P N C b u i l d system entities

This section clarifies the purpose of the P N C entities used in this Bachelor's thesis.

P r o d u c t

Product is a standalone applicat ion or a deliverable package 1 . P r o d u c t is versioned by
Product Versions and P r o d u c t Milestones.

B u i l d C o n f i g u r a t i o n

B u i l d Configurat ion or B u i l d Conf ig is a set of parameters that are used when the b u i l d
process is executed. B u i l d Conf igurat ion contains a l ink to an S C M repository to be buil t

i n f o r m a t i o n is obtained from internal P N C system documentation.

G

and a script according to which the b u i l d is executed. To manage various versions of the
software and its builds, B u i l d Configurat ion is l inked to one Product Version.

B u i l d

B u i l d entity is a record of the b u i l d process performed according to its B u i l d Configurat ion
containing the b u i l d script and the l ink to the repository to be bui l t . B u i l d is l inked to
a current (current at the t ime of b u i l d execution) Product Milestone of a P r o d u c t Version
l inked i n its B u i l d Conf igurat ion. The result of a performed B u i l d is a set of Art i fac ts .
Art i fac ts can also be dependencies of other Bui lds .

P r o d u c t V e r s i o n

Product Version or Version represents a version of a P r o d u c t . It is the combination of
the major and minor version numbers i n the semantic vers ioning 2 (for example, Product
Version 1.3). B u i l d Configurations are l inked to i t . P r o d u c t Version is d iv ided into Product
Milestones. One of the Product Version's Product Milestones can be marked as current.

P r o d u c t M i l e s t o n e

Product Milestone or Milestone represents a subversion of a Product Version. It represents
the patch version number i n the semantic versioning (for example, Product Milestone 1.3.4).
Bui lds performed according to B u i l d Configurations of some Product Version are l inked to
that Product Version's current Product Milestone.

A r t i f a c t

Art i fac t is an archive, such as jar, xml or tgz file, that is either produced by a B u i l d (B u i l d
result) or used by a B u i l d (B u i l d dependency). It is the smallest unit of dependency of
a B u i l d , Product Milestone, P r o d u c t Version, or a Product .

Art i facts can be produced by bui ld ing different types of repositories. These include the
Maven , N P M , and CocoaPods repositories. Based on the type of repository Art i fac ts are
coming from, Art i fac ts have different formats of their identifiers (names).

N P M Art i fac t identifier is d iv ided into two parts separated by a colon. The first part is
a package name and the second is a version of the A r t i f a c t . The name can be prefixed w i t h
a scope. Scope enables packages to be grouped together, for example, a group of packages
of a certain organization. The scope starts w i t h the at character (@) and ends w i t h the
dash symbol [6, 7].

Example of a P N C N P M Art i fac t identifier: abbrv: 1 . 0 . 1 . N P M Art i fac t in the P N C
system is an archive of an N P M package.

M a v e n Ar t i fac t identifier is d iv ided into the following parts [14, 15].

1. G r o u p I D - g r o u p s related Art i fac ts or Art i fac ts of one organization

2. Artifact I D - u n i q u e identifier of the Ar t i fac t w i t h i n the G r o u p ID group

3. Artifact version

2 https:/ /semver.org/

7

https://semver.org/

4. Class i f ier -opt iona l ; used to dist inguish between Art i fac ts of the same name that
contain different content; for example, the sources classifier is typica l ly used for the
source code of the Art i fac t

In the P N C system, the M a v e n Ar t i fac t identifier has one addi t ional part . Af ter the A r ­
tifact I D , the Ar t i fac t archive type follows (for example, jar) . E x a m p l e of a P N C M a v e n A r ­
tifact identifier that has a l l five parts: xml-resolver :xml-resolver : j a r : 1 . 2 . 0 : sources.

There are mult iple sets of Art i fac ts that are related to a B u i l d . The first set, called
Used Art i fac ts in this Bachelor's thesis, contains a l l Art i fac ts which were used i n a B u i l d
and form Bui ld ' s dependencies. The second set, i n this Bachelor's thesis named Produced
Art i fac ts , is a set of a l l Art i fac ts produced by a B u i l d . These may be dependencies for
other Bui lds . Delivered Art i fac ts is a set related to a P r o d u c t Milestone and is described
below.

D e l i v e r a b l e a n d D e l i v e r e d A r t i f a c t

Information i n this section was obtained f rom internal P N C system documentation.
In short, a Delivered Ar t i fac t is an Ar t i fac t delivered to a customer found in a Deliverable

archive.
Deliverables are archives (such as zip files) delivered to customers. A Deliverable archive

is a compilat ion of Art i fac ts produced by one B u i l d or mult iple Bui lds of a certain Product
Milestone. It is up to a P N C user to compile it and then deliver it to a customer. For the
compilat ion of the archive, B u i l d itself can be used to compile Art i fac ts into the archive,
which w i l l be delivered.

Delivered Art i fac ts is a set of Art i fac ts l inked to one P r o d u c t Milestone found by the
process named Deliverables Analys is which is managed by a P N C microservice called De­
liverables Analyzer . Deliverables A n a l y z e r receives U R L l inks to Deliverables archives on
its input . These archives are analyzed and Art i fac ts are found in them. The analyzer tries
to f ind these Art i fac ts in R e d Hat-approved b u i l d systems, one of which is P N C . T h e n
these Art i fac ts are connected to Bui lds which produced them (if any, the Ar t i fac t possibly
d i d not have to be found in any b u i l d system). In other words, Deliverables Analys is finds
where the content delivered to a customer comes from.

S C M R e p o s i t o r y

Source Code Management Repository or S C M Reposi tory or Reposi tory is a git repository
where the applicat ion code is stored.

8

2.3 P N C b u i l d system enti ty relationships

This section illustrates selected relationships between the P N C entities.

2.3.1 P r o d u c t M i l e s t o n e interconnect ions

Sharing of Used or Delivered Art i fac ts between P r o d u c t Milestones is i l lustrated in Fig
ure 2.1. The figure shows distinct sources of Art i facts .

o Product o Delivered / Used Artifacts (inside blue circle)

o Milestone ® Build belonging to a Milestone

•
Build

— Artifact produced by a Build

® Artifact
— Milestone belonging to a Product

Figure 2.1: Interconnections between Product Milestones in the P N C b u i l d system

The blue circle represents a set of Used or Delivered Art i fac ts of a Product Milestone. In
the case of Used Art i fac ts , the set is a collection of a l l dependencies of a l l Bui lds of a Product
Milestone. For Delivered Art i fac ts , the set represents Art i fac ts delivered to a customer in
a Product Milestone. N o matter whether these are Used or Delivered Art i fac ts , the principle
of Ar t i fac ts ' source and sharing of Art i fac ts between Product Milestones applies to both of
the sets.

Intersections of blue circles are sets of Art i fac ts shared between the two Product M i l e ­
stones. T h a t means a set of Art i fac ts either used by the Bui lds of bo th Product Milestones
or Art i fac ts delivered by both Product Milestones.

There are mult iple possible sources of an Ar t i fac t based on the B u i l d that produced it .
The most common is a B u i l d contained i n a P r o d u c t Milestone. The P r o d u c t Milestone
which contains that B u i l d can be the same Product Milestone to which the Delivered or
Used Art i fac ts set belongs. O r it can be a Product Milestone that is part of the same
Product Version or at least the same Product as the one to which the set belongs. O r

9

it can be from a different Product entirely. Some Art i fac ts are produced by B u i l d s not
belonging to any P r o d u c t Milestone (which is sometimes the case for Bui lds done i n a b u i l d
system other than P N C) . Another state is when Ar t i fac t was not produced by any B u i l d
because the Ar t i fac t was imported into the system.

The same relationships exist on the Product Version or P r o d u c t level. In those cases,
the sets are collections of a l l Used or Delivered Art i fac ts of a l l Product Milestones of the
same Product Version or the same Product .

2.4 B u i l d - t i m e dependencies

B u i l d - t i m e dependencies are dependencies that are formed when B u i l d is performed. F i g ­
ure 2.2 shows an example of bui ld- t ime dependencies between Bui lds and P r o d u c t M i l e ­
stones. W h e n one B u i l d uses an Ar t i fac t produced by another B u i l d , the former B u i l d
becomes dependent on the latter B u i l d . The same bui ld- t ime dependency exists on a P r o d ­
uct Milestone level. T h a t means a P r o d u c t Milestone which contains the dependent B u i l d
becomes dependent on a P r o d u c t Milestone which contains the dependency B u i l d .

o—o
•

A
§) ©

Art i fact produced

Art i fact used by a

o Milestone Art i fact produced by a Build

• Build Art i fact used by a Build

® Art i fact Build belonging to a Mi lestone

Build bui ld-t ime dependency

Mi lestone bui ld-t ime dependency

Figure 2.2: B u i l d - t i m e dependencies between Bui lds and Product Milestones i n the P N C
b u i l d system

10

Chapter 3

Used technologies

This chapter describes the most important technologies, bo th languages and libraries, used
for the implementat ion of this Bachelor's thesis. The selected concepts are explained.

3.1 T y p e S c r i p t

This section was composed w i t h the help of the TypeScr ipt documentat ion [5].
TypeScr ipt is a typed superset of the JavaScript programming language. TypeScr ipt

allows code to be statical ly typed. " T y p e d " means that the language adds rules defining
how different types of values can be used. "S ta t ic " means that type checks are performed
before code execution.

TypeScr ipt is a superset of JavaScript; therefore, the val id JavaScript code is syntacti­
cally val id TypeScr ipt code. S t i l l , va l id JavaScript code may contain semantic errors from
the point of view of TypeScr ipt , such as when the variable's value is used incorrectly. For
example, the code i n L i s t i n g 3.1 is val id JavaScript, but inval id TypeScr ipt code because
TypeScr ipt aims to catch potential errors.

// number two divided by an array

const a = 2 / [] ;

Lis t ing 3.1: TypeScr ipt code containing a semantic error

TypeScr ipt code is compiled into JavaScript code. S i m p l y put , dur ing compilat ion, type
checks are done, and then, if the code is va l id , a l l specified types are erased from the code,
the result being JavaScrip code. Therefore, the TypeScr ipt code preserves the run-t ime
behavior of JavaScript . TypeScr ipt does not provide any addit ional run-t ime functionality,
such as new functions.

3.1.1 T y p e s a n d interfaces

In many cases, TypeScr ipt w i l l infer types of values and variables. For example, variable
const count = 124; is automatical ly detected to be a number.

The other way to determine the types of values and variables is by type annotations.
T y p e annotations assign a type to values, functions (both parameters and return value), or
variables. TypeScr ipt offers basic types, inc luding string, number, or boolean. T h e array
is a type that signifies a list of values of the same type. L i s t i n g 3.2 demonstrates the type
annotations.

11

const name: string = "Al";

// function accepting two numbers and returning their sum

const addNumbers = (x : number; y : number): number => x + y ;
const values: number[] = [1 , 2 , 3] ; / / number[] => array of numbers

L i s t i n g 3.2: TypeScr ipt type annotations example

TypeScr ipt also provides a way to declare object types which are composed of pr imit ive
types a n d / o r other object types. One of the mult iple ways to declare the object type is
by interfaces. Interfaces describe the structure of the object and its properties, whether
optional or required. The code i n L i s t i n g 3.3 shows how to declare an interface and apply
it on a variable.

interface Project {

id: number;

name: string;

version?: string; / / ? = optional

}

const project: Project = { i d : 12, name: "Random project" };

L i s t i n g 3.3: TypeScr ipt interface example

TypeScr ipt uses duck typing . Th is means that the object's shape is taken into account,
and when types have the same shape (the same properties), they are considered to be of
the same type, despite the different type annotations. In the val id code i n L i s t i n g 3.4, the
given object is passed to the printPerson funct ion as its parameter, even though it was
not given any type annotation. The code is val id because the funct ion parameter and the
object have the same structure.

interface Person {

name: string;

age: number;

}

const printPerson = (person: Person) => {

console.log(person.name, person.age);

}

printPerson({ name: "Peter", age: 72 });

L i s t i n g 3.4: TypeScr ipt duck typing example

3.2 React

This section was wri t ten w i t h the help of the React site and documentat ion [4].
React is a JavaScript and TypeScr ipt l ibrary whose goal is to create and render user

interfaces. The bui ld ing block of the user interfaces i n React is a component. The compo­
nent is a piece of a user interface, for example, a but ton , text, or a page. Components are

12

reusable, and they can be combined and nested i n order to create more complex compo­
nents.

3.2.1 C o m p o n e n t s

The component is a bui ld ing block of the user interface. In React , the component is
implemented as a JavaScript funct ion. The component has its own U I logic and visual
output (markup) . M a r k u p is represented i n a syntax extension called J S X . The syntax of
J S X is s imilar to that of H T M L .

Components can have a state storing various data , for example, a text in a text input .
To remember a value, the useState funct ion (hook) is used. useState accepts the in i t i a l
value of the stored value and returns an array containing a state variable and state setter
function. The state variable is the stored value. T h e state setter function updates the
stored value.

