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A B S T R A C T 
This research delves into methods for automatic music composition, with a spe­
cific emphasis on evolutionary algorithms and neural networks. It examines the 
potential correlation and discourse between musicology theories and automatic mu­
sic composition, as well as its foundation in musical tradition. The study focuses 
on three algorithms utilized for generating short monophonic melodies stylistically 
based on given datasets or the user's requirments: probabilistic grammar evolution, 
genetic algorithms, and L S T M models. The practical part of this work showcases 
the application of these algorithms and presents results from testing their efficacy 
and capabilities. Furthermore, it introduces an implementation for analyzing MIDI 
datasets from a musical perspective. Ultimately the study highlights the potential 
for future enhancements and broader applications in the field of automatic music 
analysis and composition. 

A B S T R A K T 
Tato studie se věnuje metodám automatické kompozice hudby (AMC), s kon­

krétním zaměřením na evoluční algoritmy a neuronové sítě. Potenciální dialog mezi 
muzikologickými teoriemi a A M C jsou analyzovány, spolu s otázkou jejího základu 
v hudební tradici. Byly zkoumány tři algoritmy pro tvoření krátkých jednohlasých 
melodií založených na stylu daného datasetu nebo požadavcích uživatele: pravdě­
podobnostní gramatická evoluce, genetické algoritmy a L S T M modely. Praktická 
část práce představuje aplikace těchto algoritmů a výsledky testování jejich výhod a 
předností. Dále je představena implementace pro analýzu MIDI datasetů z hudební 
perspektivy. V poslední řadě jsou představeny možnosti budoucího vylepšení a roz­
šíření zkoumaných algoritmů v oblasti automatické hudební analýzy a kompozice. 

K E Y W O R D S 
Automatic music composition, probabilistic grammar evolution, automatic music 
analysis, genetic algorithm, L S T M neural networks 
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1 P R E F A C E 
Rooted in the Latin verb "componere", which signifies "putting together" or "uni­
fying", composition in music embodies the act of weaving disparate sounds into a 
narrative that resonates with the human experience. Just as a skilled storyteller 
crafts a narrative by stringing together words, composers manipulate melodies, har­
monies, and rhythms to find the right place for each one of them in order to express 
their stories in the most accurate way possible. 

At the heart of musical composition is the concept of juxtaposition - the 
deliberate arrangement of musical elements to construct a compelling story without 
words. Each chord, each note, carries its own significance, but it is the relationship 
between them that gives music a voice. 

According to D'Indy's definition, music composition involves the "arrange­
ment of various elements", with the art lying in the skillful arrangement of melodies, 
harmonies, and modulations to give them a unified meaning and form. 

In this study, we are exploring various methods of juxtaposing musical ele­
ments to replicate the relationships and structures found in existing melodies. Our 
objective is twofold: to develop a tool to aid the compositional process and to analyze 
the underlying structures of melodies across different musical styles and composers, 
discerning the characteristics that distinguish one from another. 

The thesis begins by introducing and analyzing various generative evolution­
ary algorithms applicable to music composition. Following this, the second section 
delves into the widespread use of neural networks for artistic creation. The third 
section showcases the implementation of a probabilistic grammatical evolution al­
gorithm, genetic algorithm and L S T M neural network, accompanied by illustrative 
examples of its outcomes. 
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2 S T A T E OF T H E A R T 

m 

The process of analyzing data in the form of musical melodies to produce new 
music is referred to as automatic music composition (AMC) (Wiafe, 2022). Histor­
ically there had been many algorithms that have been explored to reach this goal: 
stochastic processes, Markov chains, grammars, evolutionary algorithms and neu­
ral networks are just a few examples of the methods that have been implemented 
(Wiafe, 2022). The choice reflects the way music is interpreted. 

If the stochastic character of musical pieces is the fundamental feature desired 
in the outputs, mathematical algorithms for automatic music composition have been 
applied. The mathematical models most explored with this purpose are the Markov 
chains. Thanks to their low complexity they have been successfully used in real-time 
applications (completing melodies, generating music for games) (Liu, 2017), or to 
create beats for electronic music (Eigenfeldt, 2014). 

When the aim is to generate music that has internal structures and rules 
governing its notes, linguistic models have been applied. Grammars that comprise 
rules about rhythm and harmony are usually implemented in this case and the 
generated melodies refer to a specific genre or style, according to the grammar rules 
used. A n example is the Granroth-Wilding's work (Granroth, 2014), where music 
(described as a language) is generated by an algorithm that learns patterns (jazz 
chords) from the input dataset and uses them to create new ones (Liu, 2017). 

The third main field of application of automatic musical composition are the 
artificial intelligence methods, and specifically evolutionary computation, machine 
learning, cellular automata, knowledge-based systems and, mostly in the last years, 
neural networks. 

The first music ever composed by a computer is the ILLIAC suite, described 
by Hiller and Isaacson in 1958 (De Prisco, 2019). Hiller considers the process of 
composing music as a process of selection from an infinite universe of sonic material, 
in other words a way to "extract" order from this universe, using mathematical 
operations, probability operations and general principles of analysis. To Hiller, 
this process seamed analogical to the functioning of computers, that create random 
datasets and then extract material from them, choosing from an infinite variety of 
possibilities. Therefore, he uses a pseudo-random integer generator, which represents 
notes and rhythms and selects a set of generated numbers according to some input 
rules (a process defined as the "Monte-Carlo Method") (Both, 1995). In F ig . l the 
scheme of the composition process of Illiac Suite is represented: 

17 
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Fig. 1: Block diagram of the composition algorithm for Illiac Suite (Hiller, 1979) 

2.1 Evolutionary computing 

During the 1980s, Evolutionary Algorithms began to receive significant attention 
as optimization tools, thanks to their flexibility, adaptability to various tasks, and 
advancements in computer performance (Back, 1997). It is no wonder, then, that 
these algorithms were also tested in automatic music composition processes, serving 
as a tool to explore large solution spaces and locate multiple optimal solutions 
(Prisco, 2022). These algorithms ensure a continual combination of exploration and 
optimization, driven by the genetic operators they employ (Goldberg, 2002). 

Genetic algorithms were used to generate complete compositions (Jacob, 
1995), or any kinds of musical subtasks: melody composition, counterpoint, sound 
generation, thematic transformation (Miranda, 2007), jazz improvisation, harmo­
nization and so on. A n example is the composition system "Variations" designed by 
Jacob (see Fig.2), that creates phrases combining motives taken from a dataset and 
then uses variation mechanisms to search the space. 

Melody development is the musical task that was most explored with the use 
of evolutionary algorithms. Systems that generate pitch and rhythm sequences were 
implemented with the use of different evolutionary algorithms since the 90s (Biles, 
1997), (Jacob, 1996) until nowadays (the automatic melody composition presented 
by (Jeong, 2017) or the MetaCompose application by (Scirea, 2017). 

Automatic harmonization was also widely studied since the 90s (Cope, 1997, 
Miranda, 2000). Four-parts compositions (for example the widely known Bach's 
4-voices chorales) address this issue thoroughly. The "EMI system" presented in 
(Cope, 1997) uses grammars and rules to execute this. In (Gang, 1996) neural 
networks are used. In (Prisco, 2022) the EvoComposer application is introduced, 
which explores the potential of evolutionary algorithms in this A M C discipline. 
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The Evocomposer application uses a multiobjective evolutionary algorithm to 
compose a 4-voices piece according to one voice input (it can be any of the 4 parts). 
This algorithm implementation is based on the results of a statistical analysis of 
a dataset (in this case Bach's corales) to derive a table of weights for chords and 
tonality changes. 

Alongside Evolutionary algorithms, grammars were often implemented for 
music creation as an easy tool to apply strict rules to the free composition process 
made by a genetic implementation. To make non-deterministic, creative output, 
grammars can be used in collaboration with evolutionary algorithms, creating Gram­
matical Evolution implementations. One example is the application GenerativeGI 
(Fredericks, 2023) developed to create visual art. 

2.2 Neural Networks 

Thanks to the rapid development of neural networks in the last decade, numer­
ous music applications have experimented with these algorithms. Neural networks 
are now used for genre and style classification, music creation, music interpretation 
(performance), and many other applications. The study of artificial neural networks 
gained significant attention by the 1960s, with the approach of using mathematical, 
artificial models to study human cognition being termed "connectionism" (Waskan, 
2022). One of the main goals of connectionism was to develop computer behavior 
that closely mimicked human behavior. This field of research was referred to by the 
Japanese as aAIJKansei,aAi meaning aAIJenabling computers to express emotion-
saAI (Bresin, 1998). This focus on emotional expression is why music performances 
have attracted researchers' attention. In Stockholm, a symbolic rule system was 
developed to convert music scores into performances that were as emotionally ex­
pressive as possible (Friberg, 1991). These results were subsequently used to design 
an Artificial Neural Network (ANN) (Bresin, 1998). 

2.2.1 Historical overview 

In "Music and Connectionism", Todd and Loy (1991) explain how connectionism 
can save A M C from the trap of being strictly formal (Garton, 1995). Isaacson 
presented neural networks as a tool to study post-tonal music: the music, that can 
be theorized by the pitch-class set theory: using neural networks he studies the 
relationships between sets (interval classes, similarities) and how listeners perceive 
them (Isaacson, 1997). 

However, music classification is up until now the most explored musical appli­
cation of neural networks. For the classification tasks spectrograms are mostly used 
as inputs: Despois used C N N to classify music into main genre classes as Electro, 

20 



Institute of Automation and Computer Science, FME BUT, 2024 

Classical, Rap, etc and (Pelchat, 2020) continued the (Despois, 2018) work using 
C N N and music spectrograms. Alongside spectrograms, also methods taken from 
speech recognition were used for music recognition tasks (Zhong, 2011). 

Music generation using neural networks hasn't been left behind too. In 2015 
Marquetti presented a composition inspired by Mozart's dice game, that uses su­
pervised neural networks to compose melodies and improvise in real time (Fig. 3). 

Conductor Neural Network 

Acoustic Network 

i nscmbli 

Interludes Main Section 

Pedal Tone Improvisations 

Solos 

Dice Game Compositions Non Dice Games Compositions 

I Saiophone 11 Violin | | cello | | Clarinet ~| | trombonê  

• iyilijil Network 

Conductors modules 
Synthesis I 

Fig. 3: Block diagram of the composition system "Solos (Dice Game) and Conductor 
(Neural Network)" (Marquetti, 2015) 

In addition to these most explored fields, neural networks are applied to 
transcript audio recordings to musical scores (Schlüter, 2014), to remix voice and 
sound balance in musical recordings (Simpson, 2015), musical therapy applications, 
music recommendation algorithms, music education and others. 

Nowadays more and more neural networks trained to compose music are de­
veloped. One of the most popular one is the Magenta project: an open-source 
research project by Google (tensorflow), first released in 2019 and then in 2023 (Ma­
genta Studio 2). The Magenta research group studies deep learning applied to signal 
processing, music creation, audio synthesis, transcriptions and others. For music cre­
ation they research and employ different models: Long-Term Structures (LTS) in 
the "Music Transformer" application, a hierarchical latent vector model for learning 
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LTS in the "Music-VAE" application, generation latent constraints, LSTM-based 
recurrent neural networks and autoencoder models (WaveNet) (Google, 2024). 

Music-VAE addresses the difficulty of modelling sequences with long-term 
structure by proposing the use of a hierarchical decoder. This solution shows a 
better sampling, interpolation, and reconstruction performance (Roberts, 2018). 
The variational autoencoder encodes an entire sequence to a single latent vector, 

Fig. 4: Architecture scheme of MusicVae (Roberts, 2018) 

creating a long-term structure for the generated piece of music, which is almost 
always present in western popular music. The structure of this implementation can 
be seen in Fig.4 

Another research project in this field is MuseNet by OpenAI: it is a deep neu­
ral network, that can generate short musical composition with different instruments 
and in different styles (from classical to popular music), using a transformer model. 
As a training set it used MIDI files from a wide range of musical styles (OpenAI, 
2019). 

One of the most recent open-source applications model is V3 by Suno.ai, 
which is capable to create radio quality songs from words. It is based on a text-to 
speech model called Bark, released in 2023 (Freyberg, 2024). Bark compresses and 
reconstructs audio using EnCodec (Leung, 2023), whose structure is represented in 
Fig.5. 

Alongside the encoding model, Bark uses a GPT-like text (semantic) model 
and an acoustics model that has the same structure as the text model. 

According to Sarmento in (Sarmento, 2023), automatic music generation that 
uses symbols (instead of waves, e.g. MIDI files) can be categorized according to the 
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Fig. 5: Architecture scheme of EnCodec (Leung, 2023) 

network architecture into three main categories: Variational Autoencoder models 
(VAEs), Generative Adversarial Networks (GANs), and models that are inspired 
on natural language processing as Long Short-Term Memory netwokrs (LSTM), 
Transformers or Recurrent Neural Networks (RNN). 

