
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

CONTROLLING LEGO TECHNIC ACTIVE ELEMENTS
FROM EV3
ŘÍZENÍ AKTIVNÍCH PRVKŮ LEGO TECHNIC Z PROSTŘEDÍ EV3

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DANIEL BLAŠKO
AUTOR PRÁCE

SUPERVISOR Ing. RADEK HRANICKÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Information Systems (DIFS)

Student: Blaško Daniel

Programme: Information Technology

Category: Embedded Systems

Academic year: 2023/24

Assignment:

1. Compare motorization environments for LEGO models over the last decades (9V system,
Mindstorms RIS, Power Functions, Control+/Powered-up, NXT, EV3, Robot Inventor). Analyze the
differences in hardware, software, and communication protocols for controlling active elements.

2. Become familiar with the Mindstorms EV3 environment. Explore options for programming with EV3
MicroPython.

3. After a consultation with the supervisor, propose a solution to control officially incompatible elements
(e.g., Power Functions motors) from the EV3 environment, e.g., in the form of a driver and a library
for MicroPython or by desigining an external adapter.

4. Implement the proposed solution.
5. Build several LEGO models from officially incompatible elements and create the corresponding

programs to operate them.
6. Demonstrate the usability of your solution on the created models.
7. Discuss the results.

Literature:
• Crnokić, Boris, et al. STEM Classroom: Creating a Python Application for an EV3 Brick Robotic

System Used to Transport 3D Printed Boxes. Annals of DAAAM & Proceedings 7.1. 2020.
• Li, Yixiao, et al. A platform for LEGO mindstorms EV3 based on an RTOS with MMU support.

OSPERT: 51. 2014.
• LEGO MindStorms EV3 Communication Developer Kit, Lego Group. 2013 [online, vis. 1. 9. 2023],

available from: https://education.lego.com/en-us/product-resources/mindstorms-
ev3/downloads/developer-kits/.

• Getting started with LEGO Mindstorms Education EV3 MicroPython. Lego Group. Version 2.0.0.
2020 [online, vis. 1. 9. 2023], available from: https://education.lego.com/en-us/product-
resources/mindstorms-ev3/teacher-resources/python-for-ev3/.

• PyBricks Documentation. The Pybricks Authors. 2020. [online, vis. 1. 9. 2023], available from:
https://docs.pybricks.com/en/stable/.

Requirements for the semestral defence:
Points 1 to 3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Hranický Radek, Ing., Ph.D.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 30.10.2023

Bachelor's Thesis Assignment
153618

Controlling LEGO Technic Active Elements from EV3Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
LEGO Mindstorms is a popular series of programmable bricks with an advanced set of
functionality, which has been helping children learn the basics of robotics and computer
science for 25 years and which enjoys wide community support. The goal of this bachelor’s
thesis is to provide hardware and software solutions to enhance the compatibility between
the LEGO Mindstorms EV3 intelligent brick and other motorized LEGO parts, primarily
focusing on the Power Functions product line. In this thesis, I will create motor drivers in
several iterations that broaden the capabilities of the EV3 brick to control a large number of
motors, using my designs for printed circuit boards and 3D-printed enclosures. Additionally,
I will develop software code blocks for the EV3 that allow it to communicate with the
aforementioned drivers, as well as other UART devices.

Abstrakt
LEGO Mindstorms je populárna rada programovateľných kociek s rozsiahlou sadou funkcií,
ktorá už 25 rokov pomáha učiť deti základy robotiky a počítačových vied, a ktorá sa teší
širokej komunitnej podpore. Cieľom tejto bakalárskej práce je vytvoriť hardvérové a soft-
vérové riešenia, ktoré zlepšia kompatibilitu medzi kockou Mindstorms EV3 a ostatnými mo-
torizovanými LEGO súčiastkami, s primárnym zameraním sa na produktovú radu Power
Functions. V rámci tejto práce boli v rôznych iteráciách vytvorené radiče, ktoré rozširujú
možnosti kocky EV3 ovládať motory, s použitím vlastných návrhov dizajnov plošných spo-
jov a 3D tlačených puzdier. Okrem nich boli vyvinuté softvérové kódovacie bloky, ktoré
umožňujú kocke komunikovať s týmito radičmi a ďalšími UART zariadeniami.

Keywords
LEGO, LEGO Mindstorms EV3, EV3-G Blocks, LEGO Power Functions, microcontroller,
Arduino, ESP, motor driver, I2C, UART, printed circuit board

Klíčová slova
LEGO, LEGO Mindstorms EV3, EV3-G Bloky, LEGO Power Functions, mikrokontrolér,
Arduino, ESP, motorový radič, I2C, UART, plošný spoj

Reference
BLAŠKO, Daniel. Controlling LEGO Technic Active Elements from EV3. Brno, 2024.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Radek Hranický, Ph.D.

Rozšířený abstrakt
V roku 1998 prišla na trh prvá generácia LEGO Mindstorms, počiatok revolučnej rady pro-
duktov, ktoré pomohli tisíckam detí pochopiť základy robotiky a programovania [12]. Išlo
o programovateľnú LEGO kocku so vstavaným mikročipom a príslušenstvom v podobe
motorov, senzorov a LEGO dielikov [43]. Programovateľnosť a modularita tohto setu
zaručovala takmer neobmedzené možnosti. Táto sada sa dočkala mimoriadneho úspechu
v komerčných aj edukačných kruhoch, vznikla taktiež komunita nadšencov rozširujúcich
možnosti využitia tejto programovateľnej kocky. V roku 2013 spoločnosť LEGO vydala
tretiu generáciu série, Mindstorms EV3. Išlo o vyspelý produkt s firmvérom založeným na
operačnom systéme Linux. Sada disponovala veľkým množstvom komunikačných rozhraní,
ako Wi-Fi, Bluetooth, či USB, a množstvom príslušenstva v podobe rozličných senzorov
a motorov, ktoré s kockou komunikovali pomocou I2C a UART komunikačných protokolov
[27]. Aj z tohto dôvodu sa generácia EV3 dočkala najširšej podpory zo strany nadšencov.

Napriek tomu, že sú možnosti komunikácie s Mindstorms EV3 kockou početné, je jej
kompatibilita s inými LEGO zariadeniami neúplná. EV3 na komunikáciu a ovládanie mo-
torov a senzorov používa konektory a protokoly nekompatibilné s motormi a senzormi pre-
došlých generácii Mindstorms, či zariadeniami Power Functions alebo WeDo. Až na pár
spôsobov, ktoré využívajú medzery originálneho EV3 systému, nie je možné s týmito zaria-
deniami interagovať. Nezávisle vyvinuté rozšírené softvéry ev3dev a leJOS umožnili veľký
pokrok v zlepšovaní vzájomnej kompatibility LEGO zariadení. Tieto operačné systémy
naplno využívajú hardvérové schopnosti kocky EV3 a umožňujú ovládanie DC motorov,
no aj komunikáciu prostredníctvom I2C a UART rozhraní. Tieto operačné systémy však
vyžadujú väčšie množstvo programovacích znalostí v porovnaní so štandardným systémom
EV3, čo môže byť problematické pre mladších nadšencov. Z tohto dôvodu som sa rozhodol
v mojej bakalárskej práci zamerať na vylepšovanie kompatibility v rámci pôvodného sys-
tému tohto zariadenia.

Po otestovaní funkcionality existujúcich riešení som sa rozhodol vytvoriť vlastnú imple-
mentáciu, ktorá by kompatibilitu EV3 a iných motorizovaných LEGO zariadení posunula
na vyššiu úroveň. Keďže 9V a Power Functions motory na rozdiel od NXT, EV3 a Powered
Up motorov nedisponujú rotačnými enkodérmi a nedokážu odosielať dáta o ich súčasnom
stave, považoval som systém, kedy by bol jeden takýto motor pripojený na jeden EV3
port za nevhodný a nevyužívajúci plný potenciál komunikačných portov kocky. Riešenie
tohto problému prišlo s návrhom prepojenia kocky s mikrokontrolérom, ktorý by pomocou
motorových radičov ovládal viaceré motory, pričom komunikácia medzi EV3 a mikrokon-
trolérom by mohla prebiehať pomocou oboch dostupných komunikačných protokolov. Prvý
prototyp ovládača som vytvoril z vývojovej dosky Arduino Uno, spojenej s radičovým štítom
pre Arduino vyvinutým spoločnosťou Adafruit. V tejto verzii komunikoval mikrokontrolér
s EV3 cez I2C protokol. Pre prenos dát som vytvoril protokol, ktorý určoval stav, polaritu
a striedu pre konkrétny motor. Prototyp bol napájaný LEGO Power Functions battery
boxom využívajúcim alkalické batérie. Týmto prototypom bolo možné jednoducho ovládať
až štyri motory využitím jediného portu kocky. Tento prvotný prototyp však dosahoval
rozmery príliš veľké pre využitie v pohyblivých LEGO modeloch a PF Battery Box posky-
toval nedostatočný výkon pre ovládanie štyroch motorov, preto som sa v úprave imple-
mentácie zameral na elimináciu týchto dvoch slabín prototypu. S využitím softvéru KiCad
som navrhol vlastnú kremíkovú dosku, inšpirovanú štítom Adafruit, ktorý je však veľkosťou
prispôsobený doske Arduino Uno a ktorý obsahuje komponenty nepotrebné pre moju ap-
likáciu. Z tohto dôvodu som sa pri návrhu mojej dosky orientoval na efektívne využitie
priestoru, napríklad nahradením THT komponentov SMD komponentami. Plocha týchto

dvoch dosiek je takmer totožná, no mnou navrhnutý dizajn obsahuje integrovaný ESP-12F
mikrokontrolér a port pre pripojenie ku kocke. Vzhľadom na to, že MCU je integrované do
dosky, nie je nutnosť štít pripájať na vývojovú dosku a celkový dizajn je výrazne kompakt-
nejší. Pôvodný box na batérie som nahradil trojčlánkovým akumulátorom, ktorý poskytuje
vyšší výkon pri kompaktnejších rozmeroch. Z dôvodu problematickej implementácie slave
módu I2C komunikácie pri mikrokontroléri ESP12-F som sa rozhodol v tejto verzii imple-
mentácie využiť LEGO UART Sensor Protocol na vzájomnú komunikáciu. Obal prototypu
bol na mieru navrhnutý a vytlačený na 3D tlačiarni. Po objavení chyby v implementácii,
kedy na logiku radičov bolo vyvedených až 12 voltov, pričom maximálna povolená hodnota
je 7 voltov [46], som sa rozhodol navrhnúť a vytvoriť druhú, vylepšenú verziu implemen-
tácie. Mikrokontrolér som nahradil vyspelejším čipom ESP32, L293D radiče som vymenil
za TC4427COA MOSFET radiče. Toto spojenie mi umožnilo vynechať zo schémy posuvný
register, vďaka čomu je doska osadená týmito komponentami kompaktnejšia, čo sa odrazilo
aj na dizajne 3D tlačeného obalu, ktorý je v tejto iterácii o 25% užší.

Programovanie kocky EV3 funguje štandardne na základe blokov, ktorých vnútorná
implementácia je odvodená od LabView kódu firmy National Instruments. Rôzne organizá-
cie a individuá vytvorili nové bloky, ktoré rozširujú základnú funkctionalitu kocky, avšak
bloky umožňujúce UART komunikáciu nezávislú na pripojenom zariadení neexistujú. Štan-
dardný operačný systém EV3 využíva proprietárny protokol LEGO UART Sensor Protocol,
ktorý nad UART protokolom definuje komunikáciu medzi kockou a senzorom. Vytvoril som
bloky pre všeobecnú komunikáciu s UART zariadeniami, rovnako aj bloky, ktoré generujú
dáta ovládajúce motory v mojej implementácii, a to prostredníctov oboch dostupných pro-
tokolov. Okrem toho som vyriešil dlho dokumentovaný problém I2C blokov spoločnosti
Dexter Industries, kedy nebolo možné zasielať hodnoty väčšie ako 127 v rámci jedného
bajtu.

Pomocou mojej implementácie je možné ovládať až štyri motory pri využití jediného
portu kocky EV3. Tento prototyp môže nájsť využitie vo vozidlách s nezávislým pohonom
všetkých kolies, kde implementácia dovoľuje ovládať každý motor nezávisle a umožniť väčšiu
mieru kontroly nad vozidlom. Uplatnenie môže prototyp taktiež nájsť vo veľkoškálových
motorizovaných modeloch a diorámach, pričom pri plnom využití portov kocky je naraz
možné ovládať až 16 motorov.

Controlling LEGO Technic Active Elements from
EV3

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Radek Hranický, PhD. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Daniel Blaško

May 6, 2024

Acknowledgements
I would like to thank my supervisor, Ing. Radek Hranický, PhD., for his time, effort, and
guidance throughout the creation process of this thesis, as well as his exceptional approach
to his mentees. Additionally, I would like to thank my family and friends, whose moral
support helped to see this thesis through to completion.

Contents

1 Introduction 5

2 Development of Programmable LEGO Bricks 7
2.1 LOGO Brick . 7
2.2 MIT Grey/Red Brick . 8
2.3 RCX . 9
2.4 Scout . 10
2.5 NXT . 10
2.6 EV3 . 11

2.6.1 Third-Party Extensions to EV3’s Functionality 12
2.6.2 Third-Party Alternatives to the EV3 13

2.7 Robot Inventor . 13
2.8 Spike . 14
2.9 Other Programmable LEGO Products . 15

2.9.1 Technic Interface A . 15
2.9.2 Technic Control Center . 15
2.9.3 Control Lab Serial Interface . 16
2.9.4 Code Pilot . 16
2.9.5 WeDo 1.0 . 17
2.9.6 WeDo 2.0/Powered Up . 17

3 An Overview of LEGO Powered Bricks 18
3.1 4.5V Motor Line . 18
3.2 9V Motor Line . 19
3.3 Power Functions . 19
3.4 Powered Up . 20

4 The Current State of Compatibility Between EV3 and Motorized LEGO
Products 22
4.1 Stock EV3 Firmware and its Compatibility 22
4.2 Compatibility with the ev3dev Firmware . 23
4.3 Compatibility with the leJOS Firmware . 23
4.4 Available Protocols for Communicating with the EV3 23

4.4.1 I2C Protocol . 23
4.4.2 UART Protocol . 24
4.4.3 LEGO UART Sensor Protocol . 24
4.4.4 LEGO EV3-G Blocks . 25

1

5 Improving the Compatibility Between EV3 and LEGO Motors 26
5.1 Controlling Power Function Motors via Arduino 26
5.2 Connection via the I2C Protocol . 27

5.2.1 First Prototype . 27
5.2.2 Prototype with a Motor Driver . 28
5.2.3 Prototype Communication Protocol 28
5.2.4 Enhanced Communication Protocol 29
5.2.5 EV3 and Arduino Code Implementation 30

6 Streamlining the Prototype 32
6.1 Schematic of the Board . 32
6.2 Designing the PCB . 32
6.3 Functionality of the Driver Board . 34
6.4 Assembly of the Prototype . 35
6.5 Designing an Enclosure for the Prototype 36
6.6 Implementation of the Microcontroller’s Code 37
6.7 Flaws of the Design . 39

7 Implementing a Corrected and Improved Custom Motor Driver 41
7.1 Design of the Improved Board . 41
7.2 Program Modifications . 42
7.3 Updated Case Design . 43
7.4 Stress Testing the Driver . 44
7.5 Driver Implementation in LEGO Creations 45

8 Enhancing Communication Capabilities via EV3-G Blocks 48
8.1 Creating Blocks for the LEGO UART Sensor Protocol and Repairing Exist-

ing I2C Blocks . 48
8.2 UART Communication Speed Testing . 50
8.3 Blocks for Controlling the Motor Driver . 50
8.4 Summary of Contributions to the Code Block Interface 52

9 Conclusion 53

Bibliography 55

A Contents of the Included Storage Media 59

B ESP Motor Driver V0.1 Schematic 60

C ESP Motor Driver V0.2 Schematic 61

D Manual for Creating and Using the V0.2 Motor Driver 62
D.1 Printed Circuit Board . 62
D.2 3D Printed Driver Enclosure and Driver Assembly 63
D.3 Programming the Microcontroller . 64
D.4 Using the EV3 Software . 64