L i s t ing 3.5 illustrates how to create a state i n React,

const [count, setCount] = useState (0) ;
L i s t ing 3.5: React state example

React renders a component by cal l ing a function that represents the component. Th is
works recursively. If the component returns some other component, React w i l l also render
that component. T h e component is rendered on its in i t i a l render when the root compo­
nent and its chi ld components were rendered for the first t ime. The root component is
the start ing point of the rendering of React components. W h e n the component's state is
changed (with the state setter function), the component is re-rendered, and U I is updated
accordingly to the new state.

L i s t ing 3.6 displays how to create React components, their state, and nest them.

3.2.2 H o o k s

Hooks are means to share the state logic between components. Hooks are implemented as
functions. They can have their own states. They implement the logic of those states and
return some states. Hooks are called inside components, and states returned by the hooks
can be used inside the components. Th is way the state logic has been extracted to a single
place (hook) that can be reused in mult iple components.

React offers b u i l t - i n hooks, useState is one of them, but custom hooks can be created.
C u s t o m hooks can be used to fetch data or keep track of whether the full-screen mode is
active, for example.

3.2.3 useEffect h o o k

useEf f ect is a b u i l t - i n hook that is used to synchronize w i t h or connect to external systems.
For example, fetching server data, controll ing non-React code, or sending logs to the server.

useEffect hook accepts a function and an array of dependencies. T h e array of depen­
dencies is a list of states. The funct ion passed to the hook is executed after the component
re-render that is caused by an update of some of those states. The passed function is also
executed after the first render of the component. If no array of dependencies is provided,
the passed function executes after every render of the component.

13

// onClick, children - properties of a component

// children - c h i l d component(s)

const Button = ({children, onClick]-) => {

// rendered UI

return (

// {children]- - curly braces are used to include JavaScript code i n JSX

<button onClick={onClick}>{children]-</button>

)
}

const Card = () => {

const [count, setCount] = useState(O);

return (

<div>

<p>Button has been pressed {count]- times.</p>

<Button onClick={() => setCount(count + l)]->Press me!</Button>

</div>

)
}

L i s t i n g 3.6: E x a m p l e of React components and their nesting

Sample i n L i s t i n g 3.7 demonstrates the useEf f ect hook, which sends a log to the server
each t ime the data are updated.

useEffect(() => {

// if data are non-empty

if(data) {

// run function to send a log to the server

sendLog(data);

}

}, [data]);

L i s t i n g 3.7: React useEffect hook example

3.3 P a t t e r n F l y

P a t t e r n F l y is an open-source design system providing standards, guidelines, and tools to
develop and b u i l d user interfaces. It provides U I components which are modular bui ld ing
blocks of the U I . It also offers layouts that help to create the page structure. P a t t e r n F l y
is implemented as a React l ibrary providing components to b u i l d the U I , al though H T M L
and C S S variants of the components are also provided. Components offered by P a t t e r n F l y
include buttons, selects, forms, flex and grid containers, cards, tables, popovers, and many
others [11].

14

3.4 Char t . j s

The source of this section is the Chart . js documentat ion [1].
Chart . js is a JavaScript l ibrary for the creation and rendering of charts. Chart . j s offers

mult iple types of charts, inc luding doughnut charts, bar charts, and line charts. There are
also mult iple plugins available, and Chart . j s charts are customizable. Charts are rendered
into an H T M L 5 canvas 1 unlike some other libraries rendering as S V G . The positive conse­
quence of that is better performance since there are not thousands of S V G nodes created
in the Document Object M o d e l 2 tree for large datasets.

3.4.1 D o u g h n u t chart e x a m p l e

A n example of a Chart . j s doughnut chart configuration is included i n L i s t i n g 3.8.

const config = {

type: 'doughnut',

data: {

labels: [

'Red'

'Green',

'Blue',

].
datasets: [{

label: 'Datasetl',

data: [12, 130, 9 4] ,
}]

}

>;

L i s t i n g 3.8: Chart . js doughnut chart configuration example

type in a Chart . j s configuration specifies the type of the chart, i n this case, it is a dough­
nut chart. For the doughnut chart, data is composed of labels and a dataset. The labels
are the names of the segments that display the proport ional values of the data. The dataset
is the set of proport ional values of the data. The dataset is composed of its label and
an array of values of that dataset. In the provided example, 12 corresponds to the " R e d "
label , 130 to the " G r e e n " label , and 94 to the " B l u e " label .

In the Document Object M o d e l , a canvas element must exist into which the chart w i l l
be rendered. T h e n , w i t h reference to the canvas and the chart configuration, the chart can
be created and rendered, as can be seen in L i s t i n g 3.9.

// 'example-chart ' = id of the canvas

const ctx = document.getElementById('example-chart');

const chart = new Chart(ctx, config);

Lis t ing 3.9: Chart . js chart creation example

x https: / / developer.mozilla.org/en-US / docs /Web / A P I / C a n v a s _ A P I
2 l i t tps : / / developer.mozilla.org/en-US / docs /Web / API /Document Object Model

15

http://developer.mozilla.org/
http://developer.mozilla.org/

3.5 G r a p h o l o g y

This section was wri t ten w i t h information extracted from the documentat ion of the G r a p h o l ­
ogy l ibrary [8].

Graphology is a JavaScript and TypeScr ipt l ibrary that provides a mult ipurpose data
structure for a network graph. It supports various kinds of graphs, inc luding directed or
undirected graphs, and a l l types of graphs share the same interface. The l ibrary provides
methods to manipulate , traverse, and analyze the graph, such as adding or removing nodes
and edges. The l ibrary also has mult iple extending libraries offering graph theory algorithms
and uti l i t ies, such as graph layouts. The entire graph is represented by a single Graph object.

To be more specific, Graphology is a specification for a l ibrary, but a reference i m ­
plementation is also proposed. The reference implementat ion is used i n this Bachelor's
thesis.

3.5.1 I n t r o d u c t i o n to the G r a p h o l o g y l i b r a r y

The graph is created by instantiat ing the Graph object. The node is added to the graph
using the addNode method and the edge is created using the addEdge method. The addNode
method accepts the name of the node and an optional object of the node's attributes, for
example, the node's label . In the graph, the node is referred to by its name assigned to
it at its creation. Arguments passed to the addEdge method are names of two nodes and
optionally an object of edge's attributes. A l l edges have a key, and the addEdge method
automatical ly generates i t . addEdgeWithKey method allows an edge to be created w i t h
a specific key. The nodes and edges can be deleted using the dropNode and dropEdge
methods, clear method deletes a l l nodes and edges from the graph. L i s t i n g 3.10 portrays
how to create the graph i n Graphology.

const graph = new Graph();

graph.addNode('BuildA', { lab e l : 'Build A' });

graph.addNode('BuildB', { lab e l : 'Build B' });

// edge interconnecting BuildA and BuildB

graph.addEdge('BuildA', 'BuildB', { sharedArtifacts: 4 >);

graph.clear();

Lis t ing 3.10: E x a m p l e of creation of the Graphology graph

hasNode method returns a boolean whether the passed node exists in the graph. hasEdge
method returns whether there is an edge that connects two passed nodes. To f ind out
whether some edge is connected to a node, hasExtremity can be used, extremities

method returns the nodes that are interconnected by the passed edge. L i s t i n g 3.11 demon­
strates some of these methods.

16

const edge = graph.addEdge('BuildC', 'BuildD');

// returns true

graph.hasEdge('BuildC', 'BuildD');

// returns true

graph.hasExtremity(edge, 'BuildD');

// returns ['BuildC, 'BuildD']

graph.extremities(edge);

Lis t ing 3.11: E x a m p l e of reading Graphology methods

To set a node attr ibute to a specific value, setNodeAttribute can be used to create
a new attr ibute or update an old one. updateNodeAttribute does not set an attr ibute to
a specific value, but accepts a callback which accepts the current value of the attr ibute and
returns the new one. getNodeAttribute method returns the specific attr ibute of the node.
getNodeAttributes returns a l l attributes of the node. The same set of methods exists also
for edges-setEdgeAttribute, etc. A n example is shown i n L i s t i n g 3.12.

graph.setNodeAttribute('BuildA', 'x', 500);

// increase 'x' by one

graph.updateNodeAttribute('BuildA', 'x', x => x + 1) ;
// returns 501

graph.getNodeAttribute('BuildA', 'x');

// returns the object of all node attributes

graph.getNodeAttributes('BuildA');

L i s t i n g 3.12: E x a m p l e of node attr ibute methods in the Graphology l ibrary

Graphology offers mult iple methods to iterate over a set of nodes and edges. Some of
them accept a callback that is executed for each node or edge of some set. This is the case
for, for example, the following methods, f orEachNode iterates over each node of the graph.
forEachEdge iterates over a l l edges of the graph, f orEachNeighbor iterates over neighbors
of the passed node, and a demonstration of this is presented i n L i s t i n g 3.13.

//prints neighbors of the node 'BuildA'

graph.forEachNeighbor('BuildA', (neighbor) => {

console.log(neighbor);

}) ;

L i s t ing 3.13: E x a m p l e of i terat ion over neighbors of a node i n the Graphology l ibrary

3.5.2 F o r c e A t l a s 2 layout a l g o r i t h m

Graphology offers extending libraries implementing graph layout algorithms. One of them
is ForceAtlas2.

ForceAtlas2 is a graph layout a lgor i thm that simulates a physical system of attractive
and repulsive forces to posit ion nodes and edges. The nodes are repulsed by each other,
but the edges attract their nodes [2].

The code i n L i s t i n g 3.14 displays the Webworker variant of the ForceAtlas2 layout and
its usage.

17

const layout = new FA2Layout(graph, {

settings: { gravity: 1 }

}) ;

// start the layout

layout.start();

// stop the layout

layout.stop();

// is the layout running?

layout. isRunningO ;

L i s t i n g 3.14: ForceAtlas2 Graphology example (Webworker implementation)

Webworker is used to r u n scripts in background threads that perform tasks without
interfering w i t h the user interface [3]. Graphology also has a synchronous variant of the
layout.

3.6 Sigma.js

Sigma.js does not provide comprehensive documentation. This section was composed by
means of help from the Sigma.js G i t H u b repository, inc luding code and R E A D M E files
contained in the repository [13].

Sigma.js is a JavaScript l ibrary that aims to visualize network graphs. It manages
the graph rendering and interaction w i t h i t . The graph data structure is managed by the
Graphology l ibrary. For rendering, Sigma.js uses W e b G L . Sigma.js is accustomed to the
rendering of thousands of nodes and edges.

3.6.1 I n t r o d u c t i o n to the Sigma. js l i b r a r y

A n example of the creation of the Sigma.js network graph is displayed i n the code in
L i s t i n g 3.15.

const sigmaDiv = document.getElementById('sigma-div');

// graph - Graphology graph

const renderer = new Sigma(graph, sigmaDiv, { /* settings */);

Lis t ing 3.15: Sigma.js graph creation example

Graphology graph must be created first. A l s o , the container to which the graph w i l l be
rendered must exist in the Document Object M o d e l , for example, a d iv container. T h e n the
Sigma object can be instantiated. The Sigma object represents the renderer of the graph.

The nodes and edges of the graph are rendered on the basis of the attributes of the
nodes and edges. These include the sizes, labels, colors, and coordinates of the nodes or
edges. L i s t i n g 3.16 provides a code adding a node and an edge to the graph w i t h these
attributes specified.

The example node w i l l display the " B u i l d A " label , its size w i l l be 6, its color black,
and it w i l l have a set posit ion. The example edge w i l l be of size 5 and black i n color.

18

graph.addNode('BuildA', {

label: 'Build A',

size: 6,

color: 'black',

x: 45,

y: 30

}) ;

/* BuildB is added too */

graph.addEdge('BuildA', 'BuildB', {

size: 5,

color: 'black'

}) ;

L i s t ing 3.16: Graphology nodes w i t h Sigma.js attributes

A n event handler can be added to the rendered graph, like in L i s t i n g 3.17.

renderer.on('enterNode', ({ node }) => {

// print node entered with the mouse cursor

console.log(node);

}) ;

L i s t ing 3.17: Sigma.js event handler example

The event handler is a funct ion executed when a user performs a certain interaction
w i t h the rendered graph. Sigma.js provides mult iple types of event handlers. The example
above includes the enterNode event handler, which occurs when a node is entered w i t h the
mouse cursor. Other events include leaving the node w i t h the cursor, c l icking the node, or
entering an edge w i t h the cursor. Event handlers can be used to manage the state of the
graph based on user interactions. For example, the mentioned enterNode event handler
could be ut i l ized to highlight hovered nodes.

19

Chapter 4

Product-related pages and user
requirements

This chapter presents the state of the original U I on Product-re lated pages. Product-re lated
pages contain information about Products and entities that are related to Products , i.e.
Product Versions, Product Milestones, Bui lds , and Art i fac ts . Th is Bachelor's thesis aims to
improve the visual izat ion of mentioned Product-re lated entities and to portray relationships
between them and their statistics; therefore, this chapter illustrates how this is handled on
the original U I . T h e n , a description of user requirements regarding the improvement of
those pages follows. The user requirements include issues P N C users complained about or
suggestions made by P N C developers.

4.1 P r o d u c t - r e l a t e d pages on the P N C b u i l d system or ig inal
U I

This section describes the current state of Product-re lated pages on the original U I .

