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ABSTRACT
This master’s thesis presents a modified software implementation of the module-lattice-
based signature scheme Dilithium and its distributed variant DS2 for the ARM Cortex-
M4 microcontroller. Dilithium is a part of the CRYSTALS suite and was selected by the
NIST as a new post-quantum signature standard. This work is focused on reducing the
memory footprint of both algorithms in order to make them more applicable to a wider
spectrum of microcontrollers and constrained devices. Both signatures were optimized
to run on the STM32 Cortex-M4 microcontroller. On one hand, Dilithium signature pre-
sented an already optimized implementation that can run on a microcontroller. There-
fore, we focused on adding hardware acceleration support for AES for the generation
of pseudo-random numbers during the generation of the signature. On the other hand,
DS2 signature is more memory demanding and we proposed two microcontroller-tailored
optimization approaches. These optimizations aim to reduce memory consumption while
maintaining security strength. Experimental results and security analysis demonstrate
the efficacy and practicality of our solutions. As a result of our work, we successfully
developed new versions of both Dilithium and DS2 with memory consumption reduced
by more than 50% and 90%, respectively, compared to the original.

KEYWORDS
Dilithium, Post-quantum cryptography, LWE, microcontrollers, threshold signature,
quantum-resistant, RAM-optimization

ABSTRAKT
Tato diplomová práce prezentuje modifikovanou softwarovou implementaci podpisového
schématu založeného na modulové mřížce Dilithium a jeho distribuované varianty DS2
pro mikrokontrolér ARM Cortex-M4. Dilithium je součástí sady CRYSTALS a byl vybrán
NIST jako nový postkvantový podpisový standard. Tato práce se zaměřuje na snížení
paměťové náročnosti obou algoritmů, aby byly více aplikovatelné na širší spektrum mi-
krokontrolérů a omezených zařízení. Oba podpisy byly optimalizovány pro běh na mik-
rokontroléru STM32 Cortex-M4. Na jedné straně Dilithium podpis prezentoval již opti-
malizovanou implementaci, která může běžet na mikrokontroléru. Proto jsme se zaměřili
na přidání hardwarové akcelerace pro AES pro generování pseudonáhodných čísel během
generování podpisu. Na druhé straně je podpis DS2 více paměťově náročný a navrhli
jsme dva optimalizační přístupy přizpůsobené mikrokontroléru. Tyto optimalizace mají
za cíl snížit spotřebu paměti při zachování bezpečnostní síly. Experimentální výsledky a
bezpečnostní analýza demonstrují účinnost a praktičnost našich řešení. V důsledku naší
práce jsme úspěšně vyvinuli nové verze jak Dilithium, tak DS2 s paměťovou spotřebou
sníženou o více než 50% a 90%, respektive, ve srovnání s originálem.

KLÍČOVÁ SLOVA
Dilithium, Postkvantová kryptografie, LWE, mikrokontroléry, prahový podpis, kvantově
odolné, optimalizace RAM
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ROZŠÍŘENÝ ABSTRAKT

V této práci se zabýváme problematikou využití postkvantových kryptografických
algoritmů v praxi v zařízeních s omezenými výpočetními zdroji. Jako základ jsme se
rozhodli vzít algoritmus Dilithium, který byl nedávno schválen NIST jako nový stan-
dard pro postkvantový digitální podpis (link), a také jeho distribuovanou modifikaci
DS2, což je (n, n) multi-podpisové schéma. Dodaný zdrojový kód pro implementace
Dilithium a DS2 jsme analyzovali a na jejich základě vytvořili upravené verze vhodné
pro praktické použití v zařízeních s omezenou pamětí, jako jsou mikrokontroléry.
Nové verze Dilithium a DS2 byly testovány na mikrokontroléru STM32WB55 s já-
drem Cortex-M4. Na závěr uvádíme výsledky našich experimentálních měření. Nové
verze Dilithium a DS2 byly testovány na mikrokontroléru, postaveném na jádře
Cortex-M4. Zejména byla vytvořena praktická ukázka aplikace algoritmu DS2 na
malých fyzických zařízeních založených na mikrokontrolu STM32WB55 a využíva-
jících standard 802.15.4 pro bezdrátovou komunikaci.

První kapitola je věnována teoretickému základu nezbytnému pro pochopení
principu fungování jak veškeré postkvantové kryptografie postavené na algebraických
svazech, tak i algoritmu Dilithium. Zejména se zaměřujeme na definování problému
"Learning with Errors" (LWE) a jeho odvozenin: Ring-LWE a Module-LWE. Poté
uvádíme stručný popis algoritmů Dilithium a DS2, stejně jako dalších technologií,
jako je šifrovací algoritmus AES a hashovací algoritmus SHAKE.

Druhá kapitola podrobně popisuje změny, které jsme provedli v obou algorit-
mech, abychom je mohli provozovat na mikrokontroléru. Naším hlavním příspěvkem
k této práci je zavedení dvou hlavních změn. První je „komprese“ polynomických
matic používaných ve výpočtech Dilithium a DS2. Generování pseudonáhodných
matic je založeno na náhodném seedu a SHAKE hashovacím algoritmu. Vzhledem
k tomu, že v každém okamžiku můžeme pracovat pouze s jedním blokem matice,
nemá smysl uchovávat v paměti celou matici, ale spíše si požadovaný blok vygen-
erovat podle potřeby. Podařilo se nám tedy snížit spotřebu paměti pro Dilithium o
55% a pro DS2 o 80%. Druhá změna se týká výhradně DS2. Skládá se z přidání
výkonného centrálního uzlu (Central Node), se kterým budou komunikovat všichni
účastníci algoritmu. Algoritmus pro generování podpisu DS2 jsme zároveň rozdělili
na dvě části: kritickou část, která zahrnuje výpočty s tajným klíčem a která musí být
vždy prováděna přímo na zařízení s mikrokontrolérem (Secure Node); a nekritickou
část, která nevyžaduje tajný klíč a vypočítává se na základě parametrů známých
všem účastníkům. Tato nekritická část je outsourcována pro výpočet do centrálního
uzlu, což výrazně urychluje výpočet podpisu a eliminuje omezení počtu účastníků,
dříve diktované omezeními paměti mikrokontroléru. Na konci kapitoly uvádíme
bezpečnostní analýzu upraveného algoritmu, abychom dokázali, že nedovolujeme



úniky tajných informací.
Poslední kapitola je věnována analýze výpočetní náročnosti původního a mod-

ifikovaného algoritmu Dilithium a DS2, a to jak z hlediska paměti, tak i doby
výpočtu. Teoretické výsledky porovnáváme s reálnými měřeními výkonu. Nakonec
se nám podařilo snížit spotřebu paměti DS2 o 90% oproti původní implementaci.
Ukázalo se však, že upravené algoritmy jsou 3-4krát pomalejší než originály, v závis-
losti na počtu odmitnutí při generování podpisu. Za hlavní faktory tak výrazného
poklesu výkonu jsme označili nedostatečně rychlou implementaci algoritmu SHAKE
a optimalizované použití výpočtů s pohyblivou řádovou čárkou. Na závěr jsme
prezentovali výsledky experimentu, ve kterém se nám podařilo zlepšit výkon Dilithia
nahrazením softwarové implementace algoritmu SHAKE hardwarovou implementací
hash algoritmu založeného na AES-CTR-256, který urychlil algoritmu pětkrát ve
srovnání s předchozí verzí.
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Introduction
In recent years, we can see a rapid development of the quantum computers. This
technology has unlimited potential for application across various fields and the fur-
ther development of mankind. However, it also carries risks. Currently, at the time
of writing the work, most of the used asymmetric cryptography algorithms for key
exchange, encryption, and digital signature are based on Discrete Logarithm Prob-
lem (DLP) and Integer Factorization (IF) problem. At the same time, algorithms for
quantum computers, such as Shor’s algorithm [1] have already been developed, ca-
pable of quickly solving these mathematical problems. This means that the further
development of quantum computing threatens almost all asymmetric cryptography
used at the moment. Therefore, leading experts in the field of information security
and mathematics are actively developing new cryptographic primitives based on
other computational hard problems, which are theoretically proven to be be equally
difficult for both classical and quantum computers. The most promising and most
developed are problems based on algebraic lattices and Learning With Errors (LWE)
problem. In 2017, as response to NIST call [2], was submitted "Cryptographic Suite
for Algebraic Lattices" (CRYSTALS) that encompasses two cryptographic primi-
tives based on Module-LWE problem: Kyber [5], an key-encapsulation mechanism
(KEM); and Dilithium [6], a digital signature algorithm. Later in 2023 both Kyber
and Dilithium were stadardized by the NIST [3, 4].

In parallel with the rapid advancement of quantum computing, we are seeing a
rapid growth in the Internet of Things (IoT) industry. The number of IoT devices is
growing almost exponentially every year, and with it the number of cyber attacks on
IoT infrastructure is also growing. According to SAM Seamless Network report [7],
more than 1 billion IoT attacks took place in 2021. IoT devices need security no less
than conventional computer networks, but almost all post-quantum cryptography
algorithms, including those in CRYSTALS suite, require enormous computing power
and resources that are often not available to IoT devices. In order to address this
gap, work is already underway to optimize these algorithms for microcontrollers. For
instance, Botros et al. [8] developed one such optimization for the Kyber algorithm
on Cortex-M4 microcontrollers. Building upon these ideas, this thesis try to continue
the ideas from [8] and apply them to Dilithium and its distributed variant DS2
proposed by Damgaard et al. [9].
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Aim of the thesis
The thesis is focused on studying the CRYSTALS Dilithium and its distributed
variant DS2 𝑛-out-of-𝑛 signature schemes and developing their modified versions,
applicable for constrained devices such as microcontrollers. The goal is to study in
practice basic and fundamental concepts of post-quantum cryptography and imple-
mentation techniques for maximizing the performance and efficiency on microcon-
trollers. The implemented signature schemes will be deployed and tested in a real
application scenario.
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1 Introduction into Lattice-based cryptog-
raphy

1.1 Basic definitions
A lattice [10] is an infinite set of points in n-dimensional space with a periodic
structure or more formally, given n-linearly independent vectors 𝑏1, ..., 𝑏𝑛 ∈ R𝑛 , the
lattice generated by them is the set of vectors

𝐿(𝑏1, ..., 𝑏𝑛) = {
𝑛∑︁

𝑖=1
𝑥𝑖𝑏𝑖 : 𝑥𝑖 ∈ Z} (1.1)

The vectors 𝑏1, ..., 𝑏𝑛 are known as a basis of the lattice. Equivalently, if we define
B as the m × n matrix whose columns are 𝑏1, 𝑏2, ..., 𝑏𝑛, then the lattice generated
by B is

𝐿(𝐵) = 𝐿(𝑏1, ..., 𝑏𝑛) = {𝐵𝑥 : 𝑥 ∈ Z𝑛} (1.2)

We say that the rank of the lattice is n and its dimension is m. If n = m, the
lattice is called a full-rank lattice [11].

The span of a lattice L(B) is the linear space spanned by its vectors [11]

𝑠𝑝𝑎𝑛(𝐿(𝐵)) = 𝑠𝑝𝑎𝑛(𝐵) = {𝐵𝑦 : 𝑦 ∈ R𝑛} (1.3)

Two lattices have equivalent bases if the basis 𝐵1 of the first lattice can be
represented as the multiplication of basis 𝐵2 with a unimodular matrix U: 𝐵1 = 𝐵2𝑈 .
A matrix 𝑈 ∈ Z𝑛×𝑛 is called unimodular if det(𝑈) = ±1. Multiplication by a
unimodular matrix can also be represented as a permutation or linear combination
of the basis vectors 𝑏1, ..., 𝑏𝑛 or a combination of both.

A cyclic lattice is a special type of lattice that has a basis matrix B composed of
vectors 𝑏1, ..., 𝑏𝑛 where each vector equals the previous vector rotated down by 1
element [12, 13]. This property allows us to represent the lattice as a polynomial
ring 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛 + 1), which is used in R-LWE schemes.

Fundamental region is an n-dimentional convex shape, also defined as "funda-
mental parallelepiped" [11].

𝑃 (𝐵) = {𝐵𝑥 : 𝑥 ∈ R𝑛,∀𝑖 : 0 ≤ 𝑥𝑖 < 1} (1.4)
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Fig. 1.1: 2D Lattice with it’s basis, fundamental region and non-basis vectors

From the definition of the lattice (Equations 1.1, 1.2), it follows that each point of
the lattice can be obtained via a linear combination of the basis vectors. The same
lattice can be described by several bases, but not any random set of vectors can
form a basis. For a given lattice Λ, a set of linearly independent vectors 𝑏1, ..., 𝑏𝑛

forms a basis if the fundamental parallelepiped, built from those vectors, does not
contain any points of the lattice inside its volume 𝑃 (𝐵) ∩ Λ = {0}. An example of
a lattice with its basis and fundamental region is shown in Figure 1.1a. An example
of non-basis vectors is shown in Figure 1.1b.

A lattice has three fundamental parameters used in computational problems:
• First is the length of the shortest nonzero vector in the lattice. The length of

the vectors is computed as the Euclidean norm ℓ2 = ‖𝑥‖2 =
√︁∑︀

𝑥2
𝑖 .

• The second is the volume of the fundamental parallelepiped, which is equal to
the determinant of the lattice. The determinant of the lattice can be calculated
with the Gram-Schmidt orthogonalization process.

• The third is the i-th successive minimum. According to Micciancio in [14], the
i-th successive minimum (𝜆1, ..., 𝜆𝑛) of a lattice for every 𝑖 = 1, ..., 𝑛 can be
defined as the smallest positive real 𝑟 such that the ball of radius 𝑟 centered at
the origin contains at least i linearly independent vectors 𝐵(0, 𝑟) = {𝑥 : ‖𝑥‖ ≤
𝑟}. As a special case, the first minimum 𝜆1 equals the length of the shortest
vector (Figure 1.2).
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Fig. 1.2: Example of the 1 and 2 successive minimums

Some general Lattice problems used in cryptographic primitives are:
• Shortest-Vector Problem (SVP): Given a lattice basis B, to find a shortest

nonzero lattice vector 𝑣 ∈ 𝐿(𝐵) such that ||𝑣|| = Λ1(𝐿(𝐵)) [15]. This definition
can be generalized to 𝛾-approximate SVP problem, asks to find a nonzero
lattice vector with euclidean norm at most ||𝑣|| ≤ 𝛾 * Λ1(𝐿(𝐵)) for 𝛾 ≥ 1.