2.2.2 Variational autoencoders 

Variational autoencoders are used to generate music according to some rules (struc­
tural or stylistic). In (Lim, 2020) for example, it was used to generate music in 
Bach's style. V A E models have an encoder-decoder architecture and are based on 
the idea of learning a posterior distribution that approximates the true posterior. 
It generates new data by learning a continous latent space of music symbols (Vech-
motova, 2023). V A E models have been used also for audio composition - in this 
case the latent space is made of audio frames: they can encode an existing audio 
frame to a latent space and synthetize frames by interpolation and extrapolation of 
timbres (Tatar, 2021), generating audios of any length. 

2.2.3 Generative adversarial networks 

G A N models, on the other hand, are made of a generator and a discriminator, that 
generate together new data according to some requested characteristics. The gen­
erator creates adversarial samples to train the discriminator, that has to learn to 
discriminate between real and generated melodies. They can be implemented with 
V A E . For example, in (Vechmotova, 2023), they are used to create lyric lines to 
a live music performance (Fig.6). A semi-recurrent cnn-based V A E - G A N network 
was implemented also in (Akbari, 2018) to generate sequences of individual frames 
generated using C N N . Dong in 2018 in his project MuseGAN, proposes a multi-track 

23 



D VENDRAME, Katia. Music composition using Al. 

Music spec-VAE spec-VAE 
latent space 

CNN 
Encoder 

audio clip spectrogram 
(wav) _(s) 

GAN 

CNN 
Decoder 

zf zf 
Generator Discriminator Generator Discriminator •0/1 

reconstructed 
spectrogram 

Lyrics text-CVAE 

audio clip z 

lyric line x-

testt-CVAE 
zi')\ latent space 

7(«) 

LSTM 
y Encoder 

LSTM 
Decoder 

reconstructed 
lyric line 

Fig. 6: Architecture scheme of LyricJam Sonic (Vechmotova, 2023) 
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sequential generative adversarial network for music and accompaniment generation, 
which has a temporal, harmonic and rhythmic structure. Their network structure 
is made of two models, inspired to the two main different ways to approach music 
composition: jamming or composing. The generator of the G A N concatenates ran­
dom vectors from the shared temporal structure, from the private one (both time 
dependent) and each of them outputs the inner track and the inter track temporal 
information (Dong, 2017). 

2.2.4 Transformers 

The Transformers are sequence-to-sequence models, they are used to create longer 
sequences of symbolic music, thanks to the self-attention they use to bias the predic­
tion of the current token based on the previous ones (Huang, 2020). One example is 
Musenet, that uses the GPT-2 model. Furthermore, Music Transformer can compose 
expressive piano 1-minute pieces, or the Pop Music Transformer (Huang, 2020) uses 
a variant (Transformer-XL model) of this algorithm to create music from different 
genres (Sarmento, 2023) of longer length. In addition to longer melody outputs, the 
Pop Music Transformer proposes an alternative to the MIDI event representation: 
the R E M I representation, which is beat-based - to each note there is the information 
of which position it has in the measure and what its rhythm is (Huang, 2020). 

Transformers are also used to obtain more controlled music generation, e.g. 
the G T R - C T R L model is a model that generates tab music, controlling the genre 
and instrumentation (Sarmento, 2023). These models are presented as a solution for 
one of the main limits of the application of neural networks, which is the difficulty 
in controlling and conditioning the generative process. The controlling process is 
realized by control tokens, that are inserted at the beginning of every element of the 
training dataset. 

2.2.5 Long Short-Term Memory networks 

The Long Short-Term memory networks are used in many different models. In 
(Manzelli, 2018) they are used to learn the melodic structure of different music styles 
and generate symbolic music pieces, which are then used as input for a WaveNet-
based audio generator (in order for the output to sound realistic). 

Cong Jin et al. in 2020 proposed a style-specific music composition neural 
network, where as a generator there is a L S T M network, as discriminator a C N N , 
and an Actor-Critic (AC) network is used to make fine-tuning (Jin, 2020). The 
L S T M network, a variant of R N N , uses a special timing memory function thanks to 
its inner gates: its architecture contains three gate structures - output gates, forget 
gates and input gates. Thanks to its structure it can learn long-term dependencies 
in the data (Lattner, 2020), an essential ability to create long musical pieces, which 
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need a long-term structure. On the other hand, RNNs are ring-type networks, where 
the output of the neural unit depends on the actual input time and to the value at 
the previous time. 

Based on these network typologies (Wang, 2021) proposed a Music Com­
position Neural Network (MCNN), which uses L S T M to generate music, a reward 
function that is based on the "basic criteria of music creation", that can adjust the 
music composition real-time and a C N N as discriminator. 

2.2.6 Application examples 

One of the major challenges in automatic music composition since its birth, is the 
composition of polyphonic music pieces in the style of J. S. Bach's chorales. They 
are used because of their strict harmonic structure, their lengths and mainly be­
cause they form a homogenous dataset of an acceptable size (Bach composed 389 
chorales) (Hadjeres, 2016). To solve this challenge many different approaches have 
been used: genetic algorithms , Hidden Markov Models and neural networks (RNN, 
L S T M , Gated Reccurent Units, Restricted Boltzmann Machines, and so on) (Had­
jeres, 2016). 

DeepBach is a solution presented by (Hadjeres, 2016): a dependency network 
capable of producing choreales in the style of Bach, create coherent phrases and 
harmonize melodies (Fig.7). DeepBach uses four neural networks to take in account 

Fig. 7: Architecture scheme of DeepBach (Hadjeres, 2016) 

the sequential aspect of the data. One network retrieves information from the past, 
the other one from the future, then there is a non-recurrent neural network to 
control notes occurring at the same time. The outputs of these three networks 
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are the passed to the fourth R N N . This architecture was selected reflecting the 
compositional practice of these chorales (harmonization is often made starting from 
the end of the piece) (Hadjeres, 2016). 

Based on this overview about how neural networks are applied to music com­
position can be concluded that the researches are generally concerned mainly on the 
generation of short music pieces: this means, that until now only very little attention 
to the higher-level musical characteristics has been paid. This is one of the goals of 
the work of (Lattner, 2019), in order to generate longer musical compositions. To 
do that, they created an algorithm, called Constrained sampling that uses a Convo-
lutional Restricted Boltzmann Machine, in combination with a musical dataset for 
training and structural constraints (the gradient descent method). These cost func­
tions guide the creation of the tonal, metrical, and self-similarity structure of the 
pieces (Lattner, 2019). The sampling content, which is then modified according to 

Sample 

I 
«»,v)=s(x,v) !" 

/ Template x 
:_ -\ Gradient descent 

Gibbs sampling 
11 n 11111111111J111J n 11J i n I i i [ 1111111J111J n 11J111 hh 

Convalutional RBM 

Fig. 8: Architecture scheme of Constrained Sampling Algorithm (Lattner, 2019). 
Constrained sampling using an existing piece x as structure template and v is a 
randomly initialized sample. 

the constraint functions, is built by a two-layered C N N . The visible layer is made of 
a piano roll representation, as can be seen in Fig.8. The randomly initialized sample 
is updated with Gibbs sampling (GS) and gradient descent (GD), which lowers the 
error $(x,w) between the template and the sample. Gibbs sampling runs until the 
free energy function of the R B M stabilizes. The sample at each iteration is subject 
to a gradient descent (GD) optimization, which updates the weights according to a 
learning rate. The cost functions that the GS uses are (Lattner, 2019): 

1. the self-similarity constraint, which builds a self-similarity matrix where re­
peating patterns are highlited (see Fig.9). 
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J = T / A 

Fig. 9: Depiction of calculating the self-similarity matrix s(z) (Lattner, 2019), z is 
the piano roll representation, and A the filter for convolution. 

2. the tonality constraint: the distribution of pitch classes in every segment ("win­
dow") of the piece is filtered by two "key profiles" (arrays of numbers expressing 
the strength of each pitch class, one for the major keys, one for the minor) 

3. the meter constraint: the number of notes in every bar is calculated, nor­
malized and then constrained to the same relative value of note onsets of a 
template piece. 
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3 G E N E R A T I V E E V O L U T I O N A R Y 
A L G O R I T H M S 

Evolutionary computing is based on Darwinian search algorithms inspired by nat­
ural evolution. These algorithms use processes analogous to natural selection, mu­
tation, and reproduction to perform searches (Husbands, 2007). They operate on 
the concept of a population, which is a set of candidate solutions that evolves it-
eratively from one generation to the next. In evolutionary algorithms, each new 
generation is created by selecting the best candidate solutions (or "individuals") ac­
cording to a fitness function. Additionally, new individuals in each generation are 
produced through genetic mechanisms such as mutation, crossover, and selection. 
These mechanisms are implemented in various ways depending on the specific type 
of algorithm. 

Alan Turing suggested using the principle of evolution to develop adaptive 
machines as early as the 1950s. However, it wasn't until the late 1980s that this 
concept, particularly in the form of genetic algorithms, saw widespread application 
across numerous fields, mainly as an optimization algorithm (Husbands, 2007).. 

3.1 Evolutionary algorithms overview 

Evolutionary algorithms are composed of genetic programming, genetic algorithms, 
evolutionary programming, and other algorithms, that use the concept of selection 
of individuals according to fitness or objective functions. The general algorithm of 
an evolutionary procedure (Fig. 10) is presented below (Bagavathi, 2019): 

1. Select initial population xi = {xio,xn,Xi2, . . . , X J A T } 

2. Determine the value of objective function f(xo) for each individual 
3. Perform selection of the best individuals (which have the highest values of the 

objective function) 
4. Perform crossover of the selected individuals according to some probability 

value 
5. Perform mutation of the newly generated individuals with some probability 
6. Repeat this process until the requested termination conditions are met 

Typically, these algorithms use two representations of the individuals: the genotype 
and the phenotype. The genotype is utilized during recombination and mutation 
processes, while the phenotype represents the solution form of the individual. The 
phenotype is evaluated to determine how close the individual is to the desired solu­
tion. During selection, the phenotype is "translated" back into its genetic form, the 
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New Generation 
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Mutation 
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Function 

Fig. 10: Scheme of one generation of an Evolutionary algorithm 

genotype, which is more practical for genetic procedures such as recombination and 
mutation. 

3.1.1 Genetic representations 

The genetic representation of candidate solutions to a problem can take various 
forms. For instance, if the solutions are numerical, their bit representation can be 
used. More commonly, genotypes are strings of numbers or symbols that unequiv­
ocally represent a possible solution (Husbands, 2007). For representing music and 
creating music algorithms, two main approaches can be chosen. The first approach 
uses strings of real numbers to represent sound characteristics for later sound syn­
thesis. This method is optimal for applications where classical music structures and 
elements (such as notes, rhythms, and phrases) are not used, leading to the creation 
of new sounds or patterns. 

Conversely, when the goal is to generate standard music melodies, fragments, 
or pieces, an approach mirroring the structure of MIDI files can be used. In this 
case, each note is represented by a string of numbers, which includes information 
about its pitch, duration, and dynamics, among other attributes. 

In some cases, the genetic representation of the solution is equivalent to or 
very similar to the candidate solution itself. In such instances, the fitness evaluation 
of these solutions can be performed without translating the genotype into its solution 
form (the "phenotype"). 
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The representations of individuals form the genotype space in which the best 
solution is sought. One of the strengths of evolutionary algorithms is the wide range 
of possibilities for representation. However, it is important to note that not all 
genotype spaces lead to feasible solutions. 

3.1.2 Fitness (object) functions 

After generating a set of candidate solutions, the next step is to select the best 
ones to become parents for the new generation. The selection process identifies the 
top individuals from the set based on a "fitness value," which indicates how close 
each individual is to the desired solution. This fitness value is typically derived 
from a fitness or objective function defined within the algorithm according to the 
optimization goal. 

The simplest way to evaluate the solution's effectiveness is through a mathe­
matical function, with variables directly encoded in the genotypes (Husbands, 2007). 
In other cases, it is necessary to build a model of the phenotype and then assess its 
value. 

In the field of music generation, fitness evaluation is one of the most crucial 
steps. Sometimes, this evaluation is performed subjectively by musicians, but more 
often, an automated evaluation is attempted. Individuals can be assessed by compar­
ing them to a target solution or analyzing various aesthetic and musical parameters. 
Using human judgment as the fitness measure, known as aesthetic selection or in­
teractive evolution (Husbands, 2007), is problematic because it is time-consuming, 
subjective, and hence possible only for a limited number of generations. The selected 
individuals act as parents to the next generation. 

After the selection process, the creation of a new generation individuals takes 
place. Depending on the algorithm, some or all individuals in the current population 
may be replaced by offspring. In spatially distributed populations, only individuals 
within a certain neighborhood might interact during the genetic operations, affecting 
the choise of individuals to replace. 

3.1.3 Selection methods 

After a fitness evaluation is made, there are different ways to select the individuals 
for the new generation. Usually, a probability element is added in this process, so 
the fittest individuals ("parents") are more likely to pass their information to the 
new ones (their "offspring"). 

An method that is widely implemented is the roulette selection, where each 
member of the population is assigned a probability of selection based on its relative 
fitness value (its fitness value divided by the total population fitness) (Husbands, 
2007): the parents are then selected according to these probability values. This 
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mechanism sometimes converges prematurely to a solution that is just relatively 
optimal. 

Another selection method is the rank-based selection: the population is or­
dered according to the fitness values and selection is then performed following a 
pre-determined probability distribution (Husbands, 2007). 