4.1.1 A r t i f a c t s list

Art i facts list is a table l is t ing Art i fac ts . T h e table can contain a l l Art i fac ts in the P N C
b u i l d system or a smaller set, such as Delivered Art i fac ts of a Product Milestone. F igure 4.1
shows the look of the list on the original U I .

The first co lumn of the table does not parse the Ar t i fac t identifier i n order to make
it easy for the user to dist inguish i n d i v i d u a l parts of i t , such as the name and version of
N P M Art i fac t , but rather the whole identifier is displayed as a p la in str ing. Because of
this, namely, M a v e n Ar t i fac t identifiers are hard to read.

A large part of the table is taken up by a co lumn of checksums, even though it is not
the most important column from the user's point of view, and checksums typica l ly do not
consume most of this column's w i d t h .

To see a B u i l d that produced an Ar t i fac t , the user first needs to open the Ar t i fac t detai l
page (the l ink to it is in the list) where the l ink to the B u i l d is contained. The l ink to the
B u i l d is not included i n the list itself.

The list is paginated (divided into mult iple pages) and has filtering and sorting options.
The issue w i t h a l l lists on the original U I is that the current page displayed by the list or the

20

configured fi l tering and sorting options of the list are not persisted i n the U R L . Therefore,
the U R L of the list cannot be bookmarked or sent to someone else to display the same data.

21

hl I hl ...
IEL"

...

Q

» sa
s s

„ - S
t rt r5

i 1 g L

i S s 5
í; £

',: ...
• s *
í a i
M ŕ ^

111
a s ä
s s s
^ ^ £

i s i
S m ^
" r3 —

š š S
s g S

ŕ: o

| n ;
1 | ä
ä s % s s ä
£ s? š ä i n

,2 Ľ

Í 5 »
J i S 1 "

s s s s s

3 ;

l i s
a 1E
s s i
B S " « » ^ í S S

f I í

s
s a

s s s
Ä í 2
3 a ts
F5 S '
Ä S »
a s s

i I S
š I i
B g m

K ä 8
•ä S5

e 1 1 í 1 s i E -s -s l i s 1 í í 1 « * 1 i í 1 i í i í í l i s

: D D D D D D D D D D

a a
i 1

2 2

4.1.2 P r o d u c t M i l e s t o n e pages

Specific Product Milestone has a set of its own pages div ided into tabs. They contain P r o d ­
uct Milestone's properties and lists of entities belonging to a P r o d u c t Milestone. F igure 4.2
shows one of Product Milestone's pages, the detai l page, on the original U I . The detai l
page's content is mostly empty. It includes only the most important properties of a P r o d ­
uct Milestone, so-called P r o d u c t Milestone details. A l l other data related to the Product
Milestone are on their separate tabs, such as the Delivered Art i fac ts l ist , for example.

The Delivered Art i fac ts list provides the Delivered Art i fac ts of one Product Milestone.
The original U I does not provide a way to compare Delivered Art i fac ts of two or mult iple
Product Milestones or to display a list of shared Delivered Art i fac ts between Product M i l e ­
stones. To do that, it is required to go through Product Milestones of interest and their
Delivered Art i fac ts lists manually.

Product Milestone pages also offers no summary of data about one Product Milestone
and its related entities, for example, Bui lds and Produced or Delivered Art i fac ts , i n the
form of statistics and charts of their counts and properties. To get these data about related
entities on the original U I it is necessary to analyze these entities manually. Therefore, open
their detai l pages and extract the information individual ly . For example, to see the source
of Delivered Art i fac ts of a Product Milestones, the user must open their detai l pages and
find which B u i l d they were produced by (if any) and then open B u i l d detai l pages to find
out what Product Milestone that Bui lds belong to (if any). A n d to f ind out the statistics of
Produced Art i fac ts , the user has to go through a l l Bui lds belonging to a P r o d u c t Milestone
and there through a l l their Art i fac ts produced by the B u i l d .

Product Milestone 1.3.4DR1 OMarkascurren flClose AnalyzeDeliverablas

Figure 4.2: P r o d u c t Milestone detai l page on the P N C b u i l d system original U I

23

4.1.3 P r o d u c t V e r s i o n page

Unl ike Product Milestone, the specific Product Version is not div ided into mult iple pages
on their own tabs, as is i l lustrated i n Figure 4.3. Rather , there is only one detai l page
containing important properties (the so-called P r o d u c t Version details) in the key-pair list
along w i t h tables of entities belonging to the P r o d u c t Version.

The Product Version page faces the same problem as the P r o d u c t Milestone pages.
There is no direct way to get the statistics about one P r o d u c t Version or the summary of
Produced or Delivered Art i fac ts of a l l P r o d u c t Milestones of the P r o d u c t Version. O n the
Product Version level, the user would need to collect the data manually, and it is more
inefficient since it needs to be done for a l l Product Milestones of a Product Version.

Quarkusl.3 • Ed«

]» H

Figure 4.3: P r o d u c t Version detai l page on the P N C b u i l d system original U I

24

4.2 User requirements

This section lists user requirements regarding the improvement of the Product-re lated pages.
The requirements were either suggested by P N C users or by developers.

4.2.1 A r t i f a c t s list

There are three requirements for the new Art i fac ts list that would improve its usage.

• an opt ion to dissect the Ar t i fac t identifier and its i n d i v i d u a l parts and separate the
parts visual ly - that way, the user can easily see specific parts of the identifier, such
as the Ar t i fac t archive type or Ar t i fac t version

• a co lumn of checksums needs to be shrunk; checksums could be hidden in an expand­
able row, too

• a l ink to the B u i l d that produced an Ar t i fac t i n the list

• pagination, sorting, and filtering options of the list need to be persisted in the U R L

4.2.2 P r o d u c t M i l e s t o n e pages

The requirement for the Product Milestone page is to convert the P r o d u c t Milestone detai l
page into a dashboard. The dashboard needs to contain statistics and charts summariz ing
information about a P r o d u c t Milestone and entities belonging to it .

Information users find useful is related to Used, Produced , and Delivered Art i fac ts of
a Product Milestone. M o r e specifically summary of their source and dis t r ibut ion of their
properties. The data can be visualized in the form of data cards and charts. Char ts need
to be accompanied by legends.

The source of Art i fac ts can be visualized as the number of Art i fac ts coming from specific
sources, for example, the number of Art i fac ts produced by a B u i l d i n a Milestone or the
number of Ar t i fac ts not produced by any B u i l d .

The dis t r ibut ion of properties of Art i fac ts includes the dis tr ibut ion of Ar t i fac t quali ty
or the dis tr ibut ion of repository type. W i t h those distr ibutions, users would be able to see,
for example, whether there is a higher amount of Art i fac ts w i t h problematic qual i ty (such
as deprecated). A l s o , for quick reference, the dis t r ibut ion of repository type would help
the user to learn from which type of repository (such as M a v e n or N P M) Art i fac ts came.

Different users use different screen sizes; therefore, the dashboard should be respon­
sive to at least a certain degree so that the charts and statistics are responsively resized.
Addi t ional ly , the dashboard layout should change responsively to better fit certain screens.

4.2.3 P r o d u c t V e r s i o n pages

To keep the page structure consistent w i t h the P r o d u c t Milestone pages, Product Version
details need to be separated from the tables of related entities. Tables of entities belonging
to the Product Version would have separate pages.

In place of tables, new statistics and charts would come to b u i l d a new dashboard. The
Product Version dashboard should main ly aggregate data from P r o d u c t Milestones of the
Product Version. For example, i n the d is t r ibut ion of the source of Delivered Art i fac ts ,
Delivered Art i fac ts in a l l P r o d u c t Milestones of the Product Version would be aggregated.

25

4.2.4 N e t w o r k graphs

Some users asked for a new feature of network graphs that visualizes relationships between
P N C entities. Nodes would represent entities and edges relationships between them. These
include the following:

• Sharing of Used or Delivered Art i fac ts between Product Milestones

• Sharing of Used or Delivered Art i fac ts between Product Versions

• B u i l d - t i m e dependencies between Bui lds

• B u i l d - t i m e dependencies between Product Milestones

In the graph, the user should be able to open either the list of shared Art i fac ts between
entities or a list of dependencies forming the dependency of one entity on another.

Should the graph contain hundreds of entities and relationships between those entities,
creating a big web of nodes in the graph, there needs to be a way to highlight certain data
and de-emphasize other. Therefore, the requirement is to provide ways to highlight or hide
nodes in order to make the graph more readable. Furthermore, filtering of nodes would be
beneficial.

4.2.5 P r o d u c t M i l e s t o n e c o m p a r i s o n

Product Milestone Compar ison is a U I component directly suggested by a P N C user. The
component is a table al lowing users to compare Delivered Art i fac ts of two or more selected
Product Milestones and their versions. The table would list Delivered Art i fac ts shared
between at least two of the selected P r o d u c t Milestones.

The first co lumn would display the identifiers of the Delivered Art i fac ts (without the
Art i fac t version). Other columns would represent the selected P r o d u c t Milestones. These
columns would list versions of the Delivered Art i fac ts i n the corresponding Product M i l e ­
stones. L i n k s to the pages of the Delivered Ar t i fac t versions should be provided, along w i t h
l inks to the Bui lds that produced them.

26

Chapter 5

U I design

This chapter presents the new Product-re lated pages or the original ones which were re­
designed. The i r design adheres to the user requirements specified i n Chapter 4. These
designs are implemented on the new U I .

Wireframes 1 are provided to il lustrate the design along w i t h the description. Wireframes
were created i n the F i g m a 2 web applicat ion.

5.1 A r t i f a c t s list

The new design of the Art i fac ts list is included i n Figure 5.1.

Artifacts
This page contains Artifacts used a rd produced by Builds, Art ifac: is resresented by PNC Identifier and it may be for example pom, jar or an archive I ke tgz

identifier st-ingi isrngluring st'ng Q Parse Artifact identifier Expand Build associated Artifacts

> Identifier Repository Type Build Category Filename: Artifact Quality

Clas5world5:cls5sworlds:j3r:1.1.2 ^ MAVEN STANDARD ,1,classworld5-1.1.2.JBi

mdS 1S • 64B01825438dl 9fl 6e81 a Ü41 c B4f=
shal 17 b b4 a7ed e789a e21 bl a 112S4S 5 bG afd 63c961 a7

sha2S6 ldbb4bl9OSfOd9a3704Olaq9BdS536d84af3OO742dOBb9Tv8f2ba65fdc915cb3

Build #20210330-0949 of clasworlds-config (SRJBQRIVEMLTNA:

> com.google : google: pom : 1.1.1 -> MAVEN STANDARD i google-l.l.l.pom

NEW

NEW

> junit:junit:jar: 3.8.1 -> MAVEN STANDARD Ajunit-3.B.lj"ar TESTED

> org.apache:apache:porri:1.3.1 -> MAVEN STANDARD i apache-1.3.1.pom BLACKLISTED

> „ D . , „ „ „ , . „ : ™ „ „ - O T . : p o m : 2 . „ , ä . „ „ E N „ = r . C K U S T E 0

> acorn : 5.1.1 NPM STANDARD i acom-e.ll.tgz NEW

BLACKLISTED

Figure 5.1: Art i fac ts list wireframe

Each row i n a list represents an A r t i f a c t . The rows in the table are expandable and row
expansion is controlled by the but ton on the left side of the row. The expandable row area
contains a l l checksums inc luding a brand new l ink to a B u i l d which produced an Art i fac t .
The "expand a l l " but ton i n the top-left corner of the table expands a l l rows of the table at

1 https: / / en.wikipedia.org/ wiki/Website wireframe
2 https : / / f igma.com/

27

http://en.wikipedia.org/
https://figma.com/

once. There is also a toggle element to expand a l l Ar t i fac t rows which contain a l ink to the
B u i l d , therefore it expands Art i fac ts produced in the P N C b u i l d system.

Another toggle in the table makes Ar t i fac t identifiers parsed and their i n d i v i d u a l parts
distinguished by a different color. W h e n Ar t i fac t identifier parsing is on, a l ink to the
Art i fac t detai l is included in the form of a but ton located to the right of the identifier.
W h e n the feature is off, the identifier s tr ing itself represents the l ink.

Some values i n the table rows are differentiated by distinct colors, such as repository
type or Ar t i fac t quality. For example, blacklisted Ar t i fac t quali ty is highlighted i n red
color.

5.2 P r o d u c t Mi les tone dashboard

The wireframe i n Figure 5.2 depicts the design of the Product Milestone dashboard.

