
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
ÚSTAV AUTOMATIZACE A INFORMATIKY

MUSIC COMPOSITION USING ARTIFICIAL INTELLIGENCE
METHODS
HUDEBNÍ KOMPOZICE S VYUŽITÍM METOD UMĚLÉ INTELIGENCE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Katia Vendrame
AUTOR PRÁCE

SUPERVISOR prof. Ing. Radomil Matoušek, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Assignment Master's Thesis

Degree programm
Branch:
Supervisor:
Academic year:

Institut:
Student:

Institute of Automation and Computer Science
Be. Katia Vendrame
Applied Computer Science and Control
no specialisation
prof. Ing. Radomil Matoušek, Ph.D.
2023/24

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

Music composition using artificial intelligence methods

Brief Description:

It will be a very complex and interdisciplinary work requiring training in Al (artificial intelligence)
and computer science as well as in musicology. The aim will be to build a program for music
generation and composition, i.e. to algorithmise composition using A l . For the breadth of the topic,
we will focus on Mazurka-style composition by Chopin.

Master's Thesis goals:
- Conduct research on approaches to automatic music generation using evolutionary
computational techniques (ECT).
- Conduct research on approaches to automatic music generation using deep neural networks.
- Algorithmatize the composition and build a program (ECT), which will generate music in the style
of Chopin's mazurkas.

- Perform a comparative statistical and non-additive sensory analysis of the result of the work.

Recommended bibliography:
Ian Simon and Sageev Oore. (2022). Performance rnn: Generating music with expressive timing
and dynamics, https://magenta.tensorflow.org/performance-rnn, 2017. (Accessed: 2022-04-11).
Ozcan, E., Ergal, T. (2008). A Genetic Algorithm for Generating Improvised Music. In: Monmarche,
N., Talbi, E G . , Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA2007 . Lecture
Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-
540-79305-2_23

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

https://magenta.tensorflow.org/performance-rnn
https://doi.org/10.1007/978-3-

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2023/24

In Brno,

L. S.

Ing. Pavel Heriban, Ph.D. doc. Ing. Jiří Hlinka, Ph.D.
Director of the Institute F M E dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

A B S T R A C T
This research delves into methods for automatic music composition, with a spe­
cific emphasis on evolutionary algorithms and neural networks. It examines the
potential correlation and discourse between musicology theories and automatic mu­
sic composition, as well as its foundation in musical tradition. The study focuses
on three algorithms utilized for generating short monophonic melodies stylistically
based on given datasets or the user's requirments: probabilistic grammar evolution,
genetic algorithms, and L S T M models. The practical part of this work showcases
the application of these algorithms and presents results from testing their efficacy
and capabilities. Furthermore, it introduces an implementation for analyzing MIDI
datasets from a musical perspective. Ultimately the study highlights the potential
for future enhancements and broader applications in the field of automatic music
analysis and composition.

A B S T R A K T
Tato studie se věnuje metodám automatické kompozice hudby (AMC), s kon­

krétním zaměřením na evoluční algoritmy a neuronové sítě. Potenciální dialog mezi
muzikologickými teoriemi a A M C jsou analyzovány, spolu s otázkou jejího základu
v hudební tradici. Byly zkoumány tři algoritmy pro tvoření krátkých jednohlasých
melodií založených na stylu daného datasetu nebo požadavcích uživatele: pravdě­
podobnostní gramatická evoluce, genetické algoritmy a L S T M modely. Praktická
část práce představuje aplikace těchto algoritmů a výsledky testování jejich výhod a
předností. Dále je představena implementace pro analýzu MIDI datasetů z hudební
perspektivy. V poslední řadě jsou představeny možnosti budoucího vylepšení a roz­
šíření zkoumaných algoritmů v oblasti automatické hudební analýzy a kompozice.

K E Y W O R D S
Automatic music composition, probabilistic grammar evolution, automatic music
analysis, genetic algorithm, L S T M neural networks

KLÍČOVÁ S L O V A
Automatická hudební kompozice, pravděpodobnostní gramatická evoluce, automa­
tická hudební analýza, genetický algoritmus, L S T M neuronové sítě

en INSTITUTE OF AUTOMATION
AND COMPUTER SCIENCE

B I B L I O G R A P H I C C I T A T I O N
V E N D R A M E , Katia. Music composition using artificial intelligence methods. Brno,
2024. Available at: h t tps : / /www.vut .cz/s tudent i /zav-prace/detai l /157901.
Master's Thesis. Brno University of Technology, Faculty of Mechanical Engineering,
Institute of Automation and Computer Science, Supervised by prof. Ing. Radomil Ma-
touÄaek, Ph.D.

https://www.vut.cz/studenti/zav-prace/detail/157901

A U T H O R ' S D E C L A R A T I O N
I declare that this master's thesis is my original work, and I have worked on it
independently under the supervision of my master's thesis advisor, using specialized
literature and other information sources, all of which are cited in the thesis and
listed in the bibliography.

As the author of the stated work, I further declare that in connection with the
creation of this work, I have not violated the copyrights of third parties, particularly
I have not unlawfully infringed upon the personal copyrights of others, and I am
fully aware of the consequences of violating the provisions of A g l l and following of
the Copyright Act No. 121/2000 Coll., including possible criminal consequences.

In Brno on May 24, 2024
Katia Vendrame

A C K N O W L E D G E M E N T
I would like to express my gratitude to my family, who gave me the special oppor­
tunity to study and supported me all these years. A special thanks goes to my two
amazing sisters and Vi t that always stood by me and encouraged me to do better.

Institute of Automation and Computer Science, FME BUT, 2024 m
C O N T E N T S
1 P R E F A C E 15
2 S T A T E OF T H E A R T 17
2.1 Evolutionary computing 18
2.2 Neural Networks 20
2.2.1 Historical overview 20
2.2.2 Variational autoencoders 23
2.2.3 Generative adversarial networks 23
2.2.4 Transformers 25
2.2.5 Long Short-Term Memory networks 25
2.2.6 Application examples 26
3 G E N E R A T I V E E V O L U T I O N A R Y

A L G O R I T H M S 29
3.1 Evolutionary algorithms overview 29
3.1.1 Genetic representations 30
3.1.2 Fitness (object) functions 31
3.1.3 Selection methods 31
3.1.4 Genetic operators 32
3.2 Genetic Algorithm 32
3.3 Probabilistic grammatical evolution 33
3.3.1 Grammar 34
3.3.2 Genotype to phenotype mapping 36
3.3.3 Search engine 37
3.4 Application in music 38
4 N E U R A L N E T W O R K S 41
4.1 Generative adversarial networks (GAN) 41
4.2 Long short-term memory networks (LSTM) 42
5 T H E MUSIC C O M P O S I T I O N PROCESS 45
5.1 Artistic composition 45
5.2 Musical analysis 46
5.3 Melody synthesis: an automatic music composition's method 49
6 A P P L I C A T I O N S 51
6.1 Melody structure: musical introduction 51
6.2 Analysis Tool 54
6.2.1 Notes'density and variety 54
6.2.2 Interval density and variety 55
6.2.3 Notes' durations density and variety 58
6.2.4 Macrostructures 60

13

VENDRAME, Katia. Music composition using Al...

6.3 "Synthesis" Tools 62
6.3.1 Melody composition using Genetic Algorithm 62
6.3.2 Melody composition using Probabilistic Grammar Evolution 67
6.3.3 Melody composition using L S T M 78
7 Application example: the Mazurkas' dataset 81
7.1 Analysis and extracted features 81
7.2 Context-free grammar of the mazurkas' dataset 84
7.3 Grammatical evolution algorithm 86
7.4 Comparison with other algorithms 89
8 DISCUSSION 93
9 C O N C L U S I O N 99
B I B L I O G R A P H Y 101
S Y M B O L S A N D A B B R E V I A T I O N S 109
LIST OF F I G U R E S I l l
LIST OF T A B L E S 115

14

Institute of Automation and Computer Science, FME BUT, 2024 m
1 P R E F A C E
Rooted in the Latin verb "componere", which signifies "putting together" or "uni­
fying", composition in music embodies the act of weaving disparate sounds into a
narrative that resonates with the human experience. Just as a skilled storyteller
crafts a narrative by stringing together words, composers manipulate melodies, har­
monies, and rhythms to find the right place for each one of them in order to express
their stories in the most accurate way possible.

At the heart of musical composition is the concept of juxtaposition - the
deliberate arrangement of musical elements to construct a compelling story without
words. Each chord, each note, carries its own significance, but it is the relationship
between them that gives music a voice.

According to D'Indy's definition, music composition involves the "arrange­
ment of various elements", with the art lying in the skillful arrangement of melodies,
harmonies, and modulations to give them a unified meaning and form.

In this study, we are exploring various methods of juxtaposing musical ele­
ments to replicate the relationships and structures found in existing melodies. Our
objective is twofold: to develop a tool to aid the compositional process and to analyze
the underlying structures of melodies across different musical styles and composers,
discerning the characteristics that distinguish one from another.

The thesis begins by introducing and analyzing various generative evolution­
ary algorithms applicable to music composition. Following this, the second section
delves into the widespread use of neural networks for artistic creation. The third
section showcases the implementation of a probabilistic grammatical evolution al­
gorithm, genetic algorithm and L S T M neural network, accompanied by illustrative
examples of its outcomes.

15

Institute of Automation and Computer Science, FME BUT, 2024

2 S T A T E OF T H E A R T

m

The process of analyzing data in the form of musical melodies to produce new
music is referred to as automatic music composition (AMC) (Wiafe, 2022). Histor­
ically there had been many algorithms that have been explored to reach this goal:
stochastic processes, Markov chains, grammars, evolutionary algorithms and neu­
ral networks are just a few examples of the methods that have been implemented
(Wiafe, 2022). The choice reflects the way music is interpreted.

If the stochastic character of musical pieces is the fundamental feature desired
in the outputs, mathematical algorithms for automatic music composition have been
applied. The mathematical models most explored with this purpose are the Markov
chains. Thanks to their low complexity they have been successfully used in real-time
applications (completing melodies, generating music for games) (Liu, 2017), or to
create beats for electronic music (Eigenfeldt, 2014).

When the aim is to generate music that has internal structures and rules
governing its notes, linguistic models have been applied. Grammars that comprise
rules about rhythm and harmony are usually implemented in this case and the
generated melodies refer to a specific genre or style, according to the grammar rules
used. A n example is the Granroth-Wilding's work (Granroth, 2014), where music
(described as a language) is generated by an algorithm that learns patterns (jazz
chords) from the input dataset and uses them to create new ones (Liu, 2017).

The third main field of application of automatic musical composition are the
artificial intelligence methods, and specifically evolutionary computation, machine
learning, cellular automata, knowledge-based systems and, mostly in the last years,
neural networks.

The first music ever composed by a computer is the ILLIAC suite, described
by Hiller and Isaacson in 1958 (De Prisco, 2019). Hiller considers the process of
composing music as a process of selection from an infinite universe of sonic material,
in other words a way to "extract" order from this universe, using mathematical
operations, probability operations and general principles of analysis. To Hiller,
this process seamed analogical to the functioning of computers, that create random
datasets and then extract material from them, choosing from an infinite variety of
possibilities. Therefore, he uses a pseudo-random integer generator, which represents
notes and rhythms and selects a set of generated numbers according to some input
rules (a process defined as the "Monte-Carlo Method") (Both, 1995). In F ig . l the
scheme of the composition process of Illiac Suite is represented:

17

D VENDRAME, Katia. Music composition using Al.

*'MUSICAL
ALIMENTS COMPUTER

—<; —"V \ 1

-.PflOVlSOflftL FINAL

k„JLj^._A
SCREENING CIRCUITS EhSQPYING
HULES OF COMPOSITION

ACCEPTANCE * ACCEPTANCE

J

|BECOMNG|

Fig. 1: Block diagram of the composition algorithm for Illiac Suite (Hiller, 1979)

2.1 Evolutionary computing

During the 1980s, Evolutionary Algorithms began to receive significant attention
as optimization tools, thanks to their flexibility, adaptability to various tasks, and
advancements in computer performance (Back, 1997). It is no wonder, then, that
these algorithms were also tested in automatic music composition processes, serving
as a tool to explore large solution spaces and locate multiple optimal solutions
(Prisco, 2022). These algorithms ensure a continual combination of exploration and
optimization, driven by the genetic operators they employ (Goldberg, 2002).

Genetic algorithms were used to generate complete compositions (Jacob,
1995), or any kinds of musical subtasks: melody composition, counterpoint, sound
generation, thematic transformation (Miranda, 2007), jazz improvisation, harmo­
nization and so on. A n example is the composition system "Variations" designed by
Jacob (see Fig.2), that creates phrases combining motives taken from a dataset and
then uses variation mechanisms to search the space.

Melody development is the musical task that was most explored with the use
of evolutionary algorithms. Systems that generate pitch and rhythm sequences were
implemented with the use of different evolutionary algorithms since the 90s (Biles,
1997), (Jacob, 1996) until nowadays (the automatic melody composition presented
by (Jeong, 2017) or the MetaCompose application by (Scirea, 2017).

Automatic harmonization was also widely studied since the 90s (Cope, 1997,
Miranda, 2000). Four-parts compositions (for example the widely known Bach's
4-voices chorales) address this issue thoroughly. The "EMI system" presented in
(Cope, 1997) uses grammars and rules to execute this. In (Gang, 1996) neural
networks are used. In (Prisco, 2022) the EvoComposer application is introduced,
which explores the potential of evolutionary algorithms in this A M C discipline.

18

Institute of Automation and Computer Science, FME BUT, 2024

In pul:
prim;in mutives.

The composer module sends the car module
a phrase in progress and a motive to be
added al a defined point in the phrase.

i

X composer chromosomes
Each chromosome describes one stochastic

process within the composer modulo, such as
weighted variation rates, phrase lengths, or

transposition tables.

The car module responds "yes" or "no 1 to the addition
of"the new motive; the cycle is repeated until the

phrase meets some criteria lor length. In this manner,
phrases arc constructed that adhere to the tonal sys­

tems dchncd by the car chromosomes. The process is
repeated for each car chromosome in turn.

phrase;
motive I ... motive n+1

human evaluaiur
Z ttrncturt: chromosomes

Each represents a different progression
through the generated material.

Y ear chromosomes
The alleles on each chromosome
represent valid chords, and adja­
cent alleles represent validchord

transitions: each chromosome
therefore represents- a different

system of tonality. Only one
chromosome is active at a time,
and it remains active until the

phrase is finished.

The active chro­
mosome com­

pares the phrase
against its inter-
nal list of valid
transitions. If

no transition is
invalid,, the

active chromo­
some "accepts"

the phrase.

The accepted phrases are
collected and sent to the

arranger module. The
arranger module creates a
set of chromosomes that

represent the arrangement
and orchestration of the
piece. The structures are

evaluated and better
sounding structures

recombine to form new
structures.

The composer and car arc genetic agents; they arc evolved until they cooperate to produce "good" music, and
only then is material generated. Each phrase is composed one motive at a time. When a motive is added to the
working phrase, the car module is consulted; if it disapproves^ the motive is removed. When there are enough
usable phrases, a number of structure chromosomes arc produced by the arranger module, dictating how the
shorter phrases will be put together to form a larger piece. The resultant pieces arc audi t ioned and the successful
structure chromosomes allowed to recombine to produce new chromosomes. The process thus creates music
that gets "better" as more generations of recombination and auditions go on.

Fig. 2: Block diagram of the composition system "variations" (Jacob, 1995)

VENDRAME, Katia. Music composition using Al.

The Evocomposer application uses a multiobjective evolutionary algorithm to
compose a 4-voices piece according to one voice input (it can be any of the 4 parts).
This algorithm implementation is based on the results of a statistical analysis of
a dataset (in this case Bach's corales) to derive a table of weights for chords and
tonality changes.

Alongside Evolutionary algorithms, grammars were often implemented for
music creation as an easy tool to apply strict rules to the free composition process
made by a genetic implementation. To make non-deterministic, creative output,
grammars can be used in collaboration with evolutionary algorithms, creating Gram­
matical Evolution implementations. One example is the application GenerativeGI
(Fredericks, 2023) developed to create visual art.

2.2 Neural Networks

Thanks to the rapid development of neural networks in the last decade, numer­
ous music applications have experimented with these algorithms. Neural networks
are now used for genre and style classification, music creation, music interpretation
(performance), and many other applications. The study of artificial neural networks
gained significant attention by the 1960s, with the approach of using mathematical,
artificial models to study human cognition being termed "connectionism" (Waskan,
2022). One of the main goals of connectionism was to develop computer behavior
that closely mimicked human behavior. This field of research was referred to by the
Japanese as aAIJKansei,aAi meaning aAIJenabling computers to express emotion-
saAI (Bresin, 1998). This focus on emotional expression is why music performances
have attracted researchers' attention. In Stockholm, a symbolic rule system was
developed to convert music scores into performances that were as emotionally ex­
pressive as possible (Friberg, 1991). These results were subsequently used to design
an Artificial Neural Network (ANN) (Bresin, 1998).

2.2.1 Historical overview

In "Music and Connectionism", Todd and Loy (1991) explain how connectionism
can save A M C from the trap of being strictly formal (Garton, 1995). Isaacson
presented neural networks as a tool to study post-tonal music: the music, that can
be theorized by the pitch-class set theory: using neural networks he studies the
relationships between sets (interval classes, similarities) and how listeners perceive
them (Isaacson, 1997).

However, music classification is up until now the most explored musical appli­
cation of neural networks. For the classification tasks spectrograms are mostly used
as inputs: Despois used C N N to classify music into main genre classes as Electro,

20

Institute of Automation and Computer Science, FME BUT, 2024

Classical, Rap, etc and (Pelchat, 2020) continued the (Despois, 2018) work using
C N N and music spectrograms. Alongside spectrograms, also methods taken from
speech recognition were used for music recognition tasks (Zhong, 2011).

Music generation using neural networks hasn't been left behind too. In 2015
Marquetti presented a composition inspired by Mozart's dice game, that uses su­
pervised neural networks to compose melodies and improvise in real time (Fig. 3).

