UNIVERZITA PALACKÉHO V OLOMOUCI

# PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ANORGANICKÉ CHEMIE



## KOMPLEXY RUTHENIA A RHODIA S O A N-DONOROVÝMI LIGANDY, JEJICH PŘÍPRAVA, CHARAKTERIZACE A BIOLOGICKÁ AKTIVITA

DIPLOMOVÁ PRÁCE

| AUTOR PRÁCE: | Bc. Jakub Pastva |
|--------------|------------------|
|              |                  |

STUDIJNÍ OBOR: Anorganická chemie

VEDOUCÍ PRÁCE: RNDr. Miroslava Matiková-Maľarová, Ph.D.

OLOMOUC 2010

Prohlašuji, že předložená práce je mým původním autorským dílem, které jsem vypracoval samostatně. Veškerou literaturu a další zdroje, z nichž jsem při zpracování čerpal, v práci řádně cituji a jsou uvedeny v seznamu použité literatury.

V Olomouci dne 26. 4. 2010

. . . . . . . . . . . . . . . . . . .

(podpis)

### Poděkování

Děkuji vedoucí mé diplomové práce RNDr. Miroslavě Matikové – Malarové, Ph.D. a konzultantovi prof. RNDr. Zdeňku Trávníčkovi, Ph.D. za výborné vedení, cenné rady a připomínky. Dále bych rád poděkoval Mgr. Tomáši Šilhovi za hodnotné připomínky při řešení diplomové práce. Dále děkuji paní Pavle Richterové za provedení elementární analýzy, Mgr. Radce Novotné za změření infračervených a Ramanových spekter, Mgr. Pavlu Štarhovi za provedení termické analýzy, paní Marii Šindelářové za změření elektronových spekter a doc. RNDr. Zdeňku Šindelářovi, CSc. za provedená magnetochemická měření.

| OBSAH                                                                                                         | 1                |
|---------------------------------------------------------------------------------------------------------------|------------------|
| ÚVOD                                                                                                          | 4                |
| 1. RUTHENIUM A RHODIUM                                                                                        | 5                |
| 1.1 Obecné vlastnosti                                                                                         | 5                |
| 1.2 Koordinační chemie ruthenia                                                                               | 6                |
| 1.3 Koordinační chemie rhodia                                                                                 | 7                |
| 2 KOMPLEXY RUTHENIA A RHODIA S ACETYLACETONÁTEM J<br>LIGANDEM                                                 | AKO              |
| 2.1 Ru <sup>III</sup> komplexy                                                                                | 10               |
| 2.1.1 Komplexy typu [Ru( <i>acac</i> ) <sub>2</sub> (L)] a [Ru( <i>acac</i> ) <sub>2</sub> (L) <sub>2</sub> ] | 10               |
| 2.1.2 Komplexy typu [Ru( <i>acac</i> )(L)] a [Ru( <i>acac</i> )(L) <sub>2</sub> ]                             | 13               |
| 2.1.3 Dimery složení [(acac) <sub>2</sub> -Ru-(L)-Ru-(acac) <sub>2</sub> ]                                    | 15               |
| 2.1.4 Dimery složení [(acac)(L)Ru-(L)-Ru(L)(acac)]                                                            | 16               |
| 2.2 Ru <sup>II</sup> komplexy                                                                                 | 17               |
| 2.2.1 Komplexy typu [Ru( <i>acac</i> ) <sub>2</sub> (L)] a [Ru( <i>acac</i> ) <sub>2</sub> (L) <sub>2</sub> ] | 17               |
| 2.2.2 Komplexy typu [Ru(acac)(L)] a [Ru(acac)(L) <sub>2</sub> ]                                               | 19               |
| 2.2.3 Komplexy typu [Ru( <i>acac</i> )(L) <sub>3</sub> ]                                                      | 21               |
| 2.2.4 Komplexy typu [( <i>acac</i> ) <sub>2</sub> Ru-(L)-Ru( <i>acac</i> ) <sub>2</sub> ]                     | 23               |
| 2.2.5 Komplexy typu [(acac) <sub>2</sub> (L)Ru-(L)-Ru(L)(acac)]                                               | 23               |
| 2.3 Rh komplexy                                                                                               | 25               |
| 2.3.1 Rh <sup>I</sup> komplexy typu [Rh( <i>acac</i> )(L)]                                                    | 25               |
| 3 BIOLOGICKÉ VLASTNOSTI KOMPLEXŮ RUTHENIA A RHODIA<br><i>A N-</i> DONOROVÝMI LIGANDY                          | S <i>O</i><br>26 |
| 3.1 Protinádorové vlastnosti ruthenia a rhodia                                                                | 26               |
| 3.1.1 Ruthenium                                                                                               | 26               |
| 3.1.2 Rhodium                                                                                                 | 27               |

## OBSAH

|   | 3.2 Ostatní biologické aktivity                                                                | 29 |
|---|------------------------------------------------------------------------------------------------|----|
|   | 3.2.1 Ruthenium                                                                                | 29 |
|   | 3.2.2 Rhodium                                                                                  | 32 |
| 4 | EXPERIMENTÁLNÍ ČÁST                                                                            | 33 |
|   | 4.1 Použité chemikálie                                                                         | 33 |
|   | 4.2 Příprava sloučenin ruthenia                                                                | 33 |
|   | 4.2.1 Příprava komplexů typu [Ru(R-Bap)(acac)Cl <sub>2</sub> X]                                | 33 |
|   | 4.2.2 Příprava komplexů typu [Ru(R-Bap) <sub>2</sub> (acac)Cl <sub>2</sub> ]                   | 35 |
|   | 4.2.3 Příprava komplexů typu [Ru(R- <i>Bap</i> ) <sub>3</sub> Cl <sub>3</sub> ]                | 38 |
|   | 4.3 Příprava sloučenin rhodia                                                                  | 38 |
|   | 4.3.1 Příprava komplexů typu [Rh(R-Bap)(acac)Cl <sub>2</sub> (H <sub>2</sub> O)]               | 38 |
|   | 4.3.2 Příprava komplexů typu [Rh(R- <i>Bap</i> ) <sub>2</sub> ( <i>acac</i> )Cl <sub>2</sub> ] | 39 |
|   | 4.4 Metody studia připravených látek                                                           | 41 |
| 5 | VÝSLEDKY A DISKUZE                                                                             | 42 |
|   | 5.1 Syntézy komplexů ruthenia                                                                  | 42 |
|   | 5.1.2 Charakteristika komplexů ruthenia(II)                                                    | 42 |
|   | 5.1.3 Infračervená spektroskopie                                                               | 44 |
|   | 5.1.4 Vodivostní měření                                                                        | 50 |
|   | 5.1.5 Magnetické vlastnosti                                                                    | 50 |
|   | 5.1.6 Elektronová spektroskopie                                                                | 51 |
|   | 5.1.7 Termická analýza                                                                         | 54 |
|   | 5.2 Syntézy komplexů rhodia                                                                    | 56 |
|   | 5.2.1 Charakteristika komplexů rhodia(III)                                                     | 56 |
|   | 5.2.2 Infračervená spektroskopie                                                               | 58 |
|   | 5.2.3 Ramanova spektroskopie                                                                   | 62 |
|   | 5.2.4 Vodivostní měření                                                                        | 63 |
|   | 5.2.5 Elektronová spektroskopie                                                                | 64 |

| 5.2.6 Termická analýza    | 65 |
|---------------------------|----|
| 6 ZÁVĚR                   | 67 |
| SEZNAM POUŽITÉ LITERATURY | 69 |
| ZKRATKY                   | 73 |

## ÚVOD

Mnoho kovů je nepostradatelných pro životní procesy v organizmech. Tato jejich vlastnost byla medicínou ve větší míře využita teprve v druhé polovině minulého století. Souvisí to s objevem cisplatiny [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>], která se stala základem pro vývoj dalších anorganických sloučenin, které by měly prokazatelné biologické vlastnosti. Cisplatina je nejrozšířenějším a nejpoužívanějším lékem proti rakovině. Ale i přes takto velké využití má cisplatina mnoho nedostatků, jako jsou vedlejší účinky a získání rezistence. Jako chemoterapeutika jsou využívány jiné sloučeniny platiny, ale nedosahují účinku cisplatiny. Proto se začaly hledat nové sloučeniny s jinými centrálními atomy, které by mohly být použity jako lék proti nádorovým onemocněním. Klinické testy ukázaly, že komplexy s Fe, Co, Au, Ga atd. dosahují slibných výsledků. Byly zkoumány i sloučeniny ruthenia a rhodia jako potenciální léčiva. Připravila se celá řada sloučenin s biologickou aktivitou. Mezi nejvýznamnější patří komplexy NAMI-A [H<sub>2</sub>*Im*][*trans*-RuCl<sub>4</sub>(*DMSO*)H*Im*] a KP1019 [H(*Ind*)<sub>2</sub>][*trans*-RuCl<sub>4</sub>(*Ind*)<sub>2</sub>], které jsou ve stádiu klinických testů jako případné chemoterapeutika. Také byly připraveny komplexy ruthenia a rhodia s antibakteriálními a antimykotickými vlastnostmi [1, 2].

Diplomová práce je rozdělená na část teoretickou a experimentální. Teoretická část pojednává o základních chemických vlastnostech ruthenia a rhodia. Dále obsahuje seznam komplexů s podobnou komplexní sférou jako komplexní sloučeniny připravené v experimentální části diplomové práce. Závěr teoretické části obsahuje informace o biologických vlastnostech komplexů ruthenia a rhodia. V experimentální části se zabývám syntézou nových komplexů ruthenia a rhodia s O, N-donorovými ligandy, jmenovitě se jedná o deriváty 6-benzylaminopurinu a acetylacetonátu. 6-benzylaminopurin je N-donorový ligand, který patří mezi cytokininy, rostlinné hormony, které se podílejí na vývoji a diferenciaci rostlinných buněk. Bylo zjištěno, že cytotoxicita přechodných kovů s benzylaminopuriny jako ligandy je vyšší než samotného kovu [3-10]. Součástí koordinační sféry je také O-donorový ligand acetylacetonát. Acetylacetonát patří mezi β-diketonáty, jedná se o bidentátní ligand. Tento ligand jsme zvolili s ohledem na to, abychom pozměnili doposud nejčastěji používané chromofory. Téma bylo zvoleno s ohledem na to, že výzkum biologických vlastností anorganických či organometalických sloučenin je v současné době aktuální Připravené komplexy téma. byly charakterizovány pomocí fyzikálně-chemických metod: elementární analýza, infračervená spektroskopie, Ramanova

4

spektroskopie, UV-VIS spektroskopie, měření konduktivity, magnetických vlastností termická analýza.

### **1. RUTHENIUM A RHODIUM**

#### 1.1 Obecné vlastnosti

Ruthenium bylo objeveno v rudách pocházejících z Uralu roku 1844 ruským chemikem K. Klausem, který prvek pojmenoval podle své vlasti (Ruthenia = lat. Rusko). Rhodium bylo objeveno spolu s Iridiem roku 1803 v černých zbytcích po zpracování platiny v lučavce královské W. H. Wollastonem, jenž ho pojmenoval podle růžové barvy (Rhodos = řecky růžový) [11-13].

Prvky ruthenium a rhodium jsou součásti osmé, respektive deváté skupiny periodické tabulky prvků. Ve starší literatuře jsou tyto prvky řazeny mezi tzv. "platinové kovy", což je označení pro kovy páté periody osmé, deváté a desáté skupiny periodické soustavy prvků. Základní vlastnosti těchto kovů jsou shrnuty v **tabulce č. 1**. Jsou to vzácné prvky a v přírodě doprovázejí ostatní "platinové kovy". Vyskytují se buď v ryzím stavu, nebo jsou obsaženy v rudách, popřípadě je můžeme nalézt ve formě slitin. Hlavními nalezišti těchto kovů jsou Kanada, Jižní Afrika a Rusko. Celkový obsah ruthenia a rhodia v zemské kůře je  $1 \cdot 10^{-8}$  %. Oba se získávají z "platinových koncentrátů", které vznikají při elektrolytické rafinaci niklu v podobě anodických kalů. Tímto procesem se kovy získají v práškové nebo houbové podobě a dále se zpracovávají metodou práškové metalurgie [11-13].

Ruthenium je bílý stříbrolesklý kov (Obr. č. 1), mimořádně tvrdý, ale křehký.

Krystalizuje v těsném uspořádání hexagonální mřížky. Je to velmi těžce tavitelný kov, podstatně hůře než platina. Jako všechny "platinové kovy" má schopnost absorpce vodíku a kyslíku. Také má katalytické schopnosti. V nepřítomnosti vzdušného kyslíku je ruthenium stálé dokonce i v lučavce královské. Hlavní způsob využití ruthenia je zvyšování tvrdosti platiny a paladia, může se



Obrázek č. 1 Ruthenium jako prvek [14]

používat také jako katalyzátor některých hydrogenačních reakcí. Průmyslové využití je však minimální, protože je omezeno dostupností a vysokou cenou [11-13].

Rhodium je bílý tažný kov (**Obr. č. 2**). Krystalizuje v krychlovém uspořádání mřížky s plošnou centrací. Koloidní rhodium má výborné katalytické a baktericidní schopnosti. Hlavní využití rhodia je jako katalyzátoru v automobilovém průmyslu a v hydrogenačních reakcích [11-13].



Obrázek č. 2 Rhodium jako prvek [15]

| Vlastnosti                                       | Ru          | Rh          |
|--------------------------------------------------|-------------|-------------|
| Atomové číslo                                    | 44          | 45          |
| Počet přírodních izotopů                         | 7           | 1           |
| Atomová hmotnost                                 | 101,07      | 102,905     |
| Elektronová konfigurace                          | $4d^7 5s^1$ | $4d^8 5s^1$ |
| Elektronegativita                                | 2,2         | 2,2         |
| Kovový poloměr (pm)                              | 134         | 134         |
| Molární energie ionizace (kJ·mol <sup>-1</sup> ) | 724         | 741         |
| Hustota (kg·m <sup>-3</sup> , 20°C)              | 12 410      | 12 390      |
| Teplota tání (°C)                                | 2 282       | 1 960       |
| Teplota varu (°C)                                | 4 050       | 3 760       |
| Měrné teplo (cal/g)                              | 0,0553      | 0,0591      |

Tabulka č. 1 Některé základní vlastnosti ruthenia a rhodia [11]

#### 1.2 Koordinační chemie ruthenia

Ruthenium tvoří rozmanité koordinační sloučeniny v mnoha oxidačních stavech (–II, 0, +I, +II, +II, +V, +VII), ale typická oxidační čísla pro ruthenium jsou +II, +III a +IV.

Chemie ruthenia v oxidačním stavu 0 a +I není moc obsáhlá. Oxidačního čísla 0 ruthenium dosahuje v karbonylech, dále v komplexech, kde vystupují jako ligandy fosfiny a arsiny např.  $[Ru(CO)_3(PPh_3)_2]$ . Pro oxidační stav +I je znám komplex  $[RuBr(CO)]_n$ , který lze získat působením CO na RuBr<sub>3</sub> za zvýšeného tlaku [13].

Koordinační chemie ruthenia v oxidačním stavu +II je oproti předchozím nepoměrně bohatší. Lze ho pro ruthenium považovat za zcela běžný oxidační stav. Komplexy mají konfiguraci d<sup>6</sup>, jsou oktaedrické a diamagnetické. Běžnou metodou přípravy těchto komplexů bývá redukce halogenidů Ru<sup>III</sup> nebo halogenokomplexů za přítomnosti ligandů. Ve velké míře tvoří ruthenium amoniakální a nitrosylové komplexy.  $[Ru(NH_3)_6]^{2+}$  a příslušné *tris*-chelátové komplexy s *en, bpy* a *phen* ligandy se připravují redukci RuCl<sub>3</sub> zinkovým prachem. Tyto komplexy mohou být využity jako fotokatalyzátory rozkladu vody. Významným komplexem je také pentaamminový derivát  $[Ru(NH_3)_5N_2]^{2+}$ , jenž je prvním známým komplexem didusíku. Typickým zástupcem nitrosylových komplexů je  $[Ru(NH_3)_5NO]^{3+}$ , připravuje se reakcí  $[Ru(NH_3)_5]^{2+}$  s HNO<sub>3</sub>. Tyto komplexy mají typickou krátkou vzdálenost vazby Ru–N ve skupině Ru–NO [11].

Ruthenité komplexy mají konfiguraci  $d^5$ , jsou nízkospinové a paramagnetické. Důsledkem větší stálosti Ru<sup>III</sup> je známo více komplexů. Například tvoří rozsáhlé řady halogenidových komplexů, přičemž řada aqua-chloro patří k nejlépe charakterizovaným komplexům Ru<sup>III</sup> vůbec. Ochotně se koordinuje s *N*-donorovými ligandy. Komplexy dále tvoří s *O*-donorovými ligandy, například  $\beta$ -diketonáty [11, 13].

Čtyřmocné ruthenium tvoří poměrně běžně aniontové komplexy typu  $[RuX_6]^{2-}$ (X = F, Cl a Br), které se však poměrně lehce redukují na Ru<sup>III</sup>. Všechny tyto komplexy jsou oktaedrické, nízkospinové a paramagnetické. Oxidační stav +V je pro ruthenium velmi nevýhodný. Malý počet sloučenin souvisí s malou stálostí oxidačního stavu +V v roztoku. Jedinými prokázanými sloučeninami ruthenia v oxidačním stavu +V jsou oktaedrické částice  $[RuF_6]^-$ . Zvláštním rysem těchto sloučenin je změna jejich zbarvení podle metody jejich preparace [11, 16].

Skupina ruthenylových komplexů je poměrně omezená. Pro příklad lze uvést červenofialový diamagnetický  $Cs_2[RuCl_4O_2]$ , který se připravuje z roztoku  $RuO_4$  v konc. HCl přídavkem CsCl. V oxidačním stupni +VII ruthenium tvoří většinou fluoridy a oxosloučeniny. V nejvyšším možném oxidačním stavu +VIII ruthenium tvoří pouze pár aduktů  $RuO_4$ s amoniakem, které bývají často výbušné. V **tabulce č. 2** jsou shrnuty oxidační stavy ruthenia spolu s koordinačními čísly a příslušnou geometrií [11, 16].

### 1.3 Koordinační chemie rhodia

Odlišnost koordinační chemie rhodia od ruthenia je v tom, že oproti rutheniu tvoří rhodium sloučeniny jen do oxidačního čísla +IV. Vyšší oxidační stavy se omezují na hexafluoridy. Nejobvyklejším oxidačním stavem rhodia je +I a +III. Rhodium má mnohem větší sklon k tvorbě komplexních kationtů než prvky předešlých skupin [16].

Rhodium je schopno také méně obvyklých oxidačních čísel 0, -I, ale i nižších. Jako ligandy v těchto komplexech vystupují CO, CN, RCN a terciální fosfany, které jsou schopny stabilizovat nízká oxidační čísla. V běžnějším oxidačním stavu +I rhodium tvoří množství sloučenin, avšak výhradně s  $\pi$ -vazebnými ligandy. Příprava těchto komplexů vychází z redukce RhCl<sub>3</sub>·3H<sub>2</sub>O v přítomnosti příslušného ligandu. Významným komplexem je karbonylchlorid [Rh(CO)<sub>2</sub>Cl]<sub>2</sub>, který slouží jako vhodná výchozí látka. Zástupcem fosfanových komplexů je Wilkinsonův katalyzátor [RhCl(*PPh*<sub>3</sub>)<sub>3</sub>]. Díky katalytickým účinkům tohoto komplexu byla poprvé provedena rychlá homogenní hydrogenace za normální teploty a tlaku. Využívá se také při hydrogenaci složitých molekul ve farmaceutickém průmyslu. Díky těmto výhodným vlastnostem byly zkoumány podobné komplexy rhodia. Jedním z nich je *trans*-[RhH(CO)(*PPh*<sub>3</sub>)<sub>3</sub>], který se používá ke katalýze 1-alkenů v tzv. oxo-procesu. Komplexy rhodia v oxidačním stavu +II nemají moc velký význam. Tvoří malý počet čtvercových, paramagnetických komplexů typu [RhCl<sub>2</sub>L<sub>2</sub>] [11, 16].

Oxidační stav +III je pro rhodium stavem, počtem a typem komplexů nejbohatší. Všechny jsou nízkospinové, diamagnetické a oktaedrické. Připravují se přímo nebo nepřímo z RhCl<sub>3</sub>·3H<sub>2</sub>O. Rh<sup>III</sup> má značnou afinitu k amoniaku a aminům. Tyto komplexy jsou značně kineticky inertní, a proto byly využity při studiu *trans*-efektu. Experimentálně bylo zjištěno, že Rh<sup>III</sup> ochotně tvoří koordinační vazbu s *P*-, *As*- a *S*-donorovými ligandy. Příkladem může být komplex [Rh(SCN)<sub>6</sub>]<sup>3-</sup>, kde je donorovým atomem síra. Komplexní sloučeniny rhodia s oxidačním stavem +IV mají malý význam. Známé jsou komplexy typu [RhX<sub>6</sub>]<sup>2-</sup> (X = F, Cl) nebo M<sub>2</sub>[RhF<sub>6</sub>]. V **tabulce č. 3** jsou shrnuty oxidační stavy rhodia spolu s koordinačními čísly a příslušnou geometrií [11, 16].

| Oxidační stav      | Koordinační číslo | Geometrie  | Příklady                                                                                         |
|--------------------|-------------------|------------|--------------------------------------------------------------------------------------------------|
| Ru <sup>-II</sup>  | 4                 | tetraedr   | $[Ru(CO)_4]^{2-}$                                                                                |
| Du <sup>0</sup>    | 5                 | trigonální | $[\mathbf{P}_{\mathbf{u}}(\mathbf{C}\mathbf{O}), (\mathbf{P}\mathbf{P}\mathbf{h}_{\mathbf{v}})]$ |
| Ku                 | 5                 | bipyramida |                                                                                                  |
| Ru <sup>I</sup>    |                   |            | $[Ru(NO)(S_2CNEt_2)_3]$                                                                          |
| Ru <sup>II</sup>   | 5                 | oktaedr    | $[\operatorname{RuCl}_2(PPh_3)_3]$                                                               |
|                    | 6                 | oktaedr    | $[Ru(NH_3)_6]^{2+}$                                                                              |
| Ru <sup>III</sup>  | 6                 | oktaedr    | $[RuCl_5H_2O]^{2-}$                                                                              |
| Ru <sup>IV</sup>   | 6                 | oktaedr    | $K_2[RuCl_6]$                                                                                    |
|                    | 8                 |            | RuO <sub>2</sub>                                                                                 |
| Ru <sup>V</sup>    | 5 v plynném stavu |            | RuF <sub>5</sub>                                                                                 |
|                    | 6                 | oktaedr    | K[RuF <sub>6</sub> ]                                                                             |
| Ru <sup>VI</sup>   | 4                 | tetraedr   | $RuO_4^{2-}$                                                                                     |
|                    | 6                 | oktaedr    | $RuF_6$                                                                                          |
| Ru <sup>VII</sup>  | 4                 | tetraedr   | $\operatorname{RuO}_4^-$                                                                         |
| Ru <sup>VIII</sup> | 4                 | tetraedr   | $RuO_4$                                                                                          |

Tabulka č. 2 Oxidační stav a stereochemie ruthenia [16]

Tabulka č. 3 Oxidační stavy a stereochemie rhodia [16]

| Oxidační stav     | Koordinační číslo | Geometrie                         | Příklady                              |
|-------------------|-------------------|-----------------------------------|---------------------------------------|
| Rh <sup>-I</sup>  | 4                 | Tetraedr                          | $[Rh(CO)_4]^-$                        |
| Rh <sup>0</sup>   |                   |                                   | $[Rh_6(CO)_{16}]$                     |
| Rh <sup>I</sup>   | 4                 | Čtverec                           | [RhCl(CO) <sub>2</sub> ] <sub>2</sub> |
|                   | 5                 | trigonální bipyramida             | $[RhSnCl_3(C_8H_{10})_2]$             |
| Rh <sup>II</sup>  | 4                 | Čtverec                           | $[Rh{S_2C_2(CN)_2}_2]^{2-}$           |
|                   | 5                 | struktura octanu Cu <sup>II</sup> | $[Rh(OCOR)_2]_2$                      |
|                   | 6                 | struktura octanu Cu <sup>II</sup> | $[Rh(OCOCH_3)_2P(PH_3)]_2$            |
| Rh <sup>III</sup> | 6                 | Oktaedr                           | $[RhCl_6]^{3-}$                       |
| Rh <sup>IV</sup>  | 6                 | Oktaedr                           | $K_2[RhF_6]$                          |
| Rh <sup>VI</sup>  | 6                 | Oktaedr                           | $\mathrm{RhF}_{6}$                    |

## 2 KOMPLEXY RUTHENIA A RHODIA S ACETYLACETONÁTEM JAKO LIGANDEM

V této kapitole jsou uvedeny komplexy ruthenia, které byly nalezeny v CSD databázi (Cambridge Structural Database, Version 5.29), tedy byly krystalograficky popsány. Koordinační sféra těchto komplexů obsahuje alespoň jednu molekulu acetylacetonátu a další N nebo O donorové ligandy. Celkem bylo nalezeno 43 komplexů ruthenia, z toho v 27 je ruthenium v oxidačním čísle +III a v 16 případech je ruthenium v oxidačním čísle +II. Tyto komplexy byly rozděleny do podkapitol podle charakteru koordinační sféry. Obrázky struktur byly zhotoveny programem Diamond 3.1e [17]. Atomy vodíku byly v obrázcích vynechány z důvodu přehlednosti.