Product Milestone 7.4.5.CR2

Details [Builds Performed | | Close ResuHts | Deliverables Analysis | | Delivered Artifacts |

Status OPEN

Start Date Jan 20, 2021

Planned End Date Feb 05, 2021

End Date Feb 05, 2021

Last Close Result Empty

O 0 O

21 16 4
Artifacts built in this Delivered Artifacts built Delivered Artifacts built

Milestone in this Milestone in other Milestones

43
Delivered Artifacts built

in other Products

2
Delivered Artifacts built
outside any Milestone

0
Not built Delivered

Artifacts

Artifact Quality Distribution Repository Type Distribution

Figure 5.2: P r o d u c t Milestone dashboard wireframe

The Product Milestone dashboard extends the P r o d u c t Milestone detai l page to fill in
empty spaces and provide statistics about a Product Milestone. The entire dashboard is
divided into visual ly separated boxes. The page begins w i t h a box of the original Product
Milestone details. The new dashboard's content is placed under the details. F i r s t , there is
a set of data cards of various statistics about Produced and Delivered Art i fac ts of a Product
Milestone. T h e n two charts of the dis tr ibut ion of Delivered Art i fac ts follow. D a t a cards
and chart boxes have a tool t ip in the top right corner to provide addi t ional explanations
on the meaning of the data they represent.

The data cards hold data about the Produced Art i fac ts and the source of Delivered
Art i fac ts . Section 2.3.1 provides information about the source of Art i fac ts . In the end, the
following statistics were chosen.

28

• first c a r d - t h e number of Art i fac ts produced by Bui lds contained i n the Product
Milestone of the detai l page

• second c a r d - t h e number of Delivered Art i fac ts produced by Bui lds contained in
the Product Milestone of the detai l page

• third card - the number of Delivered Art i fac ts produced by Bui lds contained in P r o d ­
uct Milestones which belong to the same Product as the P r o d u c t Milestone of the
detail page

• fourth c a r d - t h e number of Delivered Art i fac ts produced by Bui lds contained in
Product Milestones which belong to different Products than the Product Milestone
of the detai l page

• fifth c a r d - t h e number of Delivered Art i fac ts produced by Bui lds not contained in
any Product Milestone

• sixth c a r d - t h e number of the Delivered Art i fac ts that were not bui l t at a l l in the
P N C b u i l d system

O n the card, the number is highlighted by a larger font, and the card description is
de-emphasized by gray color. Th is is because data are the most important information and
descriptions are secondary [12, pp . 50-51].

B o t h charts display the dis tr ibut ion of Delivered Art i fac ts . The first chart shows the
dis tr ibut ion of Ar t i fac t qual i ty of Delivered Art i fac ts . The second one represents the dis­
t r ibut ion of repository type of Delivered Art i fac ts .

5.3 P r o d u c t Vers ion dashboard

The wireframe for the P r o d u c t Version Dashboard is included in Figure 5.3. Delivered
Art i fac ts set in this section refers to a l l Delivered Art i fac ts of a l l Product Milestones of the
Product Version to which the dashboard corresponds.

The new P r o d u c t Version detai l page design separates the original detai l page into
mult iple pages. This way, the page structure is consistent w i t h the P r o d u c t Milestone
variant. Overa l l , the P r o d u c t Version detai l page/dashboard follows the same design as the
Product Milestone one. The Product Version dashboard extends the detai l page, so the
first box holds the Product Version details. Some of the data cards are aggregated forms
of their counterparts on the dashboards of Product Milestones of the Product Version the
detai l page belongs to.

The following values were chosen for the data cards.

• first c a r d - t h e number of Products that contain dependency Milestones; dependency
Milestone contains B u i l d or Bui lds that produced some of the Delivered Art i fac ts

• second card - the number of dependency Milestones

• third c a r d - t h e number of Art i fac ts produced by Bui lds contained i n P r o d u c t M i l e ­
stones of the P r o d u c t Version of the detai l page

• fourth c a r d - t h e number of Delivered Art i fac ts produced by Bui lds contained in
Product Milestones of the Product Version of the detai l page

29

AMQ Broker 7.4

Releases Build Cunligs Group Ccrrigs

7.4

Product Name AMQ Broker

Product Description Empty

Brew Tag Prefix amq-broker

Latest Product Milestone

Latest Product Release Empty

4 9
Product dependencies Milestone dependencies

31 27 43 156
Artifacts built in this Delivered Artifacts built Delivered Artifacts built Delivered Artifacts

Version in this Version in other Versions built in other Products

Product Milestone Artifact Quality Distribution Product Milestone Repository Type Distribution

mr

Figure 5.3: P r o d u c t Version dashboard wireframe

• fifth c a r d - t h e number of Delivered Art i fac ts produced by Bui lds contained i n P r o d ­
uct Milestones of other Product Versions than the P r o d u c t Version of the detai l page,
but contained in the same Product

• sixth card - the number of Delivered Art i fac ts produced by Bui lds contained in P r o d ­
uct Milestones of different Products than the one the Product Version of the detai l
page belongs to

Charts aggregate their counterparts on dashboards of P r o d u c t Milestones of the Product
Version of the detai l page.

30

5.4 P r o d u c t Mi les tone interconnect ion graph

Out of various graphs suggested in the discussion w i t h users and developers (listed in
Section 4.2.4), two were designed to be implemented, the first being the Product Milestone
interconnection graph. T h e wireframe for it is displayed in Figure 5.4. The design of this
graph w i l l serve as an example model of the network graph, and other graphs w i l l follow
it . Section 2.3.1 explains relationships between P r o d u c t Milestones.

Product Milestone 7.4.0.CR1

Product Milestone Interconnection Graph
Edges interconnect Procnnt Milestone-; shsrhg Delivered A.-fifaots A" edge r..rrber represents the number of shared Delivered Artifacts between the two Milestones Clicking on an edge displays
a list of sharcc Delivered Ar.i 'acls. Tec graph size can be limited by adjusliag pic nesting cvel. nodes ear be sclocled by clicking o- lacm .0 highlighl c cm ace ihcir pa cpbors. Double-clicking on
a node opens the Milestone dete I pace. ~c crag a node, hold co-.vn tile shift key and toe mouse button and click on the node.

| Find Product H | Find Milnstdne> | Limit nesting

AMQ Broker 7.4.0.CR1

KOGIT0 4.0.13

Figure 5.4: P r o d u c t Milestone interconnection graph wireframe

The Product Milestone interconnection graph was devised to be put on its separate
page in the Product Milestone pages structure since the graph belongs to a single Product
Milestone. T h e Product Milestone to which the graph page corresponds w i l l be referred to
as the m a i n Product Milestone.

The network graph visualizes Product Milestones sharing Delivered Art i fac ts w i t h the
main P r o d u c t Milestone. The same sharing of the Delivered Art i fac ts is visualized also
for Product Milestones the m a i n P r o d u c t Milestone shares Delivered Art i fac ts w i t h . It
needs to be noted that there is no transitive relationship between these interconnections
in the graph - if Product Milestone A shares Delivered Art i fac ts w i t h P r o d u c t Milestone B
and Product Milestone B shares Delivered Art i fac ts w i t h P r o d u c t Milestone C , it does not
implicate sharing of Delivered Art i fac ts between Product Milestones A and C .

Each Product Milestone is represented as one graph node. The node displays the name of
the P r o d u c t Milestone along w i t h the name of the P r o d u c t to which the P r o d u c t Milestone
belongs. The m a i n Product Milestone is highlighted i n the graph (by a darker color in the
wireframe). Edges interconnecting Product Milestones sharing Delivered Art i fac ts have
labels on them, providing the count of shared Delivered Art i fac ts .

31

The wireframe portrayed i n Figure 5.5 illustrates a feature that allows l i m i t i n g the
nesting of the graph from the m a i n node.

Product Milestone 7.4.0.CR1

Details Builds Performed Close Resutlts Deliverables Analysis Delivered Artifacts Nineteen section Grain

Product Milestone Interconnection Graph
Edges ntescsnnest '' ocuct Milestones shag so Delivered Artifacts A~ edge r.. r b e ' represents t ie numoer o" shaved Delivered Artifacts between the two M lestones disking o" e i edge c stslays
a list of sharer: Delivered Artoscts I se graph sive can be limited Ivy adjusting tae nesting evel Modes car he selected by clicking on them to highlight them and their neighbors. Double-c icking on
a node opens Ihc Milestone dels I pace ~o drag a nsds, hold covvu LI 10 Shi 11 key and vie mouse eullon and c ick on the node

dackson 2.13.1.ER1

Figure 5.5: Product Milestone interconnection graph wireframe - nesting level l imi ta t ion

This feature restricts to what level from the m a i n Product Milestone interconnections
of the Product Milestones are nested. For example, the nesting level w i t h value 1 shows
only interconnections of the m a i n Product Milestone, and the nesting level w i t h value 2
also interconnections of those Product Milestones which share Delivered Art i fac ts w i t h the
main P r o d u c t Milestone. Th is feature is useful especially when the user is interested to see
only which P r o d u c t Milestones share Delivered Art i fac ts w i t h the m a i n Product Milestone
(for which scenario nesting level 1 would be set). Another use case is to make the graph
more readable should it contain a large number of nodes.

32

To satisfy the need to make the graph cleaner i n situations when the graph contains
a great number of nodes, other features were designed.

The wireframe i n Figure 5.6 presents the abi l i ty of the user to hover over a graph node
to highlight the node inc luding its neighbors. The other nodes in the graph are grayed out.
A s imilar feature is node selection. B y cl icking on the node, the node is marked as selected.
Selected nodes are displayed as hovered nodes, that is, the nodes and their neighbors are
highlighted, and other nodes are grayed out. Th is allows the user to explore the graph and
de-emphasize the data the user finds less interesting.

Product Milestone 7.4.0.CR1

Product Milestone Interconnection Graph
Edges interconnect ^'oeuet Milestones shoring Deliverer! rVtit.oots A" edge r..reber represents :ne number <r stirred Delivered Artitnets Icetvveer tier :veo Mrestores Clinking on en edge displays
a list of sharec Delivered A.r.i'acls. Tee graph size can be linked by adjaslioe ere nesting eyel. nodes car be seleeled by clicking o- loem .0 bighlighl r e m age their re ehbors. Double-clicking on
a node opens the Milestone dete I pace. ~o crag a node, hold town the Shift key and me mngse button and e ok on the node.

Find Product H Find Milesldne » ^ Limit nesting

AMQ Broker 7.4.U.CR1

Figure 5.6: Product Milestone interconnection graph wireframe - hovering over the node

The graph page also has two search bars. The first search bar looks for P r o d u c t M i l e ­
stones belonging to a certain P r o d u c t . The second search bar matches Product Milestone's
name. The matched P r o d u c t Milestones are highlighted by a special color. If both search
bars are used, the intersection of matched Product Milestones is highlighted.

33

Another important feature is a list of Delivered Art i fac ts shared between two Product
Milestones, displayed on the wireframe in Figure 5.7. The list is displayed by cl icking
on any edge connecting two Product Milestones and contains Delivered Art i fac ts shared
between these two Product Milestones. The list , along w i t h an identifier of the Delivered
Ar t i fac t , includes a l ink to a B u i l d that produced the Delivered Ar t i fac t (source B u i l d) ,
a l ink to a Product Milestone i n which that B u i l d is contained (source P r o d u c t Milestone) ,
and a l ink to a P r o d u c t to which that P r o d u c t Milestone belongs (source P r o d u c t) .

Product Milestone 7.4.0.CR1

Details Builds Performed Close Resutlts Deliverables Analysis Delivered Artifacts Interconnection Graph

Product Milestone Interconnection Graph
hdges inteTGnncet ^'ocunt Milestones sh : rhg Delivered A"tifaets. A" edge r..rrber represents :ic number o~ Kh;;"i'xl Delivered Artifact:-; between the two M'lestores. disking o" ;ri edge cisnlays
a list of sharec Delivered Ar.i 'acls. f i e graph size can be lirniled by adjaslhc ."ie nesting evel. '-Jodes car be selected by clicking cr L-ie-n lo bighlighl ihe-n anc their re chbors. Double-c icking on
a node opens the Milestone deta'l pace. ~o crag a node, hold covvn the Shift key a i d : i e mouse button and click on the node.

Limit nesting

AMQ Broker 7.4.0.CRT

Cryostat 2.0.0.CR1
KOGITO 8.0.1 .CR2

Camel K 7.3.42

Kiali-UI 1.24.0.ER1
AMQ Broker 7.4.0.CR2

KOGITO 4.0.13

Shared Delivered Artifacts between Cryostat 2.0.0.CR1 and KOGITO 8.0.1 .CR2

idemifier scrmgiisti-nq13?rirmist-rg d Parse Artifact identifier Expand Build associated Artifacts

Figure 5.7: P r o d u c t Milestone interconnection graph wireframe - shared Delivered Art i fac ts
list

34

5.5 B u i l d A r t i f a c t dependency graph

The second of two designed network graphs is the B u i l d Ar t i fac t dependency graph of
bui ld-t ime dependencies. Its wireframe is shown in Figure 5.8. Section 2.4 describes the
bui ld-t ime dependencies.

Nodes represent the Bui lds . Th is graph is directed, so Bui lds point to other Bui lds . The
edge arrow points from dependent B u i l d to B u i l d it depends on. The edge label displays
the count of Art i fac ts dependent B u i l d uses from B u i l d it depends on.

The design of features follows the same pattern as the Product Milestone interconnection
graph. It has the same feature of node highlighting by hovering over nodes or selecting
nodes. L i m i t a t i o n of nesting level is also present. Users can search for B u i l d by its name
or the name of the B u i l d Conf igurat ion. B y cl icking on the edge, the list of Used Art i fac ts
is shown.

