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NIKAČNÍCH TECHNOLOGÍI
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DOCTORAL THESIS
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ABSTRACT

The dissertation describes actual problems in certifying small airplanes, which are to be

solved by numerical modeling of the airplanes. The work is closely linked to the Euro-

pean project HIRF-SE, which deals with this problem. The essential part of the work

is devoted to describing design of two modules within the HIRF-SE framework: time-

domain finite-element solver BUTFE and its excitation module BUTFE EXC. The thesis

describes solution of absorbing boundary conditions, dispersive media, anisotropy and thin

wire approximation. Special attention is devoted to a proper approximation of thin wires

with sharp bends. Current implementation of the approximation leads to overlaps of wire

segments.

KEYWORDS

electromagnetic compatibility, finite element method, high intensity radiated pulse, HIRF-

SE, Amelet-HDF, HDF, absorbing boundary condition, dispersion, anisotropy, thin wire

approximation

ABSTRAKT

Disertace popisuje současné problémy v certifikaci malých letadel, které by se měly v

budoucnu řešit numerickým modelováńım. Tento postup má zefektivnit návrh a zlevnit

certifikaci letadel. Práce je úzce spjata s projektem HIRF-SE, který se problematikou cer-

tifikace letadel numerickými metodami zabývá. Podstatná část práce je věnována popisu

dvou modul̊u pro platformu HIRF-SE: řešič BUTFE založený na metodě konečných prvk̊u

v časové oblasti a budićı nástroj BUTFE EXC. Práce popisuje řešeńı pohlcuj́ıćıch okra-

jových podmı́nek, modelováńı disperzńıch a anizotropńıch materiál̊u a aproximaci tenkých

drát̊u. Speciálńı pozornost je věnována řešeńı aproximace tenkých drát̊u s ostrými ohyby,

jej́ıž současná formulace zp̊usobuje překryvy mezi jednotlivými segmenty drátu.
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LIST OF SYMBOLS, PHYSICAL CONSTANTS AND ABBRE-
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3D three-dimensional

ABC absorbing boundary condition

API application program interface

CPU central processor unit

EM electromagnetic

EMC electromagnetic compatibility

ERPCF epoxy resin prepreg carbon fiber

FDM finite difference method

FDTD finite difference time-domain

FEM finite element method

FIT finite integration technique

GPU graphics processing unit

GUI graphical user interface

HDF Hierarchical Data Format

HIRF High-Intensity Radiated Fields

HIRF-SE High-Intensity Radiated Fields - Synthetic Environment

HT Hyper-Threading technology

IPC inter-process communication

MCR MATLAB Compiler Runtime

MoM method of moments

TLM transmission line matrix

PCM prepreg copper mesh

PDE partial differential equation

PEC perfectly electric conductor

PED personal electronic device
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PEMF pulsed electromagnetic field

PMC perfect magnetic conductor

PML perfectly matched layer

PO physical optics

SE shielding effectiveness

TDFE time-domain finite element

WPED wireless personal electronic device
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1 PREFACE

A growing involvement of electronic devices inside an aircraft and especially employment

of electrical devices in critical flight systems makes electromagnetic compatibility (EMC)

a more and more important part of the aircraft design process. Internal electronic systems

interfere with each other. In addition, all the systems are exposed to influences of radio and

TV transmitters, satellite transmitters, radars, lightning strikes, etc. Such an environment

is known as High-Intensity Radiated Fields (HIRF).

Beyond the usage of electronic devices inside the aircraft, growing interest in EMC is

also given by an effort to reduce costs and increase in-flight comfort. Conductive parts are

increasingly being replaced by composite materials which makes the aircraft lighter but

also more vulnerable to HIRF. Portable electronic devices become a common part of our

lives. However, their use during the flight makes the EMC problem even more challenging.

Before final production, each aircraft must pass various EMC tests. This typically

consists in simulating the airplane (or its model) at an EMC test site trying to model

the worst case scenario. These tests are expensive in terms of space, time and money.

Sometimes they may be also destructive.

Fig. 1.1 Test chamber for EMC purposes[1].

Previously mentioned facts lead to the effort of numerical modeling before testing. Tes-

ting costs are replaced by computational costs which are decreasing due to advances in

computer technology. This improves the efficiency of the design process and makes the

certification cheaper.

- 8 -



Numerical solutions of EMC problems of small airplanes

2 STATE OF THE ART

Methods employed by software for numerical modeling of an electromagnetic field most

often are the following: finite difference method (FDM), finite element method (FEM),

transmission line matrix (TLM), method of moments (MoM), finite integration technique

(FIT) and physical optics (PO). None of them is a universal method, each one has specific

benefits and drawbacks. A comparison between previously mentioned methods was studied

by N.O. Sadiku [2, 3]. The work aims at FEM, so a brief state of the art of this numerical

method will follow.

Finite element method

The method converts a partial differential equation (PDE) into a system of linear equati-

ons. The computational domain is divided into smaller parts (elements). The desired phy-

sical quantity over each element is approximated by selected base functions. The system

of linear equations can be formed by connecting all the elements. By solving this system,

piecewise interpolation of the quantity over the entire structure can be obtained. Compa-

red with FDM, the finite element method is more versatile and can better handle complex

geometries and inhomogenous media. The approximation is more accurate than in the case

of FDM.

Origin of the method

Development of FEM began approximately in 1942 by R. Courant [4]. The term “finite

element” has been used since 1960. The first application of FEM to electromagnetism was

done by P.P. Silvester [5].

Software tools

FEM is used by many commercial and open-source programs [11, 12]. However, electro-

magnetic (EM) problems are solved by multiphysical packages like ANSYS c© or COMSOL

Multiphysics c©.

Perfectly matched layer

One of the most challenging problems in numerical methods is a reflectionless truncation

of the computational domain in the case of open-region problems. Before using a perfectly

matched layer (PML), there were several techniques used for the truncation, but none

of them was as accurate. The first PML was proposed by Berenger [13] for the finite

difference time-domain (FDTD) method. However, this approach used modified Maxwell

equations thus it was not suitable for FEM. Afterwards Sacks et al. [14] proposed a PML

employing anisotropic media, which could be easily implemented in frequency-domain

finite element code. Mathis [15] used this approach to derive PML for FEM in the time

domain. Performance of this PML was examined in [16]. However, good absorption was

achieved only for a limited frequency band. The frequency band limitation was figured

- 9 -
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out in [17] and [18]. Rylander and Jin [19] engaged in conformal PML, which reduced

the amount of elements in the computational domain. The approach published in [17, 18]

was later outperformed by second-order PML [20].

Computation

Since the 1990s, it has been more effective to gain computational power by increase of

the number of central processor units (CPUs) rather than increasing clock frequency. Due

to this fact, attention was focused on the development of efficient programs for multi-

processor [21] and multi-core [22] systems. The idea to compute the problems on a graphics

processing unit (GPU) is beginning to assert itself. In fact, a GPU is well designed for

matrix operations and can achieve higher computational power than CPUs due to hundreds

of cores inside. Implementation of FEM on a GPU has already been done [23].

Another way how to speed-up the computation, is using preconditioners. Convergence

properties of three preconditioning techniques in combination with two iterative solvers

are investigated in [24].

Adaptive FEM provides better distribution of degrees of freedom within the computati-

onal domain using an h-refinement (varying element size) or/and a p-enrichment (varying

polynomial order). In [25], authors focus on problems regarding very low frequencies and

extremely small elements relative to the wavelength. Giannacopoulos [26] reduces commu-

nication among processors in parallel adaptive FEM computation. In [27], authors compare

the adaptation methods on FEM, MoM and PO.

Books and reviews

Among the important books dealing with applying FEM in electromagnetics worth men-

tioning are Silvester et. al. [6, 7] and Jian-Ming Jin [8], [9] and [10] (written with Riley).

There were also written several summarizing articles dealing with FEM. Silvester et

al. made a summarizing article containing nearly 240 selected citations related to FEM

in electromagnetism [28]1. Other articles were written by Jin et al. [29] and Teixeira [30].

Time domain formulations were discussed in [31].

1 This paper was also his last one, it contains a remembrance of P.P.Silvester.
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3 AIMS OF THE DISSERTATION

Although various software tools for the EM field analysis are already developed, they

usually do not cover the whole area of possible EMC problems related to the aircraft.

Moreover, some differences can appear in results obtained from software based on diffe-

rent numerical methods due to the strengths and weaknesses of the particular method.

Basically, user should pick the right method based on his knowledge. However the compu-

tation of the EM field inside a complex object such as an airplane makes the choice quite

difficult.

Project High-Intensity Radiated Fields - Synthetic Environment (HIRF-SE) [32] aimed

to create a numerical modeling computer framework for the aeronautic industry. The

framework should improve the design phase of the aircraft and also reduce costs of the EMC

tests (due to the reasons mentioned on page 8). The HIRF-SE considered [33]:

• the external EM environment to which the air vehicle has to be certified. This en-

vironment is defined in regulatory documents currently available and about to be

released;

• the internal EM environment generated by air vehicle electronic installations;

• the internal EM environment whose complexity will increase in the future due to

allowing personal electronic devices (PEDs) and wireless personal electronic devices

(WPEDs) to be used in the cockpit and the cabin during all phases of the flight.

The project involved 44 partners in 11 European countries. Each partner was developing

a specific module making use of the particular method. All the modules were connected

with each other via the format Amelet-HDF [34], which was also being developed within

the project. The Amelet-HDF format is based on Hierarchical Data Format (HDF) [35].

Aims of the dissertation are defined as follows:

• TDFE solver: create a three-dimensional time-domain finite element (TDFE) sol-

ver aiming at EM simulations

• Bent wires: improve the solver’s capabilities towards solving EMC problems con-

cerning small airplanes (thin wire approximation of bent wires)

• File interface: design an input/output wrapper that will adapt the TDFE solver

for application in the HIRF-SE framework

• Development tools: create development tool(s) for simplifying the design and test

phase and facilitating further improvements of the TDFE solver

In order to save computational time, the solver can be (under specific conditions) combined

together with the pulsed electromagnetic field (PEMF) method [36]. It is an analytical

method that can be utilized for determining the excitation for the solver in the case of

propagation of an electromagnetic wave through a perforated slab.

- 11 -
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4 ACHIEVEMENTS

This chapter is divided into four sub-chapters where each one focuses on a particular aim

of the dissertation. Each sub-chapter starts with a brief introduction of its content.

4.1 TDFE solver

This chapter is especially dedicated to explaining the core functionality of the TDFE solver

called BUTFE and its excitation module BUTFE EXC. The history of its development

justifies the presence of some chapters in this work. It is briefly outlined in chapter 4.1.1.

The involvement of the solver and the excitation module within the HIRF-SE framework is

shown in chapter 4.1.2. The semantic location within the framework is shown on a sample

simulation. The description of both modules from the user’s point of view follows in chapter

4.1.3. Chapter 4.1.4 focuses on the mathematical formulation of the problem leading to the

final system of linear equations of the TDFE solver. It is assumed that the reader is familiar

with the finite element method itself. Types of basis functions involved in the solver are

described in chapter 4.1.5. Chapter 4.1.6 shows the essential functionality of the solver on

an earlier version written in MATLAB c© environment. Chapter 4.1.7 shows some results

of the BUTFE solver. Chapter 4.1.9 concludes this topic.

4.1.1 History of its development

The core of the finite element program was taken from my diploma thesis [37]. The program

performed modal analysis of a cavity resonator in three-dimensional space in MATLAB c©.

Originally, the program was designed to solve one component of a selected field quantity.

The remaining components were computed analytically through the critical wave number

thanks to the longitudinal homogeneity of considered structure. Spurious solutions were

removed from the list of the solutions in compliance with the computed field distribution.

At the beginning of my doctoral study, versatility of the original solver was improved and

the solver was employed in the multi-objective synthesis of a cavity resonator [38].

The program was enhanced to carry out the analysis in the frequency domain and later

also in the time domain according to [39].

The original scalar nodal-oriented basis functions were replaced by the vector (edge-

oriented) ones [42]. This allowed modeling of structures containing material junctions due

to tangential continuity of the edge basis functions. It suppressed the problem with the spu-

rious solutions as well. Usage of the vector basis functions also improved the accuracy of

the solver. All the components1 of a particular field quantity could be computed at once.

Movement from the longitudinally homogeneous structure towards a general structure

and the use of the edge-oriented basis functions required a graphical tool for entering

boundary conditions. This was essential for the development phase of the solver2.

1 Number of the components depends on the dimensionality of the problem.
2 It evolved in a separate module BUTFE EXC afterwards.
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Attention was also paid to the mesh generator. The original program employed an ex-

ternal open-source mesher GMSH c© [51]. Due to some problems discovered during the re-

sonator synthesis, its substitution was looked for. Finally, special GiD [52] licenses were

acquired for HIRF-SE purposes. The mesh generation was another development related

issue3, caused by lack of any input data for testing and a tool to create them. The ability

of a new mesh generator to export the mesh into the Amelet-HDF file was an argument

to start development of data retrieval using the Amelet-HDF format.

Due to the computational demands and memory limitations of the MATLAB c© envi-

ronment (and also due to the requirements of the HIRF-SE project)4, the MATLAB code

had to be rewritten into C language. Along with this challenge, the code was enhanced to

accept all the inputs given by the Amelet-HDF input file, not just the mesh. In order to

employ the anisotropic PML in the future, the program was improved to handle material

properties given by a tensor.

Due to the fact that the HIRF-SE framework did not provide a tool to set excitation

in a specific part of the mesh, a new module (called BUTFE EXC) had to be created for

that purpose.

A thin-wire approximation was employed in order to compute wire currents preventing

an excessive increase of computational demands.

4.1.2 Connecting the modules within the framework

This chapter describes work in the HIRF-SE framework from the user’s perspective.

The entire simulation is formed by a chain of sub-simulations performed by various mo-

dules. For each sub-simulation, the HIRF-SE framework prepares an input Amelet-HDF

file, executes the main executable of a given module and reads the outputs from an out-

put Amelet-HDF file created by the module. A schematic diagram of each sub-simulation

shows inputs (left side), module used for the simulation (middle) and outputs (right side).

Notation “(a..b)” represents minimal, resp. maximal allowed amount of data of a given

data type.

Mesh generation

The first sub-simulation is responsible for mesh generation. It uses the module GiD, which

was developed by the group CIMNE [52]. Figure 4.1 shows that the module accepts up to

five different types of input data and can produce up to two types of output data. All of

them are optional.

In this case, the module is used as a mesh generator. A window, opened within the

sub-simulation, allows the user to define the geometry, generate an output mesh and store

it into an object mesh gid.

3 The mesh is part of the input data that should be already presented in the Amelet-HDF input file

supplied by the HIRF-SE framework.
4 The requirement for writing the main code in C was announced in the course of the project.
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Fig. 4.1 The HIRF-SE framework: Mesh generation.

Sources determination

The previously generated meshmesh gid can be linked with the excitation module BUTFE EXC

(see figure 4.2). The module requires one object of type Mesh and produces 3 types of

output data: Mesh, Global environment and one or more objects of type Electromagnetic

source.

Fig. 4.2 The HIRF-SE framework: Sources determination.

Based on the user defined excitation(s), the module slightly modifies the inputmesh gid

into mesh butfe and creates a list of requested time samples global environment and exci-

tation samples electromagnetic source5.