Conductor Neural Network

Acoustic Network

i nscmbli

Interludes Main Section

Pedal Tone Improvisations

Solos

Dice Game Compositions Non Dice Games Compositions

I Saiophone 11 Violin | | cello | | Clarinet ~| | trombonê

• iyilijil Network

Conductors modules
Synthesis I

Fig. 3: Block diagram of the composition system "Solos (Dice Game) and Conductor
(Neural Network)" (Marquetti, 2015)

In addition to these most explored fields, neural networks are applied to
transcript audio recordings to musical scores (Schlüter, 2014), to remix voice and
sound balance in musical recordings (Simpson, 2015), musical therapy applications,
music recommendation algorithms, music education and others.

Nowadays more and more neural networks trained to compose music are de­
veloped. One of the most popular one is the Magenta project: an open-source
research project by Google (tensorflow), first released in 2019 and then in 2023 (Ma­
genta Studio 2). The Magenta research group studies deep learning applied to signal
processing, music creation, audio synthesis, transcriptions and others. For music cre­
ation they research and employ different models: Long-Term Structures (LTS) in
the "Music Transformer" application, a hierarchical latent vector model for learning

21

VENDRAME, Katia. Music composition using Al.

LTS in the "Music-VAE" application, generation latent constraints, LSTM-based
recurrent neural networks and autoencoder models (WaveNet) (Google, 2024).

Music-VAE addresses the difficulty of modelling sequences with long-term
structure by proposing the use of a hierarchical decoder. This solution shows a
better sampling, interpolation, and reconstruction performance (Roberts, 2018).
The variational autoencoder encodes an entire sequence to a single latent vector,

Fig. 4: Architecture scheme of MusicVae (Roberts, 2018)

creating a long-term structure for the generated piece of music, which is almost
always present in western popular music. The structure of this implementation can
be seen in Fig.4

Another research project in this field is MuseNet by OpenAI: it is a deep neu­
ral network, that can generate short musical composition with different instruments
and in different styles (from classical to popular music), using a transformer model.
As a training set it used MIDI files from a wide range of musical styles (OpenAI,
2019).

One of the most recent open-source applications model is V3 by Suno.ai,
which is capable to create radio quality songs from words. It is based on a text-to
speech model called Bark, released in 2023 (Freyberg, 2024). Bark compresses and
reconstructs audio using EnCodec (Leung, 2023), whose structure is represented in
Fig.5.

Alongside the encoding model, Bark uses a GPT-like text (semantic) model
and an acoustics model that has the same structure as the text model.

According to Sarmento in (Sarmento, 2023), automatic music generation that
uses symbols (instead of waves, e.g. MIDI files) can be categorized according to the

22

Institute of Automation and Computer Science, FME BUT, 2024 m

Fig. 5: Architecture scheme of EnCodec (Leung, 2023)

network architecture into three main categories: Variational Autoencoder models
(VAEs), Generative Adversarial Networks (GANs), and models that are inspired
on natural language processing as Long Short-Term Memory netwokrs (LSTM),
Transformers or Recurrent Neural Networks (RNN).

2.2.2 Variational autoencoders

Variational autoencoders are used to generate music according to some rules (struc­
tural or stylistic). In (Lim, 2020) for example, it was used to generate music in
Bach's style. V A E models have an encoder-decoder architecture and are based on
the idea of learning a posterior distribution that approximates the true posterior.
It generates new data by learning a continous latent space of music symbols (Vech-
motova, 2023). V A E models have been used also for audio composition - in this
case the latent space is made of audio frames: they can encode an existing audio
frame to a latent space and synthetize frames by interpolation and extrapolation of
timbres (Tatar, 2021), generating audios of any length.

2.2.3 Generative adversarial networks

G A N models, on the other hand, are made of a generator and a discriminator, that
generate together new data according to some requested characteristics. The gen­
erator creates adversarial samples to train the discriminator, that has to learn to
discriminate between real and generated melodies. They can be implemented with
V A E . For example, in (Vechmotova, 2023), they are used to create lyric lines to
a live music performance (Fig.6). A semi-recurrent cnn-based V A E - G A N network
was implemented also in (Akbari, 2018) to generate sequences of individual frames
generated using C N N . Dong in 2018 in his project MuseGAN, proposes a multi-track

23

D VENDRAME, Katia. Music composition using Al.

Music spec-VAE spec-VAE
latent space

CNN
Encoder

audio clip spectrogram
(wav) _(s)

GAN

CNN
Decoder

zf zf
Generator Discriminator Generator Discriminator •0/1

reconstructed
spectrogram

Lyrics text-CVAE

audio clip z

lyric line x-

testt-CVAE
zi')\ latent space

7(«)

LSTM
y Encoder

LSTM
Decoder

reconstructed
lyric line

Fig. 6: Architecture scheme of LyricJam Sonic (Vechmotova, 2023)

24

Institute of Automation and Computer Science, FME BUT, 2024

sequential generative adversarial network for music and accompaniment generation,
which has a temporal, harmonic and rhythmic structure. Their network structure
is made of two models, inspired to the two main different ways to approach music
composition: jamming or composing. The generator of the G A N concatenates ran­
dom vectors from the shared temporal structure, from the private one (both time
dependent) and each of them outputs the inner track and the inter track temporal
information (Dong, 2017).

2.2.4 Transformers

The Transformers are sequence-to-sequence models, they are used to create longer
sequences of symbolic music, thanks to the self-attention they use to bias the predic­
tion of the current token based on the previous ones (Huang, 2020). One example is
Musenet, that uses the GPT-2 model. Furthermore, Music Transformer can compose
expressive piano 1-minute pieces, or the Pop Music Transformer (Huang, 2020) uses
a variant (Transformer-XL model) of this algorithm to create music from different
genres (Sarmento, 2023) of longer length. In addition to longer melody outputs, the
Pop Music Transformer proposes an alternative to the MIDI event representation:
the R E M I representation, which is beat-based - to each note there is the information
of which position it has in the measure and what its rhythm is (Huang, 2020).

Transformers are also used to obtain more controlled music generation, e.g.
the G T R - C T R L model is a model that generates tab music, controlling the genre
and instrumentation (Sarmento, 2023). These models are presented as a solution for
one of the main limits of the application of neural networks, which is the difficulty
in controlling and conditioning the generative process. The controlling process is
realized by control tokens, that are inserted at the beginning of every element of the
training dataset.

2.2.5 Long Short-Term Memory networks

The Long Short-Term memory networks are used in many different models. In
(Manzelli, 2018) they are used to learn the melodic structure of different music styles
and generate symbolic music pieces, which are then used as input for a WaveNet-
based audio generator (in order for the output to sound realistic).

Cong Jin et al. in 2020 proposed a style-specific music composition neural
network, where as a generator there is a L S T M network, as discriminator a C N N ,
and an Actor-Critic (AC) network is used to make fine-tuning (Jin, 2020). The
L S T M network, a variant of R N N , uses a special timing memory function thanks to
its inner gates: its architecture contains three gate structures - output gates, forget
gates and input gates. Thanks to its structure it can learn long-term dependencies
in the data (Lattner, 2020), an essential ability to create long musical pieces, which

25

VENDRAME, Katia. Music composition using Al.

need a long-term structure. On the other hand, RNNs are ring-type networks, where
the output of the neural unit depends on the actual input time and to the value at
the previous time.

Based on these network typologies (Wang, 2021) proposed a Music Com­
position Neural Network (MCNN), which uses L S T M to generate music, a reward
function that is based on the "basic criteria of music creation", that can adjust the
music composition real-time and a C N N as discriminator.

2.2.6 Application examples

One of the major challenges in automatic music composition since its birth, is the
composition of polyphonic music pieces in the style of J. S. Bach's chorales. They
are used because of their strict harmonic structure, their lengths and mainly be­
cause they form a homogenous dataset of an acceptable size (Bach composed 389
chorales) (Hadjeres, 2016). To solve this challenge many different approaches have
been used: genetic algorithms , Hidden Markov Models and neural networks (RNN,
L S T M , Gated Reccurent Units, Restricted Boltzmann Machines, and so on) (Had­
jeres, 2016).

DeepBach is a solution presented by (Hadjeres, 2016): a dependency network
capable of producing choreales in the style of Bach, create coherent phrases and
harmonize melodies (Fig.7). DeepBach uses four neural networks to take in account

Fig. 7: Architecture scheme of DeepBach (Hadjeres, 2016)

the sequential aspect of the data. One network retrieves information from the past,
the other one from the future, then there is a non-recurrent neural network to
control notes occurring at the same time. The outputs of these three networks

26

Institute of Automation and Computer Science, FME BUT, 2024

are the passed to the fourth R N N . This architecture was selected reflecting the
compositional practice of these chorales (harmonization is often made starting from
the end of the piece) (Hadjeres, 2016).

Based on this overview about how neural networks are applied to music com­
position can be concluded that the researches are generally concerned mainly on the
generation of short music pieces: this means, that until now only very little attention
to the higher-level musical characteristics has been paid. This is one of the goals of
the work of (Lattner, 2019), in order to generate longer musical compositions. To
do that, they created an algorithm, called Constrained sampling that uses a Convo-
lutional Restricted Boltzmann Machine, in combination with a musical dataset for
training and structural constraints (the gradient descent method). These cost func­
tions guide the creation of the tonal, metrical, and self-similarity structure of the
pieces (Lattner, 2019). The sampling content, which is then modified according to

Sample

I
«»,v)=s(x,v) !"

/ Template x
:_ -\ Gradient descent

Gibbs sampling
11 n 11111111111J111J n 11J i n I i i [1111111J111J n 11J111 hh

Convalutional RBM

Fig. 8: Architecture scheme of Constrained Sampling Algorithm (Lattner, 2019).
Constrained sampling using an existing piece x as structure template and v is a
randomly initialized sample.

the constraint functions, is built by a two-layered C N N . The visible layer is made of
a piano roll representation, as can be seen in Fig.8. The randomly initialized sample
is updated with Gibbs sampling (GS) and gradient descent (GD), which lowers the
error $(x,w) between the template and the sample. Gibbs sampling runs until the
free energy function of the R B M stabilizes. The sample at each iteration is subject
to a gradient descent (GD) optimization, which updates the weights according to a
learning rate. The cost functions that the GS uses are (Lattner, 2019):

1. the self-similarity constraint, which builds a self-similarity matrix where re­
peating patterns are highlited (see Fig.9).

27

D VENDRAME, Katia. Music composition using Al.

J = T / A

Fig. 9: Depiction of calculating the self-similarity matrix s(z) (Lattner, 2019), z is
the piano roll representation, and A the filter for convolution.

2. the tonality constraint: the distribution of pitch classes in every segment ("win­
dow") of the piece is filtered by two "key profiles" (arrays of numbers expressing
the strength of each pitch class, one for the major keys, one for the minor)

3. the meter constraint: the number of notes in every bar is calculated, nor­
malized and then constrained to the same relative value of note onsets of a
template piece.

28

Institute of Automation and Computer Science, FME BUT, 2024

3 G E N E R A T I V E E V O L U T I O N A R Y
A L G O R I T H M S

Evolutionary computing is based on Darwinian search algorithms inspired by nat­
ural evolution. These algorithms use processes analogous to natural selection, mu­
tation, and reproduction to perform searches (Husbands, 2007). They operate on
the concept of a population, which is a set of candidate solutions that evolves it-
eratively from one generation to the next. In evolutionary algorithms, each new
generation is created by selecting the best candidate solutions (or "individuals") ac­
cording to a fitness function. Additionally, new individuals in each generation are
produced through genetic mechanisms such as mutation, crossover, and selection.
These mechanisms are implemented in various ways depending on the specific type
of algorithm.

Alan Turing suggested using the principle of evolution to develop adaptive
machines as early as the 1950s. However, it wasn't until the late 1980s that this
concept, particularly in the form of genetic algorithms, saw widespread application
across numerous fields, mainly as an optimization algorithm (Husbands, 2007)..

3.1 Evolutionary algorithms overview

Evolutionary algorithms are composed of genetic programming, genetic algorithms,
evolutionary programming, and other algorithms, that use the concept of selection
of individuals according to fitness or objective functions. The general algorithm of
an evolutionary procedure (Fig. 10) is presented below (Bagavathi, 2019):

1. Select initial population xi = {xio,xn,Xi2, . . . , X J A T }

2. Determine the value of objective function f(xo) for each individual
3. Perform selection of the best individuals (which have the highest values of the

objective function)
4. Perform crossover of the selected individuals according to some probability

value
5. Perform mutation of the newly generated individuals with some probability
6. Repeat this process until the requested termination conditions are met

Typically, these algorithms use two representations of the individuals: the genotype
and the phenotype. The genotype is utilized during recombination and mutation
processes, while the phenotype represents the solution form of the individual. The
phenotype is evaluated to determine how close the individual is to the desired solu­
tion. During selection, the phenotype is "translated" back into its genetic form, the

29

D VENDRAME, Katia. Music composition using Al.

New Generation

Selection

Recombination
Mutation

Fitness
Function

Fig. 10: Scheme of one generation of an Evolutionary algorithm

genotype, which is more practical for genetic procedures such as recombination and
mutation.

3.1.1 Genetic representations

The genetic representation of candidate solutions to a problem can take various
forms. For instance, if the solutions are numerical, their bit representation can be
used. More commonly, genotypes are strings of numbers or symbols that unequiv­
ocally represent a possible solution (Husbands, 2007). For representing music and
creating music algorithms, two main approaches can be chosen. The first approach
uses strings of real numbers to represent sound characteristics for later sound syn­
thesis. This method is optimal for applications where classical music structures and
elements (such as notes, rhythms, and phrases) are not used, leading to the creation
of new sounds or patterns.

Conversely, when the goal is to generate standard music melodies, fragments,
or pieces, an approach mirroring the structure of MIDI files can be used. In this
case, each note is represented by a string of numbers, which includes information
about its pitch, duration, and dynamics, among other attributes.

In some cases, the genetic representation of the solution is equivalent to or
very similar to the candidate solution itself. In such instances, the fitness evaluation
of these solutions can be performed without translating the genotype into its solution
form (the "phenotype").

30

Institute of Automation and Computer Science, FME BUT, 2024

The representations of individuals form the genotype space in which the best
solution is sought. One of the strengths of evolutionary algorithms is the wide range
of possibilities for representation. However, it is important to note that not all
genotype spaces lead to feasible solutions.

3.1.2 Fitness (object) functions

After generating a set of candidate solutions, the next step is to select the best
ones to become parents for the new generation. The selection process identifies the
top individuals from the set based on a "fitness value," which indicates how close
each individual is to the desired solution. This fitness value is typically derived
from a fitness or objective function defined within the algorithm according to the
optimization goal.

The simplest way to evaluate the solution's effectiveness is through a mathe­
matical function, with variables directly encoded in the genotypes (Husbands, 2007).
In other cases, it is necessary to build a model of the phenotype and then assess its
value.

In the field of music generation, fitness evaluation is one of the most crucial
steps. Sometimes, this evaluation is performed subjectively by musicians, but more
often, an automated evaluation is attempted. Individuals can be assessed by compar­
ing them to a target solution or analyzing various aesthetic and musical parameters.
Using human judgment as the fitness measure, known as aesthetic selection or in­
teractive evolution (Husbands, 2007), is problematic because it is time-consuming,
subjective, and hence possible only for a limited number of generations. The selected
individuals act as parents to the next generation.

After the selection process, the creation of a new generation individuals takes
place. Depending on the algorithm, some or all individuals in the current population
may be replaced by offspring. In spatially distributed populations, only individuals
within a certain neighborhood might interact during the genetic operations, affecting
the choise of individuals to replace.

3.1.3 Selection methods

After a fitness evaluation is made, there are different ways to select the individuals
for the new generation. Usually, a probability element is added in this process, so
the fittest individuals ("parents") are more likely to pass their information to the
new ones (their "offspring").

An method that is widely implemented is the roulette selection, where each
member of the population is assigned a probability of selection based on its relative
fitness value (its fitness value divided by the total population fitness) (Husbands,
2007): the parents are then selected according to these probability values. This

31

VENDRAME, Katia. Music composition using Al.

mechanism sometimes converges prematurely to a solution that is just relatively
optimal.

Another selection method is the rank-based selection: the population is or­
dered according to the fitness values and selection is then performed following a
pre-determined probability distribution (Husbands, 2007).

3.1.4 Genetic operators

Variation, continual improvement and innovation when creating new individuals
are secured by genetic operators, which are specific for every algorithm. The two
operators that are used almost in every procedure are crossover and mutation.

Crossover involves choosing one or more points and creating a new individual
(offspring) as a combination of different parts of the preexisting individuals (par­
ents). These parts are made by dividing parents using crossover points. The number
of children created by two parents can change, but the simple crossover gives two
offspring individuals from two pre-existing ones.

Mutation on the other hand takes a randomly chosen element (gene) of an
individual and changes it according to a probability value. The value of the mutating
element can vary according to the mutation typology implemented. For example, it
can take any value from all the possible values of genotypes or a value close to the
original one.

Other operators are for example inversion, which is an operator that reverses
a section of a genotype, translocation, which moves parts of a genotype to another
place or deletion, when the length of a genotype needs to be shortened.

3.2 Genetic Algorithm

Genetic algorithm (GA) is a population based search algorithm, where a new pop­
ulation is iteratively created by selecting the fittest elements of the previous one.
To do so, the algorithm iteratively applies genetic operators on individuals present
in the population. These operators are: selection, crossover, mutation, and fitness
function computation. Each element of the population is called chromosome and
has often a binary form (Katoch, 2021). The binary encoding provides faster im­
plementation of the operators, but it is appropriate only when the conversion from
candidate solution to binary strings is not computationally too complex.

When a population is initialized each element of the population is evaluated
according to the fitness function. The fittest individuals are then selected and vari-
ated by the genetic operators of crossover and mutation. The number of offspring
individuals obtained by this variation process can vary. Not all individuals are vari-

32

Institute of Automation and Computer Science, FME BUT, 2024

ated at every iteration: the crossover and mutation happen only according to a
probability value that is defined during the initialization of this algorithm.