• Closest-Vector Problem (CVP): Given a lattice basis B and target vector
t, find the lattice vector 𝑣 ∈ 𝐿(𝐵) such that the distance to the target ||𝑣− 𝑡||
is minimized [15]. For CVP also exists 𝛾-approximate version, which asks to
find vector 𝑣 ∈ 𝐿(𝐵) such that ||𝑣 − 𝑡|| ≤ 𝛾 * 𝑑𝑖𝑠𝑡(𝑡, 𝐿(𝐵)) for 𝛾 ≥ 1, where
𝑑𝑖𝑠𝑡(𝑡, 𝐿(𝐵)) is the distance of t to lattice.

• 𝛾-approximate Shortest In-dependent Vector Problem (𝑆𝐼𝑉 𝑃𝛾): For
𝛾 ≥ 1, given a basis B of an n-dimensional lattice, asks to find linearly inde-
pendent vectors 𝑣1, ...𝑣𝑛 ∈ 𝐿(𝐵) such that 𝑚𝑎𝑥𝑖||𝑣𝑖|| ≤ 𝛾 * Λ𝑛(𝐿(𝐵)) [15].

Ajtai [16] shows that the SVP problem is NP-hard for randomized reductions. Van
Emde Boas [17] proves that CVP is also NP-hard, and Micciancio [18] shows efficient
reductions between SVP, CVP, and SIVP problems. Also, Micciancio and Voulgaris
[19] introduce deterministic algorithms to solve CVP and SVP in 𝑛𝑂(𝑛) time, and
based on this work, Aggarwal et al. [20] propose a randomized version of an algo-
rithm for solving SVP, which runs in 2𝑂(𝑛) time. At the time of the publication of
the thesis, there is no known classical or "quantum" algorithm that can solve SVP,
CVP, SIVP, or their variations in polynomial time.
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1.2 Learning With Errors
Learning With Errors (LWE) problem was suggested by Regev in [21]. The LWE is
a generalized variant of the "learning from parity with error" problem, which asks
to find an unknown vector 𝑠 ∈ Z𝑛

2 given a list of equations with errors, such that
each equation is correct with probability 1− 𝜖:

⟨𝑠, 𝑎1⟩ ≈𝜖 𝑏1 (𝑚𝑜𝑑 2)
⟨𝑠, 𝑎2⟩ ≈𝜖 𝑏2 (𝑚𝑜𝑑 2)

. . .

⟨𝑠, 𝑎𝑛⟩ ≈𝜖 𝑏𝑛 (𝑚𝑜𝑑 2)

(1.5)

Where 𝑎𝑖 are horizontal vectors and ⟨𝑠, 𝑎𝑖⟩ is an inner product of vectors ∑︀𝑛
𝑗 𝑠𝑗*𝑎𝑖𝑗

modulo 2.
In case of 𝜖 = 0, System 1.5 is easily solvable by Gaussian elimination algo-

rithm in polynomial time with 𝑂(𝑛) equations. However, if 𝜖 > 0 (error vector e
is introduced), then problem become exponentially more difficult because Gaussian
elimination uses linear combinations of 𝑛 equations, and with each step, it amplifies
the error to some gigantic values, leaving no information from original equations. In
order to eliminate the amplified error, the whole algorithm must be repeated several
times, yielding an algorithm that runs in 2𝑂(𝑛) time.

Learning With Errors is a generalized version of "learning from parity with error"
problem:

⟨𝑠, 𝑎1⟩ ≈𝜒 𝑏1 (𝑚𝑜𝑑 𝑝)
⟨𝑠, 𝑎2⟩ ≈𝜒 𝑏2 (𝑚𝑜𝑑 𝑝)

. . .

⟨𝑠, 𝑎𝑛⟩ ≈𝜒 𝑏𝑛 (𝑚𝑜𝑑 𝑝)

(1.6)

Where all calculations are done in the ring modulo some prime integer q, 𝑠 ∈ Z𝑛
𝑞 ,

and error 𝑒𝑖 in each equation 𝑏𝑖 = ⟨𝑠, 𝑎𝑖⟩+𝑒𝑖 (𝑚𝑜𝑑 𝑞) is chosen independently accord-
ing to probability distribution 𝜒 : Z𝑞 → R+. The maximum likelihood algorithm
described for System 1.5 solves System 1.6 in 2𝑂(𝑛 𝑙𝑜𝑔 𝑛) time, while best-known al-
gorithm solves LWE in 2𝑂(𝑛).

Regev in [21] also shows that an algorithm, which can efficiently solve the LWE
problem, if it exists, will be able to efficiently solve the decision version of the SVP
and SIVP problems. This can be interpreted as saying that the LWE problem is
at least as hard as the decision SVP or SIVP problems if 𝜒 is a discrete Gaussian
distribution with standard deviation 𝜎 = 𝛼*𝑞 for some fixed real number 0 < 𝛼 < 1.
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1.2.1 Ring Learning With Errors

The main problem of crypto-schemes based on the LWE problem, like the 1-bit
encryption scheme from [21], is the size of public and secret keys. To mitigate this
problem, the Ring-LWE problem was introduced. From number theory, we know
that there exists a canonical embedding from the fractional ideal of the number field
to the ideal lattice [22]. Also, we know that every number field can be represented as
the field of polynomials in the form Q[𝑥]/𝑓𝛼(𝑥), where 𝑓𝛼(𝑥) is a monic irreducible
polynomial that has the algebraic integer 𝛼 as its root. From this follows that the
cyclic ideal lattice can be represented as the polynomial ring 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛 + 1)
containing all polynomials over the field Z𝑞.

With all stated above, the Ring-LWE problem can be defined as follows: Let
𝑛 be the power of 2 and 𝑞 = 1 (𝑚𝑜𝑑 2𝑛). Given 𝑚 samples of the form {(𝑎𝑖, 𝑏𝑖 =
(𝑎𝑖 · 𝑠) + 𝑒𝑖), 𝑖 ∈ [1...𝑚]}, find 𝑠, where 𝑠 ∈ 𝑅𝑞 is a fixed secret polynomial, 𝑎𝑖 ∈ 𝑅𝑞

is uniformly chosen polynomial, and 𝑒𝑖 is an error polynomial chosen independently
from spherical Gaussian distribution over 𝑅𝑞.

Needs to be mentioned that instead of "short" vectors, Ring-LWE problem addi-
tionally introduces the concept of a "small" polynomial with respect to the infinity
norm. The infinity norm is simply the largest integer coefficient of a polynomial
||𝑓(𝑥)||∞ = 𝑐.

Thinking about lattice problems in terms of polynomials gives several advan-
tages. The first one is that the embedding of the ring Z𝑞[𝑥]/(𝑥𝑛 + 1) to the ideal
lattice means that there is a possibility to use it in cyclic form, as was mentioned
before. This allows representing all polynomials 𝑎𝑖 by a single set of coefficients,
which greatly reduces memory consumption and the size of the public keys. The
second advantage is that switching to polynomial arithmetic allows replacing the op-
eration of inner product of vectors with polynomial multiplication, for which there
exist tested efficient implementations based on Number Theoretic Transform.

The proof of the hardness of Ring-LWE, established in [23] and based on the
proof of hardness for LWE from [21], suggests that Ring-LWE is as hard as worst-
case SIVP problems on ideal lattices.

1.2.2 Module Learning With Errors

Ring-LWE has great potential for efficient implementation, but the internal structure
of the ideal cyclotomic lattice used in its basis can impose some problems. For
example, some lattice problems, like the GapSVP problem, which are hard on general
lattices, are proved to be potentially easier on a quantum computer [24]. It is not
proven that the Ring-LWE problem is solvable, but the fact that it is somewhat
easier is still an undesirable side-effect of using ideal lattices. To mitigate potential
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risks, in [25], the Module Learning With Errors problem was proposed, which must
provide better security than Ring-LWE but still remain more efficient than LWE.

The Module-LWE problem is defined in almost the same way as Ring-LWE. The
key difference is that instead of a single ring element, we now work with modules - a
set of several elements of the same ring. The number of elements inside the module
is the module rank. In this context, the Module-LWE problem can be defined as
follows: Let 𝑛 be the power of 2 and 𝑞 = 1 (𝑚𝑜𝑑 2𝑛) and 𝑑 be the module rank. Given
𝑚 samples of the form {(𝑎𝑖, 𝑏𝑖 = ⟨𝑎𝑖 · 𝑠⟩+ 𝑒𝑖), 𝑖 ∈ [1...𝑚]}, find 𝑠, where 𝑠 ∈ (𝑅𝑞)𝑑

is a fixed secret module over ring 𝑅𝑞 (vector of polynomials length 𝑑), 𝑎𝑖 ∈ (𝑅𝑞)𝑑

is uniformly chosen module, and 𝑒𝑖 is an error module, chosen independently from
spherical Gaussian distribution over 𝑅𝑞. Addition and multiplication of modules
⟨𝑎𝑖 · 𝑠⟩ is defined in the same way as addition and inner product of the vectors, with
respect that elements of those vectors are polynomials.

Module-LWE can be interpreted as a generalized version of the Ring-LWE prob-
lem. More specifically, Ring-LWE is a Module-LWE with module rank 1. Module
lattices have more complicated algebraic structures than ideal lattices and thus can
provide a higher level of security but still be more efficient from a computational
perspective than LWE. Thus, Module-LWE can provide the trade-off between speed
and security, depending on the chosen parameters.

1.3 Polynomial Arithmetic

1.3.1 Multiplication of polynomials

As stated before, both Ring-LWE and Module-LWE cryptosystems use the multi-
plication of polynomials in a ring 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛 + 1). The simplest algorithm to
compute product 𝑎* 𝑏 = 𝑐, 𝑎, 𝑏, 𝑐 ∈ 𝑅𝑞 is schoolbook multiplication of polynomials
[26]:

𝑎 * 𝑏 =
⎡⎣𝑛−1∑︁

𝑖=0

𝑛−1∑︁
𝑗=0

𝑎𝑖𝑏𝑗𝑥
𝑖+𝑗

⎤⎦ 𝑚𝑜𝑑 (𝑥𝑛 + 1) =
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

(−1)⌊ 𝑖+𝑗
𝑛

⌋𝑎𝑖𝑏𝑗𝑥
𝑖+𝑗 𝑚𝑜𝑑 𝑛 (1.7)

All coefficients in Equation 1.7 and all following equations are implicitly reduced
modulo 𝑞. The problem is that the schoolbook algorithm requires 𝑛2 modular mul-
tiplication and (𝑛− 1)2 modular additions and subtractions.

To mitigate this issue, in real-world implementations, polynomials are "con-
verted" to the "frequency" domain using the Number Theoretic Transform (NTT)
and multiplied point-wise in only 𝑛 multiplications [26, 27, 28, 29]. This method
exploits the convolution property of Fourier transformation, and technically speak-
ing, NTT is just a Fast Fourier Transform (FFT) defined over the ring Z𝑞. The key
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difference between FFT and NTT lies in their respective definitions of the n-th root
of unity. In FFT, the n-th root of unity 𝜔 is a complex number 𝜔 = 𝑒2𝜋𝑖/𝑛. In NTT,
the n-th root of unity is an integer that corresponds to the following equations:⎧⎪⎨⎪⎩𝜔𝑛 = 1 (𝑚𝑜𝑑 𝑞)

𝜔𝑚 ̸= 1 (𝑚𝑜𝑑 𝑞), 0 < 𝑚 < 𝑛
(1.8)

Then NTT transformation is defined as follows: Let a be the polynomial 𝑎 =
𝑎𝑛−1𝑥

𝑛−1 + · · · 𝑎1𝑥 + 𝑎0. Then NTT transformed polynomial ā = 𝑁𝑇𝑇 (𝑎) is defined
as

ā𝑖 =
𝑛−1∑︁
𝑗=0

𝑎𝑗𝑤
𝑖𝑗 (𝑚𝑜𝑑 𝑞), 𝑖 = 0, 1 · · ·𝑛− 1 (1.9)

and the inverse transformation a = 𝐼𝑁𝑇𝑇 (ā) is defined as

𝑎𝑖 = 𝑛−1
𝑛−1∑︁
𝑗=0

ā𝑗𝑤
−𝑖𝑗 (𝑚𝑜𝑑 𝑞), 𝑖 = 0, 1 · · ·𝑛− 1 (1.10)

The only setback of this method is that normally the convolution of polynomials
in the NTT domain yields an output length of 2𝑛, so both polynomials must be
padded with zeros, and the result requires additional reduction modulo (𝑥𝑛 +1). To
offset this, usually, negatively wrapped convolution is used, which implicitly applies
reduction modulo (𝑥𝑛 + 1) to the result. Negatively wrapped convolution 𝑐 = 𝑎 ⊙ 𝑏

is defined as follows:

𝑐𝑖 =
𝑖∑︁

𝑗=0
𝑎𝑗𝑏𝑖−𝑗 −

𝑛−1∑︁
𝑗=𝑖+1

𝑎𝑗𝑏𝑛+𝑖−𝑗 (1.11)

To avoid the need to pad polynomials with zeros, it is required to compute
an additional parameter 𝜑 such that 𝜑2 = 𝜔; (𝑚𝑜𝑑; 𝑞). Then all coefficients in
polynomials 𝑎 and 𝑏 are multiplied by powers of 𝜑: 𝑎′ = 𝑎𝑛−1𝜑

𝑛−1 + ... + 𝑎1𝜑 + 𝑎0,
𝑏′ = 𝑏𝑛−1𝜑

𝑛−1 + ... + 𝑏1𝜑 + 𝑏0. The coefficients of the result polynomial 𝑐 then must
be multiplied by the powers of 𝜑−1. With all stated above, the multiplication of
polynomials is computed as follows:

𝑐′ = 𝐼𝑁𝑇𝑇 (𝑁𝑇𝑇 (𝑎′)⊙𝑁𝑇𝑇 (𝑏′))
𝑐 = 𝑐′

𝑛−1𝜑
−(𝑛−1) + ... + 𝑐′

1𝜑
−1 + 𝑐′

0
(1.12)