Computation

This sub-simulation employs the TDFE solver module BUTFE (see figure 4.3). The module

expects Mesh, Global environment and Electromagnetic source(s) from the BUTFE EXC

module. The user has to define the remaining input data of the simulation: materials and

physical quantities to compute. Materials are set via object Link and objects of the Ma-

terial category. The module accepts predefined materials like vacuum, perfectly electric

conductor (PEC), perfect magnetic conductor (PMC), classical materials and dispersive

materials given by the Debye model. The materials can be either isotropic or anisotropic

defined by a material tensor.

The requested physical quantities are defined via Output request. The BUTFE module

supports the following output quantities:

• electric and/or magnetic field intensity in the middle of a given tetrahedron,

• electric and/or magnetic field intensity in a predefined point,

• electric current flowing through a predefined wire in the middle of wire segments.

Only an electric/magnetic field in the domain and electric field in two specific groups of

points are requested in this simulation.

Note that the BUTFE module solves the intensity of the electrical field. The intensity

of the magnetic field is obtained using post-processing (see chapter 4.1.4 for more details).

5 The Amelet-HDF objects will be discussed in chapter 4.3. Detailed specification can be found in [34].
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Fig. 4.3 The HIRF-SE framework: EM field computation.

Visualization

The last part of the simulation chain could be visualization. The module Paraview is

developed by the company AxesSim. It is a wrapper for a known visualization program of

the same name developed by Kitware, Inc. [53].

Another visualization tool (to be considered as the main tool) in the HIRF-SE fra-

mework is GiD.

Fig. 4.4 The HIRF-SE framework: EM field visualization by

Paraview.

Fig. 4.5 The HIRF-SE framework: EM field visualization by GiD.

Figures 4.4 and 4.5 are only informative. The module Paraview can handle only inputs

that cover all the elements of the geometry. In this case the Paraview would return that

there are more points in the geometry than just the five predefined groups. The module

GiD was not adapted to be compatible with output data of the BUTFE solver.

- 15 -
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4.1.3 Description of the modules

BUTFE EXC module

Excitation is closely connected with the mesh so in order to achieve easy operation, the mo-

dule has to contain a graphical user interface (GUI). Based on my programming skills,

I have decided to make this tool in the MATLAB c© environment. The limitations of the

MATLAB c© code mentioned in chapter 4.1.1 do not have an influence (considering also

lightened requirements of the HIRF-SE project).

An executable for the HIRF-SE module was generated using MATLAB c© CompilerTM [49].

A special set of libraries called MATLAB Compiler Runtime (MCR) package must be in-

stalled on a target machine in order to run the executable [50]. The MCR installation

package can be freely distributed together with the module.

The excitation tool can work in three different modes: classical, hybrid and eigenmode.

Classical excitation sets distribution in the nearest neighborhood of a given plane. Hybrid

excitation computes the EM field behind a perforated slab using the PEMF method [36]

and uses the results for excitation. Eigenmode solves a 2D eigenmode analysis (using 2D

FEM) of a given plane to get desired field distribution.

Fig. 4.6 The excitation tool: choosing operation mode.

All these three cases are restricted to using a plane layer from the input mesh. The

layer is supposed to contain triangle elements. The tool extracts edges from tetrahedrons

forming the neighborhood of the layer and adds the edges into the output mesh (that

is the only difference between mesh gid and mesh butfe). The resulting excitation coef-

ficients are related to the edges. Paths for the input and output files are hard-coded as

simulation/workingDir/input.h5, resp. simulation/workingDir/output.h5. These paths are

common for all modules in the HIRF-SE framework.

The general layout of the tool remains the same in the case of all the three modes.

The tool contains the following sections: Main table, Status, Time scale, Time domain
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and Excitation layer. The Main table allows to set the excitation formula (time-domain

dependency), Status informs about performed actions. Once the program starts, the input

mesh is analyzed and the optimal time step is determined. The user can modify time

step, number of steps or total computational time in the Time scale panel. The Time

domain box displays selected excitation signal in both the time and frequency domain.

The Excitation layer lets the user to check space distribution of the excitation. Geometry

can be manipulated through tools in the View or Camera tool bar. Output data is written

using the menu option File→Save (or by pressing CTRL+S).

BUTFE EXC: classical

Figure 4.7 shows a screenshot of the module in classical mode. The Main table displays two

mesh layers that are suitable for the excitation. The layer EXC was created by the mesher

to act as an excitation layer. The user can set all three components of the electric field

separately6. The column Output sets a target location of the excitation within the output

Amelet-HDF file. Each target(Output) must be predefined by the user in the HIRF-SE

framework and the location must exist in the input file.

Fig. 4.7 The excitation tool: classical.

The Excitation layer highlights this layer in the whole geometry (top) and shows as

an extracted plane transformed into a new x -y plane (bottom right). Note that the original

coordinate system is colored red-green-blue (x-y-z) but transformed coordinates are cyan-

magenta (x -y). The definition of the pulse in the Main table is related to the transformed

coordinate system. The relationship between the coordinate systems is visible through

the general view in the Excitation layer (top).

Note that this mode supports both the spatial and temporal definition of the excitation

pulse.

6 Excitation by magnetic field is not supported by future versions of BUTFE solver.
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BUTFE EXC: hybrid

The Excitation layer box contains a list of rectangular perforations of the slab. The user

can add, edit and remove slots and modify width and height of a slot (all slots have

the same dimensions). Parameter Distance sets a perpendicular distance from the slot

where the PEMF method still influences the excitation. Basically, it defines a coupling

volume between PEMF and FEM.

Fig. 4.8 The excitation tool: hybrid.

The edit box Results (bottom right) shows “NO” at the beginning. This means that

the resulting field distribution from the PEMF method is not yet computed. After setting

all necessary parameters and clicking the Compute button, computation of the wave pro-

pagation through the perforated slab starts. The finished computation is notified in two

ways: using a status window and by changing Results to “YES”. The button Compute is

disabled. Any change of input parameters can enable this button again. Change of the field

Results to “OLD” informs the user that current computed data does not correspond with

given inputs and thus it is necessary to compute them again.
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BUTFE EXC: eigenmode

This mode is based on the code described in section 4.1.6. In the Main table, the user can

select transversal Mode (TE/TM) and Mode number (1 to 5) to set space behavior and

Exc formula to set time behavior. The remaining controls are the same as in the classical

mode.

Fig. 4.9 The excitation tool: eigenmode.

The module shows cut-off frequency for the given mode on the top right corner of

the frequency domain plot. The user can check whether the excitation fits the cut-off

frequency.

BUTFE module

The BUTFE module has no graphical interface. It only produces a text log, which is visible

in the framework after the simulation (see figure 4.10).

Firstly, the input file is processed. The program can continue only if all required in-

puts are read successfully. The status of the read processes is reported in the log file.

The category /simulation/sim butfe is the so-called entry point of the input file. It stores

paths to all necessary data and simulation parameters. Requested physical quantities are

set in /outputRequest. The category /mesh stores the computational mesh, /physicalModel

definition of materials and /link connection between these two. Time samples are defined

in /globalEnvironment and sources in /electromagneticSource. The Amelet-HDF objects

will be discussed in chapter 4.3. Detailed specification can be found in [34].

An AH5 library7 reads Amelet-HDF data into raw variables. These variables are con-

verted into a form that suits the computation by mesh conversion. Geometry checks are

performed within the mesh conversion.

7 The AH5 will be described later in chapter 4.3.3.
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################################ BUTFE 1 . 9 . 0 ################################

################################################################################

Reading input f i l e input . h5 . . .

/ s imu la t i on / s im but f e :

/ outputRequest / output r eque s t . . . done

/mesh/mesh butfe . . . done

/ phys ica lModel / pe r f e c tE l e c t r i cConduc to r . . . done

/ globalEnvironment / g l oba l environment . . . done

/ e l e c t romagnet i cSource /sourceOnMesh/ e l e c t romagne t i c source . . . done

/ l i n k / l i n k . . . done

/ phys ica lModel /vacuum . . . done

/ phys ica lModel /volume/ABC . . . done

Mesh conver s i on . . .

Line l ength range : 3 .24E−03 to 1 .45E−02

Tr iang l e area range : 9 .57E−07 to 1 .27E−04

Tetrahedron volume range : 7 .27E−10 to 1 .09E−06

Sources determinat ion . . .

Edges used f o r E− f i e l d e x c i t a t i o n : 15283/15507

Reading s imu la t i on parameters . . .

Number o f threads / co r e s : 8/8

Precond i t i one r / s o l v e r : j a c ob i / cg

Matrix assembly us ing 8 thread ( s ) . . . done

Computation us ing 8 thread ( s ) . . . done

################################################################################

Total computat ional time : 0 4 : 0 5 : 5 2 .

Fig. 4.10 BUTFE module: Simulation log.

In sources determination, the solver identifies excitation(s) given by the BUTFE EXC

module. It merges more excitations of the same kind together and adapts them to match

boundary conditions. That is why the number of used excitation edges can be lower than

the total number of edges of the excitation layer. In the moment when the user sets

the excitation (in BUTFE EXC), the boundary conditions are not yet known.

Information about applied simulation parameters is followed by brief information about

the progress and total computational time.

Actual progress of the simulation can be monitored in the framework through the win-

dow “Follow simulation” (see figure 4.11).

Fig. 4.11 BUTFE module: Follow simulation.

The module offers the possibility of a controlled end of the simulation from the fra-

mework. In this case, the output file will only contain results computed so far. Information

about a premature end of the simulation is noted in the log file.
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4.1.4 Mathematical background

The BUTFE solver is based on time domain Maxwell equations in differential form [10]:

∇×E (r, t) = −µ0µ̂r

∂H (r, t)

∂t
(4.1a)

∇×H (r, t) = ǫ0ǫ̂r
∂E (r, t)

∂t
+ σ̂E (r, t) + Jimp (r, t) (4.1b)

∇ · [ǫ0ǫ̂rE (r, t)] = ρ (4.1c)

∇ · [µ0µ̂rH (r, t)] = 0 (4.1d)

where the meaning of the symbols is as follows

E (r, t) ,H (r, t) electric (V/m) and magnetic (A/m) field intensity

Jimp (r, t) electric current density (A/m3)

ǫ0, µ0 free-space permittivity (8.854 · 10−12 F/m)

and permeability (4π · 10−7 H/m)

ǫ̂r, µ̂r relative permittivity and permeability tensors

σ̂ electric conductivity tensor (S/m)

ρ electric charge density (C/m3)

Equation 4.1 describes behavior of the electromagnetic field in the computation do-

main. Behavior on a PEC surface is given by Dirichlet boundary condition [10]:

~n×E (r, t) = 0 r ∈ PEC (4.2)

where ~n is outward unit vector normal to the surface. We employ also a first-order

absorbing boundary condition, where the scattered electric field Esc (r, t) is required to

satisfy [9]:

~n×

[

1

µ0µ̂r

∇×Esc (r, t)

]

+ Y0

∂

∂t

[

~n× ~n×Esc (r, t)
]

= 0 r ∈ ABC (4.3)

where Y0 =
√

ǫ0
µ0

is free-space admittance. Assuming total electric field as sum of

scattered and incident field E = Esc +Einc, we can write

~n×

[

1

µ0µ̂r

∇×E (r, t)

]

+Y0

∂

∂t

[

~n× ~n×E (r, t)
]

=

~n×

[

1

µ0µ̂r

∇×Einc (r, t)

]

+Y0

∂

∂t

[

~n× ~n×Einc (r, t)
]

r ∈ ABC (4.4)

Now we start from Maxwell equations 4.1. Dividing 4.1a by the permeability tensor

µ̂ = µ0µ̂r, applying rotation and substituting time derivative of 4.1b into equation 4.1a

yields a time-domain wave equation

∇×

[

1

µ0µ̂r

∇×E (r, t)

]

+ ǫ0ǫ̂r
∂2E (r, t)

∂t2
+ σ̂

∂E (r, t)

∂t
+

∂Jimp (r, t)

∂t
= 0 r ∈ V (4.5)
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Within the residual minimization, we multiply 4.5 by the testing function Ni (r) (same

as the basis function - the Galerkin’s approach) and integrate over the computation domain

˚

V

Ni (r) ·

{

∇×

[

1

µ0µ̂r

∇×E (r, t)

]}

dV +

˚

V

Ni (r) · ǫ0ǫ̂r
∂2E (r, t)

∂t2
dV

+

˚

V

Ni (r) · σ̂
∂E (r, t)

∂t
dV +

˚

V

Ni (r) ·
∂Jimp (r, t)

∂t
dV = 0 r ∈ V (4.6)

Involving vector identity a · (∇× b) = (∇× a) · b −∇ · (a× b) in the first term, we

can write
˚

V

Ni (r) ·

{

∇×

[

1

µ0µ̂r

∇×E (r, t)

]}

dV =

˚

V

[

∇×Ni (r)

]

·

[

1

µ0µ̂r

∇×E (r, t)

]

dV (4.7)

−

˚

V

∇ ·

{

Ni (r)×

[

1

µ0µ̂r

∇×E (r, t)

]}

dV

where the last term can be rewritten using divergence theorem
˝

V

∇ · f dV =
‚

S

~n · f dS

and vector identity (a× b) · c = −a · (c× b) leading the first term of equation 4.5 into

˚

V

Ni (r) ·

{

∇×

[

1

µ0µ̂r

∇×E (r, t)

]}

dV =

˚

V

[

∇×Ni (r)

]

·

[

1

µ0µ̂r

∇×E (r, t)

]

dV (4.8)

+

‹

S

Ni (r) ·

{

~n×

[

1

µ0µ̂r

∇×E (r, t)

]}

dS

The surface integral in the 4.8 is related to the boundary conditions. It vanishes on

PEC due to 4.2. For the absorbing boundary condition (ABC) we substitute 4.4 and get

˚

V

Ni (r) ·

{

∇×

[

1

µ0µ̂r

∇×E (r, t)

]}

dV =

˚

V

[

∇×Ni (r)

]

·

[

1

µ0µ̂r

∇×E (r, t)

]

dV

−

¨

SABC

Ni (r) ·

{

Y0

∂

∂t

[

~n× ~n×E (r, t)
]

}

dS (4.9)

+

¨

SABC

Ni (r) ·

{

~n×

[

1

µ0µ̂r

∇×Einc (r, t)

]}

dS

+

¨

SABC

Ni (r) ·

{

Y0

∂

∂t

[

~n× ~n×Einc (r, t)
]

}

dS
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We get more convenient form using vector identities:

˚

V

Ni (r) ·

{

∇×

[

1

µ0µ̂r

∇×E (r, t)

]}

dV =

˚

V

[

∇×Ni (r)

]

·

[

1

µ0µ̂r

∇×E (r, t)

]

dV

+

¨

SABC

Y0

∂

∂t

[

~n×Ni (r)
]

·
[

~n×E (r, t)
]

dS (4.10)

−

¨

SABC

[

~n×Ni (r)

]

·

[

1

µ0µ̂r

∇×Einc (r, t)

]

dS

−

¨

SABC

Y0

∂

∂t

[

~n×Ni (r)
]

·
[

~n×Einc (r, t)
]

dS

Equation 4.10 is substituted back into the main system 4.6. Field quantities over given

tetrahedron are approximated using

U (r, t) ≈
6

∑

j=1

Ñj (r)uj (t) (4.11)

where U (r, t) is approximated field quantity (continuous), Nj (r) is spatially-dependent

basis function and uj (t) is time-dependent edge coefficient of the approximated quantity

for j -th edge of given tetrahedron.
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The system of equations before time discretization becomes:

Se (t) +Tǫ∂
2e (t)

∂t2
+Tσ ∂e (t)

∂t
+Q

∂e (t)

∂t
−Peinc (t)−Q

∂einc (t)

∂t
+ f = 0 (4.12)

where

Si,j =

˚

V

[

∇×Ni (r)

]

·

[

1

µ0µ̂r

∇×Nj (r)

]

dV (4.13a)

T ǫ
i,j =

˚

V

Ni (r) · ǫ0ǫ̂rNj (r) dV (4.13b)

T σ
i,j =

˚

V

Ni (r) · σ̂Nj (r) dV (4.13c)

Pi,j =

¨

SABC

[

~n×Ni (r)

]

·

[

1

µ0µ̂r

∇×Nj (r)

]

dS (4.13d)

Qi,j =

¨

SABC

Y0

[

~n×Ni (r)
]

·
[

~n×Nj (r)
]

dS (4.13e)

fi =

˚

V

Ni (r) ·
∂Jimp (r, t)

∂t
dV (4.13f)

We employ Newmark method with β = 1/4 and γ = 1/2. The relevant substitutions

are:

u(t) ≈
1

4
un+1 +

1

2
un +

1

4
un−1 (4.14a)

∂u(t)

∂t
≈

1

2∆t
un+1 −

1

2∆t
un−1 (4.14b)

∂2u(t)

∂t2
≈

1

(∆t)
2u

n+1 −
2

(∆t)
2u

n +
1

(∆t)
2u

n−1 (4.14c)

Applying time discretization 4.14 on 4.12 forms resulting system of linear equations

[

1

4
S+

1

(∆t)
2T

ǫ +
1

2∆t
Tσ +

1

2∆t
Q

]

e{n+1} =

[

−
1

2
S+

2

(∆t)
2T

ǫ

]

e{n}

+

[

−
1

4
S−

1

(∆t)
2T

ǫ +
1

2∆t
Tσ +

1

2∆t
Q

]

e{n−1}

+

[

1

4
P+

1

2∆t
Q

]

e
{n+1}
inc +

[

1

2
P

]

e
{n}
inc +

[

1

4
P−

1

2∆t
Q

]

e
{n−1}
inc (4.15)

−
1

4
f{n+1} −

1

2
f{n} −

1

4
f{n−1}

where
[

1
4
S+ 1

(∆t)2
Tǫ + 1

2∆t
Tσ + 1

2∆t
Q
]

is the coefficient matrix, vector e{n+1} represents

unknown field coefficients in the most advanced time step and the rest is right-hand vector

formed by already known quantities.