2

List of Figures

2.1 LEGO Logo Brick1 . 7
2.2 Schema of the MIT Grey Brick 2 . 8
2.3 MIT Red Brick3 . 8
2.4 LEGO Mindstorms RCX4 . 9
2.5 LEGO Mindstorms Scout5 . 10
2.6 LEGO Mindstorms NXT6 . 11
2.7 LEGO Mindstorms EV3 . 12
2.8 A graphical representation of EV3’s firmware structure 12
2.9 LEGO Mindstorms Robot Inventor7 . 14
2.10 LEGO Spike Essential8 . 14
2.11 LEGO Technic Interface A9 . 15
2.12 LEGO Technic Control Center10 . 16
2.13 LEGO Control Lab Serial Interface11 . 16
2.14 LEGO Powered Up Move Hub12 . 17

3.1 LEGO 4.5V Motor13 . 18
3.2 Technic Motor 9V . 19
3.3 Power Functions products . 20
3.4 Power Functions connector pinout . 20
3.5 LEGO Powered UP Medium Angular Motor14 21

4.1 Connection between EV3 and a Power Functions motor15 23
4.2 Handshake of the EV3 IR Sensor captured by a logic analyzer, shown in

Saleae Logic software . 25

5.1 Connection schema of the first prototype . 28
5.2 EV3, Arduino and motor shield connection diagram 29
5.3 I2C Motor Control Protocol v1 . 29
5.4 I2C Motor Control Protocol v2 . 30
5.5 Sequence diagram of a program example . 31
5.6 Implementation of the Arduino prototype 31

6.1 Breadboard scheme of the second prototype iteration 33
6.2 Design of the PCB in KiCAD 8.0 . 34
6.3 Motor Driver PCB with soldered components 35
6.4 Programming the ESP12-F microcontroller using Espressif ESP-Prog 36
6.5 Bottom side of the PCB with implemented corrections to the design 37
6.6 Cubic infill inside of the enclosure . 38
6.7 Design of the enclosure shown from the profile 39

3

6.8 Design of the enclosure shown from the side 39
6.9 3D printed enclosure for the motor driver 40

7.1 Design of the second driver board iteration in KiCAD 8.0 42
7.2 Revised PCB with soldered components . 43
7.3 Second iteration enclosure design, shown from profile 44
7.4 Upper part of the enclosure with visible rail system 44
7.5 3D printed enclosure for the second driver iteration 45
7.6 Motorized LEGO wind farm diorama . 46
7.7 Four wheel drive LEGO vehicle chassis, shown from the front 47
7.8 Four wheel drive LEGO vehicle chassis, shown from the rear 47

8.1 UART Control block in the EV3 programming interface 49
8.2 Motor Control block in the EV3 programming interface 51
8.3 Implementation of the Motor Duty Cycle mode of the MotorControl Block 52

B.1 Schematic of the first custom PCB design iteration 60

C.1 Schematic of the improved custom PCB design 61

D.1 Assembly of the motor driver . 64
D.2 Programming the motor driver V0.2 with an Espressif ESP-Prog 65
D.3 Driver V0.2 connected to the EV3 and four Power Functions motors 65
D.4 EV3 Lab Software . 66

4

Chapter 1

Introduction

LEGO is one of the most well-known and beloved toy brands in the World. Ever since
its dawn, LEGO Group has been creating fun and educative toys that teach children cre-
ativity, problem-solving skills, and basic concepts of science, technology, engineering, and
mathematics, or STEM for short. Later on, the Technic line was introduced, opening even
wider possibilities for creating models with functional elements, further complemented by
the addition of motorized components and hydraulics. In 1980, the Dacta branch was cre-
ated with the aim of helping children learn in a playful and fun way at school, not only
at home [10]. A partnership was struck between The LEGO Group and the Massachusetts
Institute of Technology in 1985 with the goal of exploring the possibilities of teaching com-
puter science and robotics via kids’ toys. This research resulted in several prototypes of
programmable bricks and directly influenced the creation of LEGO control boards and other
computer-enabled products. However, the most influential fruit this collaboration bore was
Mindstorms, a series of programmable bricks with motorized parts and sensors that allowed
for the creation of robots that could interact with their surroundings and perform tasks
[38]. Every Mindstorms generation had a set of pre-configured creations. However, the true
purpose of the Mindstorms was to build and program one’s own creations.

Since its debut in 1998, the Mindstorms series has seen immense success, being widely
popular among consumers and schools alike. For many young children, it was their first
encounter with the world of robotics, and it inspired many to seek further knowledge in this
field. The Mindstorms spanned 4 generations, the RIS, NXT, EV3, and the Robot Inventor.
Though it was discontinued in 2022, its fan base keeps its legacy alive. With custom-made
accessories, modifications, and alternatives to the original brick, new fans can still indulge
in the world of LEGO robotics.

Due to rapid advancements in computer science and technology, the inter-compatibility
between different LEGO product lines and even between Mindstorms generations is prob-
lematic. While the first Mindstorms generation made use of the existing technology within
the 9V product lineup, its successors abandoned existing solutions and used new designs
and technologies to allow for more advanced functionality. This, however, meant that Mind-
storms bricks would not work with simple accessory components, such as DC motors, at
least not officially. As such, the fanbase of Mindstorms took it upon themselves to create
custom hardware and software that broadens the abilities of the Mindstorms bricks and
deals with these compatibility issues.

The aim of my project is to contribute to this shared initiative. My goal is to make use
of the Mindstorms EV3, the most advanced entry to the Mindstorms lineup, and create
hardware and software solutions that aim to improve the compatibility of the EV3 brick

5

and other motorized LEGO parts, such as the Power Functions line of products. I will
create custom motor drivers that allow the EV3 to control multiple motors while only
utilizing a single connection port, increasing the maximum number of devices connected
to the LEGO brick. This will firstly be achieved by using off-the-shelf products. Later,
I will create fully bespoke prototypes using my own printed circuit board design with an
integrated microcontroller in two iterations and custom 3D printed casings that allow these
prototypes to be elegantly incorporated into LEGO models, examples of which will also be
provided in this thesis.

These hardware solutions will be complemented by custom software for the microcon-
trollers, allowing them to communicate with the EV3 via both available wired communica-
tion protocols, I2C and LEGO UART Sensor Protocol. Moreover, I will create new code
blocks for the EV3 software that allow the programmable brick to execute general UART
communication with connected devices, as well as control motors by using my custom data
protocol built on top of the available communication protocols. Lastly, I will make modifi-
cations to preexisting third-party blocks that will solve their long-standing issues.

Chapters 2 and 3 provide a historical context of the development of programmable and
motorized products manufactured by LEGO. In Chapter 4 I will elaborate on the current
state of compatibility between the EV3 brick and other products. Chapters 5, 6, and 7
closely describe the process of creating motor drivers with integrated microcontrollers and
their accompanying software in several iterations, from using pre-existing implementations
to designing and constructing fully custom solutions, also including LEGO creation exam-
ples that demonstrate the possibilities of my implementation. In Chapter 8, I conclude the
work on this thesis by creating new code blocks that expand the communication capabilities
of the EV3 brick.

6

Chapter 2

Development of Programmable
LEGO Bricks

The LEGO Group and its educational branch Dacta (now LEGO Education) first delved
into the world of programmable bricks during the 1980s, when they partnered with MIT
scientists in order to create a programmable educational toy for children [36]. Said MIT
research group, led by Seymour Papert, has been developing robotic educational kits since
the late 1960s, primarily in the Logo language, which he was a co-creator of. This partner-
ship would result in several educational product lines, most notably the Mindstorms lineup,
which was named in honor of Papert’s 1980 book of the same name.

2.1 LOGO Brick
The first product attempts of this partnership required a permanent connection to a desktop
computer to execute programs, inconvenient for creating moving creations [38]. However,
due to the rapid speed of computer technology advancements, by 1989 they managed to
create a standalone programmable brick, called the MIT Logo Brick (shown in Figure 2.1).
This brick was used to conduct experiments with elementary school students, with children
creating programs such as light-seeking or obstacle-avoiding robots [36].

Figure 2.1: LEGO Logo Brick1

1https://www.cs.uml.edu/~fredm/papers/magical-machines.pdf

7

https://www.cs.uml.edu/~fredm/papers/magical-machines.pdf

2.2 MIT Grey/Red Brick
In 1995, MIT’s researchers came up with the Pocket Programmable Brick, dubbed the “grey
brick” [38]. It was a fairly advanced device, with eight input sensor ports and four output
ports for motors or lights from the 9V product series, an IR interface, an LCD screen,
network connectors, as well as a microphone and a speaker. This, however, made it very
difficult and expensive to manufacture, especially on a small, research-only scale. Trying to
leverage processing power and power consumption low enough to be able to get sufficient
power from batteries, the team landed at the Motorola 6811 CPU [42]. Its design scheme
can be seen in Figure 2.2.

The next iteration of this project was created in 1996 in the form of the MIT Red
Brick [38] (Figure 2.3). This version was more streamlined, with six input ports instead of
eight. The sound and network devices were also removed. The LCD screen was kept, as it
was found out that it was much easier for children to see the output directly on the brick
rather than having to connect it to a computer beforehand. There was pressure to create
an even more stripped-out version with even fewer input and output ports, but all of the
brick’s ports were often utilized at once during testing, so the I/O was kept unchanged.
An emphasis was also put on making the brick easy to manufacture and robust enough
to endure kids’ use. More than 100 of these programmable bricks were made in total and
they were put to use in research groups in classrooms in the United States and Thailand
between 1996 and 1999.

Figure 2.2: Schema of the MIT Grey Brick 2

Figure 2.3: MIT Red Brick3

2https://dspace.mit.edu/bitstream/handle/1721.1/34694/32601552-MIT.pdf?sequence=
2&isAllowed=y

8

https://dspace.mit.edu/bitstream/handle/1721.1/34694/32601552-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/34694/32601552-MIT.pdf?sequence=2&isAllowed=y

2.3 RCX
MIT’s research would eventually lead to the creation of the LEGO Mindstorms RCX, the
first commercially available fully programmable LEGO brick. It featured a Hitachi/Renesas
8-bit CPU with an internal 16-bit architecture, operating at 10MHz, with 32KB of RAM and
16kB of ROM [9]. The I/O consisted of an LCD screen, an IR interface for communication
between an RCX and a computer or between several RCXs, three input and three output
ports [43]. This downgrade, together with a smaller battery pack compared to the Red
Brick, resulted from an objective to reduce the weight of the programmable brick. The Red
Brick tipped the scales at approximately 370 grams [12], which could make its application
in small and mobile LEGO creations quite cumbersome. The RCX, weighing 192 grams,
was considerably lighter.

The first version of the brick, the RCX 1.0 (depicted in Figure 2.4), featured a connector
for an AC power adapter beside battery power, which was removed in the subsequent 1.5
and 2.0 revisions [43]. The RCX shipped with electric motors, touch and light sensors, an
IR Tower, and LEGO Technic pieces to create various models. The programs for RCX to
run were written on a PC using RCX Code software, which provided a block-based coding
environment suited for children. These programs were then loaded onto the RCX via an
IR Tower connected to the PC, utilizing the RCX’s IR interface.

The RCX brick was released in 1998 and saw great commercial success [12]. A commu-
nity quickly emerged, sharing reverse-engineered firmware and creating alternative operat-
ing systems, such as the Java-based leJOS, or programming languages such as NQC (Not
Quite C) [53, 43].

Figure 2.4: LEGO Mindstorms RCX4

3https://web.archive.org/web/20221017071530/http://web.mit.edu/6.933/www/Fall2000/
LegoMindstorms.pdf

4https://www.electricbricks.com/lego-lego-parts-electric-yellow-mindstorms-rcx-with-
power-jack-complete-brick-p-1015.html?language=en

9

https://web.archive.org/web/20221017071530/http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
https://web.archive.org/web/20221017071530/http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
https://www.electricbricks.com/lego-lego-parts-electric-yellow-mindstorms-rcx-with-power-jack-complete-brick-p-1015.html?language=en
https://www.electricbricks.com/lego-lego-parts-electric-yellow-mindstorms-rcx-with-power-jack-complete-brick-p-1015.html?language=en

2.4 Scout
The Mindstorms Scout (shown in Figure 2.5) was a simplified version of the Mindstorms
RCX brick, aimed at younger audiences [22]. It was released in 1999, a year after the
release of the RCX. The I/O was reduced to two input and two output ports, though it
had a built-in light sensor for input and a light for communication with other devices, as
well as an IR transceiver and a piezo sound module [23]. Instead of creating programs on
a computer, the programs primarily were built inside the brick’s user interface, though it
was possible to write them on a PC and send them to the brick via the RCX IR tower
[22]. Over 70 commands are available in the LEGO Assembly language, with more than 30
command built-in command subroutines and an option for three user-defined subroutines.
A user program can run up to six tasks in parallel with features such as access control
commands, which let the user set a priority of the tasks, improving on the capabilities of
the RCX.

Figure 2.5: LEGO Mindstorms Scout5

2.5 NXT
The next iteration of the Mindstorms robot, the NXT, debuted in 2006. It was powered by
a much more capable 32-bit ARM7-based Atmel CPU running at 48MHz and an 8-bit Atmel
AVR microcontroller for motor control, with 64KB of RAM and 256KB of Flash memory
[41]. The NXT also featured a speaker, a USB Full Speed port, and a Bluetooth interface.
The display was now significantly larger at 100x64 pixels, which enabled simple programs
to be written directly in the NXT brick’s graphical interface. More complex programs
were written in the NTX-G PC software and then downloaded to the brick via USB or
Bluetooth. Bluetooth connectivity also enabled up to three NXT bricks to communicate
wirelessly. I/O was also upgraded, with four input ports and three output ports. The ports
used proprietary 6-wire connectors based on and almost identical to the RJ12 connector,
with the only difference being an offset latch on the NXT connector. The NXT set also

5https://www.worthpoint.com/worthopedia/lego-9735-robotic-discovery-set-lego-150133089

10

https://www.worthpoint.com/worthopedia/lego-9735-robotic-discovery-set-lego-150133089

featured more advanced motors. Unlike the RCX’s simple DC motors, the NXT motors’
internals featured an optical encoder to enable position and velocity data feedback [16].
The set also included touch, light, sound, and ultrasonic sensors. The NXT brick can be
seen in Figure 2.6.

A revised NXT 2.0 version was brought to market in 2009, with a more advanced color
sensor replacing the light sensor and added RFID functionality for communication between
multiple NXT bricks [51]. Due to the popularity of Mindstorms sets among enthusiasts and
programmers, The LEGO Group decided to make the NXT’s software open-source.

Figure 2.6: LEGO Mindstorms NXT6

2.6 EV3
The most advanced entry into the Mindstorms series, the EV3 (seen in Figure 2.7), was
launched in 2013. With an ARM9 Texas Instruments AM1808 processor, 64MB of RAM,
and 16MB of flash storage, this brick saw a massive step forward in computing performance
[27]. The display has an increased resolution of 178x128 pixels. Improvements to the
I/O include a microSD card slot, a mini-USB port, a USB 2.0 high-speed interface, and
networking functionality via USB. The EV3 uses the same modified RJ12 interface to
connect to its sensors and motors as the NXT, though its number of output ports was
increased to four. This enables the EV3 to be backward compatible with older NXT sensors
and motors, however, the EV3’s devices are not compatible with the NXT brick [52].

The EV3 shipped with two large motors, one medium motor, a remote control, a touch
sensor, a color sensor, and an infrared sensor. The educational variant of the EV3, the
Education EV3 Core Set, included one additional touch sensor, a gyroscope, and ultrasonic
sensors instead of the retail version’s infrared sensor. It was also powered by a rechargeable
battery pack instead of the six AA batteries needed to power the consumer variation.

The powerful internals of EV3 allow it to run a Linux distribution as its kernel [26].
A LEGO application Virtual Machine runs above the hardware interfaces, kernel and shared

6https://www.brick-shop.de/Electric-4951.html?language=en

11

https://www.brick-shop.de/Electric-4951.html?language=en

libraries, this virtual machine is controlled by a built-in system and user-created byte-code
programs. This firmware structure can be seen in detail in Figure 2.8.