The initialization of the population can occur in different ways (see Fig. 11),
but the most usual one is a random initialization (Kochenderfer, 2019).

Fig. 11: Initial population using a uniform hyperrectangle, a zero-mean normal
distribution and Cauchy distribucion (C = [0,0], a — 1)

3.3 Probabilistic grammatical evolution

Grammatical evolution (GE) is an evolutionary algorithm that employs grammars
as the central element of its implementation. Grammars define how elements (such
as programs) can be constructed from constituent parts by specifying how variables
and operators can be legally combined to create elements with desired characteris­
tics, like executable code (Ryan, 2018). According to Chomsky's theory, there are
different types of grammars, each capable of producing specific types of languages.
Most evolutionary computing systems, including GE, use Context-Free Grammars
(CFGs), which correspond to Chomsky's Type-2 grammars.

Secondly, grammatical evolution represents genotypes in the form of linear
strings (binary or integers). These are "mapped" to phenotypes, which are actual
possible solution to the problem, according to the defined grammar's tules. In the
grammar the relationships between variables and operators are specified. Therefore,
a grammar-based approach enables to constrain the solution space, making easier
the control over the creation process (Fredericks, 2023).

These algorithms have a modular nature, thanks to which they can be adapted
to any kind of application. Each structural unit of G E can be set as needed (Fig. 12):
the fitness function, grammar, search engine and the mapping can all have any form
(Ryan, 2018).

33

D VENDRAME, Katia. Music composition using Al.

SEARCH

ALGORITHM

GRAMMAR

FITNESS

FUNCTION

v.
MAPPING

SOLUTION

Fig. 12: Modular G E scheme from (Ryan, 2018)

3.3.1 Grammar

Grammars are a set of rules and symbols that determine how the resulting elements
will look like. To define a grammar, there must be an "alphabet" V, with all the
symbols necessary to build a grammar and sequences according to its rules. The set
V is called free monoid generated by the set V and consists of all finite sequences
of symbols (words, strings, denoted by v") in V , that is (Pettorossi, 2022):

Moreover, the set V+ consists of all non-empty sequences from the alphabet V,
that is V+ = V — {e}. A grammar is defined as 4-tuple G = {T, N, P, S}, where
(Pettorossi, 2022):

• T is the set of terminal symbols, which are part of the solution after parsing
• N is the set of non-terminal symbols, such that T fl TV = 0
• A set of productions or rules P, each pair [a, (3} being denoted by a —>• j3,

where a e V+ and (5 e V*, with V = TUN
• A start symbol S or axiom

Each grammar defines a language L: a set of all sequences of terminal symbols,
derived from the starting symbol S.

V = {vi,V2,vn\\n > 0 and for i — 0 , 1 , n , Vi e V} (1)

L(G) = w\S -^q w, where w G T* (2)

34

Institute of Automation and Computer Science, FME BUT, 2024

where —>q represents the reflexive, transitive closure of the relation —>a, defined as
(Pettorossi, 2022),:

for every sequence a G V+ A ß, 7 S G V* (3)

jaS —> jßS if there exists a production a —>• ß in P (4)

A language is defined as Context-Free, if it is of type 2 according to the Chomsky
Hierarchy, that means that for every production rule of that language:

->• ß, where a <E N and ß G V + (5)

For example, a Context-Free grammar G = {NT, T, P, S} can be defined as
follows:

NT = E,0,E,N

T = 0,1, 2,3,4,5,6,7,8,9, + , - , * , - (6)

S = N

The production rules P of this grammar are:

E ->• EOE\N

0 - y + | - | * | - r - (7)

A" ->• 0|1|2|3|4|5|6|7|8|9

Languages created by Context-Free grammar are usually presented in the
Backus-Naur form (BNF), which is a specific syntax for defining production rules.
For example the Type 2 grammar from Eq.7 will have the following B N F form:

< Start >

< Expr >

< Op>

< Num >

< Expr >

< Expr >< Op >< Expr > \ < Num >

0|1|2|3|4|5|6|7|8|9
The Backus-Naur form is used in programming languages when implementing gram­
mars.

In Probabilistic Context-Free Grammars, to these elements in the tuple is
added a set of probabilities "Probs" associated with each production rule: G =
{T, N, P, S, Probs}. These probabilities are changed after every generation, accord­
ing to the rule's usage in the previous ones. The rules used to create the sequences
that have better fitness scores, will have in the next generation a higher probability
value (Megane, 2022) depending on the chosen value of the learning factor.

35

VENDRAME, Katia. Music composition using Al.

3.3.2 Genotype to phenotype mapping

The mapping process is made of derivation steps and can be visualized using syntax
trees.

1. A genome in the form of string of characters (codons) in the input to the
mapping process

2. The codon will be replaced by that rule, which is in the place number resulting
from the operation: modn(codon), where n is the number of available rules for
that symbol. For example, if the codon is 45 and an operator from the grammar
defined in Eq. 8 has to be chosen, mod4(45) = 1, which means we'll chose the
second rule, in this case the operator <->.

3. This process continues, consuming a codon for each choice.
4. If there are still rules to be mapped and no codons available, new ones will be

added, or that individual is abandoned (this is called the wrapping process).

The mapping process for Context-Free grammars can be represented as a
derivation tree, with every derivation of each symbol (word) from the Start symbol
S (axiom).

As an example, consider the following derivation from the grammar presented
in Eq. 8 (Megane, 2022):

Codons Derivation

— < Start >

12modi = 0 < Expr >

46mod2 = 0 < Expr >< Op >< Expr >

35mod2 = 1 < Num >< Op >< Expr >

22modio -= 2 2 < Op >< Expr >< Op >< Expr >

15mod4 = 1 2 — < Var >< Op >< Expr >

88modio = = 8 2 - < 8 >< Op >< Expr >

52mod4 = 0 2 - 8 + < Expr >

27mod2 = 1 2 - 8 + < Num >

97modio = = 7 2 - 8 + 7

(9)

The parsing tree diagram for this derivation process is presented in Fig. 13:

36

Fig. 13: Derivation tree for the mapping process

When to this grammar probabilities are added, the mapping won't be based
on the result of the mod operation, but on the probability range of each rule. There­
fore, initially to every production rule a probability range is assigned. For example,
if there are two rules and we want to use the first one with 80% of probability,
the probability ranges will be (0; 0, 8] for the first one, and (0, 8; 1] for the second
one. The Probabilistic Context-Free equivalent to the grammar in Eq.7 will have
the following form:

Rules

E ->• EOE\N

O ->•

TV —• 0 111 2 | 3 |

4 | 5 | 6 | 7 |

8 | 9

3.3.3 Search engine

Probability ranges

(0; 0,7] | (0,7; 1]

(0; 0, 25] | (0.25; 0, 5] | (0, 5; 0, 75] | (0, 75; 1]

(0; 0, 05] | (0.05; 0, 3] | (0, 3; 0,45] | (0,45; 0,47] |

(0,47; 0, 5] | (0,5; 0, 6] | (0, 6; 0, 75] | (0, 75; 0,85]

(0, 85; 0,9] |(0,9; 1]

(10)

The choice of the search engine can determine the quality of the algorithm imple­
mentation. There are multiple possibilities that have been used, from traditional
evolutionary algorithms like Particle Swarn Optimisation, Simulated Annealing, Dif­
ferential Evolution, to random search or geometric semantic searches (Ryan, 2018).
The search engine comprehends an initialisation of the data, an optimisation algo­
rithm and genome encoding. In the case of evolutionary algorithms the behaviour

37

D VENDRAME, Katia. Music composition using Al.

of search operators (e.g. crossover, mutation) is crucial, therefore needs to be set to
best meet the needs of the specific application.

3.4 Application in music

In music, evolutionary algorithms have been experimented with in two main ar­
eas: music composition and sound design. In music composition, these algorithms
can continue pre-existing melodies, compose pieces in specific styles (e.g., Bach's
cantatas), or generate entirely new material. Music theory itself is inherently algo­
rithmic, relying on harmonic rules, counterpoint, and phraseology. However, these
rules cannot be entirely translated into machine learning algorithms because music
also relies on the creative ideas that are fundamental to each piece.

The strength of evolutionary algorithms lies in their controllable and guided
generative processes, making them suitable for encoding musical rules akin to a
composer's work. However, there is a risk that these algorithms might produce
overly rule-based outputs, resembling composition exercises rather than genuine
musical compositions. While this approach can be useful as a tool to aid composers
by handling some of the craftsmanship that can slow down the creative process, it
can stifle creativity if the aim is to produce new music. To create truly original
music, it is essential to preserve elements of "the unexpected," a "sense of direction,"
and "fantasy." The explorative and stochastic nature of evolutionary algorithms can
facilitate this creative process by not strictly defining the search space (Husbands,
2007).

Musicological studies have analyzed composition rules, forms, and schemes
from various historical periods. Until the early 20th century, composers used these
predefined forms as a foundation for creative experimentation. This historical con­
text makes it challenging to use these musical forms as ultimate models for evolu­
tionary algorithms.

In sound design, evolutionary algorithms are used for sound synthesis or ef­
fects modification, aiming to create new sounds or optimize existing ones. However,
these applications often demand high computational resources and may yield sub-
optimal results, leading to the preference for neural networks. In this domain, sound
spaces can be explored either within constraints or freely, depending on the desired
outcome.

A common issue reported by practitioners of computer-based music approaches
is a lack of overall musical energy or flow, resulting in a lack of global coherence
(Husbands, 2007). This problem arises because these algorithms are not inherently
time-based. One potential solution is to introduce rules that create long-term rela-

38

Institute of Automation and Computer Science, FME BUT, 2024

tionships and spatiotemporal structures, such as using a chemical oscillator rule
a cellular automata model (Miranda, 2000).

Institute of Automation and Computer Science, FME BUT, 2024

4 N E U R A L N E T W O R K S

m

Neural networks are employed to simulate various functions according to defined
objectives. Presently, much of the research on neural networks used in music com­
position focuses on computationally and memory-intensive tasks such as data pre-
processingaATsuch as labeling and data cleaning (Jin, 2020).

As observed in Chapter 2.2, over the last decade, many neural networks
designed for music composition have integrated architectures like generative adver­
sarial networks (GANs), long short-term memory networks (LSTMs), convolutional
networks (CNNs), actor-critic (AC) networks, among others. In the subsequent sec­
tions, we delve into the fundamental structures of these networks, elucidating how
music composition benefits from their specific characteristics.

4.1 Generative adversarial networks (GAN)

Generative adversarial networks (GANs) are capable of learning high-dimensional
distributions, which are challenging to model explicitly due to their complexity.
Instead, GANs learn these distributions implicitly from the provided datasets, such
as images, audio, and more. A basic G A N consists of two neural networks that
aim to optimize opposing loss functions. Therefore, the main components of these
networks include the network architecture, the loss function, and the optimization
algorithm (Saxena, 2021)..

The two networks employed are the generator and the discriminator: the
former crafts samples, while the latter distinguishes between generated samples and
real data, as depicted in Fig. 14. Additionally, two distinct loss functions are uti­
lized. The discriminator's loss function minimizes the negative log-likelihood for
binary classification, whereas the generator's maximizes the likelihood of the gener­
ated samples being deemed authentic (Saxena, 2021). Optimization entails tackling
a minmax problem, often addressed using gradient-based algorithms, particularly
Simultaneous Gradient Descent. These networks collapses if the min-max solution
works differently than the max-min: this way the generator creates samples that are
constantly rejected by the discriminator.

In recent times many alternatives to the basic G A N model have been pro­
posed: new architectures to make the training easier, different loss functions to
reach a better parameters' stability and convergence and sometimes also for the
optimization algorithm a different gradient descent method is used (Saxena, 2021).

41

VENDRAME, Katia. Music composition using Al.

< £ [* ° (- M) + l '«(I- 1>(0('M)))]

Noise _
2D Gaussian Generator (G)

Real

Fake Fake

Samples Prediction of
samples

• ^ i £ > (»- * (° (*))) " V ^ K , (D (a (-»)))

Fig. 14: Basic G A N architecture (Saxena, 2021)

4.2 Long short-term memory networks (LSTM)

Long-short term memory networks can generate music sequences based on prob­
ability values: they are used in combination with C N N networks, that work as
discriminator (Jin, 2020). These networks are a modification of R N N networks that
can keep constant memory over a longer period of time thanks to the gating mech­
anism (Fig. 15). A n L S T M cell separates the previous output (ht) from its memory
state (the cell state, ct) (JAZdrzejewska, 2018). The cell state can only be modified
at the forget gate, where previous values are selectively discarded, allowing new data
to be added. This addition of new data is managed by the input gate, which controls
which new candidates will be incorporated to prevent frequent modifications of the
cell state. In the final gate, the output gate, the cell state value is normalized using
a hyperbolic function, and a mask determines the final output of the L S T M block
for the given time step. This output also serves as the hidden state for the next
time step (JAZdrzejewska, 2018).

42

Institute of Automation and Computer Science, FME BUT, 2024 m

Cel l memory

Forget gate Input gate Output gate

(^) - entrywise product (Hadamard product) (a) - sigmoid function

^ - matrix addition @ - hyperbolic tangent function

(•) -do t product - vector concatenation

- matrix of trainable parameters

Fig. 15: Scheme of the gating mechanism of a L S T M network (J^drzejewska, 2018)

43

Institute of Automation and Computer Science, FME BUT, 2024

5 T H E M U S I C C O M P O S I T I O N P R O C E S S

m

5.1 Artistic composition

The Czech composer Leoš Janáček described the composition process as perceived
by the music composer as involving assimilation, apperception, association, and
reproduction. Assimilation involves perceiving a sound in nature, which is a blend
of many tones creating its timbre. Once the composer assimilates this sound, they
internalize it by noting its length (rhythmic value) and experiencing its beginning
and end. Next is the process of association, where this note is linked with the staff
and a key signature. Reproduction involves playing the note in its key, enabling the
composer to associate it with the staff, potential movements, and a key signature.

Composing music, therefore, is a process of internalization and association.
Internalization begins with whatever captures the composer's attention or imagina­
tion. Following this is the process of reproduction, which can be based on previous
creations (musical interpretation) or the creative reproduction of the composer's as­
sociative process. Composition is thus based on compositional notes that express
emotions, an "affective stream," and simultaneously react to these stimuli. Accord­
ing to Janáček, composing should merely visualize moods and movements, with
chords seen as symbols: "compositional work should achieve the speed of musical
imagination," allowing moods alone to drive the composing process (Janáček, 2020).

When discussing music, we often use terms like "musical piece," "track,"
"opus," etc. Listening to or playing music is always contextualized by specifying
which "part" of the music is being referred to. Music is divided into pieces, which
are themselves structured into smaller sections, continuing this pattern. This divi­
sion stems from a binary interpretation of music (one part "A" being different from
another part "B"), leading to binary or ternary musical forms (e.g., A B A) (Cook,
1998). These parts, in any genre or historical labeled with letters, numbers,
or names reflecting linguistic syntax such as motives, phrases, and periods. In graph
theory terms, almost every musical piece can be represented by a tree structure.

Western music notation, on the other hand, reflects the Cartesian system: it
is a bidimensional representation of pitches over time. Thus, music appears to have
two dimensions: a spatial one (describing its structure) and a temporal one (describ­
ing its flow in time). Correspondingly, music appreciation can also be considered
to have two dimensions: one based on the sensory, temporal aesthetic value of a
musical piece, and the other reflecting the aesthetic of musical form from a Kantian
perspective (Cook, 1998). The latter, called "structural listening," reflects cultural
and traditional listening habits. Charles Rosen refers to this as "inaudible music":
musical form that is often not translatable into sound but is perceived through cre-

45

VENDRAME, Katia. Music composition using Al.

ative, musical imagination (Rosen, 1995). Janáček describes this significant aspect
of music as its "residual sense," and the cohabitation of these two dimensions as a
creative force, or "musical feeling" (Janáček, 2020). This is akin to the way the value
of spoken words lies in their meaning, not their sound, with understanding coming
from the intellect. Historically, many experiments have been based on this concept,
from the notation of Ricercare by Carl Philipp Emanuel Bach in 1747 to the In­
ner voice written by Schumann in his Humoreske. Ignoring this internal experience
would remove the "excitement" derived from listening to music (Janáček, 2020).

Theories from musicologists like Schenker or Rosen serve as "listening man­
uals," providing an aesthetic vocabulary for structural listening, typically applied
to specific music genres. These theories can be used to compare different musical
pieces and genres.

5.2 Musical analysis

Analyzing musical works involves asking questions like "How is a piece built?" and
"How does a piece work?" (Mastropasqua, 1998). According to the musicologist
Mastropasqua, music comprises "perceived structures" and "designed structures."
These designed structures are part of the composer's strategy but aren't immedi­
ately perceived by the listener and need to be illuminated through analysis. The
relationship between what the listener perceives and what the composer designs is a
central theme in musical analysis, distinguishing contemporary from modern musical
styles. Starting with the compositions of Schoenberg and Webern, the focus shifted
from the perceived musical structures to the composer's designs. Understanding the
divergence and relationship between these structures is crucial for interpreting 20th-
century music. Before the 20th century, there was a direct correlation between the
music perceived by the listener and the structure intended by the composer, with
the perceived music being a consequence of the underlying compositional structure
(Mastropasqua, 1998).

In tonal music, this fundamental structure was described by H. Schenker,
whose theory reveals a unique harmonic and melodic structure spanning the entire
piece: the tonic (I) moving to the dominant (V) and then returning to the tonic at
the end. Every composer and musical style expands and varies this structure but
never abandons it. For example, in Fig. 16, two chord analyses of the first part
of Bach's C major prelude are presented, and in Fig. 17, Schenker's fundamental
structure of the same piece is shown. At the beginning of the 20th century, music
composition took a different direction: atonality. Atonal music replaced the tension
structure of tonic and dominant harmony with a structure of tensions and resolutions
generated by choices of sounds, rhythms, or other "performative" effects.