- 24 -



Numerical solutions of EMC problems of small airplanes

Dispersive media

The solver can handle electrically dispersive materials. The following text presents a brief

description of the modeling procedure. For more detail see [10]. The time-invariant permit-

tivity tensor ǫ̂r in the Ampere law 4.1b has to be replaced by a Debye model representation.

Amelet-HDF specification [34] defines a multipole Debye model as

ǫ̂ (ω) = ǫ̂∞ + (ǫ̂s − ǫ̂∞)
P
∑

p=1

Gp

1 + jωτp
where

P
∑

p=1

Gp = 1 (4.16)

where ǫ̂∞ is permittivity at optical frequency, ǫ̂s is permittivity at zero frequency, Gp and

τp are weight and characteristic relaxation time of p-th pole respectively. The modeling

procedure [10] assumes

↔
ǫ (ω) =

↔
ǫ∞ +

↔
χe (ω) =

↔
ǫ∞ +

Ne
∑

p=1

↔
ae,p

jω + be,p
(4.17)

where
↔
ǫ∞ is permittivity tensor at optical frequency and

↔
a and b are parameters of

the material. One can see that we get the same result using

↔
ae,p =

Gp

τp
(ǫ̂s − ǫ̂∞) and be,p =

1

τp
(4.18)

The arrow notation of a tensor was used in order to denote relation between user definition

(Amelet-HDF) and the modeling approach[10]. Now, we return to the original tensor

notation. Applying Debye model and neglecting source terms in 4.5, we obtain [10]

∇×

[

1

µ0µ̂r

∇×E (r, t)

]

+ ǫ0ǫ̂∞
∂2E (r, t)

∂t2
+ ǫ0χ̂e (t) ∗

∂2E (r, t)

∂t2
= 0 r ∈ V (4.19)

Since the program stores ǫ∞ in the same place as the original ǫ̂r, the third term of 4.19

containing time convolution makes the only difference from non-dispersive case. Applying

the steps described in [10] will result in the following changes. Matrix Tǫ from 4.13b will

change into [10]

T ǫ
i,j =

˚

V

Ni (r) · ǫ0ǫ̂∞Nj (r) dV +Φ0
i,j (4.20)

where

Φ0
i,j =

P
∑

p=1

Gpǫ0

(

1− e
− ∆t

2τp

)

˚

V

Ni (r) · (ǫ̂s − ǫ̂∞)Nj (r) dV (4.21)

In addition, right hand of the system of equations 4.15 will get additional term [10]

−
1

(∆t)
2Ψ

{n}
e (4.22)

where

Ψ{n}
e = Φ1/2

[

e{n} − 2e{n−1} + e{n−2}
]

+
P
∑

p=1

e
−∆t

τp Ψ{n−1}
e (4.23)

Φ
1/2
i,j =

P
∑

p=1

Gpǫ0

(

1− e
− ∆t

2τp

)(

e
− ∆t

2τp

)

˚

V

Ni (r) · (ǫ̂s − ǫ̂∞)Nj (r) dV (4.24)
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where

Tw
i,j = Lw

ˆ

s

Nw
i (s) ·Nw

j (s) ds (4.28a)

Rw
i,j = Rw

ˆ

s

Nw
i (s) ·Nw

j (s) ds (4.28b)

Sw
i,j =

Lw

µǫ

ˆ

s

∇Nw
i (s) · ∇Nw

j (s) ds (4.28c)

Symbol i (t) represents vector of nodal coefficients of the wire current, Nw denotes basis

function of the 1D wire mesh and fw is time-dependent excitation vector with elements

fw
i (t) =

ˆ

s

Nw
i (s)

∂

∂t

(

E (r, t) · ŝ|r=r0
+ V imp (s, t)

)

ds (4.29)

In order to achieve symmetric excitation between solution of the wire and surrounding

area so that achieve stable formulation, a radial weighting function g (r) satisfying

ˆ

r≥a

2πrg (r) dr = 1 (4.30)

has been introduced:

g (r) =



















0 : r < a

1+cos(πr/r0)

π(r20−a2)−2r20/π(1+cos(πa/r0)+πa/r0 sin(πa/r0))
: a ≤ r ≤ r0

0 : r > r0

(4.31)

Fig. 4.13 Radial weighting function g (r) for a = 0.1 and r0 = 1.7

The excitation vector 4.29 can be now rewritten into

fw
i (t) =

ˆ

s

Nw
i (s)

∂Vimp (s, t)

∂t
ds+

Nedge
∑

j=0

∂ej (t)

∂t

˚

V

Nw
i (s) g (r)Nj (r) · ŝ dV (4.32)
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In order to make the excitation symmetric, current density is written as

Jimp (r, t) =

Nnode
∑

i=1

Nw
i (s) ii (t) g (r) ŝ (4.33)

Excitation vector of the equation for the volumetric region will be given as

fi (t) = −

Nnode
∑

i=1

∂ii (t)

∂t

˚

V

Nw
i (s) g (r)Ni (r) · ŝ dV (4.34)

The final system of equations (omitting ABC and dispersive media) can be now as-

sembled as follows
[

Tǫ 0

0 Tw

]

∂2

∂t2

[

e (t)

i (t)

]

+

[

Tσ Pw⊤

−Pw Rw

]

∂

∂t

[

e (t)

i (t)

]

+

[

S 0

0 Sw

][

e (t)

i (t)

]

=

[

0

f̃w

]

(4.35)

where the coupling matrix Pw and the remaining excitation vector f̃w are defined as

Pw
i,j =

˚

V

Nw
i (s) · g (r) ·Nj (r) · ŝ dV (4.36a)

f̃w
i =

ˆ

s

Nw
i (s)

∂Vimp (s, t)

∂t
ds (4.36b)

Magnetic field

The solver is computing only coefficients of the electric field. However the magnetic field

can be obtained by taking advantage of Faraday law 4.1a which can be rewritten into

H (r, t) = −
1

µ0µ̂r

ˆ

t

∇×E (r, t) dt (4.37)

Since the electric field is approximated over the element as

Ẽ (r, t) ≈

6
∑

j=1

Ñj (r) ej (t) (4.38)

the magnetic field over an element can be obtained as follows

H̃ (r, t) ≈ −
1

µ0µ̂r

6
∑

j=1

∇× Ñj (r)

ˆ

t

ej (t) dt (4.39)

which requires only 18 new coefficients (6 edge-oriented shape functions × 3 Cartesian

components) and additional storage for the time integral of the coefficients of the electric

field.
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Anisotropy

Despite the fact that BUTFE is not intended to handle anisotropic materials, it accepts

material definition in the form of a full 3×3 tensor. It is rather preparation for an ani-

sotropic PML [14, 15]. Such PML implementations usually require adding up to 26 new

domains around the propagation media, where each domain absorbs an incoming wave in a

given direction. All the domains behave in the same way. They differ only in the direction

of the absorption (i.e. content of the material tensor).

Instead of defining fixed surrounding domains, an application of a rotation matrix

has been introduced. The rotation matrix modifies the content of the original material

tensor just as we would physically rotate the material inside the structure. Apart from

the planned usage for PML (virtual rotating of the surrounding domains), the rotation

can be user-defined through an Amelet-HDF file interface in case of different orientation

of an anisotropic material with respect to the global coordinate system.

The following replacements have been made

ǫ̂ ⇒ R (ǫ0ǫ̂r)R
⊤,

1

µ̂
⇒ R⊤−1 1

µ0µ̂r

R−1, σ̂ ⇒ Rσ̂R⊤ (4.40)

where the original (relative) material tensors are

ǫ̂r =







ǫxxr ǫxyr ǫxzr
ǫyxr ǫyyr ǫyzr
ǫzxr ǫzyr ǫzzr






, µ̂r =







µxx µxy µxz

µyx µyy µyz

µzx µzy µzz






, σ̂ =







σxx σxy σxz

σyx σyy σyz

σzx σzy σzz






(4.41)

and the rotation matrix is defined as

R =







Xx Xy Xz

Y x Y y Y z

Zx Zy Zz






(4.42)

Here, the X,Y,Z represent coordinates of the orthonormal basis of a local coordinate

system expressed in terms of the global coordinate system (x, y, z). Note that the default

rotation matrix is the identity matrix (no rotation is applied).
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Summary

This sub-chapter presents a mathematical formulation of the BUTFE solver considering

all the approaches presented so far. It includes ABC, Debye media and thin-wire approxi-

mation of N wires. The resulting system of equations is as follows

[

1

(∆t)
2A+

1

2∆t
B+

1

4
C

]

v{n+1} =

[

2

(∆t)
2A−

1

2
C

]

v{n}

+

[

−
1

(∆t)
2A+

1

2∆t
B−

1

4
C

]

v{n−1}

+

[

1

2∆t
D+

1

4
E

]

v
{n+1}
inc +

[

1

2
E

]

v
{n}
inc +

[

−
1

2∆t
D+

1

4
E

]

v
{n−1}
inc

−
1

4
f{n+1} −

1

2
f{n} −

1

4
f{n−1} (4.43a)

+
1

4
g{n+1} +

1

2
g{n} +

1

4
g{n−1}

−
1

(∆t)
2Ψ

{n}
e

where
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(4.43b)

Ψ{n}
e = Φ1/2
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and

Si,j =

˚

V

[

∇×Ni (r)

]

·

[

R⊤−1 1

µ0µ̂r

R−1∇×Nj (r)

]

dV

T ǫ
i,j =

˚

V

Ni (r) ·R (ǫ0ǫ̂∞)R⊤Nj (r) dV

T σ
i,j =

˚

V

Ni (r) ·Rσ̂R⊤Nj (r) dV

Pi,j =

¨

SABC

[

~n×Ni (r)

]

·

[

R⊤−1 1

µ0µ̂r

R−1∇×Nj (r)

]

dS

Qi,j =

¨

SABC

Y0

[

~n×Ni (r)
]

·
[

~n×Nj (r)
]

dS (4.43c)

Φ0
i,j =

P
∑

p=1

Gpǫ0

(

1− e
− ∆t

2τp

)

˚

V

Ni (r) ·R (ǫ̂s,p − ǫ̂∞)R⊤Nj (r) dV

Φ
1/2
i,j =

P
∑

p=1

Gpǫ0

(

1− e
− ∆t

2τp

)(

e
− ∆t

2τp

)

˚

V

Ni (r) ·R (ǫ̂s,p − ǫ̂∞)R⊤Nj (r) dV

f̃i =

˚

V

Ni (r) ·
∂Jimp (r, t)

∂t
dV

(

f̃w
n

)

i
=

ˆ

s

(Nw
n )i (s)

∂Vn,imp (s, t)

∂t
ds

Note that the first two rows of the final system of equations 4.43a handle the basic

electric field behavior and its coupling with wire currents. The following row (containing

vinc) takes care of the excitation defined by a boundary condition. Vector f represents

current source and g stands for voltage source. Vectors f and g are set to zero by default

(standard BUTFE code does not consider such sources). Matrix Φ and vector Ψ are

related to dispersive media.

The boundary excitation Einc (r, t) is approximated as

Ẽinc (r, t) ≈

6
∑

j=1

Nj (r) (einc (t))j (4.44)

which may cause some inaccuracy. However passing analytically computed results of terms

∇ × Einc (r, t) and ~n × Einc (r, t) (see 4.10) as inputs of the solver would complicate

implementation into the framework significantly.

Approximation of the magnetic field over an element is given by

H̃ (r, t) ≈ −R⊤−1 1

µ0µ̂r

R−1

6
∑

j=1

∇× Ñj (r)

ˆ

t

ej (t) dt (4.45)

The formula contains in addition to the original one 4.39 rotation of the material tensor.
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4.1.5 FEM approximation

Approximation of desired quantity is a key point of the finite element method. The integral

of an unknown field quantity is replaced by a multiplication of unknown coefficients and

integrals of the basis functions which are easy to determine.

The BUTFE module expresses the unknown field quantity using coefficients and basis

functions. Various mathematical operations applied on basis functions lead to matrices

of coefficients for separate tetrahedrons. A left-right multiplication by a coupling matrix

forms matrices of coefficients related to global edges. The direction of the global edges is

set from a node with a lower number to a node with a higher number.

Since the BUTFE solver employs 1D nodal elements for an approximation of wire

currents and 3D edge elements for an approximation of the electric field, the description

has been separated into two subchapters.

Aproximation in 1D

1 2

l12

l1P lP2P

Fig. 4.14 Line segment

One-dimensional approximation is used for discreti-

zation of wires. Wires are discretized into a set of line

segments. Each segment (element) is expressed in terms

of simplex coordinates

ξ1 (s) =
lP2

l12
ξ2 (s) =

l1P
l12

s ∈ [1, 2] (4.46)

where P is the point of interest on the line segment and l denotes the length of a line

formed by given nodes (see fig. 4.14). It is clear that the i-th simplex coordinate takes

value 1 at the i -th node, vanishes on the other one,
∑2

i=1 ξi (s) = 1 and ξi (s) ∈ [0, 1].