Figure 2.7: LEGO Mindstorms EV3

Figure 2.8: A graphical representation of EV3’s firmware structure

2.6.1 Third-Party Extensions to EV3’s Functionality

EV3’s operating system was released as open source, and the presence of an SD card slot
allowed third parties to create alternative operating systems running in dual boot-like mode,
eliminating the need to flash the brick’s built-in system, like it was in previous iterations
of the Mindstorms brick.

12

The most popular third-party operating system made for the EV3 is ev3dev, an open-
source Debian-based Linux distribution operating system. It allows for extended functional-
ity of the EV3, supporting programs in numerous programming languages, such as Python,
Java, Go, or C++ [49]. The most popular language for programming the EV3’s behavior
in this system is Python, with extensive python-ev3dev and Pybricks libraries that al-
low for extended functionality with devices otherwise not compatible with the default EV3
operating system. Another example of an alternative to the native EV3 system is leJOS,
a Java-based virtual machine. In its third iteration, previously running on the RCX and
NXT devices, it includes a Java EV3 API and a Java runtime system.

2.6.2 Third-Party Alternatives to the EV3

Third-party support does not end with alternative software, several companies built custom
hardware as well. Mindsensors manufactured hardware extending the base EV3’s function-
ality, such as RFID readers, additional sensors, or controller interfaces7. These devices
can be controlled via the python-ev3dev library, alternatively, an .ev3b block file can be
imported into the stock Mindstorms LabView programming application and allow block-
based programming with these devices in the original EV3 firmware. Dexter Industries
sold BrickPi, a Raspberry Pi-based alternative to the EV3 that can run EV3-compatible
operating systems. This product made it easier for new enthusiasts to enter the world of
Mindstorms since the EV3 has been discontinued for several years. In addition, this com-
pany also manufactured custom devices and sensors for the EV38. However, it seems that
these companies have ceased their manufacturing operations.

2.7 Robot Inventor
The latest and last member of the Mindstorms family due to the discontinuation of the
series after the year 2022, Robot Inventor (Figure 2.9), is aimed at a younger audience
compared to previous sets [31]. The Robot Inventor brick provides a limited interface, with
only a 5x5 matrix display. Its CPU is an ARM-based Cortex-M4 processing unit running
at 100MHz, with 320KB of memory, 1MB of flash, and 32MB of memory for programs,
sound files, and other content [30]. This too is a downgrade compared to the EV3, but
the simplified firmware results in significantly faster boot times. The brick is controlled by
a mobile phone or a controller through a Bluetooth connection. Simple programs can be
written in Scratch, a high-level block-based programming language. The Robot Inventor
brick also supports programming in Python for more advanced projects. The brick has
built-in three-axis gyroscope and accelerometer sensors, a speaker, and six ports, all of
which can be used for either input or output, unlike the previous Mindstorms generations,
which had separate ports for motors and sensors. Power was provided by a rechargeable
battery pack, charged via USB Micro-B. Inside the set were four medium motors with
rotational encoders and color and distance sensors.

7http://www.mindsensors.com/
8https://www.dexterindustries.com/
9https://www.amazon.co.uk/LEGO-Mindstorms-Large-Hub-88016/dp/B00B42IRBC

13

http://www.mindsensors.com/
https://www.dexterindustries.com/
https://www.amazon.co.uk/LEGO-Mindstorms-Large-Hub-88016/dp/B00B42IRBC

Figure 2.9: LEGO Mindstorms Robot Inventor9

2.8 Spike
LEGO Spike sets are educational variations of the Robot Inventor set. The Spike Prime
set was released in 2020. Its Technic Large Hub is identical to the Robot Inventor Hub,
but the Prime set includes a new Force sensor [30]. It replaced the touch sensor, expanding
its functionality by being able to measure the force applied to it. Instead of four medium
motors in the Robot Inventor set, the Spike Prime included two medium motors and a large
motor.

In 2021, the Spike Essential set was released as a simplified counterpart to the Spike
Prime set, oriented at younger children, featuring the LEGO Technic Small Hub (shown in
Figure 2.10). Inside it was the same processing unit as in the Spike Prime set [32]. The
main difference between the two was the Small Hub’s reduced size and I/O, with just two
motor/sensor ports, a lack of a speaker, and a single RGB status LED. This set shipped
with two small motors with positional encoders, a color sensor, and a 3x3 Color light matrix
brick.

Figure 2.10: LEGO Spike Essential10

10https://www.lego.com/en-gb/product/lego-technic-small-hub-45609

14

https://www.lego.com/en-gb/product/lego-technic-small-hub-45609

2.9 Other Programmable LEGO Products
Mindstorms sets were not the only LEGO Group products that were programmable, how-
ever, these other products could either not be considered ’bricks’ due to their form factor,
or their programming capabilities are limited compared to the Mindstorms series.

2.9.1 Technic Interface A

The LEGO Technic Interface A (Figure 2.11) was the first programmable control board
for electronic LEGO devices [35]. It had two input ports for optosensors and six output
ports for 4.5V motors or lights. Output ports were paired together, so two ports could
be occupied either by two motors rotating uni-directionally, or one motor rotating bi-
directionally. Optosensors could be paired with a black-and-white disk to act as rotational
encoders. The control center was connected to a computer through a separate interface
card [33, 3]. There were three choices of software for controlling the Technic interface,
LEGO Lines, LEGO TC Logo, and LogoWriter Robotics [35]. The programs were mainly
written using the Logo language, but there were other options available as well, depending
on the computer to which the control center was connected. These languages include 6502
Assembly, BASIC, and COMAL-80 [21].

Figure 2.11: LEGO Technic Interface A11

2.9.2 Technic Control Center

This control center was released in 1990 and was a standalone unit, with no necessity
to connect to a computer [11]. As such, the programming options were limited. The
programming was done by recording the moves by controlling the station, which would
then repeat the steps, and two separate programs could be recorded [5]. The control center
could control motors, lights, and sound elements across three channels, though there were
no input ports due to the simplicity of the control center. The control center was the first
LEGO product to use the 9V line of devices. The first version was powered by six C-type
batteries, a revision of the control center added an AC/DC transformer, allowing the unit
to be powered by a wall socket [50]. It can be seen in Figure 2.12.

11https://www.bricklink.com/v2/catalog/catalogitem.page?P=70455#T=C&C=11
12https://brickscout.com/en/products/detail/4057296513314/part__2840c01/black-technic-

control-center-i

15

https://www.bricklink.com/v2/catalog/catalogitem.page?P=70455#T=C&C=11
https://brickscout.com/en/products/detail/4057296513314/part__2840c01/black-technic-control-center-i
https://brickscout.com/en/products/detail/4057296513314/part__2840c01/black-technic-control-center-i

Figure 2.12: LEGO Technic Control Center12

2.9.3 Control Lab Serial Interface

Released in 1993, this product was the successor to the Technic Interface A, this time fairly
more complex [34]. As can be seen in Figure 2.13, it featured 8 input and 8 output ports
and worked with the 9V line of LEGO motors and sensors. It connected to the computer
via an RS-232 serial port and could be controlled by the LEGO RoboLab software or the
LEGO Control Lab software using the Logo language.

Figure 2.13: LEGO Control Lab Serial Interface13

2.9.4 Code Pilot

This brick used a barcode reader to write its programs. A sheet of 44 three-digit barcodes
was included, and they could be scanned by the Code pilot Brick to assemble programs [6].
Alternatively, pre-made programs could be also scanned to program the predefined LEGO
build with more ease. The brick featured a single input connector and one output connector
and came with a motor and a touch sensor from the 9V line. The brick also had a built-in
sound module that could also be programmed to play at specified times with several notes.
The code powering this brick was proprietary and was never released publicly by the LEGO
Group.

13https://www.bricklink.com/v2/catalog/catalogitem.page?P=2954#T=C&C=10

16

https://www.bricklink.com/v2/catalog/catalogitem.page?P=2954#T=C&C=10

2.9.5 WeDo 1.0

The first generation of the WeDo was launched in 2009 as an educational kit [24]. Its
main component was the WeDo USB Hub, which was used to connect to a computer to
program and execute tasks. It featured two Power Functions-style ports to connect motors,
sensors, or lights, and it shipped with a Power Functions Medium motor, a tilt sensor,
and a motion sensor. Up to three Hubs could be connected within a single program to
increase the number of motors or sensors working at once. The hub was not a standalone
computer, so a permanent connection to a computer was needed to execute tasks and power
electrical components, which hindered the ability to create moving designs. As the USB
2.0 connection only allows for a 5V output and the Power Functions work on a 9-volt basis,
the power output was also decreased compared to standard Power Functions connections.
WeDo programs were written in Scratch.

2.9.6 WeDo 2.0/Powered Up

An updated version of the WeDo line was brought to market in 2016 [2]. The new generation
of the Hub was still not a fully independent device, it still worked only by communicating
with a computer to control motors and sensors. The communication was now carried out
via Bluetooth, which eliminated the need for a cable connection to a computer. A new,
proprietary 6-pin connector was used which allowed for similar functionality to Mindstorms
cables (power, device identification, and serial data communication) [13]. This connector
was shared between the educational WeDo and Spike sets and the consumer-oriented Mind-
storms Robot Inventor and Technic sets, which allows for greater interoperability between
various sets. Several different versions of the hubs were released:

• WeDo 2.0 Smart Hub - A part of the WeDo educational set. It is powered by two
AA batteries and has two connection ports for motors and sensors.

• Powered Up Hub - Similar to the WeDo Smart Hub, it features two motor/sensor
ports. Six AAA batteries provide a maximum of 9 volts of voltage for the motors.

• Technic Hub - A more advanced version of the previous hubs, the Technic hub has
four ports and a built-in tilt sensor. Power is provided via 6 AA batteries.

• Powered Up Move Hub - This hub features two built-in motors with positional
encoders and a tilt sensor, with two I/O ports, powered by 6 AAA batteries (Figure
2.14).

Figure 2.14: LEGO Powered Up Move Hub14

14https://www.lego.com/en-fr/product/move-hub-88006

17

https://www.lego.com/en-fr/product/move-hub-88006

Chapter 3

An Overview of LEGO Powered
Bricks

LEGO first introduced motorized components to its lineups in 1966 in its train set, allowing
for new ways to be played with. Since then, there have been several generations of motorized
products, each new generation being more advanced and enabling more creative ways of
use.

3.1 4.5V Motor Line
The first LEGO motors were released in train sets in 1966 and were based on a 4.5V
architecture, powered by three C-type batteries [4]. The connector was a simple two-pin
prong. These train motors came out in different iterations, as well as a 12-volt version. In
1977, a standalone motor, shown in Figure 3.1, was released [1]. This motor was used in the
Technic Interface A control center. The 4.5V line also included a light module, a battery
box, a touch sensor, and an optosensor [33].

Figure 3.1: LEGO 4.5V Motor1

1https://brickscout.com/en/products/detail/4057296837304/part__6216m2/light-gray-
electric-motor-45v-type-2-for-2-prong-connectors-with-middle-pin

18

https://brickscout.com/en/products/detail/4057296837304/part__6216m2/light-gray-electric-motor-45v-type-2-for-2-prong-connectors-with-middle-pin
https://brickscout.com/en/products/detail/4057296837304/part__6216m2/light-gray-electric-motor-45v-type-2-for-2-prong-connectors-with-middle-pin

3.2 9V Motor Line
The first 9V products were motors that came out with the release of the Technic Control
Center in 1990 [15], shown in Figure 3.2. Later, with the release of other sets, numerous
other products from this line were released, such as other motors of different sizes and
power outputs and several types of sensors, such as touch, light, rotation, and temperature
sensors, as well as battery boxes and lights. The connector uses a two-line connection with
four pins accessible from both the top and bottom of the connecting brick, allowing for
stacking of the devices. These products were used in numerous sets, notably in the first
generation of the Mindstorms brick. They were officially discontinued in 2007 after the
release of the Power Functions line.

Figure 3.2: Technic Motor 9V

3.3 Power Functions
The Power Functions (PF for short) line was introduced in late 2007 as a new generation
of motorized LEGO pieces, replacing the 9V line. It included several types of electric
motors, battery boxes, lights, IR remote control devices and IR receivers, a servo motor,
and a switch. Several of these devices can be seen in Figure 3.3, from the left to the right:
PF M Motor, PF L Motor, PF Servo Motor, PF IR Receiver V2, PF Battery Box, PF IR
Remote Control.

Power Functions devices utilized a 4-pin connector with pins on both the top and the
bottom of the connector (seen in Figure 3.4). Like in the 9V connector, this allowed
for mating multiple devices in a single serial connection. Pulse width modulation with
a frequency of 1200Hz is used to regulate the speed or the angle of rotation of motors [8].
The duty cycle can be set in 7 non-zero stages (0%, 26.6%, 38.9%, 51.2%, 63.0%, 75.0%,
87.2% a 100%), providing seven speed values for the motors in either direction, for example,
a duty cycle on pin C1 set at 51.2% would run a motor clockwise at half speed or turn the
servo motor to 45∘ clockwise, setting this duty cycle on the C2 pin would rotate motors
counter-clockwise.

In most usages, only two of the four pins were utilized, since the PF M, L, and XL motors
were simple direct current motors connected by the C1 and C2 pins with no rotational
encoders or other sensors that would send feedback data. The 88004 Servo Motor is the
only Power Functions product to use all four pins [15]. The 9V and 0V pins power the
motor while the C1 and C2 control pins set the angle of rotation between −90∘ and +90∘.

19

Figure 3.3: Power Functions products

Figure 3.4: Power Functions connector pinout

3.4 Powered Up
First products from the Powered Up line were released in 2017. While the early components
were released under several names, such as Boost or Control+, the naming scheme was later
unified under the Powered Up moniker. A successor to Power Functions products, the Pow-
ered Up line consists of electric motors, control hubs, remote controls, and lights. Powered
Up products use a proprietary 6-pin connector, which allows for similar functionality to
Mindstorms NXT and EV3 cables, such as power delivery, device identification, and serial
data transmission [13]. Pins 1 and 2 are PWM-controlled power leads for motors, pin 3 is
a ground pin, pin 4 provides power for device electronics at 3.3 volts, and pins 5 and 6 are
used for analog device identification via resistance and digital serial data transmission. Pin
5 sends data from the hub to a device and pin 6 transmits data the other way [14].

The Powered Up Medium motor and the Powered Up Train motor are the only motors
in the series without a rotational encoder, providing no feedback. The rest of the range
features rotational encoders, providing positional data as well as motor speed. One such
member of the range is depicted in Figure 3.5. The encoder resolution is 360 counts per
revolution, the sensor input accuracy is +/- 1 degree of rotation, and the motors can be
controlled with an accuracy of +/- 3 degrees [30]. The sensor’s refresh rate is 100Hz. While
the Boost Medium Motor only provides relative rotational position data, other motors also
include absolute encoders, containing data about the motor’s true angular position. This

20

makes them suitable for use as servo motors where the use cases require a return-to-zero
functionality, such as vehicle steering.

Most motors are made to work with 9 volts, but several hubs provide less voltage (WeDo
Smart Hub provides 3 volts and Robot Inventor and Spike sets’ battery packs provide 7.3
volts) [32]. The Technic Small Angular motor can only work with voltages between 3.3 and
6 volts, while the Medium and Large Angular motors are compatible with power sources of
voltage between 5 and 9 volts. This means that not all motors might be compatible with
all types of Powered Up hubs.

Figure 3.5: LEGO Powered UP Medium Angular Motor2

2https://www.lego.com/en-us/product/medium-angular-motor-88018

21

https://www.lego.com/en-us/product/medium-angular-motor-88018

Chapter 4

The Current State of
Compatibility Between EV3 and
Motorized LEGO Products

As the history of motorized LEGO bricks spans decades, it is understandable that with
advances in technology, newer generations of products might not be backward compatible
with their older counterparts. Since the older motors, notably from the 9V and Power
Functions line, are simple direct current motors (apart from a few exceptions, like the PF
servo motor), it is not too difficult to convert them for use in different applications. Their
connectors can be modified in various ways, the LEGO Group even released converter cables
to these devices, though their use in the Mindstorms EV3 is problematic.

4.1 Stock EV3 Firmware and its Compatibility
The EV3 uses auto-identification of its devices by measuring the resistance on pins 5 and 6
of its connector. Since the 9V and PF motors do not have the elements necessary to carry
out the identification functionality, the detection fails on EV3’s part, and the output to the
motors is stopped after roughly one second, even with official LEGO extension cables.