3.1.4 Genetic operators 

Variation, continual improvement and innovation when creating new individuals 
are secured by genetic operators, which are specific for every algorithm. The two 
operators that are used almost in every procedure are crossover and mutation. 

Crossover involves choosing one or more points and creating a new individual 
(offspring) as a combination of different parts of the preexisting individuals (par­
ents). These parts are made by dividing parents using crossover points. The number 
of children created by two parents can change, but the simple crossover gives two 
offspring individuals from two pre-existing ones. 

Mutation on the other hand takes a randomly chosen element (gene) of an 
individual and changes it according to a probability value. The value of the mutating 
element can vary according to the mutation typology implemented. For example, it 
can take any value from all the possible values of genotypes or a value close to the 
original one. 

Other operators are for example inversion, which is an operator that reverses 
a section of a genotype, translocation, which moves parts of a genotype to another 
place or deletion, when the length of a genotype needs to be shortened. 

3.2 Genetic Algorithm 

Genetic algorithm (GA) is a population based search algorithm, where a new pop­
ulation is iteratively created by selecting the fittest elements of the previous one. 
To do so, the algorithm iteratively applies genetic operators on individuals present 
in the population. These operators are: selection, crossover, mutation, and fitness 
function computation. Each element of the population is called chromosome and 
has often a binary form (Katoch, 2021). The binary encoding provides faster im­
plementation of the operators, but it is appropriate only when the conversion from 
candidate solution to binary strings is not computationally too complex. 

When a population is initialized each element of the population is evaluated 
according to the fitness function. The fittest individuals are then selected and vari-
ated by the genetic operators of crossover and mutation. The number of offspring 
individuals obtained by this variation process can vary. Not all individuals are vari-
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ated at every iteration: the crossover and mutation happen only according to a 
probability value that is defined during the initialization of this algorithm. 

The initialization of the population can occur in different ways (see Fig. 11), 
but the most usual one is a random initialization (Kochenderfer, 2019). 

Fig. 11: Initial population using a uniform hyperrectangle, a zero-mean normal 
distribution and Cauchy distribucion (C = [0,0], a — 1) 

3.3 Probabilistic grammatical evolution 

Grammatical evolution (GE) is an evolutionary algorithm that employs grammars 
as the central element of its implementation. Grammars define how elements (such 
as programs) can be constructed from constituent parts by specifying how variables 
and operators can be legally combined to create elements with desired characteris­
tics, like executable code (Ryan, 2018). According to Chomsky's theory, there are 
different types of grammars, each capable of producing specific types of languages. 
Most evolutionary computing systems, including GE, use Context-Free Grammars 
(CFGs), which correspond to Chomsky's Type-2 grammars. 

Secondly, grammatical evolution represents genotypes in the form of linear 
strings (binary or integers). These are "mapped" to phenotypes, which are actual 
possible solution to the problem, according to the defined grammar's tules. In the 
grammar the relationships between variables and operators are specified. Therefore, 
a grammar-based approach enables to constrain the solution space, making easier 
the control over the creation process (Fredericks, 2023). 

These algorithms have a modular nature, thanks to which they can be adapted 
to any kind of application. Each structural unit of G E can be set as needed (Fig. 12): 
the fitness function, grammar, search engine and the mapping can all have any form 
(Ryan, 2018). 
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Fig. 12: Modular G E scheme from (Ryan, 2018) 

3.3.1 Grammar 

Grammars are a set of rules and symbols that determine how the resulting elements 
will look like. To define a grammar, there must be an "alphabet" V, with all the 
symbols necessary to build a grammar and sequences according to its rules. The set 
V is called free monoid generated by the set V and consists of all finite sequences 
of symbols (words, strings, denoted by v") in V , that is (Pettorossi, 2022): 

Moreover, the set V+ consists of all non-empty sequences from the alphabet V, 
that is V+ = V — {e}. A grammar is defined as 4-tuple G = {T, N, P, S}, where 
(Pettorossi, 2022): 

• T is the set of terminal symbols, which are part of the solution after parsing 
• N is the set of non-terminal symbols, such that T fl TV = 0 
• A set of productions or rules P, each pair [a, (3} being denoted by a —>• j3, 

where a e V+ and (5 e V*, with V = TUN 
• A start symbol S or axiom 

Each grammar defines a language L: a set of all sequences of terminal symbols, 
derived from the starting symbol S. 

V = {vi,V2,vn\\n > 0 and for i — 0 , 1 , n , Vi e V} (1) 

L(G) = w\S -^q w, where w G T* (2) 
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where —>q represents the reflexive, transitive closure of the relation —>a, defined as 
(Pettorossi, 2022),: 

for every sequence a G V+ A ß, 7 S G V* (3) 

jaS —> jßS if there exists a production a —>• ß in P (4) 

A language is defined as Context-Free, if it is of type 2 according to the Chomsky 
Hierarchy, that means that for every production rule of that language: 

->• ß, where a <E N and ß G V + (5) 

For example, a Context-Free grammar G = {NT, T, P, S} can be defined as 
follows: 

NT = E,0,E,N 

T = 0,1, 2,3,4,5,6,7,8,9, + , - , * , - (6) 

S = N 

The production rules P of this grammar are: 

E ->• EOE\N 

0 - y + | - | * | - r - (7) 

A" ->• 0|1|2|3|4|5|6|7|8|9 

Languages created by Context-Free grammar are usually presented in the 
Backus-Naur form (BNF), which is a specific syntax for defining production rules. 
For example the Type 2 grammar from Eq.7 will have the following B N F form: 

< Start > 

< Expr > 

< Op> 

< Num > 

< Expr > 

< Expr >< Op >< Expr > \ < Num > 

0|1|2|3|4|5|6|7|8|9 
The Backus-Naur form is used in programming languages when implementing gram­
mars. 

In Probabilistic Context-Free Grammars, to these elements in the tuple is 
added a set of probabilities "Probs" associated with each production rule: G = 
{T, N, P, S, Probs}. These probabilities are changed after every generation, accord­
ing to the rule's usage in the previous ones. The rules used to create the sequences 
that have better fitness scores, will have in the next generation a higher probability 
value (Megane, 2022) depending on the chosen value of the learning factor. 

35 



VENDRAME, Katia. Music composition using Al. 

3.3.2 Genotype to phenotype mapping 

The mapping process is made of derivation steps and can be visualized using syntax 
trees. 

1. A genome in the form of string of characters (codons) in the input to the 
mapping process 

2. The codon will be replaced by that rule, which is in the place number resulting 
from the operation: modn(codon), where n is the number of available rules for 
that symbol. For example, if the codon is 45 and an operator from the grammar 
defined in Eq. 8 has to be chosen, mod4(45) = 1, which means we'll chose the 
second rule, in this case the operator <->. 

3. This process continues, consuming a codon for each choice. 
4. If there are still rules to be mapped and no codons available, new ones will be 

added, or that individual is abandoned (this is called the wrapping process). 

The mapping process for Context-Free grammars can be represented as a 
derivation tree, with every derivation of each symbol (word) from the Start symbol 
S (axiom). 

As an example, consider the following derivation from the grammar presented 
in Eq. 8 (Megane, 2022): 

Codons Derivation 

— < Start > 

12modi = 0 < Expr > 

46mod2 = 0 < Expr >< Op >< Expr > 

35mod2 = 1 < Num >< Op >< Expr > 

22modio -= 2 2 < Op >< Expr >< Op >< Expr > 

15mod4 = 1 2 — < Var >< Op >< Expr > 

88modio = = 8 2 - < 8 >< Op >< Expr > 

52mod4 = 0 2 - 8 + < Expr > 

27mod2 = 1 2 - 8 + < Num > 

97modio = = 7 2 - 8 + 7 

(9) 

The parsing tree diagram for this derivation process is presented in Fig. 13: 

36 



Fig. 13: Derivation tree for the mapping process 

When to this grammar probabilities are added, the mapping won't be based 
on the result of the mod operation, but on the probability range of each rule. There­
fore, initially to every production rule a probability range is assigned. For example, 
if there are two rules and we want to use the first one with 80% of probability, 
the probability ranges will be (0; 0, 8] for the first one, and (0, 8; 1] for the second 
one. The Probabilistic Context-Free equivalent to the grammar in Eq.7 will have 
the following form: 

Rules 

E ->• EOE\N 

O ->• 

TV —• 0 111 2 | 3 | 

4 | 5 | 6 | 7 | 

8 | 9 

3.3.3 Search engine 

Probability ranges 

(0; 0,7] | (0,7; 1] 

(0; 0, 25] | (0.25; 0, 5] | (0, 5; 0, 75] | (0, 75; 1] 

(0; 0, 05] | (0.05; 0, 3] | (0, 3; 0,45] | (0,45; 0,47] | 

(0,47; 0, 5] | (0,5; 0, 6] | (0, 6; 0, 75] | (0, 75; 0,85] 

(0, 85; 0,9] |(0,9; 1] 

(10) 

The choice of the search engine can determine the quality of the algorithm imple­
mentation. There are multiple possibilities that have been used, from traditional 
evolutionary algorithms like Particle Swarn Optimisation, Simulated Annealing, Dif­
ferential Evolution, to random search or geometric semantic searches (Ryan, 2018). 
The search engine comprehends an initialisation of the data, an optimisation algo­
rithm and genome encoding. In the case of evolutionary algorithms the behaviour 
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of search operators (e.g. crossover, mutation) is crucial, therefore needs to be set to 
best meet the needs of the specific application. 

3.4 Application in music 

In music, evolutionary algorithms have been experimented with in two main ar­
eas: music composition and sound design. In music composition, these algorithms 
can continue pre-existing melodies, compose pieces in specific styles (e.g., Bach's 
cantatas), or generate entirely new material. Music theory itself is inherently algo­
rithmic, relying on harmonic rules, counterpoint, and phraseology. However, these 
rules cannot be entirely translated into machine learning algorithms because music 
also relies on the creative ideas that are fundamental to each piece. 

The strength of evolutionary algorithms lies in their controllable and guided 
generative processes, making them suitable for encoding musical rules akin to a 
composer's work. However, there is a risk that these algorithms might produce 
overly rule-based outputs, resembling composition exercises rather than genuine 
musical compositions. While this approach can be useful as a tool to aid composers 
by handling some of the craftsmanship that can slow down the creative process, it 
can stifle creativity if the aim is to produce new music. To create truly original 
music, it is essential to preserve elements of "the unexpected," a "sense of direction," 
and "fantasy." The explorative and stochastic nature of evolutionary algorithms can 
facilitate this creative process by not strictly defining the search space (Husbands, 
2007). 

Musicological studies have analyzed composition rules, forms, and schemes 
from various historical periods. Until the early 20th century, composers used these 
predefined forms as a foundation for creative experimentation. This historical con­
text makes it challenging to use these musical forms as ultimate models for evolu­
tionary algorithms. 

In sound design, evolutionary algorithms are used for sound synthesis or ef­
fects modification, aiming to create new sounds or optimize existing ones. However, 
these applications often demand high computational resources and may yield sub-
optimal results, leading to the preference for neural networks. In this domain, sound 
spaces can be explored either within constraints or freely, depending on the desired 
outcome. 

A common issue reported by practitioners of computer-based music approaches 
is a lack of overall musical energy or flow, resulting in a lack of global coherence 
(Husbands, 2007). This problem arises because these algorithms are not inherently 
time-based. One potential solution is to introduce rules that create long-term rela-
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tionships and spatiotemporal structures, such as using a chemical oscillator rule 
a cellular automata model (Miranda, 2000). 
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4 N E U R A L N E T W O R K S 

m 

Neural networks are employed to simulate various functions according to defined 
objectives. Presently, much of the research on neural networks used in music com­
position focuses on computationally and memory-intensive tasks such as data pre-
processingaATsuch as labeling and data cleaning (Jin, 2020). 

As observed in Chapter 2.2, over the last decade, many neural networks 
designed for music composition have integrated architectures like generative adver­
sarial networks (GANs), long short-term memory networks (LSTMs), convolutional 
networks (CNNs), actor-critic (AC) networks, among others. In the subsequent sec­
tions, we delve into the fundamental structures of these networks, elucidating how 
music composition benefits from their specific characteristics. 

4.1 Generative adversarial networks (GAN) 

Generative adversarial networks (GANs) are capable of learning high-dimensional 
distributions, which are challenging to model explicitly due to their complexity. 
Instead, GANs learn these distributions implicitly from the provided datasets, such 
as images, audio, and more. A basic G A N consists of two neural networks that 
aim to optimize opposing loss functions. Therefore, the main components of these 
networks include the network architecture, the loss function, and the optimization 
algorithm (Saxena, 2021).. 

The two networks employed are the generator and the discriminator: the 
former crafts samples, while the latter distinguishes between generated samples and 
real data, as depicted in Fig. 14. Additionally, two distinct loss functions are uti­
lized. The discriminator's loss function minimizes the negative log-likelihood for 
binary classification, whereas the generator's maximizes the likelihood of the gener­
ated samples being deemed authentic (Saxena, 2021). Optimization entails tackling 
a minmax problem, often addressed using gradient-based algorithms, particularly 
Simultaneous Gradient Descent. These networks collapses if the min-max solution 
works differently than the max-min: this way the generator creates samples that are 
constantly rejected by the discriminator. 