1 2

Ñw
1 Ñw

2

0

1

Fig. 4.15 Nodal shape function

Shape function is a node-oriented scalar function de-

fined as follows:

Ñw
1 (s) = ξ1 (s) , Ñw

2 (s) = ξ2 (s) (4.47)

Approximation in 3D

1

23

4

l12l13
l14

l23

l24l34

P

Fig. 4.16 Tetrahedron

The structure is discretized into a set of tetrahedrons

where each tetrahedron is expressed in terms of simplex

coordinates. The local simplex coordinate system ζ1..4

satisfies for a given tetrahedron

ζ1 (r) =
VP234

V1234

ζ2 (r) =
V1P34

V1234

ζ3 (r) =
V12P4

V1234

ζ4 (r) =
V123P

V1234

r ∈ V (4.48)

where P is the point of interest inside the tetrahedron

and V denotes the volume of a tetrahedron formed by

given nodes (see fig. 4.16). It is clear that the i-th simplex coordinate takes value 1 at i -th

node, vanishes on the opposite face,
∑4

i=1 ζi (r) = 1 and ζi (r) ∈ [0, 1].
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The simplex coefficients a1..d4 preserve the following relation between the simplex and

Cartesian system:

ζi (r) = ai + biP
x + ciP

y + diP
z r ∈ V (4.49)

where P x, P y and P z are the Cartesian components of the point of interest.

Shape function is edge-oriented vector function defined as follows:

Ñk (r) = li,j

[

ζi (r)∇ζj (r)− ζj (r)∇ζi (r)
]

k = 1..6 (4.50)

Edge k Node i Node j

1 1 2

2 1 3

3 1 4

4 2 3

5 2 4

6 3 4

Tab. 4.1 Edge numbering

where li,j is the length of the k -th edge going from the i -th

towards the j -th node. Orientation of the local edges rela-

ted to a given shape function and their node numbers are

presented in figure 4.16 and table 4.1. Figure 4.17 shows

the geometrical representation of a shape function. Arrows

represent the shape function related to the edge marked by

a solid line. One may see that the shape function takes on

the remaining (dotted) edges only the perpendicular com-

ponent (or zero value). A tangential component along any

edge can be set only using the coefficient and shape function belonging to that edge. Since

the relevant coefficient value is shared between adjacent elements, tangential continuity of

the computed field is guaranteed.

Fig. 4.17 Shape function of the tetrahedron: 3D view (left), top view (right)

For further information about obtaining simplex coefficients and computation with

basis functions see [42].
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4.1.6 MATLAB code

Although most of the thesis is related to the code written in C and the MATLAB code

is rather old, the MATLAB code is easier and more transparent to describe the code

developed in MATLAB when compared with the C code. The system of orientation of

global edges, handling simplex coefficients, usage of coupling matrix and treatment of the

main time domain loop remained more or less the same.

The former state of the module was described in the technical report for the project [43].

The code was divided into three parts. The first one solved the eigenmode analysis, the se-

cond one solved propagation of the EM wave in the frequency domain and the last one

analyzed the structure in the time domain. A description of these codes will follow.

Eigenmode analysis

Parameters At the beginning it is necessary to set all constants and controlling vari-

ables. The variables mode no, accuracy and sigma set the parameters of the MATLAB

function eigs() that computes eigenvalues. The variable field determines whether the elect-

ric or magnetic field distribution is computed. The sequence number of the mode to display

was given by the variable disp mode.

c = 299792458;
e0 = 8.854187817e−12;
m0 = pi ∗4e−7;
mesh path = ’GiD mesh .h5’;
mode no = 100;
accuracy = 1e−10;
sigma = 20;
disp mode = 1;
field = ’E’;

Code 4.1 Setting of the constants and parameters [43].

Import of the mesh The mesh is imported from the Amelet-HDF file in the path defi-

ned by the variable mesh path. MATLAB has implemented two methods of the accessing

the HDF5 format: the “high-level” and the “low-level” one. The first one is more compact

and easier to implement, the second one is similar to HDF5 C API [44]. Due to the lack

of specific functions in the high-level access, the low-level one was used.

Code 4.2 shows opening of the input file and loading of the list of nodes. The file is

opened as read-only using the default file access properties. The list of nodes is loaded from

the dataset /mesh/gid/all/nodes. Since the program GiD uses the path /mesh/gid/all8,

all the paths in the mesh part of the code are set absolutely. Each identifier has to be

closed using an appropriate closing function.

file fid = H5F.open(mesh path ,’H5F ACC RDONLY ’,’H5P DEFAULT ’);

object nodes did = H5D.open(file fid ,’/mesh/gid/all/nodes ’);
NODES = H5D.read( object nodes did ,’H5ML DEFAULT ’,’H5S ALL ’ ,...
’H5S ALL ’,’H5P DEFAULT ’)’;
H5D. close ( object nodes did );

Code 4.2 Opening the HDF5 file, loading of the list of the nodes [43].

8 A newer version of the GiD plug-in uses /mesh/gid/unstructured.
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The list of elements is stored in two datasets elementTypes and elementNodes. These

datasets are loaded in the same way as in the case of the nodes. For computation purpo-

ses, they are converted into matrices containing elements of the same type. The dataset

elementNodes is divided into chunks with the size defined by the dataset elementTypes

according to the Amelet-HDF documentation [34].

The tool looks for the following (unstructured) shape types: bar2, tri3 and tetra4

(bar2 and tri3 in the case of the 2D analysis). After loading all the elements, they have

to be formed in groups in order to distinguish between individual parts of the mesh.

The /mesh/gid/all/groupGroup is not taken into account.

All main elements are stored in the matrix ELEMENTS. In the case of the 3D compu-

tation, the main elements are tetrahedrons. The number of rows equals the number of

elements in the mesh.

Triangles (or eventually lines) are used only for the description of the boundary con-

ditions. The program looks for PEC and PMC. If the field variable is set to ’E’ (electric

field), the program creates the list of PEC edges EGred in order to allow a reduction of

the final system of equations.

The list of global numbered edges is created as follows:

• all possible combinations of the nodes according to the elements are created,

• they are sorted by node number,

• only unique combinations form the list of global numbered edges.

Thanks to the previous procedure, each global edge is oriented from the node with a smaller

number to the node with a higher number. The list of PEC edges EGred is converted from

the two-column matrix containing node numbers into a list

EDGES = unique( sort ([ ELEMENTS (:,1) ELEMENTS (: ,2);
ELEMENTS (:,1) ELEMENTS (: ,3);
ELEMENTS (:,1) ELEMENTS (: ,4);
ELEMENTS (:,2) ELEMENTS (: ,3);
ELEMENTS (:,2) ELEMENTS (: ,4);
ELEMENTS (:,3) ELEMENTS (:,4)],2),’rows’);

[temp ,EGred] = ismember(EGred ,EDGES ,’rows’);

[temp ,ind] = ismember( sort ([ ELEMENTS (:,1) ELEMENTS (: ,2);
ELEMENTS (:,1) ELEMENTS (: ,3);
ELEMENTS (:,1) ELEMENTS (: ,4);
ELEMENTS (:,2) ELEMENTS (: ,3);
ELEMENTS (:,2) ELEMENTS (: ,4);
ELEMENTS (:,3) ELEMENTS (:,4)],2),EDGES ,’rows’);

ELEMENTS (: ,6:30) = zeros( s ize (ELEMENTS ,1) ,25);
ELEMENTS (: ,6:11) = reshape(ind , s ize (ELEMENTS ,1) ,6);

Code 4.3 Global edges numbering, the matrix of the elements [43].

of indices connected to the list of the global edges EDGES. The remaining half of the Code 4.3

incorporates information about which edges it consists of. This will be stored in the matrix

ELEMENTS.
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Subsidiary variables This step creates matrices containing information about material

properties. The properties are set in GiD through the name of a layer. The name syntax

is as follows: <real name>#e=<er x>;<er y>;<er z>#m=<mr x>;<mr y>;<mr z>, where:

<real name> is the name of the layer,

<er x> means the relative permittivity in a given direction and

<mr x> the relative permeability in a given direction.

The resulting variable materials contains ID and 3 diagonal components of the permitti-

vity and permeability tensor for each material. Subsidiary matrices Er and Mr store these

material components (xx, yy and zz ) for each element.

materials = [unique(ELEMENTS (: ,5)) ...
zeros(numel(unique(ELEMENTS (: ,5))) ,6)];
for k = 1: s ize (materials ,1)

temp = regexp(NAMES{materials(k)}, ’#e=([i0−9.\−+]∗);([i0−9.\−...
+]∗);([i0−9.\−+]∗)’,’tokens ’);
materials(k ,2:4) = str2double(temp {:});
temp = regexp(NAMES{materials(k)}, ’#m=([i0−9.\−+]∗);([i0−9.\−...
+]∗);([i0−9.\−+]∗)’,’tokens ’);
materials(k ,5:7) = str2double(temp {:});
Er(ELEMENTS (: ,5)== materials(k,1) ,:) = ...
repmat(materials(k,2:4) ,sum(ELEMENTS (: ,5)== materials(k,1)) ,1);
Mr(ELEMENTS (: ,5)== materials(k,1) ,:) = ...
repmat(materials(k,5:7) ,sum(ELEMENTS (: ,5)== materials(k,1)) ,1);

end

Code 4.4 Subsidiary variables materials, Er and Mr [43].

In order to efficiently compute the rest of the subsidiary variables, the matrix ELM con-

taining all the coordinates of each element is created. The tetrahedron’s volumes (their

sextuple’s) are stored in the 12-th column of the matrix ELEMENTS. In the 2D case, doubles

of the triangle’s areas are stored in the 8-th column.

Matrix l stores lengths of the (global) edges. Vector b1 contains the derivatives of

the first simplex coordinate of all the elements along the x axis. The remaining coefficients

b2...d4 are derived similarly.

A list of non-reduced edges EGnr is derived from the list of all edges as the complement

of the reduced edges EGred.

ELM = double ([ NODES(ELEMENTS (: ,1) ,1:3) NODES(ELEMENTS (: ,2) ,1:3) ...
NODES(ELEMENTS (: ,3) ,1:3) NODES(ELEMENTS (: ,4) ,1:3)]);
ELEMENTS (: ,12) = ELM (: ,1).∗ ELM (: ,8).∗ ELM(:,6) − ...
ELM (: ,1).∗ ELM (: ,5).∗ ELM(:,9) + ELM (: ,4).∗ ELM (: ,2).∗ ELM(:,9) − ...
ELM (: ,4).∗ ELM (: ,8).∗ ELM(:,3) − ELM (: ,7).∗ ELM (: ,2).∗ ELM(:,6) + ...
ELM (: ,7).∗ ELM (: ,5).∗ ELM(:,3) + ELM (: ,1).∗ ELM (: ,5).∗ ELM (: ,12) − ...
ELM (: ,1).∗ ELM (: ,11).∗ ELM(:,6) − ELM (: ,4).∗ ELM (: ,2).∗ ELM (: ,12) + ...
ELM (: ,4).∗ ELM (: ,11).∗ ELM(:,3) + ELM (: ,10).∗ ELM (: ,2).∗ ELM(:,6) − ...
ELM (: ,10).∗ ELM (: ,5).∗ ELM(:,3) − ELM (: ,1).∗ ELM (: ,8).∗ ELM (: ,12) + ...
ELM (: ,1).∗ ELM (: ,11).∗ ELM(:,9) + ELM (: ,7).∗ ELM (: ,2).∗ ELM (: ,12) − ...
ELM (: ,7).∗ ELM (: ,11).∗ ELM(:,3) − ELM (: ,10).∗ ELM (: ,2).∗ ELM(:,9) + ...
ELM (: ,10).∗ ELM (: ,8).∗ ELM(:,3) + ELM (: ,4).∗ ELM (: ,8).∗ ELM (: ,12) − ...
ELM (: ,4).∗ ELM (: ,11).∗ ELM(:,9) − ELM (: ,7).∗ ELM (: ,5).∗ ELM (: ,12) + ...
ELM (: ,7).∗ ELM (: ,11).∗ ELM(:,6) + ELM (: ,10).∗ ELM (: ,5).∗ ELM(:,9) − ...
ELM (: ,10).∗ ELM (: ,8).∗ ELM (: ,6);

l = sqrt ([sum((ELM(:,4:6)−ELM (: ,1:3)).^2 ,2) ...
sum((ELM(:,7:9)−ELM (: ,1:3)).^2 ,2) ...
sum((ELM(:,10:12)−ELM (: ,1:3)).^2 ,2) ...
sum((ELM(:,7:9)−ELM (: ,4:6)).^2 ,2) ...
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sum((ELM(:,10:12)−ELM (: ,4:6)).^2 ,2) ...
sum((ELM(:,10:12)−ELM (: ,7:9)).^2 ,2)]);

b1 = (− (ELM (: ,8).∗ ELM (: ,12) − ELM (: ,9).∗ ELM (: ,11)) + ...
(ELM (: ,5).∗ ELM (: ,12) − ELM (: ,6).∗ ELM (: ,11)) − ...
(ELM (: ,5).∗ ELM(:,9) − ELM (: ,6).∗ ELM (: ,8)))./( ELEMENTS (: ,12));

EGnr = setdiff (1:EGn ,EGred );

Code 4.5 Subsidiary variables ELM, l and derivations of the simplex coordinates [43].

Coupling matrix The coupling matrix is created in the Code 4.6. Vector Cl determines

the local numbers(edges), vector Cg determines the global numbers and vector Cv contains

values 1 or -1. The value 1 is written in the case of identical directions of the local and

corresponding global edge, value -1 is written in the case of opposite directions. The size

of the coupling matrix is given as (number of edges per element · ELn) × EGn.

Cl = 1:ELn ∗6;
Cg = reshape(ELEMENTS (:,6:11)’,1,ELn ∗6);
Cv = reshape([−1+(ELEMENTS(:,1)<ELEMENTS (: ,2))∗2 ...
−1+(ELEMENTS(:,1)<ELEMENTS (: ,3))∗2 ...
−1+(ELEMENTS(:,1)<ELEMENTS (: ,4))∗2 ...
−1+(ELEMENTS(:,2)<ELEMENTS (: ,3))∗2 ...
−1+(ELEMENTS(:,2)<ELEMENTS (: ,4))∗2 ...
−1+(ELEMENTS(:,3)<ELEMENTS (:,4))∗2]’,1,ELn ∗6);
C = sparse(Cl ,Cg ,Cv ,ELn∗6,EGn);

Code 4.6 Generation of the coupling matrix [43].

Matrices of the coefficients In order to speed-up the run of the program, only the up-

per triangular part and the diagonal of the matrices of the coefficients are assembled. The

lower triangular part is added at the end of the creation process.

Matrices Se and Te contain the coefficients for the final system of equations. Every row

represents the upper triangular part with the diagonal of each square matrix originally

of size 6 (3 for a 2D case). Code 4.7 shows the assembly of matrix SE characterizing

the
´

Ω
∇×

→

Ni ·∇×
→

Nj dΩ. The code converts the coefficients represented by 21 values

per each element into a symmetric diagonal matrix of coefficients StE. Coefficients are

associated thanks to the coupling matrix C and the (PEC)boundary condition is applied.

The resulting matrix SE is ready to be used in the system of linear equations.

r = [1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6];
s = [1 2 3 4 5 6 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6];
temp = reshape(repmat (0:ELn−1,21,1),1,21∗ELn )∗6;
Xr = repmat(r,1,ELn)+temp;
Xs = repmat(s,1,ELn)+temp;

StE = reshape(Se ’,1,ELn ∗21);

StE = sparse(Xr ,Xs ,StE ,ELn∗6,ELn ∗6);

StE = StE+ tr iu (StE ,1)’;

SE = C’∗StE∗C;

SE = SE(EGnr ,EGnr);

Code 4.7 Generation of the matrix of the coefficients [43].
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Computation Computation lies in solving the eigenvalue problem. The MATLAB built-

in function eigs() is employed. It requires sparse input matrices (SE, TE) and allows to

set up the number of requested eigenvalues mode no around a value sigma with desired

accuracy accuracy. The computed field coefficients are supplemented with the zero values

at the PEC boundaries.