This problem can be overridden in various ways. Firstly, the fact that the motors
run for a short time even without successful identification can be exploited. In EV3’s
block-based programming software, a function can be created that periodically switches
the power output to the motor between different power levels that are close enough to
each other that the change in output might not be noticeable. Since this resets the power
output before identification failure can stop the output, the motor should be able to run
[19]. A second option also exists, though this one requires working with the hardware itself.
When a Power Functions cable and an EV3 cable are cut, they can be connected as depicted
in Figure 4.1. The added resistors create a resistance that is equivalent to a Mindstorms
NXT motor, which is compatible with the EV3 system. It can be then run in the LabView
software as an NXT motor in its unregulated form with no issues. Another solution is to
use third-party hardware. The Mindsensors group developed a controller that attaches to
a Power Functions IR receiver and sends infrared signals to connected devices that can be
programmed on the EV3 or NXT bricks; however, this solution requires the ownership of
said IR receiver 1.

1http://www.mindsensors.com/ev3-and-nxt/123-pf-motor-controller-for-nxt-or-ev3-pfmate-

22

http://www.mindsensors.com/ev3-and-nxt/123-pf-motor-controller-for-nxt-or-ev3-pfmate-

Figure 4.1: Connection between EV3 and a Power Functions motor2

4.2 Compatibility with the ev3dev Firmware
The open-source ev3dev and its python-ev3dev Python library make great strides in pro-
viding improved compatibility with other devices. The simple direct-current motors, which
most of the 9V and PF range are, can be connected to the EV3’s port with connections that
do not require components for identification. The dc-motor class provides functions that
can run motors, set their polarity, and set the duty cycle for pulse width modulated motors.
This class is not only meant for simple LEGO motors, but it allows for connecting any 2-pin
DC motor. This functionality is also present in the Pybricks MicroPython library, which
also offers numerous other classes for a wide range of devices, including Powered Up hubs,
third-party sensors, and generic UART and I2C devices [49]. This allows for compatibility
with virtually any device that supports the aforementioned communication protocols.

4.3 Compatibility with the leJOS Firmware
leJOS is an another alternative firmware for the EV3, based on a Java runtime system [48].
In its third iteration for the EV3, it was previously developed for both the RCX and the
NXT bricks. This firmware also improves on the stock firmware’s functionality, with classes
for DC motors, UART and I2C-compatible devices, and third-party devices. It also includes
a fairly robust interface for communicating with RCX sensors and devices, a functionality
that ev3dev and Pybricks lack.

4.4 Available Protocols for Communicating with the EV3
Since the EV3 bricks contain the necessary hardware to communicate via I2C and UART
protocols and both the ev3dev and the leJOS firmwares implement classes for handling
communication via these protocols, I can consider using these protocols during the design
process of an implementation prototype.

4.4.1 I2C Protocol

Inter-Integrated Circuit (I2C for short) is a serial, synchronous communication bus [39].
It connects multiple devices, which are assigned as a master or as a slave. There can be
multiple masters and slaves on a single bus, each device is assigned a unique 7-bit address,

2https://www.youtube.com/watch?v=Ns3TODgRlCE

23

https://www.youtube.com/watch?v=Ns3TODgRlCE

meaning that up to 128 devices can share the bus. The I2C protocol also allows for 10-
bit addresses, potentially increasing the number of devices connected to the bus, though
this address format sees rare use. The bus only contains two wires, serial data (SDA)
and serial clock (SCL), which can communicate bi-directionally. The clock signal is set by
a master device, which a slave device adapts to. If a slave device cannot process requests
fast enough and has the necessary controllers, it can make use of clock stretching, where
it holds the SCL line at low value until it is ready to process further requests. If such
a situation occurs, the master device cannot send more transactions. Both master and
slave devices can send and receive messages, however, slave devices can only send bytes as
a response after being addressed by a master device. Bus speeds vary between 100kbit/s
and 3.4Mbit/s in bidirectional communication depending on the bus’ mode. An ultra-fast
mode with a capability of transferring 5Mbit/s also exists, though the communication is
only unidirectional, the protocol is heavily modified compared to standard I2C operation
and its use is rather niche.

4.4.2 UART Protocol

Universal asynchronous receiver/transmitter, also known as UART, is a serial communica-
tion protocol that works asynchronously [44]. Instead of a clock line that sets the clock
signal of the communication, an identical baud rate has to be set on both devices, which
ensures that both devices will communicate at the same clock speed. Apart from the baud
rate, several other aspects of communication must be set to establish a reliable connection,
such as start, stop, parity bits, and voltage levels. Both communicating devices contain
RX (receive) and TX (transmit) ports. Due to the elimination of the clock line, the proto-
col allows for full-duplex communication (sending data both ways simultaneously), though
half-duplex or simplex communication is also possible. The drawback is, however, that only
two devices can share a single connection, unlike the I2C protocol. Moreover, both devices
need to be equipped with their clock rate generators.

4.4.3 LEGO UART Sensor Protocol

The EV3 uses a proprietary UART-based protocol for communicating with its sensors. The
brick uses voltage measurements on pins 1 and 2 of a port to determine the type of the
connected device. For digital UART sensors, pin 1 must be set to low and pin 2 set to
high [27]. After connecting, a handshake procedure is initiated by the sensor at a baud
rate of 2400. The handshake consists of messages bearing information about sensor type,
communication speed, the number of sensor modes, data types of sensor measurements,
and more [28]. A single message consists of a message type byte, payload, and a checksum
byte. Several messages have a set default value and can therefore be omitted from the
handshake, hence the only required messages are for sensor type, its modes and their data
format [18].

After the handshake data has been transmitted, an ACK (0x04) byte is sent by the
sensor. If the EV3 returns the ACK byte within the timeout period of 80 milliseconds,
the connection has been established and the communication speed changes to the value
presented in the handshake data if specified, otherwise the baud rate stays at the default
value [29]. Data is sent from the sensor at a period ranging from 1ms to 100ms, and
after receiving a NACK (0x02) byte from the EV3. The sensor must reset and begin the
handshake after not receiving a NACK message for longer than one second [18]. The length

24

of the data payload can be set at exponents of two, with the maximum value being 8 bytes.
An example handshake captured by a logic analyzer can be seen in Figure 4.2.

Figure 4.2: Handshake of the EV3 IR Sensor captured by a logic analyzer, shown in Saleae
Logic software

The LEGO Powered Up UART Protocol used in the newer Mindstorms products shares
the same base as the UART Sensor Protocol, and enhances the protocol with extended
functionality and syntax [20].

4.4.4 LEGO EV3-G Blocks

The most common way of interacting with sensors is using LEGO’s own software, which uses
block-based programming that is user friendly even for younger enthusiasts. These blocks
may have multiple modes of operation, every one of which is implemented by its own .vix
file. These XML-based files are a modified version of National Instruments’ LabVIEW
Virtual Instruments files, or VIs for short. They consist of inputs and outputs, functions,
their connections, also known as wires, and “grey blobs”. These blobs or primitives, named
such by LEGO in its Block Developer Kit, are references to byte codes implemented in
EV3’s firmware that are executed upon being called in a program [25]. They are used to
handle I/O and file operations, display information on EV3’s screen, and more. Depending
on the hardware they make use of, these blocks can be backward compatible with the NXT
generation of Mindstorms.

The block is made up of several files. The blocks.xml file located in the root of the
directory contains information about the block, describes its inputs, outputs, the names of
VIX files for its modes and default values for aforementioned inputs and outputs. A file
of the same name, located in the strings directory, includes text descriptions of the block’s
modes and objects contained within. VIs directory includes VIX files for the block inside
PBR and NXT directories, the former containing files for the EV3, while files for the NXT
are located within the latter directory. Illustrations for the blocks are situated in the images
directory, and an HTML file describing the block’s functionality can be found in the help
directory. These files are then added to a ZIP archive and the archive’s extension is changed
to .ev3b. This file can then be imported into the programming interface for the EV3.

25

Chapter 5

Improving the Compatibility
Between EV3 and LEGO Motors

As stated in the previous chapter, there are attempts to improve on the inter-compatibility
between various LEGO devices, with the Power Functions line receiving the most attention
from the community. The release of the ev3dev firmware and its motor drivers meant
a large increase in usability of PF motors with EV3, however, there are still areas where
improvements could be made. Firstly, I explored and implemented existing options for
connecting LEGO motors to the EV3, and later on I would explore the possibilities of
creating new and improved ways of integration.

5.1 Controlling Power Function Motors via Arduino
After consulting possible options for improvement with my thesis supervisor, I have decided
to implement a scheme where an Arduino Uno microcontroller would act as a middleman
between the EV3 and Power Functions motors, receiving input data from EV3 and driving
one or several motors accordingly. I have chosen to use the Arduino Uno for its ease of
use, low price, and availability of various accessories and shields for the microcontroller.
A Raspberry Pi, for example, might be too powerful for this usage, moreover, its price
is also significantly higher. Another alternative would be an ESP microcontroller, which
provides more computing power in a smaller package with similar costs in comparison with
the Arduino. However, the lack of pre-built shields, hence the necessity of using bare
components, would pose a more difficult challenge, should anyone replicate this work.

In my first draft, the Arduino MCU would be connected to an EV3’s output port.
A program on the EV3 would utilize the python-ev3dev motor driver libraries to set a pulse
width modulation duty cycle, polarity, and other parameters that set how a motor should
run, just like with a regular connection. The PWM signals run through pins 1 and 2 of
the EV3’s port. These signals would then be translated by the MCU, which would drive
the motors with the same PWM duty cycle. However, while theoretically simple, this
implementation would be problematic. The PWM pins of the EV3 can run up to 8+ volts
of voltage and 1A of peak current (500mA continuously) [27]. This much voltage and
current would likely damage the microcontroller. Furthermore, this implementation would
do little to improve on the current state of the art, as similar functionality could be achieved
by stacking multiple PF motor connectors and connecting them to an EV3 port. However,

26

it should be mentioned that this method might be harmful to the EV3, as running several
motors from a single port could draw too much current and damage the EV3’s components.

5.2 Connection via the I2C Protocol
Having realized the risks of connecting an Arduino microcontroller directly to EV3’s PWM
pins, I sought a different way to connect the two devices. Mindstorms EV3’ AM1808 SoC
includes controllers for I2C and UART communication [27]. For this implementation I have
chosen to use the I2C protocol, a brief description of which can be found in Section 4.4.1.
This protocol can be used via the I2CDevice class of the Pybricks library [49], the I2CPort
interface of the leJOS EV3 API, or the I2C Block in LabView software, developed by Dexter
Industries [47]. This is the reason I chose the I2C protocol, since at the time I had not yet
implemented UART communication blocks in the EV3 software. Another reason for using
I2C over UART is its simplicity. As it is a synchronous protocol, there is no need to set up
matching communication speeds for both devices.

According to the AM1808 microprocessor datasheet, the EV3 utilizes 3.3V logic that
is 5V tolerant [45]. Communicating via I2C with an Arduino Uno using 5V logic did not
pose any problems, however, direct UART communication was not functional, likely due
to the more nuanced nature of the UART Sensor Protocol, which includes identification
processes. After I connected a 6N137A optocoupler into the circuit to separate the logic
voltage levels, the successfully EV3 responded to the handshake data with an ACK byte.
However, I was not able to complete the communication circuit since I am not in possession
of an optocoupler with a 3.3V input voltage rating that would enable the Arduino to read the
data coming from the EV3. An ESP8266 microcontroller with its 3.3V logic is compatible
with the EV3 and direct UART communication works without any issues.

5.2.1 First Prototype

As my first prototype, I devised a connection between the EV3 and the Arduino, which
would control a single DC motor. The Arduino would read I2C messages sent by the EV3
and control the motor connected directly to the MCU. Unlike the first draft, this would
control the motor safely, without the risk of damaging the microcontroller’s components. In
this prototype, the Arduino and the motor would be powered either by pin 4 of the EV3’s
port, which provides 5 volts, or a more powerful external battery could be connected, such
as the Power Functions battery box. Pins 3 (ground), 5 (Clock) and 6 (Data) would also be
connected to allow for sending data to the MCU. The schema of the connection can be seen
in Figure 5.1. This model, however, has its drawbacks. Due to the design of the Arduino
MCU, only a maximum of 5 volts can be supplied to the motor, no matter the voltage of
the power source. As Power Functions are made to work with up to 9 volts, this would
severely limit the motor’s performance. Consequently, just like with the very first design,
this schema would be too complicated to control just one motor and would provide no real
benefits compared to the simple direct connection between the EV3 and a motor. Despite
its shortcomings, though, this prototype would prove to be the starting point that more
advanced controllers would be based on.

27

Figure 5.1: Connection schema of the first prototype

5.2.2 Prototype with a Motor Driver

This prototype allows for the control of up to four DC motors. They will be driven using
an Arduino motor shield designed by Adafruit Industries, with Texas Instruments L293D
drivers. This shield contains two of these drivers and can power up to four DC motors, each
with up to 600mA of continuous power draw [46]. While any pulse width modulated motors
are compatible with this prototype, I have used a set of Power Functions motors due to the
lower price and higher availability of these devices compared to other LEGO motors. To
provide sufficient power, I will connect a 9-volt Power Functions battery box as the power
source, which will power the shield, the motors, and the Arduino itself. I connected the
microcontroller to the EV3 by connecting pins 6 (Data), 5 (Clock), and 3 (Ground). It is
unnecessary to connect pin 4 (Power), as the battery box provides power for the Arduino as
well. The schema of the connection can be seen in Figure 5.2. As is standard with Arduino
and I2C connections, the data pin is connected to the A4 pin, and the clock is connected
to pin A5.

The Arduino is then configured as a slave in the I2C connection and receives bytes from
the EV3. As I will only be using simple DC motors in this prototype, there is no need to
send feedback data from the Arduino back to the EV3. Despite controlling only the output
and not receiving any messages back, this connection is created on an input port, since
EV3’s output ports lack I2C and UART interfaces [27].

5.2.3 Prototype Communication Protocol

I have created a communication protocol (Figure 5.3), which can set up the motors’ con-
figurations in 2 bytes. After receiving a message, it sets the motors to run in the set mode
indefinitely, until the next message is received, which is when the MCU changes the state
of the motors accordingly. The first byte turns the whole set of motors off if the MSB is set
to zero, the other 7 bits are used for setting the motors’ PWM duty cycle. By setting the
bits of the second byte, I can turn individual motors on or off and set their polarity. The
advantage of this protocol is its simplicity, as there is no need for sending different bytes for
every motor, the whole set can be controlled by just one message. The drawback, however,
is that there is only one duty cycle for all the motors, which means that they can only
be turned off or run at the same duty cycle as all the other motors. This implementation

28

Figure 5.2: EV3, Arduino and motor shield connection diagram

is sufficient in applications like remote-controlled cars, but implementing more complex
projects using this protocol might turn out problematic.

Figure 5.3: I2C Motor Control Protocol v1

5.2.4 Enhanced Communication Protocol

In the second version of the protocol, I aimed to mitigate the shortcomings of the first
version, primarily the lack of ability to set a different duty cycle for each motor. I modified
the protocol significantly. Instead of one message controlling all motors, a single message
only controls one motor. The length of the message is one byte, the bits 6 and 7 determine,
which motor will be set, bit 5 turns the motor on or off, bit 4 sets the polarity, and bits
0-3 set the duty cycle. If bit 5 is set to 0 (motor off), bits 0-4 will not influence the state
of the motor. Having a 4-bit resolution of the duty cycle is a downgrade compared to
the 7-bit resolution of the first version of the protocol, however, a resolution this high is
unnecessary in this use case. I consider 16 duty cycle values plentiful, especially when
taking into consideration the fact that the original LEGO Power Function controllers only
had 8 values available. It is now not possible to run or stop all motors with one command,

29

each motor needs to be set with one message, though the broadened options of the motors’
configuration should offset this drawback. The protocol can be seen in more detail in Figure
5.4.

Figure 5.4: I2C Motor Control Protocol v2

5.2.5 EV3 and Arduino Code Implementation

Utilizing the Pybricks’ I2CDevice class, I was able to set up the EV3 as a master device
in the I2C communication and send data to Arduino. I have created several functions to
make motor control more convenient for the end user.