46

(TonlC)T: I — E 7 — V — I — VI
(Dominant) D: IV — II — V 7 — I - IV? — II7 — V —

I _ n 7 - v - i — v (n — v 7) — i V [i i - v 7) — V{ i i 7 - v 7 -

• •xr- « o « * 5 S
m

— b f t — 9 — >8 ti . 0 B 0 -77 -

Tonic: n - V 9 - I - IV 7 - n 7 - V 7 - 1
— I

(Supertonlo)ST: Vs I

- i) - n j v 9 - 1) - n v 3 - i) - i v 7 - 117 - v 7 - 1

Fig. 16: Harmonical structure of Bach's prelude in C major (bars 1-19) (Cook, 1998)

Fundamental StuJurî

Fig. 17: Fundamental structure of Bach's prelude in C major (bars 1-19) (Schenker,
1969)

47

VENDRAME, Katia. Music composition using Al.

Structural analysis in tonal music is a deductive process, relying on a pre­
viously known form. In contrast, analyzing atonal music requires an inductive ap­
proach, where relationships must be discovered, often leading to subjective analysis
based on potentially incorrect premises. Experiences analyzing atonal music, such as
Webern's compositions, have shown that understanding a piece can come solely from
listening, without the need for structuralism. However, searching for the structure of
a musical piece offers an intriguing study of the relationship between the sensory and
logical dimensions, which has fascinated many modern composers (Mastropasqua,
1998).

H. Schenker developed an analytical system to analyze music and define its
"Ursatz," or fundamental structure. Schenker viewed a musical piece as a "large-
scale embellishment" of a simple harmonic structure. As can be seen in Fig.18,
his analysis comprises three main layers: the upper line (Urlinie) or foreground
(Vordergrund), which resembles the score of the piece; the structural graph or mid­
dle ground, showing the movement of harmonies and melodies and describing how
fundamental elements connect; and the deep background, or "Ursatz," reflecting the
core harmonic and melodic structure of the piece (Cook, 1998).

The aim of Schenkerian analysis is to reveal how people listen to music, un­
covering the structure in which a composition's unique qualities are hidden: the
relationships between melodies, motives, ornaments, and the Ursatz in the back­
ground. This analysis is particularly effective for German and Austrian music of
the 18th and 19th centuries (e.g., composers like Bach, Beethoven, or Schubert),
but it doesn't fit as well for Italian, French, or Russian music of the same period,
reflecting Schenker's aesthetic sensibility. Schenker searched for the main direction
in musical pieces, the progressive harmonic and melodic movement towards a climax
and resolution, which is not present in every musical genre. For example, Debussy's
music creates static "sound environments," refusing to give tonal direction to many
compositions and not seeking organic coherence through harmonic structure. Thus,
Schenkerian analysis doesn't describe Debussy's compositions well (Cook, 1998).

The effectiveness of the Schenkerian method depends not on its principles but
on the conventions the analyst declares before starting the analysis. The process
of iteratively simplifying the structure to uncover its core relationships remains a
valuable tool for musicologists. For instance, in Fig.??, an analysis of Webern's
Bagatelle op. 6 uses Schenker's structure but starts from the concepts of tension
and resolution rather than harmonic bonds between musical chords and phrases.

48

Institute of Automation and Computer Science, FME BUT, 2024 m

Fig. 18: The analysed structure of Webern's Bagatella n. 2 (Mastropasqua, 1998)

5.3 Melody synthesis: an automatic music composition's method

Janáček describes piano music composirion as a generation of justified rows of tones
that become melodies thanks to their different strengths. He explains from a har­
monic point of view how composers do not have to write complete chords, but
only "melodies justified by dynamic relations" (Janáček, 2020). A n example of an
"arpeggiato" chord which makes a melody can be seen in Fig. 19.

Fig. 19: Second measure of Chopin's Polonaise-Fantasie op. 61, an example of an
arpeggiato chord (Chopin, 1846)

Row of tones make a voice when they possess some "musically expressive
elements", which according to Janáček can be connected to the harmony, rhythm
or dynamics used. Melodic voices can be less coherent, resolution, disturbance and
appeasement often relate to other tones than the melodic ones, so they can be more
free.

According to Riemann, melodic voices have ortography rules they need to
fulfil to intensify impressions and feelings (Riemann, 2014). Janáček reacts to this
concept of melody with a "new direction in music theory", which tries to associate
the connecting forms in the melodies with the elements of musical syntax - the chord
connections. According to Janáček harmonic resolutions are present in melodies too
and become the "connecting forms" of the melody. For example an interval of minor

49

VENDRAME, Katia. Music composition using Al.

second, which played as a chord is dissonant, in a melody is a "resolution of the minor
second to the unison".

Chopin's second's piano sonata Finale is a good example of how a melodic
voice creates connecting forms (harmonic connections) so strong, it stands on its
own (Fig. 20).

FINALE
Presto

Fig. 20: Opening of the Finale of Chopin's Piano sonata in b-flat minor op. 35
(Chopin, 1839)

Other fundamental principles of music harmony are outlined in JanAaADek's
new theory of music, which presents rules for connecting forms and relationships be­
tween intervals. For example, it states that "octaves are most effectively disturbed by
major sevenths" and "major sevenths resolve most effectively into octaves." Accord­
ing to Helmholtz's scale of intervals, the consonance of intervals gradually diminishes
(Fig. 21):

interval dissonance

1 8 5 k 6 3 i3 t6 2 t7 n4 7 t2

Fig. 21: The scale of interval consonance defined by Helmohltz (Janáček, 2020)

This theory of interval connections in melodies is incomplete without con­
sidering the rhythm: the character of connections between forms depends on the
accentuation, given by the rhythmic shape of the melody. Rhythm gives movement
to tones, Janáček says that every musical style has its own prominent figurations
of "chaotic moments within connecting forms", which he calls groupings of twine
(in czech: "spletny") (Janáček, 2020). One example of this twine can be seen in
Chopin's Polonaise (Fig. 19), where the arpeggiato used to create a connection be­
tween distant tones and harmony.

50

Institute of Automation and Computer Science, FME BUT, 2024

6 A P P L I C A T I O N S

6.1 Melody structure: musical introduction

Melodies have two main components: pitches and time elements. The most common
tuning system in western music is called the equal temperament: it divides the octave
into 12 equal parts on a logarithmic scale. The frequence ratio between two adjacent
parts is constant and equal to:

fx±i = 12/2 (11)

Jx

where fx is the frequence of note and fx+i is the frequence value of the next note,
exactly a semitone (1/12 of an octave) higher. Thus, note frequencies form a geo­
metric series and every note frequency can be calculated starting from the reference
note. The reference is usually the A note at 440 Hz, but it can change according to
the instrument in question. Hence the equation to calculate a note frequency is:

/ , = / r • (n r ~ r (12)

where fr is the frequency of the reference note (in the case of a standard piano
tuning it is 440 Hz) and r is the position of the reference note, in this case the A
(440 Hz) is the 49th note of the piano, so r = 49 and x is the position of any other
note of which we want to determine the frequency (for note positions on a piano
keyboard refer to Fig. 22).

>
•Tt

O D
i t i t TI O >

a i ± i t

O D ho M tt a
TI G) > M M ho ffc ífc ífc

o a
•H- tt

- n tľ) >
t. % u

O Ö í .
•u -n

T O > ŕ t ^
T* Tt Tt

o D u en a tt
71 G l > (? v . tt Ä a

0 0 01 01 tt tt
TI G) > d í) O l » B »

0 0

tt tt
• n O >

s sa
1 II Hi II III ss H l II Hg H l II Hl II H l

NJ K5 tvJ N> NJ Is) U -L W * fj> co (D _ i y y i 0 » Oů o J* *. *.
1 1 1

J i V i t u V O M y i m w t u t j <ji - j (n O l 0) O)
O N> *k

31 d 31 N
Ji -4 tD -L -J -J -J

M t P I
S O »

-v| ÍO -L CJ
M M

S S i ca CO (C If If Ifl J W (Ji a iff rt
O l CO g

O O D O C? - i Í#J u> Ľo

Fig. 22: Piano keys with their MIDI number

Frequencies vary for every instrument and tuning, they therefore don't uni-
vocally determine a musical note. When dealing with western musical compositions
notes are usually defined by numbers. Nowadays the most common number notation
for notes is the MIDI numbering, which is used in MIDI messages. Midi messages
form ".mid" musical files, which are widely used for music reproduction. Fig. 23
represents the frequencies and MIDI numbers of the notes of a piano. In classical
music the other instruments can play different ranges of these notes.

There are two time elements of a melody: the meter and the rhythm. To­
gether, they build a succession of beats. The meter is equal for the whole melody

51

D VENDRAME, Katia. Music composition using Al.

Note frequencies in the equal temperament Midi note numbers

ic3

i •

«
<

<

)
1

1
t

<

t
1 r

< >

»

1

• >

ŕ 1
t

t

«

*

<

1 <

1
1 <

t
<

>

»

t
t

<

>

<

<
>

i
• (_ __ —

1 1
t

>

<

>

<
<

'—1 1—1 1—1 1—1 1 — 1 1 i—i i—i i — i—i

<

>

i—i i—i i — '

..L

>

«

1
<

l
<

<

> t
H P

<
1

< •

t »

>

< >

t >

- P
<

«
«

>

>

<
«

>

*
• —

<
1

i ::::i:::<

<

<

H P >

< >

« i
<

< >

<

<

> t
<

H» 1

t
< >

<

• * •

r"—, , , , — i i , — , , , , r "i
C C# D D# E F F# Q Q# A A# H

notes

Fig. 23: Piano notes and their frequencies according to the equal temperament

52

Institute of Automation and Computer Science, FME BUT, 2024

(or for parts of it), it determines its accentuation. For example, a 3/4 meter can be
used for the "waltz" accentuation, where there are 3 beats in every measure with the
first one being the strongest one dynamically (the intensity of sound will be higher
for the first beat).

Next to the "accentual shape" (Janáček, 2020) of a melody, there is also
the "rhythmic" shape, which depends on the length of every note in the melody.
The rhythm is therefore made of each note's length. In classical music these notes'
lengths are categorized according to the number of beats (or the beat fractions) they
last. The main notes' lengths and their names are shown in Fig. 24.

name meter: 4/4

1 4 beats

1/2

1/4

1/8

1/16

1/32

1/64

2 beats

1 beat

1/2 beat

1/4 beat

1/8 beats

1/16 beats

Fig. 24: Most common notes' lengths in classical music

In MIDI files, notes' lengths are written as the number of ticks that distance
one event from the other (Fig. 25).

M i n u t e s

B e a t s J J J J J J J J
T i c k s 1 1 i 1 1 1 1 1 1 1 1 1 1

4 b e a t s p e r m i n u t e (B P M)

3 t i c k s p e r b e a t

Fig. 25: Relationship between meter beats and MIDI file ticks (Bj0rndalen, 2023)

53

D VENDRAME, Katia. Music composition using Al.

The number of ticks in each bet is set at the beginning of the MIDI track. In
Fig. 25 is presented another time measure, the B P M value, which determines the
speed of the metric beats per minute.

6.2 Analysis Tool

A tool that extracts features from MIDI datasets was designed to visualize the main
characteristics of a dataset and compare them to others. It was intended as a tool for
composers and musical students, as well as for people without a musical education,
that want to understand better the main differences between composer's styles and
musical genres.

In this implementation, we use MIDI files, which include information about
pitches, their durations, and the velocity with which they are struck, determining
their intensity. Using the provided dataset, this tool analyzes the structure of each
track and examines the following musical features.

6.2.1 Notes' density and variety

The first feature extracted from every track of the given dataset is the notes' dis­
tribution, as can be seen in Fig. 26, the density of the given note's occurrence is
determined by the color at the note number position (x-coordinate). The y axis
determines from which track the values are taken.

notes

Fig. 26: Heatmap of the notes' density in each track

In Fig. 26 we can see that the notes' range and the notes' distribution, which
can be seen in detail in the second graph resulting from the analysis, Fig. 27. This

54

m Institute of Automation and Computer Science, FME BUT, 2024

histogram shows the mean distribution of each note, in other words the frequency
with which they are repeated (proportional to the length of each track).

40 50 60 70 80
note midi number

Fig. 27: Histogram of notes' mean distributions in the dataset

6.2.2 Interval density and variety

Besides the notes' range and occurrence, what defines a musical style is often the
type of intervals that are mostly used. This is why the second feature extracted
from the dataset is the distribution of intervals among the tracks.

Musical intervals determine the distances between notes, each interval name
refers to a precise number of semitones, as can be seen in Tab. 1. The names of these
intervals come from the tonality that they are in, i.e. if the given interval can be
found in a major scale, we refer to it as a "major interval" and vice versa for minor
scales. The intervals that have a minus or plus sign are augmented and diminished
intervals. Note that the number of semitones in each interval corresponds to the
difference between the interval notes' MIDI numbers. In Tab. 1 the intervals used
in this work are showed.

55

D VENDRAME, Katia. Music composition using Al.

Tab. 1: Table of used interval and the number of semitones they span

symbol name n. of semitones
I Perfect unison 0
Ilmin Minor second 1
Ilmaj Major second 2
Il lmin Minor third 3
Illmaj Major third 4
IV Perfect fourth 5
IV+ Augmented fourth 6
V Perfect fifth 7
VImin Minor sixth 8
VImaj Major sixth 9
V l l m i n Minor seventh 10
Vllmaj Major seventh 11
VIII Perfect octave 12

In Fig. 28 a density distribution of the intervals types is shown and in Fig.
29 the mean distribution values of each interval's occurrence are represented.

intervals

N / / / / * -1 ^ v W s S ^

interva

Fig. 28: Heatmap of the interval densities

An alternative representation of the most used intervals in the dataset, with­
out considering the modality (if they are major or minor) can be seen in Fig. 30.

56

Institute of Automation and Computer Science, FME BUT, 2024

Fig. 29: Histogram of intervals' mean distributions in the dataset

Fig. 30: Interval types and their usage in the dataset

57

VENDRAME, Katia. Music composition using Al.

Lastly, the number of melodic patterns is analyzed: the histogram in Fig. 31
shows the number of repeating patterns found in every track. As a melodic pattern
a 4-notes melody segment is considered: if another same four notes segment is found
in the track, the number of repeating patterns for the given track is increased by
one.

Melody patterns

Fig. 31: A histogram showing the number of melody patterns

6.2.3 Notes' durations density and variety

As seen before, what makes a melody is also its rhythmic outline, which is the
succession of note durations and metric accents. Metric accents depend on the meter
of the piece and mostly don't change throughout the piece. Therefore, attention is
paid to the notes durations. The durations' names used in Fig. 32 and Fig. 33 are
described in Fig. 24. In the given dataset there are mostly notes that last a 0,0625
fraction of a beat, corresponding to a 1/16, a sixteenth note.

The rhythmic variety can be seen more clearly in the "Rhythmic variety"
plot (Fig. 34), where the number of different notes' duration per track is plotted.
The "Rhythmic patterns" plot (Fig. 35) of the same dataset confirms what can be
seen in Fig. 34, as a high number of rhythmic patterns means a lesser variaty of
notes' durations. The length of the parameters considers can be set according to
the analyzed musical style and the length of each track.

58

Institute of Automation and Computer Science, FME BUT, 2024

note duration

Fig. 32: Heatmap of the durations' density in each track

0.30-

0.25 -

tu

note duration

Fig. 33: Histogram of durations' mean distributions in the dataset

track track

Fig. 34: Rhythmic variety plot Fig. 35: Rhythmic patterns plot

6.2.4 Macrostructures

Tonalities are the core of the equal temperament system and were fundamental to
every classical music piece from the Baroque era to the 20th century. Therefore,
it was essential to develop a tool capable of extracting information about tonal­
ities from the given datasets. Tonalities are closely linked to harmony rules and
polyphony, which are beyond the scope of this work. As a result, an alternative
approach to simulate tonality in simple monophonic melodies was necessary. It was
decided to identify the tonality by considering the most recurrent pitch in a phrase
(a melody segment of 4 measures), provided that the other most recurrent pitches
were part of the same tonality's chord.

For example, if the note most recurrent in a phrase was C and the second
and third most recurrent notes were G and E, we considered this phrase being in
the tonality of C (the modality wasn't analyzed, because that can be read from the
interval analyses presented before - see Fig. ?? and Fig. ??).

The result of this tonality search is a macrostructure representing the tonal
center of each phrase, akin to Schenker's Urlinie. The goal was to develop an algo­
rithm capable of identifying the "skeleton" of the melody, following the principles of
Schenkerian analysis. This result is depicted in Fig. 36, where each track (y-axis)
shows the note values of the macrostructure (z-axis), and the x-axis represents the
time length of each track. The corrisponding version in 2D can be seen in Fig. 37.

From this representation we can evaluate the changing of the structure and
its variety, the direction that the given tracks have and if they have one. This is
useful most of all to the determine the main differences between musical genres,
whereas the rhythm and pitch analysis is more indicated when looking for stylistic
characteristics (e.g. when looking for the differences between Chopin's melodies and
Bach's).

60

Institute of Automation and Computer Science, FME BUT, 2024

Fig. 36: Macrostructures of the dataset

Macro structures (tonalities): 2D scatter plot

Fig. 37: Two-dimensional macrostructure's representation

61

D
6.3 "Synthesis" Tools

VENDRAME, Katia. Music composition using Al.

The second class of algorithms presented in this work utilizes analysis results and
a given dataset to generate new melodies. Three approaches were tested: a gener­
ative genetic algorithm, probabilistic grammatical evolution, and a long-short term
memory (LSTM) neural network.

The genetic algorithm rearranges segments of the dataset's melodies, making
it useful for creating "musical collages" of different genres or styles that meet specific
musical requirements defined by the fitness function.