Build #20230220-1012 of kafka-3.2.3

Build Artifact Dependency Graph
Edge arrows point from Builds that nave Art fas: (su Is time) dependencies to the Builds that produced those dependencies A suild time dependency is an Art'tact used by a Boild and produced
by another Be Id As edge numser represents the lurnbe- of Artifact sepe itencies Click ig on an edge displays a lis: of :he Art!'act depe idenc es. ~he graph size can be limitec sy adjusting t i e
nesting level. Nodes can be selected by c icking on h e m is highlight them and their neighbors Dccolc-cl eking on a nose opens the Build detail page. ~c drag a node, hold down ihe Sh'l'l <ey and
the mouse button and click on the node.

Artifact Dependency Orcph

Limit nesting

#20230220-1012 of kafka-3.2.3

#20230121-0856 of okhttp-3.14.4

#20220708-1917 of bridge-0.21.5

#20230205-1904 of sap-guicksfarts #20201101-1648 of jws-5.7.2-tomcat

#20220109-1702 of jws-5.7.9-tomcat

Figure 5.8: B u i l d Ar t i fac t dependency graph wireframe

35

5.6 P r o d u c t Mi les tone comparison

The P r o d u c t Milestone comparison is depicted i n the wireframe i n Figure 5.9. The table
compares the versions of Delivered Art i fac ts of Product Milestone the user selects.

Product Milestone Comparison
1st of Delivered Art "acts, fcr examp e regexp:regexp:jar, ant: tne r vsrsicas a selected - rcduc: 'vlilestares f c exarnp e Red Hat Single Sign-On 7.1.2.CR1

KUiu,|,a.c ER1 O » » l « » .

> „ . J t . « . r a , _ , y . , p r i „ 9 ™ » . , , v - , B , i „ , : J „ , . , . „ „ - , „ , „ - „ „ „ , „ . 1 B „ , ™ „ - o o o „ ,

> cpsas.tp-cpaas-test-pnc-gradleuar 1.0.0.iedhat-O4256 , . o . „ , . , ™

> org.jfree:jfreechart;jar 1.5.4. red hat-00003 1.5.4. red hat-OC 1.5.4.redhat-00O03

> „ , = « « . „ „ . „ „ , _ , „ „ „ - « „ - = 0 0 0 , s . = . M „ ™ o s - ™ „ - o „ o „ ,

> „ „ i „ . J « W , . „ , , , - „ „ , , « i o n , „ m ™ „ - „ 1.3.3.iedhat-00002

> org.apache.httpcomponentEihttpcDrEipom 4.4.16.red hat-00001 5.5.7. red hat-00006

> org.jboss.windup.rules:windup-rulesets:jar S.l J.tempora ry-red hat-00007 0 , . 4 . , m „ » „ . - „ a „ - , „ o o ,

> ™ ^ » * , . m , . a „ - o o o o , 1.2.13.iedhat-0

-ll>

Figure 5.9: Product Milestone comparison table

First ly , the user needs to select Product Milestones to be compared. B y using three
search bars for P r o d u c t , Product Version, and Product Milestone, respectively, Product
Milestones of interest are found. F o u n d Product Milestone can be added to the table
header by the " A d d c o l u m n " but ton . T h e n , when the P r o d u c t Milestones were selected,
the "Fe tch" b u t t o n can be used to fetch the table data.

A n alternative to this approach would be to fetch the table data each t ime the Product
Milestone is selected in the search bar, and no fetch but ton would be necessary. B u t this
would lead to needless requests if more than two Product Milestones were selected, so it
was avoided.

Product Milestones can be also deselected from the table, or new P r o d u c t Milestones
can be added to the table, and then the table data can be fetched again.

36

Chapter 6

R E S T A P I design

This chapter describes the R E S T A P I designed for endpoints needed by the pages designed
i n Chapter 5 inc luding the chosen H T T P method and their data format. A n important
note is that this Bachelor's thesis does not implement the final backend for these endpoints,
just their design is la id out. TypeScr ipt syntax for interfaces describes the data format of
the endpoints.

6.1 P a g i n a t i o n i n the P N C R E S T A P I

P N C R E S T A P I uses the following structure for the pagination of mostly tabular data.
Th is data structure (Page) is referred to later in this chapter when the pagination of some
endpoint data is needed.

interface Page {

content?: any[] ;

totalPages?: number;

pageIndex?: number;

pageSize?: number;

totalHits?: number;

}

Properties of the page of data:

• totalPages - the count of pages data are div ided into

• pagelndex - the index of one page currently returned by the backend

• pageSize - the number of data entities that are m a x i m a l l y returned in one page

• t o t a l H i t s - t h e tota l count of a l l existing data entities for a specific endpoint

• c o n t e n t - a n array of data entities corresponding to the endpoint; for example, for
the Art i fac ts list endpoint, it is an array of Art i fac ts

1 https: / / www. redhat. com/en/topics / api / what-is-a-rest-api

37

6.2 P r o d u c t Mi les tone dashboard

The existing G E T endpoint /product-milestones/: i d gets the details of a Product M i l e ­
stone on the Product Milestone dashboard. N e w dashboard statistics, inc luding data cards
and charts, were designed to have their own endpoint rather t h a n extending the existing
detai l endpoint w i t h new data.

G E T /product-milestones/rid/statistics

This endpoint returns data card statistics and chart data.
Returned data format (ProductMilestoneStatistics):

interface ProductMilestoneStatistics {

artifactSource: {

// the number of Artifacts produced by Builds

// contained in the requested Milestone

thisMilestone: number;

}

deliveredArtifactsSource: {

// the number of the Delivered Artifacts produced by Builds

// contained in the requested Milestone

thisMilestone: number;

// the number of the Delivered Artifacts produced by Builds

// contained in Milestones which belong to the same Product

// as the requested Milestone

previousMilestones: number;

// the number of the Delivered Artifacts produced by Builds

// contained in Milestones of other Products

otherProducts: number;

// the number of the Delivered Artifacts produced by Builds

// not contained in any Milestone

noMilestone: number;

// the number of the Delivered Artifacts not produced by any Build

noBuild: number;

}

// proportion of quality of Delivered Artifacts

artifactQuality: {

[key: s t r i n g] : number;

}

// proportion of repository type of Delivered Artifacts

repositoryType: {

[key: s t r i n g] : number;

}

}

The whole data structure is nested and the properties are grouped logically. Ar t i fac t
quali ty and repository type properties are objects whose keys are i n d i v i d u a l Ar t i fac t qual i ­
ties or repository types and values are numbers of Delivered Art i fac ts corresponding to the
Art i fac t quali ty or repository type.

38

6.3 P r o d u c t Vers ion dashboard

O n the Product Version dashboard, three new endpoints for dashboard statistics were
designed rather than extending existing detai l G E T endpoint /product-versions/:id.

G E T /product-versions/ : id/statist ics

This endpoint returns data card statistics (not chart data).
Returned data format (ProductVersionStatistics):

interface ProductVersionStatistics {

// the number of Milestones created in the requested Version

milestones: number;

// the number of Products which contain Milestones

// containing Builds which produced the Delivered Artifacts

productDependencies: number;

// the number of Milestones which contain Builds which produced

// the Delivered Artifacts

milestoneDependencies: number;

artifactSource: {

// the number of Artifacts produced by Builds contained

// in Milestones of the requested Version

thisVersion: number;

}

deliveredArtifactsSource: {

// the number of the Delivered Artifacts produced by Builds

// contained in Milestone of the requested Version

thisVersion: number;

// the number of the Delivered Artifacts produced by Builds

// contained in Milestones of other Versions of the same Product

previousVersions: number;

// the number of the Delivered Artifacts produced by Builds

// contained in Milestones of other Products

otherProducts: number;

// the number of the Delivered Artifacts produced by Builds

// not contained in any Milestone

noMilestone: number;

// the number of the Delivered Artifacts not produced by any Build

noBuild: number;

}

}

Once again, the structure is logically nested. N o t a l l of the data provided by this
endpoint are used in the final dashboard design but providing them allows U I to be easily
expandable for some new information if such need arises. Ar t i fac t qual i ty and repository
type dis t r ibut ion charts were separated into their own endpoints.

39

G E T /product-versions/ : id/artifact-quality-statistics

This endpoint returns Ar t i fac t quali ty d is t r ibut ion chart data.
Returned data format (ProductVersionArtifactQualityStatisticsPage):

interface ProductVersionArtifactQualityStatisticsPage extends Page {

content?: ProductVersionArtifactQualityStatistics[];

}

interface ProductVersionArtifactQualityStatistics

extends ProductMilestoneRef {

artifactQuality: {

[key: s t r i n g] : number;

}

}

The endpoint returns an array of objects containing Art i fac t quali ty dis tr ibut ion for
Product Milestones of a Product Version. A l s o , the shorter version of the P r o d u c t M i l e ­
stone detai l is included (ProductMilestoneRef extending chart data) . Th is endpoint was
separated f rom the data card statistics endpoint due to its pagination. If it was merged w i t h
the that endpoint, the same data card statistics would be returned each t ime a new page
is requested. T h e reason for the pagination of this endpoint is that P r o d u c t Version can
contain an unl imi ted amount of P r o d u c t Milestones, therefore unpaginated endpoint could
return a large batch of data . The other chart needs to be paginated too, and both charts
are paginated separately, so the repository type dis tr ibut ion chart has its own endpoint too.

G E T /product-versions/ : id/repository-type-statistics

This endpoint returns repository type dis t r ibut ion chart data.
Returned data format (ProductVersionRepositoryTypeStatisticsPage):

interface ProductVersionRepositoryTypeStatisticsPage extends Page {

content?: ProductVersionRepositoryTypeStatistics[];

}

interface ProductVersionRepositoryTypeStatistics

extends ProductMilestoneRef {

repositoryType: {

[key: s t r i n g] : number;

}

}

This endpoint is separated from the data card statistics endpoint for the same reason
as the Ar t i fac t qual i ty d is t r ibut ion chart endpoint. The data structure is the same, except,
instead of Art i fac t qual i ty dis tr ibut ion, repository type dis tr ibut ion is included for Product
Milestones of a Product Version.

40

6.4 P r o d u c t Mi les tone interconnect ion graph

For the Product Milestone interconnection graph, one endpoint was designed for returning
the interconnection graph of a Product Milestone and one endpoint for returning shared
Delivered Art i fac ts between two P r o d u c t Milestones.

G E T /product-milestones/ : id/ interconnection-graph

This endpoint returns the graph.
Returned data format (ProductMilestonelnterconnectionGraph):

interface ProductMilestonelnterconnectionGraph {

vertices: {

[key: s t r i n g] : {

// Milestone ID

name: string;

// Milestone data

data: ProductMilestone;

>;
}

edges: ProductMilestonelnterconnectionGraphEdge[];

}

interface ProductMilestonelnterconnectionGraphEdge {

source: string;

target: string;

// number of Delivered Artifacts shared between Milestones of the edge

sharedDeliveredArtifacts: number;

}

The data structure is div ided into vertices and edges. Th is fits the way nodes and
edges are added to the graph in S i g m a . j s - t h e y are added separately, vertices is an object
whose keys are IDs of P r o d u c t Milestones included i n the graph and values are data of
those Product Milestones. Theoretically, this could be an array of Product Milestones, but
the object allows a specific Product Milestone to be found by its I D directly. The edge
has its source node and its target node, source and target contain IDs of the Product
Milestones that the edge interconnects.

G E T /product-milestone-shared-delivered-artifacts

This endpoint returns the list of shared Delivered Art i fac ts . The endpoint accepts two
query parameters to determine the P r o d u c t Milestones for which the list should be fetched -
milestonel and milestone2, each containing I D of the Product Milestone.
Returned data format (ProductMilestoneSharedDeliveredArtif actsPage):

interface ProductMilestoneSharedDeliveredArtifactsPage extends Page {

content?: ProductMilestoneSharedDeliveredArtifact[] ;

}

interface ProductMilestoneSharedDeliveredArtifact

41

extends A r t i f a c t {

product: ProductRef;

productVersion: ProductVersionRef;

productMilestone: ProductMilestoneRef;

}

T h e endpoint returns a list of Delivered Art i fac ts . Delivered Ar t i fac t is extended
by short detail of a Product (ProductRef), P roduct Version (ProductVersionRef), and
a Product Milestone (ProductMilestoneRef) to which the Delivered Ar t i fac t belongs.

6.5 B u i l d A r t i f a c t dependency graph

B u i l d Ar t i fac t dependency graph needs two new endpoints, one for the graph itself and one
for the list of Art i fac t dependencies.

G E T /bui lds / : id /ar t i fac t -dependency-graph

This endpoint returns the graph.
Returned data format (BuildArtifactDependencyGraph):

interface BuildArtifactDependencyGraph {

vertices: {

[key: str i n g] : {

// Build ID

name: string;

// Build data

data: Build;

} ;
}
edges: BuildArtifactDependencyGraphEdge[];

>

interface BuildArtifactDependencyGraphEdge {

source: string;

target: string;

// number of Artifacts source Build depends on

artifactDependencies: number;

>

This graph follows the same data pattern as the P r o d u c t Milestone interconnection
graph. The keys of vertices object are IDs of B u i l d s and values are data of the Bui lds ,
source and target of the edge are IDs of the Bui lds .