In recent times many alternatives to the basic G A N model have been pro­
posed: new architectures to make the training easier, different loss functions to 
reach a better parameters' stability and convergence and sometimes also for the 
optimization algorithm a different gradient descent method is used (Saxena, 2021). 
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Fig. 14: Basic G A N architecture (Saxena, 2021) 

4.2 Long short-term memory networks (LSTM) 

Long-short term memory networks can generate music sequences based on prob­
ability values: they are used in combination with C N N networks, that work as 
discriminator (Jin, 2020). These networks are a modification of R N N networks that 
can keep constant memory over a longer period of time thanks to the gating mech­
anism (Fig. 15). A n L S T M cell separates the previous output (ht) from its memory 
state (the cell state, ct) (JAZdrzejewska, 2018). The cell state can only be modified 
at the forget gate, where previous values are selectively discarded, allowing new data 
to be added. This addition of new data is managed by the input gate, which controls 
which new candidates will be incorporated to prevent frequent modifications of the 
cell state. In the final gate, the output gate, the cell state value is normalized using 
a hyperbolic function, and a mask determines the final output of the L S T M block 
for the given time step. This output also serves as the hidden state for the next 
time step (JAZdrzejewska, 2018). 
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Fig. 15: Scheme of the gating mechanism of a L S T M network (J^drzejewska, 2018) 
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5 T H E M U S I C C O M P O S I T I O N P R O C E S S 

m 

5.1 Artistic composition 

The Czech composer Leoš Janáček described the composition process as perceived 
by the music composer as involving assimilation, apperception, association, and 
reproduction. Assimilation involves perceiving a sound in nature, which is a blend 
of many tones creating its timbre. Once the composer assimilates this sound, they 
internalize it by noting its length (rhythmic value) and experiencing its beginning 
and end. Next is the process of association, where this note is linked with the staff 
and a key signature. Reproduction involves playing the note in its key, enabling the 
composer to associate it with the staff, potential movements, and a key signature. 

Composing music, therefore, is a process of internalization and association. 
Internalization begins with whatever captures the composer's attention or imagina­
tion. Following this is the process of reproduction, which can be based on previous 
creations (musical interpretation) or the creative reproduction of the composer's as­
sociative process. Composition is thus based on compositional notes that express 
emotions, an "affective stream," and simultaneously react to these stimuli. Accord­
ing to Janáček, composing should merely visualize moods and movements, with 
chords seen as symbols: "compositional work should achieve the speed of musical 
imagination," allowing moods alone to drive the composing process (Janáček, 2020). 

When discussing music, we often use terms like "musical piece," "track," 
"opus," etc. Listening to or playing music is always contextualized by specifying 
which "part" of the music is being referred to. Music is divided into pieces, which 
are themselves structured into smaller sections, continuing this pattern. This divi­
sion stems from a binary interpretation of music (one part "A" being different from 
another part "B"), leading to binary or ternary musical forms (e.g., A B A ) (Cook, 
1998). These parts, in any genre or historical labeled with letters, numbers, 
or names reflecting linguistic syntax such as motives, phrases, and periods. In graph 
theory terms, almost every musical piece can be represented by a tree structure. 

Western music notation, on the other hand, reflects the Cartesian system: it 
is a bidimensional representation of pitches over time. Thus, music appears to have 
two dimensions: a spatial one (describing its structure) and a temporal one (describ­
ing its flow in time). Correspondingly, music appreciation can also be considered 
to have two dimensions: one based on the sensory, temporal aesthetic value of a 
musical piece, and the other reflecting the aesthetic of musical form from a Kantian 
perspective (Cook, 1998). The latter, called "structural listening," reflects cultural 
and traditional listening habits. Charles Rosen refers to this as "inaudible music": 
musical form that is often not translatable into sound but is perceived through cre-
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ative, musical imagination (Rosen, 1995). Janáček describes this significant aspect 
of music as its "residual sense," and the cohabitation of these two dimensions as a 
creative force, or "musical feeling" (Janáček, 2020). This is akin to the way the value 
of spoken words lies in their meaning, not their sound, with understanding coming 
from the intellect. Historically, many experiments have been based on this concept, 
from the notation of Ricercare by Carl Philipp Emanuel Bach in 1747 to the In­
ner voice written by Schumann in his Humoreske. Ignoring this internal experience 
would remove the "excitement" derived from listening to music (Janáček, 2020). 

Theories from musicologists like Schenker or Rosen serve as "listening man­
uals," providing an aesthetic vocabulary for structural listening, typically applied 
to specific music genres. These theories can be used to compare different musical 
pieces and genres. 

5.2 Musical analysis 

Analyzing musical works involves asking questions like "How is a piece built?" and 
"How does a piece work?" (Mastropasqua, 1998). According to the musicologist 
Mastropasqua, music comprises "perceived structures" and "designed structures." 
These designed structures are part of the composer's strategy but aren't immedi­
ately perceived by the listener and need to be illuminated through analysis. The 
relationship between what the listener perceives and what the composer designs is a 
central theme in musical analysis, distinguishing contemporary from modern musical 
styles. Starting with the compositions of Schoenberg and Webern, the focus shifted 
from the perceived musical structures to the composer's designs. Understanding the 
divergence and relationship between these structures is crucial for interpreting 20th-
century music. Before the 20th century, there was a direct correlation between the 
music perceived by the listener and the structure intended by the composer, with 
the perceived music being a consequence of the underlying compositional structure 
(Mastropasqua, 1998). 

In tonal music, this fundamental structure was described by H. Schenker, 
whose theory reveals a unique harmonic and melodic structure spanning the entire 
piece: the tonic (I) moving to the dominant (V) and then returning to the tonic at 
the end. Every composer and musical style expands and varies this structure but 
never abandons it. For example, in Fig. 16, two chord analyses of the first part 
of Bach's C major prelude are presented, and in Fig. 17, Schenker's fundamental 
structure of the same piece is shown. At the beginning of the 20th century, music 
composition took a different direction: atonality. Atonal music replaced the tension 
structure of tonic and dominant harmony with a structure of tensions and resolutions 
generated by choices of sounds, rhythms, or other "performative" effects. 
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Fig. 16: Harmonical structure of Bach's prelude in C major (bars 1-19) (Cook, 1998) 

Fundamental StuJurî  

Fig. 17: Fundamental structure of Bach's prelude in C major (bars 1-19) (Schenker, 
1969) 
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Structural analysis in tonal music is a deductive process, relying on a pre­
viously known form. In contrast, analyzing atonal music requires an inductive ap­
proach, where relationships must be discovered, often leading to subjective analysis 
based on potentially incorrect premises. Experiences analyzing atonal music, such as 
Webern's compositions, have shown that understanding a piece can come solely from 
listening, without the need for structuralism. However, searching for the structure of 
a musical piece offers an intriguing study of the relationship between the sensory and 
logical dimensions, which has fascinated many modern composers (Mastropasqua, 
1998). 

H. Schenker developed an analytical system to analyze music and define its 
"Ursatz," or fundamental structure. Schenker viewed a musical piece as a "large-
scale embellishment" of a simple harmonic structure. As can be seen in Fig.18, 
his analysis comprises three main layers: the upper line (Urlinie) or foreground 
(Vordergrund), which resembles the score of the piece; the structural graph or mid­
dle ground, showing the movement of harmonies and melodies and describing how 
fundamental elements connect; and the deep background, or "Ursatz," reflecting the 
core harmonic and melodic structure of the piece (Cook, 1998). 

The aim of Schenkerian analysis is to reveal how people listen to music, un­
covering the structure in which a composition's unique qualities are hidden: the 
relationships between melodies, motives, ornaments, and the Ursatz in the back­
ground. This analysis is particularly effective for German and Austrian music of 
the 18th and 19th centuries (e.g., composers like Bach, Beethoven, or Schubert), 
but it doesn't fit as well for Italian, French, or Russian music of the same period, 
reflecting Schenker's aesthetic sensibility. Schenker searched for the main direction 
in musical pieces, the progressive harmonic and melodic movement towards a climax 
and resolution, which is not present in every musical genre. For example, Debussy's 
music creates static "sound environments," refusing to give tonal direction to many 
compositions and not seeking organic coherence through harmonic structure. Thus, 
Schenkerian analysis doesn't describe Debussy's compositions well (Cook, 1998). 

The effectiveness of the Schenkerian method depends not on its principles but 
on the conventions the analyst declares before starting the analysis. The process 
of iteratively simplifying the structure to uncover its core relationships remains a 
valuable tool for musicologists. For instance, in Fig.??, an analysis of Webern's 
Bagatelle op. 6 uses Schenker's structure but starts from the concepts of tension 
and resolution rather than harmonic bonds between musical chords and phrases. 
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Fig. 18: The analysed structure of Webern's Bagatella n. 2 (Mastropasqua, 1998) 

5.3 Melody synthesis: an automatic music composition's method 

Janáček describes piano music composirion as a generation of justified rows of tones 
that become melodies thanks to their different strengths. He explains from a har­
monic point of view how composers do not have to write complete chords, but 
only "melodies justified by dynamic relations" (Janáček, 2020). A n example of an 
"arpeggiato" chord which makes a melody can be seen in Fig. 19. 

Fig. 19: Second measure of Chopin's Polonaise-Fantasie op. 61, an example of an 
arpeggiato chord (Chopin, 1846) 

Row of tones make a voice when they possess some "musically expressive 
elements", which according to Janáček can be connected to the harmony, rhythm 
or dynamics used. Melodic voices can be less coherent, resolution, disturbance and 
appeasement often relate to other tones than the melodic ones, so they can be more 
free. 

According to Riemann, melodic voices have ortography rules they need to 
fulfil to intensify impressions and feelings (Riemann, 2014). Janáček reacts to this 
concept of melody with a "new direction in music theory", which tries to associate 
the connecting forms in the melodies with the elements of musical syntax - the chord 
connections. According to Janáček harmonic resolutions are present in melodies too 
and become the "connecting forms" of the melody. For example an interval of minor 
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second, which played as a chord is dissonant, in a melody is a "resolution of the minor 
second to the unison". 

Chopin's second's piano sonata Finale is a good example of how a melodic 
voice creates connecting forms (harmonic connections) so strong, it stands on its 
own (Fig. 20). 

FINALE 
Presto 

Fig. 20: Opening of the Finale of Chopin's Piano sonata in b-flat minor op. 35 
(Chopin, 1839) 

Other fundamental principles of music harmony are outlined in JanAaADek's 
new theory of music, which presents rules for connecting forms and relationships be­
tween intervals. For example, it states that "octaves are most effectively disturbed by 
major sevenths" and "major sevenths resolve most effectively into octaves." Accord­
ing to Helmholtz's scale of intervals, the consonance of intervals gradually diminishes 
(Fig. 21): 

interval dissonance 

1 8 5 k 6 3 i3 t6 2 t7 n4 7 t2 

Fig. 21: The scale of interval consonance defined by Helmohltz (Janáček, 2020) 

This theory of interval connections in melodies is incomplete without con­
sidering the rhythm: the character of connections between forms depends on the 
accentuation, given by the rhythmic shape of the melody. Rhythm gives movement 
to tones, Janáček says that every musical style has its own prominent figurations 
of "chaotic moments within connecting forms", which he calls groupings of twine 
(in czech: "spletny") (Janáček, 2020). One example of this twine can be seen in 
Chopin's Polonaise (Fig. 19), where the arpeggiato used to create a connection be­
tween distant tones and harmony. 
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6 A P P L I C A T I O N S 

6.1 Melody structure: musical introduction 

Melodies have two main components: pitches and time elements. The most common 
tuning system in western music is called the equal temperament: it divides the octave 
into 12 equal parts on a logarithmic scale. The frequence ratio between two adjacent 
parts is constant and equal to: 

fx±i = 12/2 (11) 

Jx 

where fx is the frequence of note and fx+i is the frequence value of the next note, 
exactly a semitone (1/12 of an octave) higher. Thus, note frequencies form a geo­
metric series and every note frequency can be calculated starting from the reference 
note. The reference is usually the A note at 440 Hz, but it can change according to 
the instrument in question. Hence the equation to calculate a note frequency is: 

/ , = / r • ( n r ~ r (12) 

where fr is the frequency of the reference note (in the case of a standard piano 
tuning it is 440 Hz) and r is the position of the reference note, in this case the A 
(440 Hz) is the 49th note of the piano, so r = 49 and x is the position of any other 
note of which we want to determine the frequency (for note positions on a piano 
keyboard refer to Fig. 22). 
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Fig. 22: Piano keys with their MIDI number 

Frequencies vary for every instrument and tuning, they therefore don't uni-
vocally determine a musical note. When dealing with western musical compositions 
notes are usually defined by numbers. Nowadays the most common number notation 
for notes is the MIDI numbering, which is used in MIDI messages. Midi messages 
form ".mid" musical files, which are widely used for music reproduction. Fig. 23 
represents the frequencies and MIDI numbers of the notes of a piano. In classical 
music the other instruments can play different ranges of these notes. 