• setMotor(set_motor: int, set_on: bool, set_polarity: int,
set_duty_cycle: int) - A function that constructs a data byte for the MCU based
on the input parameters, which include the controlled motor’s index, value determin-
ing the motor’s on/off state, the motor’s rotation direction (polarity) and its duty
cycle. The program will raise an exception if incorrect parameters are set, such as an
invalid input for the motor duty cycle.

• runAllMotors(set_duty_cycle: int) - A function that runs all motors at a single
set duty cycle value. This function mimics the functionality of the first version of the
protocol.

• stopAllMotors() - A function that sends halt commands to all four motors.

When the program of the EV3 executes a motor control command, these functions construct
a message based on the parameters provided. This message is then sent to the Arduino
via I2C. In the code for the Arduino microcontroller, I have set up the device to listen
for incoming messages. When it receives a byte, it deconstructs it using the setMotor()
function to gather data and set a motor to its new state. To control the motors, I have used
the Adafruit Motor Shield Library V1, from which I used the AF_DCMotor class to define
the motors, as well as the setSpeed() and run() functions to set, run and stop motors.
A sequence diagram depicting the communication between the EV3 and the microcontroller
in a program example can be seen in Figure 5.5.

I have successfully managed to implement this version of the prototype. All four motors
can be controlled either separately or together, using the Micropython functions I have
written. It should be noted that with all four motors running simultaneously, their speed
drops noticeably. This is a result of the Power Functions battery box not being able
to provide sufficient power for all four motors and this problem can be easily fixed by

30

connecting a more powerful source to the prototype since the motor driver shield can be
powered by a source with a voltage of up to 15 volts. An image of the working proof of
concept is shown in Figure 5.6.

Figure 5.5: Sequence diagram of a program example

Figure 5.6: Implementation of the Arduino prototype

31

Chapter 6

Streamlining the Prototype

After creating a motor driver setup using pre-fabricated parts, I have set out to streamline
the design of the prototype. While functionally sound, the concept is too large to be im-
plemented into LEGO creations with ease. The Adafruit driver shield has to conform to
the size of the rather large Arduino Uno development board, other than that, it contains
a number of pin extensions and replications. To design my own board, I used the Adafruit
shield datasheet as a reference, simplifying its design and removing any components un-
used in this project. Instead of connecting to a microcontroller development board, I will
integrate an ESP12-F microcontroller directly onto the board, thus further reducing the
overall size of the motor driver. The first step was to create a breadboard concept of the
board, as seen in Figure 6.1. After testing and confirming its functionality, I began the
design process of a PCB (printed circuit board) that integrates the driver components.

6.1 Schematic of the Board
I used KiCAD 8.0 software to lay out a schematic of the board, which can be seen in Figure
6.2. The ESP connects to the 74HC595 shift register with four GPIO pins, another four
GPIO pins are connected to the channel enable pins of the two L293D drivers. The last two
GPIO pins are connected to two pins of the integrated 6P6C connector and will be used to
communicate with the EV3. The scheme also contains pin holes for every of the ESP12-
F’s pins, this has been done with the purpose of making the programming, debugging, or
adjusting the connections easier, should such circumstances arise. An AMS1117 voltage
regulator is in place to reduce the voltage of the battery down to 3.3 volts, powering the
ESP and shift register safely. Both motor drivers use capacitors for input filtering, the
voltage regulator’s output also connects to a capacitor to ensure its stability. The motors
and power source connect to the board via screw terminals. The schematic of the board
can be seen in Figure B.1.

6.2 Designing the PCB
Using the KiCAD PCB Editor, I created the design of the PCB. The components were
positioned with maximizing the use of space in mind. The design consists of two layers, with
all components being top-mounted. For capacitors, resistors, and the status LED I chose
to implement SMD footprints of size 1206 instead of designing the board for through-hole
components. This too was done in pursuit of maximizing size efficiency. Components that

32

Figure 6.1: Breadboard scheme of the second prototype iteration

utilize 9 volts are connected via 0.5mm wide tracks, while 3.3V components use 0.2mm
tracks.

To prevent signal interference and improve the heat dissipation capabilities of the PCB,
a copper ground plane is present on both layers of the board. To complement this, I have
adjusted the design in a way that minimizes the length and number of tracks on the bottom
layer of the PCB. This way, the bottom ground plane is as large and consistent as possible,
which further improves heat dissipation and eliminates ground plane islands, which need
to be joined to the rest of the plane with a track connection. A similar plane connected
to the output of the voltage regulator is present on the top layer, as energy transfer losses
in the regulator generate heat as well. If we consider the maximum power draw from
the microcontroller, shift register, and status LED, which are 170mA, 70mA, and 15mA
respectively, and a 9-volt power source, the power loss comes in at approximately

𝑃 = (𝑈𝐼𝑁 − 𝑈𝑂𝑈𝑇) * 𝐼𝑂𝑈𝑇 = (9𝑉 − 3.3𝑉) * 255𝑚𝐴 = 1.4535𝑊 .

The area of this plane is 67.83𝑚𝑚2. The intricacies of the design can be seen in Figure
6.2. The size of the PCB is 71.5 millimeters in length and 51 millimeters in width. While it
is slightly larger in length compared to the 69mm-long Adafruit driver shield, it is narrower
by two millimeters and is a much more compact device vertically, since it already contains
an integrated MCU, unlike the Adafruit product. A picture of the finished board with
soldered components is present in Figure 6.3.

33

Figure 6.2: Design of the PCB in KiCAD 8.0

6.3 Functionality of the Driver Board
The prototype uses the shift register to access a total of 8 input pins between the two L293D
drivers while using just four of the microcontroller’s GPIO pins. The functionality is carried
out via the Adafruit Motor Shield Library V1 library. This library also generates PWM
signals that are sent to the drivers’ output-enabling pins. The library is originally made for
the Arduino Uno and makes use of its three timer modules to generate square waves [17].
To make the library compatible with the ESP microcontroller, I slightly modified it, now
using the AnalogWrite() function to generate the PWM signals.

While the prototype from Subsection 5.2.2 used the I2C communication protocol, where
the EV3 acts as a master device and the Arduino as a slave, such setup is not possible in
this configuration, as the ESP-12F lacks the implementation of a slave mode. As such, it
is necessary for the microcontroller to communicate via the LEGO UART Sensor Protocol,
described in Subsection 4.4.3. Using this protocol is a more demanding task compared to
using the I2C protocol, as the MCU must send data to the EV3 to keep the connection
alive. Though the communication protocol states that the connected device must send data
in an interval of 1-100 milliseconds, as well as when prompted by the EV3 with a NACK
byte, I found out that the connection works without any issues even when data is only sent
after NACK prompt [28]. While it would be satisfactory to only send an arbitrary message
of a single byte without any meaningful payload, I programmed the MCU to send back
a message with a duty cycle of a single motor at a time, iterating over all motors in a loop.
This way, their state can be checked using the MotorStateCheck EV3-G Block, a more
detailed description of which can be found in Section 8.3. This can be useful in a situation
where the duty cycles of motors change rapidly and their current state might not be clear.

34

Figure 6.3: Motor Driver PCB with soldered components

6.4 Assembly of the Prototype
After soldering all the components onto the PCB, I used an ESP-Prog development board
manufactured by Espressif to flash the program onto the onboard ESP-12F microcontroller,
shown in Figure 6.4, as the MCU itself doesn’t contain a USB driver. The initial attempts
to program the MCU failed as the connection timed out. After analyzing the problem
and studying the datasheet of the NodeMCU ESP8266 development board1I used in my
breadboard prototype, I found out that this microcontroller does not include internal pull-
up and pull-down resistors for its pins. This way, the ESP could not be set into the boot
mode. To fix this, I soldered pull-up resistors to GPIO pins 2, RST, and ENABLE, and
a pull-down resistor to GPIO pin 15. A pull-up resistor is necessary on pin 0 as well,
however, it is already present on the board as pin 13 of the shift register is connected to
the ESP12’s pin 0 and requires a pull-up resistor.

To power the board and the motors, I connected a KAVAN 3-cell Lithium-Polymer
rechargeable battery, originally meant for use in remote control vehicles. At 850mAh and
9,4Wh, its capacity is lower compared to six AA batteries, however, there are several
advantages to this setup. Where the Power Functions Battery Box struggles to power four
motors concurrently and its performance largely depends on the quality of AA batteries, the
accumulator with its rating of 11.1 volts and 34 amperes can provide more than sufficient
power for all the components of the PCB. At 60mm x 30mm x 20.5mm and 67 grams, it
is also significantly more compact and lightweight compared to the battery box, measuring
85mm x 61.5mm x 30mm and weighing 131 grams including alkaline batteries. This allows
me to greatly reduce the overall footprint of the prototype.

1https://github.com/nodemcu/nodemcu-devkit-v1.0/blob/master/NODEMCU_DEVKIT_V1.0.PDF

35

https://github.com/nodemcu/nodemcu-devkit-v1.0/blob/master/NODEMCU_DEVKIT_V1.0.PDF

Figure 6.4: Programming the ESP12-F microcontroller using Espressif ESP-Prog

To protect the battery from overly discharging, I used the A0 ADC pin of the MCU to
measure voltage. The nominal voltage of a lithium-polymer battery cell is 3.7V, however,
the maximum voltage can be up to 4.2V, totaling at 12.6V for the 3-cell battery pack. To
make sure that the battery pack does not get damaged, I set the cut-off voltage of a cell
at 3.6V, or 10.8V for the whole pack. As the maximum input voltage rating of this pin
is 1V, I made use of a voltage divider. Using the formula to calculate the output voltage
of a voltage divider, which is 𝑉𝑂𝑈𝑇 = 𝑉𝐼𝑁 * 𝑅2

𝑅1+𝑅2
, I calculated the ideal resistance rating

ratio of the resistors, 120,000 ohm for resistor 𝑅1 and 10,000 ohm for resistor 𝑅2. In this
configuration, the output value of 1V is present with 13V at the input. If the voltage drops
below the set value, the microcontroller enters a deep sleep mode, which stops all motors.

The idle consumption of the prototype when no motors are running is 101mA. When
the voltage drop past the threshold is detected and the microcontroller enters deep sleep,
the consumption drops to 83mA. This value is still rather high, the reason being that the
status LED and the motor drivers are powered by the battery, independent of the ESP’s
state. However, the main function of the ESP entering the deep sleep mode is to stop all
the motors, notifying the user of the need to charge the battery pack. The ESP resumes
its standard operation after turning the prototype off and back on.

The need for the changes to the original schematic described in this section was dis-
covered during the assembly of the prototype, hence they had to be implemented by hand
using mostly THT (Through Hole Technology) components, apart from the pull-down re-
sistor on GPIO15, which is located next to the GND pin of the microcontroller, allowing
me to solder an SMD resistor between these two pins. Figure 6.5 displays the bottom side
of the board with the modifications applied.

6.5 Designing an Enclosure for the Prototype
I decided to create a 3D printed enclosure for all the components of my prototype. This
would allow me to create a custom design that has no limitations on the shape or the

36

Figure 6.5: Bottom side of the PCB with implemented corrections to the design

specifics of the design. Using Dassault Systèmes’ SOLIDWORKS 3D CAD design software,
I created a design of the enclosure. It consists of three parts, the bottom segment housing
the battery pack, the middle part housing the PCB and the switch for battery power,
and the top for connecting motors to the Power Functions connectors. The bottom part
includes ten LEGO Technic pin holes on both of its longer sides. It also features a cutout
for the battery pack’s charging cable and connector. The middle segment has cutouts for
the RJ12 connector and a rocker switch for battery power, as well as opening slats on the
side of motor drivers, allowing for their passive cooling as these are the components that
generate the most heat in this prototype. The top of the enclosure includes four openings
for the Power Functions connectors and two rows of 8 by 2 standard LEGO pins at its
edges. These, together with the pin holes at the bottom allow the enclosure to be securely
connected to LEGO models. The three segments are held together by four screws. I used
a cubic infill pattern for the inner parts of the design (Figure 6.6), where only 10% of the
volume is filled by the 3D printing filament, reducing the overall weight, as well as saving on
the material. The material of the filament used for this prototype is polylactic acid, or PLA
for short. Made out of corn starch, this bioplastic has a low environmental impact. The
design of the enclosure is shown in Figures 6.7, and 6.8. A picture of the printed enclosure
containing the driver components can be seen in Figure 6.9.

6.6 Implementation of the Microcontroller’s Code
The code behind the motor driver is built on the Arduino framework. The UART communi-
cation is implemented via the SoftwareSerial library, the reasoning behind this is elaborated
in Section 8.2. Until an ACK byte is received by the microntroller, the ESP repeatedly ini-
tiates the handshake procedure with the EV3. Firstly, a break condition is set where the
TX pin of the SoftwareSerial communication is pinned to LOW for 500 milliseconds. After

37

Figure 6.6: Cubic infill inside of the enclosure

this act is finished, the pin has to be set to HIGH for at least one millisecond. Afterwards,
the transmission of the handshake data begins.

As described in Subsection 4.4.3, the data is sent in a type - payload - checksum format.
TYPE, MODES, FORMAT and optionally SPEED messages are transmitted, ended by
an ACK byte (0x04). If the EV3 returns the acknowledgment, data exchange between
the two devices begins, setting the agreed-upon baud rate if provided. The ESP replies
to the NACK messages with duty cycles for the four motors, with one byte containing
a duty cycle of a single motor. This process is further described in Section 8.3. If the user
prefers, the microcontroller can be set to also send this data on its own in intervals ranging
from 1ms to 100ms. As per the LEGO UART Sensor Protocol, the EV3 sends a WRITE
message containing the length of the incoming data. After receiving this message, the ESP
determines the length of the data. After receiving a payload byte, the setMotor() function
is called. Here, the message is parsed and the state, polarity, and duty cycle of a specified
motor are set. The run() function of the Adafruit motor library to run or release the motor.
At the beginning of every data transition from the EV3, a message with a payload length
of one and an 0x11 byte as the payload is sent. The purpose of this message is unknown,
as it is not described in the protocol. This message would set the polarity of motor 1 to
forward and set the duty cycle to 1, but would keep the motor off. As such, this payload
sent by a user makes little sense, and thus I can omit this value from being interpreted
by the setMotor() function. In a case where 1000 milliseconds have passed since the last
NACK message, the ESP resets and initializes the handshake again.

Lastly, every two seconds, the battery voltage is measured via the ADC pin of the
ESP. The average of the measurements is calculated using a moving average algorithm with
a window of ten measurements. If the average drops below the threshold, the ESP enters
a deep sleep state. The moving average algorithm ensures that the ESP does not enter the
deep sleep state after a single voltage drop caused by the motors starting.

38

Figure 6.7: Design of the enclosure shown from the profile

Figure 6.8: Design of the enclosure shown from the side

6.7 Flaws of the Design
During the prototype testing, I discovered a major flaw in the design of the PCB. According
to the datasheet of the L293D motor driver, pin 16 acts as a power supply for the inner logic
of the driver, with acceptable voltage values of up to 7V [46]. However, due to my design
error, this pin is supplied in the same way as the power for the motors on pin 8, connected
directly to the power source without any voltage regulation. This means that during the
testing of the driver, up to 12.6 volts were supplied to the logic of the drivers. Although
these drivers remain functional after testing, this implementation is not acceptable, as
drivers can suffer damage at any time. To rectify this error, I decided to design a revised
version of the driver board. This board will also include missing components mentioned in
Section 6.4, such as pull-up resistors or a voltage divider for battery capacity measurements.

39

Figure 6.9: 3D printed enclosure for the motor driver

40

Chapter 7

Implementing a Corrected and
Improved Custom Motor Driver

Taking into account the mistakes made while designing the first version of the PCB, as
well as the experience gained during the design and implementation process, I set out to
improve the characteristics of the driver in its second iteration.