G E T /build-artifact-dependencies

T h i s endpoint returns the list of Ar t i fac t dependencies of one B u i l d depending on another.
T h e endpoint accepts two query parameters - dependentBuild and dependencyBuild which
determine edge of the graph.
Returned data format (BuildArtifactDependenciesPage):

42

interface BuildArtifactDependenciesPage extends Page {

content?: A r t i f a c t [] ;

}

6.6 P r o d u c t Mi les tone comparison

For the Product Milestone comparison table, one P O S T endpoint was designed.

P O S T /product-milestone-comparison

This endpoint returns the compared Delivered Art i fac ts in selected Product Milestones.
Input data format (ProductMilestoneComparisonlnputData):

interface ProductMilestoneComparisonlnputData {

productMilestones: string [];

}

Product Milestones to be compared are sent as a list of their IDs. Due to this fact, the
P O S T H T T P method was selected for the endpoint.
Returned data format (ProductMilestoneComparisonPage):

interface ProductMilestoneComparisonPage extends Page {

content?: ComparedArtifact[] ;

}

interface ComparedArtifact {

// Artifact identifier without the version

i d e n t i f i e r : string;

productMilestones: {

[key: s t r i n g] : ArtifactWithVersion;

}

}

interface ArtifactWithVersion extends A r t i f a c t {

// version of the Artifact

artifactVersion: string;

}

The endpoint returns an array of Delivered Art i fac ts and their versions i n selected P r o d ­
uct Milestones. productMilestones object's keys are IDs of the Product Milestones and
values are concrete Delivered Art i fac ts of the corresponding P r o d u c t Milestone extended
by the name of their version (a r t i f actVersion).

43

Chapter 7

Implementation of the designed
pages

This chapter explains the implementat ion of the pages designed in Chapter 5. The first
section lists the structure of the code. The second section describes H T T P services used by
the new U I project. The t h i r d section provides information about components implemented
before this Bachelor's thesis. The first three sections summarize the state before the imple­
mentation part of this Bachelor's thesis started. The fourth section of this chapter delves
into the implementat ion part by describing a chosen set of implemented React components
and functions. The last section outlines the testing of the implemented features.

7.1 C o d e structure

The new P N C U I project is developed in an open-source G i t H u b repository [10]. The code
is structured in the following directory tree:

• .github/

— workflows/ -Github Workflows

• documentation/-Documentation and R E A D M E s

• s r c / - A p p l i c a t i o n source code

— common/ - Code and constants used i n the whole project

— components/-React components

— hooks/ - C u s t o m React hooks

— l i b s / - C o d e to use w i t h th ird-party libraries

— s e r v i c e s / - H T T P services

— u t i l s / - V a r i o u s helper functions, data transformations, etc.

7.2 H T T P services

The new U I project implements a connection to the R E S T A P I of the H T T P servers through
Axios instances. These hold base U R L s to which a l l H T T P requests w i l l be sent and provide

44

methods to send specific H T T P requests, such as the get method. A x i o s instances are then
encapsulated i n singleton objects. A n example is pncClient creating an interface for the
P N C R E S T A P I .

Some A x i o s instances also have interceptors preprocessing H T T P requests. The inter­
ceptor in pncClient, for example, adds authentication headers identifying the P N C user to
the H T T P request or sets the correct content type of H T T P P A T C H and P O S T requests.

Service functions (or services) then implement connections to specific R E S T endpoints.
A l l services create H T T P requests w i t h the help of A x i o s instances inside client single­
ton objects. Service fetching the Product Milestone interconnection graph is included in
L i s t i n g 7.1.

export const getlnterconnectionGraph = ({ i d }, requestConfig) => {

return mockClient

.getHttpClientO / / returns Axios instance

.get C/product-milestones/${id}/interconnection-graph/ ,

requestConfig);

};

Lis t ing 7.1: Product Milestone interconnection graph service i n the new U I project

Since endpoints used by newly implemented components are not implemented as part
of this Bachelor's thesis, their H T T P services use mockClient which sends a l l requests to
the localhost port where mocked backend server should run.

7.2.1 Service containers

useServiceContainer is a custom hook that the new U I project uses to manage the ex­
ecution, state, and data of H T T P services. The hook accepts a callback of a service as
a parameter. It returns an object containing data that were returned by a backend (if any
were loaded), an error (if any occurred), a boolean state as to whether the service is cur­
rently in a loading state, and a funct ion to execute the service w i t h (run function). W h e n
the run funct ion is executed, it runs the input service callback to fetch the data. The object
returned by the useServiceContainer hook is referred to as a service container.

A ServiceContainerLoading component receives the service container as its parameter
and the chi ld component instance. The chi ld component is typical ly dependent on the data
returned by the service. ServiceContainerLoading does not r u n the service but detects
its state and displays adequate content. For example, if the service is in a loading state
for the first t ime, the spinner is displayed. If the data were loaded, the chi ld component
is rendered. If the service is i n a loading state and the data were loaded before, the chi ld
component is grayed out, and the loading bar is displayed on top of it .

7.3 O l d components

This section briefly introduces components in the new P N C U I project that were not i m ­
plemented as part of this Bachelor's thesis.

45

P a g i n a t i o n c o m p o n e n t

A Pagination component is used to display a pagination U I element al lowing users to nav­
igate the pages of the paginated endpoints. Paginated endpoints are those endpoints whose
data are not returned i n one batch but are d iv ided into mult iple pages. The component is
mainly dedicated to tables. The component persists the pagination in the U R L .

C o n t e n t B o x c o m p o n e n t

A ContentBox component is a box encapsulating other components. It provides mult iple
parameters, such as displaying the white background and padding around the content of
the box.

SearchSelect c o m p o n e n t

A SearchSelect component is a select whose options are dynamical ly fetched. It accepts
a callback that fetches the options of the select. It also provides a search bar to narrow
down the select options. Its U I is rendered by the Select P a t t e r n F l y component.

7.4 Implemented components and functions

This section describes the implementat ion part of this Bachelor's thesis and the chosen set
of components and functions.

Components whose names end w i t h Page represent pages of the website. E a c h page
has its own ti t le and U R L route, optional ly a description.

7.4.1 A r t i f a c t s list

The Art i fac ts list page is created by an ArtifactsPage component.

ArtifactsList component

A n A r t i f a c t s L i s t component's table is implemented using the TableComposable Pat ­
t e r n F l y component. The component is meant to be reusable on mult iple pages; therefore,
it is configurable and it is possible to choose the columns included in the displayed list.
The component accepts a list of co lumn identifiers to be displayed i n the list , but the list
has a default preset of shown columns. The component also accepts the service container
of Art i fac ts to be l isted i n the table. The list condit ional ly renders the columns that are
included in the input list of co lumn identifiers.

Each Ar t i fac t row has its expandable row, where checksums and source B u i l d are dis­
played. The component holds the state of currently expanded Ar t i fac t rows i n an array of
Art i fac t identifiers. W h e n a but ton expanding row is clicked, the identifier is added to the
array. E x p a n d e d rows are then condit ional ly rendered based on whether the identifier of
an Ar t i fac t is included i n that l ist . To ease up work w i t h expandable rows, a but ton for
expanding a l l rows and a toggle for expanding rows of Art i fac ts containing links to a B u i l d
are included in the list's toolbar. The but ton updates a state areAHArtifactsExpanded
and the toggle updates a state areBuildArtif actsExpanded. useEf f ect hooks, containing
those states and state of service container's data i n a dependency array, are then used to
include a l l respective Art i fac ts i n the array of expanded Art i fac ts . This pattern guarantees

46

that the Art i fac ts are expanded even when a page of the list is changed (and therefore new
data are loaded).

The pagination of the table is handled by the Pagination component.

ParsedArtifactldentifier component

For the highlighting of the identifier of an A r t i f a c t , a ParsedArtif actldentif i e r compo­
nent was implemented. The component accepts Ar t i fac t as its parameter.

If the Ar t i fac t is from a repository type other than N P M or M a v e n , the component just
returns the Art i fac t identifier w i t h a l ink to the Ar t i fac t detai l page. For N P M and M a v e n
Ar t i fac t , the identifier is split by a colon character w i t h the JavaScript s p l i t function.
A l l parts of the identifier, inc luding the colons separating them, are then transformed into
P a t t e r n F l y Label components, each having a distinct color. A l l Label components are la id
out using P a t t e r n F l y Flex components i n one row. A l s o , a l ink to the Ar t i fac t detai l page
is included l ink but ton.

ArtifactsPage component

A n ArtifactsPage component is the page of Art i fac ts rendering the A r t i f a c t s L i s t com­
ponent.

7.4.2 D a s h b o a r d s

For the dashboards, mult iple components were created. ProductMilestoneDetailPage

and ProductVersionDetailPage components compose the Product Milestone and Version
dashboard pages.

C a r d F l e x component

A CardFlex component is a container for data cards. It is implemented as a flex container
using the Flex P a t t e r n F l y component posit ioning data cards i n a row. It adds gaps between
cards and wraps the row if one row is not enough to hold a l l the cards. A CardFlexItem is
a flex container i tem representing one data card. The component sets the m i n i m u m w i d t h
and height of the card. A l l cards i n one row have the same w i d t h , while a l l cards together
span the entire available w i d t h of one row by setting the f l e x property of the flex i tem
to 1. It is implemented using the Flexltem P a t t e r n F l y component and also creates a card
background w i t h the help of the ContentBox component.

The CardFlexItem component itself is just a card box. For card value and t i t le , two ad­
di t ional components are meant to be used as children inside i t : CardValue and CardTitle.
CardTitle holds the t i t le of the card value. CardValue displays the actual value corre­
sponding to the t i t le . The titles of cards i n one row are aligned vertical ly using fixed
padding and height.

L i s t ing 7.2 portrays the usage of the CardFlexItem component in the code.

<CardFlexItem>

<CardValue>{deliveredArtifactsCount]-</CardValue>

<CardTitle>Delivered A r t i f a c t s i n this Milestone</CardTitle>

</CardFlexItem>

L i s t i n g 7.2: C a r d F l e x I t e m component usage

47

CardFlexItem also accepts an opt ional description as its parameter, which is then dis­
played using a BoxDescription component as a tool t ip icon i n the upper right corner of
the card.

C h a r t B o x component

ChartBox is a box that was implemented to be used in specific chart implementations. It
accepts a chi ld component as its parameter, which should be a canvas element in which the
chart is rendered. The component itself is a d iv element inheri t ing w i d t h and height from
the parent element. It adds some spacing around its chi ld component and centers it v ia
the usage of flex C S S properties. It also accepts the chart description as its parameter and
displays it in the form of a tool t ip icon in the upper right corner of the box. For description,
a BoxDescription component is used.

D o u g h n u t C h a r t component

A DoughnutChart component uses Chart . j s to implement the doughnut chart. T h e compo­
nent accepts a list of numbers (doughnut data) and a list of strings (titles corresponding to
the data) . This is the format of data and labels used by Chart . j s . The component returns
a canvas element inside the ChartBox component. Chart . js uses the canvas element to draw
the chart into it .

The component's rendering logic is as follows. O n the first render, the chart is created
and rendered in the canvas. W h e n the input data are changed, the configuration of the
doughnut chart is updated to reflect the new data and the canvas is re-rendered using the
Chart . js update method. T h a t means that the component is not static and accepts data
changes. It also means that data need to be saved inside the state or memoized, lest the
chart not be unnecessarily refreshed because the updat ing logic is inside an useEf f ect hook
executed when the chart data changes.

Transformation of Product Milestone statistics

The DoughnutChart component accepts the data and labels i n a different format than was
designed to be returned by the Product Milestone statistics endpoint as portrayed i n Sec­
t ion 6.2. To transform the backend data into chart data , a doughnutChartDataTransf orm
function was implemented. The implementat ion of the funct ion is simple and utilizes the
JavaScript Object .values funct ion to transform the backend data.

A doughnutChartLabelTransform funct ion was implemented to transform backend
data into the labels using the JavaScript Object.keys function.

StackedBarChart component

A StackedBarChart implements the stacked bar chart i n the Chart . j s l ibrary. Stacked bars
are set to be columns. The stacked bar chart is rendered into a canvas returned by the
component and encapsulated by the ChartBox component. Its rendering logic is the same
as that of DoughnutChart, except that it renders a stacked bar chart. The component
accepts a list of labels of i n d i v i d u a l stacked bar columns. Another parameter is data in the
format of a list of objects, each containing a label of a characteristic and a list of values of
that characteristic i n each of the stacked bar columns. Th is label and data format satisfies
the format used by the Chart . j s configuration.

18

Transformation of Product Version statistics

The StackedBarChart component also uses a different format of the data and labels than
returned by the backend for Product Version statistics. Section 6.3 provides the design
of the statistics endpoint. However, the endpoints were designed to be more gener i c -
different chart implementations might use different data formats, and the endpoints were
not designed for the specific chart implementation.

A stackedBarChartDataTransform function was created to transform backend data
into chart data and a stackedBarChartLabelTransform function to transform backend
data into chart labels. The i r implementat ion is sl ightly more complex than their doughnut
chart variant. The code of the data transformation function is included i n L i s t i n g 7.3.