There are two time elements of a melody: the meter and the rhythm. To­
gether, they build a succession of beats. The meter is equal for the whole melody 
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Note frequencies in the equal temperament Midi note numbers 
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Fig. 23: Piano notes and their frequencies according to the equal temperament 
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(or for parts of it), it determines its accentuation. For example, a 3/4 meter can be 
used for the "waltz" accentuation, where there are 3 beats in every measure with the 
first one being the strongest one dynamically (the intensity of sound will be higher 
for the first beat). 

Next to the "accentual shape" (Janáček, 2020) of a melody, there is also 
the "rhythmic" shape, which depends on the length of every note in the melody. 
The rhythm is therefore made of each note's length. In classical music these notes' 
lengths are categorized according to the number of beats (or the beat fractions) they 
last. The main notes' lengths and their names are shown in Fig. 24. 

name meter: 4/4 

1 4 beats 

1/2 

1/4 

1/8 

1/16 

1/32 

1/64 

2 beats 

1 beat 

1/2 beat 

1/4 beat 

1/8 beats 

1/16 beats 

Fig. 24: Most common notes' lengths in classical music 

In MIDI files, notes' lengths are written as the number of ticks that distance 
one event from the other (Fig. 25). 

M i n u t e s 

B e a t s J J J J J J J J 
T i c k s 1 1 i 1 1 1 1 1 1 1 1 1 1 

4 b e a t s p e r m i n u t e ( B P M ) 

3 t i c k s p e r b e a t 

Fig. 25: Relationship between meter beats and MIDI file ticks (Bj0rndalen, 2023) 
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The number of ticks in each bet is set at the beginning of the MIDI track. In 
Fig. 25 is presented another time measure, the B P M value, which determines the 
speed of the metric beats per minute. 

6.2 Analysis Tool 

A tool that extracts features from MIDI datasets was designed to visualize the main 
characteristics of a dataset and compare them to others. It was intended as a tool for 
composers and musical students, as well as for people without a musical education, 
that want to understand better the main differences between composer's styles and 
musical genres. 

In this implementation, we use MIDI files, which include information about 
pitches, their durations, and the velocity with which they are struck, determining 
their intensity. Using the provided dataset, this tool analyzes the structure of each 
track and examines the following musical features. 

6.2.1 Notes' density and variety 

The first feature extracted from every track of the given dataset is the notes' dis­
tribution, as can be seen in Fig. 26, the density of the given note's occurrence is 
determined by the color at the note number position (x-coordinate). The y axis 
determines from which track the values are taken. 

notes 

Fig. 26: Heatmap of the notes' density in each track 

In Fig. 26 we can see that the notes' range and the notes' distribution, which 
can be seen in detail in the second graph resulting from the analysis, Fig. 27. This 
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histogram shows the mean distribution of each note, in other words the frequency 
with which they are repeated (proportional to the length of each track). 

40 50 60 70 80 
note midi number 

Fig. 27: Histogram of notes' mean distributions in the dataset 

6.2.2 Interval density and variety 

Besides the notes' range and occurrence, what defines a musical style is often the 
type of intervals that are mostly used. This is why the second feature extracted 
from the dataset is the distribution of intervals among the tracks. 

Musical intervals determine the distances between notes, each interval name 
refers to a precise number of semitones, as can be seen in Tab. 1. The names of these 
intervals come from the tonality that they are in, i.e. if the given interval can be 
found in a major scale, we refer to it as a "major interval" and vice versa for minor 
scales. The intervals that have a minus or plus sign are augmented and diminished 
intervals. Note that the number of semitones in each interval corresponds to the 
difference between the interval notes' MIDI numbers. In Tab. 1 the intervals used 
in this work are showed. 
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Tab. 1: Table of used interval and the number of semitones they span 

symbol name n. of semitones 
I Perfect unison 0 
Ilmin Minor second 1 
Ilmaj Major second 2 
Il lmin Minor third 3 
Illmaj Major third 4 
IV Perfect fourth 5 
IV+ Augmented fourth 6 
V Perfect fifth 7 
VImin Minor sixth 8 
VImaj Major sixth 9 
V l l m i n Minor seventh 10 
Vllmaj Major seventh 11 
VIII Perfect octave 12 

In Fig. 28 a density distribution of the intervals types is shown and in Fig. 
29 the mean distribution values of each interval's occurrence are represented. 

intervals 

N / / / / * -1 ^ v W s S ^ 

interva 

Fig. 28: Heatmap of the interval densities 

An alternative representation of the most used intervals in the dataset, with­
out considering the modality (if they are major or minor) can be seen in Fig. 30. 
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Fig. 29: Histogram of intervals' mean distributions in the dataset 

Fig. 30: Interval types and their usage in the dataset 
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Lastly, the number of melodic patterns is analyzed: the histogram in Fig. 31 
shows the number of repeating patterns found in every track. As a melodic pattern 
a 4-notes melody segment is considered: if another same four notes segment is found 
in the track, the number of repeating patterns for the given track is increased by 
one. 

Melody patterns 

Fig. 31: A histogram showing the number of melody patterns 

6.2.3 Notes' durations density and variety 

As seen before, what makes a melody is also its rhythmic outline, which is the 
succession of note durations and metric accents. Metric accents depend on the meter 
of the piece and mostly don't change throughout the piece. Therefore, attention is 
paid to the notes durations. The durations' names used in Fig. 32 and Fig. 33 are 
described in Fig. 24. In the given dataset there are mostly notes that last a 0,0625 
fraction of a beat, corresponding to a 1/16, a sixteenth note. 

The rhythmic variety can be seen more clearly in the "Rhythmic variety" 
plot (Fig. 34), where the number of different notes' duration per track is plotted. 
The "Rhythmic patterns" plot (Fig. 35) of the same dataset confirms what can be 
seen in Fig. 34, as a high number of rhythmic patterns means a lesser variaty of 
notes' durations. The length of the parameters considers can be set according to 
the analyzed musical style and the length of each track. 
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note duration 

Fig. 32: Heatmap of the durations' density in each track 

0.30-

0.25 -

tu 

note duration 

Fig. 33: Histogram of durations' mean distributions in the dataset 



track track 

Fig. 34: Rhythmic variety plot Fig. 35: Rhythmic patterns plot 

6.2.4 Macrostructures 

Tonalities are the core of the equal temperament system and were fundamental to 
every classical music piece from the Baroque era to the 20th century. Therefore, 
it was essential to develop a tool capable of extracting information about tonal­
ities from the given datasets. Tonalities are closely linked to harmony rules and 
polyphony, which are beyond the scope of this work. As a result, an alternative 
approach to simulate tonality in simple monophonic melodies was necessary. It was 
decided to identify the tonality by considering the most recurrent pitch in a phrase 
(a melody segment of 4 measures), provided that the other most recurrent pitches 
were part of the same tonality's chord. 

For example, if the note most recurrent in a phrase was C and the second 
and third most recurrent notes were G and E, we considered this phrase being in 
the tonality of C (the modality wasn't analyzed, because that can be read from the 
interval analyses presented before - see Fig. ?? and Fig. ??). 

The result of this tonality search is a macrostructure representing the tonal 
center of each phrase, akin to Schenker's Urlinie. The goal was to develop an algo­
rithm capable of identifying the "skeleton" of the melody, following the principles of 
Schenkerian analysis. This result is depicted in Fig. 36, where each track (y-axis) 
shows the note values of the macrostructure (z-axis), and the x-axis represents the 
time length of each track. The corrisponding version in 2D can be seen in Fig. 37. 

From this representation we can evaluate the changing of the structure and 
its variety, the direction that the given tracks have and if they have one. This is 
useful most of all to the determine the main differences between musical genres, 
whereas the rhythm and pitch analysis is more indicated when looking for stylistic 
characteristics (e.g. when looking for the differences between Chopin's melodies and 
Bach's). 
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Fig. 36: Macrostructures of the dataset 

Macro structures (tonalities): 2D scatter plot 

Fig. 37: Two-dimensional macrostructure's representation 
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The second class of algorithms presented in this work utilizes analysis results and 
a given dataset to generate new melodies. Three approaches were tested: a gener­
ative genetic algorithm, probabilistic grammatical evolution, and a long-short term 
memory (LSTM) neural network. 

The genetic algorithm rearranges segments of the dataset's melodies, making 
it useful for creating "musical collages" of different genres or styles that meet specific 
musical requirements defined by the fitness function. 

The neural network was tested according to the literature presented in Chap­
ter 4. The strength of neural networks lies in their potential to generate new com­
binations based on a trained model. L S T M is the algorithm most akin to the music 
composition process, as composers seek new solutions based on their knowledge and 
the genre they wish to compose in. However, a key challenge with neural networks 
is the limited ability to direct the creation process once the network is trained. A l ­
though we can't directly control the "composer" within the neural network, we can 
preprocess the training data or select acceptable results through supervised learning. 

To address the neural network's limitations, a third approach was tested: 
probabilistic grammatical evolution. This method aims to closely monitor and con­
trol the generation process by providing not only a starting dataset but also a core 
structure to reflect. 

6.3.1 Melody composition using Genetic Algorithm 

The genetic algorithm was implemented according to the scheme showed in Fig. 
38: initially, an initial population is generated. Subsequently, genetic operators are 
applied to produce offspring individuals, and finally, a selection process chooses the 
fittest individuals to serve as parents for the next generation. 

Initial population and genetic operators 
The initial population was made of MIDI sequences: a maximal length was chosen 
and every melody was divided in equal parts containing the same number of MIDI 
messages. From the MIDI messages only messages of type "note_on", "note_off" 
and "time_signature" were chosen. 

At the end of this melody sectioning process we get melody segments of 
different sizes, implemented as list of arrays representing notes' pitches and lengths. 
The dynamics (the velocity parameter in MIDI messages) and the pedal changes 
were not considered. 
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Initial 
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CROSSOVER 

MUTATION 
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FITNESS 

evaluation 

SELECTION 

Fig. 38: Diagram of the Implemented Genetic Algorithm 
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For example the melody in Fig. 39 

Vivo e riäoluto IJ = ina h.. 1.' .N « tx.14 

Fig. 39: First melody of the Chopin's mazurka op. 17 n. 1 (Chopin, 1834) 

was converted into a list of arrays as is showed in Tab.2. 
These segments (chromosomes) form the population for the given generation. 

Then, these chromosomes are variated using the "one point crossover" mechanism. 
According to a given probability, the crossover takes randomly two parents and 
chooses a random point. This point breaks the original chromosome melody segment 
into two pieces according to the index given by the random point value. In Fig.40 
can be seen how it works if the point is the middle index of the melody vector. 

0 1 2 3 4 5 6 7 9 

5 6 7 9 0 1 2 3 4 

Fig. 40: Crossover scheme 

When the crossover has created enough individuals, the mutation of some 
of these individuals takes place. During the mutation a random element from the 
melody is chosen and replaced by another random one. 

0 1 2 3 4 5 6 7 8 9 

0 2 5 6 7 8 9 

Fig. 41: Mutation scheme 

After the individuals are generated the fitness function determines the best 
of them that will become the parents for the new generation. 

The fitness function 
The fitness function was designed to evaluate various musical characteristics desir­
able in a melody from the Classic or Romantic period. These characteristics are 
quantified using specific functions and then linearly combined according to their 
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Tab. 2: Example of the first segment of melody from Chopin's mazurka op. 17 n. 

type numerator denominator 
['time_signature' 4 4 0] 

type pitch time velocity channel 
['note_on' 66 28 63 0] 
['note_on' 68 98 52 o] 
['note_off' 66 18 64 o] 
['note_on' 66 17 62 o] 
['note_off' 68 21 64 o] 
['note_on' 65 10 63 o] 
['note_off' 66 2 64 o] 
['note_off' 65 14 64 o] 
['note_on' 66 0 70 o] 
['note_on' 68 5 55 o] 
['note_off' 66 3 64 o] 
['note_off' 68 19 64 o] 
['note_on' 66 97 55 o] 
['note_on' 69 1 66 o] 
['note_off' 66 12 64 o] 
['note_off' 69 100 64 o] 
['note_on' 66 15 61 o] 
['note_on' 69 3 61 o] 
['note_on' 71 92 55 o] 
['note_off' 69 16 64 o] 
['note_off' 66 14 64 o] 
['note_on' 69 12 55 o] 
['note_off' 71 19 64 o] 



D VENDRAME, Katia. Music composition using Al. 

importance. The resulting fitness function has the following form: 

F(f(xm), f(xr), f(xrv), f(pi), f(xe)) = 

= af(xm) + bf(xr) + cf(xrv) + df(pi) + ef(xe) (13) 

Each of these functions, denoted as / , is designed such that their trend accurately 
represents how the given parameter should manifest in the melody. It is assumed 
that if their value exceeds 15, the parameter is sufficiently represented in the melody. 
Ideally, the optimal solution to the problem will then have a fitness evaluation equal 
to: 

/* = (a + b + c + d + e + g) • 15 (14) 

where the coefficients a, b, c, d, e, g are chosen according to the user's musical prefer­
ences. 