The important part is to efficiently implement NTT and INTT transformations.
Fortunately, the algorithm for the computation of FFT that runs in 𝑂(𝑛 log 𝑛) time
can also be applied to NTT [26, 27, 28, 29]. Algorithm 1 shows one of the possible
implementations of NTT.
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Algorithm 1 Fast Iterative Decimation-in-Time Number Theoretic Transform with
Cooley-Tukey butterfly described in [26]
Input: 𝑎 ∈ 𝑅𝑞 of length n in bit-reversed order of coefficients
Output: 𝑁𝑇𝑇 (𝑎) ∈ 𝑅𝑞 of length n in straight order of coefficients

1: 𝑁 := 𝑛

2: 𝑚 := 2
3: while 𝑚 ≤ 𝑁 do
4: 𝑠 := 0
5: while 𝑠 < 𝑁 do
6: for 𝑖 = 0 𝑡𝑜 𝑚/2− 1 do
7: 𝑁 := 𝑖 · 𝑛/𝑚

8: 𝑘 := 𝑠 + 𝑖

9: 𝑙 := 𝑠 + 𝑖 + 𝑚/2
10: 𝑐 := 𝑎[𝑘]
11: 𝑑 := 𝑎[𝑙]
12: 𝑎[𝑘] := 𝑐 + 𝜔𝑁𝑑 𝑚𝑜𝑑 𝑞

13: 𝑎[𝑙] := 𝑐− 𝜔𝑁𝑑 𝑚𝑜𝑑 𝑞

14: end for
15: 𝑠 := 𝑠 + 𝑚

16: end while
17: 𝑚 := 𝑚 · 2
18: end while
19: return a
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1.3.2 Montgomery multiplication

Almost all programming languages have a built-in operation for the remainder after
division, which is generally used to implement modular reduction of the coefficients
in polynomials. Unfortunately, the division operation is difficult to implement on
hardware, as it is not heavily optimized like multiplication and, most importantly,
it is not computed in constant time. If such an operation were conducted only once,
then there would be no problems with that. However, as shown in the previous
section, multiplication of polynomials in the ring Z𝑞[𝑥]/(𝑥𝑛 + 1) requires performing
a lot of modulo exponentiation operations. This makes the naive approach undesir-
able. Instead of using built-in operations for multiplication and division remainder
in real Ring-LWE implementations, Montgomery’s reduction technique is employed
to calculate modulo exponentiation [28, 30, 31].

The idea behind Montgomery reduction is to compute the 𝑞-residue of the prod-
uct of two integers whose 𝑞-residues are given, and from it, get the classical product
itself. In a sense, we temporarily switch the modulus from 𝑞 to some power of 2,
which allows us to replace the expensive division operation by binary shifts to the
left. For this, some additional parameters must be precomputed. Namely, we com-
pute 𝑅 = 2𝑘, 2𝑘−1 <= 𝑞 < 2𝑘. Also, 𝑅 must be relatively prime to 𝑞, but since in
our case 𝑞 is prime, this requirement is automatically satisfied. After that, with the
help of the extended Euclidean algorithm, we calculate 𝑞′ and 𝑅−1 such that:

𝑅 ·𝑅−1 − 𝑞 · 𝑞′ = 1 (1.13)

The q-residue of an integer x is defined as follows

x̄ = 𝑥 ·𝑅 (𝑚𝑜𝑑 𝑞) (1.14)

The Montgomery product of two n-residue values is defined as

z̄ = x̄ · ȳ ·𝑅−1 (𝑚𝑜𝑑 𝑞) (1.15)

Therefore, the Montgomery modular multiplication algorithm is defined as fol-
lows

Algorithm 2 Montgomery Multiplication [30]
Input: x̄, ȳ - integers in q-residue form

1: 𝑡 = x̄ · ȳ
2: 𝑚 = 𝑡 · 𝑞′ (𝑚𝑜𝑑 𝑅)
3: 𝑢 = (𝑡 + 𝑚 · 𝑞)/𝑅

4: if 𝑢 ≥ 𝑞 then return 𝑢− 𝑞 else return 𝑢
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1.3.3 Discrete Gaussian Sampling

Sampling from a Gaussian distribution is commonly used to generate random errors
in lattice-based cryptosystems. However, implementing this distribution in both
hardware and software is challenging. Additionally, it is impossible to use a perfect
distribution on any machine running in finite time. Therefore, when developing cryp-
tosystems, one has to use discrete approximations. These approximations should be
as close as possible to the real distribution so that security proofs hold. This means
that simple rounding of samples from a continuous distribution does not work. The
continuous Gaussian distribution is defined as:

𝑃𝑟(𝑋 = 𝑥) = 1
𝜎
√

2𝜋
𝑒−(𝑥−𝑐)2/(2𝜎2) (1.16)

Where X on R is a random variable, 𝑥 ∈ R, 𝑐 ∈ R is a center of the distribution.
The discrete form is defined as follows [26] : Let S be the Gaussian parameter,

such that

𝑆 =
∞∑︁

𝑘=−∞
𝑒−(𝑘−𝑐)2/(2𝜎2) = 1 + 2

∞∑︁
𝑘=1

𝑒−(𝑘−𝑐)2/(2𝜎2) (1.17)

Then for random variable X on Z and 𝑥 ∈ Z

𝑃𝑟(𝑋 = 𝑥) = 1
𝑆

𝑒−(𝑥−𝑐)2/(2𝜎2) (1.18)

There exists several algorithms for sampling from Discrete Gaussian Distribution.
The most common one is rejection sampling. The idea is to choose uniformly at
random 𝑢 ∈ {−𝜏𝜎, ..., 𝜏𝜎}, where 𝜏 is a tail-cut parameter and to accept it with
a probability proportional to 𝑒−𝑥2/(2𝜎2) [26]. Overview of other algorithms used for
sampling also can be found in [26].

1.4 Dilithium
Dilithium is a Module-LWE signature algorithm based on the "Fiat-Shamir with
Aborts" (FSwA) scheme. It is part of the CRYSTALS (Cryptographic Suite for
Algebraic Lattices) suite, which was submitted to NIST’s call for post-quantum
cryptographic standards. This section is an excerpt from the work [6], where the
Dilithium specifications were first described. Documentation and the reference im-
plementation for Dilithium are available at [32].

Key Generation

Algorithm 3 generates matrix A of polynomials over ring 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛 + 1).
Prime number 𝑞 = 223 − 213 + 1, 𝑛 = 256. This Algorithm samples random secret
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Algorithm 3 KeyGen
1: 𝐴← 𝑅𝑘×𝑙

𝑞

2: (𝑠1, 𝑠2)← 𝑆𝑙
𝜂 × 𝑆𝑘

𝜂

3: 𝑡 := 𝐴𝑠1 + 𝑠2

4: return (𝑝𝑘 = (𝐴, 𝑡), 𝑠𝑘 = (𝐴, 𝑡, 𝑠1, 𝑠2))

Algorithm 4 Sign(𝑠𝑘, 𝑀)
1: 𝑧 :=⊥
2: while 𝑧 :=⊥ do
3: 𝑦 ← 𝑆𝑙

𝜂−1

4: 𝑤1 := HighBits(𝐴𝑦, 2𝛾2)
5: 𝑐 ∈ 𝐵60 := 𝐻(𝑀 ||𝑤1)
6: 𝑧 := 𝑦 + 𝑐𝑠1

7: if ||𝑧||∞ ≥ (𝛾1 − 𝛽) or ||LowBits(𝐴𝑦 − 𝑐𝑠2, 2𝛾2)||∞ ≥ (𝛾2 − 𝛽) then
8: 𝑧 :=⊥
9: end if

10: end while
11: return 𝜎 = (𝑧, ℎ, 𝑐)

Algorithm 5 Verify(𝑝𝑘, 𝑀, 𝑧, 𝑐)
1: 𝑤′

1 := HighBits(𝐴𝑧 − 𝑐𝑡, 2𝛾2)
2: return [||𝑧||∞ < (𝛾1 − 𝛽)] and [𝑐 = 𝐻(𝑀 ||𝑤′

1)]

key vectors 𝑠1 and 𝑠2 with elements from the same ring like in A. Each element of
these vectors is an polynomial of ring 𝑅𝑞 with small coefficients – of size at most 𝜂.
All operations on vectors and matrix A are defined over ring 𝑅𝑞.

Signature

Algorithm 4 generates a masking vector of polynomials y with coefficients less than
𝛾1. The signer then computes 𝐴𝑦 and sets 𝑤1 to be the "high-order" bits of the
coefficients in this vector. The output of special hash function c is a polynomial in
𝑅𝑞 with exactly 60 ±1’s and the rest 0’s in order to get small norm. The potential
signature is then computed as 𝑧 = 𝑦 + 𝑐𝑠1. After that rejection sampling is applied
to 𝑧 in order to remove dependency of 𝑧 on secret key. The parameter 𝛽 ≤ 60𝜂 is
set to be the maximum possible coefficient of 𝑐𝑠𝑖. If any coefficient of z is larger
than 𝛾1 − 𝛽 or the low-order bits of 𝐴𝑧 − 𝑐𝑡 is greater than 𝛾2 − 𝛽, then we reject
𝑧 and restart signing procedure. The first check is necessary for security, while the
second is necessary for both security and correctness.
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Verification

The Verification Algorithm 5 first computes 𝑤′
1 to be the high-order bits of 𝐴𝑧− 𝑐𝑡,

and then accepts if all the coefficients of 𝑧 are less than 𝛾1 − 𝛽 and if c is the hash
of the message and 𝑤′

1. This statement is true due to the fact that

𝐻𝑖𝑔ℎ𝐵𝑖𝑡𝑠(𝐴𝑦, 2𝛾2) = 𝐻𝑖𝑔ℎ𝐵𝑖𝑡𝑠(𝐴𝑦 − 𝑐𝑠2, 2𝛾2)
||𝐿𝑜𝑤𝐵𝑖𝑡𝑠(𝐴𝑦 − 𝑐𝑠2, 2𝛾2)||∞ < (𝛾2 − 𝛽)

(1.19)

And since we know that the coefficients of 𝑐𝑠2 are smaller than 𝛽 adding 𝑐𝑠2

is not enough to cause any carries by increasing any low-order coefficient to have
magnitude at least 𝛾2. Thus System 1.19 is true and the signature verifies correctly.

1.5 DS2
DS2 is a two-round 𝑛-out-of-𝑛 signature scheme, proposed by Damgaard et al.[9],
with low round complexity derived from the Fiat–Shamir with Aborts paradigm [36].
DS2 signature is a distributed variant of the Dilithium signature [6], with its security
proof based on the hardness of Module Short Integer Solution (MSIS) and Module
Learning with Errors (MLWE) problems. The first practical implementation of the
DS2 algorithm was developed by Dobias et al. [35]. The scheme was executed on a
Linux environment hosted on a Raspberry Pi.

Key Generation

Algorithm 6 KeyGen(1𝜅)

1: 𝜌𝑛 ← {0, 1}256

2: Send out 𝜌𝑛 and receive 𝜌𝑖; 𝑖 ∈ [𝑛− 1]
3: 𝜌 = H(𝜌1|𝜌2|...𝜌𝑛)
4: Ā := [A|I] ∈ 𝑅𝑘×(ℓ+𝑘)

𝑞 ; A← 𝑅𝑘×ℓ
𝑞 := Sam(𝜌)

5: t𝑛 := Ās𝑛; s𝑛 ← 𝑆ℓ+𝑘
𝜂

6: (t𝑛1 , t𝑛0) := Power2Round(tn, 𝑑) ; 𝑔𝑛 := H2(t𝑛1)
7: Send out 𝑔𝑛 and receive 𝑔𝑖; 𝑖 ∈ [𝑛− 1]
8: Send out t𝑛1 , receive t𝑖1 and check 𝑔𝑖 = H2(t𝑖1); 𝑖 ∈ [𝑛− 1]
9: t1 := ∑︀

𝑖∈[𝑛] t𝑖1

10: 𝑡𝑟 ∈ {0, 1}384 := CRH(𝜌||t1)
11: return 𝑝𝑘 = (𝜌, t1), 𝑠𝑘 = (𝜌, 𝑡𝑟, s𝑛, t𝑛0)

Algorithms 6, 7 and 8 show all phases of DS2 signature generation and verification as
implemented in [35]. The key generation phase (Algorithm 6) allows to generate the
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secret key 𝑠𝑘 of each authorized signer and the common public key 𝑝𝑘. The matrix
A is sampled uniformly from the seed 𝜌, ensuring that it remains indistinguishable
from a uniformly distributed random matrix. In the computation of the combined
public key t1, power2round rounding is used to reduce the size of the transmitted
data.

Signature

Algorithm 7 Sign(𝑝𝑘, 𝑠𝑘𝑛, 𝜇 ∈𝑀)
1: 𝑐𝑘 := H3(𝜇, 𝑝𝑘)
2: w𝑛 := Āy𝑛; y𝑛 ← 𝐷ℓ+𝑘

𝑠

3: 𝑐𝑜𝑚𝑛 := Commit𝑐𝑘(w, rn); r𝑛 ← 𝐷(𝑆𝑟)
4: Send out 𝑐𝑜𝑚𝑛 and receive 𝑐𝑜𝑚𝑖; 𝑖 ∈ [𝑛− 1]
5: 𝑐 := H0(𝑐𝑜𝑚, 𝜇, 𝑡𝑟); 𝑐𝑜𝑚 = ∑︀

𝑖∈[𝑛] 𝑐𝑜𝑚𝑖

6: z𝑛 :=
⎛⎝z𝑛1

z𝑛2

⎞⎠ := 𝑐s𝑛 + y𝑛

7: Rejection sampling on (𝑐s𝑛, z𝑛), with probability 𝑚𝑖𝑛(1, 𝐷𝑙+𝑘
𝑠 (z𝑛)/(𝑀 ·

𝐷𝑙+𝑘
𝑠 (z𝑐s𝑛,𝑛))) continue, otherwise goto 4

8: z𝑛2 = z𝑛2 − 𝑐t𝑛0

9: Send out (z𝑛, r𝑛) and receive (z𝑖, r𝑖); 𝑖 ∈ [𝑛− 1]
10: for 𝑖 ∈ [𝑛− 1] do
11: w𝑖 := Āz𝑖 − 𝑐t𝑖1 · 2𝑑

12: if ||𝑧𝑖||2 > 𝐵 or Open𝑐𝑘(𝑐𝑜𝑚𝑖, r𝑖, w𝑖) ̸= 1 then abort
13: end if
14: z := ∑︀

𝑖∈[𝑛] z𝑖; r := ∑︀
𝑖∈[𝑛] r𝑖

15: end for
16: return Σ = (𝑐, z, r)

During the signing phase (Algorithm 7), n parties collaborate to generate a valid
signature. Signature phase just like key generation very similar the one showed in
the Algorithm 4. The key difference is an application of the commitment scheme
proposed by Damgaard et al. [9]. The commitment scheme is designed to ensure
that each participant generates the value of vector w𝑛 based on the public key and
random values, and does not select its value based on information received from
other participants in such a way as to compromise the security of the signature.
The scheme itself involves hiding vector w𝑛 by adding it to the result of multiplying
two large matrices 𝑐𝑘 and 𝑟. The values of the matrices coefficients are selected in
such a way as to preserve the homomorphic property of the proposed scheme, which
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allows adding all the commitments from each participant. The sum of each commit-
ment is used to create a challenge polynomial 𝑐, which later will allow to check all
commitments in single pass at the verification stage (Algorithm 8). But before that,
each participant must check "open" commitments from other participants during
signature stage. If any participant detects that some commitment opening fails, the
signature generation is aborted.