A list of critical frequencies is built. At the beginning, the list may include degenerated

spurious solutions. The first valid frequency is detected by the difference in at least 6

digits in two consequent values. Vector Ed is used to display the field distribution given

by disp mode.

opts = struct(’tol’,accuracy ,’disp’ ,0);
[Eq ,k] = eigs(SE ,TE ,mode no ,sigma ,opts);
[k,temp] = sort ( real ( sqrt(diag(k))));
Eq = Eq(:,temp);
E = zeros(EGn , s ize (Eq ,2));
E(EGnr ,:) = Eq;

f krit = (c/(2∗pi ))∗k;

E(:, f krit ==0) = [];
f krit ( f krit ==0) = [];
sel = logical ([0; abs( d i f f ( f krit))>1e6]);
Es = E(:,sel);
f krits = f krit (sel);
Ed = Es(:, disp mode );

Code 4.8 Computation of the electric field [43].

Post-processing The values of the electric/magnetic field in the centroids of the tetra-

hedrons are computed using the edge coefficients as Ex =
n
∑

k=1

ckN
x
k .

Expression E(ELEMENTS(:,6)) denotes computed coefficients c1 for the first edge of

each element. The front of this expression is multiplied by 1 or -1 according to the relative

orientation of the local and relevant global edge. The rest represents the basis function

Nx
k .

Ex = 0.25∗(...
(−1+(ELEMENTS(:,1)<ELEMENTS (: ,2))∗2).∗E(ELEMENTS (: ,6)).∗l(: ,1).∗...
(b2−b1 )+...
(−1+(ELEMENTS(:,1)<ELEMENTS (: ,3))∗2).∗E(ELEMENTS (: ,7)).∗l(: ,2).∗...
(b3−b1 )+...
(−1+(ELEMENTS(:,1)<ELEMENTS (: ,4))∗2).∗E(ELEMENTS (: ,8)).∗l(: ,3).∗...
(b4−b1 )+...
(−1+(ELEMENTS(:,2)<ELEMENTS (: ,3))∗2).∗E(ELEMENTS (: ,9)).∗l(: ,4).∗...
(b3−b2 )+...
(−1+(ELEMENTS(:,2)<ELEMENTS (: ,4))∗2).∗E(ELEMENTS (: ,10)).∗l(: ,5).∗...
(b4−b2 )+...
(−1+(ELEMENTS(:,3)<ELEMENTS (: ,4))∗2).∗E(ELEMENTS (: ,11)).∗l(: ,6).∗...
(b4−b3));

Code 4.9 Computation of the field component Ex [43].

The remaining field components are computed similarly. In the case of 2D computation,

one may expect only three expressions related to three edges of a triangle.
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Frequency domain propagation

Most of the steps of the program remain the same as described in the previous subchapter.

The frequency of interest has to be defined. The desired frequency f is used for the com-

putation of the free space wave number k0.

f = 3.2e8;
w2 = (2∗pi ∗f)^2;
k2 = w2∗e0∗m0;

Code 4.10 Definition of the frequency [43].

Importing the mesh, subsidiary variables, computation and coupling matrix and FE matrix

assembly can be done exactly in the same way as in the case of eigenmode analysis.

Fig. 4.18 Excitation of the structure [43].

The excitation has to be defined in or-

der to examine the frequency response of

the structure. This is realized by setting

the coefficients of appropriate global edges

via the function plot geom(). This function

displays the whole mesh of the analyzed

structure and allows to setup the exci-

tation. The edges previously denoted as

PEC are depicted with slashed lines and

can not be used for the excitation. The user

can then choose the edges to be excited

simply by clicking on them once or twice

to define their direction. This situation is depicted in figure 4.18.

The main difference is in the computation part of the code (see Code 4.11). The system

of linear equations can be solved using the Gaussian elimination. The variable EGexc is a

column vector containing coefficient values on the positions of the excitation edges.

LE = SE−k2∗TE;
EGexc = plot geom (NODES ,EDGES ,ELEMENTS ,EGred );
EGexc(EGred) = [];
E = zeros(EGn ,1);
E(EGnr ,:) = LE\EGexc;

Code 4.11 Computation of the field approximation E [43].

Coefficients of the vector EGexc corresponding to the PEC walls have to be taken out

to fit the system of equations. The resulting coefficients should be saved in appropriate

positions (non-reduced edges) in the column vector E. Once the approximation coefficients

are known, post-processing can be done in the same way as in the previous case.
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Time domain analysis

This type of analysis computes the field approximation for the defined set of time steps.

Although the formulation of the problem is derived in another domain than both the pre-

viously described programs, a lot of steps of the algorithm remains the same.

The time domain algorithm differs from the frequency domain one in the use of a time

loop. Variables for the time domain loop are set up as seen in Code 4.12.

Step = 1000;
cdt = min(pdist(NODES ))/ sqrt (3);
dt = cdt/c;
t = l inspace (dt , dt∗Step ,Step);
exc = (1−exp(−t∗f)).∗ sin (2∗pi ∗f∗t);
Y = TE/(cdt ^2) + SE/4;
Z = 2∗TE/(cdt ^2) − SE/2;
E = zeros( s ize (SE ,1) ,3);
timeline = zeros( s ize (SE ,1),Step);
EGexc(EGred) = [];

Code 4.12 Setup variables for the time domain loop [43].

The length of the loop is controlled by the user who sets the variable Step. The choice

of dt is usually made according to the Courant-Friedrichs-Lewy condition. The vector t

stores all multiples of parameter dt up to Step*dt.

The vector exc contains values of the excitation pulse in the time steps defined by

vector t. Matrices Y and Z are used for sake of the readability and lucidity of the written

code. The matrix timeline is allocated to store the column vectors E for every time step

of the analysis. Finally, the coefficients belonging to PEC walls are removed from EGexc.

The time domain loop is depicted in Code 4.13. The first line saves the coefficients of

the excitation pulse exc for the current time step step to the column vector g. In the next

run, Gaussian elimination is done and the columns of matrix E containing information

about the field approximation in last three time steps are shifted.

for step = 1:Step
g = EGexc∗exc(step);
E(:,3) = Y \ (Z∗E(:,2) − Y∗E(:,1) − g);
E(:,1) = E(: ,2);
E(:,2) = E(: ,3);
timeline (:,step) = E(: ,3);

end

Code 4.13 The time domain loop [43].

Finally, the last achieved time step E(:,3) is stored in the matrix timeline. This

matrix can be then used for depicting the change in the field distribution during the time

dedicated for the analysis.
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Fig. 4.22 Ey at point [0, 0, -0.015] m

Fig. 4.23 Ey at point [0, 0, -0.005] m

Fig. 4.24 Ey at point [0, 0, 0.0025] m

Fig. 4.25 Ey at point [0, 0, 0.1] m
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Spatial distribution of the electric field at randomly given times is depicted in figures

4.26 and 4.27. In this way, we do not try to imitate an accurate comparison. The compari-

son gives us a clear picture about the electric field distribution inside the whole structure

at a specific time (t = 2.182 ns).

Fig. 4.26 BUTFE: Electric field distribution at 2.182 ns

Fig. 4.27 COMSOL: Electric field distribution at 2.182 ns
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Shielding effectiveness of composite materials

This test case deals with modeling two composite materials: a prepreg copper mesh (PCM)

and an epoxy resin prepreg carbon fiber (ERPCF). The observed physical quantity is

frequency dependent shielding effectiveness (SE). The following text is a summary, de-

tails can be found in [48].

PCM is formed by a grid of copper wires. The wires have diameter 0.05 mm and

relative angle 89 degrees. Spatial density is 20 wires per cm. The grid is embedded in a

non-conductive epoxy resin having ǫr = 3.4. Total thickness of the sample is 0.12 mm.

ERPCF is a woven structure with fiber orientation 0/90 degrees and thickness of

0.27 mm. Relative permittivity of the non-conductive epoxy resin is about 3.4.

Both materials are replaced by a homogeneous equivalent. Material properties of

the equivalent (relative permittivity and conductivity) are provided by EMCLab of The De-

partment of Astronautical, Electrical and Energy Engineering (DIAEE) at Sapienza Uni-

versity of Rome.

(a) prepreg copper mesh (b) epoxy resin prepreg carbon fiber

Fig. 4.28 A view of the composite materials under test [48]

The homogeneous equivalents are simulated in a rectangular vacuum-filled waveguide.

A cross-section of 60 x 4 mm provides a cut-off frequency of 2.5 GHz. PML turned out to

be unreliable, therefore the waveguide is designed to be long enough to solve the problem

with unwanted reflections. The simulation is stopped before the reflections could reach

the observation point.

Fig. 4.29 GiD model

The simulation runs for 3001 time steps using ∆t = 0.217 ps. The excitation signal is

defined as

E = Emax

{(

t

tr

)pw

exp

[

−pw

(

t

tr
− 1

)]}

(4.52)

where Emax = 1 V/m, rise time tr = 5∆t, power pw = 2.
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4.1.8 Parallel performance

The code has been rewritten to work in parallel in order to follow current trends increasing

computational power. Unfortunately, the time domain solver is difficult to parallelize due

to its iterative way of working (the current iteration requires data from the previous

one). Because of this difficulty, entering and leaving the parallel segments arise more

often and the gain caused by parallel processing may be comparable or even smaller than

the overhead required for handling multiple threads. Saving output data also plays a role.

This was found to be a significant bottleneck, especially in smaller simulations.

In order to get an overview of the efficiency of parallel computations, a test has been

performed. The time required for solving a test simulation was observed on several com-

puters. A number of 5001 time steps were performed employing the computational mesh

containing 1.94 mil. tetrahedrons. Average memory utilization was about 5 GB.

Technical specifications of the machines involved in the test:

• PowerEdge M610 win HT: 2×Intel
c© Xeon

c© X5675 (3.06-3.46 GHz, 2×6 cores, 2×12

threads), 96 GB RAM, HDD 300GB SAS 10k 2,5′′, Windows Server 2008 R2 Enterprise SP1

(64-bit)

• PowerEdge M610 lnx HT: 2×Intel
c© Xeon

c© X5675 (3.06-3.46 GHz, 2×6 cores, 2×12

threads), 96 GB RAM, HDD 300GB SAS 10k 2,5′′, Linux CentOS 6.4 (64-bit)

• PowerEdge M610 lnx: 2×Intel
c©
Xeon

c©
X5675 (3.06-3.46 GHz, 2×6 cores, 2×6 threads),

96 GB RAM, HDD 300GB SAS 10k 2,5′′, Linux CentOS 6.4 (64-bit)

• bullx B510: 2×Intel
c© Xeon

c© E5-2665 (2.4 GHz, 2×8 cores, 2×8 threads), 64 GB RAM,

HDD 500GB SATA 7k2 2,5′′, bullx Linux Server 6.3 (64-bit)

• BL465c G6: 2×Six-Core AMD Opteron
TM

2435 (2.6 GHz, 2×6 cores, 2×6 threads), 32 GB

RAM, HDD 300GB SAS 10k 2,5′′, Linux CentOS 6.4 (64-bit)

• BL465c G5: 2×Quad-Core AMD Opteron
TM

2384 (2.7 GHz, 2×4 cores, 2×4 threads),

16 GB RAM, HDD 300GB SAS 10k 2,5′′, Linux CentOS 6.4 (64-bit)

• PC HT: 1 ×Intel
c© Core

TM
i7-2600 (3.4-3.8 GHz, 1×4 cores, 1×8 threads), 16 GB RAM,

SSD Intel
c©
320 160 GB SATA, Windows 7 Professional SP1 (64-bit)

• PC: 1 ×Intel
c© Core

TM
i7-2600 (3.4-3.8 GHz, 1×4 cores, 1×4 threads), 16 GB RAM, SSD

Intel
c© 320 160 GB SATA, Windows 7 Professional SP1 (64-bit)

Figure 4.32 shows average computation times for a given number of threads employed.

Relative efficiency per thread has been computed to present efficiency of parallel compu-

tations while suppressing differences in tested hardware. It can be obtained by dividing

computational speed per core in a multi-threaded operation by computational speed in

a single-threaded operation

efficiency per thread =
1

tn∗n
1
t1

=
t1

tn ∗ n
(4.54)

where tn is average computational time achieved using n threads. See figure 4.33 for

graphical representation of the efficiency per thread.
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faster while running on an intensively overclocked CPU core.

While considering the gradual loss of efficiency per thread, one may try to run more

different simulations, each of them using less threads in order to efficiently use given compu-

tational resources. Table 4.3 shows the results of this test for two hardware configurations.

The test was considered as finished once the last simulation of the test configuration was

finished. Each test configuration was performed at least five times. Measure of computati-

onal speed is based on the minimum of the five tests.

Machine Test configuration
Best time Computational speed Speedup

(h:m:s) (simulations/hour) (%)

1 simulation × 12 threads 2:20:58 0.43

2 simulations × 6 threads 4:32:05 0.44 +4

PowerEdge M610 3 simulations × 4 threads 6:15:43 0.48 +13

lnx HT 4 simulations × 3 threads 8:06:50 0.49 +16

6 simulations × 2 threads 11:56:50 0.50 +18

12 simulations × 1 thread 23:21:18 0.51 +21

bullx B510

1 simulation × 16 threads 1:07:04 0.89

2 simulations × 8 threads 2:01:03 0.99 +11

3 simulations × 5 threads 2:55:20 1.03 +15

4 simulations × 4 threads 3:47:55 1.05 +18

5 simulations × 3 threads 4:35:35 1.09 +22

8 simulations × 2 threads 7:02:04 1.14 +27

Tab. 4.3 The concurrent simulations

We can see that it is more efficient to run multiple simulations at once. Note that only

the time of the slowest simulation was taken into account. The other simulations finished

earlier. The efficiency of multiple simulations would be even better in the case of proper

job management.

The test of 16 simultaneous single-threaded simulations cannot be performed on the

bullx server because the memory requirements would exceed amount of available memory

of the computational node.
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4.1.9 Conclusion

Chapter 4.1 has been dedicated to the TDFE solver BUTFE and its excitation module

BUTFE EXC, including the description of the semantic location within the computational

framework HIRF-SE.

Based on a three-dimensional (3D) nodal-based FEM code for solving modal analysis,

BUTFE has evolved into a 3D edge-based TDFE solver with significant improvements in

excitation, applicable material properties and boundary conditions.

Further development is facilitated thanks to a well-arranged definition of matrices of

the final system 4.43. Each matrix is stored in a stack. Accompanying details contain

information like which coupling matrices to multiply by (general/wire), which matrix

generator to use (S/T in 1D, S/T/P/Q in 3D) or which temporal operation to apply

(none/derivative/second derivative/integral/double integral). The program passes through

the stack, automatically applies a given temporal scheme and puts the resulting matrices

in the proper place in the system of equations.

BUTFE EXC is a GUI application that allows to set excitation coefficients related

to a given layer (mesh group) of the computational mesh. Excitation can be set in three

ways: by formula, by formula considering a perforated slab (using PEMF) or waveguide

excitation.

Considering the nature of the chapter content, most of the work presented here is

rather of applied nature. The solver (module) is important from three main perspectives:

• HIRF-SE framework: The module offers results obtained by another method. Re-

sults obtained by various methods can give a better overview of the solved problem.

• fundamental research: The solver offers basic functionality which forms the basis

for further research activities.