Melody patterns 
This parameter calculates the number of repeating 3-notes patterns in the melody 
(it doesn't check the rhythm of these patterns). If the pattern is present in the 
melody at least two times, the fitness function is increased by one. That means that 
if the final number of repeating patterns is 10, there are 10 3-notes patterns that are 
present at least two times in the melody. This resulting number is then normalized 
according to the function: 

(-3xm + 12)2 

f{xm) = 15,7 • e (15) 

where xm is the number of repeating patterns. 

Rhythm patterns 

Similarly to the melody patterns, also the number of 3-notes rhythmic patterns, that 
are repeated in the melody segment at least two times, is calculated. This number 
is then normalized according to the logarithmic function: 

f(xr) = 5 • log(5 • xr - 55) + 13 (16) 

where xr is the number of repeating patterns. 

Rhythmic variety 

This parameter calculates the variety of note durations in a melody, the function 
used to normalize this number is the same as the function for calculating the rhythm 
patterns (Eq. 17), where xrv will be the number of different rhythm types: 

f(xrv) = 5 • log(5 • xrv — 55) + 13 (17) 

Time lengths are rounded time values derived from MIDI messages. These numbers 
represent the number of ticks that occur between one message and another in a MIDI 
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file, specifically between a "note_on" message and the corresponding "note_off"ss 
message for the same note pitch. When MIDI files are sourced from recordings 
of real musical performances, notes that should be the same length (e.g., quarter 
notes according to the sheet music) often have varying numbers of MIDI ticks. 
This is because performers rarely play notes with identical durations, especially 
when interpretational rubato is involved. Additionally, MIDI ticks have microsecond 
precision, so any variation in length between identical rhythms will be noticeable. 
Therefore, after calculating the duration of a given note in MIDI ticks, the number 
is converted to the number of beats that the note lasts (see the notes' duration 
diagram in Fig. 24). This conversion helps to significantly reduce the sensitivity to 
variations in note lengths. 

Interval variety 
What makes a melody interesting is often also the intervals of which it is made. To 
check this parameter an interval polynom was defined, in which different intervals 
have different weights: 

where the roman numbers indicate the number of times the specific musical interval 
has been detected in the melody segment at hand (V - perfect fifth, IV - perfect 
fourth, III - minor and major third, VII - minor and major seventh and II - minor 
and major second). Note that the intervals' weights, represented by the coefficients 
a, b, c, d, e can be set according to the desired output's characteristics. The number 
resulting from the interval polynom p is then normalized by the function: 

Ending 
The last parameter that is being checked is the interval distance between the start 
note of the melody and the last one, because melodies usually end in the same range 
as the starting note. 

where xe is the interval distance between the first and last note of the melody. 

6.3.2 Melody composition using Probabilistic Grammar Evolution 

The P S G E algorithm has three main components: the grammar definition, the gram­
mar evolution algorithm and the genetic search engine. The pseudo code showing 
the structure of the applied algorithm is presented in A l g . l . First, a definition of 
a grammar is necessary. The grammar defined for this application reflects the aim 
that the user wants to reach, the form of the possible solutions (the melodies we 
want to create in this case). 

Pi = a V + oIV + cVII + rJII + effl 

5 • log(5 • Pi — 55) 
(19) 

(20) 
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Algorithm 1 P S G E  

procedure main [population size, crossover_rate, mutation _r-ate, 
generations, dataset, grammar) 

for gen in generations do 
for i in population_size do 

codon = random (0,1) 
selected_rule = E X P A N D (symbol, codon, grammar, depth, max_depth) 
genotype = C R E A T E (genotype, symbol, grammar, depth, max_depth) 
genotypes, append (genotype) 

end for 
genotypes = crossover (genotypes, crossover _r ate) 
genotypes = mut8itioia(genotypes, mutation _r ate) 
for gen in genotypes do 

phenotype = M A P (gen, positions_to_map, symbol, depth, 
max_depth, grammar) 

phenotypes.8ippeiad(phenotype) 
end for 
for phen in phenotypes do 

parsed = PARSE(phenotype) 
MIDI = C O N V E R T (parsed, pitch_range) 

end for 
Fitness = E V A L U A T E ( M J D J , rules) 
Selected = SELECTION(/ i tness , rules, MIDI) 
Grammar = UPDATE(se/ec£eri, learning_f actor) 

end for 
end procedure 
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A classical music grammar 
The grammar used for this testing application reflects the structure of MIDI files, 
as the datasets given are made of files in MIDI format. Therefore, the start symbol 
of the grammar is: 

< Start > ::= < Meter >< + >< Sequence > (21) 

The meter being the accentual structure of the melody, as described in chapter 6.1. 
Following the meter definition, the recursive sequence generation begins: 

< Sequence > ::= < Note >< + >< Sequence > | 

< Intervals >< zip >< Rhythms >< + >< Sequence > 
(22) 

New elements are added to the sequence in two ways: either adding single pitches 
or appending an interval and rhythmic sequence of choice. The operator is a zip 
function that pairs every interval to a sequence of notes' durations (a rhythm). The 
resulting sequence of intervals and durations will be translated into pitches during 
the genotype to phenotype transformation. The pitches will be calculated from the 
pitches that precede. For example, if there is a G note and a sequence of [Ilmaj, V] 
intervals right after, the phenotype will be: G — A — E, because G — A form a major 
second (Ilmaj) interval and A — E form a perfect fifth (V) interval. 

Adding a pitch (< Note >) means defining a note, its octave and its duration: 

< Note > ::= < Tonality >< + >< Duration >< + >< Octave > (23) 

Notes aren't added to the sequence randomly; they reflect the tonality of the melodic 
segment. Certain notes are used more frequently than others because each note in a 
tonality has its own function and significance. For example, if a melody segment is in 
C major, the notes C and E form a tonic harmony, making them more frequent and 
important than notes like D or A, which primarily serve as passing or predominant 
harmonic notes in C major. Additionally, in C major, the note G is crucial. The 
G chord (comprising G, B, D, and F) functions as the dominant, creating tension 
and a sense of direction that is resolved only by the tonic chord. 

Thus, the tonality is first chosen according to a predefined macrostructure or 
the statistical information derived from dataset analysis. Then, pitches are selected 
based on a preset probability distribution among scale degrees (see Tab. 3): 

Note that the sum of the probabilities of each scale degree is not 1: that 
is due to the presence of chromaticisms in the choice of notes. Chromaticisms are 
made of notes outside the current tonality, they are used as melody embellishments, 
or to make harmonic modulations happen. The probabilities chosen in Tab. 3 are 
just for reference, they can be set freely according to the application and the user's 
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Tab. 3: Table of the tonal scale degrees 

Corresponding note 
Scale degree Name Probability in C major 
I Tonic 0.3 C 
II Supertonic 0.04 D 
III Mediant 0.15 E 
IV Subdominant 0.04 F 

V Dominant 0.15 G 
VI Submediant 0.04 A 
VII Leading tone 0.04 H 

Total : 0.76 

preferences. If the desire is to compose non-tonal music, higher probabilities will 
not be given to the scale degrees, but instead even probability values will be given 
to all the notes. 

Lastly, the terminal symbols of this grammar are all the musical parameters 
that will be needed to compile a MIDI file: the meter values, the pitches, the 
tonalities, the intervals, the rhythmic sequences, the notes' durations values and the 
octaves. These values are either extracted from a given dataset or given by the user 
and can have any form needed. For example if the aim is the generation of sound, 
the pitches won't be MIDI numbers but frequencies, and so on. 

On the other hand, the start symbol, operators and the non-terminals of this 
grammar are: 

Non Terminals ::= < Sequence >, < Meter >, < Octave >, 

< Note >, < Rhythms >, < Intervals > 

< Tonalities >, < Degrees >, 
(24) 

< Durations > 

Axiom ::= < Start > 

Operators ::= < + >, < zip > 

Probabilistic context-free grammar 
Probabilities are assigned to each rule to vary their outcomes according to the user's 
preferences or the parameters of the given dataset. If the starting point is a dataset 
and the goal is to generate melodies in a similar style, the probability values for 
each terminal are derived from the analysis tool's results (see section 6.2). These 
probability values are then incorporated into the grammar, with terminals defined 
based on the features extracted from the dataset during analysis: 
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1. The meters 
2. The octave ranges 
3. The time durations 
4. The tonalities 
5. The interval sequences 
6. The rhythmic sequences 

The analysis returns for each parameter the most used elements and their proba­
bilities of occurrence and the algorithm takes these results and builds the grammar 
according to them automatically. For example, the grammar rule for interval se­
quences will be the defined as: 

< Interval Sequence >:: = 
< Firstlnterval >, 
< Seconalnterval >, 
< Thirdlnterval >, 
< Other Intervals >, 

prob: first int. prob. 
prob: second int. prob. 
prob: third int. prob. 
prob: other int. prob. 

A l l the other Non Terminal symbols will have a similar definition, except for the 
tonality symbol, which will be defined as follows: 

< Tonality >:: = 
< FirstTonality >< + >< Degree >, prob: first ton. 
< SecondTonality >< + >< Degree >, prob: second ton. 
< ThirdTonality >< + >< Degree >, prob: third ton. 
< OtherTonality >< + >< Degree >, prob: other ton. 

(26) 

And the following Degree rule has the form based on the information explained 
in Tab. 3. The degree rules don't compile only the scale degrees but all 12 scale 
notes, because it considers the possibility of chromaticisms. The symbol names are 
the numeric values of the distance between the resulting pitch and the tonality (its 
tonic note). For example, the symbol < 5 > means that the resulting note will be 
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5 semitones above the tonic (in case of C major tonality it will be the note F). 

< Degree >:: <+0>, prob: I prob. 
<+l>, prob: II prob. 
<+2>, prob: II prob. 
<+3>, prob: III prob. 
<+4>, prob: III prob. 
<+5>, prob: IV prob. 
<+6>, prob: IV+ prob. 
<+7>, prob: V prob. 
<+8>, prob: VI prob. 
<+9>, prob: VI prob. 
<+10>, prob: VII prob. 
<+!!>, prob: VII prob. 

(27) 

Grammatical Evolution 
Once the grammar is defined, it can be implemented in the grammatical evolution 
algorithm. First it is necessary to expand the grammar symbols, this is made by 
the generate expansion procedure (Alg.2 (Megane, 2022)): 

When the star symbol is expanded, the process of creating new individuals 
begins (Alg.3, (Megane, 2022)). During this process the genotype is generated by 
appending every expanded symbol and its probability value. This procedure is 
recursive: when a new symbol is added to the genotype, a new expansion with a 
new codon value takes place, resulting in new symbols to create individuals from. 
This process is continued until the symbol obtained is a terminal symbol. 

The genotypes obtained from the create procedure are then taken by the 
genetic functions of crossover and mutation. They are recombined during crossover 
according to the set crossover rate and then some of the elements are mutated 
according to the mutation rate (to know how the crossover and mutation works see 
section 6.3.1). 

After the genotypes are genetically processed, the genotype to phenotype 
mapping takes place (Alg. 4): 
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Algorithm 2 Generate expansion 

procedure E X P A N D (symbol, codon, grammar, depth, max_depth) > Expand 
grammar symbols according to codon's value 

if depth < max_depth then 
for element in grammar [symbol] do 

cum_prob + = element(prob) 
if codon < cum_prob then > Check the probability value 

selected_rule = element(rule) 
return selected_rule > Return symbol's expansion rule 

end if 
end for 

else 
rules = get_non_recursive rules(grammar [symbol]) > Function to get 

non recursive rules 
total_prob = sum(element(prob) for element in rules) 
for element in rules do 

cumprob + = el ement(prob)/total _prob 
if codon < cum_prob then: 

selected_rule = element(rule) 
return selected_rule > Return symbol's expansion rule 

end if 
end for 

end if 
end procedure 
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Algorithm 3 Create individual 
procedure C R E A T E (symbol, genotype, grammar, depth, max_depth) > Create 
an individual's genotype 

codon = random (0,1) 
genotype(symbol) .append(corion) 
selected_rule = expa,iad(symbol, codon, grammar, depth, max_depth) 
rules, a,ppeiad(selected_rule) 
expansion _symbols = grammar (symbol, rule) 
for symbol in expansion_symbols do 

if not is terminal(s|/m6o/) then > Check if symbol is terminal 
creaie(symbol, codon, grammar, depth, max_depth) 

end if 
end for 
return genotype > Return generated genotype 

end procedure 

Algorithm 4 Genotype to phenotype mapping 
procedure MAP(genotype, symbol, positions_to_map, 
grammar, depth, max_depth) > Get the phenotypes 

position = positions _to_map(symbol) 
if position >\eia(genotype(symbol)) then 

codon = random (0,1) 
else 

codon = genotype(symbol, position) 
end if 
selected_rule = expa,iad(symbol, codon, grammar, depth, max_depth) 
rules. a,ppeiad(selected_rule) 
expansion _symbols = grammar (symbol, rule) 
positions _to_map(symbol) + = 1 
for symbol in expansion_symbols do 

if not is terminal(s|/m6o/) then > Check if symbol is terminal 
phenotype + = symbol 

else 
phenotype + = map (genotype, symbol, positions to map, 

grammar, depth, max_depth) 
end if 

end for 
return phenotype > Return generated phenotype 

end procedure 
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The procedure of mapping is applied to each genotype until a phenotype 
representing the whole melody is created. At this point the phenotype is translated 
into a MIDI format musical file, that can be evaluated by a fitness function. Based 
on the results of the fitness evaluation the probabilities of the grammar rules are 
updated to get better ("more fit") melodies. The rules update procedure is showed 
in Alg. 5. 