## 2.1 Ru<sup>III</sup> komplexy

### 2.1.1 Komplexy typu $[Ru(acac)_2(L)]$ a $[Ru(acac)_2(L)_2]$

#### $[Ru(acac)_2(dpa)_n] a [Ru(acac)_2(dpa)_n](ClO_4)$

Tyto komplexy byly připraveny reakcí dpa (90 mg, 0.52 mmol) s cis-[Ru(acac)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (100 mg, 0,26 mmol) v molárním poměru 2:1 v prostředí ethanolu (20 ml). Vzniklá směs byla zahřívána pod zpětným chladičem po dobu 12 hodin. Rozpouštědlo bylo odstraněno v redukční atmosféře. Konečný produkt byl pročištěn chromatograficky. Výsledné komplexy  $[Ru(acac)_2(dpa)]ClO_4$  (1) a  $[Ru(acac)_2(dpa)_2](ClO_4)$ (2) byly rekrystalizovány ve směsi acetonitril-benzen v poměru 1:1. Komplexy cis- a trans-[Ru(acac)<sub>2</sub>(dpa)] (3) a cis-[Ru(acac)<sub>2</sub>(dpa)<sub>2</sub>] (4) byly rekrystalizovány ve směsi dichlormethan-hexan v poměru 1:1 [18].

<u>Struktura:</u>



**Obrázek č. 3** Struktura komplexu [Ru(*acac*)<sub>2</sub>(*dpa*)<sub>2</sub>]ClO<sub>4</sub> (**2**)

Atom Ru<sup>III</sup> je oktaedricky koordinován dvěmi molekulami acetylacetonu a jednou molekulou *dpa*, která se chelátově váže přes dva atomy dusíku. Na vyrovnání náboje komplexního kationtu se ve struktuře nachází chloristanový aniont [18].

#### $[\operatorname{Ru}(acac)_2(Isq)]$ a $[\operatorname{Ru}(acac)_2(Itq)]$

Komplexy [Ru(acac)<sub>2</sub>(Isq)] (1) a [Ru(acac)<sub>2</sub>(Itq)] (2) byly připraveny stejným způsobem. Výchozí látkou byl komplex [Ru(acac)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (100 mg, 0,26 mmol), který byl společně s 2-aminophenolovými ligandy Isq a Itq (43,6 mg, 0,40 mmol) a octanem sodným (32,8 mg, 0,40 mmol) smíchán v prostředí ethanolu (20 ml). Takto získaná směs byla zahřívána pod zpětným chladičem 24 hodin v dusíkové atmosféře. Počáteční oranžová barva roztoku se změnila na purpurovou. Objem roztoku byl odpařen na 5 ml a takto zkoncentrovaný roztok byl ponechán při -5°C přes noc. Následně byl roztok zfiltrován a promyt ethanolem za vzniku komplexů (1) i (2) [19]. Struktura:



V tomto komplexu je atom Ru<sup>III</sup> oktaedricky koordinován dvěmi molekulami acetylacetonu a chelátově vázanou molekulou *Isq*, která je vázána přes jeden atom kyslíku a jeden atom dusíku [19].

**Obrázek č. 4** Struktura komplexu [Ru(*acac*)<sub>2</sub>(*Isq*)] (1)

#### $[\operatorname{Ru}(acac)_2(L)]$

(L = mhm (1), ehmk (2), mAmk (3), mClmk (4), mhbk (5) a ehbk (6))

Reakcí  $[Ru(acac)_2(CH_3CN)_2]$  se čtyřmi ketony (aceton, ethylmetylketon, acetylaceton a monochloroaceton) a reakcí  $[Ru(acac)_2(C_6H_5CN)_2]$  se dvěma ketony (aceton a etylmetylketon) vzniklo šest nových komplexů ruthenia s  $\beta$ -diketonatovými ligandy.

Příprava komplexu [Ru(acac)<sub>2</sub>(mhm)] (1) představuje pro tuto skupinu typickou syntézu. [Ru(acac)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (380 mg, 1,0 mmol) byl přidán do 300 ml acetonu. Směs byla 24 hodin zahřívána pod zpětným chladičem při teplotě 40°C. Během reakce se barva roztoku změnila ze žluto-oranžové na fialovou. Rozpouštědlo se odpařilo ve vakuu a zbytek byl pročištěn chromatograficky. Vzniklá purpurová frakce byla znovu pročištěna chromatograficky za vzniku žlutého produktu [Ru(acac)<sub>2</sub>(mhm)] (1). Ostatní komplexy byly připraveny analogickou syntézou za použití výše zmíněných ketonů [20].

#### Struktura:



Atom Ru<sup>III</sup> je oktaedricky koordinován dvěma molekulami actylacetonu a jednou molekulou ligandu, které se vážou na atom Ru<sup>III</sup> jedním atomem dusíku a jedním atomem kyslíku [20].

**Obrázek č. 5** Struktura komplexu [Ru(*acac*)<sub>2</sub>(*mhm*)] (1)

### $[Ru(acac)_2(L)_2]$

#### (L = Pro (1), NMeIle (2))

Komplex  $[Ru(acac)_2(Pro)]$  (1) byl připraven smícháním prolin methylester hydrochloridu (79 mg, 0,48 mmol) s  $[Ru(acac)_2(MeCN)_2][CF_3SO_3]$  (240 mg, 0,43 mmol). Takto připravená temně modrá usazenina byla zahřívána 10 hodin pod zpětným chladičem. Poté byla vzniklá temně rudá sloučenina odpařena do sucha. Výsledný produkt  $[Ru(acac)_2(Pro)]$  (1) byl získán po chromatografickém pročištění.

Komplex [Ru(*acac*)<sub>2</sub>(*NMeIle*)] (**2**) byl připraven smícháním [KS<sub>2</sub>CN*MeIle*K] (270 mg, 0,90 mmol) s [Ru(*acac*)<sub>2</sub>(*Me*CN)<sub>2</sub>][CF<sub>3</sub>SO<sub>3</sub>] (450mg, 0,84 mmol) v prostředí etanol/H<sub>2</sub>O v poměru 20:1. Vzniklá oranžovo-hnědá směs byla zahřívána 7 hodin pod zpětným chladičem při teplotě 70°C. Pak byla červeno-hnědá směs chromatograficky pročištěná za vzniku konečného produktu [Ru(*acac*)<sub>2</sub>(*NMeIle*)] (**2**) [21]. <u>Struktura:</u>



Atom Ru<sup>III</sup> je oktaedricky koordinovaný dvěma molekulami acetylacetonu a molekulou *Pro*, která se na atom Ru<sup>III</sup> váže atomem dusíku a atomem kyslíku [21].

**Obrázek č. 6** Struktura komplexu [Ru(*acac*)<sub>2</sub>(*Pro*)] (1)

### 2.1.2 Komplexy typu [Ru(acac)(L)] a $[Ru(acac)(L)_2]$

#### [Ru(acac)(ppmp)]

V rámci této skupiny látek byl připraven jediný komplex [Ru(acac)(ppmp)]. Pro přípravu tohoto komplexu byl ligand předem připraven. Syntéza samotného komplexu byla provedena smícháním dříve připraveného ligandu *ppmp* s  $[Ru(acac)_3]$  v etylenglykolu. Tato směs byla vložena pod zpětný chladič na 6 hodin a zahřívána při teplotě 140°C. Během reakce bylo pozorováno tmavě modré zbarvení. Po ochlazení reakční směsi na laboratorní teplotu byla přidána voda. Směs byla několikrát extrahována pomoci CH<sub>2</sub>Cl<sub>2</sub> a vysušena do sucha pomocí MgSO<sub>4</sub>. Konečný produkt [Ru(acac)(ppmp)] (1) byl chromatograficky pročištěn [23].

Struktura:



Atom Ru<sup>III</sup> je oktaedricky koordinován molekulou acetylacetonu a molekulou *ppmp*, která se na atom Ru<sup>III</sup> váže pomocí dvou kyslíkových atomů a dvou dusíkových atomů [23].

**Obrázek č. 8** Struktura komplexu [Ru(*acac*)(*ppmp*)] (1)

#### $[Ru(acac)(L)_2]$

Reakcí  $[Ru(acac)_3]$  s 2-(arylazo)phenolátovými nebo 1-(phenylazo)-2-naphtolátovými ligandy vzniklo šest nových komplexů typu  $[Ru(acac)(L)_2]$ . Postup přípravy je pro všech šest komplexů stejný.  $[Ru(acac)_3]$  (100 mg, 0,25 mmol) byl smíchán s ligandem (320 mg, 1,5 mmol) a vložen do 20 ml ethylbenzoatu. Směs byla zahřívána na 160°C za neustálého probublávání dusíkem, který odstranil nestálý acetylacetonát. Zahřívání pokračovalo 6 hodin za změny zbarvení roztoku na hnědou. Poté se roztok nechal odpařit v redukční atmosféře. Produkt byl rozpuštěn v hexanu a následně pročištěn chromatograficky. Výsledná hnědá frakce, která byla zahuštěna, obsahovala mikrokrystalky produktu  $[Ru(acac)(L)_2]$  [24].

Struktura:



**Obrázek č. 9** Struktura komplexu [Ru(*acac*)(*an*)<sub>2</sub>]

Atom Ru<sup>III</sup> je koordinován molekulou acetylacetonátu a dvěma molekulami 1-(phenylazo)-2-naphtholátu, který se na Ru<sup>III</sup> váže přes jeden atom kyslíku a jeden atom dusíku [24].

### $[Ru(tpy)(acac)(DMSO)](PF_6)$

Purpurový [Ru(*tpy*)(*acac*)Cl] (65,3 mg, 0,139 mmol) byl rozpuštěn v 50 ml 1,2-dichlorethanu v přítomnosti nadbytku 1 ml *DMSO*. Ke směsi byl poté přidán AgPF<sub>6</sub> (36 mg). Směs byla zahřívána 4 hodiny pod zpětným chladičem v argonové atmosféře. Směs byla za horka filtrována. Objem filtrátu byl zredukován na 3 ml a produkt byl vysrážen přidáním 100 ml směsi ethanol/hexan (2:1). Produkt byl izolován jako černá pevná látka. Konečný produkt [Ru(*tpy*)(*acac*)(*DMSO*)](PF<sub>6</sub>) byl získán rekrystalizací, vakuovou filtrací a promytím hexanem [22].

<u>Struktura:</u>



**Obrázek č. 7** Struktura komplexu [Ru(*tpy*)(*acac*)(*DMSO*)](PF<sub>6</sub>)

Na atom Ru je vázána molekula acetylacetonu, molekula *DMSO*, která se váže na atom Ru přes atom síry. Dále se na atom Ru váže molekula *tpy* přes tři atomy dusíku. Na vyrovnání náboje komplexního kationtu se nachází ve struktuře hexaflorofosfosforečnanový anion [22].  $[(acac)_2 Ru(L)Ru(acac)_2]$ 

#### (L=2-tienyl (1), fenyl (2))

Z této syntézy byly připraveny dva komplexy s 3,6-diaryl-1,2,4,5-tetraziny, kde aryl = 2-furyl nebo 2-tienyl. Oba komplexy  $[{Ru(acac)_2}_2(\mu-bttz)]$  (1) a  $[{Ru(acac)_2}_2(\mu-bftz)]$  (2) byly připraveny stejným způsobem. Výchozí látkou pro syntézu obou komplexů byl komplex  $[Ru(acac)_2(CH_3CN)_2]$ . Komplex (1) byl připraven reakcí  $[Ru(acac)_2(CH_3CN)_2]$  (100 mg, 0,26 mmol) s ligandem *bttz* (30 mg, 0,12 mmol) v prostředí ethanolu (20 ml) zahříváním 24 hodin pod zpětným chladičem. Vzniklá sloučenina se nechala odpařovat v redukční atmosféře. Takto připravená pevná zelená látka byla rozpuštěná v minimálním množství  $CH_2Cl_2$  a chromatograficky pročištěná. Vzniklý produkt byl izolován jako *rac* a *meso* izomer.

Komplex (**2**) byl připraven reakcí  $[Ru(acac)_2(CH_3CN)_2]$  (100 mg, 0,26 mmol) s *bftz* (26 mg, 0,12 mmol) v prostředí ethanolu (20 ml) zahříváním 4 hodiny pod zpětným chladičem. Vzniklá sloučenina se nechala odpařovat v redukční atmosféře. Takto připravená pevná zelená látka byla rozpuštěna v minimálním množstvím  $CH_2Cl_2$  a chromatograficky pročištěna [25].

Struktura:



**Obrázek č. 10** Struktura komplexu [(*acac*)<sub>2</sub>Ru(*bttz*)Ru(*acac*)<sub>2</sub>] (**1**)

Dimer je tvořen dvěma oktaedricky koordinovanými atomy Ru<sup>III</sup>. Jako můstkový ligand ve struktuře vystupuje *bttz*, který se na oba atomy Ru<sup>III</sup> váže chelátově dvěma atomy dusíku. Koordinační sféru doplňují na každém atomu Ru<sup>III</sup> dvě molekuly acetylacetonu [25].

#### $[(acac)_2 \operatorname{Ru}(L)\operatorname{Ru}(acac)_2]$

#### (L = abpy (1), bddt (2))

Výchozí komplex [Ru(*acac*)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (100 mg, 0,26 mmol) byl smíchán s *abpy* (22 mg, 0,12 mmol) v prostředí ethanolu (10 ml). Takto připravený roztok byl zahříván 4 hodiny pod zpětným chladičem v dusíkové atmosféře. Barva roztoku se z počáteční

oranžové barvy změnila na tmavě hnědou. Poté bylo odstraněno rozpouštědlo a zůstatek byl chromatograficky rozdělen na *rac* a *meso* izomery [{ $Ru(acac)_2$ }\_2( $\mu$ -*abpy*)] (1). Komplex (2) byl připraven analogickým postupem [26, 27] <u>Struktura:</u>



V komlexu jsou dva atomy Ru<sup>III</sup> vázány můstkově přes *abpy*, který se na každý atom Ru<sup>III</sup> váže dvěma atomy dusíku. Dále jsou oba atomy Ru<sup>III</sup> koordinovány dvěma molekulami acetylacetonu [26].

**Obrázek č. 11** Struktura komplexu [(*acac*)<sub>2</sub>Ru(μ-*abpy*)Ru(*acac*)<sub>2</sub>]

#### 2.1.4 Dimery složení [(acac)(L)Ru-(L)-Ru(L)(acac)]

### $[(acac)(ttc)Ru-(\mu-L)-Ru(ttc)(acac)](PF_6)_x$

(L=OH (1), O<sub>2</sub>H<sub>3</sub> (2), O (3), x = 1-3)

Komplex  $[{Ru(acac)(ttc)}_2(\mu-OH)](PF_6)\cdot H_2O$  (1) byl připraven smícháním  $[Ru(ttc)Cl_3]\cdot H_2O$  (2000 mg, 5,0 mmol) s *acac* (3000 mg, 24 mmol) ve vodném prostředí (60 ml) při laboratorní teplotě. Směs byla míchaná 3,5 hodiny až do vzniku červeného zbarvení roztoku. Poté byl přidán roztok NaPF<sub>6</sub> (2000 mg) v H<sub>2</sub>O (5 ml). Takto připravený roztok byl ochlazen na 0°C. V roztoku se začaly srážet oranžové mikrokrystalky (1), které byly sesbírány filtrací, promyty dietyleterem a usušeny.

Pro přípravu komplexu [{Ru(acac)(ttc)}\_2( $\mu$ -O<sub>2</sub>H<sub>3</sub>)](PF<sub>6</sub>)<sub>3</sub> (**2**) byla připravena směs vodného roztoku *acac* (1 ml, 9,7 mmol), [ $Ru(ttc)Cl_3$ ]·H<sub>2</sub>O (100 mg, 0,25 mmol) a NH<sub>4</sub>HCO<sub>3</sub> (30 mg, 0,38 mmol). Směs byla zahřívána 2 hodiny pod zpětným chladičem. Poté bylo do roztoku přidáno NaPF<sub>6</sub> (1000 mg, 5,9 mmol) v H<sub>2</sub>O (3 ml). pH roztoku bylo upraveno na hodnotu 6 pomocí HPF<sub>6</sub>. Roztok byl ochlazen na 0°C, po několika hodinách se začaly srážet fialové mikrokrystalky (**2**), které byly sesbírány filtrací, promyty studenou H<sub>2</sub>O a usušeny.

 $[{Ru(acac)(ttc)}_2(\mu-O)](PF_6)_2$  (3) byl připraven zahříváním  $[{Ru(acac)(ttc)}_2(OH)$ (PF<sub>6</sub>)] (100 mg, 0,19 mmol) 1,5 hodiny na 130°C ve vakuu (olejová vakuová pumpa). Teplota i vakuum byly udržovány po 8 hodin. Po uplynutí této doby byl tmavě modrý zbytek opakovaně rekrystalizován pomocí směsi CH<sub>3</sub>CN-toluen v poměru 1:1 za vzniku konečného produktu (**3**) [28].

<u>Struktura:</u>



**Obrázek č. 12** Struktura komplexu [{Ru(*acac*)(*ttc*)}<sub>2</sub>(µ-O)](PF<sub>6</sub>)<sub>2</sub> (**3**)

Na atom Ru<sup>III</sup> je koordinována molekula *acac*, hydroxylová skupina a molekula *ttc*, která se na atom Ru<sup>III</sup> váže jako tridentátní *N*-donorový ligand. Na vyrovnání náboje komplexního kationtu se ve struktuře nachází hexaflorofosforečnanový anion [28].

## 2.2 Ru<sup>II</sup> komplexy

## 2.2.1 Komplexy typu $[Ru(acac)_2(L)] a [Ru(acac)_2(L)_2]$

## [ $Ru(acac)_2(\kappa^2 - PPh_2Py)$ ]

Tento komplex byl připraven smícháním [Ru(*acac*)<sub>2</sub>-( $\eta^2$ -C<sub>8</sub>H<sub>14</sub>)<sub>2</sub>] s *PPh*<sub>2</sub>*Py*. Tato směs byla vložena do směsi *THF* a vody (1:1). Směs byla zahřáta na 30°C a držena při této teplotě až do vzniku komplexu [Ru(*acac*)<sub>2</sub>( $\kappa^2$ -*PPh*<sub>2</sub>*Py*)] [29]. <u>Struktura:</u>

Ru O C Atom  $Ru^{III}$  je oktaedricky koordinovaný dvěma molekulami acetylacetonu a molekulou *PPh*<sub>2</sub>*Py*, která se váže na  $Ru^{III}$  přes atom dusíku a atom fosforu [29].

**Obrázek č. 13** Struktura komplexu [ $Ru(acac)_2(\kappa^2 - PPh_2Py)$ ]

#### $[\operatorname{Ru}(acac)_2(adt)]$

Komplex  $[Ru(acac)_2(adt)]$  byl připraven smícháním výchozího komplexu  $[Ru(acac)_2(CH_3CN)_2]$  (100 mg, 0,26 mmol) s připraveným ligandem (50 mg, 0,26 mmol). Tato směs byla rozpuštěna v 20 ml ethanolu a zahřívána 8 hodin pod zpětným chladičem. Počáteční oranžové zbarvení roztoku se postupně změnilo na modré. Roztok byl vysušen v redukční atmosféře, zůstatek byl chromatograficky pročištěn. Červená sloučenina odpovídající  $[Ru(acac)_3]$  byla oddělena pomoci  $CH_2Cl_2-CH_3CN$  (5:1). Modrá sloučenina odpovídající konečnému produktu byla oddělena později pomocí  $CH_2Cl_2-CH_3CN$  (1:1) [30].

Struktura:



Na atom Ru<sup>III</sup> jsou vázány dvě molekuly acetylacetonu a jedna molekula *adt*, která se na atom Ru<sup>III</sup> váže dvěma atomy dusíku [30].

**Obrázek č. 14** Struktura komplexu [Ru(*acac*)<sub>2</sub>(*adt*)]

## $[Ru(acac)_2(\eta^2 - C_2H_4)(L)]$

(L=NH<sub>3</sub> (1), *py* (2))

Příprava obou typů komplexů vychází z komplexu *cis*-[Ru(*acac*)<sub>2</sub>( $\eta^2$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>]. Komplex *trans*-[Ru(*acac*)<sub>2</sub>( $\eta^2$ -C<sub>2</sub>H<sub>4</sub>)(NH<sub>3</sub>)] (1) byl připraven probubláváním *cis*-[Ru(*acac*)<sub>2</sub>( $\eta^2$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>] plynným amoniakem. Tento výchozí komplex byl připraven z [Ru(*acac*)<sub>3</sub>] (1250 mg, 3,15 mmol), který byl smíchán s *THF* na 20 minut. Rozpouštědlo bylo odstraněno ve vakuu. Vzniklý komplex (1) byl promyt hexanem. *Cis* modifikace komplexu (1) byla připravena stejným postupem z *cis*-[Ru(*acac*)<sub>2</sub>( $\eta^2$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>] připraveného z [Ru(*acac*)<sub>3</sub>] (607 mg, 1,52 mmol), který byl smíchán s CH<sub>2</sub>Cl<sub>2</sub> (2 ml).