• applied research: The solver represents a good starting point for further applied

industrial research.

Although the BUTFE solver can still be considered as underdeveloped (only basic

order of approximation, first order ABC only, no PML), significant steps forward have

been made. Future students of this faculty will be able to focus on more attractive topics

of numerical analysis having a functional program core already available.
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4.2 Bent wires

While the thin-wire approximation of straight wires was already explained in section 4.1.4,

this chapter is going to focus on the problem of bent wires. Chapter 4.2.1 describes short-

comings of already published method and briefly introduces suggested improvements.

Chapter 4.2.2 focuses on a detailed explanation of the proposed approach. Comparison

of both approaches on several test cases can be found in chapter 4.2.4. Chapter 4.2.5

describes countermeasures required for successfully performing of the approach. Chapter

4.2.6 concludes this topic.

4.2.1 Proposed approach

The solution for arbitrarily oriented wires is given in [40]. Authors divide the wire into a

set of straight parts and bends. While the straight parts follow the original line between

subsequent nodes, bends require special treatment. In order to keep continuity between

two subsequent straight parts, the centerline of the interpolation cylinder does not pass

exactly through a given node.

Figure 4.36a shows this approach applied on two 90◦ bends. The wire segment is

described by a mesh of four nodes z. One may see that the centerline of the interpolation

cylinder matches the wire mesh in the case of the straight parts but goes rather through

a virtual point z̃ in the case of a bent part.

(a) r0 = 0.3 ‖zjzj+1‖ (b) r0 = 0.5 ‖zjzj+1‖

Fig. 4.36 The interpolation cylinder proposed in [40]

As authors admit, they assume that two neighboring sectors are not overlapping each

other. Such an overlap can be caused by a large radius of the interpolation cylinder r0

in the case of sharp bends and an inappropriate choice of discretization of the wire with

respect to the surrounding area. Note that the radius r0 is given by discretization of

the surrounding area. Figure 4.36b shows the limit case when bent parts are touching

each other. An increase of r0 or a sharper bend causes overlaps of the wire segments.

It is usually difficult to discover the discretization issue because the approach solves

each bend separately without any knowledge about position of the following bend and

thus the possibility to detect possible overlaps. The modeler would probably have to start

an iterative process of meshing and check of the continuity of the interpolation cylinder

visually.
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Fig. 4.37 The interpolation cylinder, proposed

apporach, r0 = 0.3 ‖zjzj+1‖

I have focused on inventing ano-

ther approach which would han-

dle the discretization issue by itself.

While the previous approach focused

on the straight parts and treated

the bends to create a smooth cylindri-

cal object, I have decided to do the op-

posite. I have arranged that the cen-

terline of the bend parts is passing

through nodal points. The straight parts are then treated to match the bends and create

smooth cylinder (see figure 4.37).

As it turned out, this approach is sensitive to a large r0 as well. However, it is able to

detect overlaps of the neighboring segments. The detection allows to skip one (fig. 4.38a)

or more (fig. 4.38b) nodes causing the overlap(s).

(a) r0 = 0.5 ‖zjzj+1‖ (b) r0 = ‖zjzj+1‖

Fig. 4.38 The interpolation cylinder, proposed apporach
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4.2.2 Proposed approach in detail

Fig. 4.39 Division of the wire

segments

As we can see in figure 4.39, the area be-

tween two consequent nodes is divided into

three parts: first bend BI, straight part S and

second bend BII.

The bends BI and BII seemed to be a sin-

gle one in previous figures. However, the bends

must be separated in order to follow an arbit-

rary wire in the 3D space.

The initial phase of the description of

the parts is similar to [40]. Some basic vectors

have to be determined (see figure 4.40). The direction v of each wire segment and normal

to the bend n for given node can be easily determined using nodal coordinates z:

vj =
zj+1 − zj

‖zj+1 − zj‖
, nj = vj × vj−1 (4.55)

Vectors tb1 and tb2 are well known from [40]. Additional vector tb3 has been defined:

tb1,j = nj × vj−1, tb2,j = nj × vj, tb3,j =
tb1,j + tb2,j
‖tb1,j + tb2,j‖

(4.56)

Auxiliary point s will help us to determine rotation angles of the bends in the future

sj = zj − r0tb3,j (4.57)

Fig. 4.40 Determining basic vectors
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The iteration loop is as follows:

• Iteration 1:

get ϑ1,j and ϕ1,j with x1,j = zj+1, obtain zr1,j

get ϑ2,j and ϕ2,j with x2,j = zr1,j, obtain zr2,j

• Iteration 2:

get more accurate ϑ1,j and ϕ1,j with x1,j = zr2,j, obtain more accurate zr1,j

get more accurate ϑ2,j and ϕ2,j with x2,j = zr1,j, obtain more accurate zr2,j

• Iteration 3:

...

Setting x2,j = zr1,j in the first iteration speeds up the process. Setting x2,j = zj (in

the first iteration) would allow parallel computation of angles ϑ1,j, ϕ1,j in one thread and

ϑ2,j, ϕ2,j in the other one. Both the threads would use targets computed in the previous

iteration.

The detailed description will follow. In order to get base point r of the rotation by ϑ,

projection of the target x into the plane ρ of the circle must be known. The plane ρ is

given as follows

ρ1,j : nx
c1,jx+ ny

c1,jy + nz
c1,jz − nc1,j · zj = 0 (4.59a)

ρ2,j : nx
c2,jx+ ny

c2,jy + nz
c2,jz − nc2,j · zj+1 = 0 (4.59b)

We can get the projection xρ using a parametric expression of a line passing through x

and perpendicular to the plane ρ

xρ1,j = x1,j +
nc1,j · (zj − x1,j)

nc1,j · nc1,j

nc1,j (4.60a)

xρ2,j = x2,j +
nc2,j · (zj+1 − x2,j)

nc2,j · nc2,j

nc2,j (4.60b)

Vector tρ defines direction of x (xρ) in the plane ρ of the circle

tρ1,j =
xρ1,j − zj
‖xρ1,j − zj‖

, tρ2,j =
xρ2,j − zj+1

‖xρ2,j − zj+1‖
(4.61)

Angle ϑ is measured from −tb3 in clockwise direction when looking from the straight part

S (between BI and BII)

ϑ1,j = arccos (tρ1,j · −tb3,j) , ϑ2,j = arccos (tρ2,j · −tb3,j+1) (4.62)

Since the arccos() in 4.62 returns the smallest angle between tρ and −tb3, the angle

must be conditionally determined

‖xρ1,j − (zj + nj)‖ > ‖xρ1,j − (zj − nj)‖ (4.63a)

=⇒ ϑ1,j = 2π − arccos (tρ1,j · −tb3,j)

‖xρ2,j − (zj+1 − nj+1)‖ > ‖xρ2,j − (zj+1 + nj+1)‖ (4.63b)

=⇒ ϑ2,j = 2π − arccos (tρ2,j · −tb3,j+1)
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Angle ϑ is determined by equation 4.63. Now, we are going to determine ϕ. A rotation
matrix can be assembled for rotation by angle α in a plane defined by a normal u [41]

R{u;α} =







cosα+ ux
2 (1− cosα) uxuy (1− cosα)− uz sinα uxuz (1− cosα) + uy sinα

uyux (1− cosα) + uz sinα cosϑ+ uy
2 (1− cosα) uyuz (1− cosα)− ux sinα

uzux (1− cosα)− uy sinα uzuy (1− cosα) + ux sinα cosα+ uz
2 (1− cosα)






(4.64)

Rotation bases r are points s rotated by ϑ

r1,j = sjR{nc1,j ;ϑ1,j} + zj (4.65a)

r2,j = sj+1R{nc2,j ;ϑ2,j} + zj+1 (4.65b)

We can see that the simplified case in figure 4.39 has ϑ1 = ϑ2 = 0 and r = s. Equation 4.65

determines base r for the second rotation (by ϕ). Situation in the plane given by points

zj, r1,j and x1,j is depicted in figure 4.43. Two auxiliary vectors are defined

tc1a,j =
zj − r1,j

‖zj − r1,j‖
, tc1b,j =

x1,j − r1,j
‖x1,j − r1,j‖

(4.66a)

tc2a,j =
zj+1 − r2,j

‖zj+1 − r2,j‖
, tc2b,j =

x2,j − r2,j
‖x2,j − r2,j‖

(4.66b)

Since the auxiliary vectors have unit length, we can determine angle γ between them as

follows

Fig. 4.43 Bend in plane given by points zj, r1,j

and x1,j

γ1,j = arccos (tc1a,j · tc1b,j) (4.67a)

γ2,j = arccos (tc2a,j · tc2b,j) (4.67b)

The cosine law 4.67 returns the smallest

angle between the two vectors. Angles gre-

ater than π radians must be treated. Such

angles may arise in the case of intentional

omission of some nodes. We have to use the

following formula

γ1,j = 2π − arccos (tc1a,j · tc1b,j) (4.68)

in case of
tc1a,j × tc1b,j
‖tc1a,j × tc1b,j‖

= −tc1a,j × nc1,j (4.69)

and similarly for the BII

γ2,j = 2π − arccos (tc2a,j · tc2b,j) (4.70)

in case of
tc2a,j × tc2b,j

‖tc2a,j × tc2b,j‖
= −tc2a,j × nc2,j (4.71)

Angle β can be easily determined using right triangle formed by nodes zr, r and x. Distance

between zr and r is well known: it is r0.

β1,j = arccos

(

r0
‖x1,j − r1,j‖

)

, β2,j = arccos

(

r0
‖x2,j − r2,j‖

)

(4.72)

- 57 -



Numerical solutions of EMC problems of small airplanes

Angle ϕ can be determined using subtraction of β from γ

ϕ1,j = γ1,j − β1,j, ϕ2,j = γ2,j − β2,j (4.73)

Now we have obtained ϑ. We can rotate z around r by ϕ using the rotation matrix

4.64 to get target zr for the next iteration.

zr1,j = (zj − r1,j)R{

njR{nc1,j ;ϑ1,j}
;ϕ1,j

} + r1,j (4.74a)

zr2,j = (zj+1 − r2,j)R{

−nj+1R{nc2,j ;ϑ2,j}
;ϕ2,j

} + r2,j (4.74b)

Rotated normal vectors of circles can be used for future testing of continuity of the parts

of the cylinder. They can be computed as follows

ncr1,j = (nc1,j + zj − r1,j)R{

njR{nc1,j ;ϑ1,j}
;ϕ1,j

} + r1,j − zr1,j (4.75a)

ncr2,j = (nc2,j + zj+1 − r2,j)R{

−nj+1R{nc2,j ;ϑ2,j}
;ϕ2,j

} + r2,j − zr2,j (4.75b)

The rotated normals should be exactly opposite. The difference in the values (not talking

about the sign) means that parts S and BII (or BI and S) are not properly sticked together.

The inner rotation in 4.74 and 4.75 defines normal u (see equation 4.64) of the outer

rotation. In order to get the unit vector defining the rotation plane for ϕ, we have to rotate

the normal vector of a given node by angle ϑ. We are using the same rotation matrix as

in equation 4.65.

Part BI is represented by rotating the circle with center point zj by angle ϕ1,j using

the base point of rotation r1,j. This rotation is performed in a plane defined by the unit

vector derived by rotation of nj by ϑ1,j in a plane defined by the normal nc1,j. The straight

part S is formed by a cylinder of radius r0 with axis going from zr1,j to zr2,j. The part BII

is represented by rotating the circle with center point zj+1 by angle ϕ2,j using the base

point of rotation r2,j. This rotation is performed in a plane defined by the unit vector

derived by rotation of −nj+1 by ϑ2,j in a plane defined by the normal nc2,j. You may

notice that formulations for both bends are the same except for the reversed normal n.

The beginning and the end of the wire have a special rule for creating the normal n

and unit vector tb3. These points are considered as a straight wire. Since vectors v of two

subsequent segments are the same, we cannot use a cross product to get the normal of

“the bend” (see equation 4.55). The normal can be obtained using cross product

nj =
v ×m

‖v ×m‖
(4.76)

where v defines the direction of the segment (original vj−1 or vj) and m stands for

any vector which is other than v.
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Considering figure 4.40, we assume normals

nj−1 = nj, nj+2 = nj+1 (4.77)

and the unit vectors

tb3,j−1 = tb1,j, tb3,j+2 = tb2,j+1 (4.78)

The advantage of this approach is that it solves a pair of two subsequent bends together.

Unsolvable geometry produces imaginary angle values which are easy to detect. The user

can be asked to increase the density of the tetrahedral mesh in proximity of the wire.

A second option is to slightly modify the wire mesh in order to avoid intersections. This

avoids user interaction, however it may lead to loss of accuracy. The following chapter

shows a proposal of how to deal with the modification of the wire mesh.

4.2.3 Construction strategies

Chapter 4.2.2 described the construction of the cylindrical area between two consecutive

nodes (zj and zj+1) including feedback giving information whether a wire segment is

feasible or not. We are going to present two strategies which use the feedback to make

a subset of the original nodes. This subset contains non-conflicting nodes which form

seamless cylindrical area.

The easiest strategy could be called avalanche processing. It means that we sequentially

process segments from one end of the wire to the other. Considering unsolvable segment

between zj and zj+1, we skip zj+1 and try to connect zj with zj+2. The original normals

nj,tb3,j and nj+2,tb3,j+2 keep influenced by zj+1 (see figure 4.38a). In case of unsolvable

segment between zj and zj+2, we continue on the next node until a solvable segment is

found.

Another option is to use so-called progressive refinement. This strategy is more com-

plicated but offers better approximation of the original shape. Nodes are processed in

according to their importance where the most important node defines the sharpest bend

of the wire. See figure 4.44 for comparison of these two strategies. The original mesh is

denoted by black color, nodes of the final segments are marked by red squares. Centerline

of the resulting cylindrical area is denoted by black dashed line. Part BI is colored in

orange, BII in green and S is colored in blue.

(a) Avalanche processing (b) Progressive refinement

Fig. 4.44 Results of two construction strategies
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A process of the adaptive refinement is shown on a simplified geometry (see fig. 4.45.

Source mesh of the wire is formed by 11 nodes counted from the left to the right. It contains

sharp bend angle at node 6 and two smoother bends at nodes 5 and 7. Each following

paragraph is connected with a particular step of the process depicted in figure 4.45.

Fig. 4.45 Construction

strategy: example

After determining all the necessary vectors and

points we try to create a single wire segment between

nodes 1 and 11.

Successful connection (marked by green line) of

the endpoints implies fundamental feasibility of the

problem. Nodes 1 and 11 are added into the subset

of the non-conflicting nodes. Node 6 is determined

as candidate for a new member of the subset. Nodes

1 and 11 are the closest nodes from the vicinity of

the node 6.

Both connections 1-6 and 6-11 were successful.

Node 5 is determined as candidate for a new node.

Now, 1 and 6 are the closest nodes from the vicinity

of the node 5.

Connection 1-5 is feasible but we are not able to

connect nodes 5-6 (due to high radius of the cylin-

der). Thus, node 5 will not appear in the subset.

Node 4 is too far from node 6 to create a feasible

segment and so it is omitted as well (1-4 OK but 4-6

failed). Finally, both checks 1-3 and 3-6 have succeeded. Node 3 is added into the subset,

node 7 is determined as a new candidate.

Nodes 7 and 8 are omitted for the same reason as nodes 4 and 5. The wire is formed

by nodes 1-3-6-9-11 so far.

The remaining checks 1-2/2-3 and 9-10/10-11 are both successful. The final subset is

formed by nodes 1-2-3-6-9-10-11.