// statisticsGroup - for example, "artifactQuality"

export const StackedBarChartDataTransform = (data, statisticsGroup) =>

data kk
data.length kk
Object.keys(data[0][statisticsGroup]).map((statisticsName) => ({

l a b e l : statisticsName,

data: data.map((productMilestoneData) =>

productMilestoneData[statisticsGroup][statisticsName]),

})) ;

L i s t i n g 7.3: Funct ion transforming Product Version statistics data into a form accepted by
the Chart . j s stacked bar chart

The funct ion iterates over a l l characteristics, for example, over a l l possible Art i fac t
qualities, w i t h the help of the map JavaScript method to create an array of objects. For
each of these characteristics (statisticsName), the object is created. Another map method
cal l is used to extract a l l values of this characteristic in a l l Product Milestones.

BoxDescr ipt ion component

A BoxDescription component creates an icon that displays the description on the hover
event. The icon is implemented as a d iv element w i t h text aligned to the right. The
component supports two variants of the component displayed when hovering over the icon.
The first is a tool t ip , and the second is a popover.

The component accepts description as its property. If the description is a str ing, the
tool t ip implemented using the P a t t e r n F l y Tooltip component is used. In the case where
the description is a React component instance, the popover is used that is implemented
using the P a t t e r n F l y Popover component. The tool t ip displays just p la in strings, whereas
the popover allows the description to be styled.

ProductMilestoneDetai lPage component

A ProductMilestoneDetailPage component composes the detai l page of a P r o d u c t M i l e ­
stone. The P a t t e r n F l y Grid component is used to create the layout of the page. Grid

component is a gr id container that places the layout i n the 2D gr id and is d iv ided into
twelve columns. For a container i tem, the Gridltem component is used. The w i d t h of
the Gridltem component is set as an integer number of columns it spans. The first grid

49

container i tem spanning twelve columns on the page contains the key-value list of Product
Milestone details.

The second gr id container i tem holds data cards implemented using the CardFlex com­
ponent. If there were an odd number of data cards, the Gridltem components themselves
would not suffice to make cards of equal w i d t h , since twelve is not divisible by an odd
number. This is the reason why the CardFlex is used w i t h i n one gr id container i tem that
spans the entire twelve columns.

The t h i r d and fourth gr id container items contain the charts (the Doughnut Chart com­
ponent). These gr id container items span a responsive number of columns. O n small
browser windows, each spans twelve columns, and the charts are on top of each other. O n
large browser windows, each spans six columns, so both charts are displayed side by side.

ProductVersionDetai lPage component

A ProductVersionDetailPage component represents the P r o d u c t Version detai l page. It
uses the same layout structure as the ProductMilestoneDetailPage component. It only
displays different data and stacked bar charts (the StackedBarChart component) instead
of doughnut charts. T h e endpoints for the Product Version charts are paginated; therefore,
the Pagination component allows users to navigate the pages.

7.4.3 N e t w o r k graphs

For the network graphs, one hook was created. T h e P r o d u c t Milestone interconnection
graph page is contained i n a ProductMilestonelnterconnectionGraphPage component
and the B u i l d Ar t i fac t dependency graph i n a BuildArtif actDependencyGraphPage com­
ponent.

useNetworkGraph custom hook

A useNetworkGraph is a custom hook for the creation and management of the state of the
network graph and its rendering. The ID of the d iv container into which the graph w i l l be
rendered is passed to the hook. The hook returns a createNetworkGraph funct ion which
creates the graph and renders it inside the div container mentioned above. The graph data
structure is created and managed by the Graphology l ibrary. The rendering part is handled
by the Sigma.js l ibrary. The creation function accepts a callback as its parameter. Th is
callback is called inside the creation funct ion once the graph is created. The purpose of the
callback is to add nodes and edges to the graph. Therefore, the set of nodes and edges is
not direct ly passed to the hook. The callback also sets the color and labels of the nodes
and edges. A f t e r this callback is run , the graph is la id out using the ForceAtlas2 a lgori thm,
which is part of the Graphology l ibrary.

In addi t ion , the name of the m a i n node is passed to the component. Relat ive to this
main node, nesting level functionali ty is applied. To apply the nesting level, the breadth-
first graph search a l g o r i t h m 1 is used. It traverses the whole graph of nodes, and nodes,
whose distance is larger than the set nesting level, are hidden. T h e a lgor i thm is r u n inside
the useEffeet hook each t ime the nesting level is changed.

The useNetworkGraph hook states include hovered node, dragged node, selected edge,
and a set of selected nodes. These states are managed by the Sigma.js event handlers

1 ht tps : / /en . wikipedia.org/wiki/Breadth-first search

50

https://en
http://wikipedia.org/wiki/Breadth-first

that were created by the createNetworkGraph funct ion. Some states of the graph are
inputted into the hook from outside since they are managed by outside components. These
include pr imary filter text (managed by the search bar component), secondary filter text
(managed by the search bar too), and the nesting level (managed by toggle and number
input components). A l l of these states (internal or external) modi fy the visual izat ion of
nodes and edges. To reflect the current states, the Sigma.js node and edge reducers are
executed i n the useEf f ect hook. Dependencies of this useEf f ect hook include the states
mentioned. The node and edge reducers then iterate over a l l nodes and edges and apply
visual changes appropriate to the states; for example, the selected nodes are highlighted.

The ForceAtlas2 layout a lgor i thm is managed by its Webworker Graphology implemen­
tat ion. The layout is controllable and can be started or stopped. The hook returns the
function to start and the funct ion to stop the layout a lgor i thm. This allows the parent
component to control the algori thm.

ProductMilestonelnterconnect ionGraph component

A ProductMilestonelnterconnectionGraph component is responsible for the U I of the
graph. The component renders a div container i n which the Sigma.js graph is rendered. The
management of the graph data structures and rendering is done by the useNetworkGraph
hook. The creation of a graph is achieved w i t h the help of the createNetworkGraph function
returned by the mentioned hook. The component accepts graph data as its parameter; once
the data are loaded, the createNetworkGraph funct ion is called to create the graph. Into
the createNetworkGraph function, a callback is passed, adding nodes and edges contained
in the input data into the graph.

The component also displays the but ton that controls the graph layout a lgor i thm. The
component receives strings of search bars and the nesting level states v i a parameters which
are then passed to the mentioned hook.

ProductMilestonelnterconnect ionGraphPage component

A ProductMilestonelnterconnectionGraphPage component composes the whole P r o d ­
uct Milestone interconnection graph page. The ProductMilestonelnterconnectionGraph
component renders the graph.

The Art i f actsList renders the list of shared Delivered Art i fac ts between the Product
Milestones and the list of displayed columns is configured to include columns that were
designed to be here in the corresponding wireframe.

The component manages the state of search bars and nesting level input . The search
bars are implemented by the Searchlnput P a t t e r n F l y component. The nesting level is
toggled by the Switch P a t t e r n F l y component. The Numberlnput P a t t e r n F l y component
handles the nesting level value.

B u i l d A r t ifactDependency G r a p h component

A BuildArtif actDependencyGraph component creates the U I of the network graph of the
B u i l d Ar t i fac t dependencies. T h e structure of the component is the same as that of the
ProductMilestonelnterconnectionGraph component.

51

B u i l d A r t i f a c t D e p e n d e n c y G r a p h P a g e component

A BuildArtifactDependencyGraphPage component composes the B u i l d Ar t i fac t depen­
dency graph page. It follows the same structure as its Product Milestone interconnection
graph counterpart. The A r t i f actsList component renders the list of Ar t i fac t dependen­
cies.

7.4.4 P r o d u c t M i l e s t o n e c o m p a r i s o n

The Product Milestone comparison is implemented i n one table component. Page compo­
nent containing the table is ProductMilestoneComparisonPage.

ProductMiles toneComparisonTable component

A ProductMilestoneComparisonTable is a table of Product Milestone Comparison. The
table is implemented by the TableComposable P a t t e r n F l y component. The SearchSelect
components provide the tree select elements which are used to find the P r o d u c t , Product
Version, and Product Milestone, respectively.

A service container that fetches the data of the table is passed to the component. A t
first, only three mentioned select elements, and the " A d d C o l u m n " and "Fe tch" buttons
are displayed. Once a Product Milestone is selected i n the appropriate select element, the
" A d d C o l u m n " but ton can be used to add a co lumn of a Product Milestone to the table.
W h e n the first Product Milestone is added, a table header is displayed. The "Fe tch" but ton
fetches the data of the table w i t h the passed service container. The list of IDs of selected
Product Milestones is passed to the run funct ion of the service container. Once the data
are loaded, the component iterates over the fetched data w i t h the map JavaScript method
and displays the i n d i v i d u a l rows, each containing versions of a Delivered Ar t i fac t i n selected
Product Milestones.

The InnerScrollContainer P a t t e r n F l y component encapsulates the table. It creates
a horizontal scrollbar if a l l columns do not fit into the table.

ProductMilestoneComparisonPage component

A ProductMilestoneComparisonPage component creates the page of the Product M i l e ­
stone comparison w i t h the help of the ProductMilestoneComparisonTable component.

52

7.5 Test ing and feedback

The new U I project is currently i n development and it is not yet i n product ion. It only has
a development environment (the master environment). A l s o , the backend for the designed
R E S T A P I was not yet implemented.

Because of these reasons, the work of this Bachelor's thesis was not yet tested by the
users of the P N C system. Instead, feedback was provided by the P N C team. The code was
developed i n the G i t H u b repository using the G i t H u b f l o w 2 . Therefore, the code was added
to the repository through P u l l Requests. E a c h P u l l Request of this thesis was reviewed by
other developers. This includes the code review.

Throughout the implementat ion process, the work of the thesis was consulted w i t h
members of the P N C team. A f t e r the code was merged into the repository, the code was
tested manual ly in the master environment. If any bugs were found dur ing the testing,
or if any U I features were vis ib ly missing, new P u l l Requests were created to address
these issues. Some of the developers reported some smal l problems, such as the format of
tool t ip descriptions. A l s o , the author of this very thesis presented a demonstration of the
implemented U I components to the members of the team.

Overa l l , s ix members of the P N C team shared their opinions and provided feedback
during or after the development of the thesis. Specifically, feedback was provided by the
Product Owner^ of the P N C project, who oversaw the development of this Bachelor's thesis
and oftentimes presented user requirements.

"PNC build system contains lots of various information about products and de­
pendencies between those products. The system has the information, but it is
not easily readable in the current form. Patrik's work helps with the visual­
ization of the data, highlighting various statistics and discovering dependencies
between products, which might be sometimes hidden even to its developers. The
work meets my expectations and it delivers new features, which were requested
by PNC users."
— Ing. Jakub Bartecek, Manager, Software Engineering, P N C P r o d u c t Owner

P N C U I lead, who helped w i t h the U I aspect of the thesis, also offered his views.

"The current version of PNC provides no way to visualize Product-related data,
forcing users to manually explore the available data to get a better overview and
find important relationships between individual entities. Patrik's work success­
fully and significantly improved the current state. For example, I would like to
highlight that the dashboards are well structured, the readability of the Artifact
list is improved and the network graphs provide a unique and easy-to-navigate
way of displaying the required information. Patrik also listened and responded
to feedback, resulting in an improved solution."
— M g r . M a r t i n K e l n a r , Senior Software Engineer, P N C U I lead

2 https: / / docs.github.com/en/get-started/quickstart / github-flow
3 https: / / www.scrum.org/resources/what-is-a-product-owner

53

http://docs.github.com/en/get-started/quickstart
http://www.scrum.org/

Chapter 8

Conclusion

The goal of this Bachelor's thesis was to enhance the visual izat ion of Product-re lated pages
on the new U I of the P N C b u i l d system, namely the visual izat ion of relationships between
P N C entities, inc luding Products , Product Versions, Product Milestones, Bui lds , and A r ­
tifacts. This goal was achieved successfully.

F irs t ly , the TypeScr ipt language and mult iple libraries were studied. The libraries
inc luding React, Chart . j s , Sigma.js, and Graphology, were explored, main ly from their doc­
umentation. P N C b u i l d system was analyzed inc luding its entities and their relationships.
Internal P N C documentat ion and discussion w i t h developers of the system, but also expe­
rience w i t h the usage of the system, helped w i t h learning about the P N C system. A l s o ,
Product-re lated pages on the original P N C U I were examined.

Then , user requirements were acquired regarding the enhancements of the related U I ,
but developers also provided feedback. W i t h a l l of this information, wireframes were created
to i l lustrate new designs. The new visual izat ion was designed i n the form of tables, charts,
network graphs, and dashboards. For the designed pages, R E S T A P I was designed, but
since the implementat ion of endpoints was not part of this Bachelor's thesis, designed
endpoints were not implemented. T h e implementat ion of the pages was fulfil led using the
language and libraries mentioned. Last ly, a video was recorded that demonstrates the newly
implemented U I components.