Komplexy *cis*- a *trans*-[Ru(*acac*)<sub>2</sub>( $\eta^2$ -C<sub>2</sub>H<sub>4</sub>)(*py*)] (**2**) byly připraveny z roztoku *cis*-[Ru(*acac*)<sub>2</sub>( $\eta^2$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>] ve 20 ml toluenu, který byl připraven z [Ru(*acac*)<sub>3</sub>] (395 mg, 0,99 mmol) smíchánim s *py* (80 µl). Směs byla míchána při laboratorní teplotě 3 hodiny. Oranžový roztok byl ve vakuu odpařen na 1 ml, rozvrstven hexanem a poté se nechal ustát při 0°C [31]. Struktura:



Na atom  $Ru^{II}$  jsou koordinovány dvě molekuly acetylacetonu, molekula  $C_2H_4$  vázaná jako  $\eta^2$  ligand a molekula amoniaku [31].

**Obrázek č. 15** Struktura komplexu *trans*-[Ru(*acac*)<sub>2</sub>(η<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)(NH<sub>3</sub>)]

#### $[Ru(acac)_2(vda)]$

Komplex [Ru(*acac*)<sub>2</sub>(*vda*)] byl připraven smícháním [Ru(*acac*)<sub>3</sub>] (2000 mg, 5,0 mmol), *vda* (740 mg, 5,0 mmol) v prostředí *THF* (160 ml) obsahující H<sub>2</sub>O (3 ml). Směs byla zahřívána 2 hodiny pod zpětným chladičem v přítomnosti zinkového amalgámu (10 ml). Vzniklá žluto-oranžová suspenze byla zfiltrována, poté bylo odpařeno rozpouštědlo v redukční atmosféře. Zůstatek byl chromatograficky rozdělen na dva izomery [32]. <u>Struktura:</u>



V tomto komplexu je atom  $Ru^{II}$  oktaedricky koordinován dvěma molekulami acetylacetonu a molekulou *vda*, která se váže jako tridentátní ligand. Jednak přes atom dusíku z anilinové skupiny a přes dva atomy kyslíku z vynilové skupiny.

**Obrázek č. 16** Struktura komplexu [Ru(*acac*)<sub>2</sub>(*vda*)]

## 2.2.2 Komplexy typu [Ru(acac)(L)] a $[Ru(acac)(L)_2]$

#### [Ru(acac)(tpy)(hmbpcyd)]

Komplex [Ru(tpy)(acac)(hmbpcyd)] byl připraven následujícím způsobem. Do roztoku [Ru(tpy)(acac)(Ipcyd)] (170 mg, 0,256 mmol),  $[Pd(PPh_3)_4]$  (20 mg, 7 mol) a CuI (9 mg, 18 mol) v předem odplyněné směsi *DMF*-piperidin smíchané v poměru 3:1 byl přidán 2-methylbut-3-yn-2-ol (0,3 ml). Pracovalo se v argonové atmosféře a směs se nechala reagovat 2 hodiny při laboratorní teplotě. Následně byl roztok odpařen do sucha. Výsledná

pevná látka byla rozpuštěna v dichlormethanu a pročištěna chromatograficky. Druhý podíl produktu by získán odpařením do sucha za vzniku tmavě modrého prášku [33]. <u>Struktura:</u>



**Obrázek č. 17** Struktura komplexu [Ru(*tpy*)(*acac*)(*hmbpcyd*)]

Na atom  $Ru^{II}$  je koordinována molekula acetylacetonu, molekula *tpy* přes tři atomy dusíku a molekula *hmbpcyd* jako monodentátní *N*-donorový ligand [33].

#### $[Ru(acac){(1-naph)_2-TPA}](PF_6) \cdot H_2O$

Předem připravený komplex [RuCl{ $(1-naph)_2$ -*TPA*}]PF<sub>6</sub>·H<sub>2</sub>O (100 mg, 0,108 mmol) byl smíchán s acetylacetonem (60 mg, 0,60 mmol) s 2,6-dimetylpyridinem (68 mg, 0,66 mmol) a rozpuštěn v ethylenglykolu (5 ml) v atmosféře dusíku. Směs byla zahřívána na 100°C po dobu 45 hodin v atmosféře dusíku, poté vysušena v redukční atmosféře. Po odstranění rozpouštědla byl zůstatek chromatograficky pročištěn. Vzniklá žlutá frakce byla rozpuštěna v CH<sub>2</sub>Cl<sub>2</sub>. Do tohoto roztoku byl přidán hexan za vzniku žlutého prášku [Ru(*acac*){(*1-naph*)<sub>2</sub>-*TPA*}](PF<sub>6</sub>)·H<sub>2</sub>O [34]. Struktura:



Na atom Ru<sup>II</sup> je koordinována jedna molekula acetylacetonu a jedna molekula ligandu, který se na atom Ru<sup>II</sup> váže čtyřmi atomy dusíku. Pro vyrovnání náboje komplexního kationtu se ve struktuře nachází hexafluorofosforečnanový anion [34].

**Obrázek č. 18** Struktura komplexu [Ru(*acac*){(*1-naph*)<sub>2</sub>-*TPA*}](PF<sub>6</sub>)·H<sub>2</sub>O

#### [Ru(acac)(tptz)(L)](ClO<sub>4</sub>)

 $(L = NH = C(CH_3) - OC_2H_5(1), NH_2 - C_6H_4(CH_3)(2), NH = C(CH_3) - NHC_2H_5(3))$ 

Všechny tři komplexy byly připraveny z předem připraveného prekurzoru  $[Ru(tptz)(acac)(CH_3CN)](ClO_4)$ . Komplex  $[Ru(tptz)(acac)(NH=C(CH_3)-OC_2H_5)](ClO_4)$  (1)

byl připraven 36 hodinovou syntézou pod zpětným chladičem prekurzoru (50 mg, 0,076 mmol) v dusíkové atmosféře. Počáteční fialová barva roztoku se změnila na purpurovou. Komplex  $[Ru(tptz)(acac)(NH_2-C_6H_4(CH_3))](ClO_4)$  (2) byl připraven smícháním prekurzoru (50 mg, 0,076 mmol) a p-toluidinu (8.21 mg, 0,076 mmol) ve 20 ml ethanolu. Takto připravená směs byla zahřívána 8 hodin pod zpětným chladičem v dusíkové atmosféře. Komplex  $[Ru(tptz)(acac)(NH=C(CH_3)-NHC_2H_5)](ClO_4)$  (3) byl připraven smícháním prekurzoru (50 mg, 0,076 mmol) a 70 % vodného roztoku ethylaminu v nadbytku (1 ml). Tato směs byla rozpuštěna v ethanolu a zahřívána 4 hodiny pod zpětným chladičem v dusíkové atmosféře. Poté bylo ve všech třech případech rozpouštědlo odstraněno v redukční atmosféře, zůstatek byl pročištěn chromatograficky za vzniku konečného produktu (1, 2, 3) [35]. Struktura:



Na atom  $Ru^{II}$  je koordinována molekula acetylacetonu, molekula *tptz*, která se na atom  $Ru^{II}$  váže třemi atomy dusíku. Dále se na atom  $Ru^{II}$  váže  $NH_2$ - $C_6H_4(CH_3)$  přes atom dusíku. Pro vyrovnání náboje komplexního kationtu se ve struktuře nachází chloristanový anion [35].

**Obrázek č. 19** Struktura komplexu [Ru(*tptz*)(*acac*)(NH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>(CH<sub>3</sub>))](ClO<sub>4</sub>) (**2**)

#### 2.2.3 Komplexy typu $[Ru(acac)(L)_3]$

#### [ $Ru(acac)(Dpqx)(CO)(PPh_3)$ ]

Tento komplex byl připraven smícháním  $[Ru(Dpqx)Cl(CO)(PPh_3)_2]$  (100 mg) do 20 ml methanolu a 1 ml acetylacetonu. K roztoku byl přidán kovový sodík (50 mg). Směs byla 16 hodin míchána, poté byl přidán dichlormethan (1 ml) a míchání pokračovalo další hodinu. Po skončení míchání byla přidána voda, organická vrstva byla separována a objem rozpouštědla byl redukován ve vakuu. Vzniklý roztok byl chromatograficky pročištěn. Do vzniklého červeného podílu byl přidán ethanol a malé množství vody. Objem roztoku byl redukován ve vakuu za vzniku konečného produktu [37]. Struktura:



Na atom  $Ru^{II}$  je koordinována molekula acetylacetonu, molekula ligandu Dpqx, který se na atom  $Ru^{II}$  váže atomem dusíku a atomem uhlíku. Dále je v koordinační sféře CO a P*Ph*<sub>3</sub>. Ve struktuře se také nachází jedna molekula krystalové vody [37].

**Obrázek č. 21** Struktura komplexu [Ru(*acac*)(*Dpqx*)(CO)(P*Ph*<sub>3</sub>)]

#### [Ru(acac)(cpcp)(CO)<sub>2</sub>]

Komplex [Ru(*acac*)(*cpcp*)(CO)<sub>2</sub>] byl připraven smícháním předem připraveného komplexu [Ru(*acac*)(*cpcp*)(CO)<sub>2</sub>Cl<sub>2</sub>] (350 mg, 0,36 mmol), *acac* (0,082 ml, 1,44 mmol,) a Na<sub>2</sub>CO<sub>3</sub> (152 mg, 1,44 mmol) v prostředí dimetoxyetanu (15 ml). Směs byla zahřívána 15 hodin. Výsledný roztok byl ochlazen na laboratorní teplotu a zfiltrován. Oranžový filtrát byl zředěn dichlormetanem, promyt vodou a usušen pomocí MgSO<sub>4</sub>. Rozpouštědlo bylo odpařeno v redukční atmosféře. Pevný zůstatek byl rekrystalizován za vzniku konečného produktu [36].

Struktura:



Atom  $Ru^{II}$  je oktaedricky koordinován molekulou acetylacetonu, dvěma molekulami oxidu uhelnatého a molekulou *cpcp*, která se na atom  $Ru^{II}$  váže pomoci atomu dusíku a uhlíku [36].

**Obrázek č. 20** Struktura komplexu [Ru(*acac*)(*cpcp*)(CO)<sub>2</sub>]

#### $[(acac)_2 Ru-(L)-Ru(acac)_2]$

#### $(L = bptz (1), \mu - dab (2))$

 $[Ru(acac)_2(CH_3CN)_2]$  (60 mg, 0,16 mmol) byl rozpuštěn v 10 ml acetonu. Do roztoku bylo přidáno *bptz* (18,7 mg,0,08 mmol). Reakční směs byla zahřívána 4 hodiny pod zpětným chladičem v argonové atmosféře. Během reakce vznikla zelená sraženina a hnědý roztok. Sraženina byla oddělená pomoci filtrace, promytá acetonem a CH<sub>2</sub>Cl<sub>2</sub>. Tímto přečištěním vznikl konečný produkt  $[Ru_2(acac)_4(bptz)]$  (1). Analogickým postupem byl připraven komplex  $[(acac)_2Ru-(\mu-dab)-Ru(acac)_2]$  (2) [38, 39]. <u>Struktura:</u>



Komplex obsahuje dva atomy Ru<sup>III</sup> spojené můstkovým ligandem *bptz*, jenž se váže na každý atom Ru<sup>III</sup> dvěma dusíkovými atomy. Na atomu Ru<sup>III</sup> jsou dále vázáný dvě molekuly acetylacetonu [38].

**Obrázek č. 22** Struktura komplexu [Ru<sub>2</sub>(*acac*)<sub>4</sub>(*bptz*)] (**1**)

#### 2.2.5 Komplexy typu [(acac)<sub>2</sub>(L)Ru-(L)-Ru(L)(acac)]

#### $\underline{cis}$ -[( $\underline{acac}$ )<sub>2</sub>( $\underline{PiPr_3}$ )Ru-( $\mu$ -N<sub>2</sub>)-Ru( $\underline{PiPr_3}$ )( $\underline{acac}$ )<sub>2</sub>]

Předem připravený komplex [Ru(*acac*)<sub>2</sub>(*PiPr*<sub>3</sub>)<sub>2</sub>] (167 mg, 0,34 mmol) byl rozpuštěn v 10 ml benzenu v tlakové nádobě s vodíkovou atmosférou 1 bar, která obsahovala 100 ppm N<sub>2</sub>. Připravená žlutá kapalina byla poté zahřívána po dobu 2 dnů při teplotě 60°C za atmosféry 3 bar. Po skončení zahřívání byla směs ochlazena na laboratorní teplotu a tlak byl snížen na 1 bar. Rozpouštědlo bylo z roztoku odstraněno v Schlenkově nádobě. Žlutý zůstatek byl rozpuštěn v malém množství hexanu a roztok byl ponechán při -20°C po dva dny. Žluté krystalky *cis*-[{Ru(*acac*)<sub>2</sub>(*PiPr*<sub>3</sub>)}<sub>2</sub>( $\mu$ -N<sub>2</sub>)], které vznikly, byly odděleny filtrací v atmosféře argonu a promyty malým množstvím hexanu [40].

Struktura:



Komplex obsahuje dva atomy Ru<sup>III</sup> spojené můstkovým ligandem N<sub>2</sub>. Na každý atom Ru<sup>III</sup> jsou koordinovány dvě molekuly acetylacetonu a jedna molekula *PiPr<sub>3</sub>* [40].

**Obrázek č. 23** Struktura komplexu *cis*-[{Ru(*acac*)<sub>2</sub>(*PiPr*<sub>3</sub>)}(μ-N<sub>2</sub>)]

## <u>Ru<sup>II</sup> komplex [(16-*TMC*)ClRu=C=C=C(2-*py*)<sub>2</sub>Ru-(*acac*)<sub>2</sub>]<sup>+</sup></u>

Pro přípravu konečného produktu byl nejdříve předpřipraven ligand  $[trans-(16-TMC)ClRu=C=C=C(2-py)_2]^+$ . Methanolický (20)ligandu roztok ml)  $[trans-(16-TMC)ClRu=C=C=C(2-py)_2]^+$ (100)mg, 0,13 mmol) byl smíchán s [Ru(acac)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] (100 mg, 0,26 mmol). Výsledná směs byla zahřívána 10 hodin pod zpětným chladičem. Vzniklý tmavě zelený roztok byl zfiltrován a dvakrát promyt ethanolem. Tato pevná látka byla rekrystalizována pomoci pomalé difůze ethanolu skrz roztok CH<sub>2</sub>Cl<sub>2</sub> za vzniku hnědých krystalků konečného produktu [41].

<u>Struktura:</u>



**Obrázek č. 24** Struktura komplexu [(16-TMC)ClRu=C=C=C $(2-py)_2$ Ru- $(acac)_2$ ]<sup>+</sup>

Komplex obsahuje dva atomy Ru<sup>III</sup>, které jsou spojeny můstkovým ligandem. Tento ligand se na oba atomy Ru<sup>III</sup> váže dvěma atomy dusíku. Dále se na každý atom Ru<sup>III</sup> vážou dvě molekuly acetylacetonu. Atomy vodíku byly vynechány kvůli přehlednosti [41].

### 2.3 Rh komplexy

V této podkapitole je uveden pouze jeden komplex rhodia, který obsahoval jednu molekulu acetylacetonátu a další *N*-donorový ligand. Tento komplex byl nalezen v CSD databázi (Cambridge Structural Database, Version 5.29), byla tedy vyřešena jeho struktura. Oproti komplexům ruthenia jsou komplexy rhodia méně početné.

## 2.3.1 Rh<sup>I</sup> komplexy typu [Rh(acac)(L)]

(L = metpya (1), etpya (2) a oxpya (3))

Všechny tři komplexy [Rh(*acac*)(*metpya*)] (1), [Rh(*acac*)(*etpya*)] (2) a [Rh(*acac*)(*oxpya*)(*dchm*)Cl]·*THF* (3) byly připraveny stejným způsobem. Výchozí látkou byl komplex [Rh(*acac*)(*coe*)<sub>2</sub>] (300 mg, 0,71 mmol), jenž byl rozpuštěn v 5 ml ethanolu. K tomuto roztoku byl přidán ligand *metpya* (155 mg, 0,74 mmol) ve formě roztoku toluenu (3 ml). Syntéza probíhala 18 hodin při zahřívání pod zpětným chladičem. Výsledná pevná látka byla promyta hexanem [42].

<u>Struktura:</u>



Atom Rh<sup>I</sup> je planárně koordinován molekulou acetylacetonu a molekulou *etpya*, která se na Rh<sup>I</sup> váže dvěma dusíkovými atomy [42].

**Obrázek č. 25** Struktura komplexu [Rh(*acac*)(*etpya*)] (**2**)

## 3 BIOLOGICKÉ VLASTNOSTI KOMPLEXŮ RUTHENIA A RHODIA S O A N-DONOROVÝMI LIGANDY

Objev komplexů s platinou jako centrálním atomem, které vykazovaly cytotoxicitu měl obrovský dopad na léčbu rakoviny. Mezi nejpoužívanější komplexy platiny při léčbě rakoviny patří cisplatina [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>], karboplatina a oxaliplatina. Přičemž cisplatina je jedním z nejpoužívanějších léků proti rakovině na světě. Nicméně platinovými přípravky se dá léčit omezené množství nádorů a některé jsou vůči nim rezistentní. Objevila se také řada vedlejších účinků (např. gastrointerstinálni toxicita). Tyto nevýhody platinových léčiv stimulovaly výzkum v oblasti neplatinových komplexů, které by se mohly využít při léčbě rakoviny. Mezi zkoumané komplexy se řadí i komplexy ruthenia a rhodia [2].

#### 3.1 Protinádorové vlastnosti ruthenia a rhodia

#### 3.1.1 Ruthenium

Během vývoje protirakovinových látek byla zjištěna potenciální protirakovinná aktivita některých komplexů ruthenia. Tento objev zapříčinil vývoj a studium mnoha sloučenin ruthenia, které by se mohly využívat při léčbě rakoviny. V současné době jsou ovšem ve stádiu klinických testů dva komplexy NAMI-A [H<sub>2</sub>*Im*][*trans*-RuCl<sub>4</sub>(*DMSO*)(H*Im*)] a KP1019 [H(*Ind*)<sub>2</sub>][*trans*-RuCl<sub>4</sub>(*Ind*)<sub>2</sub>] [2].

Ačkoli je většina sloučenin ruthenia zaměřena na DNA, jejich chemické a farmakologické chování je odlišné od chování platinových léčiv, jež jsou taky cílené na DNA. Několik sloučenin ruthenia se ukázalo být aktivní proti nádorům rezistentním vůči platinovým sloučeninám. Působení sloučenin Ru<sup>III</sup> souvisí s lehkou redukcí na Ru<sup>II</sup> v hypoxickém prostředí pevných nádorů [43].

Komplex KP1019 prokázal zastavení růstu buněk v kultuře rakovinných buněk. Mechanizmus působení komplexu KP1019 je, že pronikne do buňky a způsobí apoptózu vyvoláním oxidativního stresu a poškozením DNA. Gelovou elektroforézou bylo zjištěno, že rozplete molekulu DNA a naváže se na ni. Na rozdíl od komplexu NAMI-A působí proti primárním tumorům. Během první fáze klinických testů bylo prokázáno, že u pěti ze šesti pacientů s pevnými nádory byla pozorována jejich stabilizace [2]. Komplex NAMI-A má významnou protinádorovou aktivitu *in vivo*. NAMI-A má anti-angiogenický efekt a také inhibuje vaskulárni endotelní růstový faktor (VEGF). Komplex NAMI-A byl testovaný na 60 buněčných liniích, přičemž výsledky ukázaly zastavení růstu plicních metastáz všech pevných nádorů, které byly testovány [2, 44].

Organometalické komplexy  $Ru^{II}$  s *p*-cymenem, phenoxazinem a antracenem byly testovány *in vitro* na cytotoxicitu. Bylo zjištěno, že tyto komplexy vykazují cytotoxické vlastnosti a mechanizmus jejich účinku je především inhibice toku P-glykoproteinu a MDR proteinu. Pravděpodobně dochází k tomu, že polyaromatický systém antracenových ligandů se vmezeřuje do DNA. Koordinaci ruthenia usnadňuje buněčný příjem. Ukázalo se, že kombinace derivátů známých léčiv a organometalických fragmentů má dramatický vliv na jejich aktivitu [45].

Další sloučeniny s potenciální cytotoxicitou jsou Ru<sup>II</sup> komplexy s pyridikarbozalovým ligandem a komplexy typu RAPTA, což jsou organometalické sloučeniny Ru<sup>II</sup> s *pta*. Komplex Ru<sup>II</sup> s pyridikarbozalovým ligandem působí jako inhibitor enzymu GSK-3. Jeho účinnost je větší než momentálně používaného inhibitoru GSK-3 Staurosporinu. Testy *in vitro* série RAPTA sloučenin prokázaly, že tyto sloučeniny jsou toxické pro rakovinné buňky, ale pro nerakovinné buňky nejsou toxické. Tyto komplexy vykazují velkou podobnost s komplexem NAMI-A. Obě sloučeniny mají podobné protirakovinné chování, jsou inaktivní proti primárním nádorům, ale prokazují aktivitu proti sekundárním nádorovým metastázám [44, 46].

Mezi další potenciální cytotoxické sloučeniny ruthenia patří komplexy Ru<sup>II</sup> s dipyridophenazinem, dipyridoquinoxalinem a polypyridinem [47].

#### 3.1.2 Rhodium

Nejvýznamnějším komplexem rhodia s protinádorovou aktivitou je dirhodium tetraacetát. Tento komplex reaguje s aminokyselinami. Vzniká adukt mezi dirhodium bisacetátem a AA a GG místy na DNA [47].

Komplexy Rh<sup>III</sup> s imidazolem, jenž jsou isostrukturní analogy komplexů Ru<sup>III</sup> byly testovány na biologickou aktivitu. Cytotoxicita těchto komplexů byla testována na čtyřech liniích nádorových buněk (nádory varlat A2780 a A2780/cp8, střevní nádor LoVo a plícní nádor Calu) které jsou rezistentní vůči cisplatině. Komplexy vykázaly významnou a selektivní cytotoxicitu podobnou cisplatině. Dále byla testována *in vitro* interakce s DNA. Interakce

27

s DNA je podobná jako u cisplatiny. Testována byla také protinádorová aktivita *in vivo* proti rakovině prsu. Ukázalo se, že tyto komplexy Rh<sup>III</sup> jsou mnohem toxičtější než odpovídající komplexy Ru<sup>III</sup> [48].

Jako potencionální radioterapeutické látky byly testovány komplexy <sup>105</sup>Rh<sup>III</sup> s tetradentátními ligandy, které obsahují tři donorové atomy síry. Komplexy Rh<sup>III</sup> jsou vhodná radioterapeutika, protože bývají kineticky velmi stabilní. Tato stabilita vyplývá z jejich nízkospinové d<sup>6</sup> konfigurace. Z testů, které se dělaly *in vivo*, vyplývá, že díky jejich kinetické stabilitě nedochází k poškození zdravé tkáně během transportu k cílové nádorové tkáni. Tento faktor má velký význam při vývoji nového léku [49].