Algorithm 5 Rules update 
procedure U P D A T E (grammar, selected_rules, learning _f actor) > Update the 
probability values in the grammar 

for recurrence in selected_rules(recurrence) do 
tot_prob + = recurrence 

end for 
for rule in selected_rules do 

rule_use = rule(recurrence) 
if rule_use > 0 then 

for % in grammar (rule) do 
if % in rule then 

new_prob =mm(prob + learning_f actor • rule_use/tot_prob) 
grammar (i,prob) = new_prob 

else 
new_prob = prob — learning_f actor • prob 
grammar (i,prob) = new_prob 

end if 
end for 

end if 
end for 
return grammar > Return updated grammar rules 

end procedure 

The learning factor updates the rules in two different ways depending on the 
fact if the rule was used in the mapping or not (Megane, 2022). If the rule was used, 
the following equation is used: 

rec' 
probi = vam(probi + A • —, 1) (28) 

where reQ is the number of occurrences of the given rule in the mapping and the 
J2kreck is thentotal sum of all occurrences. On the contrary, if the recurrence 
number is zero, the probability is updated according to the equation: 

probi = probi — A • probi (29) 
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Genetic operations: crossover, mutation and selection 
Mutation and crossover are applied to the genotype before mapping, that means that 
just the codons are modified. During crossover a segmentation of the genotypes and 
a recombination of its parts is realized: 

Before crossover 
Parent 1 Parent 2 

< Meter > [0.27] [0.53] 
< Sequence > [0.14, 0.32, 0.77] [0.45, 0.22, 0.67] 
< Duration > [0.65,0.18] [0.16,0.11] 
< Tonality > [0.93, 0.42] [0.39, 0.02] 

(30) 

After crossover 
Offspring 

< Meter > [0.27] 
< Sequence > [0.14, 0.32, 0.77] 
< Duration > [0.16,0.11] 
< Tonality > [0.39, 0.02] 

Mutation changes randomly some codons of the genome, according to a mutation 
rate that is preset by the user: 

Before mutation 
< Meter > [0.27] 
< Sequence > [0.14, 0.32, 0.77] 
< Duration > [0.16,0.11] 
< Tonality > [0.39, 0.02] 

(31) 

After mutation 
< Meter > [0.88] 
< Sequence > [0.14, 0.32, 0.77] 
< Duration > [0.16,0.53 
< Tonality > [0.39, 0.02] 

The selection of the fittest individual is made after the genotype to phenotype 
mapping and the translation of the phenotype into a MIDI file. That means that 
selection could be made in different ways, one of which could be a subjective selection 
process made by the author. In this work different variants of fitness functions were 
used. 
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Fitness function forms 
The fitness function can have any form depending on what the aim of the user and 
the musical genre in question is. In this case two main fitness function forms were 
used a combination of non-linear functions and a full-linear version. 

1. Linear combination of non-linear functions, with reference value of 15. 
2. Linear combination of linear functions 

The base form of the fitness function for every variant tested is the following: 

fitness value = fast + repeating_rhythms + rhythm_density + 

interval_variety + ending + mean_distance + 

high_low + rhythm_min + accents + note_variety 

In the case of the use of non-linear functions, exponential, goniometric, loga­
rithmic, and polynomial functions in order to get a value higher than 15 if the tested 
parameter is satisfied in the melody, as was done for the genetic algorithm (section 
6.3.1). The functions used in this case are variants of the functions presented in 
section 6.3.1 (see Fig. 42). 

Fig. 42: Plots of some of the functions used in fitness evaluation 

The variant that solely employs normalized fitness functions is intended to 
be more responsive to alterations. In this scenario, each parameter assessed by the 
fitness function is evaluated linearly: the coefficient is +1 if the parameter represents 
a desired characteristic of the melody, and -1 otherwise. A change of one unit in 
the given parameter reflects the minimal significant increase or decrease of that 
parameter. 

For instance, to compute the parameter "repeating_rhythms," the density of 
each rhythmic value is initially calculated. This value is then normalized to change 
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by one unit each time the value varies by 0.1 (the designated sensitivity value), as 
follows: 

0 if x < 0, 25 

norm 
x - 0 , 2 5 

0,1 

0 

if 0 , 2 5 < x < 0 , 5 

if x > 0, 5 

(32) 

6.3.3 Melody composition using L S T M 

A long-short term memory (LSTM) neural network was evaluated using the same 
datasets employed for testing the genetic algorithm and grammatical evolution. The 
MIDI files were read and parsed using the Music21 library, which separates the 
data into notes and chords. Each note object includes its offset and octave during 
parsing, where the offset indicates the note's position in the piece. In the L S T M 
implementation utilized (based on Skuli, 2017), the arrays of notes and chords were 
then converted into arrays of integers. Each note is represented by a number based 
on its position in the sorted set of all notes used in the dataset. 

Once the arrays of numbers are obtained from the dataset, input sequences 
of numbers are generated. The network output for each input sequence will be a 
note or chord that follows the input notes sequence. Various sequence lengths were 
tested. 

The Neural Net model used was built using the Keras library. It is a sequen­
tial model, which used the following layers (Skuli, 2017): 

1. Input layer: a L S T M layer with given input shape. 
2. L S T M layers 
3. Dropout layers: used to drop a fraction of input units. 
4. Dense layers 

Sequential models consist of layers, with each layer having one input tensor and one 
output tensor. The initial layer utilized is an L S T M layer with 512 units, employing a 
hyperbolic tangent function as the activation function. The recurrent state dropout 
is configured to 0,3. 

Subsequent to the first layer, two additional L S T M layers with 512 units each 
are incorporated. Following these layers, a dropout layer with a dropout rate of 0,3 
is added, which randomly sets input units to 0 based on the specified frequency rate. 
This dropout layer is employed to mitigate overfitting. 

After the dropout layer, a regular densely-connected layer is introduced, im­
plementing a rectified linear activation function (a(x) = max(x, 0)). Following this 
layer, another dropout layer is applied. Finally, a Dense layer with the softmax 
function as the activation is added. The softmax function transforms a vector of 
real numbers into a probability distribution (Keras, 2024). 
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Once the model is trained, the output is generated by converting the nor­
malized integer outputs into MIDI arrays, which can subsequently be played and 
evaluated. Based on how the model was created and how the dataset given was 
processed, only short melodies can be obtained, without directly controlling their 
overall structure (Jedrzejewska, 2018). 
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7 Application example: the Mazurkas' dataset 

The analysis and composition methods underwent testing using various freely avail­
able MIDI datasets from the internet. This chapter presents the results obtained 
specifically from the MIDI dataset of Chopin's mazurkas (Midiworld, 2024). 

7.1 Analysis and extracted features 

The developed analysis application returns graphs and values to visualize the char­
acteristics of the MIDI files dataset given. For the Chopin dataset the results can 
be seen in Fig. 43. 

notes 

30 40 50 60 70 80 90 100 
note midi number 

intervals 

interval 
rhythms 

note duration 

0.2 -

0.0 — - a 

note duration 

Fig. 43: Extracted features' distributions from the Chopin's mazurkas dataset 
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In the first two plots, it's evident that notes are distributed quite evenly 
within the range of 55 to 75 (G3 - E5). Additionally, diatonic intervals emerge as 
the most prevalent in all mazurkas: the most frequently occurring notes are typically 
spaced two MIDI numbers apart, as illustrated in detail in Fig. 44. 

Fig. 44: Detail of the notes distribution over the Mazurkas' dataset 

The "intervals" plots confirm that diatonic semitones (corresponding to inter­
vals of Ilmaj in the graphs) are much more common than chromatic ones (Ilmin). 
Additionally, the intervals heatmap reveals that in most mazurkas, the most fre­
quently used intervals are consistently II major, VII, III, V , and VI major. 

Lastly, the "rhythms" plots indicate that the most frequently used note du­
rations across all mazurkas are octaves, quarter notes, and sixteenths. 

The second set of plots that the analysis tool examines melodic and rhythmic 
patterns of the melodies and the intervals most used overall. This set of plots can 
be used to compare different musical styles. As an example, a dataset of Bach's 
fugues was added to the mazurkas and the resulting histograms are showed in Fig. 
45. The Bach's fugues MIDI files were taken from (Bachcentral, 2018). 

In these histograms, the first 15 tracks are Bach's fugues, while the remaining 
ones are Chopin's mazurkas. It can be observed that Chopin employs more melodical 
patterns, at the same time the mazurkas exhibit greater variability in note durations. 
Chopin's compositions demonstrate a broader rhythmic variety compared to Bach's 
fugues. Bach, in his fugues, tends to use a more monotonous rhythmic outline, with 
each track featuring only a few types of note durations. 

Finally, the most commonly used intervals by both composers are similar, 
except for the interval of the II. There is a correlation between the low rhythmic 
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Fig. 45: Extracted musical characteristics from Chopin's mazurkas (a) and Bach's 
fugues (WTC) (b) 
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variety in Bach's compositions and the high frequency of the II interval, indicating 
a significant presence of scale movements. 

The third set of results of the "Analyst tool" consists of the plotted macrostruc-
tures. In Fig. 46, the macrostructures of 10 Chopin mazurkas are displayed alongside 
those of 10 Abba songs for comparison, taken from (Midiworld, 2024). The struc-

(a) (b) 

Fig. 46: Macrostructures of a) Chopin's mazurkas and b) songs by Abba 

tures of Abba's songs are more stable around a single tonal center, while Chopin's 
are shorter and more varied. As shown in the 2D representation (Fig. 47), the 
structures tend to conclude on the same notes they began with, or within the same 
tonal space, typically a III or V interval above. 

7.2 Context-free grammar of the mazurkas' dataset 

The second tool developed writes the grammar rules for the grammar evolution 
algorithm based on the fundamental characteristics of the dataset given. In the case 
of Chopin's mazurkas, the grammar has the following form: 

<start>: [{'exp' : ['<meter>', '<seq>'] , 'prob': 1.0}], 

<meter>: [{'exp': ['<[array([3, 4])]>'], 'prob': 1.0}], 

<seq>:[{'exp': ['<note>', '<seq>'], 'prob': 0.4}, 

{'exp': ['<int_seq>', '<op>', '<rhy_seq>', '<seq>'], 'prob': 0.6}], 

<op>: [{'exp': ['<zip>'], 'prob': 1}], 

84 



Institute of Automation and Computer Science, FME BUT, 2024 m 
Macro structures (tonalities): 2D scatter plot 

Fig. 47: Detail of the macrostructures of Mazurkas' dataset 

<note>: [{'exp' : ['<ton>', '<time>', '<octave>'] , 'prob': 1.0}], 

<octave>: [{'exp': ['<60>'], 'prob' : 0.637}, 

{'exp': ['<72>'], 'prob': 0.348}, {'exp': ['<84>'], 'prob': 0.0133}], 

<time>:[{'exp': ['<8>'], 'prob': 0.421}, 

{'exp': ['<16>'], 'prob': 0.267}, 

{'exp': ['<4>'], 'prob': 0.184}, . . . ] , 

<ton>: [{'exp': ['<C#>', '<degree>'], 'prob': 0.166}, 

{'exp': ['<D>', '<degree>'], 'prob': 0.152}, . . . ] , 

<degree>:[{'exp': ['<+0>'], 'prob': 0.3}, 

{'exp': ['<+l>'], 'prob': 0.0399}, 

{'exp': ['<+2>'], 'prob': 0.0399}, . . . ] , 

<int_seq>: [{'exp': ['<[ 2 -2 -1 1]>'], 'prob': 0.000584}, 

{'exp': ['<[ 2 -6 -1 5]>'], 'prob': 0.00116}, . . . ] , 

<rhy_seq>:[{'exp': ['<[32 4 8 2]>'], 'prob': 0.00296}, 

{'exp': ['<[ 8 16 32 4]>'], 'prob': 0.0151}, . . . ] , 

Note that it is possible for the author to implement other rules based on the de­

sired results, some of the rules can be eliminated, or changed. For example, the 

macrostructure of the created melody can be set as follows, given the macro struc­

ture variable: 

85 



D 
self .macro = [<C\

 (

G\ 'C'] 

VENDRAME, Katia. Music composition using Al. 

the grammar rule <ton> will then be modified accordingly: 

i f len(self.macro)>0: 

'<ton>' = [{"exp" : ["<macro>","<degree>"], "prob": 1.0}] 

The probabilities values in the grammar are the results of the feature extractions, 
as well as some of the terminals of the rules, as for example the rhytmic and interval 
patterns. In this case pattern lengths of 4 elements were presented, but the algorithm 
works with any length needed. Patterns of three and four notes were tested. 