The neural network was tested according to the literature presented in Chap­
ter 4. The strength of neural networks lies in their potential to generate new com­
binations based on a trained model. L S T M is the algorithm most akin to the music
composition process, as composers seek new solutions based on their knowledge and
the genre they wish to compose in. However, a key challenge with neural networks
is the limited ability to direct the creation process once the network is trained. A l ­
though we can't directly control the "composer" within the neural network, we can
preprocess the training data or select acceptable results through supervised learning.

To address the neural network's limitations, a third approach was tested:
probabilistic grammatical evolution. This method aims to closely monitor and con­
trol the generation process by providing not only a starting dataset but also a core
structure to reflect.

6.3.1 Melody composition using Genetic Algorithm

The genetic algorithm was implemented according to the scheme showed in Fig.
38: initially, an initial population is generated. Subsequently, genetic operators are
applied to produce offspring individuals, and finally, a selection process chooses the
fittest individuals to serve as parents for the next generation.

Initial population and genetic operators
The initial population was made of MIDI sequences: a maximal length was chosen
and every melody was divided in equal parts containing the same number of MIDI
messages. From the MIDI messages only messages of type "note_on", "note_off"
and "time_signature" were chosen.

At the end of this melody sectioning process we get melody segments of
different sizes, implemented as list of arrays representing notes' pitches and lengths.
The dynamics (the velocity parameter in MIDI messages) and the pedal changes
were not considered.

62

Institute of Automation and Computer Science, FME BUT, 2024 m

Initial
POPULATION

CROSSOVER

MUTATION

v
FITNESS

evaluation

SELECTION

Fig. 38: Diagram of the Implemented Genetic Algorithm

63

VENDRAME, Katia. Music composition using Al.

For example the melody in Fig. 39

Vivo e riäoluto IJ = ina h.. 1.' .N « tx.14

Fig. 39: First melody of the Chopin's mazurka op. 17 n. 1 (Chopin, 1834)

was converted into a list of arrays as is showed in Tab.2.
These segments (chromosomes) form the population for the given generation.

Then, these chromosomes are variated using the "one point crossover" mechanism.
According to a given probability, the crossover takes randomly two parents and
chooses a random point. This point breaks the original chromosome melody segment
into two pieces according to the index given by the random point value. In Fig.40
can be seen how it works if the point is the middle index of the melody vector.

0 1 2 3 4 5 6 7 9

5 6 7 9 0 1 2 3 4

Fig. 40: Crossover scheme

When the crossover has created enough individuals, the mutation of some
of these individuals takes place. During the mutation a random element from the
melody is chosen and replaced by another random one.

0 1 2 3 4 5 6 7 8 9

0 2 5 6 7 8 9

Fig. 41: Mutation scheme

After the individuals are generated the fitness function determines the best
of them that will become the parents for the new generation.

The fitness function
The fitness function was designed to evaluate various musical characteristics desir­
able in a melody from the Classic or Romantic period. These characteristics are
quantified using specific functions and then linearly combined according to their

64

Institute of Automation and Computer Science, FME BUT, 2024

Tab. 2: Example of the first segment of melody from Chopin's mazurka op. 17 n.

type numerator denominator
['time_signature' 4 4 0]

type pitch time velocity channel
['note_on' 66 28 63 0]
['note_on' 68 98 52 o]
['note_off' 66 18 64 o]
['note_on' 66 17 62 o]
['note_off' 68 21 64 o]
['note_on' 65 10 63 o]
['note_off' 66 2 64 o]
['note_off' 65 14 64 o]
['note_on' 66 0 70 o]
['note_on' 68 5 55 o]
['note_off' 66 3 64 o]
['note_off' 68 19 64 o]
['note_on' 66 97 55 o]
['note_on' 69 1 66 o]
['note_off' 66 12 64 o]
['note_off' 69 100 64 o]
['note_on' 66 15 61 o]
['note_on' 69 3 61 o]
['note_on' 71 92 55 o]
['note_off' 69 16 64 o]
['note_off' 66 14 64 o]
['note_on' 69 12 55 o]
['note_off' 71 19 64 o]

D VENDRAME, Katia. Music composition using Al.

importance. The resulting fitness function has the following form:

F(f(xm), f(xr), f(xrv), f(pi), f(xe)) =

= af(xm) + bf(xr) + cf(xrv) + df(pi) + ef(xe) (13)

Each of these functions, denoted as / , is designed such that their trend accurately
represents how the given parameter should manifest in the melody. It is assumed
that if their value exceeds 15, the parameter is sufficiently represented in the melody.
Ideally, the optimal solution to the problem will then have a fitness evaluation equal
to:

/* = (a + b + c + d + e + g) • 15 (14)

where the coefficients a, b, c, d, e, g are chosen according to the user's musical prefer­
ences.

Melody patterns
This parameter calculates the number of repeating 3-notes patterns in the melody
(it doesn't check the rhythm of these patterns). If the pattern is present in the
melody at least two times, the fitness function is increased by one. That means that
if the final number of repeating patterns is 10, there are 10 3-notes patterns that are
present at least two times in the melody. This resulting number is then normalized
according to the function:

(-3xm + 12)2

f{xm) = 15,7 • e (15)

where xm is the number of repeating patterns.

Rhythm patterns

Similarly to the melody patterns, also the number of 3-notes rhythmic patterns, that
are repeated in the melody segment at least two times, is calculated. This number
is then normalized according to the logarithmic function:

f(xr) = 5 • log(5 • xr - 55) + 13 (16)

where xr is the number of repeating patterns.

Rhythmic variety

This parameter calculates the variety of note durations in a melody, the function
used to normalize this number is the same as the function for calculating the rhythm
patterns (Eq. 17), where xrv will be the number of different rhythm types:

f(xrv) = 5 • log(5 • xrv — 55) + 13 (17)

Time lengths are rounded time values derived from MIDI messages. These numbers
represent the number of ticks that occur between one message and another in a MIDI

66

Institute of Automation and Computer Science, FME BUT, 2024

file, specifically between a "note_on" message and the corresponding "note_off"ss
message for the same note pitch. When MIDI files are sourced from recordings
of real musical performances, notes that should be the same length (e.g., quarter
notes according to the sheet music) often have varying numbers of MIDI ticks.
This is because performers rarely play notes with identical durations, especially
when interpretational rubato is involved. Additionally, MIDI ticks have microsecond
precision, so any variation in length between identical rhythms will be noticeable.
Therefore, after calculating the duration of a given note in MIDI ticks, the number
is converted to the number of beats that the note lasts (see the notes' duration
diagram in Fig. 24). This conversion helps to significantly reduce the sensitivity to
variations in note lengths.

Interval variety
What makes a melody interesting is often also the intervals of which it is made. To
check this parameter an interval polynom was defined, in which different intervals
have different weights:

where the roman numbers indicate the number of times the specific musical interval
has been detected in the melody segment at hand (V - perfect fifth, IV - perfect
fourth, III - minor and major third, VII - minor and major seventh and II - minor
and major second). Note that the intervals' weights, represented by the coefficients
a, b, c, d, e can be set according to the desired output's characteristics. The number
resulting from the interval polynom p is then normalized by the function:

Ending
The last parameter that is being checked is the interval distance between the start
note of the melody and the last one, because melodies usually end in the same range
as the starting note.

where xe is the interval distance between the first and last note of the melody.

6.3.2 Melody composition using Probabilistic Grammar Evolution

The P S G E algorithm has three main components: the grammar definition, the gram­
mar evolution algorithm and the genetic search engine. The pseudo code showing
the structure of the applied algorithm is presented in A l g . l . First, a definition of
a grammar is necessary. The grammar defined for this application reflects the aim
that the user wants to reach, the form of the possible solutions (the melodies we
want to create in this case).

Pi = a V + oIV + cVII + rJII + effl

5 • log(5 • Pi — 55)
(19)

(20)

67

D VENDRAME, Katia. Music composition using Al.

Algorithm 1 P S G E

procedure main [population size, crossover_rate, mutation _r-ate,
generations, dataset, grammar)

for gen in generations do
for i in population_size do

codon = random (0,1)
selected_rule = E X P A N D (symbol, codon, grammar, depth, max_depth)
genotype = C R E A T E (genotype, symbol, grammar, depth, max_depth)
genotypes, append (genotype)

end for
genotypes = crossover (genotypes, crossover _r ate)
genotypes = mut8itioia(genotypes, mutation _r ate)
for gen in genotypes do

phenotype = M A P (gen, positions_to_map, symbol, depth,
max_depth, grammar)

phenotypes.8ippeiad(phenotype)
end for
for phen in phenotypes do

parsed = PARSE(phenotype)
MIDI = C O N V E R T (parsed, pitch_range)

end for
Fitness = E V A L U A T E (M J D J , rules)
Selected = SELECTION(/ i tness , rules, MIDI)
Grammar = UPDATE(se/ec£eri, learning_f actor)

end for
end procedure

68

Institute of Automation and Computer Science, FME BUT, 2024

A classical music grammar
The grammar used for this testing application reflects the structure of MIDI files,
as the datasets given are made of files in MIDI format. Therefore, the start symbol
of the grammar is:

< Start > ::= < Meter >< + >< Sequence > (21)

The meter being the accentual structure of the melody, as described in chapter 6.1.
Following the meter definition, the recursive sequence generation begins:

< Sequence > ::= < Note >< + >< Sequence > |

< Intervals >< zip >< Rhythms >< + >< Sequence >
(22)

New elements are added to the sequence in two ways: either adding single pitches
or appending an interval and rhythmic sequence of choice. The operator is a zip
function that pairs every interval to a sequence of notes' durations (a rhythm). The
resulting sequence of intervals and durations will be translated into pitches during
the genotype to phenotype transformation. The pitches will be calculated from the
pitches that precede. For example, if there is a G note and a sequence of [Ilmaj, V]
intervals right after, the phenotype will be: G — A — E, because G — A form a major
second (Ilmaj) interval and A — E form a perfect fifth (V) interval.

Adding a pitch (< Note >) means defining a note, its octave and its duration:

< Note > ::= < Tonality >< + >< Duration >< + >< Octave > (23)

Notes aren't added to the sequence randomly; they reflect the tonality of the melodic
segment. Certain notes are used more frequently than others because each note in a
tonality has its own function and significance. For example, if a melody segment is in
C major, the notes C and E form a tonic harmony, making them more frequent and
important than notes like D or A, which primarily serve as passing or predominant
harmonic notes in C major. Additionally, in C major, the note G is crucial. The
G chord (comprising G, B, D, and F) functions as the dominant, creating tension
and a sense of direction that is resolved only by the tonic chord.

Thus, the tonality is first chosen according to a predefined macrostructure or
the statistical information derived from dataset analysis. Then, pitches are selected
based on a preset probability distribution among scale degrees (see Tab. 3):

Note that the sum of the probabilities of each scale degree is not 1: that
is due to the presence of chromaticisms in the choice of notes. Chromaticisms are
made of notes outside the current tonality, they are used as melody embellishments,
or to make harmonic modulations happen. The probabilities chosen in Tab. 3 are
just for reference, they can be set freely according to the application and the user's

69

D VENDRAME, Katia. Music composition using Al.

Tab. 3: Table of the tonal scale degrees

Corresponding note
Scale degree Name Probability in C major
I Tonic 0.3 C
II Supertonic 0.04 D
III Mediant 0.15 E
IV Subdominant 0.04 F

V Dominant 0.15 G
VI Submediant 0.04 A
VII Leading tone 0.04 H

Total : 0.76

preferences. If the desire is to compose non-tonal music, higher probabilities will
not be given to the scale degrees, but instead even probability values will be given
to all the notes.

Lastly, the terminal symbols of this grammar are all the musical parameters
that will be needed to compile a MIDI file: the meter values, the pitches, the
tonalities, the intervals, the rhythmic sequences, the notes' durations values and the
octaves. These values are either extracted from a given dataset or given by the user
and can have any form needed. For example if the aim is the generation of sound,
the pitches won't be MIDI numbers but frequencies, and so on.

On the other hand, the start symbol, operators and the non-terminals of this
grammar are:

Non Terminals ::= < Sequence >, < Meter >, < Octave >,

< Note >, < Rhythms >, < Intervals >

< Tonalities >, < Degrees >,
(24)

< Durations >

Axiom ::= < Start >

Operators ::= < + >, < zip >

Probabilistic context-free grammar
Probabilities are assigned to each rule to vary their outcomes according to the user's
preferences or the parameters of the given dataset. If the starting point is a dataset
and the goal is to generate melodies in a similar style, the probability values for
each terminal are derived from the analysis tool's results (see section 6.2). These
probability values are then incorporated into the grammar, with terminals defined
based on the features extracted from the dataset during analysis:

70

Institute of Automation and Computer Science, FME BUT, 2024

1. The meters
2. The octave ranges
3. The time durations
4. The tonalities
5. The interval sequences
6. The rhythmic sequences

The analysis returns for each parameter the most used elements and their proba­
bilities of occurrence and the algorithm takes these results and builds the grammar
according to them automatically. For example, the grammar rule for interval se­
quences will be the defined as:

< Interval Sequence >:: =
< Firstlnterval >,
< Seconalnterval >,
< Thirdlnterval >,
< Other Intervals >,

prob: first int. prob.
prob: second int. prob.
prob: third int. prob.
prob: other int. prob.

A l l the other Non Terminal symbols will have a similar definition, except for the
tonality symbol, which will be defined as follows:

< Tonality >:: =
< FirstTonality >< + >< Degree >, prob: first ton.
< SecondTonality >< + >< Degree >, prob: second ton.
< ThirdTonality >< + >< Degree >, prob: third ton.
< OtherTonality >< + >< Degree >, prob: other ton.

(26)

And the following Degree rule has the form based on the information explained
in Tab. 3. The degree rules don't compile only the scale degrees but all 12 scale
notes, because it considers the possibility of chromaticisms. The symbol names are
the numeric values of the distance between the resulting pitch and the tonality (its
tonic note). For example, the symbol < 5 > means that the resulting note will be

71

D VENDRAME, Katia. Music composition using Al.

5 semitones above the tonic (in case of C major tonality it will be the note F).

< Degree >:: <+0>, prob: I prob.
<+l>, prob: II prob.
<+2>, prob: II prob.
<+3>, prob: III prob.
<+4>, prob: III prob.
<+5>, prob: IV prob.
<+6>, prob: IV+ prob.
<+7>, prob: V prob.
<+8>, prob: VI prob.
<+9>, prob: VI prob.
<+10>, prob: VII prob.
<+!!>, prob: VII prob.

(27)

Grammatical Evolution
Once the grammar is defined, it can be implemented in the grammatical evolution
algorithm. First it is necessary to expand the grammar symbols, this is made by
the generate expansion procedure (Alg.2 (Megane, 2022)):

When the star symbol is expanded, the process of creating new individuals
begins (Alg.3, (Megane, 2022)). During this process the genotype is generated by
appending every expanded symbol and its probability value. This procedure is
recursive: when a new symbol is added to the genotype, a new expansion with a
new codon value takes place, resulting in new symbols to create individuals from.
This process is continued until the symbol obtained is a terminal symbol.

The genotypes obtained from the create procedure are then taken by the
genetic functions of crossover and mutation. They are recombined during crossover
according to the set crossover rate and then some of the elements are mutated
according to the mutation rate (to know how the crossover and mutation works see
section 6.3.1).

After the genotypes are genetically processed, the genotype to phenotype
mapping takes place (Alg. 4):

72

Institute of Automation and Computer Science, FME BUT, 2024 m

Algorithm 2 Generate expansion

procedure E X P A N D (symbol, codon, grammar, depth, max_depth) > Expand
grammar symbols according to codon's value

if depth < max_depth then
for element in grammar [symbol] do

cum_prob + = element(prob)
if codon < cum_prob then > Check the probability value

selected_rule = element(rule)
return selected_rule > Return symbol's expansion rule

end if
end for

else
rules = get_non_recursive rules(grammar [symbol]) > Function to get

non recursive rules
total_prob = sum(element(prob) for element in rules)
for element in rules do

cumprob + = el ement(prob)/total _prob
if codon < cum_prob then:

selected_rule = element(rule)
return selected_rule > Return symbol's expansion rule

end if
end for

end if
end procedure

73

D VENDRAME, Katia. Music composition using Al.

Algorithm 3 Create individual
procedure C R E A T E (symbol, genotype, grammar, depth, max_depth) > Create
an individual's genotype

codon = random (0,1)
genotype(symbol) .append(corion)
selected_rule = expa,iad(symbol, codon, grammar, depth, max_depth)
rules, a,ppeiad(selected_rule)
expansion _symbols = grammar (symbol, rule)
for symbol in expansion_symbols do

if not is terminal(s|/m6o/) then > Check if symbol is terminal
creaie(symbol, codon, grammar, depth, max_depth)

end if
end for
return genotype > Return generated genotype

end procedure

Algorithm 4 Genotype to phenotype mapping
procedure MAP(genotype, symbol, positions_to_map,
grammar, depth, max_depth) > Get the phenotypes

position = positions _to_map(symbol)
if position >\eia(genotype(symbol)) then

codon = random (0,1)
else

codon = genotype(symbol, position)
end if
selected_rule = expa,iad(symbol, codon, grammar, depth, max_depth)
rules. a,ppeiad(selected_rule)
expansion _symbols = grammar (symbol, rule)
positions _to_map(symbol) + = 1
for symbol in expansion_symbols do

if not is terminal(s|/m6o/) then > Check if symbol is terminal
phenotype + = symbol

else
phenotype + = map (genotype, symbol, positions to map,

grammar, depth, max_depth)
end if

end for
return phenotype > Return generated phenotype

end procedure

74

Institute of Automation and Computer Science, FME BUT, 2024

The procedure of mapping is applied to each genotype until a phenotype
representing the whole melody is created. At this point the phenotype is translated
into a MIDI format musical file, that can be evaluated by a fitness function. Based
on the results of the fitness evaluation the probabilities of the grammar rules are
updated to get better ("more fit") melodies. The rules update procedure is showed
in Alg. 5.