Verification

Algorithm 8 Verify(𝑝𝑘, Σ, 𝜇 ∈𝑀)
1: 𝑐𝑘′ := H3(𝜇, 𝑝𝑘)
2: w′ := Āz− 𝑐t1 · 2𝑑

3: 𝑐′ := H0(Commit𝑐𝑘′(w′, r), 𝜇, CRH(𝑝𝑘))
4: if ||z||2 ≤

√
𝑛𝐵 and 𝑐 = 𝑐′ then return 1

5: else return 0
6: end if

In the verification phase, verifier reconstructs w’, which, as mentioned before, thanks
to homomorphic property by addition of the scheme, represents a sum of all w𝑖

vectors from each participant. The w’ vector allows verifier to recreate the sum of
commitments and recreate challenge polynomial 𝑐, without knowledge of w𝑖.

1.6 Advanced Encryption Standard
The Advanced Encryption Standard (AES) is an encryption standard established
by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is
a symmetric-key algorithm, meaning the same key is used for both encrypting and
decrypting. It is based on a design principle known as a substitution–permutation
network and is efficient in both software and hardware. AES has a fixed block size
of 128 bits, and a key size of 128, 192, or 256 bits [33]. At the time of writing this
work, there are already microcontrollers on the market with hardware support for
AES, which are of particular interest to us, since they may allow us to compensate
for the decrease in performance caused by the changes we made to Dilithium and
DS2 algorithms in order to make them work on microcontrollers.

1.7 SHAKE
SHAKE-256 is an extendable-output function (XOF) in the SHA-3 family. Unlike
traditional cryptographic hash functions that produce a fixed-length digest, SHAKE-
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256 can generate outputs of any desired length. It uses a unique method known as
sponge construction, which allows it to absorb any amount of data and squeeze
any amount of data [34]. In the context of Dilithium, SHAKE-256 is used as a
pseudorandom function with respect to all previous inputs to expand the matrix and
the masking vectors, and to sample the secret polynomials with special properties.

1.8 STM32WB55xx description
The STM32WB55 is a multiprotocol wireless low-power microcontroller with an
embedded low-power radio compliant with Bluetooth Low Energy 5.3 and IEEE
802.15.4-2011. The controller contains a dedicated Arm Cortex®-M0+ for per-
forming all the real-time low layer operations and an Arm Cortex®-M4 CPU with
an FPU, adaptive real-time accelerator, and a frequency of up to 64 MHz. The
datasheet with detailed descriptions can be found at [37].

For our purposes, important points include that the STM32WB55 has 256KB
SRAM1, consisting of 192KB of actual RAM memory and 64KB of hardware mem-
ory parity check. Additionally, the STM32WB55 provides access to a True Random
number generator and a hardware accelerator for AES-256, which will be used to
speed up and optimize Dilithium later in Section 3.6. Furthermore, its embedded
wireless capabilities and hardware security features, such as memory protection, will
be useful in implementing use-case demonstrations in the future.
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2 Dilithium and DS2 signatures proposed op-
timization on restricted devises

2.1 Preliminaries

2.1.1 Dilithium Reference implementation overview

As starting point of work, we decided to investigate the reference implementation
of the Dilithium from it’s creators. The source code is provided in the form of
*.zip package, available at link [32]. The structure of the package is shown in the
Appendix A. The package contains 4 directories:

• Supporting documentation: contains essential explanatory materials.
• Reference implementation: the primary implementation in C.
• KAT: signature tests results and examples.
• Additional implementations: reference implementation, written in com-

bination of C and Assembler x86-64 that uses AVX2 command-set for speed
optimization on PC.

For our purposes, we were interested in the pure C implementation. The source
files are sorted into sub-packages, each with a self-sufficient copy of the source code
of Dilithium, but with different settings and security parameters preinstalled. In
this way, the source code can be extracted from the package and compiled without
additional efforts on the part of the user. The main difference between sub-packages
lies in config.h and params.h files. In config.h, a namespace for all functions is
defined, Dilithium mode is specified, and it is determined whether Dilithium uses
AES or SHAKE for secret generation and whether a randomized or deterministic
signature will be generated. Based on the definitions in config.h, params.h defines
security and computation parameters like dimensions of the matrix and vectors, size
of public and secret keys, size of the signature, length of bit-packing, and security
parameters 𝜂, 𝜏, 𝛾1, 𝛾2, 𝛽, 𝜔. Remaining files are almost identical across all sub-
packages. Due to the nature of constrained devices, from all the available variants,
we choose to proceed with Dilithium mode 2 that supports AES and randomized
signing. Parameters for Dilithium mode 2 described in Table 2.1.

Therefore, we investigated the source code of the chosen Dilithium sub-package.
We found several notable things. First of all, The Dilithium implementation does
not rely on external libraries for the implementation of AES or SHAKE. Instead,
the authors created their own custom implementations for both algorithms, tailoring
them to the specific needs of Dilithium. The only external libraries used are those for
random number generation. In this regard, the implementation relies on libraries
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Parameter Value Description
N 256 Number of coefficients in single polynomial
L 4 Length of vector 𝑠1

K 4 Length of vector 𝑠2

Q 8380417 Modulo of ring
𝜂 2 Maximum possible coefficient in 𝑠1 and 𝑠2

𝛾1 217 Maximum possible coefficient in 𝑦

𝛾2 (𝑄− 1)/88 Maximum possible coefficient in 𝑤0

𝛽 78 Maximum possible coefficient in 𝑐𝑠𝑖

𝜔 80 Maximum number of 1’s in ℎ

𝜏 39 Security parameter

Table 2.1: Parameters for Dilithium mode 2

provided by the operating system , with support for both Linux and Windows
environments. The implementation also includes a table of precomputed powers of
the chosen root of unity (𝜔′) already multiplied by powers of the 2-th root of unity
(𝜑′). This design choice enables the NTT transformation without requiring the
multiplication of input polynomials by the powers of 𝜑′, as indicated in Equation
1.12. The most notable thing is that matrix A and the vectors of polynomials
are allocated on the stack. This implies that microcontrollers must not only have
sufficient RAM to store all the data but also that linker scripts need to be edited
to ensure the linker allocates enough memory space for the stack. We created a
function call map, which can be found inside electronic attachments. This map
illustrates the chains of function calls from left to right, providing insights into the
approximation of stack memory allocation.

All important variables and data buffers in standard Dilithium are allocated in
the stack right after the call to respective functions for key generation, signature, or
verification. Memory for those variables is allocated until the exit from the function,
even if the variable is used only once. The first workaround for this problem could
be the usage of the heap instead of the stack. In this case, memory is allocated
only when the variable is needed; after that, memory can be freed. Unfortunately,
this approach has two flaws. First, standard C libraries for most microcontrollers
do not support heap management. Heap management will require either an RTOS
or a custom allocator. The second and more serious issue is that even if we dispose
of variables after their usage, still, we would have to allocate a very big chunk of
memory in a short time interval.
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2.1.2 DS2 Reference implementation overview

After analyzing the code, we came to the conclusion that Dobias et al. [35] build
their implementation of DS2 upon the same implementation of Dilithium that we
described in the Section 2.1.1, only expanding for the possibility of use by several
participants at the same time. Therefore, we will omit a detailed description of the
code and only refer to the Appendix B for details. Provided implementation of DS2
signature scheme, taking into account the chosen parameters 𝑘 = ℓ = 2 and the
number of parties 𝑛 = 10, requires a constant allocation of at least 176,256 bytes
of SRAM to store data related to parties and resultant signatures. Additionally, it
necessitates a minimum of 445,744 bytes of both heap and stack allocated memory
for temporary parameters and data buffers. Consequently, a microcontroller would
require a minimum of 640 KB of SRAM to effectively execute this DS2 implementa-
tion. Moreover, this implementation relies on the transmission of substantial data
volumes over the network, amounting to hundreds of kilobytes. Such extensive data
transfer could potentially introduce bottlenecks, particularly when utilized in con-
junction with low-powered WPAN standards such as 802.15.4. It is worth noting
that only a limited selection of microcontrollers available on the market currently
meet these memory and networking requirements and the microcontroller we use,
STM32WB55RGV6 does not fall into this category. However, after making a num-
ber of changes to the implementation we managed to successfully launch and test
DS2 scheme on it.

2.2 Reduction of memory consumption

2.2.1 Compression Optimization

This section introduces memory and communication optimizations aimed at enabling
the implementation of the DS2 scheme to run on a microcontroller. It is noteworthy
that without these optimizations, the signature would not be executable. First of
all, we applied the same approach that was previously used for Dilithium. Namely,
generation of matrices and vectors one block at a time, where each block is repre-
sented by a single polynomial. Note that polynomials are the entries of matrices and
vectors, and any calculations can be split to manage “only” two polynomials at once.
Therefore, we limit the system to generate the blocks needed at any given moment.
Accordingly, the multiplication of a matrix with a vector becomes a block-by-block
product of two polynomials at a time. However, this make the computation more
time consuming since the same block need to be generated multiple times. Let A
and B be 𝑚×𝑛 and 𝑛×ℎ matrices, respectively. Algorithm 9 shows the computation
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Algorithm 9 Mult(𝑛, 𝑚, ℎ, (𝐺𝑒𝑛𝐴, 𝑠𝐴), (𝐺𝑒𝑛𝐵, 𝑠𝐵))
1: For 𝑘 ∈ [0, 𝑛− 1] do
2: For 𝑗 ∈ [0, ℎ− 1] do
3: 𝐵[𝑘][𝑗] := 𝐺𝑒𝑛𝐵(𝑠𝐵, 𝑗, 𝑘)
4: For 𝑖 ∈ [0, 𝑚− 1] do
5: 𝐴[𝑖][𝑘] := 𝐺𝑒𝑛𝐴(𝑠𝐴, 𝑖, 𝑘)
6: 𝑅𝑒𝑠[𝑖][𝑗]+ = 𝐴[𝑖][𝑘] ·𝐵[𝑘][𝑗]
7: Return 𝑅𝑒𝑠

of the product 𝑅𝑒𝑠 = 𝐴 ·𝐵, where 𝐺𝑒𝑛𝐴 and 𝐺𝑒𝑛𝐵 are the algorithms for generating
each matrix with respective seeds 𝑠𝑎 and 𝑠𝑏. Note that in case of a matrix-vector
multiplication ℎ will be equal to 1 in Algorithm 9. This approach also gives us an
additional positive effect in the form that we can transmit random seeds from which
these matrices are generated, instead of the matrices themselves. Thus, we reduce
the volume of traffic by orders of magnitude and remove the bottleneck,caused by
the slow communication protocol 802.15.4.

The aforementioned optimizations are applied as follows:
• Algorithm 10, Line 2; Algorithm 11, Line 4; Algorithm 13, Line 5

and Algorithm 15, Line 4: We apply similar method to both Dilithium and
DS2. Both pairs (tn , wn) are computed by multiplying matrix Ā ← 𝑅𝑘×ℓ+𝑘

𝑞

with a randomly generated secret vector, respectively s𝑛 := [ŝ𝑛|s̄𝑛] ← 𝑆ℓ+𝑘
𝜂

and y𝑛 := [ŷ𝑛|ȳ𝑛] ← 𝐷ℓ+𝑘
𝑠 . Note that Ā := [A|I], where A ← 𝑅𝑘×ℓ

𝑞 and Ī
is the 𝑘 × 𝑘 identity matrix. In case of Dilithium ȳ is not used, hence it is
not generated. Using this approach matrices A, s𝑛 and y𝑛 are represented in
constant memory size of 1 KB each, independent of 𝑘 and ℓ.

• Algorithm 11, Line 7 and 8: Operations of generation of vectors ŷ𝑛, ŝ𝑛, s̄𝑛,
addition, subtraction and multiplication on the challenge polynomial 𝑐 are
done block-by-block.

• Algorithm 12, Line 1: Operations of generation of matrix 𝐴, subtraction
and multiplication on the challenge polynomial 𝑐 are done block-by-block.
Vectors 𝑧 and t̄𝑛 are both results of previous calculation and therefore are
kept in the memory in the full size.

• Algorithm 10, Line 3: Matrix 𝐴 and vectors s𝑛 are represented by their

Algorithm 10 KeyGen(1𝜅) - Dilithium
1: 𝜌, 𝜌𝑠 ← {0, 1}256 := SHAKE-256(1𝜅)
2: tn := Mult(𝑙, 𝑘, 1, (SHAKE-256, 𝜌), (SHAKE-256, 𝜌𝑠)) + s̄; s̄ := SHAKE-256(𝜌𝑠)
3: return (𝑝𝑘 = (𝜌, tn), 𝑠𝑘 = (𝜌, 𝜌𝑠, tn))
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Algorithm 11 Sign(𝑠𝑘, 𝑀) - Dilithium
1: 𝑧 :=⊥
2: while 𝑧 :=⊥ do
3: 𝜌𝑦 ← {0, 1}256 := SHAKE-256(1𝜅)
4: wn := Mult(𝑙, 𝑘, 1, (SHAKE-256, 𝜌), (SHAKE-256, 𝜌𝑦))
5: 𝑤1 := HighBits(wn, 2𝛾2)
6: 𝑐 ∈ 𝐵60 := 𝐻(𝑀 ||𝑤1)
7: 𝑧 := ŷ𝑛 + 𝑐ŝ𝑛 ; ŷ𝑛 := SHAKE-256(𝜌𝑦), ŝ𝑛 := SHAKE-256(𝜌𝑠)
8: v := wn − 𝑐s̄𝑛 ; s̄𝑛 := SHAKE-256(𝜌𝑠)
9: if ||𝑧||∞ ≥ (𝛾1 − 𝛽) or ||LowBits(v, 2𝛾2)||∞ ≥ (𝛾2 − 𝛽) then

10: 𝑧 :=⊥
11: end if
12: end while
13: return 𝜎 = (𝑧, ℎ, 𝑐)

seed 𝜌, 𝜌𝑠. This allowed us to reduce size of the secret key to 2.5KB.
• Algorithm 15, Lines 1 and 2: The commitment key 𝑐𝑘 and the random

parameter 𝑟𝑛 in the original DS2 scheme occupy at least 138 KB each. There-
fore, we represent these parameters by their respective seed values 𝜌𝑟𝑛 and 𝜌𝑐𝑘,
which are 64 bytes each. The 𝜌𝑐𝑘 is the short hash derived from the message
and the parameter 𝑡𝑟.