Připraveny byly Rh analoga komplexů RAPTA, které byly testovány na biologickou aktivitu *in vitro* na třech liniích lidských nádorových buněk (prsní nádor T47D, plicní nádor A549 a střevní nádor HT-29). Z výsledků vyplývá, že u všech tří nádorových linií prokazují podobnou biologickou aktivitu jako komplexy RAPTA [50].

 $Rh^{II}$  karboxilatové adukty (acetát, propionát a butyrát) s isonikotinovou kyselinou byly testovány *in vitro* na aktivitu proti lidské nádorové linii leukémie K562. *In vitro* testy ukázaly, že komplexy prokazují vysokou cytotoxicitu vůči nádorové linii K562. Hodnota IC<sub>50</sub> ukazuje, že cytotoxicita vzrůstá s rostoucí hydrofobicitou R karboxilátu. Tento efekt se dá vysvětlit tím, že  $Rh^{II}$  karboxiláty vyvíjejí toxický účinek po zhroucení vazby s isonikotinovými ligandy. Přidání organického rozpouštědla (např. chloroform nebo 1-octanol) do vodného roztoku podporuje ztrátu axiálního ligandu [51].

Významnou skupinou látek s biologickou aktivitou jsou komplexy rhodia

s polypyridilovými ligandy. Jednou z nejvíce zkoumanou skupinou jsou komplexy  $Rh^{III}$  typu [ $RhX_3(DMSO)(L)$ ], kde X = Cl nebo Br a L = polypyridilové ligandy (*bpy*, *phen*, *dpq*, *dppz*, *dppn* a *dppz*) (**Obr. č. 26**). Dvě studie byly zaměřeny na zkoumání cytotoxicity *in vitro* vůči lidským nádorovým liniím prsního nádoru MCF-7 a střevního nádoru HT-29. V první studii byly použity ligandy *bpy*, *phen*, *dpq* a *dppz*. Z testů vyplývá, že tyto komplexy mají nezanedbatelnou cytotoxicitu. Aktivita *mer* či *fac* izomerů se liší,



přičemž mer izomery mají vyšší cytotoxicitu než fac izomery. Tento rozdíl vyplývá z rozdílné

kinetické stability izomerů, což má vliv na míru buněčného příjmu, který je mnohem větší u *mer* izomerů. Také bylo zaznamenáno, že tyto komplexy způsobují buněčnou smrt vyvolanou fragmentací DNA u leukémie (NALM-6) a lymfomu (BJAB) [52, 53]. Třetí studie zkoumala cytotoxicitu *in vitro* vůči lidským nádorovým liniím střevní nádor Caco 2 a plicní nádor A549. Jako ligandy byly použity *bpy*, *phen*, *dap*, *dbpy* a *phend*. Komplexy vykazují velkou efektivitu vůči testovaným nádorovým liniím. Komplex s *dap* vykazuje větší cytotoxicitu proti Caco 2 než běžně používaný lék Doxorubicin. U komplexů s *phen*, *dap* a *dbpy* byla zjištěna antibakteriální aktivita (proti bakteriím *E. coli*, *K. pneumoniae* atd.) [54].

Cytotoxicita vůči nádorovým liniím prsního nádoru MCF-7 a střevního nádoru HT-29 byla prokázána u half-sandwichových komplexů Rh<sup>III</sup> s polypyridylovými ligandy. IC<sub>50</sub> klesá v řadě dpq > dppz > dppn. Tyto komplexy prokázaly, že vytvoření stabilní interakce s DNA záleží na velikosti polypyridylového ligandu. To znamená, že komplexy s dpq a dppz vykazují nejstabilnější interakci. Ligand dppn už má příliš velký povrch na vznik stabilní interakce s DNA [53]

#### 3.2 Ostatní biologické aktivity

#### 3.2.1 Ruthenium

Několik komplexů Ru<sup>II</sup> se semikarbazanovými či thiosemikarbazanovými ligandy bylo testováno na antibakteriální aktivitu. Byla sledována inhibice růstu bakterií *Escherichia coli* (**Obr. č. 27**) a *Bacillus subtilisin in vitro*. Výsledky ukázaly, že komplexy jsou mnohem toxičtější vůči bakteriím než jejich ligandy. Toxicita roste s rostoucí koncentrací komplexu v roztoku [55].



**Obrázek č. 27** Escherichia coli [56]

Ru<sup>II</sup> s 2-hydroxy chalkonatovými ligandy byly testovány na biologickou aktivitu proti bakteriím *Escherichia coli, Salmonella typhi* a houbě *Aspergillus niger* (**Obr. č. 28**). Výsledky testů prokázaly, že komplexy jsou mnohem toxičtější vůči stejným bakteriím než samotné ligandy. Toxicita sloučenin rostla s jejich rostoucí koncentrací. Aktivita těchto komplexů je srovnatelná s léky Streptomycin a Bavistin [57].



**Obrázek č. 28** Aspergillus niger [58]

Série komplexu Ru<sup>III</sup> s β-diketonátovými ligandy byly

testovány *in vitro* na biologickou aktivitu proti *Staphylococcus albus*, *Escherichia coli*, *Candida albicans* a *Aspergillus niger*. Všechny komplexy prokázaly srovnatelnou aktivitu jako volné ligandy nebo počáteční Ru<sup>III</sup> komplexy [59].

Komplexy Ru<sup>III</sup> s *dapmh* byly testovány *in vitro* na biologickou aktivitu proti bakteriím *Staphylococcus aureus* a *Proteus mirabilis*. Všechny komplexy prokázaly mírnou biologickou aktivitu vůči oběma bakteriím. Také prokázaly o něco větší aktivitu než jejich samotné ligandy. Aktivita komplexů vůči testovaným bakteriím roste s rostoucí koncentrací. Přestože byla prokázána biologická aktivita těchto komplexů, nedosahují účinnosti jako běžně používaný lék proti bakteriím Ampicillin [60].

Komplexy Ru<sup>II</sup> s polypyridilovými ligandy byly testovány proti bakteriím *Escherichia coli, Staphylococcus aureus* (**Obr. č. 29**) a houbě *Aspergillus niger*. Výsledky ukázaly, že komplexy mají značnou antimykotickou aktivitu proti *Aspergillus niger*, ta je ale srovnatelná s běžně používaným antimykotikem Flukonazolem. Antibakteriáln



Obrázek č. 29 Staphylococcus aureus [62]

í aktivitu mají tyto komplexy srovnatelnou s běžně používaným lékem Streptomicinem [61].

Komplexy Ru<sup>III</sup> s Schiffovými bázemi (dianionty acetoacetanilidu) a jejich ligandy byly testovány *in vitro* na biologickou aktivitu proti bakteriím *Pseudomonas aeruginosa*, *Vibrio cholerae*, *Salomonella typhi* (**Obr. č. 30**) a *Staphylococcus aureaus*. Připravené komplexy jsou více toxické pro testované bakterie než samotné ligandy nebo počáteční Ru<sup>III</sup> komplexy. Ovšem biologická aktivita komplexů nedosahuje hodnot srovnávacího léku Streptomycinu [63].



**Obrázek č. 30** Salmonella typhi [64]

Byly testovány můstkové dvoujaderné komplexy Ru<sup>III</sup> s dikarboxylatovými ligandy *in vitro* na potlačení růstu bakterií *Escherichia coli, Bacillus species* a *Pseudomonas species*. Z výsledků vyplývá, že všechny komplexy vykazují biologickou aktivitu proti použitým bakteriím. Komplexy jsou mnohem toxičtější než jejich samotné ligandy. Přestože jsou komplexy biologicky aktivní, nedosahují účinnosti běžně používaného Penicillinu G [65].

Testovány na biologickou aktivitu byly také komplexy Ru<sup>II</sup> s pyridylaminy. Testy se prováděly na bakteriích *Escherichia coli* a *Staphylococcus aureus*. Bylo zjištěno, že komplexy jsou biologicky aktivní, ale nedosahují aktivity standartně používaných léků Tetracyklinu a Amphotricinu. Jeden z testovaných komplexů také vykazoval antimykotickou aktivitu, přičemž Tetracyklin ani Amphotricin tuto aktivitu nevykazují. Také byl u těchto komplexů prokázán protinádorový efekt, který by se mohl využít v experimentální protinádorové chemoterapii [66].

Byla popsána série komplexů, která byla připravená kombinací biologicky aktivních ligandů *ATZ*, *COD* s Ru<sup>II</sup>. Tyto látky projevily biologickou aktivitu proti bakterii *Tripanosoma cruzi* (**Obr. č. 31**). Mechanizmus účinků těchto komplexů je, že dochází k destrukci DNA parazita. Přesněji řečeno dochází k inhibici topoisomerázy DNA, která je zodpovědná za



Obrázek č. 31 Tripanozoma cruzi [68]

replikaci DNA. Důsledkem této inhibice dochází k vysokému počtu usmrcení parazitických buněk v těle hostitele [67]

#### 3.2.2 Rhodium

Počet testovaných komplexů rhodia je ve srovnání s komplexy ruthenia mnohem nižší. Komplexy rhodia se substituovanými *ptsc* a *ntsc* byly testovány na biologickou aktivitu proti *Bacillus subtilis* a *Pseudomonos aeruginosa*. Bylo zjištěno, že toxicita komplexů je větší než u samotných ligandů, což se dá vysvětlit Tweedyho chelatační teorií. Přestože jsou komplexy biologicky aktivní, nedosahují účinnosti běžně používaného Streptomicinu [69].

Byla testována *in vitro* a *in vivo* aktivita komplexů Rh<sup>III</sup> proti *Leishmania donovani*. Jmenovitě se jedná o komplexy Rh<sup>III</sup> s 2-bromotiazolem, mefloquininem, 2-mepacrinem, oxamniquinem a 2-amino-6-etoxybenzothiazolem. Tyto komplexy *in vitro* ovlivňují makromolekulární biosyntézu bičíkovitých forem parazitů. Konkrétně jde o drastické potlačení syntézy tymidinu, leucinu a uracinu. *In vivo* jsou tyto komplexy schopny vykazovat redukci parazitů až o 82 % [70].

Dvoujaderné komplexy  $Rh^{II}$  s *np* a *pynp* byly testovány na biologickou aktivitu *in vitro*. Připravené komplexy prokazují stabilizaci dvoušroubovice DNA. Možným vysvětlením tohoto děje je, že komplexy mají volné jedno nebo dvě místa pro koordinaci v axiální poloze. Předchozí práce prokázaly, že volné koordinační místa v axiální poloze u dvoujaderných komplexů rhodia jsou nezbytnou podmínkou pro biologickou aktivitu těchto komplexů. Tyto komplexy také prokazují inhibici transkripce *m*RNA. Toto omezení tvorby RNA také přispívá ke stabilizaci dvoušroubovice DNA [71].

## 4 EXPERIMENTÁLNÍ ČÁST

#### 4.1 Použité chemikálie

Při syntézách byly použity následující chemikálie:

- Chlorid ruthenitý hydrát RuCl<sub>3</sub>·xH<sub>2</sub>O, Merck
- Ethanol CH<sub>3</sub>CH<sub>2</sub>OH, Fluka
- Methanol CH<sub>3</sub>OH, Fluka
- destilovaná voda, deionizovaná voda
- Tetraethylenamonium chlorid [Et<sub>4</sub>N]Cl, Aldrich
- Aceton CH<sub>3</sub>COCH<sub>3</sub>, Lachema Brno
- Diethyleter (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>O, Fluka
- Triethylamin (C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>N, Merck
- Acetylaceton C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>, Merck
- deriváty 6-benzylaminopurinu (*Bap*), připraveny na našem pracovišti:
  6-(2-chlorbenzylamino)purin (2-Cl*Bap*)
  - 6-(3-chlorbenzylamino)purin (3-ClBap)
  - 6-(3-hydroxybenzylamino)purin (3-OHBap)
  - 6-(2-methoxybenzylamino)purin (2-OCH<sub>3</sub>Bap)
  - 6-(4-methoxybenzylamino)purin (4-OCH<sub>3</sub>Bap)
  - 6-(3,4-dimethoxybenzylamino)purin (3,4-diOCH<sub>3</sub>Bap)
  - 6-(4-methylbenzylamino)purin (4-CH<sub>3</sub>Bap)
  - 6-(4-brombenzylamino)purin (3-BrBap)

## 4.2 Příprava sloučenin ruthenia

#### 4.2.1 Příprava komplexů typu [Ru(R-Bap)(acac)Cl<sub>2</sub>X] (X je H<sub>2</sub>O nebo EtOH)

#### Příprava [Ru(2-ClBapH)(acac)Cl<sub>2</sub>(H<sub>2</sub>O)]·H<sub>2</sub>O (**1B**)

0,1 g (4,82 $\cdot$ 10<sup>-4</sup> mol) RuCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno ve 40 ml ethanolu. 0,125 g (4,82 $\cdot$ 10<sup>-4</sup> mol) 6-(2-chlorobenzylamino)purinu bylo rozpuštěno ve 12 ml ethanolu. Tento roztok reagoval 20 minut pod zpětným chladičem, poté byl přidán ve formě teplého roztoku k RuCl<sub>3</sub>·*x*H<sub>2</sub>O. K této směsi bylo přidáno 0,08 g (4,82 $\cdot$ 10<sup>-4</sup> mol) [Et<sub>4</sub>N]Cl rozpuštěného
v 9 ml ethanolu a 1 ml vody. Takto připravená směs reagovala jednu hodinu pod zpětným chladičem. Tmavě černý produkt [Ru(2-Cl*Bap*H<sub>2</sub>)Cl<sub>4</sub>H<sub>2</sub>O]·0,5EtOH (**1A**), který se utvořil, byl zfiltrován a promyt acetonem. Výtěžnost: 65 %. Anal.: Vypočítané pro RuC<sub>13</sub>H<sub>16</sub>N<sub>5</sub>O<sub>1</sub>Cl<sub>5</sub> ( $M_r = 543.9$ ) 28,7 % C, 3,0 % H, 12,9 % N; nalezeno 28,3 % C, 3,2 % H, 13,6 % N. IR (KBr, cm<sup>-1</sup>): 3305m; 3251m; 3145m; 3066m; 2991m; 2854m; 1642vs; 1537m; 1475m; 1442m; 1405m; 1304m; 1221w; 1161w; 1134w; 1053w; 1039w; 927w; 755m; 668w; 614w. IR (ATRd, cm<sup>-1</sup>): 587w; 556w; 509w; 465w; 434w; 414w; 379w; 331s; 319s; 274w; 241w; 218w.

0,1 g (1,706·10<sup>-4</sup> mol) látky **1A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,02 ml (1,706·10<sup>-4</sup> mol) trietylaminu a 0,017 ml (1,706·10<sup>-4</sup> mol) acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Výsledný černý produkt **1B** byl zfiltrován a promyt acetonem. Výtěžnost: 78 %. Anal.: Vypočítané pro RuC<sub>17</sub>H<sub>23</sub>N<sub>5</sub>O<sub>4</sub>Cl<sub>3</sub> (M<sub>r</sub> = 585,9) 34,8 % C, 3,8 % H, 12,0 % N; nalezeno 34,2 % C, 3,7 % H, 14,2 % N. IR (KBr, cm<sup>-1</sup>): 3407m; 1622vs; 1555m; 1518m; 1468m; 1443m; 1358m; 1291w; 1171w; 1037w. IR (ATRd, cm<sup>-1</sup>): 652w; 613w; 552m; 524m; 495m; 457s; 439m; 413w; 310m.

#### Příprava [Ru(3-ClBapH)(acac)Cl<sub>2</sub>(EtOH)] (2B)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·xH<sub>2</sub>O bylo rozpuštěno ve 40 ml ethanolu. 0,125 g (4,82·10<sup>-4</sup> mol) 6-(3-chlorobenzylamino)purinu bylo rozpuštěno ve 12 ml ethanolu. Tento roztok reagoval 20 minut pod zpětným chladičem, poté byl přidán ve formě teplého roztoku k RuCl<sub>3</sub>·xH<sub>2</sub>O. K této směsi bylo přidáno 0,08 g (4,82·10<sup>-4</sup> mol) [Et<sub>4</sub>N]Cl rozpuštěného v 9 ml ethanolu a 1 ml vody. Takto připravená směs reagovala 1 hodinu pod zpětným chladičem. Tmavě hnědý produkt [Ru(3-Cl*Bap*H<sub>2</sub>)Cl<sub>4</sub>EtOH]·H<sub>2</sub>O (**2A**), který se utvořil, byl zfiltrován a promyt acetonem. Výtěžnost: 48 %. Anal: Vypočítané pro RuC<sub>14</sub>H<sub>19</sub>N<sub>5</sub>O<sub>2</sub>Cl<sub>5</sub> (M<sub>r</sub> = 565,9) 29,7 % C, 3,4 % H, 12,4 % N; nalezeno 29,7 % C, 3,3 % H, 13,3 % N. IR (KBr, cm<sup>-1</sup>): 3025m; 3141m; 3059; 2976m; 1631vs; 1473m; 1426m; 1343m; 1276m; 1163m; 997m; 779m; 682m. IR (ATRd, cm<sup>-1</sup>): 563m; 548m; 448w; 413w; 321s; 275m.

 $0,1 \text{ g} (1,74 \cdot 10^{-4} \text{ mol}) \text{ látky } 2A \text{ bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,024 ml (1,74 \cdot 10^{-4} \text{ mol}) trietylaminu a 0,017 ml (1,74 \cdot 10^{-4} \text{ mol}) acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Výsledný hnědý produkt <math>2B$  byl zfiltrován a promyt acetonem. Výtěžnost: 60 %. Anal.: Vypočítané pro RuC<sub>19</sub>H<sub>25</sub>N<sub>5</sub>O<sub>3</sub>Cl<sub>3</sub> (M<sub>r</sub> = 578,1) 39,3 % C, 4,2 % H, 12,3 % N; nalezeno 39,0 % C, 3,8 % H, 13,5 % N. IR (KBr, cm<sup>-1</sup>): 3309; 3257; 3154; 3059; 3002; 2922; 1616; 1554; 1515; 1471; 1303; 1275;

1164; 1096; 1019; 956; 864; 782; 684. (ATRd, cm<sup>-1</sup>): 595m; 550m; 513w; 456vs; 338m; 331m.

#### Příprava [Ru(2-OCH<sub>3</sub>BapH)(acac)Cl<sub>2</sub>(EtOH)] (**3B**)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·xH<sub>2</sub>O bylo rozpuštěno v 40 ml ethanolu. 0,12 g (4,82·10<sup>-4</sup> mol) 6-(2-metoxybenzylamino)purinu bylo rozpuštěno ve 12 ml ethanolu. Tento roztok reagoval 20 minut pod zpětným chladičem, poté byl přidán ve formě teplého roztoku k RuCl<sub>3</sub>·xH<sub>2</sub>O. K této směsi bylo přidáno 0,08 g (4,82·10<sup>-4</sup> mol) [Et<sub>4</sub>N]Cl rozpuštěného v 9 ml ethanolu a 1 ml vody. Takto připravená směs reagovala 1 hodinu pod zpětným chladičem. Hnědý produkt [Ru(2-OCH<sub>3</sub>*Bap*H<sub>2</sub>)Cl<sub>4</sub>EtOH]·H<sub>2</sub>O (**3A**), který se utvořil, byl zfiltrován a promyt acetonem. Výtěžnost: 54 %. Anal.: Vypočítané pro RuC<sub>15</sub>H<sub>22</sub>N<sub>5</sub>O<sub>3</sub>Cl<sub>4</sub> (M<sub>r</sub> = 561,9) 32,0 % C, 3,9 % H, 12,5 % N; nalezeno 33,4 % C, 3,7 % H, 14,4 % N. IR (KBr, cm<sup>-1</sup>): 3262m; 3208m; 3142m; 3062m; 1623vs; 1492m; 1436m; 1349m; 1241m; 1160m; 1047w; 928w; 833w; 751m; 672m. IR (ATRd, cm<sup>-1</sup>): 582m; 555m; 530m; 488m; 456m; 318s; 240m.

0,04 g  $(7,3\cdot10^{-5} \text{ mol})$  látky **3A** bylo přidáno 18 ml ethanolu, 0,01 ml  $(7,3\cdot10^{-5} \text{ mol})$  trietylaminu a 0,007 ml  $(7,3\cdot10^{-5} \text{ mol})$  acetylacetonu. Tento roztok reagoval 70 minut pod zpětným chladičem. Vzniklý produkt **3B** byl přefiltrován a promyt acetonem. Výtěžnost: 51 %. Anal.: Vypočítané pro RuC<sub>19</sub>H<sub>25</sub>N<sub>5</sub>O<sub>3</sub>Cl<sub>2</sub> (M<sub>r</sub> = 550,1) 41,6 % C, 4,4 % H, 14,2 % N; nalezeno 41,8 % C, 4,7 % H, 13,5 % N. IR (KBr, cm<sup>-1</sup>): 3286m; 3222m; 3159m; 3066m; 2921w; 1613vs; 1553s; 1493m; 1462m; 1360m; 1241m; 1162m; 1024m; 936w; 753m; 653w. IR (ATRd, cm<sup>-1</sup>): 583m; 541m; 529m; 505m; 492m; 453s; 424m; 351m; 324w; 252w.

# 4.2.2 Příprava komplexů typu [Ru(R-Bap)<sub>2</sub>(acac)Cl<sub>2</sub>]

#### Příprava [Ru(Bap)(BapH)(acac)Cl<sub>2</sub>]·2H<sub>2</sub>O (4B)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno v 40 ml ethanolu. 0,11 g (4,82·10<sup>-4</sup> mol) 6-(4-metylbenzylamino)purinu bylo rozpuštěno ve 12 ml ethanolu. Tento roztok reagoval 20 minut pod zpětným chladičem, poté byl přidán ve formě teplého roztoku k RuCl<sub>3</sub>·*x*H<sub>2</sub>O. Tato směs reagovala 1 hodinu pod zpětným chladičem. Vzniklý tmavě černý produkt [Ru(*Bap*H)<sub>2</sub>Cl<sub>3</sub>H<sub>2</sub>O] (**4A**) byl zfiltrován a promyt acetonem. Výtěžnost: 47 %. Anal.: Vypočítané pro RuC<sub>24</sub>H<sub>26</sub>N<sub>10</sub>O<sub>1</sub>Cl<sub>3</sub> (M<sub>r</sub> = 676,5) 42,6 % C, 3,6 % H, 20,8 % N; nalezeno 42,1 % C, 3,8 % H, 21,6 % N. IR (KBr, cm<sup>-1</sup>): 3252m; 3199m; 3130m; 3052m; 2942m; 2853m; 1655vs; 1619vs; 1458m; 1425m; 1338m; 1205m; 1062m; 933m; 809m;

746m; 637w. IR (ATRd, cm<sup>-1</sup>): 580m; 545m; 513m; 467m; 330s; 321s; 291m; 261w; 233w; 216w.