A general flowchart of the adaptive refinement strategy is depicted in figure 4.46.
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Fig. 4.46 Progressive refinement construction strategy: flowchart
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4.2.4 Test cases

A comparison between Edelvik’s and the proposed approach will be presented in the

following chapter. The same geometry and radius are used for both approaches. The radius

of the wire is 0.001 m, and the radius of the cylinder r0 is 0.4 m.

The original nodes are marked by a black cross. Nodes forming the final subset are

noted by a red square. The first node is highlighted by a filled square. Points inside

the cylindrical area are interior points of the surrounding tetrahedral mesh. They cause

non-zero contribution to the coupling between the system of equations of the wire and

system of equations of the surrounding space.

The blue area belongs to the straight area S, orange to BI and green to BII. The original

approach does not separate bends. It only has a single bent part which is denoted by

a yellow background. However, interior points providing the coupling can be divided into

orange and green depending on what element they contribute.

Each part of the cylindrical area (denoted by a given background color) is supposed to

be filled with dark points almost uniformly and the parts should not overlap each other.

Otherwise, it would indicate some sort of error.

Bends are naturally three-dimensional, however the test bends are performed in a single

plane for easier presentation of the results.

A 50 degree bend

(a) Edelvik et al. (b) proposed approach

Fig. 4.47 A 50 degree bend

First test case is a bend of 50 de-

grees (see figure 4.47). The ori-

ginal approach (fig. 4.47a) is not

omitting any points. Due to a re-

latively sharp bend, the distance

between zb1 and the third node

is greater than the distance be-

tween the second and third node.

The straight part and bend area of

the second element (between no-

des 2 and 3) are now overlapping

with the straight part of the pre-

vious one. This causes various errors depending on implementation and presence of validity

checks. We may see for example omitting some coupling points in the bend area.

The proposed approach (4.47b) has omitted nodes 2 and 4. The cylinder contains no

overlaps and approximates the wire mesh well. Following checks have been performed:

1.) 1-6 (OK)

2.) 1-3 & 3-6 (OK)

3.) 3-5 & 5-6 (OK)

4.) 1-2 & 2-3 (FAILED)

5.) 3-4 & 4-5 (FAILED)
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A 30 degree bend

(a) Edelvik et al. (b) proposed approach

Fig. 4.48 A 30 degree bend

A bend of 30 degrees is depic-

ted in figure 4.48. Looking at fi-

gure 4.48a, we can see that rc is

now even much further from third

node. The wire is not affected by

the electric field around node 3.

The proposed approach (4.48b)

approximates the cylinder bet-

ter, however you may notice sli-

ght overlap in the middle part of

the figure. The procedure ensures

non-overlapping parts BI, S and BII within a single wire segment. It does not check mutual

overlapping of all segments. The following checks have been performed:

1.) 1-5 (OK)

2.) 1-3 & 3-5 (OK)

3.) 3-4 & 4-5 (FAILED)

4.) 1-2 & 2-3 (FAILED)

A general wire segment

(a) Edelvik et al. (b) proposed approach

Fig. 4.49 A general wire segment

A general wire is shown in fi-

gure 4.49. The original appro-

ach (fig. 4.49a) does not prevent

overlaps. The points which are

coupling the wire with surroun-

ding medium do not form a conti-

nuous cylinder.

The proposed approach (fig.

4.49b) omits nodes 3 up to 6. This

allows to obtain coupling points

forming a continuous cylinder. On

the other hand, the cylinder area does not follow the original mesh exactly. The following

checks have been performed:

1.) 1-7 (OK)

2.) 1-2 & 2-7 (OK)

3.) 2-5 & 5-7 (FAILED)

4.) 2-4 & 4-7 (FAILED)

5.) 2-3 & 3-7 (FAILED)
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A circular loop

A circular loop with a radius of 0.45 m is depicted in figure 4.50 (r0 = 0.4 m). Note

that the loop is not closed. It starts at node 1 (red filled square at the bottom), follows

a clockwise direction and ends at node 12.

The original procedure (fig. 4.50a) performs well except the area near endpoints. Seg-

ments 1-2 and 11-12 are not long enough and thus the bend parts around nodes 2 and

11 are overlapping with straight parts near nodes 1 and 12 which are exceeding the wire

area.

Figure 4.50b shows first iteration of the proposed iterative approach. Since there is

no additional node in the final subset, path between nodes 1 and 12 is given randomly

and may not follow the wire at all. It may be final state in case that no other successful

connections are made (e.g. due to higher r0). Anyway, the subset cannot be formed only

by two nodes. Considering boundary conditions, there are no more unknowns left.

(a) Edelvik et al. (b) first iteration of the proposed

approach

(c) proposed approach

Fig. 4.50 A circular loop

Final state of this geometry is depicted in fig. 4.50c. All nodes could not be used but

the centerline still follows the original mesh (which is important). The following checks

have been performed:

1.) 1-12 (OK)

2.) 1-5 & 5-12 (OK)

3.) 5-8 & 8-12 (OK)

4.) 8-10 & 10-12 (FAILED)

5.) 8-9 & 9-12 (OK)

6.) 1-3 & 3-5 (FAILED)

7.) 1-4 & 4-5 (OK)

8.) 5-6 & 6-8 (OK)

9.) 6-7 & 7-8 (OK)
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Straight wire with a cog

The last example was formerly used for explanation of the adaptive refinement strategy.

It is a wire having a cog in the middle of it (see fig. 4.51). Original approach (fig. 4.51a)

considers only coupling points given by straight parts of the wire. Bend parts are omitted

due to errors in processing (bends are much larger than wire segments).

(a) Edelvik et al. (b) proposed approach

Fig. 4.51 Wire with a cog in the middle

Proposed approach (fig. 4.51b) omits many points near the cog to form continuous

cylinder. Resulting cog given by nodes 10, 23 and 36 is much more obtuse than the original

one formed by nodes 17, 23 and 29.

Influence of such replacement on the results can be significant. Figure 4.51 shows

current distribution on that wire. Originally, it is a 3D figure with time axis that is

perpendicular to the view. The original approach creates a ripple which is probably caused

by overlapping parts in the middle. The proposed approach causes a little loss of accuracy

between nodes 17, 23 and 29 caused by presence of only two elements considering linear

approximation over them. This can be solved using higher order finite elements.

One may note that the current distribution in figure 4.51 begins with non-zero values.

This happens because the resulting current distribution is related to edges of the wire

mesh. Values are evaluated in the middle of the original wire segments.
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4.2.5 Countermeasures

The iterative process of searching for proper combination of angles ϕ (among others)

converges relatively fast for segments having high length/r0 ratio. Otherwise the angles

may change significantly in each iteration. Particularly connection of segments having

large angle between end circles (forming cross-section of the cylinder) may become tricky.

This section features two countermeasures to avoid divergence of the iterative process in

such case.

Avoiding large angles

Example of the problem with large angles can be shown on the circular loop test case

in chapter 4.2.4, specifically figure 4.50b. It shows connection of two parallel circles, each

heading away from the other one.

Let us to remind the connection process. After all the main parameters are determined

(normals n, nc, vectors tb, nodes s and angles ϑ), the iterative process consist in searching

for proper combination of ϕ1,j and ϕ2,j. It starts with determining ϕ1,j: a rotation of nc1,j

that makes it pointing to zr2,j (which is the same as zj+1 at the beginning). The ϕ1,j is

determined as about 5.8 radians. You can see such rotation in figure 4.52a 9. The end circles

to be connected are colored in magenta. You can see that the first rotation has crossed

the second circle. The second rotation cannot find proper angle and connection process of

nodes 1 and 12 fails. Since this connection is essential, creation of whole cylindrical area

fails consequently as well.

(a) No countermeasure applied (b) After countermeasure

Fig. 4.52 Avoiding large angles

The countermeasure consist in avoiding large change of the angles ϕ within each ite-

ration. At first, ϕ1,j is determined as usual. If determining of ϕ2,j fails, ϕ1,j is reduced by

averaging of the present and previous value. Previous value is set to zero at the beginning.

This means division of ϕ1,j by two for this case. The smaller change of ϕ1,j allows to de-

termine ϕ2,j. Figure 4.52b shows the situation after first successful determination of ϕ2,j.

Following iterations will increase accuracy of the connection. The method can similarly

correct ϕ2,j in case of unsuccessful determination of ϕ1,j.

9 Note that the rotation is performed clockwise (opposite to situation in fig. 4.50b) in order to effectively

use image space.
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Changing order

In certain situations it is better to start with determining ϕ2,j instead of ϕ1,j. This modi-

fication lies in change of the order when none of the angles can be properly determined.

Reversed order of determining ϕ was successfully applied in the circular loop test case in

connection of nodes 5-12, 8-12 and 9-12.

4.2.6 Conclusion

The proposed approach described in chapter 4.2 aims to improve thin wire approximation

of bent wires published in [40]. The improvement involves different procedure of creation

of cylindrical area surrounding the wire. Core functionality of the thin-wire model remains

the same.

Main advantage of the proposed approach lies in presence of the feedback. The appro-

ach allows to detect and prevent overlaps within a wire segment (between two consecutive

nodes). The feedback can recommend the user to modify computation mesh or it can be

used for an automatic mesh correction during build process of the cylindrical area.

Two strategies for the automatic mesh correction are suggested in chapter 4.2.3: ava-

lanche processing and progressive refinement. Since the second method exhibited better

performance, avalanche processing was no longer applied.

Performance of both the approaches ([40] and the proposed one) was compared on test

cases in chapter 4.2.4. The figures show that the proposed approach creates much less

overlaps. Overlaps may only appear when parts of two different segments are close enough

(see 4.48b). Preventing this case would require comprehensive test of segment overlap with

any other segment.

The method has been developed for automatic handling of situations where the original

approach fails. While focusing on the continuity of the cylindrical area, it may not follow

the original route exactly. Results of the simulation with cylindrical area lying elsewhere

than the original wire would be considered as results for given wire in that case. This

brings some loss of accuracy. However user may be warned about the inconsistency (by

number of omitted nodes) and take reasonable measures.

Unfortunately, the loss of accuracy given by overlaps and errors (Edelvik et al.) can

be hardly compared with the loss of accuracy given by a different route of the cylinder

and omitted nodes (proposed approach). Current distribution cannot be compared due to

unavailability of measurements or any validated software, more likely due to inability to

ensure same conditions (boundary conditions and excitation).
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0 /outputRequest/output request

1 /mesh/mesh butfe

2 /electromagneticSource/sourceOnMesh/electromagnetic source

3 /physicalModel/perfectElectricConductor

4 /physicalModel/vacuum

5 /globalEnvironment/global environment

6 /link/link

7 /physicalModel/volume/ABC

(a) /simulation/sim/inputs

0 /floatingType/Efield points1

1 /floatingType/Efield points2

2 /floatingType/Hfield domain1

3 /floatingType/Efield domain1

(b) /simulation/sim/outputs

Tab. 4.4 Simulation inputs/outputs

Name Data

outputRequest instance 0

subject: /label/output request

subject id: 0

object: /mesh/mesh butfe/unstructuredmesh/group/DOMAIN1

output: /floatingType/Efield domain1

outputRequest instance 1

subject: /label/output request

subject id: 0

object: /mesh/mesh butfe/unstructuredmesh/group/POINTS1

output: /floatingType/Efield points1

outputRequest instance 2

subject: /label/output request

subject id: 0

object: /mesh/mesh butfe/unstructuredmesh/group/POINTS2

output: /floatingType/Efield points2

outputRequest instance 3

subject: /label/output request

subject id: 1

object: /mesh/mesh butfe/unstructuredmesh/group/DOMAIN1

output: /floatingType/Hfield domain1

Tab. 4.5 Output request instances

0 electricField

1 magneticField

Tab. 4.6 Labels in /label/output request

The category /physicalModel defines materials of the model. The ABC material is re-

served for absorbing boundary condition. In normal situation, material parameters would

be set via attributes of groups electricConductivity, magneticConductivity, relativePerme-

ability and relativePermittivity.

Instances of the /link category couple any two objects together. Each instance contains

subject (material/object) and object (place). The instances are detailed in table 4.7. Note

that material ABC has to be coupled with excitation layer EXC as well in order to achieve

proper form of the equation system.
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Name Data

link instance 0
subject: /electromagneticSource/sourceOnMesh/electromagnetic source

object: /mesh/mesh butfe/unstructuredmesh/group/EXC eg

link instance 1
subject: /physicalModel/volume/ABC

object: /mesh/mesh butfe/unstructuredmesh/group/EXC

link instance 2
subject: /physicalModel/volume/ABC

object: /mesh/mesh butfe/unstructuredmesh/group/ABC

link instance 3
subject: /physicalModel/perfectElectricConductor

object: /mesh/mesh butfe/unstructuredmesh/group/PEC

link instance 4
subject: /physicalModel/vacuum

object: /mesh/mesh butfe/unstructuredmesh/group/DOMAIN1

Tab. 4.7 Link instances

The output file (see fig. 4.54, right) differs only in content of the /floatingType category.

The /floatingType now contains results of the simulation.

The output file must contain only updated /floatingType, /mesh and /simulation ca-

tegories to allow the framework to read results back to its database. BUTFE is forming

the output file by copying the input one and replacing the empty data structures in

/floatingType by the results. This allows to save both results and all input data for the si-

mulation in single file. However, the framework reads only the three above mentioned

categories.

Focusing on the objects in /floatingType category, each of them contains three-dimensional

dataset data containing the field values. Group ds includes three datasets containing de-

scription of particular dimension of the data. Dataset dim1 stores path to given mesh

group (e.g. /mesh/mesh butfe/unstructuredmesh/group/DOMAIN1 ), dim2 describes com-

ponents of the field (“x”, “y”, “z”) and dim3 contains time samples of the data.

- 71 -



Numerical solutions of EMC problems of small airplanes

4.3.3 Amelet-HDF C library

AxesSim company, a developer of the Amelet-HDF format, created a set of source codes

that should help module developers to employ this new file format. However, it appeared

that it contained several bugs and memory leaks. So the code was developed rather from

scratch instead of using developer’s one. Unique orientation of the new code has offered

possibility to implement the code as a library and make it more universal so that other

partners could benefit from it (although it did not cover all the possibilities of the Amelet-

HDF format). The resulting code of the library was uploaded into the source repository

of the Amelet-HDF website into a separate branch /svn/amelethdf-c/branches/vlse [34].

The library provides all necessary functions for reading input files mentioned in chapter

4.3.2 and some extra reading functions which may be valuable for other participants of

the project or people who decide to use Amelet-HDF. Since writing capabilities of the solver

were pretty well covered by the HDF functions, there was no need to implement them into

the library.

The code is divided into files so that each file covers particular category of the Amelet-

HDF (except the general purpose ones). Each file contains functions for reading and prin-

ting data from given Amelet-HDF file. Functions for unallocating memory occupied by

the read data are included too. Names of the library functions start with library pre-

fix “AH5 ” followed by “read ”, “print ” or “free ” in order to suggest above-mentioned

purpose.

Amelet-HDF contains several levels of the tree structure. For example, /outputRequest

category contains various number of groups. Each group contains various number of in-

stances. The library contains functions for accessing each level individually. For exam-

ple, the function AH5 read outputrequest() reads whole /outputRequest category. It reads

number of groups and calls AH5 read ort group() to get contents of the instance. Each

AH5 read ort group() reads number of instances and calls AH5 read ort instance() to get

their contents. A programmer can use any of these functions to work on specific level.