• Algorithm 14 and Algorithm 15, Line 5: The Commitment key 𝑐𝑘 and
the random parameter r𝑛 are generated from the respective seeds one block
at a time. The computation of the commitment is also done block by block.
This approach reduces the buffer sizes for both 𝑐𝑘 and r𝑛 from 138 KB to 1
KB each. Note that 𝑐𝑘 is generated uniformly and r𝑛 is generated normally
and, therefore, their generation takes different amount of time.

• Algorithm 15, Line 20 and Algorithm 16: The Open algorithm uses
the same optimization function as the Commit and follows the same logic of
block-by-block computation from the given seeds.

• Algorithm 15, Lines 9-12: The challenge polynomial is generated from
the seed 𝜌𝑐, which is 64 bytes long. The seed is generated from the calculated
commitment 𝑐𝑜𝑚 in the form of a matrix of polynomials. Instead of sending the

Algorithm 12 Verify(𝑝𝑘, 𝑀, 𝑧, 𝑐) - Dilithium
1: w′ := 𝐴𝑧 − 𝑐tn ; 𝐴 := SHAKE-256(𝜌)
2: 𝑤′

1 := HighBits(w′, 2𝛾2)
3: return [||𝑧||∞ < (𝛾1 − 𝛽)] and [𝑐 = 𝐻(𝑀 ||𝑤′

1)]
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Algorithm 13 KeyGen(1𝜅) - DS2

1: 𝜌𝑛, 𝜌𝑠𝑛 ← {0, 1}256 := SHAKE-256(1𝜅)
2: Send out 𝜌𝑛

3: Receive 𝜌𝑖; 𝑖 ∈ [𝑛− 1]
4: 𝜌 := SHAKE-256(𝜌1, 𝜌2, ..., 𝜌𝑛)
5: t𝑛 := Mult(𝑙, 𝑘, 1, (SHAKE-256, 𝜌), (SHAKE-256, 𝜌𝑠𝑛)) + s̄𝑛; s̄𝑛 := last 𝑘 bits of

SHAKE-256(𝜌𝑠𝑛)
6: (t𝑛1 , t𝑛0) := Power2Round(t𝑛, 𝑑)
7: 𝑔𝑛 := SHAKE-256(t𝑛1)
8: Send out 𝑔𝑛

9: Receive 𝑔𝑖; 𝑖 ∈ [𝑛− 1]
10: Send out t𝑛1

11: Receive t𝑖1 and check 𝑔𝑖 = SHAKE-256(t𝑖1); 𝑖 ∈ [𝑛− 1]
12: t1 := ∑︀

𝑖∈[𝑛] t𝑖1

13: 𝑡𝑟 ∈ {0, 1}512 := SHAKE-256(𝜌, t1)
14: return 𝑝𝑘 = (𝜌, t1, 𝑡𝑟), 𝑠𝑘𝑛 = (𝜌𝑠𝑛 , t𝑛0)

whole matrix to the SE node, the seed is sent in a single packet. Accordingly,
the SE node can regenerate the challenge polynomial 𝑐 from the seed.

• Algorithm 15 - Lines 16-17: the algorithm sends the seeds 𝜌𝑟𝑖
instead of

the whole matrix 𝑟𝑖, which allows eliminating a bottle neck caused by the slow
communication speed (on average it takes 5 s to send 138 KB matrix at 250
Kbps).

• Algorithm 15, Lines 21 and 22: The signature contains all received seeds
𝜌𝑟𝑖

and 𝜌𝑐, instead of the resulting parameter 𝑟. This allows for a reduction in
the signature size from 143 KB to 5 KB. Therefore, the following computation
is omitted r := ∑︀

𝑖∈[𝑛] r𝑖.

2.2.2 Outsource Optimization

Another optimization technique aimed to further reduce memory footprint and re-
moving the limit of maximal number of participating parties. Our system consists
of two parts: a security-critical part and a non-security-critical part. The security-

Algorithm 14 Commit(𝑤𝑛, 𝜌𝑟𝑛 , 𝜌𝑐𝑘) - DS2

1: 𝑐𝑜𝑚𝑛 := Mult(68, 𝑘, 𝑘, (SHAKE-256, 𝜌𝑟𝑛), (SHAKE-256, 𝜌𝑐𝑘))
2: 𝑐𝑜𝑚𝑛+ = 𝑤𝑛

3: return 𝑐𝑜𝑚𝑛
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Algorithm 15 Sign(𝑝𝑘, 𝑠𝑘𝑛, 𝜇 ∈𝑀) - DS2

1: 𝜌𝑐𝑘 ∈ {0, 1}512 := SHAKE-256(𝜇, 𝑡𝑟) ▷ SE/CE
2: 𝜌𝑟𝑛 , 𝜌𝑦𝑛 ← {0, 1}512 := SHAKE-256(1𝜅) ▷ SE
3: w𝑛 := Mult(𝑙, 𝑘, 1, (SHAKE-256, 𝜌), (SHAKE-256, 𝜌𝑦𝑛)) + ȳ𝑛;
4: ȳ𝑛 := last 𝑘 bits of SHAKE-256𝜌𝑦𝑛) ▷ SE
5: 𝑐𝑜𝑚𝑛 := Commit(w𝑛, 𝜌𝑟𝑛 , 𝜌𝑐𝑘); ▷ SE
6: Send out 𝑐𝑜𝑚𝑛 ▷ SE
7: Receive 𝑐𝑜𝑚𝑖; 𝑖 ∈ [𝑛− 1] ▷ CE
8: 𝑐𝑜𝑚 := ∑︀

𝑖∈[𝑛] 𝑐𝑜𝑚𝑖 ▷ CE
9: 𝜌𝑐 ∈ {0, 1}512 := SHAKE-256(𝑐𝑜𝑚, 𝜇, 𝑡𝑟); ▷ CE

10: Send out 𝜌𝑐 ▷ CE
11: Receive 𝜌𝑐 ▷ SE
12: 𝑐 := SHAKE-256(𝜌𝑐) ▷ SE/CE

13: z𝑛 :=
⎛⎝z𝑛1

z𝑛2

⎞⎠ := 𝑐s𝑛 + y𝑛; s𝑛 := SHAKE-256(𝜌𝑠𝑛) ▷ SE

14: Rejection sampling on (𝑐s𝑛, z𝑛), with probability 𝑚𝑖𝑛(1, 𝐷𝑙+𝑘
𝑠 (z𝑛)/(𝑀 ·

𝐷𝑙+𝑘
𝑠 (z𝑐s𝑛,𝑛))) continue, otherwise go to Line 4 ▷ SE

15: z𝑛2 = z𝑛2 − 𝑐t𝑛0 ▷ SE
16: Send out (z𝑛, 𝜌𝑟𝑛) ▷ SE
17: Receive (z𝑖, 𝜌𝑟𝑖

); 𝑖 ∈ [𝑛− 1] ▷ CE
18: For 𝑖 ∈ [𝑛− 1] do
19: w𝑖 := Āz𝑖 − 𝑐t𝑖1 · 2𝑑 ▷ CE
20: If ||𝑧𝑖||2 > 𝐵 or Open(𝜌𝑐𝑘, 𝑐𝑜𝑚𝑖, 𝜌𝑟𝑖

, w𝑖) ̸= 1 then abort ▷ CE
21: z := ∑︀

𝑖∈[𝑛] z𝑖 ▷ CE
22: return Σ = (𝜌𝑐, z, 𝜌𝑟1 , 𝜌𝑟2 , ..., 𝜌𝑟𝑛)

critical part, namely the Secure Element (SE), performs operations requiring secret
knowledge and must be executed on the microcontroller itself. Conversely, the non-
critical part, referred to as the Central Element (CE), contains operations that do
not require secret knowledge and can be performed either on another microcontroller
or on a host computer connected to the CE.

The original DS2 scheme, proposed by Damgaard et al. [9] and implemented by
Dobias et al. [35], employs a full-mesh topology for communication among parties.
While robust, this architecture mandates each party to store additional information
about all other parties and the random values generated by them. To mitigate
this issue, the CE aggregates data from all parties and partially offloads the nodes,
relieving them of the burden to perform non-security-critical complex calculations.
Consequently, we effectively change the network topology from “full-mesh” to “star”

38



Microcontroller

PC

Microcontroller

Microcontroller

PC

Microcontroller

SE1

SE2

SEn

CE

Verifier

OR

Fig. 2.1: Outsource optimization: Architecture.

configuration.
Figure 2.1 depicts the system architecture with the addition of a CE. Each se-

cure element SE𝑖 computes part of the signature with the help of the CE. Then CE
generates the final signature Σ from the partial information. Note that the Verifier
is not part of the signing process and can be represented by either a PC or micro-
controller. Accordingly, the compression optimizations (see Subsection 2.2.1) are
only necessary in the latter case.

Figure 2.2 sketches the communication flow between a SE and the CE. It is
worth noting that Algorithm 13 for key generation remains based on “full-mesh”
communication. In fact, the introduction of the CE would not release the SE of the
memory-demanding computations. Specifically, in Algorithm 13, Line 5 requires
knowledge of the secret value 𝑠𝜌𝑛 , thereby requiring execution within the SE. More-
over, the introduction of a CE and, consequently, a “star” network, may introduce
security concerns, as discussed in Section 2.3. On the contrary, in Algorithm 15, the
SE is relieved of matrix-matrix multiplications, specifically Lines 4 and 20, that are
outsourced to the CE. Finally, Algorithm 17 is solely involved in the verification of
the signature.

Algorithm 16 Open(𝜌𝑐𝑘, 𝑐𝑜𝑚𝑖, 𝜌𝑟𝑛 , w𝑛) - DS2

1: 𝑐𝑜𝑚𝑛 := Mult(69, 𝑘, 𝑘, (SHAKE-256, 𝜌𝑟𝑛), (SHAKE-256, 𝜌𝑐𝑘))
2: 𝑐𝑜𝑚𝑛+ = 𝑤𝑛

3: If 𝑐𝑜𝑚𝑖 == 𝑐𝑜𝑚𝑛 return 1
4: Else return 0
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Algorithm 17 Verify(𝑝𝑘, Σ, 𝜇 ∈𝑀) - DS2
1: 𝑐 := SHAKE-256(𝜌𝑐)
2: For 𝑖 ∈ [𝑛− 1] do
3: r′

𝑖 := SHAKE-256(𝜌𝑟𝑖
)← 𝐷(𝑆𝑟, 𝜌𝑟𝑖

)
4: r′ := ∑︀

𝑖∈[𝑛] r′
𝑖

5: 𝑐𝑘 := SHAKE-256(𝜇, 𝑝𝑘)
6: w′ := Āz− 𝑐t1 · 2𝑑

7: 𝑐′ := SHAKE-256(Commit𝑐𝑘′(w′, r′), 𝜇, SHAKE-256(𝜌, t1))
8: If ||z||2 ≤

√
𝑛𝐵 and 𝑐 = 𝑐′ return 1

9: Else return 0

2.3 DS2 Security analysis
In order to prove our optimized DS2 scheme is complete and secure, we prove that the
Verify algorithm is sound and correct, and therefore, only valid signatures generated
by authorized parties will be always verified correctly, and invalid signatures will
always fail verification. Then, we prove that KeyGen and Sign algorithms are secure
and do not leak any information about the individual parties’ secret keys.

Theorem 1 (verification Soundness and Correctness). The verification process in
Algorithm 17 (Verify) is correct and sound.

Proof. For the signature to be accepted, we need to show that the newly com-
puted 𝑐′ is equal to 𝑐, that is SHAKE-256(𝜌𝑐) = SHAKE-256(𝑐𝑜𝑚, 𝜇, 𝑡𝑟) is equal to
SHAKE-256(Commit𝑐𝑘′(w′, r′), 𝜇, SHAKE-256(𝜌, t1)). If this equality holds, it means
that the signatures zn were generated by the authorized parties knowing the shares
𝑠𝑛 of the common secret key. Since 𝑡𝑟 is equal to SHAKE-256 (𝜌, t1)), this can be
done by proving that 𝑐𝑜𝑚 is equal to Commit𝑐𝑘′ (w′, r′). Note that

r′ =
∑︁
𝑖∈[𝑛]

r′
𝑖 =

∑︁
𝑖∈[𝑛]

SHAKE-256(𝜌𝑟𝑖
) =

∑︁
𝑖∈[𝑛]

ri = r

Therefore, the commitments equality can be proven as follows:

Commit𝑐𝑘′(w′, r) = Commit𝑐𝑘′(Āz− 𝑐t1 · 2𝑑, r)
= Commit𝑐𝑘′(

∑︁
𝑖∈[𝑛]

Āzi − 𝑐t𝑖1 · 2𝑑,
∑︁
𝑖∈[𝑛]

r𝑖)

=
∑︁
𝑖∈[𝑛]

Commit𝑐𝑘′(Ā𝑧𝑖 − 𝑐t𝑖1 · 2𝑑, ri)

=
∑︁
𝑖∈[𝑛]

Commit(wi, ri) =
∑︁
𝑖∈[𝑛]

𝑐𝑜𝑚𝑖 = 𝑐𝑜𝑚
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Note that it is straightforward that ||z||2 ≤
√

𝑛𝐵 since the signers only output
a signature shares that respect ||z𝑖||2 ≤ 𝐵. We refer to [9], Lemma 2 for more
details.