7.1 Design of the Improved Board
I modified the schematic of the board (Figure C.1) to reflect the lack of necessary compo-
nents in the first version. I added a voltage divider and pull-up resistors. Initially, I planned
to add a second voltage regulator to the board to provide a safe logic supply to the motor
drivers. However, adding another voltage level would make for a convoluted design. Addi-
tionally, adding several components to a complete design with tightly packed parts would
be largely difficult. For this reason, I chose to create a completely new design, while adher-
ing to the same principles as with the first board. To avoid the need for two logic voltage
levels on the board, I looked for a motor driver the logic of which is compatible with the
microcontroller used. I chose to use a Microchip TC4427COA MOSFET driver. While
this driver can only power and control a single motor, there are several advantages to using
this device instead of the L293D drivers. Utilizing TC4427 drivers, with 8 pins per chip in
a DIP/SOIC format, allows for two of these drivers to occupy a footprint similar to that
of a single L293D. This maintains spatial efficiency on the PCB layout. The peak output
current of TC4427 is greater at 1.5A compared to 1.2A of a single channel in the L293D
[37, 46]. Although the L293D utilizes two PWM input pins and an enable pin, the TC4427
does not use an enable pin. This greatly reduces the amount of I/0 needed for controlling
the drivers, however, the ESP-12E’s GPIO options would still not be sufficient, hence why
I decided to implement an ESP32-WROOM32E microcontroller instead. This MCU is sig-
nificantly more powerful and capable with its two-core processor and broader GPIO, while
only having a marginally larger footprint and a slightly higher price. Using this MCU with
plenty of GPIO pins made the 74HC595 shift register obsolete in this schematic. Removing
this component allows me to pursue the maximum efficiency of the design even further.

The board (Figure 7.1) now has a revised component placement. As the board will be
enclosed and not used on its own, I did not need to place the motor connecting terminals
evenly, instead, they are distributed in a way that minimizes space usage. Another resolved
issue lies within the voltage regulator. The area of its thermal relief pad is now almost

41

twice the size at 126.5𝑚𝑚2. The parameters of the pad were also incorrect. As seen in
Figure 6.2, the width of the spoke connecting to the pads is just 0.5mm, hindering the
ability to efficiently dissipate heat [40]. This is fixed in the second prototype with much
larger, 2mm-wide spokes. To be able to withstand the peak current, the routes leading
to the driver and the motors are 0.52mm wide. This value was calculated using KiCAD
Calculator Tools. The status LED is now connected to a GPIO pin of the microcontroller
instead of being constantly powered by the voltage regulator’s output. This gives me the
option to use the LED to indicate the state of the driver board instead of just signaling
whether the driver is powered or not.

The dimensions of this PCB are 69.00mm x 39.00mm. This makes the board 2.5mm
shorter and 12mm narrower, decreasing the area of the board by 26.2%. An image of the
completed revised PCB with component descriptions is shown in Figure 7.2

Figure 7.1: Design of the second driver board iteration in KiCAD 8.0

7.2 Program Modifications
To make the program compatible with the ESP32 microcontroller, modifications were nec-
essary. As the shift register is now not present on the driver board, I can omit the usage of
the Adafruit motor driver library and use my own classes and functions to control the mo-
tors. The AF_DCMotor class is replaced by the Motor class. Although the class’ methods
carry the same name, the implementation of the methods differs from the ESP-12F code
variant. While the pulse width modulation functionality was carried out by the (PinMode)
and AnalogWrite() functions when the ESP-12F was used, the ESP32 requires several
functions to initialize and generate PWM signals.

A PWM channel is initialized by the ledcSetup() function. I set the PWM frequency
to 1200Hz as it is the frequency used by the original Power Functions control devices [8],
although pulse width modulation for the motors works without any issues when using higher
frequencies, such as 5kHz as well. As per the communication protocol between the EV3
and the driver, I set the resolution of the PWM to four bits, allowing for 16 duty cycle
values. A pin is attached to the PWM channel in the ledcAttachPin() function. The

42

Figure 7.2: Revised PCB with soldered components

motor control code utilizes 8 of the 16 available PWM channels. These functions are called
by the constructor of the DC_Motor class in the Init_PWMX() functions, where X is the
number of the motor. To generate the PWM signals, I utilize the ledcWrite() function,
providing the PWM signals to one of the driver’s input pins, depending on the set polarity
of the motor.

Connecting the status LED to the GPIO of the microcontroller allowed me to broaden
its functionality. The LED operates in three modes, it flashes slowly while the driver is
trying to connect to the EV3, and it is lit with a PWM duty cycle of 20% during regular
operation. If the voltage reading function determines that the battery voltage is low, the
LED flashes rapidly for 10 seconds before the ESP enters deep sleep mode. The pulse width
modulation of the LED GPIO pin is bound to PWM channel 9.

7.3 Updated Case Design
For the design of the case for the second iteration of the driver (Figure 7.3), I chose to
stay faithful to the design decisions made for the first version of the driver. The layout of
the components remains identical, although the smaller driver PCB allowed me to reduce
the dimensions of the enclosure. The dimensions of the casing are now 94mm by 48mm by
57.75mm, reducing the width down by 25 percent from the original enclosure’s 64mm width.
This downsizing resulted in the side walls of the bottom part not being thick enough to
accommodate Technic pin holes. Consequently, I had to move these pin holes to the upper
part of the assembly, which now contains two rows of 6x2 LEGO pins and four instances of
two Technic pin holes, placed at the edges. Additionally, I added LEGO pins the to cutouts
for Power Functions connectors to better secure them in place.

43

The case now consists of two parts instead of three, as I merged the lower and middle
parts together to make the assembly easier. In addition, I revised the connection system of
the assembly. While the three parts of the first version of the case were held together by
four screws, I designed a system of rails for the second iteration, allowing the upper part
to slide onto the lower part and hold together solely by friction (Figure 7.4). A picture of
the assembled driver is shown in Figure 7.5.

Figure 7.3: Second iteration enclosure design, shown from profile

Figure 7.4: Upper part of the enclosure with visible rail system

7.4 Stress Testing the Driver
I used a laboratory-grade adjustable power source to perform driver tests. Firstly, I mea-
sured the current draw of the driver in idle and deep sleep states. During the idle state with
the status LED powered by a 100% duty cycle, the consumption was 66mA, while the driver
drew 8mA in the deep sleep mode. In comparison to the values of the previous iteration,

44

Figure 7.5: 3D printed enclosure for the second driver iteration

stated in Section 6.4, the idle state consumption decreased by nearly 35%, while the deep
sleep current draw dropped by more than 90%. These savings were achieved by connecting
the LED to the GPIO instead of being connected directly to the voltage regulator output,
being on even during deep sleep mode, and by replacing the outdated L293D drivers with
a more efficient solution.

The first problems arose during attempts to stall the motors to generate their peak
current. A TC4427 driver was destroyed by the stall current of a motor. This motor was
not an original LEGO product, rather it was a non-licensed copy of the Power Functions
L motor. Measurements showed that while the stall currents of the original PF M and
L motors were 1.03A and 1.53A respectively at 11.1 volts, the unlicensed L motor drew
up to 2.3A when stalled. This high current draw permanently damaged the driver, which
lacks internal overcurrent protection and only features reverse current protection of up to
0.5A [37]. As external overcurrent protection is rather complex for an implementation of
this caliber, it would be ideal to use drivers with internal protection. However, due to
time and local market constraints, I was unable to obtain such drivers. For these reasons,
I strongly advise to only use licensed LEGO Power Functions M and L motors, whose
current characteristics are within the driver specifications. The PF XL motor, with 1.8A
of stall current at 9 volts [15], should only be used in applications where a stall condition
should not occur.

7.5 Driver Implementation in LEGO Creations
To demonstrate the possibilities that my motor driver design opens up, I created two LEGO
models. The first model is a diorama of a wind farm with three turbines (Figure 7.6). My
driver allows for simple and convenient control of the motors, their direction, and speed.
Additionally, its compact size and included connection pins and holes allow the driver to
be integrated into builds with ease. As the driver only uses a single sensor port, up to 16
DC motors can be individually controlled by the EV3, which might prove useful in large
LEGO creations with numerous motorized parts.

45

Figure 7.6: Motorized LEGO wind farm diorama

The second model is a chassis of a vehicle with independent four-wheel drive (Figures 7.7
and 7.8). Steering is performed using an EV3 Medium motor with rotational encoders,
bringing the total number of motors used to five. As the EV3 only contains four motor
ports, this setup would not be possible with the use of EV3 motors while also utilizing
conventional steering. By using the driver, four additional EV3 motors can be added while
also retaining three free sensor ports, allowing for obstacle avoidance or other functionality.
Furthermore, the driver can provide more power to the motors than the EV3 could by
itself. This drivetrain configuration opens up possibilities for broadened functionality, such
as torque vectoring [54] or tank-like movement. As such, the motor driver could find its
use in LEGO models of construction vehicles, tanks, or other tracked vehicles.

46

Figure 7.7: Four wheel drive LEGO vehicle chassis, shown from the front

Figure 7.8: Four wheel drive LEGO vehicle chassis, shown from the rear

47

Chapter 8

Enhancing Communication
Capabilities via EV3-G Blocks

The LEGO group releasing a guide for creating custom blocks allowed third-party companies
and individuals to create a number of blocks that extend the functionality of the EV3,
whether it is new sensors or more advanced functionality within the brick itself. While most
sensors and their corresponding blocks utilized the I2C communication protocol to retain
compatibility with the NXT brick, few of them used the LEGO UART Sensor Protocol.
In addition to the incompatibility with older products, the usage of the protocol itself is
more complicated. Developers behind Dexter Industries created a block allowing general
I2C communication not reserved to a single sensor, however, I was not able to find such
blocks for communicating via UART. I set out to create these blocks since doing so would
close the functionality gap between the stock EV3 and the ev3dev software.

8.1 Creating Blocks for the LEGO UART Sensor Protocol
and Repairing Existing I2C Blocks

While creating the block mode for reading UART communication was a fairly straightfor-
ward process, setting up the communication for the block to read the bytes correctly was
not. I used the PBrickInputReadySI primitive, used in official LEGO sensor blocks, to
execute the message reading process in the EV3. The output of this primitive is of type
Single, which causes problems in terms of compatibility between the input and the output.
Even after numerous tweaks to the setup and the handshake data, I was unable to receive
more than a single byte in the EV3 in a data message. Even then, displaying the data
proved to be problematic.

The number shown was often in the form of a 2’s complement, or a single byte was
shown as a 16-bit number made up of the sent byte and the Data Message byte of the
protocol [18]. This was partially fixed by sending two bytes of data payload instead of
a single byte, which stabilized the output. This solution too, however, is not without
issues. The number 191 (0xBF) and numbers 247 to 254 (0xF7 to 0xFE) are not accepted
by the EV3, which stops sending the NACK (0x02) byte, prompting the connected device
to reset and initialize the handshake again. Moreover, the value 255 (0xFF) is displayed as
-56 (0xFFC8), once again including the Data Message byte in the value [18]. It should be
noted that when initially sending a “compatible number” and incrementing or decrementing

48

to any of these problematic bytes, they display correctly. The reason behind these problems
remains unknown to me.

Although a “grey blob” for writing UART data was not present in the Block Developer
Kit, I found it used in a single instance, inside of a reset mode of the Gyro sensor block. Us-
ing this, it was possible to send a single byte of data, though sending one data byte at a time
is largely inefficient. To send multiple bytes of data at once, I took the approach Dexter
Industries did. I created an array of constants and used LabView’s ReplaceArraySubset
function to replace these constants with a variable from the block.

This is where I discovered an issue, when numbers 128 and larger would be capped off
and sent as 0x7F, or 127 in decimal. After searching for more information, I found this
to be a known issue also present in Dexter’s Industries’ I2C block1. Some believe it to be
an issue with the EV3 interpreting bytes as signed integers and presented a workaround
by subtracting 256 from numbers larger than 127, making them into a negative number,
therefore conforming to the signed data type. This, however, posed an another issue where
the number 128 (0x80) could not be interpreted correctly. I refused this interpretation of
the problem since a single byte of data in a variable can be sent with no issues and so
can an array of constants, therefore I believed the issue to lie within the act of replacing
constants of the array with a variable. I tried replacing the ReplaceArraySubset function
with InitializeArray and BuildArray functions in an attempt to avoid replacing array
elements, but to no avail as the EV3 was unable to run this code and threw an error. After
analyzing the code of Dexter Industries’, HiTechnic’s, and my blocks, I noticed that while
I used the UInt32 data type for variables due to my inspiration by Dexter’s code structure,
HiTechnic used the Byte type in their input variables2. Switching to this data type did
indeed solve the issue, and values 0 to 255 are sent as unsigned bytes when using UART.
A representation of the UART block is present in Figure 8.1. The functions of this block
are as follows:

• UartRead - Reads a single byte from a connected UART device

• UartWrite - Writes a single byte to a connected UART device

• UartWrite8Bytes - Writes 8 bytes of data to a connected UART device

Figure 8.1: UART Control block in the EV3 programming interface

This success with UART blocks motivated me to try to fix Dexter Industries’ I2C
functionality. As the PBrickInputSetupI2C primitive requires the address of the device

1https://forum.dexterindustries.com/t/problem-if-i-send-a-value-greater-than-127-using-
the-i2c-block/748

2https://modernroboticsinc.com/download/hitechnic-ev3-i2c-blocks/

49

https://forum.dexterindustries.com/t/problem-if-i-send-a-value-greater-than-127-using-the-i2c-block/748
https://forum.dexterindustries.com/t/problem-if-i-send-a-value-greater-than-127-using-the-i2c-block/748
https://modernroboticsinc.com/download/hitechnic-ev3-i2c-blocks/

to be sent along with the data, the act of creating an array and replacing its elements
is necessary even for sending a single byte. I modified the input variable type in the
WriteI2C_1B and WriteI2C_8B block modes. The data type change worked here as
well, and transmission of bytes with values higher than 127 via the I2C protocol can now
be performed without any issues.

8.2 UART Communication Speed Testing
After successfully creating UART communication blocks, I set out to find the maximal
communication speed between the two devices. I found the maximum baud rate of the
communication to be 201,000. This rate is likely limited by the ESP microcontroller rather
than the EV3 since the Hardware Developer Kit states that the EV3 can handle up to
460kbit/s on ports 1 and 2 and up to 230kbit/s on ports 3 and 4 [27]. The ESP-12F MCU
code utilizes the SoftwareSerial library instead of the standard Serial functions. This is due
to the fact that the handshake protocol requires the TX pin to be set to low for 500 ms before
initiating the data sequence and the Serial library does not allow this to be successfully
implemented [18, 29]. The SoftwareSerial UART emulation library allows for more control
over the GPIO of the microcontroller at a cost of a limited rate of communication speed.
Although speeds of up to 201,000 baud are attainable, the microcontroller does not react
to NACK bytes fairly often, as it is likely at its limit of communication speed. Lowering
the speed to 200,000 baud yields a more stable connection, however, only rates of 196,000
baud and lower are completely stable.

Although the EV3 can communicate at high baud rates, the total communication speed
is rather limited. When using the PBrickInputWrite primitive of the EV3, only a single
byte can be sent in the span of a millisecond. If the write time of this byte is shorter, the
pin is held at HIGH for the rest of the time. The messages sent from the EV3 also contain
information and checksum bytes, making a message with a payload of 8 bytes 10 bytes long.
A NACK byte is sent at intervals of 100 milliseconds. The maximum transfer rate is 1,000
bytes per second, or 8 kbit/s, and as such, the transfer speed of payload data is

(1000−𝑁𝑛) * 𝑁𝑝

𝑁𝑝+2 = 792 B/s = 6.336 kbit/s

where 𝑁𝑛 is the number of NACK bytes transmitted in a second and 𝑁𝑝 is the maximum
length of a payload in a single message, with the maximum value being 8 bytes. As such,
communication rates higher than 57600 yield no actual advantages.

8.3 Blocks for Controlling the Motor Driver
Another task was to utilize previous blocks to control the motor driver. Using a similar
approach as in section 8.1, the block uses import parameters of motor number, its power
state, polarity, and duty cycle to construct a message. This functionality is implemented
in both the I2C and UART protocols. To mimic the functionality of the Micropython
functions in Subsection 5.2.5, I created block modes that send messages setting all four
motors globally (Figure 8.2), again for both the I2C and UART communication protocols.