7.3 Grammatical evolution algorithm 

The grammatical evolution algorithm was implemented according to the description 
in section 10. Different ways of building the new population at every generation 
iteration were tested, as long as different fitness function forms: 

Random tree initialization 
Individuals are generated by randomly building derivation trees up to a specified 
depth limit (Ortega, 2007). Therefore, only information about the updated gram­
mar's probabilities is passed from the older generation to the new one. In this case 
the best fitness function values throughout the generations don't have a positive 
gradient (see Fig.48), but the results from a musical point of view aren't disappoint­
ing (considering the melodies which got the highest fitness values during training), 
as can be seen in Fig. 49. As can be deduced from the melody profile presented in 

Fig. 48: Fitness function when using the random tree initialization 
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Fig.49, the fitness function was selected in order to get repeating rhythmic patterns 
and a narrow pitch range. 

Truncation selection 
The second selection mechanism chosen was the truncation selection: in this case, 
the best individuals from the previous generation replace the worst ones of the new 
generation. The fitness function values for 100 generations are showed in Fig. 50. 
The best melody obtained in the last generation is showed in Fig. 51 

Fitness funct ion 

so -

0 20 40 60 80 100 
generation 

Fig. 50: Fitness function when using truncation selection 

Fitness function with non-linear components 

The "mean distance" value of the fitness function is zero unless the mean distance 
between notes in the melody has a maximum value of 5 MIDI notes, according to 
the exponential function in Fig.52. The same function is used also for the values 
of the parameter "high low", which rewards those melodies, in which the distance 
between the highest pitch and the lowest is lesser than an octave. 
A n example of fitness values during training is presented in Fig. 53. 
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J = 100 

f ' T U T I'p -'P 

Fig. 51: One of the best melodies obtained using truncation selection 

-15 -10 -5 0 10 15 20 

Fig. 52: Function used to evaluate some of the fitness function's parameters 

* * * i * * * * * 

rhythmrepeating 
* interval variety 
• highjow 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 

Fig. 53: Some of the fitness function parameters values during training 
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Linear fitness functions 
In the case of using just linear functions, it can be possible to prioritize some pa­
rameters over others by adding coefficients to the fitness functions. For example, 
adding two coefficients: 

fitness value = fast + repeating_rhythms + rhythm_density + 

interval_variety + ending + 2 * mean_distance + 

2 * high_low + rhythm_min + accents + note_variety 

The result with the highest fitness values got from this implementation is a rather 
rhythmically and melodically uniform melody (Fig. 54). 

J = 95 

circirr-fTcjerr ic/Pr picrr cNr pr pir cr"r 

Fig. 54: Uniform melody when fitness function changed 

7.4 Comparison with other algorithms 

The same dataset was used with the genetic algorithm and the L S T M neural net­
work. 

Genetic algorithm 
As in the case of the probabilistic grammar evolution algorithm, we considered only 
short sequences of notes with a pitch higher then F4 (65 in MIDI pitch number), 
the typical range for accompanied piano melodies in the romantic era. 

For testing the genetic algorithm the fitness function presented in par. 6.3.1 
was used, whose maximum values obtained in every generation are represented in 
Fig. 55. 
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0 20 40 60 80 100 
n. of generations 

Fig. 55: Fitness function values for the genetic algorithm 

A n example of the melodies created in this case can be seen in Fig. 56. 

J = 173 

ft# i f . J>kr i r , . p . i i i r 

1|» 0 0 -M 
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f k 
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^ f f 

^ - s - 4 J - ^ r bJL• r 

Fig. 56: Melody created by the genetic algorithm after 100 generations 
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J = 104 

Fig. 57: Melody created by the genetic algorithm after 100 generations 

When applying the fitness function used for the P S G E algorithm, the genetic 
algorithm has as result rhythmical figures without melody (Fig. 57). In case a 
fitness function that rewards only the intervals of third and fifth is used, the melodies 
created have a similar form as the excerpt in Fig. 58. 

J =169 

Fig. 58: Melody created with fitness function preferring III and V intervals 

Long Short Term Memory network 
Besides the genetic algorithm, the L S T M was tested, using the model presented in 
(Skuli, 2019). First it was tested with 100 epochs using the complete Mazurkas' 
dataset: the melodies and the left hand accompainment's chords. A n excerpt of 
the result can be seen in Fig. 59. When using only notes with a pitch above F4 

J = 120 . 
HP r I. b 4 i — r i d — - M * = 

T" 4 j f ' P - P f ^ — R 1 ' ' r i:r ' ' J j : - 1 

7 
4 

, j " J x • j J 

8 

l c r = r ^ 

_ T 

Fig. 59: Melody created by L S T M using dataset with accompaniment (chords) 

(corresponding to MIDI number 65) and not considering the chords, the resulting 
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melodies are similar to the one presented in Fig. 60. The loss weight values trend 
is plotted in Fig. 61. 

J = 120 

• W—rj ¥—5 

j ' f t m J iJ~nJ r i'r r r i n r r i » r , - 1 r r r 

Fig. 60: Melody created by L S T M using one-voice dataset 

LSTM loss function 
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epoch 

Fig. 61: L S T M loss function 
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8 D I S C U S S I O N 
The analysis tool can visualize the primary differences between musical genres or 
styles. As demonstrated in Fig. 45, the tool highlights key distinctions between 
Chopin's short pieces and Bach's style. The comparison conducted between Chopin's 
mazurkas and Bach's Well-Tempered Clavier is particularly relevant as Bach's work 
greatly inspired Chopin: he studied Bach's preludes and fugues extensively, forming 
the foundation of his musical education and teaching (Rosen, 1995). The histograms 
in Fig. 45 illustrate the contrasting approaches to melodic treatment, from Baroque 
homogeneity to rich Romantic textures. As musicologist Charles Rosen pointed 
out, Chopin disrupted the musical scene of his time with his monophonic pages, 
demonstrating the ability to minimize polyphony while still creating pieces with a 
clear harmonic structure (see the sonata's Finale in Fig. 20). This skill of Chopin's 
was directly inspired by Bach's counterpoint. Furthermore, the ability to harmoni­
cally treat a monophonic line without accompaniment is considered the best way to 
evaluate a composer's counterpoint abilities (Rosen, 1995). 

The aim of the second set of codes presented than, the generation of mono­
phonic melodies, can be considered an appropriate starting point for A M C devel-
opement. 

To build the grammar of the probabilistic grammatical evolution algorithm 
some of the results of the "analyst tool" are used, this way the resulting musical style 
of the melodies obtained by this algorithm is closely controlled. From generation 
to generation the rules are updated based on the evolutionary search, making the 
resulting melodies gradually gain the desired form. After initialization, the melodies 
are controlled by the fitness function, which can be defined according to the author's 
preferences. Various versions of grammatical evolution were tested. When genotypes 
are generated at each iteration using the random tree initialization algorithm, in­
teresting results are obtained, but there is no significant growth in fitness function 
values. The generated melodies often feature several rhythmic patterns and predom­
inantly use intervals of fifths, fourths, and thirds. After a few hundred generations, 
a random number of melodies with high fitness function evaluations are produced, 
but the search mechanism to increase the number of these "better" melodies needs 
further exploration. The hypothesis is that this depends on the fitness function's 
structure. 

Therefore, different types of fitness functions were tested. The first type (the 
"fitness function with non-linear components" described in Section 7.3) involves a 
mathematical evaluation of the most basic musical characteristics familiar to lis­
teners of classical music melodies. The second type of fitness function focuses on 
melody characteristics directly influenced by the grammar: it does not evaluate the 
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overall structure of the melody or the number of repeating melodic or rhythmic pat­
terns as in the first case. Instead, it assesses the intervals used, the mean distance 
between intervals, the spread of the melody across octaves, and accentuation. For 
example, in the case of mazurkas, the aim is to prioritize rhythmic patterns typical 
of mazurka dances (Fig. 62). 

" 4 Q T r I e r r r ICJV r 

Fig. 62: Mazurka's rhythmical pattern 

The results demonstrate that the fitness function is highly effective for gener­
ating a melody with specific characteristics, particularly when these characteristics 
pertain to the individual elements or shorter note patterns rather than the melody's 
macrostructure. 

For instance, when the fitness function rewards a melody for having the 
accentuation typical of a mazurka dance, we achieve the melody shown in Fig. 63 
after 16 generations. The progress of the fitness function is illustrated in Fig. 64, 
where the orange dots represent the highest fitness values achieved, and the blue 
line indicates the mean fitness value for each generation. 

J = 97 r ' ' J n 

f g ^ S J JI j j j j j l j j gps J |J?J JJI 

Fig. 63: Melody created by P G E with the mazurka's rhythm pattern 
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I 100-
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generation 

Fig. 64: Modified fitness function's progress 

When the macrostructure [C, G, C] is given as input parameter, the melodies 
created reflect this structure (Fig. 65). Nevertheless this way of controlling the 

Fig. 65: Melody example created when the macrostructure [C, G, C] is set 

macrostructure is not reliable enough, in the same dataset melodies ending in the G 
tonal sphere (dominant) are created, because of the wrapping process in the P G E 
algorithm. 

Future work will involve evaluating the macrostructure of melodies by replac­
ing the probability value updated for each rule iteration with a probability array. 
In this array, each rule will have a different probability based on its current depth 
and position within the melody's structure. 

As demonstrated, the genetic algorithm generates melodies where patterns 
from the dataset remain recognizable, aligning with the primary characteristics of 
genetic algorithms. The fast convergence and high sensitivity of fitness functions 
make the genetic algorithm an excellent instrument for testing purposes, as evi­
denced by Fig. 58, where a fitness function evaluating interval presence in the 
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melody shows rapid convergence. Similarly, in Fig. 57, the fitness function strongly 
rewards melodies with smaller intervals and narrower pitch ranges. 

Significantly different results were obtained when testing the L S T M network. 
This model was trained solely on note pitches, with rhythm added to the melody 
post-prediction using typical mazurka rhythmic figures (as depicted in Fig. 62). The 
resulting melodies exhibit key pitch characteristics of Chopin's mazurkas, including 
the frequent use of intervals of thirds, fifths, and chromaticisms, with pitch ranges 
typically falling between the C4 and A5. These results can be further evaluated 
using the "Analyst" tool presented earlier (Fig. 66). As depicted in Fig. 66, the 
neural network consistently favors intervals of a second and exhibits a pitch range 
predominantly above C5 (MIDI number 72). 
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Fig. 66: Extracted musical characteristics from Chopin's mazurkas (a) and gener­
ated melodies by L S T M (b) 
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9 C O N C L U S I O N 
This work aims to serve as a testing "playground" for new methods in automatic 
music composition and analysis, leveraging the vast potential of MIDI files. The 
first part provides an overview of the historical advancements in automatic music 
composition up to recent years. It outlines the main characteristics, goals, and 
limitations of contemporary automatic composition algorithms. The focus is on 
two primary approaches to music composition: evolutionary algorithms and neural 
networks. 

From a musical perspective, an objective of this study was to explore how 
the search for optimal composition algorithms could benefit the contemporary mu­
sical landscape. Through an examination of historically significant music analysis 
methodologies, it was observed that certain musical characteristics can indeed be 
quantified and computed. The results of this analysis, showcased through graphs 
illustrating distribution values and mean densities, provide valuable insights and are 
pertinent from a musicological standpoint. 

Inspired primarily by Schenker's and Janáček's theoretical works concerning 
the decomposition of musical pieces to uncover their fundamental structures, the 
second tool developed in this work attempts to compose melodies based on core 
characteristics extracted from a melody dataset or according to the author's re­
quirements. Earlier investigations in automatic music composition have pinpointed 
a significant obstacle: the creation of music possessing a structured format (such as 
the tonic-dominant-tonic structure prevalent in Classical music of the Classic pe­
riod) and where its elements are clearly interlinked. In this work a way to define 
the macrostructure of a melody and create melodies according to it was presented. 

The implementation of probabilistic grammar evolution presented here is 
ready for future enhancements. By making the probability values of grammar rules 
a multidimensional array, each rule could have varying probabilities of occurring 
based on its position in time. Another fundamental upgrade involves developing 
better fitness functions, composing melodies with varied pauses, and expanding the 
range of musical elements (different instruments, multiple voices, various rhythms, 
etc.) used in compositions. 

Beyond application upgrades and developments, future work should focus on 
the numerous ways technological advancements can serve as tools for creating new 
art by composers, as analysis tools for musicologists, or as aids for music students 
and artists. MIDI files offer immense opportunities within the realm of tonality and 
equal temperament, examples of which are presented in this work. However, this 
starting point limits the research from engaging with electronic, experimental, and 
contemporary music, genres that are currently flourishing. Therefore, the algorithms 
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and tools presented should also be tested and developed for raw audio files to create 
new sounds, inspire new musical ideas, and better understand experimental and 
electronic music composed since the 1950s. 
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S Y M B O L S A N D A B B R E V I A T I O N S 
A M C Automatic music composition 

N N Neural Network 

E A Evolutionary algorithm 

C N N Convolutional neural network 

LTS Long term SÄristructures 

L S T M Long short term memory neural network 

V A E Variational Auto-Encoder 

R N N Recurrent neural network 

G P T Generative pre-trained transformer 

G A N Generative adversial networks 

A C Autor-critic network(Hadjeres, 2016) 

R B M Restricted Boltzmann machine 

G E Grammatical evolution 

P G E Probabilistic grammatical evolution 

C F G Context free grammar 

S Start symbol (axiom) 

T Terminal symbol 

N T Non-Terminal symbol 

B N F Backus-Naur Form (grammars) 
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