Algorithm 5 Rules update
procedure U P D A T E (grammar, selected_rules, learning _f actor) > Update the
probability values in the grammar

for recurrence in selected_rules(recurrence) do
tot_prob + = recurrence

end for
for rule in selected_rules do

rule_use = rule(recurrence)
if rule_use > 0 then

for % in grammar (rule) do
if % in rule then

new_prob =mm(prob + learning_f actor • rule_use/tot_prob)
grammar (i,prob) = new_prob

else
new_prob = prob — learning_f actor • prob
grammar (i,prob) = new_prob

end if
end for

end if
end for
return grammar > Return updated grammar rules

end procedure

The learning factor updates the rules in two different ways depending on the
fact if the rule was used in the mapping or not (Megane, 2022). If the rule was used,
the following equation is used:

rec'
probi = vam(probi + A • —, 1) (28)

where reQ is the number of occurrences of the given rule in the mapping and the
J2kreck is thentotal sum of all occurrences. On the contrary, if the recurrence
number is zero, the probability is updated according to the equation:

probi = probi — A • probi (29)

75

VENDRAME, Katia. Music composition using Al.

Genetic operations: crossover, mutation and selection
Mutation and crossover are applied to the genotype before mapping, that means that
just the codons are modified. During crossover a segmentation of the genotypes and
a recombination of its parts is realized:

Before crossover
Parent 1 Parent 2

< Meter > [0.27] [0.53]
< Sequence > [0.14, 0.32, 0.77] [0.45, 0.22, 0.67]
< Duration > [0.65,0.18] [0.16,0.11]
< Tonality > [0.93, 0.42] [0.39, 0.02]

(30)

After crossover
Offspring

< Meter > [0.27]
< Sequence > [0.14, 0.32, 0.77]
< Duration > [0.16,0.11]
< Tonality > [0.39, 0.02]

Mutation changes randomly some codons of the genome, according to a mutation
rate that is preset by the user:

Before mutation
< Meter > [0.27]
< Sequence > [0.14, 0.32, 0.77]
< Duration > [0.16,0.11]
< Tonality > [0.39, 0.02]

(31)

After mutation
< Meter > [0.88]
< Sequence > [0.14, 0.32, 0.77]
< Duration > [0.16,0.53
< Tonality > [0.39, 0.02]

The selection of the fittest individual is made after the genotype to phenotype
mapping and the translation of the phenotype into a MIDI file. That means that
selection could be made in different ways, one of which could be a subjective selection
process made by the author. In this work different variants of fitness functions were
used.

76

Institute of Automation and Computer Science, FME BUT, 2024

Fitness function forms
The fitness function can have any form depending on what the aim of the user and
the musical genre in question is. In this case two main fitness function forms were
used a combination of non-linear functions and a full-linear version.

1. Linear combination of non-linear functions, with reference value of 15.
2. Linear combination of linear functions

The base form of the fitness function for every variant tested is the following:

fitness value = fast + repeating_rhythms + rhythm_density +

interval_variety + ending + mean_distance +

high_low + rhythm_min + accents + note_variety

In the case of the use of non-linear functions, exponential, goniometric, loga­
rithmic, and polynomial functions in order to get a value higher than 15 if the tested
parameter is satisfied in the melody, as was done for the genetic algorithm (section
6.3.1). The functions used in this case are variants of the functions presented in
section 6.3.1 (see Fig. 42).

Fig. 42: Plots of some of the functions used in fitness evaluation

The variant that solely employs normalized fitness functions is intended to
be more responsive to alterations. In this scenario, each parameter assessed by the
fitness function is evaluated linearly: the coefficient is +1 if the parameter represents
a desired characteristic of the melody, and -1 otherwise. A change of one unit in
the given parameter reflects the minimal significant increase or decrease of that
parameter.

For instance, to compute the parameter "repeating_rhythms," the density of
each rhythmic value is initially calculated. This value is then normalized to change

77

D VENDRAME, Katia. Music composition using Al.

by one unit each time the value varies by 0.1 (the designated sensitivity value), as
follows:

0 if x < 0, 25

norm
x - 0 , 2 5

0,1

0

if 0 , 2 5 < x < 0 , 5

if x > 0, 5

(32)

6.3.3 Melody composition using L S T M

A long-short term memory (LSTM) neural network was evaluated using the same
datasets employed for testing the genetic algorithm and grammatical evolution. The
MIDI files were read and parsed using the Music21 library, which separates the
data into notes and chords. Each note object includes its offset and octave during
parsing, where the offset indicates the note's position in the piece. In the L S T M
implementation utilized (based on Skuli, 2017), the arrays of notes and chords were
then converted into arrays of integers. Each note is represented by a number based
on its position in the sorted set of all notes used in the dataset.

Once the arrays of numbers are obtained from the dataset, input sequences
of numbers are generated. The network output for each input sequence will be a
note or chord that follows the input notes sequence. Various sequence lengths were
tested.

The Neural Net model used was built using the Keras library. It is a sequen­
tial model, which used the following layers (Skuli, 2017):

1. Input layer: a L S T M layer with given input shape.
2. L S T M layers
3. Dropout layers: used to drop a fraction of input units.
4. Dense layers

Sequential models consist of layers, with each layer having one input tensor and one
output tensor. The initial layer utilized is an L S T M layer with 512 units, employing a
hyperbolic tangent function as the activation function. The recurrent state dropout
is configured to 0,3.

Subsequent to the first layer, two additional L S T M layers with 512 units each
are incorporated. Following these layers, a dropout layer with a dropout rate of 0,3
is added, which randomly sets input units to 0 based on the specified frequency rate.
This dropout layer is employed to mitigate overfitting.

After the dropout layer, a regular densely-connected layer is introduced, im­
plementing a rectified linear activation function (a(x) = max(x, 0)). Following this
layer, another dropout layer is applied. Finally, a Dense layer with the softmax
function as the activation is added. The softmax function transforms a vector of
real numbers into a probability distribution (Keras, 2024).

78

Institute of Automation and Computer Science, FME BUT, 2024

Once the model is trained, the output is generated by converting the nor­
malized integer outputs into MIDI arrays, which can subsequently be played and
evaluated. Based on how the model was created and how the dataset given was
processed, only short melodies can be obtained, without directly controlling their
overall structure (Jedrzejewska, 2018).

79

Institute of Automation and Computer Science, FME BUT, 2024

7 Application example: the Mazurkas' dataset

The analysis and composition methods underwent testing using various freely avail­
able MIDI datasets from the internet. This chapter presents the results obtained
specifically from the MIDI dataset of Chopin's mazurkas (Midiworld, 2024).

7.1 Analysis and extracted features

The developed analysis application returns graphs and values to visualize the char­
acteristics of the MIDI files dataset given. For the Chopin dataset the results can
be seen in Fig. 43.

notes

30 40 50 60 70 80 90 100
note midi number

intervals

interval
rhythms

note duration

0.2 -

0.0 — - a

note duration

Fig. 43: Extracted features' distributions from the Chopin's mazurkas dataset

81

VENDRAME, Katia. Music composition using Al.

In the first two plots, it's evident that notes are distributed quite evenly
within the range of 55 to 75 (G3 - E5). Additionally, diatonic intervals emerge as
the most prevalent in all mazurkas: the most frequently occurring notes are typically
spaced two MIDI numbers apart, as illustrated in detail in Fig. 44.

Fig. 44: Detail of the notes distribution over the Mazurkas' dataset

The "intervals" plots confirm that diatonic semitones (corresponding to inter­
vals of Ilmaj in the graphs) are much more common than chromatic ones (Ilmin).
Additionally, the intervals heatmap reveals that in most mazurkas, the most fre­
quently used intervals are consistently II major, VII, III, V , and VI major.

Lastly, the "rhythms" plots indicate that the most frequently used note du­
rations across all mazurkas are octaves, quarter notes, and sixteenths.

The second set of plots that the analysis tool examines melodic and rhythmic
patterns of the melodies and the intervals most used overall. This set of plots can
be used to compare different musical styles. As an example, a dataset of Bach's
fugues was added to the mazurkas and the resulting histograms are showed in Fig.
45. The Bach's fugues MIDI files were taken from (Bachcentral, 2018).

In these histograms, the first 15 tracks are Bach's fugues, while the remaining
ones are Chopin's mazurkas. It can be observed that Chopin employs more melodical
patterns, at the same time the mazurkas exhibit greater variability in note durations.
Chopin's compositions demonstrate a broader rhythmic variety compared to Bach's
fugues. Bach, in his fugues, tends to use a more monotonous rhythmic outline, with
each track featuring only a few types of note durations.

Finally, the most commonly used intervals by both composers are similar,
except for the interval of the II. There is a correlation between the low rhythmic

82

Institute of Automation and Computer Science, FME BUT, 2024

Melody patterns Melody patterns

60 -

BO

' 40

20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
melody

Rhythmic patterns

40 in £
g 30 H
to D. «- 20 o
c 10

c

200

I 1 5 0

£ 100
r.
6 50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
melody

Rhythmic variety

lihiLiillliilii

III IV IV+ V VI VI- VII
Intervals

20

10

0 2 4 6 8 10 12 14 16
melody

Rhythmic patterns

Rhythmic variety

0 2 4 6 8 10 12 14 16
melody

Interval variety

^ 300

£ 200

o
c 100

C
IV IV + V

Intervals
VI VI- VII

(a) (b)

Fig. 45: Extracted musical characteristics from Chopin's mazurkas (a) and Bach's
fugues (WTC) (b)

83

VENDRAME, Katia. Music composition using Al.

variety in Bach's compositions and the high frequency of the II interval, indicating
a significant presence of scale movements.

The third set of results of the "Analyst tool" consists of the plotted macrostruc-
tures. In Fig. 46, the macrostructures of 10 Chopin mazurkas are displayed alongside
those of 10 Abba songs for comparison, taken from (Midiworld, 2024). The struc-

(a) (b)

Fig. 46: Macrostructures of a) Chopin's mazurkas and b) songs by Abba

tures of Abba's songs are more stable around a single tonal center, while Chopin's
are shorter and more varied. As shown in the 2D representation (Fig. 47), the
structures tend to conclude on the same notes they began with, or within the same
tonal space, typically a III or V interval above.

7.2 Context-free grammar of the mazurkas' dataset

The second tool developed writes the grammar rules for the grammar evolution
algorithm based on the fundamental characteristics of the dataset given. In the case
of Chopin's mazurkas, the grammar has the following form:

<start>: [{'exp' : ['<meter>', '<seq>'] , 'prob': 1.0}],

<meter>: [{'exp': ['<[array([3, 4])]>'], 'prob': 1.0}],

<seq>:[{'exp': ['<note>', '<seq>'], 'prob': 0.4},

{'exp': ['<int_seq>', '<op>', '<rhy_seq>', '<seq>'], 'prob': 0.6}],

<op>: [{'exp': ['<zip>'], 'prob': 1}],

84

Institute of Automation and Computer Science, FME BUT, 2024 m
Macro structures (tonalities): 2D scatter plot

Fig. 47: Detail of the macrostructures of Mazurkas' dataset

<note>: [{'exp' : ['<ton>', '<time>', '<octave>'] , 'prob': 1.0}],

<octave>: [{'exp': ['<60>'], 'prob' : 0.637},

{'exp': ['<72>'], 'prob': 0.348}, {'exp': ['<84>'], 'prob': 0.0133}],

<time>:[{'exp': ['<8>'], 'prob': 0.421},

{'exp': ['<16>'], 'prob': 0.267},

{'exp': ['<4>'], 'prob': 0.184}, . . .] ,

<ton>: [{'exp': ['<C#>', '<degree>'], 'prob': 0.166},

{'exp': ['<D>', '<degree>'], 'prob': 0.152}, . . .] ,

<degree>:[{'exp': ['<+0>'], 'prob': 0.3},

{'exp': ['<+l>'], 'prob': 0.0399},

{'exp': ['<+2>'], 'prob': 0.0399}, . . .] ,

<int_seq>: [{'exp': ['<[2 -2 -1 1]>'], 'prob': 0.000584},

{'exp': ['<[2 -6 -1 5]>'], 'prob': 0.00116}, . . .] ,

<rhy_seq>:[{'exp': ['<[32 4 8 2]>'], 'prob': 0.00296},

{'exp': ['<[8 16 32 4]>'], 'prob': 0.0151}, . . .] ,

Note that it is possible for the author to implement other rules based on the de­

sired results, some of the rules can be eliminated, or changed. For example, the

macrostructure of the created melody can be set as follows, given the macro struc­

ture variable:

85

D
self .macro = [<C\

 (

G\ 'C']

VENDRAME, Katia. Music composition using Al.

the grammar rule <ton> will then be modified accordingly:

i f len(self.macro)>0:

'<ton>' = [{"exp" : ["<macro>","<degree>"], "prob": 1.0}]

The probabilities values in the grammar are the results of the feature extractions,
as well as some of the terminals of the rules, as for example the rhytmic and interval
patterns. In this case pattern lengths of 4 elements were presented, but the algorithm
works with any length needed. Patterns of three and four notes were tested.

7.3 Grammatical evolution algorithm

The grammatical evolution algorithm was implemented according to the description
in section 10. Different ways of building the new population at every generation
iteration were tested, as long as different fitness function forms:

Random tree initialization
Individuals are generated by randomly building derivation trees up to a specified
depth limit (Ortega, 2007). Therefore, only information about the updated gram­
mar's probabilities is passed from the older generation to the new one. In this case
the best fitness function values throughout the generations don't have a positive
gradient (see Fig.48), but the results from a musical point of view aren't disappoint­
ing (considering the melodies which got the highest fitness values during training),
as can be seen in Fig. 49. As can be deduced from the melody profile presented in

Fig. 48: Fitness function when using the random tree initialization

86

j 'Jift I'I TTi u i 11 M r, i
Fig. 49: Generated melody example

Fig.49, the fitness function was selected in order to get repeating rhythmic patterns
and a narrow pitch range.

Truncation selection
The second selection mechanism chosen was the truncation selection: in this case,
the best individuals from the previous generation replace the worst ones of the new
generation. The fitness function values for 100 generations are showed in Fig. 50.
The best melody obtained in the last generation is showed in Fig. 51

Fitness funct ion

so -

0 20 40 60 80 100
generation

Fig. 50: Fitness function when using truncation selection

Fitness function with non-linear components

The "mean distance" value of the fitness function is zero unless the mean distance
between notes in the melody has a maximum value of 5 MIDI notes, according to
the exponential function in Fig.52. The same function is used also for the values
of the parameter "high low", which rewards those melodies, in which the distance
between the highest pitch and the lowest is lesser than an octave.
A n example of fitness values during training is presented in Fig. 53.

87

VENDRAME, Katia. Music composition using Al.

J = 100

f ' T U T I'p -'P

Fig. 51: One of the best melodies obtained using truncation selection

-15 -10 -5 0 10 15 20

Fig. 52: Function used to evaluate some of the fitness function's parameters

* * * i * * * * *

rhythmrepeating
* interval variety
• highjow

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Fig. 53: Some of the fitness function parameters values during training

88

Institute of Automation and Computer Science, FME BUT, 2024

Linear fitness functions
In the case of using just linear functions, it can be possible to prioritize some pa­
rameters over others by adding coefficients to the fitness functions. For example,
adding two coefficients:

fitness value = fast + repeating_rhythms + rhythm_density +

interval_variety + ending + 2 * mean_distance +

2 * high_low + rhythm_min + accents + note_variety

The result with the highest fitness values got from this implementation is a rather
rhythmically and melodically uniform melody (Fig. 54).

J = 95

circirr-fTcjerr ic/Pr picrr cNr pr pir cr"r

Fig. 54: Uniform melody when fitness function changed

7.4 Comparison with other algorithms

The same dataset was used with the genetic algorithm and the L S T M neural net­
work.

Genetic algorithm
As in the case of the probabilistic grammar evolution algorithm, we considered only
short sequences of notes with a pitch higher then F4 (65 in MIDI pitch number),
the typical range for accompanied piano melodies in the romantic era.

For testing the genetic algorithm the fitness function presented in par. 6.3.1
was used, whose maximum values obtained in every generation are represented in
Fig. 55.

89

D VENDRAME, Katia. Music composition using Al.

0 20 40 60 80 100
n. of generations

Fig. 55: Fitness function values for the genetic algorithm

A n example of the melodies created in this case can be seen in Fig. 56.

J = 173

ft# i f . J>kr i r , . p . i i i r

1|» 0 0 -M

> y J , h

f k

I - a i y - f j r* F i F

^ f f

^ - s - 4 J - ^ r bJL• r

Fig. 56: Melody created by the genetic algorithm after 100 generations

90

Institute of Automation and Computer Science, FME BUT, 2024

J = 104

Fig. 57: Melody created by the genetic algorithm after 100 generations

When applying the fitness function used for the P S G E algorithm, the genetic
algorithm has as result rhythmical figures without melody (Fig. 57). In case a
fitness function that rewards only the intervals of third and fifth is used, the melodies
created have a similar form as the excerpt in Fig. 58.

J =169

Fig. 58: Melody created with fitness function preferring III and V intervals

Long Short Term Memory network
Besides the genetic algorithm, the L S T M was tested, using the model presented in
(Skuli, 2019). First it was tested with 100 epochs using the complete Mazurkas'
dataset: the melodies and the left hand accompainment's chords. A n excerpt of
the result can be seen in Fig. 59. When using only notes with a pitch above F4

J = 120 .
HP r I. b 4 i — r i d — - M * =

T" 4 j f ' P - P f ^ — R 1 ' ' r i:r ' ' J j : - 1

7
4

, j " J x • j J

8

l c r = r ^

_ T

Fig. 59: Melody created by L S T M using dataset with accompaniment (chords)

(corresponding to MIDI number 65) and not considering the chords, the resulting

91

VENDRAME, Katia. Music composition using Al.

melodies are similar to the one presented in Fig. 60. The loss weight values trend
is plotted in Fig. 61.