The last of these modes is used to read feedback data from the motor driver when using
UART. Due to the reasons elaborated in Section 8.1, I was unable to send multiple bytes
of data, each containing the motor duty cycle. To send duty cycle data of every motor and
utilize just a single byte of data at a time, I made use of multiplexing. The ESP iterates

50

Figure 8.2: Motor Control block in the EV3 programming interface

over the motors indefinitely, transmitting the duty cycle of a single motor in each separate
message. To identify this data, I made use of the communication protocol of Subsection
5.2.4. The first four bits of the data once again contain the duty cycle, though here I have
opted out of the State and Polarity information, now deemed unnecessary. Their place of
bits 5 and 6 is now utilized by the motor number, thus reducing the maximum transmitted
value to 63 (0x3F), avoiding the problematic high byte values. The block implementation
checks the value, and if it is within the desired range, the duty cycle value is written to the
appropriate output. As the value inside the output is kept until it is overwritten, the act of
multiplexing does not reset the values, and the output is consistent when displayed. The
implementation of this block is shown below in Figure 8.3. The list of functions within the
Motor Control block is as follows:

• MotorControlUART - Controls a single motor and its state, polarity and duty
cycle via the LEGO UART Sensor Protocol

• RunAllMotorsUART - Sends four bytes of data, setting the same state, polarity
and duty cycle of all four motors at once

• StopAllMotorsUART - Sends four bytes of data that immediately stop all motors

• UARTReadMotorState - Reads the messages coming from the driver, setting the
value of the four outputs depending on the message payload by using multiplexing

• MotorControlI2C - Controls a single motor and its state, polarity and duty cycle
via the I2C protocol, sent to the specified I2C slave address

• RunAllMotorsI2C - Sends four bytes of data, setting the same state, polarity and
duty cycle of all four motors at once using the I2C protocol

• StopAllMotorsI2C - Sends four bytes of data that immediately stop all motors via
the I2C protocol

51

Figure 8.3: Implementation of the Motor Duty Cycle mode of the MotorControl Block

8.4 Summary of Contributions to the Code Block Interface
These two blocks, together with the revised Dexter Industries I2C block, broaden the
possibilities of communication between the Mindstorms brick and the devices attached to
it. This implementation allows users to carry out both general communication and targeted
data exchange based on the motor control communication protocol. These functionalities
are accessible through the I2C and LEGO UART Sensor Protocol and bring the abilities of
the stock EV3 software closer to enhanced third-party software solutions, such as ev3dev
or leJOS, while retaining the simplicity and ease of use of coding blocks.

52

Chapter 9

Conclusion

The goal of this thesis was to propose and implement solutions that would enhance the
communication capabilities between the EV3 brick and officially incompatible LEGO mo-
torized pieces. After researching the history of both the programmable bricks and motorized
parts, as well as possible areas of improvement, I decided to create a prototype of a mo-
tor controller using an Arduino Uno MCU paired with a TI L293D motor driver shield.
This prototype communicates with the EV3 via the I2C protocol and can power up to
4 motors independently, using only a single EV3 port. I have created a communication
protocol whose messages contain the information to set the state, polarity, and duty cycle
for all motors, as well as functions in the Micropython language to construct byte messages
according to the protocol.

This prototype was followed by an improved and streamlined iteration. This time, I de-
signed a bespoke printed circuit board that directly integrates an ESP-12F microcontroller
and an RJ12 communication port within a simplified and more efficient design. Instead of
an alkaline battery box, this version is powered by a 3-cell lithium/polymer rechargeable
battery, providing significantly more power to the motors. The design is complemented by
a custom 3D printed enclosure with pins and pin holes compatible with standard LEGO
and LEGO Technic bricks, allowing it to be securely connected to LEGO creations. This
implementation was followed by a next iteration that dealt with issues present in the pre-
vious version while being more efficient, compact, and providing more power to connected
motors thanks to a more capable ESP32 microcontroller and more efficient TC4427COA
driver chips.

In addition, I created two custom LEGO models that demonstrate the functionality of
my implementation. The first creation is a diorama that showcases the ability of the EV3
to independently control a large number of motors when using the motor driver, with the
motor driver being able to be integrated into these models. The second creation is vehicle
with four-wheel drive that demonstrates the broadened capabilities that the driver provides
in mobile LEGO creations.

Lastly, I developed EV3-G blocks for general communication with the EV3 using the
LEGO UART Sensor Protocol, as well as blocks for controlling the motors connected to the
drivers via both I2C and UART protocols and reading their current state while using the
UART protocol, utilizing the intricacies of the UART Sensor Protocol. Consequently, I fixed
a long-existing issue within the I2C communication block created by Dexter Industries.

I have managed to successfully implement the prototype and test its functionality. I have
used LEGO Power Function motors in the implementation due to the greater availability
of motors and extension cables compared to the 9V line, though any PWM-controlled

53

direct-current motor is compatible with my motor driver. This prototype can find uses in
various LEGO creations, notably vehicles, where it unlocks the capabilities of independently
controlled four-wheel drive, such as torque vectoring or tank-like movement. Other than
that, it might prove useful in large-scale motorized LEGO creations and dioramas, as this
way, the EV3 can independently control up to sixteen DC motors. The result of my work can
be helpful for hobbyists creating custom LEGO creations or young enthusiasts of robotics,
since the motor driver is controlled in the beginner-friendly coding block interface.

Future work could bring improvements in terms of performance and safety of the driver,
by swapping the currently used TC4427 drivers for more modern and capable drivers that
contain internal overcurrent protection. Additionally, a version of the driver for the EV3’s
successor, the Robot Inventor could be developed, as it features similar interfaces to the
EV3. This improved version could also connect to the hub wirelessly via Bluetooth, further
expanding the capabilities of the driver and eliminating the limits of wired connections.
Additionally, a simple physical interface could be added to the driver that would allow the
connected motors to be controlled directly from the driver brick.

54

Bibliography

[1] The Brickipedia community. 4.5V [online]. 2019 [cit. 2023-11-17]. Available at:
https://en.brickimedia.org/wiki/4.5V.

[2] Alphin, T. Guide to LEGO ‘Powered Up’ System [online]. 2022 [cit. 2023-10-07].
Available at: https://brickarchitect.com/powered-up/.

[3] Barrowman, T., Muir, M., Revere, R. and Cremer, S. Technic Control I
Resource Guide. 1st ed. LEGO Group, 1991. ISBN 0-914831-74-7.

[4] Beneke, R. A brief Lego® Motor History [online]. 2004 [cit. 2023-11-17]. Available at:
https://horst-lehner.mausnet.de/lego/ben/9v_12v.html.

[5] Blakbird. 8094 Control Center [online]. 2008 [cit. 2023-10-28]. Available at:
http://www.technicopedia.com/8094.html.

[6] Blakbird. 8479 Barcode Multi-Set [online]. 2015 [cit. 2023-11-19]. Available at:
http://www.technicopedia.com/8479.html.

[7] Fernandez Vicente, M., Calle, W., Ferrandiz, S. and Conejero, A. Effect of
Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D
Printing and Additive Manufacturing. 2016, vol. 3, no. 3, p. 183–192, [cit. 2024-05-06].
DOI: 10.1089/3dp.2015.0036. Available at: https://doi.org/10.1089/3dp.2015.0036.

[8] Fučík, J. Připojení Lego® Power Functions™ [online]. 2019 [cit. 2023-11-17].
Available at: http://www.fucik.name/lego/com/.

[9] H8/3297 Series Hardware Manual. 3rd ed. Semiconductor and IC Div. Hitachi, Ltd.,
1997 [cit. 2023-09-27]. Available at:
https://pdf1.alldatasheet.com/datasheet-pdf/view/249948/RENESAS/H8/3292.html.

[10] Hocker, M. A History of LEGO Education, Part 1: Strong Foundations [online].
2020 [cit. 2024-01-12]. Available at: https://www.brothers-brick.com/2020/01/14/a-
history-of-lego-education-part-1-strong-foundations-feature/.

[11] Hocker, M. A History of LEGO Education, Part 2: Path to Mindstorms [online].
2020 [cit. 2023-10-17]. Available at: https://www.brothers-brick.com/2020/01/31/a-
history-of-lego-education-part-2-path-to-mindstorms-feature/.

[12] Hocker, M. A History of LEGO Education, Part 3: Mindstorms over matter
[online]. 2020 [cit. 2023-10-17]. Available at: https://www.brothers-brick.com/2020/
02/03/a-history-of-lego-education-part-3-mindstorms-over-matter-feature/.

55

https://en.brickimedia.org/wiki/4.5V
https://brickarchitect.com/powered-up/
https://horst-lehner.mausnet.de/lego/ben/9v_12v.html
http://www.technicopedia.com/8094.html
http://www.technicopedia.com/8479.html
https://doi.org/10.1089/3dp.2015.0036
http://www.fucik.name/lego/com/
https://pdf1.alldatasheet.com/datasheet-pdf/view/249948/RENESAS/H8/3292.html
https://www.brothers-brick.com/2020/01/14/a-history-of-lego-education-part-1-strong-foundations-feature/
https://www.brothers-brick.com/2020/01/14/a-history-of-lego-education-part-1-strong-foundations-feature/
https://www.brothers-brick.com/2020/01/31/a-history-of-lego-education-part-2-path-to-mindstorms-feature/
https://www.brothers-brick.com/2020/01/31/a-history-of-lego-education-part-2-path-to-mindstorms-feature/
https://www.brothers-brick.com/2020/02/03/a-history-of-lego-education-part-3-mindstorms-over-matter-feature/
https://www.brothers-brick.com/2020/02/03/a-history-of-lego-education-part-3-mindstorms-over-matter-feature/

[13] Hurbain, P. The Powered Up connector [online]. 2019 [cit. 2023-11-15]. Available at:
https://www.philohome.com/wedo2reverse/connect.htm.

[14] Hurbain, P. The Powered Up serial link protocol [online]. 2019 [cit. 2023-11-15].
Available at: https://www.philohome.com/wedo2reverse/protocol.htm.

[15] Hurbain, P. LEGO® 9V Technic Motors compared characteristics [online]. 2020 [cit.
2023-11-16]. Available at: https://www.philohome.com/motors/motorcomp.htm.

[16] Hurbain, P. NXT® motor internals [online]. 2020 [cit. 2023-09-28]. Available at:
https://www.philohome.com/nxtmotor/nxtmotor.htm.

[17] Koehrsen, M. Understanding the Adafruit Motor Shield Library [online]. May 2009
[cit. 2024-04-07]. Available at: https://web.archive.org/web/20100724182244/https:
//docs.google.com/View?docid=dgwf6cmm_2fznx7qgr.

[18] Köhler, S. UART Sensor Protocol [online]. February 2015 [cit. 2024-04-08]. Available
at: https://sourceforge.net/p/lejos/wiki/UART%20Sensor%20Protocol/.

[19] Lechner, D. How to use Power Functions with Mindstorms EV3? [online].
December 2015 [cit. 2024-01-12]. Available at:
https://bricks.stackexchange.com/a/7051.

[20] Lechner, D. LEGO Powered Up UART Protocol [online]. July 2023 [cit. 2024-04-08].
Available at:
https://github.com/pybricks/technical-info/blob/master/uart-protocol.md.

[21] LEGO Interfacekabel zu den Computern Commodore 64 und 128. The LEGO Group,
1987 [cit. 2023-10-25]. Available at:
https://archive.org/details/lego_c64_manual_basic_comal/page/n17/mode/2up.

[22] LEGO MindStorms Scout Software Developers Kit User Guide & Reference. The
LEGO Group, 1999.

[23] MindStorms Robotics Discovery Set Instructopedia [online]. The LEGO Group, 1999
[cit. 2023-10-23]. Available at:
https://www.lego.com/cdn/product-assets/product.bi.core.pdf/4129403.pdf.

[24] LEGO® Education WeDo™ Teacher’s Guide [online]. 2009 [cit. 2023-11-15]. Available
at: https://le-www-live-s.legocdn.com/sc/media/files/user-guides/wedo/wedo-
user-guide-80b6e879549d1be595355dc8b6dee075.pdf?la=en-us.

[25] EV3 Block Developer Kit [online]. LEGO Group, 2013 [cit. 2024-04-10]. Available at:
https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/
developer-kits/.

[26] LEGO MINDSTORMS EV3 Firmware Developer Kit [online]. The LEGO Group,
2013 [cit. 2023-09-29]. Available at: https://assets.education.lego.com/v3/assets/
blt293eea581807678a/blt469be1e11ad37696/5f880384f71916144453a49f/lego-
mindstorms-ev3-firmware-developer-kit.pdf?locale=en-us.

[27] LEGO MINDSTORMS EV3 Hardware Developer Kit [online]. The LEGO Group,
2013 [cit. 2023-09-28]. Available at: https://education.lego.com/en-us/product-
resources/mindstorms-ev3/downloads/developer-kits/.

56

https://www.philohome.com/wedo2reverse/connect.htm
https://www.philohome.com/wedo2reverse/protocol.htm
https://www.philohome.com/motors/motorcomp.htm
https://www.philohome.com/nxtmotor/nxtmotor.htm
https://web.archive.org/web/20100724182244/https://docs.google.com/View?docid=dgwf6cmm_2fznx7qgr
https://web.archive.org/web/20100724182244/https://docs.google.com/View?docid=dgwf6cmm_2fznx7qgr
https://sourceforge.net/p/lejos/wiki/UART%20Sensor%20Protocol/
https://bricks.stackexchange.com/a/7051
https://github.com/pybricks/technical-info/blob/master/uart-protocol.md
https://archive.org/details/lego_c64_manual_basic_comal/page/n17/mode/2up
https://www.lego.com/cdn/product-assets/product.bi.core.pdf/4129403.pdf
https://le-www-live-s.legocdn.com/sc/media/files/user-guides/wedo/wedo-user-guide-80b6e879549d1be595355dc8b6dee075.pdf?la=en-us
https://le-www-live-s.legocdn.com/sc/media/files/user-guides/wedo/wedo-user-guide-80b6e879549d1be595355dc8b6dee075.pdf?la=en-us
https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/developer-kits/
https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/developer-kits/
https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt469be1e11ad37696/5f880384f71916144453a49f/lego-mindstorms-ev3-firmware-developer-kit.pdf?locale=en-us
https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt469be1e11ad37696/5f880384f71916144453a49f/lego-mindstorms-ev3-firmware-developer-kit.pdf?locale=en-us
https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt469be1e11ad37696/5f880384f71916144453a49f/lego-mindstorms-ev3-firmware-developer-kit.pdf?locale=en-us
https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/developer-kits/
https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/developer-kits/

[28] LMS 2012 UART Device Communication Protocol [online]. LEGO Group, 2013 [cit.
2024-04-08]. Available at:
http://ev3.fantastic.computer/doxygen-all/_uart_protocol.html.

[29] LMS 2012 UART Device Controller [online]. LEGO Group, 2013 [cit. 2024-04-08].
Available at: http://ev3.fantastic.computer/doxygen-all/_uart_driver.html.

[30] LEGO® Education SPIKE™ Prime Technical Specifications [online]. 2019 [cit.
2023-10-05]. Available at: https://education.lego.com/en-us/product-resources/
spike-prime/downloads/technical-specifications/.

[31] LEGO® Robot Inventor Product Page [online]. 2020 [cit. 2023-10-05]. Available at:
https://www.lego.com/en-us/product/robot-inventor-51515.

[32] LEGO® Education SPIKE™ Essential Technical Specifications [online]. 2021 [cit.
2023-10-06]. Available at: https://education.lego.com/en-us/product-resources/
45345-spike-essential-resource-page/downloads/technical-specifications/.

[33] Lgauge, T. LEGO Interface A [online]. 2011 [cit. 2023-10-24]. Available at:
https://lgauge.com/article.php?article=technic/articles/LEGOInterfaceA.

[34] Lgauge, T. LEGO Interface B [online]. 2011 [cit. 2023-10-24]. Available at:
https://lgauge.com/article.php?article=technic/articles/LEGOInterfaceB.

[35] Lukazi. LEGO’s first programmable product [online]. 2014 [cit. 2023-10-24]. Available
at:
http://lukazi.blogspot.com/2014/07/lego-legos-first-programmable-product.html.

[36] Martin, F., Mikhak, B., Resnick, M., Silverman, B. and Berg, R. To
mindstorms and beyond: Evolution of a construction kit for magical machines. 2000
[cit. 2023-10-15]. Available at:
https://www.cs.uml.edu/~fredm/papers/magical-machines.pdf.

[37] TC4426/TC4427/TC4428 1.5A Dual High-Speed Power MOSFET Drivers [online].
Microchip, 2014 [cit. 2024-04-27]. Available at:
https://ww1.microchip.com/downloads/en/DeviceDoc/20001422G.pdf.