Theorem 2 (Key Generation Security). The key generation process in Algorithm
13 (KeyGen) is secure.

Proof. The Algorithm 13 does not leak any information about the individual par-
ties’ secret keys as we do not modify the communication model of the original DS2
scheme. In fact, we kept a “full mesh” communication to avoid any possible misbe-
having of malicious CE. In the algorithm, 𝜌 represents a committed random value
agreed between involved parties. Therefore, outsourcing its computation to a CE
could cause a security risk. For example, a malicious CE would be able to pilot the
computation of matrix Ā by sending its own 𝜌′ instead of a fairly computed value
𝜌 = SHAKE-256(𝜌1, 𝜌2, · · · , 𝜌𝑛) to each SE.

Theorem 3 (Signing Security). The signing process in Algorithm 15 (Sign) is
secure.

Proof. It is worth noting that a malicious CE can break the correctness of the ver-
ification process in such a way that the signature generated by authorized parties
will fail verification. It can be done easily by spoofing the transmitted data between
signers. However, the Algorithm 15 does not leak any information about the indi-
vidual parties’ secret keys to any misbehaving CE. In the algorithm, the signer uses

the secret key 𝑠𝑛 to compute Proof of Knowledge (PK): z𝑛 =
⎛⎝z𝑛1

z𝑛2

⎞⎠ = 𝑐s𝑛 + y𝑛,

where 𝑐 = SHAKE-256(𝜌𝑐), and 𝜌𝑐 is the challenge computed by CE. This PK does
not reveal any information about s𝑛 even if the CE would have complete control
over the challenge 𝑐, which it does not have since the output of the hash function
SHAKE-256(𝜌𝑐) is unpredictable by CE.
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Fig. 2.2: Outsource optimization: communication flow between SE and CE.
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3 Implementation of Dilithium and DS2 sig-
natures

In this chapter we present theoretic analysis and test results of our implementation
of Dilithium and DS2. Our implementation is open-source and available on the
public GitLab repository1.

3.1 Testing Methodology
From now on, for simplicity, we will reference in the text the unmodified versions of
Dilithium and DS2 as "fast" or the "standard" versions and the modified version
as "slow" or "new" versions. For all tests and test results described below, we used
the same MCU STM32WB55RGV6 at 64MHz (interrupts were not disabled). As
the metric for performance measurement, the number of CPU cycles was chosen.
Logged min and max values of performance measurements for all procedures for
both standard and new variants in the worst-case scenario do not deviate more than
5%, thus only max values will be shown in test results. The chosen test message for
signature was 256 bytes in length, consisting solely of bytes with a value of 0xAA.

3.1.1 Choice of microcontroller for testing

While RAM size is a critical factor in the choice of microcontrollers, it’s not the
sole determinant. Important criteria were also the presence of hardware encryption
support (AES) and a low-power and low-speed data transfer protocol in order to
bring the conditions for using modified protocols closer to real ones. The study
identifies a set of high-performance microcontrollers suitable for networking and
security applications. More details about the chosen microcontrollers can be found
in the Table 3.1, which shows a comparison of microcontrollers’ specifications.

Based on the totality of all the above requirements and characteristics form the
Table 3.1, we came to the conclusion that the optimal choice would be STM32WB55RGV6
microcontroller, which met all the criteria and was available to us.

3.2 Dilithium memory consumption analysis
As will be demonstrated in the Table 3.2, Dilithium was already quite well optimized
for memory consumption in its original implementation and was easy to run on all
microcontrollers listed in the Table 3.1. Therefore, in the case of Dilithium, we were

1https://gitlab.com/brno-axe/pqc/ds2ram
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Table 3.1: Microcontrolles Overview

Name Developer Core SRAM Protocol AES Freq.
STM32WB55xx STM Cortex-M4 192KB 802.15.4 + 64MHz
STM32G0C1xx STM Cortex-M0+ 128KB None + 128MHz
STM32H563xx STM Cortex-M33 640KB None + 250MHz
STM32L476xx STM Cortex-M4 128KB None − 80MHz
ESP32-S2 (S3) Espressif Xtensa LX7 340KB Wi-Fi + 240MHz

LPC51U68 NXP Cortex-M0+ 96KB None − 96MHz

interested in finding out the minimum possible values, which determined our choice
to focus on the Dilithium mode-2-AES with deterministic signature implementation
in order to obtain the lowest possible memory consumption, but still comply with
the latest standard ML-DSA [3]. The goal was to make Dilithium applicable to the
widest possible number of constrained devices. The majority of the microcontrollers
on the market at the time of this thesis publication are not capable of running
Dilithium due to a lack of RAM.

In order to estimate how much we can reduce memory footprint, we created
a theoretical model of memory consumption for the standard versions of the key
generation, signature and verification procedures, expressed in the Equations 3.1,
3.2 and 3.3

𝑀 𝑓𝑎𝑠𝑡
𝐾𝑒𝑦𝐺𝑒𝑛(𝑘, ℓ) = 4𝑁 · (𝑘 · ℓ + 2ℓ + 3𝑘) + 𝑀𝑎𝑝𝑝 (3.1)
𝑀 𝑓𝑎𝑠𝑡

𝑆𝑖𝑔𝑛(𝑘, ℓ) = 4𝑁 · (𝑘 · ℓ + 2ℓ + 5𝑘 + 1) + 𝑀𝑎𝑝𝑝 (3.2)
𝑀 𝑓𝑎𝑠𝑡

𝑉 𝑒𝑟𝑖𝑓𝑦(𝑘, ℓ) = 4𝑁 · (𝑘 · ℓ + ℓ + 3𝑘 + 1) + 𝑀𝑎𝑝𝑝 (3.3)

Where:
• 𝑘, ℓ - dimensions of the vectors and matrix 𝐴

• 𝑁 - size of the polynomial (constant)
• 𝑀 𝑓𝑎𝑠𝑡

𝐾𝑒𝑦𝐺𝑒𝑛, 𝑀 𝑓𝑎𝑠𝑡
𝑆𝑖𝑔𝑛, 𝑀 𝑓𝑎𝑠𝑡

𝑉 𝑒𝑟𝑖𝑓𝑦 - functions which returns expected memory consump-
tion in bytes

• 𝑀𝑎𝑝𝑝 - A variable representing memory reserved for the main application. We
approximated 𝑀𝑎𝑝𝑝 ≈ 5𝐾𝐵 for our test application.

Also, we created similar model for the modified version of the Dilithium, which
is expressed in the Equations 3.4, 3.5 and 3.6

44



𝑀 𝑠𝑙𝑜𝑤
𝐾𝑒𝑦𝐺𝑒𝑛(𝑘, ℓ) = 4𝑁(2𝑘 + 4) + 𝑀𝑎𝑝𝑝 (3.4)
𝑀 𝑠𝑙𝑜𝑤

𝑆𝑖𝑔𝑛(𝑘, ℓ) = 4𝑁(ℓ + 4𝑘 + 3) + 𝑀𝑎𝑝𝑝 (3.5)
𝑀 𝑠𝑙𝑜𝑤

𝑉 𝑒𝑟𝑖𝑓𝑦(𝑘, ℓ) = 4𝑁(2𝑘 + 4) + 𝑀𝑎𝑝𝑝 (3.6)

As can be seen from Equations 3.1 - 3.6, we were able to transform the memory
consumption functions from quadratic to linear. To verify these results, we created
a modified version of Dilithium according to the description above and measured
actual memory footprint, using "Build Analyzer" tool from CubeIDE. We compared
real memory consumption for both standarad and new versions of Dilithium with
our theoretical estimations based on Equations 3.1 - 3.6 in the Table 3.2.

It is necessary to clarify that our theoretical model is extremely simplified and
is intended to obtain a primary rough estimate of memory consumption. Therefore,
it does not take into account auxiliary variables and memory buffers that can be
used in the program. However, in our case, deviations from real measurements do
not exceed 10% and will decrease with increasing parameters 𝑘, ℓ. Nevertheless, it
can be seen that on average, we could decrease the memory consumption of each
procedure by 55%, bringing real memory consumption in the case of key generation
to 18KB and in the case of verification to only 16KB.

Procedure Theor. (std) Theor. (new) Real (std) Real (new) Δ𝑠𝑡𝑑/𝑛𝑒𝑤

𝑀𝐾𝑒𝑦𝐺𝑒𝑛 41KB 17KB 42KB 18KB 57.1%
𝑀𝑆𝑖𝑔𝑛 50KB 28KB 55KB 29KB 47.3%

𝑀𝑉 𝑒𝑟𝑖𝑓𝑦 38KB 17KB 40KB 16KB 60%

Table 3.2: Comparison of memory consumption between the standard and new ver-
sions of Dilithium in KB.

3.3 Dilithium time complexity analysis
In order to assess the impact of our changes on performance, we again resorted to
constructing a theoretical model of time complexity, which can be expressed in the
Equations 3.7, 3.8 and 3.9 for the standard Dilithium variant and Equations 3.10,
3.11 and 3.12 for the new one.

𝐶𝑓𝑎𝑠𝑡
𝐾𝑒𝑦𝐺𝑒𝑛(𝑘, ℓ) = 𝑂(𝑡𝐻 + 𝑘ℓ(𝑡𝐴 + 𝑡𝑚𝑢𝑙) + 𝑡𝑠(𝑘 + ℓ) + 2𝑡𝑁𝑇 𝑇 + 3𝑡𝑎𝑑𝑑 (3.7)
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𝐶𝑓𝑎𝑠𝑡
𝑆𝑖𝑔𝑛(𝑘, ℓ, 𝑛) = 𝑂(𝑡𝐻 + 𝑡𝑁𝑇 𝑇 (2𝑘 + ℓ) + 𝑡𝑠𝑘 + 𝑡𝑎𝑑𝑑ℓ + 𝑡𝐴𝑘ℓ+

+ 𝑛(𝑡𝑦ℓ + 𝑡𝑚𝑢𝑙(𝑘ℓ + 2𝑘 + ℓ) + 10𝑡𝑎𝑑𝑑(𝑘 + ℓ) + 𝑡𝑁𝑇 𝑇 (3𝑘 + ℓ + 1))) (3.8)

𝐶𝑓𝑎𝑠𝑡
𝑉 𝑒𝑟𝑖𝑓𝑦(𝑘, ℓ) = 𝑂(3𝑡𝐻 + 𝑘ℓ𝑡𝐴 + 𝑡𝑁𝑇 𝑇 (2𝑘 + 1) + 𝑘𝑡𝑚𝑢𝑙 + 4𝑡𝑎𝑑𝑑 (3.9)

𝐶𝑠𝑙𝑜𝑤
𝐾𝑒𝑦𝐺𝑒𝑛(𝑘, ℓ) = 𝑂(𝑡𝐻+𝑘(ℓ(𝑡𝐴+𝑡𝑚𝑢𝑙+𝑡𝑠+𝑡𝑁𝑇 𝑇 +𝑡𝑚𝑢𝑙+𝑡𝑎𝑎𝑑𝑑)+2𝑡𝑎𝑑𝑑+𝑡𝑁𝑇 𝑇 +𝑡𝑠)+2𝑡𝑎𝑑𝑑)

(3.10)

𝐶𝑠𝑙𝑜𝑤
𝑆𝑖𝑔𝑛(𝑘, ℓ, 𝑛) = 𝑂(𝑡𝐻+𝑡𝑁𝑇 𝑇 𝑘+𝑛(𝑘(ℓ(𝑡𝐴+𝑡𝑦+𝑡𝑁𝑇 𝑇 +𝑡𝑚𝑢𝑙+𝑡𝑎𝑑𝑑)+𝑡𝑎𝑑𝑑+𝑡𝑁𝑇 𝑇 )+8𝑡𝑎𝑑𝑑+

+ 𝑡𝑁𝑇 𝑇 (𝑘 + 1) + 𝑡𝐻 + ℓ(𝑡𝑠 + 2𝑡𝑁𝑇 𝑇 + 𝑡𝑦 + 𝑡𝑚𝑢𝑙 + 2𝑡𝑎𝑑𝑑) + 𝑘(𝑡𝑠 + 2𝑡𝑁𝑇 𝑇 + 𝑡𝑚𝑢𝑙)) + 𝑘𝑡𝑚𝑢𝑙)

(3.11)

𝐶𝑠𝑙𝑜𝑤
𝑉 𝑒𝑟𝑖𝑓𝑦(𝑘, ℓ) = 𝑂(3𝑡𝐻+𝑡𝑁𝑇 𝑇 +𝑘(ℓ(𝑡𝐴+𝑡𝑁𝑇 𝑇 +𝑡𝑚𝑢𝑙+𝑡𝑎𝑑𝑑)+3𝑡𝑎𝑑𝑑+2𝑡𝑁𝑇 𝑇 +𝑡𝑚𝑢𝑙)+3𝑡𝑎𝑑𝑑)

(3.12)

Where:
• 𝑘, ℓ - dimensions of the vectors and matrix 𝐴.
• 𝑛 - Number of iterations needed to generate a signature.
• 𝑡𝑚𝑢𝑙 - time needed to point-wise multiple two polynomials.
• 𝑡𝑎𝑑𝑑 - time needed to point-wise add or substract two polynomials.
• 𝑡𝑠 - time needed to generate a single polynomial from 𝑠1, 𝑠2 secret vectors.
• 𝑡𝐴 - time needed to generate a single polynomial from 𝐴 matrix.
• 𝑡𝑦 - time needed to generate a single polynomial from 𝑦 vector.
• 𝑡𝑁𝑇 𝑇 - time needed to perform NTT transformation on single polynomial.
• 𝑡𝐻 - average time needed to perform a hashing of 1024 bit of data.
• 𝐶𝐾𝑒𝑦𝐺𝑒𝑛, 𝐶𝑆𝑖𝑔𝑛, 𝐶𝑉 𝑒𝑟𝑖𝑓𝑦 - functions which returns expected execution time of

the procedure in CPU cycles.
We performed multiple tests according to the procedure described in Section 3.1

and found out the average values of the constants, namely 𝑡𝑚𝑢𝑙𝑡 =4E+4, 𝑡𝑎𝑑𝑑 =5E+3,
𝑡𝑠 =3.84E+5, 𝑡𝐴 =1.14E+6, 𝑡𝑦 =9.02E+5, 𝑡𝑁𝑇 𝑇 =1.8E+5, 𝑡𝐻 =3E+5 CPU cycles.
If we plug these values into the equations, then the average execution time for the key
generation procedure of the standard Dilithium is 2.26E+7 CPU cycles and for our
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implementation, it is 3.06E+7. For the verification, it is 2.26E+7 and 2.46E+7
CPU cycles for the standard and our implementation respectively. The final results
of our empirical measurements for key generation and verification at 64MHz are
shown in Table 3.3. It can be seen that our real implementation performance is
11% worse than predicted by our model for key generation and 9% worse for the
verification.