0,1 g (1,48·10<sup>-4</sup> mol) látky **4A** bylo přidáno 18 ml ethanolu, 0,02 ml (1,48·10<sup>-4</sup> mol) triethylaminu a 0,0148 ml (1,48·10<sup>-4</sup> mol) acetylacetonu. Tento roztok reagoval 70 minut pod zpětným chladičem. Vzniklý černý produkt **4B** byl přefiltrován a promyt acetonem. Výtěžnost: 45 %. Anal.: Vypočítané pro RuC<sub>29</sub>H<sub>36</sub>N<sub>10</sub>O<sub>4</sub>Cl<sub>2</sub> ( $M_r = 759,2$ ) 45,8 % C, 4,7 % H, 18,4 % N; nalezeno 45,3 % C, 4,9 % H, 18,1 % N. IR (ATRd, cm<sup>-1</sup>): 571m; 543m; 514m; 475s; 425w; 366w; 341m; 310m; 295m.

#### Příprava [Ru(3-ClBap)(3-ClBapH)(acac)Cl<sub>2</sub>]·2H<sub>2</sub>O (5B)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,25 g (9,64·10<sup>-4</sup> mol) 6-(3-chlorobenzylamino)purinu v pevném stavu. Tato směs reagovala 30 minut pod zpětným chladičem. Vzniklý hnědý produkt [Ru(3-Cl*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·3H<sub>2</sub>O (**5A**) byl přefiltrován a promyt acetonem. Výtěžnost: 31 %. Anal.: Vypočtené pro RuC<sub>24</sub>H<sub>28</sub>N<sub>10</sub>O<sub>3</sub>Cl<sub>6</sub> (M<sub>r</sub> = 816,9) 35,3 % C, 3,4 % H, 17,1 % N; nalezeno 35,8 % C, 3,4 % H, 17,0 % N. IR (KBr, cm<sup>-1</sup>): 3202m; 3139m; 3063m; 2926m; 1633vs; 1472m; 1343m; 1234w; 1162w; 1078w; 926w; 780m; 683w. IR (ATRd, cm<sup>-1</sup>): 581m; 536s; 507w; 489w; 474w; 449m; 412m; 372w; 318s; 264m.

 $0,05 \text{ g} (6,4\cdot10^{-5} \text{ mol})$  látky **5**A bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,008 ml (6,4·10<sup>-5</sup> mol) trietylaminu a 0,006 ml (6,4·10<sup>-5</sup> mol) acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Poté byl výsledný hnědý produkt **5B** zfiltrován a promyt acetonem. Výtěžnost: 60 %. Anal.: Vypočítané pro RuC<sub>29</sub>H<sub>34</sub>N<sub>10</sub>O<sub>4</sub>Cl<sub>4</sub> (M<sub>r</sub> = 828,1) 42,1 % C, 4,1 % H, 16,9 % N; nalezeno 42,6 % C, 4,1 % H, 16,7 % N. IR (KBr, cm<sup>-1</sup>): 3271m; 3208m; 3151m; 3060m; 2920m; 1616vs; 1554s; 1515s; 1470m; 1427m; 1356m; 1275m; 1165w; 1077w; 934w; 782w; 681w. IR (ATRd, cm<sup>-1</sup>): 586m; 541m; 500m; 482w; 447s; 415m; 351w; 332w; 318w; 260w.

#### Příprava [Ru(4-OCH<sub>3</sub>Bap)(4-OCH<sub>3</sub>BapH)(acac)Cl<sub>2</sub>]·2H<sub>2</sub>O (6B)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,24 g (9,64·10<sup>-4</sup> mol) 6-(4-methoxybenzylamino)purinu v pevném stavu. Tato směs reagovala 30 minut pod zpětným chladičem. Tmavě černý produkt [Ru(4-OCH<sub>3</sub>*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·3H<sub>2</sub>O·EtOH (**6A**), byl zfiltrován a 2x promyt acetonem. Výtěžnost: 53 %. Anal.: Vypočítané pro RuC<sub>28</sub>H<sub>40</sub>N<sub>10</sub>O<sub>6</sub>Cl<sub>4</sub> (M<sub>r</sub> = 852,9) 39,4 % C, 4,7 % H, 16,4 % N; nalezeno 39,9 % C, 4,1 % H, 16,4 % N. IR (KBr, cm<sup>-1</sup>): 3211m; 3133m; 3059m; 2951m;

1627vs; 1511s; 1457m; 1349m; 1244m; 1176m; 1028m; 925w; 817w; 780w; 662w. IR (ATRd, cm<sup>-1</sup>): 578m; 530s; 510m; 475m; 452m; 415m; 317s; 249m.

 $0,1 \text{ g} (1,28 \cdot 10^{-4} \text{ mol})$  látky **6A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,017 ml (1,28 \cdot 10^{-4} mol) trietylaminu a 0,014 ml (1,28 \cdot 10^{-4} mol) acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Konečný hnědý produkt **6B** byl zfiltrován a 2x promyt acetonem. Výtěžnost: 74 %. Anal.: Vypočítané pro RuC<sub>31</sub>H<sub>40</sub>N<sub>10</sub>O<sub>6</sub>Cl<sub>2</sub> (M<sub>r</sub> = 818,1) 45,5 % C, 4,9 % H, 17,1 % N; nalezeno 45,7 % C, 4,7 % H, 16,6 % N. IR (KBr, cm<sup>-1</sup>): 3275m; 3238m; 3144m; 3059m; 1608vs; 1554s; 1510vs; 1462m; 1356m; 1243m; 1172m; 1027m; 934w; 817w; 651w. IR (ATRd, cm<sup>-1</sup>): 579m; 534s; 508s; 451s; 424m; 356w; 335m; 325m; 325m; 273m.

# Příprava [Ru(3,4-diOCH<sub>3</sub>Bap)(3,4-diOCH<sub>3</sub>BapH)(acac)Cl<sub>2</sub>]·2H<sub>2</sub>O (7B)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,26 g (9,64·10<sup>-4</sup> mol) 6-(3,4-metoxybenzylamino)purinu v pevném stavu. Tato směs reagovala 30 min pod zpětným chladičem. Vzniklý černý produkt [Ru(3,4-diOCH<sub>3</sub>*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·5H<sub>2</sub>O (**7A**) byl zfiltrován a 2x promyt acetonem. Výtěžnost: 34 %. Anal.: Vypočítané pro RuC<sub>28</sub>H<sub>44</sub>N<sub>10</sub>O<sub>9</sub>Cl<sub>4</sub> (M<sub>r</sub> = 904,9) 37,1 % C, 4,6 % H, 15,5 % N; nalezeno 36,6 % C, 4,3 % H, 14,9 % N. IR (KBr, cm<sup>-1</sup>): 3209m; 3140m; 3070m; 2999m; 1629vs; 1513s; 1450m; 1348w; 1264m; 1138m; 1022m; 924w; 764w; 668w. IR (ATRd, cm<sup>-1</sup>): 587m; 553m; 506w; 480w; 426m; 430m; 390w; 313s; 245m.

0,1 g  $(1,23\cdot10^{-4} \text{ mol})$  látky **7A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,017 ml  $(1,23\cdot10^{-4} \text{ mol})$  trietylaminu a 0,012 ml  $(1,23\cdot10^{-4} \text{ mol})$  acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Poté byl výsledný šedý produkt **7B** zfiltrován a 2x promyt acetonem. Výtěžnost: 31 %. Anal.: Vypočítané pro RuC<sub>33</sub>H<sub>48</sub>N<sub>10</sub>O<sub>9</sub>Cl<sub>2</sub> (M<sub>r</sub> = 898,1) 44,1 % C, 5,1 % H, 15,6 % N; nalezeno 43,9 % C, 5,0 % H, 14,8 % N. IR (KBr, cm<sup>-1</sup>): 3288m; 3210m; 3155m; 3067m; 1614vs; 1555s; 1515vs; 1465m; 1418m; 1357m; 1267m; 1137m; 1025m; 935w; 786w. IR (ATRd, cm<sup>-1</sup>): 580m; 553s; 538s; 520s; 489m; 446s; 420s; 354w; 324w; 252m.

# 4.2.3 Příprava komplexů typu [Ru(R-Bap)<sub>3</sub>Cl<sub>3</sub>]

#### Příprava [Ru(3-OHBap)<sub>2</sub>(3-OHBapH)Cl<sub>3</sub>] (8B)

0,1 g (4,82·10<sup>-4</sup> mol) RuCl<sub>3</sub>·xH<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,235 g (9,64·10<sup>-4</sup> mol) 6-(3-hydroxybenzylamino)purinu v pevném stavu. Tato směs reagovala 30 minut pod zpětným chladičem. Vzniklý tmavě hnědý produkt [Ru(3-OH*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·2H<sub>2</sub>O (**8A**) byl zfiltrován a promyt dietyleterem. Výtěžnost: 65 %. Anal.: Vypočítané pro RuC<sub>24</sub>H<sub>28</sub>N<sub>10</sub>O<sub>4</sub>Cl<sub>4</sub> (M<sub>r</sub> = 766,9) 37,7 % C, 3,7 % H, 18,2 % N; nalezeno 38,1 % C, 3,8 % H, 18,0 % N. IR (KBr, cm<sup>-1</sup>): 3268m; 3214m; 3076m; 2925m; 2798m; 2727m; 2686m; 2578m; 1629vs; 1604s; 1546w; 1492w; 1457m; 1411m; 1361m; 1318m; 1278m; 1263m; 1161w; 1133w; 999w; 985w; 939m; 906m; 793w; 773w; 751w; 668m; 643m. IR (ATRd, cm<sup>-1</sup>): 548w; 534w; 523m; 469w; 439m; 328s; 263w; 240w.

0,1 g (1,31·10<sup>-4</sup> mol) látky **8A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,018 ml (1,31·10<sup>-4</sup> mol) trietylaminu a 0,014 ml (1,31·10<sup>-4</sup> mol) acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Výsledný šedý produkt **8B** byl zfiltrován a promyt acetonem. Výtěžnost: 70 %. Anal.: Vypočítané pro RuC<sub>36</sub>H<sub>36</sub>N<sub>15</sub>O<sub>3</sub>Cl<sub>3</sub> ( $M_r = 939,4$ ) 46,0 % C, 3,9 % H, 22,3 % N; nalezeno 46,0 % C, 4,4 % H, 21,9 % N. IR (KBr, cm<sup>-1</sup>): 3271m; 3215m; 3076m; 2799m; 2727m; 2686m; 1629vs; 1604s; 1547w; 1492w; 1459m; 1412w; 1362m; 1279m; 1263m; 1161w; 1134w; 1033w; 991w; 940m; 906m; 793w; 751w; 686w; 644m. IR (ATRd, cm<sup>-1</sup>): 543w; 535m; 524s; 469s; 440s; 393w; 263w; 238w.

# 4.3 Příprava sloučenin rhodia

# 4.3.1 Příprava komplexů typu [Rh(R-Bap)(acac)Cl<sub>2</sub>(H<sub>2</sub>O)]

#### Příprava [Rh(Bap)(acac)Cl<sub>2</sub>(H<sub>2</sub>O)] (9B)

0,1 g (4,78·10<sup>-4</sup> mol) RhCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno ve 40 ml ethanolu. K tomuto roztoku bylo přidáno 0,125 g (4,78·10<sup>-4</sup> mol) 6-(3-chlorobenzylamino)purinu rozpuštěného ve 12 ml ethanolu ve formě teplého roztoku. K této směsi bylo přidáno 0,08 g (4,78·10<sup>-4</sup> mol) [Et<sub>4</sub>N]Cl rozpuštěného v 9 ml ethanolu a 1 ml vody. Takto připravená směs reagovala 70 minut pod zpětným chladičem. Světle žlutý produkt [Rh(*Bap*)Cl<sub>3</sub>EtOH(H<sub>2</sub>O)]·H<sub>2</sub>O (**9**A),

který se utvořil, byl zfiltrován a promyt acetonem. Výtěžnost: 50 %. Anal.: Vypočítané pro RhC<sub>14</sub>H<sub>22</sub>N<sub>5</sub>O<sub>3</sub>Cl<sub>3</sub> ( $M_r = 516,8$ ) 32,6 % C, 4,2 % H, 13,6 % N; nalezeno 32,7 % C, 3,7 % H, 14,1 % N. IR (KBr, cm<sup>-1</sup>): 3214m; 3154m; 3069m; 2950m; 1628vs; 1474m; 1442m; 1342m; 1238w; 1124w; 1077w; 997w; 868w; 778w. IR (ATRd, cm<sup>-1</sup>): 575m; 523m; 492m; 455m; 429m; 328s; 225w. Ramanův posun (cm<sup>-1</sup>): 3062s; 2987s; 2942s; 2116w; 1599m; 1407m; 1345m; 1308m; 1240w; 1124w; 999s; 918m; 745m; 679w; 561w; 415w.

0,03 g (5,1·10<sup>-5</sup> mol) látky **9A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,007 ml (5,1·10<sup>-5</sup> mol) trietylaminu a 0,005 ml (5,1·10<sup>-5</sup> mol) acetylacetonu. Takto připravený roztok reagoval 80 minut pod zpětným chladičem. Poté byl výsledný světle žlutý produkt **9B** zfiltrován a 2x promyt acetonem. Výtěžnost: 67 %. Anal.: Vypočítané pro RhC<sub>17</sub>H<sub>22</sub>N<sub>5</sub>O<sub>3</sub>Cl<sub>2</sub> ( $M_r = 517,5$ ) 39,6 % C, 4,2 % H, 13,6 % N; nalezeno 40,1 % C, 3,9 % H, 13,8 % N.

### 4.3.2 Příprava komplexů typu [Rh(R-Bap)<sub>2</sub>(acac)Cl<sub>2</sub>]

### Příprava [Rh(3,4-diOCH<sub>3</sub>Bap)<sub>2</sub>(acac)Cl<sub>2</sub>]·1,5EtOH·H<sub>2</sub>O (10B)

0,1 g (4,78·10<sup>-4</sup> mol) RhCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,26 g (9,64·10<sup>-4</sup> mol) 6-(3,4-dimetoxybenzylamino)purinu v pevném stavu. Tato směs reagovala 30 minut pod zpětným chladičem. Vzniklý žlutý produkt [Rh(3,4-diOCH<sub>3</sub>*Bap*)(3,4-diOCH<sub>3</sub>*Bap*H)Cl<sub>4</sub>]·5H<sub>2</sub>O (**10A**) byl zfiltrován a 2x promyt acetonem. Výtěžnost: 55 %. Anal.: Vypočítané pro RhC<sub>28</sub>H<sub>44</sub>N<sub>10</sub>O<sub>9</sub>Cl<sub>4</sub> (M<sub>r</sub> = 907,1) 37,0 % C, 4,8 % H, 15,4 % N; nalezeno 36,5 % C, 4,4 % H, 14,9 % N. IR (KBr, cm<sup>-1</sup>): 3222m; 3160m; 3078m; 1627vs; 1515s; 1451m; 1348m; 1265m; 1139m; 1024m; 918w; 808w; 633w. IR (ATRd, cm<sup>-1</sup>): 577m; 533s; 497m; 482m; 464m; 430m; 397w; 332s; 319s; 281w; 251m.

0,08 g (1,04·10<sup>-4</sup> mol) látky **10A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,014 ml (1,04·10<sup>-4</sup> mol) trietylaminu a 0,01 ml (1,04·10<sup>-4</sup> mol) acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Výsledný žlutý produkt **10B** byl zfiltrován a 2x promyt acetonem. Výtěžnost: 50 %. Anal.: Vypočítané pro RhC<sub>36</sub>H<sub>53</sub>N<sub>10</sub>O<sub>8</sub>Cl<sub>2</sub> ( $M_r = 933,2$ ) 46,3 % C, 5,7 % H, 15,0 % N; nalezeno 46,2 % C, 5,4 % H, 14,9 % N. IR (KBr, cm<sup>-1</sup>): 3282m; 3212m; 3144m; 3065m; 1609vs; 1556s; 1515vs;

1465m; 1382m; 1264m; 1136m; 1024m; 938w; 760w; 647w. IR (ATRd, cm<sup>-1</sup>): 570m; 548s; 506s; 461s; 395w; 329m; 278w.

#### Příprava [Rh(3-BrBap)<sub>2</sub>(acac)Cl<sub>2</sub>]·EtOH (11B)

0,1 g (4,78·10<sup>-4</sup> mol) RhCl<sub>3</sub>·xH<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,26 g (9,64·10<sup>-4</sup> mol) 6-(3-bromobenzylamino)purinu v pevném stavu. Tato směs reagovala 30 minut pod zpětným chladičem. Vzniklý světle žlutý produkt [Rh(3-Br*Bap*)(3-Br*Bap*H)Cl<sub>4</sub>]·H<sub>2</sub>O (**11A**) byl zfiltrován a 2x promyt acetonem. Výtěžnost: 67,6 %. Anal.: Vypočítané pro RhC<sub>24</sub>H<sub>24</sub>N<sub>10</sub>O<sub>1</sub>Cl<sub>4</sub>Br<sub>2</sub> (M<sub>r</sub> = 871,6) 33,0 % C, 2,8 % H, 16,0 % N; nalezeno 33,1 % C, 3,0 % H, 15,8 % N. IR (KBr, cm<sup>-1</sup>): 3241m; 3157m; 3069m; 3015m; 1627vs; 1537m; 1451m; 1342m; 1286m; 1166w; 1070w; 988w; 880w; 771w; 665w. IR (ATRd, cm<sup>-1</sup>): 561m; 532s; 498m; 481w; 439m; 323s; 279m; 232w. Ramanův posun (cm<sup>-1</sup>): 3062s; 2937m; 1597m; 1572m; 1475m; 1406m; 1350m; 1239m; 1126w; 1071w; 998s; 920w; 771w; 742w; 667w; 561w; 445w.

0,1 g  $(1,23\cdot10^{-4} \text{ mol})$  látky **11A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,017 ml  $(1,23\cdot10^{-4} \text{ mol})$  trietylaminu a 0,012 ml  $(1,23\cdot10^{-4} \text{ mol})$  acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Poté byl výsledný žlutý produkt **11B** zfiltrován a 2x promyt acetonem. Výtěžnost: 90 %. Anal.: Vypočítané pro RhC<sub>31</sub>H<sub>36</sub>N<sub>10</sub>O<sub>3</sub>Cl<sub>2</sub>Br<sub>2</sub> (M<sub>r</sub> = 928,8) 40,1 % C, 3,7 % H, 15,1 % N; nalezeno 40,5 % C, 3,9 % H, 15,5 % N. Ramanův posun (cm<sup>-1</sup>): 3062s; 2922s; 1595m; 1562m; 1426m; 1326s; 1203w; 1166w; 1071w; 998s; 744w; 667w; 468w.

#### Příprava [Rh(4-CH<sub>3</sub>Bap)<sub>2</sub>(acac)Cl<sub>2</sub>]·0,5EtOH (**12B**)

0,1 g (4,78·10<sup>-4</sup> mol) RhCl<sub>3</sub>·*x*H<sub>2</sub>O bylo rozpuštěno v 51,9 ml ethanolu. K tomuto roztoku bylo přidáno 0,23 g (9,56·10<sup>-4</sup> mol) 6-(4-metylbenzylamino)purinu v pevném stavu. Tato směs reagovala 30 minut pod zpětným chladičem. Vzniklý žlutý produkt [Rh(4-CH<sub>3</sub>*Bap*)(4-CH<sub>3</sub>*Bap*H)Cl<sub>4</sub>]·H<sub>2</sub>O (**12A**) byl zfiltrován a promyt acetonem. Výtěžnost: 57 %. Anal.: Vypočítané pro RhC<sub>26</sub>H<sub>32</sub>N<sub>10</sub>O<sub>2</sub>Cl<sub>4</sub> (M<sub>r</sub> = 742,7) 42,1 % C, 4,0 % H, 18,9 % N; nalezeno 42,3 % C, 4,3 % H, 18,9 % N. IR (KBr, cm<sup>-1</sup>): 3240; 3141; 3074; 3021; 2916; 1631; 1538; 1515; 1450; 1346; 1238; 1119; 1020; 918; 803; 750; 636. IR (ATRd, cm<sup>-1</sup>): 574; 564; 555; 529; 511; 473; 447; 433; 425; 374; 331; 321; 308; 254.

0,1 g  $(1,35\cdot10^{-4} \text{ mol})$  látky **12A** bylo rozpuštěno v 18 ml ethanolu. Poté bylo do roztoku přidáno 0,018 ml  $(1,35\cdot10^{-4} \text{ mol})$  trietylaminu a 0,013 ml  $(1,35\cdot10^{-4} \text{ mol})$  acetylacetonu. Takto připravený roztok reagoval 70 minut pod zpětným chladičem. Výsledný

žlutý produkt **12B** byl zfiltrován a promyt acetonem. Výtěžnost: 48 %. Anal.: Vypočítané pro RhC<sub>32</sub>H<sub>39</sub>N<sub>10</sub>O<sub>2</sub>Cl<sub>2</sub> ( $M_r = 776,1$ ) 49,5 % C, 5,0 % H, 18,0 % N; nalezeno 49,5 % C, 5,4 % H, 18,2 % N. IR (KBr, cm<sup>-1</sup>): 3297m; 3225m; 3141m; 3075m; 2918m; 1605vs; 1555s; 1515s; 1469m; 1428m; 1348m; 1276w; 1139w; 1020m; 937w; 791w; 646w. IR (ATRd, cm<sup>-1</sup>): 562m; 527m; 512m; 469s; 448m; 426m; 363m; 325m; 242m.

# 4.4 Metody studia připravených látek

Obsah uhlíku, dusíku a vodíku byl stanoven pomocí prvkového analyzátoru Fisons Instruments EA-1108. Infračervená spektra byla měřená na FT-IR spektrometru ThermoNicolet Nexus 670. Střední oblast spektra (mid-IR) v rozsahu vlnočtů 4000 až 400 cm<sup>-1</sup> byla změřena metodou KBr tablety. Daleká oblast spektra (far-IR) v rozsahu vlnočtů 600 až 100 cm<sup>-1</sup> pomocí ATR nástavce s diamantovým krystalem. Ramanova spektra byla změřena za pomoci FT-Ramanova spektrometru Nicolet NXR 9650 s NXE Genie germaniovým detektorem chlazeným dusíkem v rozsahu vlnočtu 4000–200 cm<sup>-1</sup>. Elektronová spektra byla změřena v rozsahu vlnových délek 200 až 1000 nm (40 000 až 11 000 cm<sup>-1</sup>) na UV-VIS spektrometru Perkin-Elmer Lambda 40. Vodivost roztoků komplexů v *DMF* s koncentraci 10<sup>-3</sup> M byla změřená konduktometrem Cond 340i/SET (WTW, SRN) při teplotě 25°C. Objemová susceptibilita vzorků při pokojové teplotě byla měřená na magnetováhách MSB-AUTO od Sherwood Scientific. Termogravimetrická (TG) a diferenciální termická analýza (DTA) byla provedena na přístroji TG/DTA Exstar 6200 od Seiko Instruments. Navážky vzorku činily 11 – 14 g. Měření se prováděla v keramických kelímcích při teplotním gradientu 1,5 °C/min od 25°C do 650°C.