Overa l l , one page was redesigned, two pages were extended, and three new pages were
created. The Art i fac ts list is now more readable, main ly because of the Ar t i fac t identifier
parsing opt ion. The Product Milestone and Product Version detai l pages were extended
into dashboards of statistics and charts. Two network graphs were created. The first
is the Product Milestone interconnection graph visual iz ing sharing of Delivered Art i fac ts
between P r o d u c t Milestones. The second is the B u i l d Art i fac t dependency graph displaying
bui ld-t ime dependencies between Bui lds . The last implemented component is the Product
Milestone comparison which allows users to compare Delivered Art i fac ts of selected Product
Milestones. A l l code was contributed to an open-source repository on G i t H u b . The whole
work of this Bachelor's thesis is composed of 20 G i t H u b P u l l Requests.

The newly created code provides a way to implement other visualizations of this k i n d
since the code is easily expandable and editable. The U I components form a basis for future
needs. For example, a new network graph to display bui ld- t ime dependencies between
Product Milestones could be added, or dashboards could be created for other P N C entities,
or existing ones could be extended w i t h new charts.

54

Bibliography

[1] D O W N I E , N . Chart.js documentation [online]. A p r i l 2023 [cit. 2023-05-02]. Available
at: h t t p s : //www.chart j s . o r g / d o c s / l a t e s t / .

[2] J A C O M Y , M . , V E N T U R I N I , T . , H E Y M A N N , S. et a l . ForceAtlas2, a Continuous G r a p h
Layout A l g o r i t h m for H a n d y Network Visua l iza t ion Designed for the G e p h i Software.
PLOS ONE [online]. 2014, vol . 9, no. 6, [cit. 2023-05-03]. Available at:
https:/ /doi .org/10.1371/ journal .pone.0098679.

[3] M D N . Using Web Workers [online], [cit. 2023-05-03]. Available at: h t t p s :
/ /developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers.

[4] M E T A P L A T F O R M S , I N C . React documentation [online]. 2023 [cit. 2023-04-22] .
Available at: h t t p s : / / r e a c t . d e v / .

[5] M I C R O S O F T . TypeScript documentation [online]. 2023 [cit. 2023-05-01]. Available at:
h t t p s : / /www.typescr ipt lang.org/docs/ .

[6] N P M . npm Docs: package.json [online], [cit. 2023-04-29] . Available at:
ht tps : / /docs .npm j s . com/c l i /v9 /conf igur ing-npm/package- j son.

[7] N P M . npm Docs: scope [online], [cit. 2023-04-29] . Available at:
ht tps : / /docs .npm j s .com/cl i /v9/using-npm/scope.

[8] P L I Q U E , G . Graphology, a robust and multipurpose Graph object for JavaScript
[online]. Zenodo, 2023 [cit. 2023-05-01] . Available at:
h t t p s : //doi.org/10.5281/zenodo.5681257.

[9] P N C D E V E L O P M E N T T E A M . Project Newcastle Orchestrator GitHub repository
[online], [cit. 2023-04-29] . Available at: h t t p s : / / g i t h u b . c o m / p r o j e c t - n c l / p n c .

[10] P N C D E V E L O P M E N T T E A M . Project Newcastle React UI Github repository [online],
[cit. 2023-05-02] . Available at: h t t p s : / / g i t h u b . c o m / p r o j e c t - n c l / p n c - w e b - u i - r e a c t .

[11] R E D H A T , I N C . Patternfly [online]. 2022 [cit. 2023-05-02] . Available at:
h t t p s : / /www.pat ternf ly .org/v4/ .

[12] S C H O G E R , S. and W A T H A N , A . Refactoring UI Self-published, 2018.

[13] S I G M A . J S D E V E L O P M E N T T E A M . Sigma.js GitHub repository [online], [cit. 2023-05-01] .

Available at: h t tps : / /g i thub.com/ jacomyal /s igma. j s .

[14] T H E A P A C H E S O F T W A R E F O U N D A T I O N . Guide to naming conventions on groupld,
artifactld, and version [online]. 27. a p r i l 2023 [cit. 2023-04-29] . Available at:
h t t p s : / /maven.apache.org/guides/mini/guide-naming-convent ions .html .

5 5

http://www.chart
https://doi.org/10.1371/journal.pone.0098679
http://mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://react.dev/
http://www.typescriptlang.org/docs/
https://docs.npm
https://docs.npm
https://github.com/project-ncl/pnc
https://github.com/project-ncl/pnc-web-ui-react
http://www.patternfly.org/v4/
https://github.com/jacomyal/sigma.js
http://apache.org/guides/mini/guide-naming-

[15] T H E A P A C H E S O F T W A R E F O U N D A T I O N . POM Reference [online]. 2 7 . a p r i l 2 0 2 3 [cit.

2023-04-29] . Available at: https://maven.apache.org/pom.html.

5 6

https://maven.apache.org/pom.html

Appendix A

Contents of the included storage
media

The storage media has the following structure.

• git-patch-f i l e s / - g i t patch files of the source code implemented i n this Bachelor's
thesis

• technical-report-source/ - source code of the technical report of this Bachelor's
thesis

• xkoryt04-technical-report .pdf - n o r m a l version of the technical report of this
Bachelor's thesis

• xkoryt04-technical-report-print .pdf - p r i n t version of the technical report of
this Bachelor's thesis

• demo-video .mkv-demonstration video of the implementat ion part of this Bachelor's
thesis

• README-fi le describing the storage media

57

Appendix B

G i t H u b P u l l Requests

The following G i t H u b P u l l Requests implement features of this Bachelor's thesis.

• https //github com/project--ncl/pnc- •web-•ui--react/pull/166

• https //github com/project--ncl/pnc- •web-•ui--react/pull/170

• https //github com/project--ncl/pnc- •web-•ui--react/pull/173

• https //github com/project--ncl/pnc- •web-•ui--react/pull/176

• https //github com/project--ncl/pnc- •web-•ui--react/pull/183

• https //github com/project--ncl/pnc- •web-•ui--react/pull/184

• https //github com/project--ncl/pnc- •web-•ui--react/pull/186

• https //github com/project--ncl/pnc- •web-•ui--react/pull/187

• https //github com/project--ncl/pnc- •web-•ui--react/pull/189

• https //github com/project--ncl/pnc- •web-•ui--react/pull/190

• https //github com/project--ncl/pnc- •web-•ui--react/pull/191

• https //github com/project--ncl/pnc- •web-•ui--react/pull/195

• https //github com/project--ncl/pnc- •web-•ui--react/pull/198

• https //github com/project--ncl/pnc- •web-•ui--react/pull/199

• https //github com/project--ncl/pnc- •web-•ui--react/pull/200

• https //github com/project--ncl/pnc- •web-•ui--react/pull/201

• https //github com/project--ncl/pnc- •web-•ui--react/pull/206

• https //github com/project--ncl/pnc- •web-•ui--react/pull/210

• https //github com/project--ncl/pnc- •web-•ui--react/pull/211

• https //github com/project--ncl/pnc- •web-•ui--react/pull/220

58

Appendix C

Final Results

In this appendix, the final results of the implemented Product-re lated pages on the new U I
of the P N C b u i l d system are shown. D a t a on them are not real, they are mocked.

P r o d u c t M i l e s t o n e 1 .0 .0 .Bu i ld2

Status

Start Date

Planned End Date

End Date

Last Close Result

CP EN

2019-02-15

2019-02-22

Crnpiy

(™ » »)

e

15
Artifacts built in this Milestone

e

6
Delivered Artifacts built in this

Milestone

e

5
Delivered Artifacts built in other

Milestones

e

13
Delivered Artifacts built in other

e

2
Delivered Artifacts built outside any

e

0
Not built Delivered Artifacts

Artifact Quality Distribution Repository Type Distribution 0 0

1 o
Figure C . l : F i n a l result of the P r o d u c t Milestone dashboard

59

P r o j e c t N e w c a s t l e D e m o P r o d u c t 1.0

Build Configs Group Configs

Product Descriptioi

Brew Tag Prefix

Project Newcastle Demo Product

Example Product for Project Newcastle Den

pnc-I.O-pnc

8
Product depender

11
Milestone depender

140
Artifacts built in this

101
Delivered Artifacts built in this

201 504
Artifacts built in other Delivered Artifacts built in other

Versions Products

Product Milestone Artifact Quality Distribution

e

....
. io is » « .0 «

NEW IMPORTED VERIFIED DEPRECATED

1 Ofl

Product Milestone Repository Type Distribution

Figure C .2 : F i n a l result of the P r o d u c t Version dashboard

60

Artifacts

This paqe contains Artifacts used and produced by Builds, Artifact is represented by PNC Identifier a i d it may be for example pom , jar or an archive like tgz ,

as

Identifier •» string | Istrinq |s?rinq | st*... Parse Artifact identifier Expand Build ass ociated Artifacts

> Identifier Repository Type Build Category i Filename Artifact Quality

> © eom.gimub.miehalszynkiewici, t e s t i e r ^ MAVEN STANDARD i empty-l.ao.redhat-Q0017jar (N E W)

V com, github.michaL&iyiMiEwici.^e^t^mpiyiponiilO.O.red hat-00017 MAVEN STANDARD £ empty-1.0.0.redhat M017.pom N E W

md5 f74da73b3bGc2c2132d10c27c9b46e32

shal bc27d8c5305f9c:3060de 599972788a 3Sd15a91e7

Sha256 7ef314-fa143b6cb"37eat>2fb394c&d559bcS9bca4daf749258c51d1eS457cfb49

Build tt20210325 0E52 of TC37-memory-alloc at ion (ttAJBIXMQOPOTrAA]

> 8 com.github.micbalszynkiewicz.l:est:emply:jar:l.[).rj.redhat-00016 MAVEN STANDARD A empty-1.O.0.redhat-0DO16jar N E W

> © ccm.github.michaLszynldevijic2.te5t:efripty:pam:1.0.0.redriat-00016 MAVEN STANDARD ± empty-1.0.0.red hit-Q 0016.pom NEW

> org.jboss. c a: m etrks; j ai; 2.0.0 .red hat-00 004 MAVEN STANDARD i metrics-2.0,0,redhat-00004.jar N E W

> ^ com,github,michalszynkiewicz,test:emp1y:jar:1.D.D.managedsvc-redhat-0DO0-1 MAVEN STANDARD £ empty I.O.O.mBnagedsvcredhatDDOOI.jar N E W

> 8 com,github,michalszynkiewicz,test:emB(y:jar:l,0,0.managedsvc-redhat-0DOO2 MAVEN STANDARD £ empty-1.a.0.managedsvc-redhat-QQ0O2.jar (N E W)

> © com,github,micbalszynkJewJcz,test:erviQ(y:pcim:1,0.0.mariagadsvc-redhat-0-00O1 MAVEN STANDARD i empty-I.O.O.mBragedsvc-redhat-OMOI.pom N E W

> © com,github,michalizynkJewicz,test:emply:pom:1,0.0.managadivc-redhat-0-00O2 MAVEN STANDARD i empty-1.0.0.managed&vtr-redriat-00002.pom (N E W)

> a nt lr; antl r:ja r:2,7,7. red hat-7 MAVEN STANDARD £ antlr-2.7.7.redhal-7.jar N E W

1-10of4731S - 1 of 4222 > »

Figure C . 3 : F i n a l result of the Art i fac ts list

Figure C.4 : F i n a l result of the P r o d u c t Milestone interconnection graph

Build #20221108-0007 of empty

Details Build Log Alignment Log Artifacts Dependencies Brew Push Build Metrics Artifact Dependency Graph

Bu i ld A r t i f a c t D e p e n d e n c y G r a p h

Edge arrows point from Builds that have Artifact (build-time) dependencies to the Builds that produced those dependencies. A build-time dependency is an Artifact used by a Build and produced by another Build. An edge number represents the number oF Artifact dependencies. Clicking on an edge displays

a list of the Artifact dependencies. The graph size can be limited by adjusting the nesting level. Nodes can be selected by clicking on them to highlight them and their neighbors. Double-clicking on a node opens the Build detail page. To drag a node, hold down the Shift key and the mouse button and click

on the node.

Q. Find Build Q, Find Build Config Limit nesting _ 10 +

1*20221003-1426 ot F_ 2 E-TEST20221003-2

I «20221206-1557 Ot TC5S-lwitter4]

I #202211080007 Of empty

#«20220824-1529 of srnalltye-health-2.2.1

' #20230412-2101 ot cpaas.tp-cpaas-tesL-pnc-r i-l Ii il

D

Figure C .5 : F i n a l result of the B u i l d Art i fac t dependency graph

Product Milestone Comparison

List of Delivered Artifacts, for example regexp:regexp;jar , and their versions in selected Product Milestones, for example Red Hat Single Sign-On 7.1,2.CRT

Select Product Select Version w Select Milestone • Add co lumn Fetch

Artifact Identifier •» strinq | Istrinq | s?rinq | st"...

*• Artifact Project Newcastle Demo Product • 1.0.0.Buildl O Project Newcastle Demo Product-1 .0.0.Build; O

" abhrev 1.2.2 1.2.1

BuildO «20211027-1206of123(ft5001] Build O Empt)

w quark • .•• -. 1.2.4

O «-20241027-120&of 123 [#1000] B u i l d O #20201127-1205of123(#1005]

1 - 2 o f l ' 1 Of 1

Figure C .6 : F i n a l result of the P r o d u c t Compar ison table