J = 120

• W—rj ¥—5

j ' f t m J iJ~nJ r i'r r r i n r r i » r , - 1 r r r

Fig. 60: Melody created by L S T M using one-voice dataset

LSTM loss function
4.0 -

3.5 -

•B 2-0-
3
8 1-5-
o

0 100 200 300 400 500
epoch

Fig. 61: L S T M loss function

92

Institute of Automation and Computer Science, FME BUT, 2024 m
8 D I S C U S S I O N
The analysis tool can visualize the primary differences between musical genres or
styles. As demonstrated in Fig. 45, the tool highlights key distinctions between
Chopin's short pieces and Bach's style. The comparison conducted between Chopin's
mazurkas and Bach's Well-Tempered Clavier is particularly relevant as Bach's work
greatly inspired Chopin: he studied Bach's preludes and fugues extensively, forming
the foundation of his musical education and teaching (Rosen, 1995). The histograms
in Fig. 45 illustrate the contrasting approaches to melodic treatment, from Baroque
homogeneity to rich Romantic textures. As musicologist Charles Rosen pointed
out, Chopin disrupted the musical scene of his time with his monophonic pages,
demonstrating the ability to minimize polyphony while still creating pieces with a
clear harmonic structure (see the sonata's Finale in Fig. 20). This skill of Chopin's
was directly inspired by Bach's counterpoint. Furthermore, the ability to harmoni­
cally treat a monophonic line without accompaniment is considered the best way to
evaluate a composer's counterpoint abilities (Rosen, 1995).

The aim of the second set of codes presented than, the generation of mono­
phonic melodies, can be considered an appropriate starting point for A M C devel-
opement.

To build the grammar of the probabilistic grammatical evolution algorithm
some of the results of the "analyst tool" are used, this way the resulting musical style
of the melodies obtained by this algorithm is closely controlled. From generation
to generation the rules are updated based on the evolutionary search, making the
resulting melodies gradually gain the desired form. After initialization, the melodies
are controlled by the fitness function, which can be defined according to the author's
preferences. Various versions of grammatical evolution were tested. When genotypes
are generated at each iteration using the random tree initialization algorithm, in­
teresting results are obtained, but there is no significant growth in fitness function
values. The generated melodies often feature several rhythmic patterns and predom­
inantly use intervals of fifths, fourths, and thirds. After a few hundred generations,
a random number of melodies with high fitness function evaluations are produced,
but the search mechanism to increase the number of these "better" melodies needs
further exploration. The hypothesis is that this depends on the fitness function's
structure.

Therefore, different types of fitness functions were tested. The first type (the
"fitness function with non-linear components" described in Section 7.3) involves a
mathematical evaluation of the most basic musical characteristics familiar to lis­
teners of classical music melodies. The second type of fitness function focuses on
melody characteristics directly influenced by the grammar: it does not evaluate the

93

VENDRAME, Katia. Music composition using Al.

overall structure of the melody or the number of repeating melodic or rhythmic pat­
terns as in the first case. Instead, it assesses the intervals used, the mean distance
between intervals, the spread of the melody across octaves, and accentuation. For
example, in the case of mazurkas, the aim is to prioritize rhythmic patterns typical
of mazurka dances (Fig. 62).

" 4 Q T r I e r r r ICJV r

Fig. 62: Mazurka's rhythmical pattern

The results demonstrate that the fitness function is highly effective for gener­
ating a melody with specific characteristics, particularly when these characteristics
pertain to the individual elements or shorter note patterns rather than the melody's
macrostructure.

For instance, when the fitness function rewards a melody for having the
accentuation typical of a mazurka dance, we achieve the melody shown in Fig. 63
after 16 generations. The progress of the fitness function is illustrated in Fig. 64,
where the orange dots represent the highest fitness values achieved, and the blue
line indicates the mean fitness value for each generation.

J = 97 r ' ' J n

f g ^ S J JI j j j j j l j j gps J |J?J JJI

Fig. 63: Melody created by P G E with the mazurka's rhythm pattern

94

Institute of Automation and Computer Science, FME BUT, 2024 m
Fitness funct ion

140

120 -

v

I 100-

0 2 4 6 3 10 12 14 16

generation

Fig. 64: Modified fitness function's progress

When the macrostructure [C, G, C] is given as input parameter, the melodies
created reflect this structure (Fig. 65). Nevertheless this way of controlling the

Fig. 65: Melody example created when the macrostructure [C, G, C] is set

macrostructure is not reliable enough, in the same dataset melodies ending in the G
tonal sphere (dominant) are created, because of the wrapping process in the P G E
algorithm.

Future work will involve evaluating the macrostructure of melodies by replac­
ing the probability value updated for each rule iteration with a probability array.
In this array, each rule will have a different probability based on its current depth
and position within the melody's structure.

As demonstrated, the genetic algorithm generates melodies where patterns
from the dataset remain recognizable, aligning with the primary characteristics of
genetic algorithms. The fast convergence and high sensitivity of fitness functions
make the genetic algorithm an excellent instrument for testing purposes, as evi­
denced by Fig. 58, where a fitness function evaluating interval presence in the

95

VENDRAME, Katia. Music composition using Al.

melody shows rapid convergence. Similarly, in Fig. 57, the fitness function strongly
rewards melodies with smaller intervals and narrower pitch ranges.

Significantly different results were obtained when testing the L S T M network.
This model was trained solely on note pitches, with rhythm added to the melody
post-prediction using typical mazurka rhythmic figures (as depicted in Fig. 62). The
resulting melodies exhibit key pitch characteristics of Chopin's mazurkas, including
the frequent use of intervals of thirds, fifths, and chromaticisms, with pitch ranges
typically falling between the C4 and A5. These results can be further evaluated
using the "Analyst" tool presented earlier (Fig. 66). As depicted in Fig. 66, the
neural network consistently favors intervals of a second and exhibits a pitch range
predominantly above C5 (MIDI number 72).

96

Institute of Automation and Computer Science, FME BUT, 2024

notes notes

1C -

§ 0.025
•u
£ 0.000

c
rn

£ 0.1
,1.
Z!
W -.1.
£ o.o
c
rc

r

U 0.2
CT -.1.
£ 0.0
rz
rc
a:
F

30 40 50 60 70 80 90 100
note midi number

30 40 50 60 70 30 90 100
note midi number

intervals

nterval

interval

rhythms

note duration

(a)

70 75 80 85 90 95
note midi number

« 0.1
CT fU
•*= 0.0 c rc

r
70 75 80 85 90 95

note midi number

intervals

interval

0 -

1G -

interval

rhythms

note duration

0.05

O0C

-O.05

note duration

(b)

Fig. 66: Extracted musical characteristics from Chopin's mazurkas (a) and gener­
ated melodies by L S T M (b)

97

Institute of Automation and Computer Science, FME BUT, 2024 EQ

9 C O N C L U S I O N
This work aims to serve as a testing "playground" for new methods in automatic
music composition and analysis, leveraging the vast potential of MIDI files. The
first part provides an overview of the historical advancements in automatic music
composition up to recent years. It outlines the main characteristics, goals, and
limitations of contemporary automatic composition algorithms. The focus is on
two primary approaches to music composition: evolutionary algorithms and neural
networks.

From a musical perspective, an objective of this study was to explore how
the search for optimal composition algorithms could benefit the contemporary mu­
sical landscape. Through an examination of historically significant music analysis
methodologies, it was observed that certain musical characteristics can indeed be
quantified and computed. The results of this analysis, showcased through graphs
illustrating distribution values and mean densities, provide valuable insights and are
pertinent from a musicological standpoint.

Inspired primarily by Schenker's and Janáček's theoretical works concerning
the decomposition of musical pieces to uncover their fundamental structures, the
second tool developed in this work attempts to compose melodies based on core
characteristics extracted from a melody dataset or according to the author's re­
quirements. Earlier investigations in automatic music composition have pinpointed
a significant obstacle: the creation of music possessing a structured format (such as
the tonic-dominant-tonic structure prevalent in Classical music of the Classic pe­
riod) and where its elements are clearly interlinked. In this work a way to define
the macrostructure of a melody and create melodies according to it was presented.

The implementation of probabilistic grammar evolution presented here is
ready for future enhancements. By making the probability values of grammar rules
a multidimensional array, each rule could have varying probabilities of occurring
based on its position in time. Another fundamental upgrade involves developing
better fitness functions, composing melodies with varied pauses, and expanding the
range of musical elements (different instruments, multiple voices, various rhythms,
etc.) used in compositions.

Beyond application upgrades and developments, future work should focus on
the numerous ways technological advancements can serve as tools for creating new
art by composers, as analysis tools for musicologists, or as aids for music students
and artists. MIDI files offer immense opportunities within the realm of tonality and
equal temperament, examples of which are presented in this work. However, this
starting point limits the research from engaging with electronic, experimental, and
contemporary music, genres that are currently flourishing. Therefore, the algorithms

99

VENDRAME, Katia. Music composition using Al.

and tools presented should also be tested and developed for raw audio files to create
new sounds, inspire new musical ideas, and better understand experimental and
electronic music composed since the 1950s.

100

Institute of Automation and Computer Science, FME BUT, 2024 m
B I B L I O G R A P H Y

[1] A K B A R I , M . and L I A N G , J. Semi-Recurrent CNN-based V A E - G A N for Sequen­

tial Data Generation. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings. Institute of Electrical and Elec­
tronics Engineers Inc. June 2018, 2018-April, p. 2321-2325. DOI: 10.1109/1-
CASSP.2018.8461724. ISSN 15206149. Available at: https://arxiv.org/abs/

1806.00509vl.

[2] B A C H C E N T R A L . A Johann Sebastian Bach Midi Page. 2018. [cited 2024-05-22].

Available at: https://www.bachcentral.com/midiindexcomplete.html.

[3] B A C K , T., H A M M E L , U . and S C H W E F E L , H . P. Evolutionary computation:
Comments on the history and current state. IEEE Transactions on Evolutionary
Computation. 1997, vol. 1, p. 3-17. DOI: 10.1109/4235.585888. ISSN 1089778X.

[4] B A G A V A T H I , C. and S A R A N I Y A , O. Evolutionary Mapping Techniques for Sys­

tolic Computing System. Deep Learning and Parallel Computing Environment
for Bioengineering Systems. Academic Press. January 2019, p. 207-223. DOI:
10.1016/B978-0-12-816718-2.00020-8.

[5] B I L E S , J. A . GenJam: A n interactive genetic algorithm jazz improviser. The
Journal of the Acoustical Society of America. 1997, vol. 102, 5 Supplement,
p. 3181-3181. DOI: 10.1121/1.420841. ISSN 0001-4966.

[6] B J 0 R N D A L E N . Standart MIDI Files. 2023. [cited 2024-05-22]. Available at:
https://rnido.readthedocs.io/en/stable/files/midi.html.

[7] B O T H , C. The influence of concepts of information theory on the birth of
electronic music composition : Lejaren A. Hiller and Karlheinz Stockhausen,
1953-1960. 1995. ISBN 0612083047.

[8] B R E S I N , R. Artificial neural networks based models for automatic performance
of musical scores. Journal of New Music Research. Taylor & Francis. 1998,
vol. 27, no. 3, p. 239-270.

[9] C H O P I N , F. Mazurkas op. 17. In: C H O P I N , I. F., ed. Dziela wszystkie Fry-

deryka Chopina. Warsawa: Polskie Wydawnictwo Muzyczne, 1949 (1834), X :
Mazurkas, p. 26-35. Available at: https://imslp.org/wiki/Mazurkas,_0p.l7_
(Chopin, _Fry„C3

0

/„A9dy„C3y„A9ric).

[10] C H O P I N , F. Polonaise-Fantasie op. 61. In: C H O P I N , I. F., ed. Dziela wszystkie

Fryderyka Chopina. Warsawa: Polskie Wydawnictwo Muzyczne, 1949 (1846),

101

https://arxiv.org/abs/
https://www.bachcentral.com/midiindexcomplete.html
https://rnido.readthedocs.io/en/stable/files/midi.html
https://imslp.org/wiki/Mazurkas,_0p.l7_

VENDRAME, Katia. Music composition using Al...

VIII: Polonaises, p. 70-87. Available at: https://imslp.org/wiki/Polonaise-

f antaisie, _0p.61_ (Chopin, _Fr
0

/
0
C3y„A9dy„C3

0

/„A9ric).

[11] C H O P I N , F . Sonata n. 2, op. 35. In: C H O P I N , I. F . , ed. Dziela wszystkie
Fryderyka Chopina. Warsawa: Polskie Wydawnictwo Muzyczne, 1950 (1839),
VI: Sonatas, p. 46-70. Available at: https://imslp.org/wiki/Piano_Sonata_

No. 2, _0p. 35_ (Chopin, _Fr
0

/„C3y„A9dy„C3y„A9ric).

[12] C O E N E N , A . David Cope, Experiments in Musical Intelligence. A - R Editions,
Madison, Wisconsin, USA. Vol. 12 1996. Organised Sound. 1997, vol. 2, no. 1,
p. 57-60. DOI: 10.1017/S1355771897210101.

[13] C O O K , N . Analysing Musical Multimedia. Oxford: Oxford University Press,
1998. 290 p. ISBN 0-19-816737-7.

[14] D E S P O I S , J. Finding the genre of a song with Deep Learning-AI Odyssey part.
1. December, 2018. [cited 2024-05-22]. Available at: https://hackernoon.com/

finding-the-genre-of-a-song-with-deep-learning-da8f59a61194.

[15] D O N G , H . - W . , H S I A O , W . - Y . , Y A N G , L . -C . and Y A N G , Y . - H . MuseGAN: Multi-
track Sequential Generative Adversarial Networks for Symbolic Music Genera­
tion and Accompaniment. In: AAAI Conference on Artificial Intelligence. 2017.
DOI: 10.48550/arXiv.l709.06298.

[16] E I G E N F E L D T , A . , T H O R O G O O D , M . , B I Z Z O C C H I , J. and P A S Q U I E R , P. Medi-
aScape: towards a video, music, and sound metacreation. Journal of Science
and Technology of the Arts. Universidade Catolica Portuguesa. 2014, vol. 6,
no. 1. DOI: 10.7559/citarj.v6il.l29. ISSN 1646-9798.

[17] F R E D E R I C K S , E . M . , D I L L E R , A . C. and M O O R E , J. M . Generative Art via
Grammatical Evolution. In:. Institute of Electrical and Electronics Engineers
Inc., 2023, p. 1-8. DOI: 10.1109/GI59320.2023.00010. ISBN 9798350312324.

[18] F R E Y B E R G , K . Introducing v3. 2024. [cited 2024-05-22]. Available at: https:

//suno.com/blog/v3.

[19] F R I B E R G , A . Generative rules for music performance: A formal description of
a rule system. Computer Music Journal. JSTOR. 1991, vol. 15, no. 2, p. 56-71.

[20] G A N G , D. and B E R G E R , J. Modeling the degree of realized expectation in

functional tonal music: A study of perceptual and cognitive modeling using
neural networks. In: Citeseer. Proceedings of the International Computer Music
Conference. 1996, p. 454-457.

102

https://imslp.org/wiki/Polonaise-
https://imslp.org/wiki/Piano_Sonata_
https://hackernoon.com/

m Institute of Automation and Computer Science, FME BUT, 2024

[21] G A R T O N , B. , T O D D , B. R. P. and L O Y , D. G . Artificial Intelligence Music and
Connectionism. Artificial Intelligence. 1995, vol. 79, p. 387-398.

[22] G O O G L E A I . Magenta. 2024. [cited 2024-05-22]. Available at: https://magenta,

tensorflow.org/research.

[23] G R A N R O T H W I L D I N G , M . and S T E E D M A N , M . A Robust Parser-Interpreter
for Jazz Chord Sequences. Journal of new music research. Lisse: Routledge.
2014, vol. 43, no. 4, p. 355-374. DOI: 10.1080/09298215.2014.910532. ISSN
0929-8215.

[24] H A D J E R E S , G., P A C H E T , F. and N I E L S E N , F. DeepBach: a Steerable Model for

Bach Chorales Generation. 34th International Conference on Machine Learn­
ing, ICML 2017. International Machine Learning Society (IMLS). december
2016, vol. 3, p. 2187-2196. DOI: 10.48550/arXiv.l612.01010. Available at:
https://arxiv.org/abs/1612.01010v2.

[25] H I L L E R , L. and I S A A C S O N , L. Experimental Music: Composition with an Elec­
tronic Computer. Greenwood Press, 1979. 197 p. ISBN 9780313221583.

[26] H U A N G , Y . S. and Y A N G , Y . H. Pop Music Transformer: Beat-based Mod­
eling and Generation of Expressive Pop Piano Compositions. MM 2020 -
Proceedings of the 28th ACM International Conference on Multimedia. As­
sociation for Computing Machinery, Inc. february 2020, p. 1180-1188.
DOI: 10.1145/3394171.3413671. Available at: https://arxiv.org/abs/2002.

00212v3.

[27] H U S B A N D S , P., C O P L E Y , P., E L D R I D G E , A . and M A N D E L I S , J. A n introduction

to evolutionary computing for musicians. In: M I R A N D A , E. R., ed. Evolutionary
computer music. London: Springer, 2007, p. 1-27. DOI: 10.1007/978-1-84628-
600-1 1. ISBN 978-1-84628-600-1.

[28] I S A A C S O N , E. Neural network models for the study of post-tonal music. In:
L E M A N , M . , ed. Music, Gestalt, and Computing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, p. 237-250. ISBN 978-3-540-69591-2.

[29] J A C O B , B. Composing With Genetic Algorithms. Proceedings of the 1995
International Computer Music Conference. San Francisco: I C M A . june 1995.

[30] J A N Á Č E K , L. The Published Theoretical Works of Leoš Janáček. Brno: Editio
Janáček, 2020. 685 p. ISBN 978-80-904052-7-1.

[31] J E O N G , J., K I M , Y . and A H N , C. W. A multi-objective evolutionary approach
to automatic melody generation. Expert systems with applications. New York:

103

https://magenta
https://arxiv.org/abs/1612.01010v2
https://arxiv.org/abs/2002

VENDRAME, Katia. Music composition using Al...

Elsevier Ltd. 2017, vol. 90, p. 50-61. DOI: 10.1016/j.eswa.2017.08.014. ISSN
0957-4174.