# 5 VÝSLEDKY A DISKUZE

#### 5.1 Syntézy komplexů ruthenia

Komplexní sloučeniny ruthenia(II) byly připraveny dvoukrokovou syntézou. Syntézy jsou navrhnuty podle upraveného návodu dle Dovletoglouva [72]. V prvním kroku spolu reagovaly RuCl<sub>3</sub>·xH<sub>2</sub>O a deriváty 6-benzylaminopurinu za vzniku série látek **A**. Takto připravené prekurzory reagovaly v druhém kroku syntézy s acetylacetonátem za vzniku konečných látek série **B**. Pracovalo se v ethanolickém prostředí při teplotě 120°C. Molární poměry reagujícího ruthenia a derivátu 6-benzylaminopurinu byly 1:1 nebo 1:2. Dále se měnila doba reakce prvního kroku syntézy (0,5 nebo 1 hodina). V závislosti na molárním poměru reagujících látek a čase trvání syntézy se na centrální atom ruthenia nakoordinovaly jeden nebo dva deriváty 6-benzylaminopurinu. Podařilo se připravit tři strukturní typy komplexních sloučenin ruthenia. Strukturní typy obecného složení [Ru(R-*Bap*)(*acac*)Cl<sub>2</sub>(X)] (**1B–3B**) a [Ru(R-*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>] (**4B–7B**) se podařilo připravit opakovaně. Komplex **8B** byl připraven pouze jednou. U látek série **4** pravděpodobně došlo k odštěpení substituentu z benzenového jádra 6-benzylaminopurinu, co potvrdila elementární CHN analýza.

#### 5.1.2 Charakteristika komplexů ruthenia(II)

Byly připraveny komplexy ruthenia v oxidačním čísle +II: [Ru(2- $ClBapH_2$ ) $Cl_4H_2O$ ]·0,5EtOH (**1A**),  $[Ru(2-ClBapH)(acac)Cl_2(H_2O)] \cdot H_2O$ (1B),[Ru(3- $ClBapH_2)Cl_4EtOH] \cdot H_2O$ (**2A**), [Ru(3-ClBapH)(acac)Cl<sub>2</sub>(EtOH)] (2B),[Ru(2- $OCH_3BapH_2)Cl_4EtOH] \cdot H_2O(3A), [Ru(2-OCH_3BapH)(acac)Cl_2(EtOH)](3B),$  $[Ru(BapH)_2]$  $Cl_{3}H_{2}O]$  (4A), [Ru(*Bap*)(*Bap*H)(*acac*) $Cl_{2}$ ]·2H<sub>2</sub>O (4B),  $[Ru(3-ClBapH)_2Cl_4]\cdot 3H_2O$ (5A),  $[Ru(3-ClBap)(3-ClBapH)(acac)Cl_2]\cdot 2H_2O$  (5B),  $[Ru(4-OCH_3BapH)_2Cl_4]\cdot 3H_2O\cdot EtOH$  (6A),  $[Ru(4-OCH_3Bap)(4-OCH_3BapH)(acac)Cl_2]$ ·2H<sub>2</sub>O (**6B**),  $[Ru(3,4-diOCH_3BapH)_2Cl_4]$ ·5H<sub>2</sub>O (7A),  $[Ru(3,4-diOCH_3Bap)(3,4-diOCH_3BapH)(acac)Cl_2]\cdot 2H_2O(7B)$ ,  $[Ru(3-OHBapH)_2Cl_4]$  $\cdot 2H_2O$  (8) a [Ru(3-OHBap)<sub>2</sub>(3-OHBapH)Cl<sub>3</sub>] (8B) (Tab. č. 4). Připraveny byly postupem uvedeným v kapitole 4.2. K syntézám bylo použito sedm organických derivátů 6-benzylaminopurinu, které byly připraveny na našem pracovišti. Tyto organické deriváty jsou uvedeny v kapitole 4.1. s příslušnou zkratkou, pod kterou vystupují v této práci.

42

| TZ III     | D     | м     | Vypočteno/nalezeno (%) |         |           |  |
|------------|-------|-------|------------------------|---------|-----------|--|
| Komplex    | Barva | Mr    | С                      | Η       | Ν         |  |
| 1A         | černá | 543,9 | 28,7/28,3              | 3,0/3,2 | 12,9/13,6 |  |
| 1B         | černá | 585,9 | 34,8/34,2              | 3,8/3,7 | 12,0/14,2 |  |
| 2A         | hnědá | 565,9 | 29,7/29,7              | 3,4/3,3 | 12,4/13,3 |  |
| 2B         | hnědá | 578,1 | 39,3/39,0              | 4,2/3,8 | 12,3/13,5 |  |
| 3A         | hnědá | 561,9 | 33,1/33,4              | 3,7/3,7 | 12,9/14,4 |  |
| 3B         | hnědá | 550,1 | 41,6/41,8              | 4,4/4,7 | 14,2/13,5 |  |
| <b>4</b> A | černá | 676,5 | 42,6/42,1              | 3,6/3,8 | 20,8/21,6 |  |
| <b>4</b> B | černá | 759,2 | 45,8/45,1              | 4,7/4,9 | 18,4/18,1 |  |
| 5A         | hnědá | 816,9 | 35,3/35,8              | 3,4/3,4 | 17,1/17,0 |  |
| 5B         | hnědá | 828,1 | 42,1/42,6              | 4,1/4,1 | 16,9/16,7 |  |
| 6A         | hnědá | 852,9 | 39,4/39,9              | 4,7/4,1 | 16,4/16,4 |  |
| 6B         | hnědá | 818,1 | 45,5/45,7              | 4,9/4,7 | 17,1/16,6 |  |
| 7A         | černá | 904,9 | 37,1/36,6              | 4,6/4,3 | 15,5/14,9 |  |
| 7B         | černá | 898,1 | 44,1/43,9              | 5,1/5,0 | 15,6/14,8 |  |
| 8A         | černá | 766,9 | 37,7/38,1              | 3,7/3,8 | 18,2/18,0 |  |
| 8B         | šedá  | 939,4 | 46,0/46,0              | 3,9/4,4 | 22,3/21,9 |  |

**Tabulka č. 4** Základní charakteristika připravených komplexů ruthenia (barva, molární hmotnost a CHN analýza)

Složení všech připravených komplexů bylo stanoveno nejprve pomocí elementární CHN analýzy a výsledky jsou shrnuty v **tabulce č. 4**. V případě stanovení zastoupení jednotlivých prvků pomoci CHN analýzy bylo procentuální zastoupení uhlíku a vodíku ve velmi dobré schodě s největší odchylkou 0,6 % u komplexu **1B** pro uhlík a u komplexu **6A** pro vodík. V případě dusíku byly pozorovány u některých komplexů větší rozdíly. Jedná se o komplexy **1B**, **2A**, **3A** a **4A**. Tyto rozdíly mohou být způsobeny vlastnostmi těchto látek, jelikož ve všech případech byla nalezena hodnota obsahu dusíku vyšší než vypočtena.

#### 5.1.3 Infračervená spektroskopie

Z naměřených spekter připravených sloučenin ve střední oblasti (4000 až 500 cm<sup>-1</sup>) můžeme usoudit na přítomnost organických ligandů v komplexech ruthenia. Ve spektru se projevuje charakteristický pás vibrace v(O-H), která se projevuje v rozmezí hodnot 3483 až 3390 cm<sup>-1</sup>. Vibrace vazby v(N-H)<sub>asym</sub> se nachází v rozmezí 3288 až 3209 cm<sup>-1</sup>. Dále následuje vibrace v(N-H)<sub>sym</sub>, která se pohybuje v rozmezí hodnot 3130 až 3155 cm<sup>-1</sup> následovaná vibracemi v(C-H)<sub>ar</sub>, které se pohybují v rozmezí 3076 až 3066 cm<sup>-1</sup>. Maximum vibrace purinového cyklu v(C=N) se pohybuje v rozmezí hodnot 1653 až 1614 cm<sup>-1</sup> (Obr. č. 32). Tato vibrace je důležitým ukazatelem přítomnosti organického ligandu v molekule, která je koordinována na centrální atom. Oproti volnému ligandu došlo k posunu maxima vibrace o 5 až 20 cm<sup>-1</sup>, což naznačuje, že pravděpodobně došlo ke změně heterocyklického kruhu v důsledku koordinace dusíkatého atomu na centrální atom ruthenia (Obr. č. 33). U komplexních sloučenin, které obsahují acetylacetonát lze pozorovat v infračerveném spektru charakteristickou vibraci v(C=O) s maximem pohybujícím se v rozmezí hodnot 1555 až 1553 cm<sup>-1</sup>. Vibrace v(C=C)<sub>ar</sub> má své maximum v rozmezí 1473 až 1436 cm<sup>-1</sup> [73]. Vybrané charakteristické vibrace střední oblasti infračerveného spektra jsou uvedeny v tabulce č. 5.

Ze spekter ve vzdálené oblasti (600 až 200 cm<sup>-1</sup>) můžeme charakterizovat koordinační sféru centrálního atomu. Ve spektrech látek **1B-7B**, tedy obsahující molekulu *acac*, se projevuje středně intenzivní pás vibrace v(Ru–O) v rozmezí 538 až 523 cm<sup>-1</sup>. Tato vibrace patří acetylacetonátu, který se na ruthenium koordinuje přes dva kyslíkové atomy. Důležitým ukazatelem koordinace benzylaminopurinu na centrální atom ruthenia je vibrace v(Ru–N), která se projevuje v oblastech od 469 do 415 cm<sup>-1</sup>, avšak vykazuje spíše slabou intenzitu. Ve všech komplexech se projevuje výrazný pík patřící vibraci v(Ru–Cl) v rozmezí hodnot 333 až 310 cm<sup>-1</sup> [74, 75] (**Obr. č. 34**). Vybrané charakteristické vibrace vzdálené oblasti infračerveného spektra jsou uvedeny v **tabulce č. 6**.

Na základě přítomnosti charakteristických vibrací organického ligandu ve střední oblasti IR spektra a přítomnosti charakteristické vibrace v(Ru–N) a vibrace v(Ru–O) ve vzdálené oblasti IR spektra byly navrženy předpokládané struktury komplexních sloučenin ruthenia (**Obr. č. 35**).

| Komplex    | v(O-H) | v(N-H) <sub>asym</sub> | v(N-H) <sub>sym</sub> | v(C-H) ar | v(C=N) | v(C=O) | v(C=C) <sub>ar</sub> |
|------------|--------|------------------------|-----------------------|-----------|--------|--------|----------------------|
| 1A         | 3421m  | 3251m,<br>3209m        | 3145m                 | 3066m     | 1631vs | _      | 1443m                |
| 1B         | 3408m  | _                      | _                     | 3076m     | 1623vs | 1555m  | 1443m                |
| 2A         | 3448m  | 3205m                  | 3141m                 | 3059m     | 1631vs | _      | 1473m                |
| 2B         | _      | 3257m                  | 3154m                 | 3059m     | 1616vs | 1554s  | 1471m                |
| 3A         | 3470m  | 3262m,<br>3208m        | 3142m                 | 3062m     | 1623vs | _      | 1436m                |
| 3B         | 3408m  | 3286m,<br>3222m        | 3139m                 | 3066m     | 1613vs | 1553s  | 1462m                |
| <b>4</b> A | 3452m  | 3252m                  | 3130m                 | 3052m     | 1634vs | _      | 1458m                |
| 5A         | 3470w  | 3202m                  | 3139m                 | 3063m     | 1633vs | _      | 1472m                |
| 5B         | 3474w  | 3271m,<br>3208m        | 3151m                 | 3060m     | 1616vs | 1554s  | 1470m                |
| 6A         | 3439w  | 3211m                  | 3133m                 | 3059m     | 1627vs | _      | 1457m                |
| 6B         | 3399m  | 3275m,<br>3238m        | 3144m                 | 3059m     | 1613vs | 1554s  | 1462m                |
| 7A         | 3483w  | 3209m                  | 3140m                 | 3070m     | 1629vs | —      | 1450m                |
| 7B         | 3452w  | 3288m                  | 3155m                 | 3067m     | 1614vs | 1555s  | 1465m                |
| 8A         | 3403m  | 3269m                  | _                     | 3076m     | 1630s  | _      | 1457m                |
| 8B         | 3390m  | 3271m                  | _                     | 3076m     | 1627s  | _      | 1459m                |

Tabulka č. 5 Vybrané charakteristické vibrace pro střední oblast IR spektra

vs-velmi silný, s-silný, m-střední, w-slabý

| Komplex    | v(Ru–O) | v(Ru–N)      | v(Ru-Cl) |
|------------|---------|--------------|----------|
| 1A         | _       | 464w, 434w   | 319s     |
| 1B         | 524m    | 457s, 439m   | 310m     |
| 2A         | _       | 448w, 414w   | 321s     |
| 2B         | 536m    | 455s         | 331m     |
| 3A         | _       | 456m         | 318s     |
| 3B         | 529m    | 453s, 424m   | 324w     |
| <b>4</b> A |         | 468m         | 329s     |
| <b>4</b> B | 523m    | 454s, 425m   | 333m     |
| 5A         | _       | 449m, 412m   | 318s     |
| 5B         | 530m    | 447s, 415m   | 332w     |
| 6A         | _       | 452m, 415m   | 317s     |
| 6B         | 534s    | 451s, 424m   | 325m     |
| 7A         | _       | 462m, 430m   | 313s     |
| 7B         | 538s    | 446s, 420s   | 324w     |
| 8A         | _       | 469m, 439m   | 328s     |
| 8B         | _       | 469vs, 440vs | 392w     |

# Tabulka č. 6 Vybrané charakteristické vibrace pro vzdálenou oblast IR spectra

s-silný, m-střední, w-slabý



**Obrázek č. 32** IR spektrum střední oblasti komplexu[Ru(3-Cl*Bap*H<sub>2</sub>)<sub>2</sub>Cl<sub>4</sub>]·3H<sub>2</sub>O (**5**A) znázorňující charakteristické vibrace



**Obrázek č. 33** IR spektrum střední oblasti komplexu [Ru(3-Cl*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·3H<sub>2</sub>O (**5A**) a volného ligandu 3-Cl*Bap* 



**Obrázek č. 34** IR spektrum vzdálené oblasti (600–200 cm<sup>-1</sup>) komplexů [Ru(3-Cl*Bap*H<sub>2</sub>)<sub>2</sub>Cl<sub>4</sub>]·3H<sub>2</sub>O (**5A**) a [Ru(3,4-diOCH<sub>3</sub>*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·5H<sub>2</sub>O (**7A**)







#### 5.1.4 Vodivostní měření

U vybraných komplexů ze skupiny s *acac* jako ligandem i bez *O*-donorového ligandu byla změřena vodivost těchto komplexů v roztoku *DMF* s koncentraci 10<sup>-3</sup> M. Výsledky jsou zahrnuty v **tabulce č. 7**. Hodnoty konduktivity  $\lambda_M$  se pohybují v rozmezí 0,8 až 21,9 S.cm<sup>2</sup>.mol<sup>-1</sup>. Tyto hodnoty řadí komplexy mezi neelektrolyty [76]. Hodnoty byly korigovány vůči rozpouštědlu, kterým byl *DMF* s hodnotou vodivosti 2 S.cm<sup>2</sup>.mol<sup>-1</sup>. Toto zjištění odpovídá navrhnuté struktuře obecného složení [Ru(R-*Bap*)(*acac*)Cl<sub>2</sub>(X)], [Ru(R-*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>] nebo [Ru(R-*Bap*)<sub>3</sub>Cl<sub>3</sub>].

**Tabulka č. 7** Hodnoty vodivosti  $\lambda_M$  (S.cm<sup>2</sup>.mol<sup>-1</sup>) a efektivního magnetického momentu  $\mu_{eff}$  pro vybrané komplexy

| Komplex | $\lambda_{\mathrm{M}}$ | $\mu_{eff} \left( \mu_B \right)$ | Komplex   | $\lambda_{\mathrm{M}}$ | $\mu_{eff}\left(\mu_B ight)$ |
|---------|------------------------|----------------------------------|-----------|------------------------|------------------------------|
| 1A      | 15,5                   | _                                | <b>4A</b> | 17,5                   | _                            |
| 1B      | 4,1                    | 0,4                              | 4B        | 3,5                    | 0,2                          |
| 2A      | 11,8                   | _                                | 8A        | 21,9                   | 0                            |
| 2B      | 0,8                    | 0,1                              | 8B        | 3,7                    | 5,1                          |

#### 5.1.5 Magnetické vlastnosti

U komplexů ruthenia můžeme předpokládat s největší pravděpodobností existenci centrálního atomu ve dvou oxidačních stavech. Buď v oxidačním stavu +II nebo +III. V případě, že se jedná o ruthenium(II), jsou komplexy nízkospinové  $d^6$  s hodnotou magnetického efektivního momentu 0  $\mu_B$ . Pokud se jedná o nízkospinové d<sup>5</sup> komplexy ruthenité, byla by hodnota efektivního magnetického momentu přibližně 1,7 µB. Na základě hodnot uvedených v tabulce č. 7 jsou připravené komplexy nízkospinové  $d^{6}$  ruthenaté. Výjimku tvoří ruthenatý komplex **8B**, který je pravděpodobně vysokospinový se čtyřmi nepárovými elektrony.

Magnetické vlastnosti vybraných komplexů se měřily při pokojové teplotě 298,15 K. Hodnoty µ<sub>eff</sub> se počítaly pomocí vzorce:

$$\mu_{\rm eff} = 2,828 \sqrt{\chi_{\rm c.g.s.} \cdot M \cdot T} ,$$

kde  $\chi_{c.g.s.}$  je objemová susceptibilita, M je molární hmotnost komplexu a T je termodynamická teplota.

#### 5.1.6 Elektronová spektroskopie

Roztoková elektronová spektra byla měřena v roztoku *DMF* s koncentrací 0,001 M nebo v metanolu s koncentrací 0,0001 M. U vybraných komplexů byla změřena spektra v pevné fázi v Nujolu. Naměřené hodnoty jsou uvedené v **tabulce č. 8**. Komplexy v roztoku po několika dnech měnily svou barvu. Tento jev poukazuje na možný rozklad komplexů v příslušném rozpouštědle.

Oktaedrické nízkospinové d<sup>6</sup> komplexy ruthenia(II) mají základní stav  ${}^{1}A_{1}$ , který odpovídá elektronové konfiguraci  $t_{2g}^{5}$ . Mnoho d-d přechodů můžeme očekávat ze základního stavu  ${}^{1}A_{1}$ .

Z naměřených spekter lze odečíst pro sérii komplexů **A** (**Obr. č. 36**) jeden intenzivní pás při 500 nm odpovídající přechodu  ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$  a méně výrazný pás při 570 nm odpovídající pravdepodobně přechodu  ${}^{1}A_{1} \rightarrow {}^{3}T_{1}$ . V případě látky **6A** (**Obr. č. 37**) se podařilo v pevné fázi zachytit také absorpční pás odpovídající d-d přechodu  ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ . U komplexů série **B** se pozoruje pouze jeden absorpční pás při 560 nm odpovídající přechodu  ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ . Posun tohoto přechodu je také důkazem změny nejbližší koordinační sféry atomu Ru(II). Všechny přechody odpovídají hodnotami molárních absorpčních koeficientů d-d přechodům (**Tab. č. 8**).

V roztokových spektrech komplexů **5A**, **6A** a **7A** v methanolu s koncentrací  $1.10^{-4}$  M můžeme pozorovat také charge-transfer (hodnota extinčního koeficientu je od 2980-5800 mol<sup>-1</sup>.cm<sup>2</sup>) při hodnotě vlnové délky kolem 290 nm. Pravděpodobně se jedná o přechod z centrálního atomu ruthenia(II) na ligand MLCT (metal ligand charge transfer).

Na **obrázku č. 37** je znázorněno spektrum komplexu **6A** v roztoku methanolu a pevné fázi (Nujol). V roztoku methanolu i pevné fázi se nachází d-d přechod při stejné hodnotě 500 nm, avšak druhy d-d přechod při asi 350 nm není v roztokovém spektru pozorován, co může být důsledek mírné změny koordinačního okolí v roztoku ve srovnání s tuhou fázi [77].

| Komplex    | Maximum absorbance (nm)/Molární absorpční koeficient (mol <sup>-1</sup> .cm <sup>2</sup> ) |           |           |  |  |
|------------|--------------------------------------------------------------------------------------------|-----------|-----------|--|--|
| 1A         | _                                                                                          | 507 (730) | _         |  |  |
| 1B         | _                                                                                          | _         | 565 (480) |  |  |
| 2A         | _                                                                                          | 504 (750) | _         |  |  |
| 2B         | _                                                                                          | _         | 561 (340) |  |  |
| <b>4</b> A | _                                                                                          | 504 (780) | _         |  |  |
| 4B         | _                                                                                          | _         | 558 (360) |  |  |
| 5A         | 298 (5800)                                                                                 | 496 (380) | 569 (260) |  |  |
| 6A         | 292 (2980)                                                                                 | 497 (390) | 562 (210) |  |  |
| 7A         | 291 (3950)                                                                                 | 486 (350) | 574 (190) |  |  |
| 8A         | _                                                                                          | 502 (680) | _         |  |  |
| 8B         | _                                                                                          | _         | 558 (920) |  |  |

# Tabulka č. 8 Hodnoty absorpčních maxim pro komplexy série 1-8



Obrázek č. 36 Elektronová spektra DMF roztoků komplexů ruthenia série A



**Obrázek č. 37** Elektronové spektrum v metanolu a pevné fázi komplexu [Ru(4-OCH<sub>3</sub>*Bap*H)<sub>2</sub>Cl<sub>4</sub>]·3H<sub>2</sub>O·EtOH (**6A**)

# 5.1.7 Termická analýza

TG a DTA metody byly provedeny u vybraných komplexů ruthenia. Jednotlivé kroky tepelného rozkladu a hmotnostní úbytky jsou uvedeny v **tabulce č. 9**. Průběhy termických rozkladů potvrdily, že se jedná o hydratované komplexy (**Obr. č. 38**). Uvedené rozklady jsou podrobně popsané v diskuzi. Produkt termického rozkladu nebyl blíže studován, tedy nebyla meřena prášková rtg-difrakce.

| Látha | Odštěpení H <sub>2</sub> O |                               |                     | Celkem  |                                    |                    |
|-------|----------------------------|-------------------------------|---------------------|---------|------------------------------------|--------------------|
| Гагка | T (°C)                     | $\Delta m_1$ (%) <sup>a</sup> | rozpouštědlo        | T (°C)  | $\Delta m_{celk}$ (%) <sup>a</sup> | R (%) <sup>b</sup> |
| 4B    | 26-85                      | 4,7/4,6                       | 2H <sub>2</sub> O   | 121-434 | 82,1/82,5                          | 17,9               |
| 5A    | 27-141                     | 3,7/3,4                       | 1,5H <sub>2</sub> O | 193-465 | 83,5/83,7                          | 16,5               |
| 8A    | 27-117                     | 3,6/4,1                       | 2H <sub>2</sub> O   | 154-496 | 83,2/82,7                          | 16,7               |

Tabulka č. 9 Hmotnostní úbytky a jim odpovídajíci molekuly pro komplexy 4B, 5A a 8A

a) nalezeno/vypočteno, <sup>b)</sup> R-hmotnost finálního produktu



Obrázek č. 38 TG a DTA křivky komplexu [Ru(3-OHBapH)<sub>2</sub>Cl<sub>4</sub>]·2H<sub>2</sub>O (8A)

U komplexu **4B** můžeme pozorovat v rozmezí teplot 26–85°C úbytek hmotnosti v důsledku ztráty dvou molekul vody. Tento proces je doprovázen slabým *endo*-efektem při teplotě 68°C. K dekompozici komplexu dochází od teploty 85°C a pokračuje do 434°C bez vytvoření termicky stabilních meziproduktů. Během dekompozice vzorku jsou pozorovány dva *exo*-efekty. První *exo*-efekt má své maximum při teplotě 304°C, druhý *exo*-efekt má své maximum při teplotě 329°C. Tyto *exo*-efekty charakterizují jednak rozklad organické části komplexní sloučeniny, a také uvolnění chloridových iontů. Při dosažení finální teploty 500°C dosahuje hmotnost vzorku 17,9 % hmotnosti původní. Finálním produktem termické analýzy je RuO<sub>2</sub>, tomu odpovídá dobrá shoda s hodnotou teoretického množství 17,5 %.