Procedure 𝐶𝑅𝑒𝑎𝑙(fast) 𝐶𝑅𝑒𝑎𝑙(slow) 𝐶𝑠𝑙𝑜𝑤

𝐶𝑓𝑎𝑠𝑡

KeyGen 2.55E+7 (399ms) 3.2E+7 (500ms) 1.25
Verification 2.41E+7 (377ms) 2.69E+7 (423ms) 1.12

Table 3.3: Performance test of Key generation and Verification procedures for stan-
dard and new implementations of Dilithium

Due to possible rejections during the signature process, the execution time of
the signature procedure depends not only on the chosen parameters 𝑘, ℓ but also
on the random parameter 𝑛 , which represents the number of signature rounds.
Therefore, we tested the signature procedure separately with a slightly different
testing sequence. We generated 100 different signatures with different key-pairs to
obtain statistics on the distribution of the 𝑛 values. We found out that in 70% of
cases, the signature was generated in one or two rounds. For another 15%, 𝑛 was
in the range between 3 and 7 rounds. The results of our test measurements (on
the right) along with our theoretical estimations (on the left) are shown in Table
3.4. It can be seen from the table that our model is not exact, but despite this, we
believe that it is accurate enough to be used to evaluate the impact of changes we
introduced on the execution time of the signature algorithm with different values of
𝑘, ℓ and 𝑛. For greater clarity, we plotted the dependence of the signature procedure
execution time on the number of rounds 𝑛 on the Figure 3.1 using only real data
measurements from the Table 3.4. It is clear, that time complexity of our algorithm
is rising much faster compared to the original. For instance, in case 𝑛 = 3, our
implementation became 3 times slower than original and 4 times slower for 𝑛 = 7.

We would like to point out that, as mentioned in Section 3.1, all practical mea-
surements given in the Tables 3.2, 3.3 and 3.4 were obtained for the Dilithium
mode-2-AES (𝑘 = 4, ℓ = 4) with the software implementation of the AES-256-CTR.
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𝑛 𝐶𝑇 ℎ𝑒𝑜𝑟(fast) 𝐶𝑇 ℎ𝑒𝑜𝑟(slow) 𝐶𝑠𝑙𝑜𝑤

𝐶𝑓𝑎𝑠𝑡
𝐶𝑅𝑒𝑎𝑙(fast) 𝐶𝑅𝑒𝑎𝑙(slow) 𝐶𝑠𝑙𝑜𝑤

𝐶𝑓𝑎𝑠𝑡

1 3.23E+7 4.94E+7 1.54 3.18E+7 5.17E+7 1.63
2 4.08E+7 9.77E+7 2.43 4.14E+7 9.79E+7 2.37
3 4.93E+7 1.46E+7 3.01 4.82E+7 1.47E+8 3.05
4 5.77E+7 1.94E+8 3.43 5.78E+7 1.96E+8 3.38
5 6.62E+7 2.43E+8 3.73 6.59E+7 2.42E+8 3.67
6 7.47E+7 2.91E+8 3.97 7.79E+7 2.83E+8 3.64
7 8.32E+7 3.39E+8 4.17 8.59E+7 3.41E+8 3.97

Table 3.4: Performance test of Signature procedure for std-Dilithium and new-
Dilithium
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Fig. 3.1: Difference in signature execution time between standard and new
Dilithium.
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3.4 DS2 Memory consumption analysis
The memory footprint of the original DS2 implementation [35] consists of several
parts: the static memory region (𝑀𝑠𝑡𝑎𝑡𝑖𝑐), which stores data for the public key (𝑀𝑝𝑘)
of the participant, secret key (𝑀𝑠𝑘), and the resulting signature (𝑀𝑠𝑖𝑔𝑛), as well as
the stack-allocated memory (𝑀𝑠𝑡𝑎𝑐𝑘) and heap-allocated memory (𝑀ℎ𝑒𝑎𝑝), which are
used for the storage of temporary values during computation. Let 𝑘, ℓ, 𝑇𝑐 be the
dimensions of the matrices, 𝑁 the number of coefficients in each polynomial, and
𝑛 the number of parties involved. Therefore, the memory complexity for static
parameters without signature can be described by Equation 3.13, for the signature
by Equation 3.14, for the stack by Equation 3.15, and for the heap by Equation
3.16.

𝑀𝑠𝑡𝑎𝑡𝑖𝑐 = 4𝑁(𝑘(ℓ + (𝑛 + 2)) + ℓ + (𝑛 + 2)𝑘2) (3.13)
𝑀𝑠𝑖𝑔𝑛 = 4𝑁(𝑘 + ℓ + 𝑘𝑇𝑐) + 𝑠 (3.14)

𝑀𝑠𝑡𝑎𝑐𝑘 = 4𝑁((𝑘 + 1)𝑇𝑐 + 5ℓ + 7𝑘 + 1) + 3𝑁(2𝑘 + ℓ + 𝑘2) (3.15)
𝑀ℎ𝑒𝑎𝑝 = (𝑘 + 1)(3𝑁 · 𝑇𝑐) (3.16)

If we take into account that the parameters 𝑁 = 256 and 𝑇𝑐 = 69 are con-
stants, the total memory footprint of the DS2 implementation developed by Dobias
et al. [35] depends on the chosen security level and the number of parties. Addi-
tionally, the largest portion of the memory will be occupied by the commitment
key 𝑐𝑘, the pseudo random matrix 𝑟 (which is part of the resulting signature), and
additional memory buffers to store the shares of the matrix 𝑟, generated by each
participant.

Application of our first optimization technique allows us to represent 𝐴, 𝑠1, 𝑠2, 𝑐𝑘,
and 𝑟 by a single polynomial each, along with random seeds 𝜌 𝜌𝑠𝑖

, 𝜌𝑐𝑘 and 𝜌𝑟𝑖
, where

𝑖 ∈ [1 · · ·𝑛]. Each seed has a length of 𝑠 bytes, thus eliminating the dependency of
Equations 3.14, 3.15, and 3.16 on the parameter 𝑇𝑐. This, in turn, permits us to
completely remove 𝑀ℎ𝑒𝑎𝑝 part and reduce the size of resulting signature 𝑀𝑠𝑖𝑔𝑛.

Anyway, each node must store 𝑛− 1 received commitments to be able to check
them at the final stage of signature generation and calculate their sum. As stated
before, we address this issue by changing the topology of the local network through
the introduction of the central node, namely CE, which is represented by the PC.
We split our system into a security-critical part and a non-security-critical part. The
security-critical part must always be calculated by the SE nodes, but SE no longer
have to store commitments from other nodes. The final note is that all coefficients in
each polynomial are taken modulus 8380417, which is a 23-bit number. To further
reduce memory consumption and network traffic, vectors and matrices, which are
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Table 3.5: Memory consumption of different DS2 variants.

Parameter set Original DS2 This Work Mem. Reduction
𝑘 = 4, ℓ = 4 1039 KB 80 KB 92.4%
𝑘 = 6, ℓ = 5 1542 KB 134 KB 91.4%
𝑘 = 8, ℓ = 7 2093 KB 206 KB 90.2%

meant to be sent wirelessly, namely 𝑡1, 𝑧1, 𝑧2, and the 𝑐𝑜𝑚, can be “packed” to take
only 3 bytes instead of 4 for each coefficient. After applying both optimizations, we
obtain Equations 3.17 and 3.18.

𝑀𝑠𝑡𝑎𝑡𝑖𝑐 = 4𝑁(ℓ + 2𝑘) + 3𝑁(2𝑘 + ℓ + 𝑘2) + 4𝑠 (3.17)
𝑀𝑠𝑡𝑎𝑐𝑘 = 4𝑁(𝑘2 + 4𝑘 + 2ℓ + 6) (3.18)

Based on the equations above, we estimated the amount of memory required
to run DS2: a) without our improvements, b) only with vector multiplication op-
timization (i.e., Compression Optimization, see Section 2.2.1), c) with multiplica-
tion optimization and outsourced computations on the CE node (i.e., Outsource
Optimization, see Section 2.2.2). These estimations were calculated for the values
𝑁 = 256, 𝑇𝑐 = 69, 𝑠 = 64 and for (𝑘, ℓ) dimensions, which correspond to those stated
in the ML-DSA standard, namely (4,4), (6,5), (8,7). The introduction of compres-
sion optimization reduces memory consumption by an average of 80%. Outsourcing
optimization allows for an additional 10% reduction from the original. The total
memory reduction after the application of all optimizations is, on average, 90%.
The results of our calculations (considering applying both optimisation methods)
are shown in Table 3.5.

Additionally, we have to reserve on average 20 KB of static memory space for
the main application. Taking into account all of the above, we can confidently say
that with all our changes, we are able to run DS2(4,4) and DS2(6,5) variants on the
STM32WB55RGV6.

3.5 DS2 Time complexity analysis
First of all, we have to address two main limitations we encountered during our
experiments. First, due to the memory limitations of the microcontroller, we could
not conduct empirical experiments with DS2(8,7) variant. Second, we chose the
number of CPU cycles as the metric for performance measurements in order to
obtain frequency independent values. However, the register-counter for the number
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of CPU cycles in Cortex-M4 is limited to 32 bits. If 𝑘 is chosen to be larger than 4,
this counter overflows multiple times during large matrix multiplication. Thus, we
should rely only on estimations.

The key difference between the original signature algorithm and our modified
version lies in the commitment function, see Algorithm 5. The commitment is rep-
resented by the multiplication of two large matrices, shown in Algorithm 9. We
decided to analyze its impact on the overall performance. For each measurement,
we do 10 experiments and find an average of the results. The average total execu-
tion time of DS2(4,4) for all operations conducted by the SE node is 4.4E+9 CPU
cycles in case the signature was generated in single pass of the algorithm without
rejections. At the same time, the average execution time of the matrix multiplica-
tion in DS2(4,4) is 4.2E+9 CPU cycles, which is 95% of the total execution time.
Considering that the execution time of Algorithm 15 linearly depends on the number
of rejections, from all of the above it follows that the analysis of Algorithm 9 will
provide us with good approximation about the dependence of the execution time of
the entire DS2(𝑘, ℓ) implementation on the selected parameters (𝑘, ℓ), allowing us
to significantly simplify the theoretical time ucomplexity model, compared to the
model we provided in the Section 3.3. It should be pointed out that, unlike our
Dilithium study in section 3.3, we will not examine the dependence of execution
time on the number of rejections. This is because statistics from our empirical ex-
periments indicate that in 90% of experiments, the digital signature was generated
with 2 or fewer rejections. Instead, we will focus on studying the dependence of
execution time only on parameters 𝑘, ℓ.

To compare original version (the “Standard”) and our optimized version (the
“memory-optimized”) of the matrix multiplication, we approximated their execution
time as shown by Equations 3.19 and 3.20.

𝐶𝑓𝑎𝑠𝑡(𝑘) = 𝑂(𝑇𝑐𝑘(𝑘𝑡𝑚𝑢𝑙 + 𝑡𝑐𝑘 + 𝑡𝑟)) (3.19)
𝐶𝑠𝑙𝑜𝑤(𝑘) = 𝑂(𝑇𝑐(𝑘(𝑘(𝑡𝑐𝑘 + 𝑡𝑚𝑢𝑙) + 𝑡𝑟))) (3.20)

Where:
• 𝐶𝑓𝑎𝑠𝑡, 𝐶𝑠𝑙𝑜𝑤 are functions returning the time needed to multiply two matrices

with dimensions 𝑘 × 𝑇𝑐 in CPU cycles.
• 𝑇𝑐 = 69 is a matrix dimension constant.
• 𝑘 is a matrix dimension variable.
• 𝑡𝑐𝑘 is time needed to generate a single polynomial of the commitment key 𝑐𝑘

from the seed in CPU cycles.
• 𝑡𝑟 is time needed to generate a single polynomial of the random matrix 𝑟 from

the seed in CPU cycles.
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Table 3.6: Comparison between theoretical execution time of the slow and fast al-
gorithms of matrix multiplication.

𝑘 𝐶𝑓𝑎𝑠𝑡 𝐶𝑓𝑎𝑠𝑡 [s] 𝐶𝑠𝑙𝑜𝑤 𝐶𝑠𝑙𝑜𝑤 [s] 𝐶𝑠𝑙𝑜𝑤/𝐶𝑓𝑎𝑠𝑡

2 7.54E+8 11.79 1.12E+9 17.52 1.49
3 1.14E+9 17.81 2.24E+9 35.00 1.96
4 1.53E+9 23.93 3.73E+9 58.29 2.44
5 1.93E+9 30.13 5.59E+9 87.40 2.90
6 2.33E+9 36.41 7.83E+9 122.32 3.36

Table 3.7: Comparison between theoretical and real execution time of the slow
algorithm of matrix multiplication.

𝑘 𝐶𝑟𝑒𝑎𝑙 𝐶𝑟𝑒𝑎𝑙 [s] 𝐶𝑡𝑒𝑜𝑟 𝐶𝑡𝑒𝑜𝑟 [s] 𝐶𝑟𝑒𝑎𝑙/𝐶𝑡𝑒𝑜𝑟

2 1.22E+9 19.13 1.12E+9 17.52 1.09
3 2.48E+9 38.74 2.24E+9 35.00 1.11
4 4.18E+9 65.28 3.73E+9 58.29 1.12
5 6.27E+9 98.01 5.59E+9 87.40 1.12
6 8.54E+9 133.41 7.83E+9 122.32 1.09

• 𝑡𝑚𝑢𝑙 is time in CPU cycles needed to multiply two polynomials with 𝑁 coeffi-
cients.