The library includes following features of the Amelet-HDF specification:

• sources: planeWave, sphericalWave, generator, dipole, antenna and sourceOnMesh

• all kinds of floatingTypes: singleInteger, singleReal, singleComplex, singleString, vec-

tor, rationalFunction, generalRationalFunction, rational, dataSet, arraySet

• mesh (both types: structured and unstructured) including selectorOnMesh and me-

shLink

• physicalModel : volume material, anisotropic, surface materials, interface

• exchange surface, external element, globalEnvironment, label, link, localizationSystem,

outputRequest
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File name Purpose

ah5.h Includes all header files

ah5 attribute.c, ah5 attribute.h Integer, float, complex and string attributes

ah5 c emsource.c, ah5 c emsource.h Handles /electromagneticSource category

ah5 c exsurf.c, ah5 c exsurf.h Handles /exchangeSurface category

ah5 c extelt.c, ah5 c extelt.h Handles /externalElement category

ah5 c fltype.c, ah5 c fltype.h Handles /floatingType category

ah5 c globenv.c, ah5 c globenv.h Handles /globalEnvironment category

ah5 c label.c, ah5 c label.h Handles /label category

ah5 c link.c, ah5 c link.h Handles /link category

ah5 c locsys.c, ah5 c locsys.h Handles /localizationSystem category

ah5 c mesh.c, ah5 c mesh.h Handles /mesh category

ah5 c outreq.c, ah5 c outreq.h Handles /outputRequest category

ah5 c phmodel.c, ah5 c phmodel.h Handles /physicalModel category

ah5 c simulation.c, ah5 c simulation.h Handles /simulation category

ah5 category.h Defines constants (general purpose)

ah5 dataset.c, ah5 dataset.h Handles datasets (general purpose)

ah5 general.c, ah5 general.h Other functions (general purpose)

Tab. 4.8 Files of the Amelet-HDF C library

4.3.4 Conclusion

This chapter has been devoted to more detailed explanation of encapsulation of the BUTFE

modules inside the HIRF-SE platform. Amelet-HDF has proven to be useful format for

storing data of the electromagnetic simulations (although there is still some room for im-

provements). Many developers of EM software are using their own formats which brings

compatibility issues.

It should be said that Amelet and especially all the HDF stuff behind may be difficult

to understand and limiting when comparing to developing own data format. Overhead

connected with the implementation of a new format may be significant, especially for

smaller projects. This is exactly the case where the library presents main benefit. It makes

the process of the new format understanding and implementation much quicker.

Original contribution of the work mentioned in this chapter consist in encapsulated

design of the Amelet-HDF C library and its data structures.

Besides its original use in the BUTFE module, the library was used in modules ANN-

Training and ANN-Estimation which were developed for solving postprocessing issues

using artificial neural networks in the HIRF-SE framework. The library has recently taken

place of the main C library in the Amelet-HDF project. AxesSim company (developer of

the Amelet-HDF specification) has decided to incorporate the library in their software and

still enhances its functionality.
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4.4 Development tools

This chapter deals with description of tools that had to be created in order to simplify

development and testing of the modules. Chapter 4.4.1 describes a comparison tool CMP

that compares results with a reference. Chapter 4.4.2 is devoted to a mesh inspector/post-

processor called Visualizer and finally 4.4.3 concludes this topic.

4.4.1 CMP

The BUTFE module employs OpenMP application program interface (API) that supports

a shared-memory parallelism [56]. Development of such applications can be tricky. Apart

from programming mistakes known from a single-threaded programs, the OpenMP pro-

grams can contain additional issues caused by broken thread safety. Some of the thread

safety issues can be observed only once per tens of simulations. Performing such a number

of simulations and checks manually would require large amount of time. However by using

a comparison tool, one may run the simulations in a loop and check resulting comparison

of all iterations at once.

The comparison tool examines all simulation outputs of an output Amelet-HDF file

with outputs of a reference output file (obtained from a previous simulation declared

to be valid). Since the BUTFE module employs an iterative solver, results may vary a

little. Therefore a number of samples with relative deviation greater than some limit is

observed. Looking at a sample output of the CMP tool (see figure 4.55), we can see that

Output #0: ( t s t−r e f )/ r e f > 2.0% in 0 samples (0.0% o f 102576000) ;

maxdi f f [ 12702 , 0 , 1 2 7 5 ] : r e f =1.20796e−010 t s t =1.20929e−010

Output #1: ( t s t−r e f )/ r e f > 2.0% in 0 samples (0.0% o f 230000) ;

maxdi f f [ 0 , 0 , 0 ] : r e f=0 t s t=0

Fig. 4.55 A sample output of the CMP tool.

the comparison was performed on two output requests with cca 103 and 0.2 millions of

samples, respectively. In the first output request, the CMP tool found a maximal deviation

from the reference at position [12702, 0, 1275] which was still below the 2 % limit and

thus negligible.

4.4.2 Visualizer

Almost all of the input data for FEM are closely connected with the computational mesh.

The mesh is formed by a complex set of data which is not human readable without any

visualization. The visualization is usually provided by a meshing software, which allows

to check validity of the mesh right after its creation. However the mesh data format is

converted several times before the computation (mainly due to the Amelet-HDF format).

The Visualizer shows the mesh data right before the computation. It shares its mesh

import code with the BUTFE so it operates with same data as the solver. This helps

avoiding potential errors caused by wrong mesh import and visualizing other variables

related to the solver (global edges, outputs).
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In fact, the Visualizer tool does the job of the module Paraview or post-processing mode

of the module GiD mentioned in chapter 4.1.2. The reason for developing the in-house

visualization tool was due to the fact that the GiD did not work at all with the BUTFE

outputs and the Paraview module had usually crashed. The Visualizer is even better

because it can work in the course of running simulation while the others would have to

wait for the end of the simulation to post-process the output data.

The tool operates in three modes. The first one is mesh inspector only. It is called by

the Visualizer executable with a name of an Amelet-HDF file as an input parameter.

Fig. 4.56 Visualizer: mesh inspector.

The second mode is combined inspector/post-processor. The Visualizer executable is

called with no parameters. After the execution, the visualization tool waits for the execu-

tion of the solver (BUTFE module). Once the solver is running, the visualization tool

starts displaying the mesh and output requests of the simulation (only one simulation is

expected to running at a time). If the simulation is already running, visualization starts

immediately.

The data transfer between both the programs is carried out using named pipes [57].

Although this inter-process communication (IPC) is not “naturally cross-platform”, it is

relatively simple and applicable on both the Linux and Windows compilers used for the

BUTFE module. The pipe data contain name of the input file of the solver to be read by

the visualization tool10. The mesh data are stored in the system memory twice. Once for

the solver and once for the visualization tool. It may look like a wasting of resources but

on the other hand, both the tools must be able to work independently. Rest of the pipe

data contains the post-processing data of the output requests for last computed time step.

The BUTFE module can work independently considering a small overhead caused by the

IPC (it sends the pipe data regardless of a receiving).

10 The HDF permits that single HDF file can be read by multiple processes [58].
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Fig. 4.59 Visualizer: element inspection.

Particular global edge of the mesh can be located using key G. This is important for

the situation, when placement of the given edge coefficient is examined.

Complicated geometry contains lot of overlapped objects which make the inspection

difficult. Key X cuts all currently not visible elements off. Area of interest can be selected

using repetitive cutting, zooming and rotation of the geometry.

Full list of keyboard shortcuts of the tool is listed in table 4.9.

The visualization tool uses OpenGL [59] toolkit FreeGLUT [60]. Display lists, vertex

arrays and vertex buffer objects are used in order to improve performance of the code [59].

Desired function Keyboard shortcut

Show/hide all S, A / H, A

Show/hide nodes S, N / H, N

Show/hide edges S, E / H, E

Show/hide surfaces S, S / H, S

Show/hide volume objects S, V / H, V

Toggle fullscreen mode F

Increase/decrease field scale Q / W

Focus on element T+〈element number〉

Focus on edge T+〈edge number〉

Toggle logarithmic scaling on the field L

Time shift by -10 / -1 / +1 / +10 samples U / I / O / P

Toggle camera rotation R

Create a frustum X

Tab. 4.9 Visualizer: keyboard shortcuts
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4.4.3 Conclusion

The development process showed the need for some new tools to be designed simultane-

ously with the solver creation. They were not requested by the project, but they made

the development more efficient 11.

The tool CMP became valuable in testing of parallel code. It can be used in the future

for automatic comparison of two different approaches implemented in single module or

comparison of two different modules giving same kind of results.

The Visualizer had proven its usefulness in many occasions. At the beginning, it was

valuable tool for checking intersections between given volumetric mesh and objects inside

(objects must be part of the volumetric mesh). The GiD mesher did not provide such an

option. Further, some prevention of intersections was incorporated into the solver, however

still without any option to see origin of the problem.

Visualization of the results of the ongoing simulation allows to observe evolution of

the simulation process. User can stop the simulation in case of any problem or when all

important phenomena have ended up earlier than expected.

Visualization of the results of the finished simulation allows to skip uninteresting phase

of the simulation and slowly scroll through the interesting one.

11 “Give me six hours to chop down a tree and I will spend the first four sharpening the axe.” Abraham

Lincoln [55]
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5 CONCLUSION

This thesis deals with four main topics where three of them are of rather applied nature

and one provides an improvement of a thin wire approximation in the FEM.

The applied nature of the work consist in development of various programs and libra-

ries aiming to implement a TDFE solver into the HIRF-SE framework. This required to

design unique development tools and proposed several innovative solutions. Development

of the module was complicated due to the following problems:

• the HIRF-SE framework became available too late

• the need to rewrite the code into the C language while it was originally written in

the MATLAB c©

• lack of any excitation tool

• lack of any suitable post-processing tool

• problem with implementation of the time-domain PML into the solver

Since many of the HIRF-SE code developers joined the project with already finished

programs, their main task was only to adapt their solver to the framework by adding

support of the Amelet-HDF format. On the other hand, the BUTFE module has origina-

ted from scratch during the project lifetime. Therefore the Amelet-HDF format became

native input/output format of the module. BUTFE required input data which should be

generated by the HIRF-SE framework (which was not available at that time). This issue

was solved by programming a substitute code for assembling input data for the solver.

The need to rewrite the code into the C language was probably caused by some mi-

sunderstanding in the requirements during initial phase of the project.

Definition of an excitation for the solver was expected to be handled by the fra-

mework itself. The solver had to be a commandline tool only and therefore it would

be impossible (extremely user-unfriendly) to define excitations without any GUI. New

module BUTFE EXC was invented to deal with this problem.

The lack of suitable post-processing tool was solved by programming of the Visuali-

zation tool mentioned in chapter 4.4.2.

Problem with the PML remains unsolved. All previous attempts to implement the PML

failed.

Despite all the mentioned complications, the module was succesfully implemented into

the framework as an optional module. The Amelet-HDF library (chapter 4.3.3) recorded

succes while it became an official C library of the Amelet-HDF project.

The improvement of the thin wire approximation (chapter 4.2) lies in different pro-

cedure of construction of the cylindrical area around the wire, core of the method remains

the same. The proposed procedure can detect and prevent overlaps of neighboring wire

segments. The feedback allows to implement automatic omission of certain nodes and cre-

ation of a geometry that approximates the original wire mesh most closely which leads

to more accurate results provided by the numerical solver. The method cannot prevent

overlaps caused by proximity of two or more nodes that are not strictly next to each other
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in the wire mesh. However, occurrence of such situation is less probable than occurrence

of overlaps caused by two consecutive nodes. A general algorithm that would avoid inter-

section caused by non-consecutive nodes could be subject of a future investigation.

Experiences were presented on the International Travelling Summer School on Microwa-

ves and Lightwaves [45], International Conference on Electromagnetics in Advanced Ap-

plications [46] and on the COST workshop [47]. Integration and validation of the TDFE

module was presented in a joint paper prepared with colleagues from University of Gdansk

and Sapienza University of Rome [48].
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[48] ŠEDĚNKA, V., CIGÁNEK, J., KADLEC, P., RAIDA, Z., WIKTOR, M., SARTO,

M.S., GRECO, S. Time-Domain Finite Elements for Virtual Testing of Electromag-

netic Compatibility. Radioengineering. 2013, vol. 22, no. 1, p. 309-317.

- 84 -

http://en.wikipedia.org/wiki/Rotation_matrix
http://www.mathworks.com/help/techdoc/ref/hdf5.html


Numerical solutions of EMC problems of small airplanes

[49] MathWorks - MATLAB and Simulink for Technical Computing : MATLAB Compiler

- MATLAB [online]. 2011 [cit. 2011-12-28]. MATLAB Compiler. Available at WWW:

<http://www.mathworks.com/products/compiler/>.

[50] MathWorks - MATLAB and Simulink for Technical Computing : Wor-

king with the MCR :: Deployment Process (MATLAB c©CompilerTM) [on-

line]. 2011 [cit. 2011-12-28]. Working with the MCR. Available at WWW:

<http://www.mathworks.com/help/toolbox/compiler/f12-999353.html>.

[51] Gmsh: a three-dimensional finite element mesh generator with built-in pre- and

post-processing facilities [online]. 2011 [cit. 2011-12-30]. Available at WWW:

<http://geuz.org/gmsh/>.

[52] www.gidhome.com [online]. 2011 [cit. 2011-12-30]. What’s GiD. Available at WWW:

<http://gid.cimne.upc.es/>.

[53] ParaView - Open Source Scientific Visualization [online]. 2011 [cit. 2011-12-30]. Pa-

raView. Available at WWW: <http://www.paraview.org/>.

[54] SSI: Scalable Software Infrastructure for Scientific Computing: Lis: a Library of Ite-

rative Solvers for Linear Systems [online]. 2011 [cit. 2011-12-31]. Available at WWW:

<http://www.ssisc.org/lis/index.en.html>.

[55] Give me six hours to chop... at BrainyQuote [on-

line]. 2001 - 2012 [cit. 2012-05-01]. Available at WWW:

<http://www.brainyquote.com/quotes/quotes/a/abrahamlin109275.html>.

[56] OpenMP.org : The OpenMP R© API specification for parallel programming [online].

2012 [cit. 2012-05-01]. Available at WWW: <http://www.openmp.org/>.

[57] Named pipe - Wikipedia, the free encyclopedia: Named pipe [online]. 2012 [cit. 2012-

05-01]. Available at WWW: <http://en.wikipedia.org/wiki/Named pipe>.

[58] HDF5 FAQ – Questions About the Software [online]. 2012 [cit. 2011-05-01]. Available

at WWW: <http://www.hdfgroup.org/hdf5-quest.html#gconc1>.

[59] OpenGL - The Industry Standard for High Performance Graphics [online]. 2012 [cit.

2011-05-02]. Available at WWW: <http://www.opengl.org/>.

[60] The freeglut Project :: About [online]. 2012 [cit. 2011-05-02]. Available at WWW:

<http://freeglut.sourceforge.net>.

- 85 -

http://www.mathworks.com/products/compiler/
http://www.mathworks.com/help/toolbox/compiler/f12-999353.html
http://geuz.org/gmsh/
http://gid.cimne.upc.es/
http://www.paraview.org/
http://www.ssisc.org/lis/index.en.html
http://www.brainyquote.com/quotes/quotes/a/abrahamlin109275.html
http://www.openmp.org/
http://en.wikipedia.org/wiki/Named_pipe
http://www.hdfgroup.org/hdf5-quest.html#gconc1
http://www.opengl.org/
http://freeglut.sourceforge.net


Numerical solutions of EMC problems of small airplanes

CURRICULUM VITAE

Name: Vladimı́r Šeděnka
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