U komplexu **5A** můžeme pozorovat v rozmezí teplot 27-141°C úbytek hmotnosti v důsledku ztráty 1,5 molekuly vody. Tento proces je doprovázen slabým *endo*-efektem při teplotě 56°C. Z elementární analýzy byl určen vyšší počet molekul vody avšak tento rozdíl může být způsoben postupnou dehydratací vzorky na vzduchu v důsledku delší časové prodlevy mezi analýzami. K dekompozici komplexu dochází od teploty 193°C a pokračuje do 465°C bez vytvoření termicky stabilních meziproduktů. Během dekompozice vzorku je pozorován jeden *exo*-efekt. Tento *exo*-efekt má své maximum při teplotě 342°C. Tento *exo*-efekt charakterizuje jednak rozklad organické části komplexní sloučeniny, a také uvolnění chloridových iontů. Při dosažení finální teploty 500°C dosahuje hmotnost vzorku 16,5 % hmotnosti původní. Finálním produktem termické analýzy je pravděpodobně RuO<sub>2</sub>, tomu odpovídá dobrá shoda s hodnotou teoretického množství 16,3 %.

U komplexu **8A** můžeme pozorovat v rozmezí teplot 27–117°C úbytek hmotnosti v důsledku ztráty dvou molekul vody (**Obr. č. 38**). Tento proces je doprovázen slabým *endo*-efektem při teplotě 62°C. K dekompozici komplexu dochází od teploty 154°C a pokračuje do 496°C bez vytvoření termicky stabilních meziproduktů. Během dekompozice vzorku jsou pozorovány dva *exo*-efekty. První *exo*-efekt má své maximum při teplotě 270°C, druhý *exo*-efekt má své maximum při teplotě 375°C. Tyto *exo*-efekty charakterizují jednak rozklad organické části komplexní sloučeniny, a také uvolnění chloridových iontů. Při dosažení finální teploty 500°C dosahuje hmotnost vzorku 16,7 % hmotnosti původní. Finálním produktem termické analýzy je RuO<sub>2</sub>, tomu odpovídá hodnota teoretického množství 17,3 %.

## 5.2 Syntézy komplexů rhodia

Komplexní sloučeniny rhodia(III) byly připraveny dvoukrokovou syntézou. Syntézy jsou navrhnuty podle upraveného návodu dle Dovletoglouva [72]. V prvním kroku spolu reagovaly RhCl<sub>3</sub>·xH<sub>2</sub>O s deriváty 6-benzylaminopurinu za vzniku série látek **A**. Takto připravené prekurzory reagovaly v druhém kroku syntézy s acetylacetonátem za vzniku konečných látek série **B**. Pracovalo se v ethanolickém prostředí při teplotě 120°C. Molární poměry reagujícího rhodia a derivátu 6-benzylaminopurinu byly 1:1 nebo 1:2. Dále se měnila doba reakce prvního kroku syntézy (0,5 nebo 1 hodina). V závislosti na molárním poměru reagujících látek a čase trvání syntézy se na centrální atom rhodia nakoordinovaly jeden nebo dva deriváty 6-benzylaminopurinu. Podařilo se připravit dva strukturní typy obecného složení [Rh(R-*Bap*)(*acac*)Cl<sub>2</sub>(H<sub>2</sub>O)] (**9B**) a [Rh(R-*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>] (**10B-12B**). U látek série **9** pravděpodobně došlo k odštěpení substituentu z benzénového jádra 6-benzylaminopurinu, co potvrdila elementární CHN analýza.

### 5.2.1 Charakteristika komplexů rhodia(III)

sloučeniny Byly připraveny komplexní rhodia v oxidačním čísle +III:  $[Rh(Bap)Cl_3EtOH(H_2O)]$ ·H<sub>2</sub>O (**9A**),  $[Rh(Bap)(acac)Cl_2(H_2O)]$  (**9B**),  $[Rh(3,4-di OCH_3Bap)]$  $(3,4-diOCH_3BapH)Cl_4]$ ·5H<sub>2</sub>O (10A), [Rh(3,4-diOCH\_3Bap)<sub>2</sub>(acac)Cl\_2]·1,5 EtOH·H<sub>2</sub>O (10B),  $[Rh(3-BrBap)(3-BrBapH)Cl_4]$ ·H<sub>2</sub>O (11A),  $[Rh(3-BrBap)_2(acac)Cl_2]$ ·EtOH (11B), [Rh(4-CH<sub>3</sub>Bap) (4-CH<sub>3</sub>BapH)Cl<sub>4</sub>]·H<sub>2</sub>O (**12A**) a  $[Rh(4-CH_3Bap)_2(acac)Cl_2]\cdot 0.5EtOH$  (**12B**) (Tab. č. 10). Zmíněné komplexní sloučeniny rhodia byly připraveny postupem uvedeným v kapitole 4.3. K syntézám bylo použito 4 organických derivátů 6-benzylaminopurinu, které byly připraveny na našem pracovišti. Tyto organické deriváty jsou uvedeny v kapitole 4.1. s příslušnou zkratkou, pod kterou vystupují v této práci.

| Komploy | Domio         | М     | Vypočteno/nalezeno (% |         |           |
|---------|---------------|-------|-----------------------|---------|-----------|
| Komplex | Komplex Barva | lvir  | С                     | Н       | Ν         |
| 9A      | žlutá         | 516,8 | 32,6/32,7             | 4,2/3,7 | 13,6/14,1 |
| 9B      | žlutá         | 517,5 | 39,6/40,1             | 4,2/3,9 | 13,6/13,8 |
| 10A     | žlutá         | 907,1 | 37,0/36,5             | 4,8/4,4 | 15,4/14,9 |
| 10B     | žlutá         | 933,2 | 46,3/46,2             | 5,7/5,4 | 15,0/14,9 |
| 11A     | žlutá         | 871,6 | 33,0/33,1             | 2,8/3,0 | 16,0/15,8 |
| 11B     | žlutá         | 928,8 | 40,1/40,5             | 3,7/3,9 | 15,1/15,5 |
| 12A     | žlutá         | 742,7 | 42,1/42,3             | 4,0/4,3 | 18,9/18,9 |
| 12B     | žlutá         | 776,1 | 49,5/49,5             | 5,0/5,4 | 18,0/18,2 |

**Tabulka č. 10** Základní charakteristika připravených komplexů rhodia (barva, molárníhmotnost a CHN analýza)

V případě stanovení struktury pomoci CHN analýzy (**Tab. č. 10**) bylo procentuální zastoupení uhlíku, vodíku a dusíku ve velmi dobré schodě s největší odchylkou 0,5 % pro všechny tři stanovované prvky. Maximální odchylka pro uhlík je u komplexních sloučenin **9B** a **10A**. Maximální odchylka pro vodík je u komplexní sloučeniny **9A**. Maximální odchylka pro dusík je u komplexních sloučenin **9A**.

### 5.2.2 Infračervená spektroskopie

Z naměřených spekter připravených sloučenin ve střední oblasti (4000 až 500 cm<sup>-1</sup>) můžeme usoudit na přítomnost organických ligandů v komplexech rhodia. Ve spektru se projevuje charakteristický pás vibrace v(O-H), která se projevuje v rozmezí hodnot 3496 až 3466 cm<sup>-1</sup>. Vibrace vazby v(N-H)<sub>asym</sub> se nachází v rozmezí 3297 až 3212 cm<sup>-1</sup>. Dále následuje vibrace v(N-H)<sub>sym</sub>, která se pohybuje v rozmezí hodnot 3160 až 3141 cm<sup>-1</sup> následovaná vibracemi v(C-H)<sub>ar</sub>, které se pohybují v rozmezí 3078 až 3065 cm<sup>-1</sup>. Maximum vibrace purinového cyklu v(C=N) se pohybuje v rozmezí hodnot 1628 až 1608 cm<sup>-1</sup>. Tato vibrace je důležitým ukazatelem přítomnosti organického ligandu v molekule, který je koordinován na centrální atom. Oproti volnému ligandu došlo k posunu maxima vibrace o 6 až 17 cm<sup>-1</sup>, což naznačuje, že pravděpodobně došlo ke změně heterocyklického kruhu v důsledku koordinace dusíkovehé atomu na centrálni atom ruthenia (Obr. č. 40). U komplexních sloučenin, které obsahují acetylacetonát lze pozorovat v infračerveném spektru charakteristickou vibraci v(C=O) s maximem pohybujícím se v rozmezí hodnot 1555 cm<sup>-1</sup>. Vibrace  $v(C=C)_{ar}$  má své maxima v rozmezí 1469 až 1442 cm<sup>-1</sup> [73] (Obr. č. 39). Vybrané charakteristické vibrace střední oblasti infračerveného spektra jsou uvedeny v tabulce č. 11.

Ze spekter ve vzdálené oblasti (600 až 200 cm<sup>-1</sup>) můžeme charakterizovat koordinační sféru centrálního atomu. Ve spektrech následných syntéz se projevuje středně intenzivní pás vibrace v(Rh–O) v rozmezí 542 až 526 cm<sup>-1</sup>. Tato vibrace patří acetylacetonátu, který se na rhodium koordinuje přes dva kyslíkové atomy. Důležitým ukazatelem koordinace benzylaminopurinu na centrální atom rhodia je vibrace v(Rh–N), která se projevuje v oblastech od 469 do 429 cm<sup>-1</sup>. Ve všech komplexech se projevuje výrazný pík patřící vibraci v(Rh–Cl) v rozmezí hodnot 328 až 319 cm<sup>-1</sup> [78] (**Obr. č. 41**). Vybrané charakteristické vibrace vzdálené oblasti infračerveného spektra jsou uvedeny v **tabulce č. 12**.

Na základě přítomnosti charakteristických vibrací organického ligandu ve střední oblasti IR spektra a přítomnosti charakteristické vibrace v(Rh–N) a vibrace v(Rh–O) ve vzdálené oblasti IR spektra byly navrženy předpokládané struktury komplexních sloučenin rhodia (**Obr. č. 42**).

| Komplex | v(O-H) | v(N-H) <sub>asym</sub> | v(N-H) <sub>sym</sub> | v(C-H) <sub>ar</sub> | v(C=N) | v(C=O) | v(C=C) <sub>ar</sub> |
|---------|--------|------------------------|-----------------------|----------------------|--------|--------|----------------------|
| 9A      | -      | 3214m                  | 3154m                 | 3069m                | 1631vs | _      | 1442m                |
| 10A     | 3496m  | 3222m                  | 3160m                 | 3078m                | 1627vs | _      | 1451m                |
| 10B     | 3466w  | 3282m,<br>3212m        | 3144m                 | 3065m                | 1623vs | 1556s  | 1465m                |
| 11A     | 3483w  | 3241m                  | 3157m                 | 3069m                | 1627vs | _      | 1451m                |
| 12A     | 3461w  | 3240m                  | 3141m                 | 3074m                | 1631vs | _      | 1450m                |
| 12B     | _      | 3297m,<br>3225m        | 3141m                 | 3075m                | 1622vs | 1555s  | 1469m                |

Tabulka č. 11 Vybrané charakteristické vibrace pro střední oblast IR spektra

vs-velmi silný, s-silný, m-střední, w-slabý

Tabulka č. 12 Vybrané charakteristické vibrace pro vzdálenou oblast IR spektra

| Komplex | v(Rh–O) | v(Rh-N)    | v(Rh-Cl) |
|---------|---------|------------|----------|
| 9A      | _       | 454m, 429m | 328s     |
| 10A     | _       | 448m, 430m | 319s     |
| 10B     | 542s    | 461s, 442m | 329m     |
| 11A     | _       | 439m       | 323s     |
| 12A     | _       | 472s       | 331s     |
| 12B     | 526m    | 469s       | 325m     |

s-silný, m-střední, w-slabý



**Obrázek č. 39** IR spektrum střední oblasti komplexu [Rh(3-Br*Bap*)<sub>2</sub>Cl<sub>4</sub>]·H<sub>2</sub>O (**11A**) znázorňující charakteristické vibrace



**Obrázek č. 40** IR spektrum střední oblasti komplexu [Rh(3-Br*Bap*)<sub>2</sub>Cl<sub>4</sub>]·H<sub>2</sub>O (**11A**) a volného ligandu 3-Br*Bap* 



Obrázek č. 41 IR spektrum vzdálené oblasti komplexu [Rh(3-BrBap)<sub>2</sub>Cl<sub>4</sub>]·H<sub>2</sub>O (11A)



**Obrázek č. 42** Předpokládané struktury komplexů rhodia a) [Rh(R-*Bap*)(*acac*)Cl<sub>2</sub>(H<sub>2</sub>O)] (**9B**) a b) [Rh(R-*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>] (**10B-12B**)

#### 5.2.3 Ramanova spektroskopie

Ramanova spektra změřená v rozmezí hodnot 3500 až 400 cm<sup>-1</sup> obsahují maxima charakteristických vibrací organických ligandů v komplexních sloučeninách rhodia. Vybrané charakteristické vibrace Ramanova spektra změřených komplexů jsou uvedeny v **tabulce č. 13**. Maxima způsobená vibracemi vazby  $v(C-H)_{ar}$  mají hodnotu 3062 cm<sup>-1</sup> a jsou mnohem výraznější a lépe čitelná než v případě infračervených spekter. Naopak pásy valenční vibrace v(N-H) jsou slabě čitelné oproti infračerveným spektrům (**Obr. č. 43**). Poté následují maxima způsobená vibracemi v(C=N), které se pohybují v rozmezí hodnot 1599 až 1595 cm<sup>-1</sup>. U komplexu **11B** se projevuje vibrace v(C=O), která ma maximum při 1562 cm<sup>-1</sup>, je způsobená přítomností acetylacetonátu. V rozmezí hodnot 1426 až 1407 cm<sup>-1</sup> má své maxima vibrace  $v(C=C)_{ar}$  patřící aromatickému kruhu. Ve spektru lze také pozorovat vibrace v okolí centrálního kovu rhodia. Maximum způsobené vibrací vazby v(Rh-O), které ma hodnotu 553 cm<sup>-1</sup> poukazuje na přítomnost koordinovaného acetylacetonátu na centrální atom rhodium. Další vibrace, která se projevuje v okolí centrálního atomu rhodia je vibrace patřící vazbě v(Rh-N), která má své maxima v rozmezí hodnot 468 až 416 cm<sup>-1</sup> [79].

| Komplex | v(C-H) <sub>ar</sub> | v(C=N) | v(C=O) | v(C=C) <sub>ar</sub> | v(Rh–O) | v(Rh–N) |
|---------|----------------------|--------|--------|----------------------|---------|---------|
| 9A      | 3062s                | 1599s  | _      | 1407s                | _       | 416m    |
| 11A     | 3062s                | 1597s  | _      | 1406s                | _       | 445w    |
| 11B     | 3062s                | 1595s  | 1562s  | 1426s                | 553w    | 468s    |

Tabulka č. 13 Charakteristické hodnoty vlnočtů (cm<sup>-1</sup>) vybraných komplexů rhodia

s-silný, m-střední, w-slabý



**Obrázek č. 43** Ramanova spektra s přiřazenými charakteristickými vibracemi u komplexů [Rh(3-Br*Bap*)<sub>2</sub>Cl<sub>4</sub>]·H<sub>2</sub>O (**11A**) a [Rh(3-Br*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>]·EtOH (**11B**)

## 5.2.4 Vodivostní měření

U vybraných komplexů ze skupiny s *acac* jako ligandem i bez *O*-donorového ligandu byla změřena vodivost těchto komplexů v roztoku *DMF* s koncentraci 10<sup>-3</sup> M. Výsledky jsou zahrnuty v **tabulce č. 14**. Hodnoty konduktivity  $\lambda_M$  se pohybují v rozmezí 8,4 až 11,7 S.cm<sup>2</sup>.mol<sup>-1</sup>. Tyto hodnoty řadí komplexy mezi neelektrolyty [76]. Hodnoty byly korigovány vůči rozpouštědlu, kterým byl *DMF* s hodnotou vodivosti 2 S.cm<sup>2</sup>.mol<sup>-1</sup>. Toto zjištění odpovídá navrhnuté struktuře obecného složení [Rh(R-*Bap*)Cl<sub>3</sub>X<sub>2</sub>] (X = H<sub>2</sub>O a EtOH) nebo [Rh(R-*Bap*)<sub>2</sub>Cl<sub>4</sub>].

Tabulka č. 14 Hodnoty vodivosti  $\lambda_M$  (S.cm<sup>2</sup>.mol<sup>-1</sup>) pro vybrané komplexy

| Komplex | $\lambda_{M}$ |
|---------|---------------|
| 9A      | 8,4           |
| 10A     | 10,6          |
| 11A     | 9,5           |
| 12A     | 11,7          |

## 5.2.5 Elektronová spektroskopie

Roztoková elektronová spektra byla měřena v roztoku methanolu s koncentrací  $10^{-4}$  M. Naměřené hodnoty jsou uvedené v **tabulce č. 15**. Spektra jsou změřená pouze od komplexních sloučenin, které neobsahovaly v koordinační sféře acetylacetonát (série **A**). Komplexy série **B** se nepodařilo rozpustit.

Základním stavem pro nízkospinové d<sup>5</sup> komplexy rhodia(III) je  ${}^{1}A_{1g}$ . U našich komplexů rhodia jsme pozorovali maxima od 283 do 299 nm (**Obr. č. 44**), které lze přiřadit přenosu náboje (CT), pravděpodobně se jedná o MLCT nebo  $\pi \rightarrow \pi^*$  přenos [80, 81]. Přechody typu d-d se bohužel nepodařilo v roztokových spektrech zachytit.

| Komplex | Maximum absorbance (nm)/Molární<br>absorpční koeficient (mol <sup>-1</sup> .cm <sup>2</sup> ) |
|---------|-----------------------------------------------------------------------------------------------|
| 9A      | 283 (1930)                                                                                    |
| 10A     | 298 (2890)                                                                                    |
| 11A     | 296 (3080)                                                                                    |
| 12A     | 299 (2880)                                                                                    |

Tabulka č. 15 Hodnoty absorpčních maxim pro komplexy 9A-12A



**Obrázek č. 44** Elektronové spektrum methanolického roztoku komplexu [Rh(*Bap*H)Cl<sub>3</sub>EtOH(H<sub>2</sub>O)]·H<sub>2</sub>O (**9**A)

#### 5.2.6 Termická analýza

TG a DTA metody byly provedeny u vybraných komplexů rhodia. Jednotlivé kroky tepelného rozkladu a hmotnostní úbytky jsou uvedeny v tabulce č. 16. Průběhy termických rozkladů potvrdily, že se jedná o hydratované komplexy (Obr. č. 45). Uvedené rozklady jsou podrobně popsané v diskuzi. Produkt termického rozkladu nebyl blíže studován, tedy nebyla meřena prášková rtg-difrakce.

| Látka                                                             | Odštěpení H <sub>2</sub> O |                               |                  | Celkem  |                                    |                    |
|-------------------------------------------------------------------|----------------------------|-------------------------------|------------------|---------|------------------------------------|--------------------|
|                                                                   | T (°C)                     | $\Delta m_1$ (%) <sup>a</sup> | rozpouštědlo     | T (°C)  | $\Delta m_{celk}$ (%) <sup>a</sup> | R (%) <sup>b</sup> |
| 11A                                                               | 27-119                     | 2,8/2,3                       | H <sub>2</sub> O | 167-528 | 85,0/84,7                          | 15,0               |
| 11B                                                               | 26-101                     | 4,6/4,9                       | EtOH             | 153-625 | 84,3/84,9                          | 15,7               |
| a) nalozono/uznožtono <sup>b)</sup> D hmotnost finálního produktu |                            |                               |                  |         |                                    |                    |

**Tabulka č. 16** Výsledky provedené TG/DTA analýzy

nalezeno/vypočteno, <sup>b)</sup> R-hmotnost finálního produktu

U komplexu 11A můžeme pozorovat v rozmezí teplot 27-119°C úbytek hmotnosti (Obr. č. 45) v důsledku ztráty jedné molekuly vody. Tento proces je doprovázený slabým endo-efektem s minimem při 44°C. K dekompozici komplexu dochází od teploty 167°C bez vytvoření termicky stabilních meziproduktů. Během dekompozice vzorku jsou pozorovány dva exo-efekty. První exo-efekt má své maximum při teplotě 417°C, druhý exo-efekt má své maximum při teplotě 433°C. Tyto exo-efekty charakterizují rozklad organické části komplexní sloučeniny a také uvolnění chloridových iontů. Při ukončení rozkladu vzorku dosahuje jeho hmotnost 15,0 % hmotnosti původní. Finálním produktem termické analýzy je RhO<sub>2</sub>, tomu odpovídá dobrá shoda s hodnotou teoretického množství 15,4 %.

Desolvatace komplexu 11B začíná od teploty 26 do 101°C (Obr. č. 45), jenž je spojená v důsledku ztráty molekuly ethanolu. Tento proces je doprovázen slabým endo-efektem při teplotě 77°C. K dekompozici komplexu dochází od teploty 153°C bez vytvoření termicky stabilních meziproduktů. Během dekompozice vzorku je pozorován jeden exo-efekt. Tent exo-efekt má své maximum při teplotě 425°C a charakterizuje rozklad organické části komplexní sloučeniny a také uvolnění chloridových iontů. Při ukončení rozkladu vzorku dosahuje jeho hmotnost 15,7 % hmotnosti původní. Finálním produktem termické analýzy je RhO<sub>2</sub>, tomu odpovídá hodnota teoretického množství 15,1 %.