[32] J I N , C , T I E , Y . , B A I , Y . , Lv, X . and L i u , S. A Style-Specific Music Compo­
sition Neural Network. Neural Processing Letters. Springer, december 2020,
vol. 52, p. 1893-1912. DOI: 10.1007/sll063-020-10241-8. ISSN 1573773X.

[33] J E D R Z E J E W S K A , M . K . , Z J A W I N S K I , A . and S T A S I A K , B. Generating Musical
Expression of MIDI Music with L S T M Neural Network. In: 2018 11th Inter­
national Conference on Human System Interaction (HSI). 2018, p. 132-138.
DOI: 10.1109/HSI.2018.8431033.

[34] K A T O C H , S., C H A U H A N , S. S. and K U M A R , V . A review on genetic algo­
rithm: past, present, and future. Multimedia Tools and Applications. Springer,
february 2021, vol. 80, p. 8091-8126. DOI: 10.1007/sll042-020-10139-6. ISSN
15737721.

[35] K E R A S . Keras 3 API documentation. 2024. [cited 2024-05-22]. Available at:
https://keras.io/api/.

[36] K O C H E N D E R F E R , M . J . and W H E E L E R , T. A . Algorithms for Optimization.
The MIT Press, 2019. ISBN 0262039427.

[37] L A T T N E R , S. and K E P L E R , J . Modeling Musical Structure with Artificial Neu­
ral Networks. January 2020. DOI: 10.48550/arXiv.2001.01720. Available at:
https://arxiv.org/abs/2001.01720vl.

[38] L E U N G , K . Text-to-Audio Generation with Bark, Clearly Explained. 2023. [cited
2024-05-22]. Available at: https://betterprogramming.pub/text-to-audio-

generation-with-bark-clearIy-explained-4ee300a3713a.

[39] L I M , Y . -Q . , C H A N , C. S. and L o o , F. Y . Style-Conditioned Music Genera­
tion. In: 2020 IEEE International Conference on Multimedia and Expo (ICME).
2020, p. 1-6. DOI: 10.1109/ICME46284.2020.9102870.

[40] L i u , C. H. and T I N G , C. K . Computational Intelligence in Music Composition:
A Survey. IEEE Transactions on Emerging Topics in Computational Intelli­
gence. Institute of Electrical and Electronics Engineers Inc. february 2017,
vol. 1, p. 2-15. DOI: 10.1109/TETCI.2016.2642200. ISSN 2471285X.

[41] M A N Z E L L I , R., T H A K K A R , V . , S I A H K A M A R I , A . and K U L I S , B. Conditioning
Deep Generative Raw Audio Models for Structured Automatic Music. Proceed­
ings of the 19th International Society for Music Information Retrieval Confer­
ence, ISMIR 2018. International Society for Music Information Retrieval. June
2018, p. 182-189. Available at: https://arxiv.org/abs/1806.09905vl.

104

https://keras.io/api/
https://arxiv.org/abs/2001.01720vl
https://betterprogramming.pub/text-to-audio-
https://arxiv.org/abs/1806.09905vl

m Institute of Automation and Computer Science, FME BUT, 2024

[42] M A R Q U E T T I , A . Solos (dice game) and conductor (neural network). ProQuest
Dissertations Publishing, 2015.

[43] M A S T R O P A S Q U A , M . PerchÄI la musica di Webern Äl cosÄri interessante da
analizzare? In: C A S A D E I , M . T. M . , ed. Anton Webern. Un punto, un cosmo.
Lucca: Libreria Musicale Italiana, 1998. ISBN 9788870962024.

[44] M E G A N E , J. , LouRENgo, N . and M A C H A D O , P. Probabilistic Structured

Grammatical Evolution, may 2022. DOI: 10.1109/CEC55065.2022.9870397.
Available at: http://arxiv.org/abs/2205.10685http://dx.doi.org/10.1109/
CEC55065.2022.9870397.

[45] MlDIWORLD. Midiworld.com. 2024. [cited 2024-05-22]. Available at: https:

//www.midiworld.com/chopin.htm.

[46] M I R A N D A , E. R. and B I L E S , J. A . Evolutionary Computer Music. 1. Aufl.th

ed. London: Springer Verlag London Limited, 2007. ISBN 1846285992.

[47] M I R A N D A , E. R., C O R R E A , J. and W R I G H T , J . Categorising complex dynamic

sounds. Org. Sound. USA: Cambridge University Press, aug 2000, vol. 5, no. 2,
p. 95äÄ§102. DOI: 10.1017/S1355771800002065. ISSN 1355-7718. Available
at: https://doi.org/10.1017/S1355771800002065.

[48] O P E N A I . MuseNet. 2019. [cited 2024-05-22]. Available at: https ://openai.

com/research/musenet.

[49] O R T E G A , A . , C R U Z , M . de la and A L F O N S E C A , M . Christiansen Grammar

Evolution: Grammatical Evolution With Semantics. IEEE transactions on
evolutionary computation. New York, N Y : IEEE. 2007, vol. 11, no. 1, p. 77-90.
DOI: 10.1109/TEVC.2006.880327. ISSN 1089-778X.

[50] P E L C H A T , N . and G E L O W I T Z , C. Neural Network Music Genre Classification.

Canadian Journal of Electrical and Computer Engineering. July 2020, vol. 43,
p. 170-173. DOI: 10.1109/cjece.2020.2970144.

[51] P E L I K A N , M . , G O L D B E R G , D. E. and L O B O , F . G. A Survey of Optimization
by Building and Using Probabilistic Models. Computational optimization and
applications. New York: Springer Nature B.V. 2002, vol. 21, no. 1, p. 5-20.
DOI: 10.1023/a:1013500812258. ISSN 0926-6003.

[52] P E T T O R O S S I , A . Automata Theory and Formal Languages. Springer Cham,
2022. 280 p. ISBN 978-3-031-11964-4.

105

http://arxiv.org/abs/2205
http://dx.doi.org/10.1109/
http://Midiworld.com
http://www.midiworld.com/chopin.htm
https://doi.org/10.1017/S1355771800002065

VENDRAME, Katia. Music composition using AI...

[53] P R I S C O , R. D., Z A C C A G N I N O , G. and Z A C C A G N I N O , R. Evocomposer: A n evo­
lutionary algorithm for 4-voice music compositions. Evolutionary Computation.
MIT Press Journals. 2019, vol. 28, p. 489-530. DOI: 10.1162/evco_a_00265.
ISSN 15309304.

[54] P R I S C O , R. D. and Z A C C A G N I N O , R. Creative D N A computing: splicing sys­
tems for music composition. Soft Computing. Springer Science and Business
Media Deutschland GmbH. September 2022, vol. 26, p. 9689-9706. DOI:
10.1007/s00500-022-06828-z. ISSN 14337479.

[55] R I E M A N N , H . Form-giving Principles: Harmony and Rhythm.
In:. Cambridge University Press, February 2014, p. 23-43. DOI:
10.1017/cbo9781139542531.003.

[56] R O B E R T S , A . , E N G E L , J . , R A F F E L , C , H A W T H O R N E , C. and E C K , D. A

hierarchical latent vector model for learning long-term structure in music. In:
P M L R . International conference on machine learning. 2018, p. 4364-4373.

[57] R O S E N , C. The Romantic Generation. Milano: Adelphi, 1997. 791 p. ISBN
8845913392.

[58] R Y A N , C , O Ä Ä Z N E I L L , M . and C O L L I N S , J . J . Handbook of grammatical
evolution. Springer International Publishing, January 2018. 1-497 p. ISBN
9783319787176.

[59] S A R M E N T O , P., K U M A R , A . , C H E N , Y . - H . , C A R R , C , Z U K O W S K I , Z . et al.
G T R - C T R L : Instrument and Genre Conditioning for Guitar-Focused Music
Generation with Transformers. In: J O H N S O N , C , R O D R I G U E Z F E R N A N D E Z , N .
and R E B E L O , S. M . , ed. Artificial Intelligence in Music, Sound, Art and Design.
Cham: Springer Nature Switzerland, 2023, p. 260-275. DOI: 10.1007/978-3-
031-29956-8_17. ISBN 978-3-031-29956-8.

[60] S A X E N A , D. and C A O , J . Generative Adversarial Networks (GANs). A CM
Computing Surveys (CSUR). ACMPUB27New York, N Y , USA. may 2021,
vol. 54. DOI: 10.1145/3446374. ISSN 15577341. Available at: https://dl.

acm.org/doi/10.1145/3446374.

[61] S C H E N K E R , H. and S A L Z E R , F. Five Graphic Music Analyses (Fünf Urlinie-
Tafeln). Dover Publications, 1969. Dover books on music. ISBN 9780486222943.
Available at: https://books.google.cz/books?id=GrgwubvmFswC.

[62] S C H L Ü T E R , J . and B Ö C K , S. Improved musical onset detection with convolu-
tional neural networks. In: IEEE. 2014 ieee international conference on acous­
tics, speech and signal processing (icassp). 2014, p. 6979-6983.

106

https://dl
https://books.google.cz/books?id=GrgwubvmFswC

Institute of Automation and Computer Science, FME BUT, 2024

[63] S C I R E A , M . , T O G E L I U S , J., E K L U N D , P . and RlSl , S. Affective evolution­
ary music composition with MetaCompose. Genetic Programming and Evolv-
able Machines. Springer New York L L C . december 2017, vol. 18, p. 433-
465. DOI: 10.1007/sl0710-017-9307-y. ISSN 1389-2576. Available at: http:

//link.springer.com/10.1007/sl0710-017-9307-y.

[64] S I M P S O N , A . J., R O M A , G. and P L U M B L E Y , M . D. Deep karaoke: Extracting

vocals from musical mixtures using a convolutional deep neural network. In:
Springer. Latent Variable Analysis and Signal Separation: 12th International
Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Pro­
ceedings 12. 2015, p. 429-436.

[65] S K U L I , S. HOW to Generate Music using a LSTM Neural Network in Keras.
2017. [cited 2024-05-22]. Available at: https://towardsdatascience.com/how-
to-generate-music-using-a-lstm-neural-network-in-keras-68786834d.4c5.

[66] S K U L I , S. Classical-Piano-Composer. 2019. [cited 2024-05-22]. Available at:
https://github.com/Skuldur/Classical-Piano-Composer.

[67] T A T A R , K . , B I S I G , D. and P A S Q U I E R , P . Latent Timbre Synthesis: Audio-based
variational auto-encoders for music composition and sound design applications.
Neural Computing and Applications. Springer Science and Business Media
Deutschland GmbH. January 2021, vol. 33, p. 67-84. DOI: 10.1007/s00521-
020-05424-2. ISSN 14333058.

[68] V E C H T O M O V A , O. and S A H U , G. LyricJam Sonic: A Generative System for
Real-Time Composition and Musical Improvisation. In: Artificial Intelligence in
Music, Sound, Art and Design: 12th International Conference, EvoMUSART
2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12dAS14,

2023, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2023, p. 292aA§307.
DOI: 10.1007/978-3-031-29956-8_19. ISBN 978-3-031-29955-1. Available at:
https://doi.org/10.1007/978-3-031-29956-8_19.

[69] W A N G , Y . Music Composition and Emotion Recognition Using Big Data Tech­
nology and Neural Network Algorithm. Computational Intelligence and Neuro-
science. Hindawi Limited. 2021, vol. 2021. DOI: 10.1155/2021/5398922. ISSN
16875273.

[70] W A S K A N , J. Connectionism. 2022. 22/05/2024. Available at: https ://iep.

utm.edu/connectionism-cognition/.

[71] W I A F E , A . , N U T R O K P O R , C , Owusu, E. , K A S T R I K U , F. A . and W I A F E , I.

Using genetic algorithms for music composition: implications of early termi­
nation on aesthetic quality. International Journal of Information Technology

107

https://towardsdatascience.com/how-
https://github.com/Skuldur/Classical-Piano-Composer
https://doi.org/10.1007/978-3-031-29956-8_19

VENDRAME, Katia. Music composition using Al...

(Singapore). Springer Science and Business Media B .V. June 2022, vol. 14,
p. 1875-1881. DOI: 10.1007/s41870-022-00897-x. ISSN 25112112.

[72] Z H O N G , Y . and X I A N G , Y . Design and Realization of Music Recognition based
on Speech Recognition. 2011. DOI: 10.1109/NCIS.2011.110.

108

Institute of Automation and Computer Science, FME BUT, 2024 ED

S Y M B O L S A N D A B B R E V I A T I O N S
A M C Automatic music composition

N N Neural Network

E A Evolutionary algorithm

C N N Convolutional neural network

LTS Long term SÄristructures

L S T M Long short term memory neural network

V A E Variational Auto-Encoder

R N N Recurrent neural network

G P T Generative pre-trained transformer

G A N Generative adversial networks

A C Autor-critic network(Hadjeres, 2016)

R B M Restricted Boltzmann machine

G E Grammatical evolution

P G E Probabilistic grammatical evolution

C F G Context free grammar

S Start symbol (axiom)

T Terminal symbol

N T Non-Terminal symbol

B N F Backus-Naur Form (grammars)

109

Institute of Automation and Computer Science, FME BUT, 2024 EQ

LIST O F F I G U R E S

1 Block diagram of the composition algorithm for Illiac Suite (Hiller, 1979) 18
2 Block diagram of the composition system "variations" (Jacob, 1995) . . . 19
3 Block diagram of the composition system "Solos (Dice Game) and Con­

ductor (Neural Network)" (Marquetti, 2015) 21
4 Architecture scheme of MusicVae (Roberts, 2018) 22
5 Architecture scheme of EnCodec (Leung, 2023) 23
6 Architecture scheme of LyricJam Sonic (Vechmotova, 2023) 24
7 Architecture scheme of DeepBach (Hadjeres, 2016) 26
8 Architecture scheme of Constrained Sampling Algorithm (Lattner, 2019).

Constrained sampling using an existing piece x as structure template and
v is a randomly initialized sample 27

9 Depiction of calculating the self-similarity matrix s(z) (Lattner, 2019), z
is the piano roll representation, and A the filter for convolution 28

10 Scheme of one generation of an Evolutionary algorithm 30
11 Initial population using a uniform hyperrectangle, a zero-mean normal

distribution and Cauchy distribucion (C = [0, 0], a — 1) 33
12 Modular G E scheme 34
13 Derivation tree for the mapping process 37

14 Basic G A N architecture (Saxena, 2021) 42
15 Scheme of the gating mechanism of a L S T M network (J^drzejewska, 2018) 43

16 Harmonical structure of Bach's prelude in C major (bars 1-19) (Cook,
1998) 47

17 Fundamental structure of Bach's prelude in C major (bars 1-19) (Schenker,
1969) 47

18 The analysed structure of Webern's Bagatella n. 2 (Mastropasqua, 1998) 49
19 Second measure of Chopin's Polonaise-Fantasie op. 61, an example of an

arpeggiato chord (Chopin, 1846) 49
20 Opening of the Finale of Chopin's Piano sonata in b-flat minor op. 35

(Chopin, 1839) 50
21 The scale of interval consonance defined by Helmohltz (Janáček, 2020) . 50

22 Piano keys with their MIDI number 51
23 Piano notes and their frequencies according to the equal temperament . . 52
24 Most common notes' lengths in classical music 53
25 Relationship between meter beats and MIDI file ticks (Bj0rndalen, 2023) 53

111

VENDRAME, Katia. Music composition using Al...

26 Heatmap of the notes' density in each track 54
27 Histogram of notes' mean distributions in the dataset 55
28 Heatmap of the interval densities 56
29 Histogram of intervals' mean distributions in the dataset 57
30 Interval types and their usage in the dataset 57
31 A histogram showing the number of melody patterns 58
32 Heatmap of the durations' density in each track 59
33 Histogram of durations' mean distributions in the dataset 59
34 Rhythmic variety plot 60
35 Rhythmic patterns plot 60
36 Macrostructures of the dataset 61
37 Two-dimensional macrostructure's representation 61
38 Diagram of the Implemented Genetic Algorithm 63
39 First melody of the Chopin's mazurka op. 17 n. 1 (Chopin, 1834) 64
40 Crossover scheme 64
41 Mutation scheme 64
42 Plots of some of the functions used in fitness evaluation 77

43 Extracted features' distributions from the Chopin's mazurkas dataset . . 81
44 Detail of the notes distribution over the Mazurkas' dataset 82
45 Extracted musical characteristics from Chopin's mazurkas (a) and Bach's

fugues (WTC) (b) 83
46 Macrostructures of a) Chopin's mazurkas and b) songs by Abba 84
47 Detail of the macrostructures of Mazurkas' dataset 85
48 Fitness function when using the random tree initialization 86
49 Generated melody example 87
50 Fitness function when using truncation selection 87
51 One of the best melodies obtained using truncation selection 88
52 Function used to evaluate some of the fitness function's parameters . . . 88
53 Some of the fitness function parameters values during training 88
54 Uniform melody when fitness function changed 89
55 Fitness function values for the genetic algorithm 90
56 Melody created by the genetic algorithm after 100 generations 90
57 Melody created by the genetic algorithm after 100 generations 91
58 Melody created with fitness function preferring III and V intervals 91
59 Melody created by L S T M using dataset with accompaniment (chords) . . 91
60 Melody created by L S T M using one-voice dataset 92
61 L S T M loss function 92

62 Mazurka's rhythmical pattern 94

112

Institute of Automation and Computer Science, FME BUT, 2024

63 Melody created by P G E with the mazurka's rhythm pattern 94
64 Modified fitness function's progress 95
65 Melody example created when the macrostructure [C, G, C] is set 95
66 Extracted musical characteristics from Chopin's mazurkas (a) and gen­

erated melodies by L S T M (b) 97

113

Institute of Automation and Computer Science, FME BUT, 2024 m
LIST O F T A B L E S

1 Table of used interval and the number of semitones they span 56
2 Example of the first segment of melody from Chopin's mazurka op. 17

n. 1 65
3 Table of the tonal scale degrees 70

115