Parameters 𝑡𝑐𝑘, 𝑡𝑟 and 𝑡𝑚𝑢𝑙 are linearly dependent on the number of coefficients
in the polynomial 𝑁 . Through all test 𝑁 = 256 remained constant. Therefore, 𝑡𝑐𝑘,
𝑡𝑟 and 𝑡𝑚𝑢𝑙 should also be constants and after our measurements, we obtained on
average 𝑡𝑐𝑘 = 2.6E+6, 𝑡𝑟 = 2.7E+6, 𝑡𝑚𝑢𝑙 = 4E+4 CPU cycles. If we substitute those
values into Equations 3.19 and 3.20, we can plot those functions on the “𝑘” axis.
As can be seen from the values in Table 3.6, the modified matrix multiplication
algorithm for the DS2(4,4) variant is 2.44 times slower than the original and is 3.36
times slower for the DS2(6,5) variant.

Finally, we compared our estimations from Table 3.6 with real measurements,
obtained from the actual SE device for the memory-optimized version of multiplica-
tion. However, as was stated before, we were able to run only the DS2(6,5) version
at maximum. Thus, we have no measurements for 𝑘 greater than 6. The differences
between our estimations and real-time values are shown in Table 3.7 and Figure 3.2.
It can be seen that the actual implementation is 1.1 times slower than its theoretical
model, but this was expected beforehand.
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Fig. 3.2: Comparison between theoretical and real execution time of the algorithm
of matrix multiplication.

3.6 Addition of hardware support for AES to Dilithium
The most expensive operation in Dilithium on par with inner product of vectors
of polynomials is rejection sampling of polynomial coefficients. Rejection sampling
is done on pseudo-random output of SHAKE-128/256 hash function. Later devel-
opers added support of AES-256-CTR anticipating the possibility of using exist-
ing hardware support for AES, including embedded devices. We specifically chose
microcontroller with this kind of hardware accelerations. STM32WB55 provides
two peripherals AES1 and AES2 that support encryption and decryption in mul-
tiple chaining modes: Electronic codebook (ECB), Cipher block chaining (CBC),
Counter (CTR), Galois message authentication code (GMAC), Counter with CBC-
MAC (CCM). Our modification of the Dilithium implies that in order to reuse some
key structures, such as vectors 𝑠1 and 𝑠2, we will have to generate these structures
every time unlike the original version where memory was allocated once and any
part of the said structures could be accessed at any time. This is the main reason
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behind performance degradation shown in the previous section. Using hardware
acceleration in this context can significantly improve performance. We added AES
acceleration to both std-Dilithium and new-Dilithium and conducted the same test,
described in previous Sections 3.1 and 2.2.

We registered a significant reduction in the computation time for both the “slow”
and “fast” implementations across all three procedures. For instance, the execu-
tion time for the key generation procedure (Algorithm 3) was reduced by 82% to
4.59E+6 CPU cycles for the original implementation and by 78% to 7.00E+6
CPU cycles for our implementation. In the case of the verification procedure (Algo-
rithm 5), we achieved a reduction by 74% (6.25E+6 CPU cycles) for the standard
implementation and by 67% (8.90E+6 CPU cycles) for our implementation, re-
spectively. We also observed a significant decrease in time, in absolute values, for the
signature procedure (Algorithm 4). Namely, the execution time for the standard im-
plementation was reduced on average by 56% and for our implementation by 76%
across the full range of feasible values of 𝑛. More detailed results for different values
of 𝑛 are given in Table 3.8. In addition, we observed a further reduction in mem-
ory consumption since we no longer have to allocate memory to run the software
implementation of AES-256. The memory consumption for all procedures, which
we registered with the built-in “Build Analyzer” tool from CubeIDE, is provided in
Table 3.9.

Sign rounds std-aes-Sign Δ𝑛−𝑎𝑒𝑠/𝑎𝑒𝑠
1 new-aes-Sign Δ𝑛−𝑎𝑒𝑠/𝑎𝑒𝑠

1 Δ𝑠𝑡𝑑/𝑛𝑒𝑤
2

1 1.09E+7 -66% 1.42E+7 -73% +23%
2 1.58E+7 -62% 2.59E+7 -74% +39%
3 2.19E+7 -55% 3.54E+7 -76% +38%
4 2.68E+7 -54% 4.29E+7 -78% +38%
5 3.14E+7 -52% 5.67E+7 -77% +45%
6 3.78E+7 -51% 6.63E+7 -77% +43%
7 4.13E+7 -52% 7.37E+7 -78% +44%

Table 3.8: Performance test of Signature procedure with AES acceleration for
std-Dilithium and new-Dilithium

1 Difference between implementations with software and hardware AES.
2 Difference between std and new implementations with hardware AES.
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Procedure Mem. cost (std-aes) Mem. cost (new-aes) Δ𝑠𝑡𝑑/𝑛𝑒𝑤

Key Generation 41KB 14KB -66%
Signing 55KB 26KB -53%

Verification 39KB 14KB -64%

Table 3.9: Comparison of memory consumption for std-Dilithium and new-Dilithium
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Fig. 3.3: Difference in signature execution time between std-Dilithium and modified
Dilithium with AES acceleration.
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Conclusion
In this thesis, we analyzed the potential application of the Dilithium and DS2 digital
signatures in constrained devices. The main challenge was the large consumption of
memory by both the algorithms, especially DS2. Thus, we introduced several opti-
mizations to address this problem. Specifically, we successfully managed to reduce
the memory footprint of the original Dilithium algorithm by more than 50% and
DS2 by 90%. We achieved this by introducing two optimization methods tailored
for microcontrollers with minimal RAM requirements. Firstly, we applied compres-
sion techniques for both Dilithium and DS2, enabling the implementation of a DS2
scheme with a (2,2)-threshold on the STM32WB55RGV6 chip. Additionally, for
DS2 signature only, we proposed a method based on secure outsourcing of compu-
tations outside the microcontroller, effectively reducing memory complexity by 90%
and facilitating the extension of the signature to an unlimited number of signers.
Our optimization methods highlight the importance of efficient memory utilization
for the practical deployment of threshold signature schemes on resource-constrained
microcontrollers.

Next, we enumerate the publications that back the contents of this thesis:
• SHAPOVAL, Vladyslav and RICCI, Sara, 2024. Lattice-based Threshold Sig-

nature Optimization for RAM Constrained Devices. Online. STUDENT EE-
ICT 2024: Proceedings of the 30th year of the student conference (submitted).

• RICCI, Sara; SHAPOVAL, Vladyslav; DZURENDA, Petr; ROENNE, Peter;
OUPICKY, Jan et al. Lattice-based Multisignature Optimization for RAM
Constrained Devices. Online. In ARES ’24: Proceedings of the 189th Interna-
tional Conference on Availability, Reliability and Security (submitted). Roč.
2024.

Several key points emerge regarding the performance of our optimized matrix
multiplication on the Cortex-M4 microcontroller compared to the original imple-
mentation. Firstly, unoptimized hash and floating-point calculations are identified
as the primary factors contributing to the observed slowdown. If we also consider
the high chance that signatures will not be generated from the first attempt, both
algorithms can become up to four times slower than the original ones. Obtained
test data are indicating that the main contributor to the speed deterioration is the
software implementation of the hash function. Although the software implementa-
tion of SHAKE and AES are quite fast, given the increased time complexity of both
Dilithium and DS2 signature procedures, their speed is insufficient. The introduc-
tion of a hardware AES-based hash function reduced signature computation time
for our implementation of Dilithium by an average of 76%. We expect similar or
better results in the case of DS2.
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In conclusion, the reduction of memory footprint must always be supported with
hardware acceleration for sampling of polynomials to ensure that the Signature
algorithm is usable on constrained devices.

Moreover, optimizing floating-point calculations on microcontrollers emerges as
another critical consideration. Notably, Dobias’ DS2 implementation heavily relies
on floating-point calculations to obtain normally and uniformly sampled values [35].
Unfortunately, floating-point operations exhibit significant slowness on the Cortex-
M4, even when supported by a hardware Floating Point Unit (FPU). As a result, the
generation of a single polynomial incurs a substantial performance overhead, being
ten times slower than the Number Theoretic Transform (NTT) transformation and
point-wise multiplication of two polynomials combined.

However, we achieved excellent results in the case of the verification procedure:
we were able to reduce the memory consumption of the procedure by 61%, sacrificing
only 11% of execution time. For instance, obtained test results suggest that with
some adjustments, we can run Dilithium key generation and verification procedures
on microcontrollers with just 20KB of SRAM. In the case of DS2, we were able to
use the signature procedure on a microcontroller that, in principle, was not capable
of doing this with the original version of DS2.

Based on all of the above, we have concluded that, given the potential for im-
provement in the form of hardware-hash support and optimized floating-point cal-
culations, our implementations of Dilithium and DS2 have real-world application
potential.
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Symbols and abbreviations
AES Advanced Encryption Standard

LWE Learning With Errors

SVP Shortest Vector Problem

CVP Closest Vector Problem

SIVP Shortest In-dependent Vector Problem

NTT Number-Theoretic Transform

FFT Fast Fourier Transform

FSwA Fiat–Shamir with Aborts

std-Dilithium Standard implememntation of Dilithium mode 2, with software
support of SHAKE-256 and AES-256-CTR and deterministic
signature.

std-aes-Dilithium Standard implememntation of Dilithium mode 2, in which
software SHAKE-256 and AES-256-CTR were replaced be
hardware AES-256-CTR accelerator.

new-Dilithium Modified version of Dilithium with reduced memory
consumption, with software support of SHAKE-256 and
AES-256-CTR and deterministic signature.

new-aes-Dilithium Modified version of Dilithium with reduced memory
consumption, in which software SHAKE-256 and
AES-256-CTR were replaced be hardware AES-256-CTR
accelerator.

Δ𝑠𝑡𝑑/𝑛𝑒𝑤 Difference between number of CPU cycles needed to generate a
signature in std-Dilithium and new-Dilithium in percent for a
given number of sign rounds.

Δ𝑛−𝑎𝑒𝑠/𝑎𝑒𝑠 Difference between number of CPU cycles needed to generate a
signature in Dilithium implementation without support of AES
hardware acceleration and with support of AES acceleration
new-Dilithium in percent, for a given number of sign rounds.
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A Content of the Dilithium reference imple-
mentation package

/dilithium/ .................................................. root of the package
Additional_Implementations........................Implementation in AVX2
KAT........................................................Signature examples
Supporting_Documantation
Reference_Implementation..........................Source code written on C

crypto_sign
dilithium2
dilithium2-AES
dilithium2-AES-R.....................Chosen Source code for Dilithium

inc
aes256ctr.h ....... Definition of the software AES implementation
api.h ..................................... Defines high level API
config.h............................Definition of Dilithium mode
dilithium_keys.h.............................Precomputed keys
elapsed_time.h ........ Declaration of time measurement function
fips202.h........................Defines interface for SHAKE256
ntt.h ...................................... NTT implementation
packing.h...................Bit packing of public and secret keys
params.h ........................... Defines Dilithium parameters
poly.h.........................Definition of polynomial operation
polyvec.h ..................... Definition of operations on vectors
randombytes.h.......................Random Number Generator
reduce.h..................................Montgomery reduction
rounding.h............................Special function definition
sign.h...........Definition of KeyGen, Sign and Verify algorithms
symmetric.h
symmetric-aes_stm.h

src ............. Contains implementation for the header files from inc
aes256ctr.c
const_y.c
dilithium_keys.c
elapsed_time.c
fips202.c
ntt.c
packing.c
poly.c
polyvec.c
randombytes.c
reduce.c
rounding.c
sign.c
symmetric-aes.c
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symmetric-aes_stm.c
symmetric-shake.c

dilithium2-R
dilithium3
dilithium3-AES
dilithium3-AES-R
dilithium3-R
dilithium5
dilithium5-AES
dilithium5-AES-R
dilithium5-R
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B Content of the DS2 reference implemen-
tation package

/ds2-opt-c-impl-main/.......................................root of the package
include/ ....................................................... C header files

ds2
benchmark.h
commit.h.....................Contains commitment function declaration
fips202.h
gen.h ................. Contains declaration of Key Generation procedure
ntt.h
params.h
party.h
poly.h
rand.h
reduce.h
sign.h......................Contains declaration of Signature procedure
socket.h
util.h
verify.h..................Contains declaration of Verification procedure

scripts/
build-ios.sh
run.sh
uart_proxy.py
wifi_proxy.py

src/
benchmark.c
commit.c
fips202.c
gen.c
ntt.c
party.c
poly.c
rand.c
reduce.c
sign.c
socket.c
util.c
verify.c
test_network.c
test_file.c
CMakeLists.txt

.gitignore
CMakeLists.txt
README.md
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C Content of the electronic attachment
Stabdard Files generated automatically by the CubeIDE in folders "Drivers", "Mid-
dlewares" and "USB_Device" will not not described in detail due to their large
number.

/electronic_attachment/.....................................root of the package
Diagrams/ ... Contains diagrams form describing call maps of Dilithium and DS2

Dilithium_Diagram.svg
DS2_Diagram.svg

Dilithium_STM32/
Core/

Inc/
Src/

main.c...........................................Project entry point
dilithium/

dilithium2-AES-R/....Copied and modified implementation of Dilithium
from Appendix A

Drivers/
Middlewares/
USB_Device/
.cproject
.mxproject
.project
Dilithium_STM32.ioc
Dilithium_STM32.launch
STM32WB55RGVX_FLASH.ld
STM32WB55RGVX_RAM.ld

DS2_Host/ ............................................... PC Host source code
externals/

pybind11/ ....... External pybind11 library (not included due to the size)
source/

ds2/..............................Modified C++ implementation of DS2
exec/

main.cpp....................Test program to simulate multiple nodes
module/

python_wrapper.cpp ........... pybind11 wrapper for DS2 C++ code
CMakeLists.txt
main_app.py....................Test application to simulate Hots behaviour

Mac_802_15_4_FFD_CE_Node/.....STM32 CE Node responsible for local network
establishment

Core/
Inc/
Src/

main.c...........................................Project entry point
Drivers/
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Middlewares/
Utilities/
STM32_WPAN/................802.15.4 Interface definitions (modified for DS2)
STM32CubeIDE/

Mac_802_15_4_RFD_SE_Node/ ..................... STM32 SE Node source code
Core/

Inc/
Src/

main.c...........................................Project entry point
Drivers/
Middlewares/
Utilities/
STM32_WPAN/................802.15.4 Interface definitions (modified for DS2)
STM32CubeIDE/
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