**Obrázek č. 45** TG a DTA křivky komplexů [Rh(3-Br*Bap*)<sub>2</sub>Cl<sub>4</sub>] · H<sub>2</sub>O (**11A**) a [Rh(3-Br*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>] · EtOH (**11B**)

# 6 ZÁVĚR

V diplomové práci bylo připraveno 24 nových komplexních sloučenin ruthenia a rhodia se substituovanými 6-benzylaminopuriny a acetylacetonátem jako ligandy. Všechny komplexy se podařilo připravit ve formě prášku. Připravené komplexní sloučeniny byly charakterizovány vhodnými fyzikálně-chemickými metodami. Komplexní sloučeniny ruthenia byly připraveny reakcí RuCl<sub>3</sub>·xH<sub>2</sub>O s vybranými deriváty 6-benzylaminopurinu (2-Cl*Bap*, 3-ClBap, 3-OHBap, 2-OCH<sub>3</sub>Bap, 4-OCH<sub>3</sub>Bap, 3,4-diOCH<sub>3</sub>Bap a 4-CH<sub>3</sub>Bap). Takto připravené prekurzory dále reagovaly s acetylacetonátem za vzniku konečných produktů. Reakce probíhaly v ethanolickém prostředí za poměru výchozích látek kov:ligand 1:1. Celkem bylo připraveno 16 nových sloučenin ruthenia s pravděpodobném složení: [Ru(2- $ClBapH_2$ ) $Cl_4H_2O$ ] $\cdot 0,5EtOH$  (**1A**), [Ru(2-ClBapH) (acac)  $Cl_2(H_2O)$ ] $\cdot H_2O$  (**1B**), [Ru(3- $ClBapH_2$ ) $Cl_4EtOH$ ]·H<sub>2</sub>O (2A), [Ru(3-ClBapH)(acac)Cl<sub>2</sub>(EtOH)] (2B), [Ru(2-OCH<sub>3</sub>BapH<sub>2</sub>)]  $Cl_4EtOH$ ]· $H_2O$  (**3A**), [Ru(2-OCH<sub>3</sub>BapH)(acac)Cl<sub>2</sub>(EtOH)] (**3B**), [Ru(BapH)<sub>2</sub>Cl<sub>3</sub>H<sub>2</sub>O] (**4A**),  $[Ru(Bap)(BapH)(acac)Cl_2]$ ·2H<sub>2</sub>O (4B),  $[Ru(3-ClBapH)_2 Cl_4]$ ·3H<sub>2</sub>O (5A), [Ru(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)(3-ClBap)( $ClBapH)(acac)Cl_2]$ ·2H<sub>2</sub>O (5B), [Ru(4-OCH<sub>3</sub> BapH)<sub>2</sub> Cl<sub>4</sub>]·3H<sub>2</sub>O·EtOH (6A), [Ru(4- $OCH_3Bap$ )(4- $OCH_3BapH$ )(acac)Cl<sub>2</sub>]·2H<sub>2</sub>O (**6B**), [Ru(3,4-diOCH<sub>3</sub>BapH)<sub>2</sub>Cl<sub>4</sub>]·5H<sub>2</sub>O (**7A**),  $[Ru(3,4-diOCH_3Bap)(3,4-diOCH_3BapH) (acac) Cl_2] \cdot 2H_2O (7B), [Ru(3-OHBapH)_2Cl_4] \cdot 2H_2O$ (8) a  $[Ru(3-OHBap)_2(3-OHBapH)Cl_3]$  (8B).

Složení připravených komplexních sloučenin je předpokládané na základě charakterizace pomocí fyzikálně-chemických metod (elementární analýza, infračervená spektroskopie, vodivost, elektronová spektroskopie, termická analýza). Tyto látky tvoří tři strukturní typy, které se liší v počtu koordinovaných derivátů 6-benzylaminopurinu. Jedná se o komplexní sloučeni ruthenia(II) s oktaedrickou geometrii. Místem koordinace organického derivátu 6-benzylaminopurinu je pravděpodobně dusík N9 purinového cyklu [82]. Připravené látky jsou špatně rozpustné v běžně používaných rozpouštědlech (metanol, aceton, diethyleter).

Komplexní sloučeniny rhodia byly připraveny reakcí RhCl<sub>3</sub>·xH<sub>2</sub>O s vybranými deriváty 6-benzylaminopurinu (3-Cl*Bap*, 3,4-diOCH<sub>3</sub>*Bap*, 4-CH<sub>3</sub>*Bap* a 3-Br*Bap*). Takto připravené prekurzory dále reagovaly s acetylacetonátem za vzniku konečných produktů. Reakce probíhaly v ethanolickém prostředí za poměru výchozích látek kov:ligand 1:1. Celkem bylo připraveno 8 nových komplexních sloučenin rhodia pravděpodobného složení: [Rh(*Bap*)Cl<sub>3</sub>EtOH(H<sub>2</sub>O)]·H<sub>2</sub>O (**9A**), [Rh(*Bap*)(*acac*)Cl<sub>2</sub>(H<sub>2</sub>O)] (**9B**), [Rh(3,4-di OCH<sub>3</sub>*Bap*) (3,4-diOCH<sub>3</sub>*Bap*H)Cl<sub>4</sub>]·5H<sub>2</sub>O (**10A**), [Rh(3,4-diOCH<sub>3</sub>*Bap*)<sub>2</sub>(*acac*)Cl<sub>2</sub>]·1,5 EtOH·H<sub>2</sub>O (**10B**),  $[Rh(3-BrBap)(3-BrBapH)Cl_4] \cdot H_2O (11A), [Rh(3-BrBap)_2(acac)Cl_2] \cdot EtOH (11B), [Rh(4-CH_3Bap) (4-CH_3BapH)Cl_4] \cdot H_2O (12A) a [Rh(4-CH_3Bap)_2(acac)Cl_2] \cdot 0,5EtOH (12B).$ 

Navrhnuté složení těchto komplexů je předpokládáno na základě charakterizace pomocí fyzikálně-chemických metod. Komplexní sloučeniny rhodia tvoří dva strukturní typy. Jedná se o komplexní sloučeni rhodia(III) s oktaedrickou geometrii. Deriváty 6-benzylaminopurinu jsou s největší pravděpodobností koordinovány na rhodium přes dusík N9 purinového cyklu. Komplexy série **B**, tedy s acetylacetonátem se nepodařilo rozpustit. Komplexy série **A** jsou rozpustné v *DMF*. Všech 8 komplexů rhodia(III) jsou světle žluté barvy.

Příprava monokrystalu, pokusy o rekrystalizaci připravených práškových komplexů ruthenia i rhodia se nezdařila. Jak komplexy s Ru tak i s Rh budou dále studovány z hlediska jejich možné biologické aktivity, nejen cytotoxicity, ale také antibakteriální aktivity.

# SEZNAM POUŽITÉ LITERATURY

[1] R. Alberto: Chimia, 61 (2007), 691.

[2] I. Ott, R. Gust: Arch. Pharm. Chem. Life Sci., 340 (2007), 117.

[3] S. Procházka, J. Šebánek, I. Macháčková, J. Krekule: *Fyziologie rostlin*. Academia, Praha (1998).

[4] P. Štarha, Z. Trávníček, R. Herchel, I. Popa, P. Suchý, J. Vanco, J. Inorg. Biochem.,103 (2009), 432.

[5] Z. Trávníček, M. Malon, Z. Šindelár, et al., J. Inorg. Biochem., 84 (2001), 23.

[6] M. Malon, Z. Trávníček, M. Maryško, et al., Inorg. Chim. Acta., 323 (2001), 119.

[7] L. Szücová, Z. Trávníček, M. Zatloukal, I. Popa, Bioorg. Med. Chem., 14 (2006), 479.

[8] Z. Trávníček, M. Malon, M. Zatloukal, et al., J. Inorg. Biochem., 94 (2003), 307.

[9] Z. Trávníček, V. Kryštof, M. Šipl, J. Inorg. Biochem., 100 (2006), 214.

[10] Z. Trávníček, M. Malon, I. Popa, et al., Transition Met. Chem., 27 (2002), 918.

[11] N. N. Greenwood, A. Earnshaw: Chemie prvků. Informatorium, Praha (1993).

[12] H. Remy: Anorganická chemie. Nakladatelství technické literatury, Praha (1971).

[13] R. B. Heslop, K. Jones: *Anorganická chemie*. Nakladatelství technické literatury, Praha (1982).

[14] http://www.webelements.com/\_media/elements/element-pics-theo/44\_Ru\_1.jpg [23.2.2010]

[15] http://www.webelements.com/\_media/elements/element-pics-theo/45\_Rh\_2.jpg[23.2.2010]

[16] F. A. Cotton, G. Wilkinson: Anorganická chemie. Academia, Praha (1973).

[17] Brandenburg, K., DIAMOND, Relase 3.1e, Crystal Impact GbR, Bonn, Germany (2000).

[18] S. Kar, N. Chanda, S. M. Mobin, F. A. Urbanos, M. Niemeyer, V. G. Puranik, R. Jimenez-Aparicio, G. K. Lahiri: *Inorg. Chem.*, **44** (2005), 1571.

[19] S. Patra, B. Sarkar, S. M. Mobin, W. Kaim, G. K. Lahiri: Inorg. Chem., 42 (2003), 6469.

[20] T. Hashimoto, S. Hara, Y. Shiraishi, M. Yamauchi, K. Natarajan, K. Shimizu: *Inorganica Chimica Acta.*, **358** (2005), 2207.

[21] I. R. Baird, B. R. Cameron, R. T. Skerlj: Inorg. Chim. Acta., 353 (2003), 107.

[22] A. A. Rachford, J. L. Petersen, J. J. Rack: Inorganic Chemistry., 44 (2005), 8065.

[23] D. G. Frey, Z. R. Bell, J. C. Jeffery, M. D. Ward: Polyhedron., 20 (2001), 3231.

[24] K. Sui, S. M. Peng, S. Bhattacharya: Polyhedron, 18 (1999), 631.
[25] S. Maji, B. Sarkar, S. Patra, J. Fiedler, S. M. Mobin, V. G. Puranik, W. Kaim, G. K. Lahiri: *Inorg. Chem.*, 45 (2006), 1316.

[26] B. Sarkar, S. Patra, J. Fiedler, R. B. Sunoj, D. Janardanan, S. M. Mobin, M. Niemeyer,G. K. Lahiri, W. Kaim: Angew. Chem., Int. Ed., 44 (2005), 5655.

[27] S. Patra, T. A. Miller, B. Sarkar, M. Niemeyer, M. D. Ward, G. K. Lahiri: *Inorg. Chem.*, 42 (2003), 4707.

[28] R. Schneider, T. Weyhermiiller, K. Wieghardt: Inorg. Chem., 32 (1993), 4925.

[29] T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi, K. Takai: *Organometallics*, **24** (2005), 6287.

[30] A. Nayak, S. Patra, B. Sarkar, S. Ghumaan, V. G. Puranik, W. Kaim, G. K. Lahiri: *Polyhedron.*, **24** (2005), 333.

[31] M. A. Bennett, M. J. Byrnes, A. C. Willis: Organometallics., 22 (2003), 1018.

[32] M. A. Bennett, G. A. Heath, D. C. R. Hockless, I. Kovacik, A. C. Willis: *J. Am. Chem. Soc.*, **120** (1998), 932.

[33] M. A. Fabre, J. Jaud, J. J. Bonvoisin: Inorganica Chimica Acta., 358 (2005), 2384.

[34] T. Kojima, S. Miyazaki, K. Hayashi, Y. Shimazaki, F. Tani, Y. Naruta, Y. Matsuda: *Chem. Eur. J.*, **10** (2004), 6402.

[35] S. Ghumaan, S. Kar, S. M. Mobin, B. Harish, V. G. Puranik, G. K. Lahiri: *Inorganic Chemistry.*, **45** (2006), 2413.

[36] A. Hijazi, J. P. Djukic, L. Allouche, A. de Cian, M. Pfeffer: *Organometallics.*, **26** (2007), 4180.

[37] A. M. Clark, C. E. F. Rickard, W. R. Roper, L. J. Wright: *Journal of Organometallic Chemistry*, **598** (2000), 262.

[38] S. Chellamma, M. Lieberman: Inorg. Chem., 40 (2001), 3177.

[39] P. Majumdar, L. R. Falvello, M. Tomás, S. Goswami: Chem. Eur. J., 7 (2001), 5222.

[40] M. A. Bennett, M. J. Byrnes, G. Chung, A. J. Edwards, A. C. Willis: *Inorganica Chimica Acta.*, **358** (2005), 1692.

[41] Chun-Yuen Wong, G. So Ming Tong, Chi-Ming Che, N. Zhu: Angew. Chem., 45 (2006), 2694.

[42] D. A. Kanas, S. J. Geier, Ch. M. Vogels, A. Decken, Stephen A. Westcott: *Inorg. Chem.*,47 (2008), 8727.

[43] P. Heffeter, U. Jungwirth, M. Jakubec, Ch. Hartinger, M. Galanski, L. Elbing,M.Micksche, B. Keppler, W. Berger: *Drug Resistance Updates.*, 11 (2008), 1.

[44] P. J. Dyson, G. Sava: Dalton Trans., (2006), 1929.

- [45] C. A. Vock, W. H. Ang, C. Scolaro, A. D. Phillips, L. Lagopoulos, L. Juillerat-Jeanneret,
- G. Sava, R. Scopelliti, P. J. Dyson: J. Med. Chem., 50 (2007), 2166.
- [46] S. M. Cohen: Current Opinion in Chemical Biology., 11 (2007), 115.
- [47] P. J. Blower: Annu. Rep. Prog. Chem., Sect. A., 97 (2001), 587.
- [48] G. Mestroni, E. Alessio, A. S. Santi, S. Geremia, A. Bergamo, G. Sava, A. Boccarelli,A. Schettino, M. Coluccia: *Inorganica Chimica Acta.*, 273 (1998), 62.
- [49] S. S. Jurisson, A. R. Ketring, W. A. Volkert: Transition Met. Chem., 22 (1997), 317.
- [50] A. Dorcier, W. H. Ang, S. Bolan, L. Gonsalvi, L. Juillerat-Jeannerat, G. Laurenczy, M. Peruzzini, A. D. Phillips, F. Zanobini, P. J. Dyson: *Organometallics*, **25** (2006), 4090.
- [51] A. R. de Souza, R. Najjar, S. Glikmanas, S. B. Zyngier: *Journal of Inorganic Biochemistry*. **64** (1996), 1.
- [52] M. Dobroschke, Y. Geldmacher, I. Ott, M. Harlos, L. Kater, L. Wagner, R. Gust, W. S. Sheldrick, A. Prokop: *Chem. Med. Chem.* **4** (2009), 177.
- [53] M. A. Scharwitz, I. Ott, Y. Geldmacher, R. Gust, W. S. Sheldrick: *Journal of Organometallic Chemistry*. **693** (2008), 2299.
- [54] U. S. liwinska, F. P. Pruchnik, I. Pelinska, S. Ułaszewski, A. Wilczok, A. Zajdel: *Journal of Inorganic Biochemistry*. **102** (2008), 1947.
- [55] N. Thilagavathi, A. Manimaran, N. P. Priya, N. Sathya, Ch. Jayabalakrishnan: *Transition Met. Chem.*, **34** (2009), 725.
- [56] http://nursextine.files.wordpress.com/2008/11/escherichia\_coli.jpg [12.3.2010].
- [57] M. Muthukumara, P. Viswanathamurthi, K. Natarajan: *Spectrochimica Acta Part A.*, **70** (2008), 1222.
- [58] http://www.eurobloodsubstitutes.com/images/niger.jpg [12.3.2010].
- [59] N. P. Priya, S. V. Arunachalam, N. Sathya, V. Chinnusamy, Ch. Jayabalakrishnan: *Transition Met. Chem.*, **34** (2009), 437.
- [60] G. Puthilibai, S. Vasudhevanc, S. Kutti Ranid, G. Rajagopala: *Spectrochimica Acta Part* A., **72** (2009), 796.
- [61] K. A. Kumar, K. L. Reddy, S. Vidhisha, S. Satyanarayana: *Appl. Organometal. Chem.*, 23 (2009), 409.
- [62] http://www.sanger.ac.uk/Info/Press/gfx/040624\_staphcells.jpg [12.3.2010].
- [63] N. P. Priya, S. Arunachalam, A. Manimaran, D. Muthupriya, C. Jayabalakrishnan: *Spectrochimica Acta Part A.*, **72** (2009), 670.
- [64] http://www.biosci.utexas.edu/ib/ScienceUnderStars/salmonella\_typhi.jpg [12.3.2010].
- [65] R. Karvembu, K. Natarajan: Synth. React. Inorg. Met.-Org. Chem., 31 (2001), 743.
- [66] M. M. Omar: Journal of Thermal Analysis and Calorimetry., 96 (2009), 607.

[67] C. L. Donnici, M. H. Araújo, H. S. Oliveira, D. R. M. Moreira, V. R. A. Pereira, M. de Assis Souza, M. C. Accioly Brelaz de Castro, A. C. L. Leite: *Bioorganic and Medicinal Chemistry.*, **17** (2009), 5038.

[68] http://doh.state.fl.us/environment/medicine/arboviral/images/trypanosoma.JPG [12.3.2010].

[69] V. K. Sharma, S. Srivastava, A. Srivastava: *Bioinorganic Chemistry and Applications.*, 2007.

[70] M.N. Rodriguez-Cabezas C.M. Mesa-Valle, S. Azzouz, V. Moraleda-Lindez, D.

Craciunescu, M.T. Gutierrez-Rios, M.I. De Frutos, A. Osuna: *Pharmacology*. **63** (2001), s. 112.

[71] J. D. Aguirre, D. A. Lutterman, A. M. Angeles-Boza, K. R. Dunbar, C. Turro: *Inorg. Chem.* **46** (2007), 7494.

[72] A. Dovletoglou, S. A. Adeyemi, T. J. Meyer: Inorg. Chem. 35 (1996), s. 4120

[73] Z. Trávníček, J. Marek: Journal of Molecular Structure. 933 (2009), s. 148.

[74] E. Alessio, G. Balducci, M. Calligaris, G. Costa, M. Attia, G. Mestroni, *Inorganic Chemistry*, **30** (1991) 609.
[75] G. Socrates, *Infrared and Raman Characteristic Group Frequencies*, 3th edition J. Wiley

and Sons, LTD, New York, 2001.

[76] W. J. Geary: Coordination Chemistry Reviews. 7 (1971), s. 81.

[77] J.G. Małecki, J.O. Dziegielewski, R. Kruszynski, T.J. Bartczak: *Inorganic Chemistry Communications*. **6** (2003), s. 721.

[78] P. S. Hall, P. F.M. Verhoeven: Spectrochimica Acta Part A. 53 (1997), s. 1005.

[79] A. Gbureck, W. Kiefer, M. E. Schneider, H. Werner: *Vibrational Spectroscopy*. 17 (1998), 105.

[80] F. P. Pruchnik, P. Jakimowicz, Z. Ciunik, J. Zakrzewska-Czerwin'ska, A. Opolski, J. Wietrzyk, E. Wojdat: *Inorganica Chemica Acta*. **334** (2002), s. 59.

[81] J. Paul, S. Spey, H. Adams, J. A. Thomas. *Inorganica Chemica Acta*. **357** (2004), s. 2827.

[82] Štěpánková K.: Mononuclear ruthenium complexes with derivatives of 6benzylaminopurine: snythesis, characterization and study of their biological activity. Diplomová práce, Univerzita Palackého, Olomouc 2008.

## ZKRATKY

| 16-TMC  | 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyklohexadekan                   |
|---------|------------------------------------------------------------------------|
| 1-naph  | N,N'-bis-{6-[(1-naphtoylamido)-2-pyrisylmethyl]-N-(pyridylmetyl)-amin} |
| abpy    | 2,2´-azobispyridin                                                     |
| acac    | acetylaceton                                                           |
| adt     | 3-amino-6-(3,5'-dimethylpyrazol-1-yl)-1,2,4,5-tetrazin                 |
| an      | 3-(1-phenylhydrazinyl)naftalen-2-ol                                    |
| ATZ     | aryl-4-oxothiazolylhydrazon                                            |
| bddt    | 3,6'-bis(3,5'-dimethylpyrazol-1-yl)-1,4'-dihydro-1,2,4,5-tetrazin      |
| bftz.   | 3,6'-bis(2-furyl)-1,2,4,5-tatrazin                                     |
| bpy     | 2,2´-bipiridin                                                         |
| bptz.   | 3,6'-bis(2-pyridyl)-1,2,4,5-tetrazin                                   |
| bttz.   | 3,6'-bis(2-thienyl)-1,2,4,5-tetrazin                                   |
| coe     | cis-cyklookten                                                         |
| COD     | 1,5-cyklooktadien                                                      |
| срср    | 2-phenylpyridin                                                        |
| dab     | 1,3-diaminobenzen                                                      |
| dap     | 4,7'-difenyl-1,10'-fenantrolin                                         |
| dchm    | dichlormethyl                                                          |
| DMF     | N,N -dimethylformamid                                                  |
| DMSO    | N,N -dimethylsulfoxid                                                  |
| dpa     | 2,2-dypiridilamin                                                      |
| dppn    | benzo(i)dipyrido(3,2:2',3')fenazin                                     |
| dppz.   | dipyrido(3,2:2',3')fenazin                                             |
| dpq     | dipyrido(3,2:2',3')quinoxalin                                          |
| Dpqx    | 2,3´-diphenylquinoxalin                                                |
| ehbk    | 1-phenyl-1-iminopentan-3-on                                            |
| ehmk    | 5-iminohekan-3-on                                                      |
| en      | 1,2´-diaminoethan                                                      |
| EtOH    | ethanol                                                                |
| etpya   | 2,6'-diethyl-N-(pyridin-2-ylmetyliden)anilin                           |
| hmbpcyd | 4-(3-hydroxy-3-metylbutynyl)-phenylkyanamidový anion                   |
| Im      | imidazol                                                               |
| Ind     | indol                                                                  |

| Isq                 | 2-aminophenol                                          |
|---------------------|--------------------------------------------------------|
| Itq                 | 2-sulfanylphenol                                       |
| mAmk                | 3-(1-iminoethyl)-2,4-pentandion                        |
| mClmk               | 3-chloro-4-imino-pentan-2-on                           |
| Met                 | methyl                                                 |
| metpya              | 2,6'-dimethyl-N-(pyridin-2-ylmethyliden)anilin         |
| mhbk                | 1-phenyl-1-iminobutan-3-on                             |
| mhm                 | 4-aminopentan-2on                                      |
| Net <sub>3</sub>    | triethylamin                                           |
| NMEI1e              | N-methyl-L-isoleucin                                   |
| пр                  | 1,8´-naphtyridin                                       |
| ntsc                | 4-nitrophenylthiosemikarbazon                          |
| охруа               | 4-methoxy-N-(pyridin-2-ylmethyliden)anilin             |
| phen                | 1,10'-fenantrolin                                      |
| phend               | 1,10'-fenanthrolin-5,6'-dion                           |
| PiPr <sub>3</sub>   | trisopropylphospin                                     |
| PPh <sub>2</sub> Py | diphenyl-2-pyridylphosfin                              |
| $PPh_3$             | triphenylphosfin                                       |
| рртр                | 1,3'-bis[3-(2-phenolato)-pyrazol-1-yl-methyl]-phenylen |
| Pro                 | prolin                                                 |
| pta                 | 1,3,5-triaza-7-phospa-adamantan                        |
| ptsc                | 4-phenylthiosemikarbazon                               |
| ру                  | pyridin                                                |
| рупр                | 2-(2-pyridyl)-1,8'-naphtyridin                         |
| THF                 | tetrahydrofuran                                        |
| TPA                 | tris(2-pyridylmethyl)amin                              |
| tptz                | 2,4,6-tris(2-pyridyl)-1,3,5-triazin                    |
| tpy                 | 2,2:6,2-terpyridin                                     |
| ttc                 | 1,4,7-trimethyl-1,4,7-triazacyklonon                   |
| vda                 | 2-vinyl-N,N -dimethylanilin                            |