[38] Mindell, D., Beland, C., Chan, W., Clarke, D., Park, R. et al. LEGO
Mindstorms The Structure of an Engineering (R)evolution. 2000 [cit. 2023-10-17].
Available at: https://web.archive.org/web/20221017071530/http:
//web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf.

[39] I2C-bus specification and user manual [online]. NXP, 2021 [cit. 2023-12-11]. Available
at: https://www.nxp.com/docs/en/user-guide/UM10204.pdf.

[40] Rangu, M. and Negrea, C. A demystifying study of thermal relief pads: Tradeoff
between manufacturing and cooling. In: 33rd International Spring Seminar on
Electronics Technology, ISSE 2010. 2010, p. 390–395 [cit. 2024-05-06]. DOI:
10.1109/ISSE.2010.5547325.

[41] Rinderknecht, M. Tutorial for Programming the LEGO® MINDSTORMS™ NXT
[online]. 2007 [cit. 2023-09-27]. Available at:
https://web.archive.org/web/20140124233424/http://legoengineering.com/wp-
content/uploads/2013/06/download-tutorial-pdf-2.4MB.pdf.

57

http://ev3.fantastic.computer/doxygen-all/_uart_protocol.html
http://ev3.fantastic.computer/doxygen-all/_uart_driver.html
https://education.lego.com/en-us/product-resources/spike-prime/downloads/technical-specifications/
https://education.lego.com/en-us/product-resources/spike-prime/downloads/technical-specifications/
https://www.lego.com/en-us/product/robot-inventor-51515
https://education.lego.com/en-us/product-resources/45345-spike-essential-resource-page/downloads/technical-specifications/
https://education.lego.com/en-us/product-resources/45345-spike-essential-resource-page/downloads/technical-specifications/
https://lgauge.com/article.php?article=technic/articles/LEGOInterfaceA
https://lgauge.com/article.php?article=technic/articles/LEGOInterfaceB
http://lukazi.blogspot.com/2014/07/lego-legos-first-programmable-product.html
https://www.cs.uml.edu/~fredm/papers/magical-machines.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/20001422G.pdf
https://web.archive.org/web/20221017071530/http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
https://web.archive.org/web/20221017071530/http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://web.archive.org/web/20140124233424/http://legoengineering.com/wp-content/uploads/2013/06/download-tutorial-pdf-2.4MB.pdf
https://web.archive.org/web/20140124233424/http://legoengineering.com/wp-content/uploads/2013/06/download-tutorial-pdf-2.4MB.pdf

[42] Sargent, J. R. The Programmable LEGO Brick: Ubiquitous Computing for Kids.
1995. [cit. 2023-10-15]. Master’s thesis. Massachusetts Institute of Technology.
Available at:
https://dspace.mit.edu/bitstream/handle/1721.1/34694/32601552-MIT.pdf?sequence=
2&isAllowed=y.

[43] Staple, D. The Lego RCX, Inside and Out [online]. 2010 [cit. 2023-09-27]. Available
at: https://orionrobots.co.uk/2010/01/19/the-lego-rcx-inside-and-out.html.

[44] KeyStone Architecture UART User Guide [online]. Texas Instruments, 2010 [cit.
2023-12-14]. Available at: https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf?ts=
1702576347289&ref_url=https%253A%252F%252Fwww.google.com%252F.

[45] AM1808 ARM Microprocessor [online]. Texas Instruments, 2014 [cit. 2024-04-11].
Available at: https://www.ti.com/lit/ds/symlink/am1808.pdf?ts=1712817112677.

[46] L293x Quadruple Half-H Drivers datasheet [online]. Texas Instruments, 2016 [cit.
2023-12-10]. Available at: https://www.ti.com/product/L293D#tech-docs.

[47] Connecting the EV3 and the Arduino [online]. The Dexter Industries Authors, 2014
[cit. 2023-12-10]. Available at:
https://www.dexterindustries.com/howto/connecting-ev3-arduino/.

[48] LeJOS EV3 API Documentation [online]. The leJOS API Authors, 2015 [cit.
2023-12-13]. Available at: https://lejos.sourceforge.io/ev3/docs/.

[49] PyBricks 2.0 Documentation [online]. The Pybricks Authors, 2020 [cit. 2023-12-11].
Available at: https://docs.pybricks.com/en/v2.0/index.html.

[50] TobyMac. Classic Review: 8485-1 - Control Centre II [online]. 2020 [cit. 2023-10-25].
Available at:
https://rebrickable.com/blog/272/classic-review-8485-1-control-centre-ii/.

[51] Valk, L. Tutorial: Understanding the difference between NXT set versions [online].
2012 [cit. 2023-09-27]. Available at:
http://robotsquare.com/2012/02/18/understanding-nxt-versions/.

[52] Valk, L. EV3 and NXT: Difference and Compatibility [online]. 2013 [cit. 2023-09-29].
Available at: http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/.

[53] Wood, C. Lego® RCX presentation [online]. 2013 [cit. 2023-12-12]. Available at:
https://clark.cementhorizon.com/RCX-web-page-2013-09-29.html.

[54] Zhai, L., Sun, T. and Wang, J. Electronic Stability Control Based on Motor
Driving and Braking Torque Distribution for a Four In-Wheel Motor Drive Electric
Vehicle. IEEE Transactions on Vehicular Technology. 2016, vol. 65, no. 6,
p. 4726–4739, [cit. 2024-05-06]. DOI: 10.1109/TVT.2016.2526663.

58

https://dspace.mit.edu/bitstream/handle/1721.1/34694/32601552-MIT.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/34694/32601552-MIT.pdf?sequence=2&isAllowed=y
https://orionrobots.co.uk/2010/01/19/the-lego-rcx-inside-and-out.html
https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf?ts=1702576347289&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf?ts=1702576347289&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/am1808.pdf?ts=1712817112677
https://www.ti.com/product/L293D#tech-docs
https://www.dexterindustries.com/howto/connecting-ev3-arduino/
https://lejos.sourceforge.io/ev3/docs/
https://docs.pybricks.com/en/v2.0/index.html
https://rebrickable.com/blog/272/classic-review-8485-1-control-centre-ii/
http://robotsquare.com/2012/02/18/understanding-nxt-versions/
http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/
https://clark.cementhorizon.com/RCX-web-page-2013-09-29.html

Appendix A

Contents of the Included Storage
Media

/
Tex_Src.zip.............Source files for the bachelor’s thesis text.
EV3-G_Blocks

Thesis_Block_Src Source files for UART and Motor Control blocks.
Thesis_Block.ev3b...Compiled UART and Motor Control block file.
Dexter_Mod_Src.......Source files for the Dexter Industries block.
Dexter_Mod.ev3b Compiled modified Dexter Industried blocks.

Driver_Arduino
Uno_Driver.ino.......Arduino Motor Control program.
EV3_Driver.py........EV3 Micropython code with a MotorDriver class

Driver_V0.1
Driver_Code

ESP12_Driver.ino . Code of the Driver v0.1 MCU
ESP12_Driver.h .. Header file for ESP12_Driver.ino
AF_Motor.cpp......Modified Adafruit library for motor control
AF_Motor.hHeader file for AF_Motor.cpp

Archives
V0.1_Proj.zipKiCAD PCB project files.
V0.1_GBR.zipGerber files for PCB manufacturing.
V0.1_Design.zip . Enclosure design files.
V0.1_Print.zip .. Files for 3D Printing in .3MF format.

Driver_V0.2
Driver_Code

ESP32_Driver.ino . Code of the Driver v0.2 MCU
ESP32_Driver.h .. Header file for ESP32_Driver.ino
ESP_Motor.cpp.....Power Functions motor control library
ESP_Motor.hHeader file for ESP_Motor.cpp

Archives
V0.2_Proj.zipKiCAD PCB project files.
V0.2_GBR.zipGerber files for PCB manufacturing.
V0.2_Design.zip . Enclosure design files.
V0.2_Print.zip .. Files for 3D Printing in .3MF format.

59

Appendix B

ESP Motor Driver V0.1 Schematic

1
2

3
4

5

1
2

3
4

5

ABC

ABC

D
ate:

K
iC

ad
E

.D
.A

.
8.0.1

R
ev:

S
ize:

U
ser

Id:
1/1

T
itle:

E
S

P
M

o
to

r
D

river
V

0.1

F
ile:

driver.kicad_sch
S

heet:
/

D
an

iel
þ

ÿ�B
�l�a�a�k�o

+
9V

12
M

3
S

crew
_T

erm
inal

+
3.3V

12
M

4
S

crew
_T

erm
inal

12
M

1
S

crew
_T

erm
inal

G
N

D
+

9V

C
4

100n
C

5
100n

+
3.3V

+
9V

G
N

D

C
6

100n

GND
1

V
O

2
V

I
3

U
5

A
M

S
1117-3.3

G
N

D

C
1

100n

C
3

0.1n
C

2
0.1n

Q
B

1

~
{S

R
C

LR
}

10
S

R
C

LK
11

R
C

LK
12

~
{O

E
}

13

S
E

R
14

Q
A

15

VCC
16

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

GND
8

Q
H

'
9

IC
2

74H
C

595

C
7

22u

+
9V

E
N

1,2
1

3A
10

3Y
11

GND
12

GND
13

4Y
14

4A
15

VCC1
16

1A
2

1Y
3

GND
4

GND
5

2Y
6

2A
7

VCC2
8

E
N

3,4
9

IC
4

L293D

R
1

10K

+
9V

G
N

D
G

N
D

E
N

1,2
1

3A
10

3Y
11

GND
12

GND
13

4Y
14

4A
15

VCC1
16

1A
2

1Y
3

GND
4

GND
5

2Y
6

2A
7

VCC2
8

E
N

3,4
9

IC
3

L293D

G
N

D
G

N
D

12
M

2
S

crew
_T

erm
inal

G
N

D

123456

J9
P

ins_9_14

G
N

D

+
3.3V

~
{R

S
T

}
1

M
IS

O
10

G
P

IO
9

11

G
P

IO
10

12

M
O

S
I

13

S
C

LK
14

GND
15

G
P

IO
15

16

G
P

IO
2

17

G
P

IO
0

18

G
P

IO
4

19
A

D
C

2

G
P

IO
5

20

G
P

IO
3/R

X
D

21

G
P

IO
1/T

X
D

22

E
N

3

G
P

IO
16

4

G
P

IO
14

5

G
P

IO
12

6

G
P

IO
13

7

VCC
8

C
S

0
9

IC
1

E
S

P
-12E

+
3.3V

G
N

D
+

3.3V

+
3.3V

G
N

D

1 2 3 4 5 6 7 8

J7P
ins_1_8

+
9V

1 2

B
A

T
S

crew
_T

erm
inal

D
1

LE
D

G
N

D

R
2

220R

1 2 3 4 5 6 7 8

J8P
ins_15_22

G
N

D

123456

J6

6P
6C

+
3.3V

R
4

82K

+
3.3V

R
3

82K+
3.3V

G
N

D

M
4

S
crew

_T
erm

inal

12

M
3

S
crew

_T
erm

inal

12

C
1

100n

C
3

0.1n

+
9V

IC
2

74H
C

595

Q
B

1

~
{S

R
C

LR
}

10
S

R
C

LK
11

R
C

LK
12

~
{O

E
}

13

S
E

R
14

Q
A

15

VCC
16

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

GND
8

Q
H

'
9

C
7

22u

G
N

D

U
5

A
M

S
1117-3.3

GND
1

V
O

2
V

I
3

+
3.3V

+
3.3V

IC
3

L293D

E
N

1,2
1

3A
10

3Y
11

GND
12

GND
13

4Y
14

4A
15

VCC1
16

1A
2

1Y
3

GND
4

GND
5

2Y
6

2A
7

VCC2
8

E
N

3,4
9

J9
P

ins_9_14123456

+
3.3V

IC
1

E
S

P
-12E

~
{R

S
T

}
1

M
IS

O
10

G
P

IO
9

11

G
P

IO
10

12

M
O

S
I

13

S
C

LK
14

GND
15

G
P

IO
15

16

G
P

IO
2

17

G
P

IO
0

18

G
P

IO
4

19
A

D
C

2

G
P

IO
5

20

G
P

IO
3/R

X
D

21

G
P

IO
1/T

X
D

22

E
N

3

G
P

IO
16

4

G
P

IO
14

5

G
P

IO
12

6

G
P

IO
13

7

VCC
8

C
S

0
9

+
3.3V

G
N

D

G
N

D

J7P
ins_1_8

1 2 3 4 5 6 7 8

+
9V

B
A

T
S

crew
_T

erm
inal

1 2

D
1

LE
D

R
2

220R

J8P
ins_15_22

1 2 3 4 5 6 7 8

J6

6P
6C

123456

+
3.3V

R
4

82K

+
3.3V

R
3

82K+
3.3V

Figure B.1: Schematic of the first custom PCB design iteration

60

Appendix C

ESP Motor Driver V0.2 Schematic

1
2

3
4

1
2

3
4

ABCD

ABCD
D

ate:
K

iC
ad

E
.D

.A
.

8.0.1
R

ev:
S

ize:
U

ser
Id:

1/1

T
itle:

E
S

P
M

o
to

r
D

river
V

0.2

F
ile:

driver_v2.kicad_sch
S

heet:
/

D
an

iel
þ

ÿ�B
�l�a�a�k�o

V
C

C

V
C

C

1 2

B
A

T
S

crew
_T

erm
inal

12
M

1
S

crew
_T

erm
inal

G
N

D

V
C

C

G
N

D

1 102 3 4 5 6 7 8 9

J2C
onn_01x10_P

in

12
M

2
S

crew
_T

erm
inal

+
3.3V

G
N

D

R
2

82K

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

IC
4

T
C

4427

R
1

82K

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

IC
3

T
C

4427

+
3.3V

12
M

4
S

crew
_T

erm
inal

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

IC
5

T
C

4427

+
3.3V

G
N

D

123456

J16P
6C

12
M

3
S

crew
_T

erm
inal

V
C

C

R
3

330R

1 102 3 4 5 6 7 8 9

J3C
onn_01x10_P

in

G
N

D

1 2 3 4 5 6 7 8 9

J4C
onn_01x09_P

in

D
1

LE
D

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

IC
2

T
C

4427

G
N

D

C
1

22u

G
N

D

V
C

C

R
6

120K
R

7
10K

GND
1

V
O

2
V

I
3

U
1

A
M

S
1117-3.3

V
C

C
+

3.3V

G
N

D

G
N

D
V

C
C

G
N

D
G

N
D

+
3.3V

GND
1

IO
25

10

IO
26

11

IO
27

12

IO
14

13

IO
12

14

IO
13

16

VDD
2

IO
15

23

IO
2

24

IO
0

25

IO
4

26

IO
16

27

IO
17

28

IO
5

29

E
N

3

IO
18

30

IO
19

31

IO
21

33

R
X

D
0/IO

3
34

T
X

D
0/IO

1
35

IO
22

36

IO
23

37

S
E

N
S

O
R

_V
P

4

S
E

N
S

O
R

_V
N

5

IO
34

6

IO
35

7

IO
32

8

IO
33

9

IC
1

E
S

P
32-W

R
O

O
M

-32E

G
N

D

+
3.3V

R
5

10K

+
3.3V

+
3.3V

R
4

10K
V

C
C

IC
3

T
C

4427

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

IC
5

T
C

4427

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

V
C

C

IC
2

T
C

4427

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

V
C

C

IC
4

T
C

4427

N
C

1

IN
A

2

G
N

D
3

IN
B

4
O

U
T

B
5

V
D

D
6

O
U

T
A

7
N

C
8

_ISO
9

G
N

D

R
2

82K
R

1
82K

+
3.3V

+
3.3V

V
C

C

G
N

D

G
N

D

D
1

LE
D

R
3

330R
G

N
D

C
1

22u

G
N

D

U
1

A
M

S
1117-3.3

GND
1

V
O

2
V

I
3

V
C

C
+

3.3V

G
N

D

G
N

D

B
A

T
S

crew
_T

erm
inal

1 2V
C

C

IC
1

E
S

P
32-W

R
O

O
M

-32E

GND
1

IO
25

10

IO
26

11

IO
27

12

IO
14

13

IO
12

14

IO
13

16

VDD
2

IO
15

23

IO
2

24

IO
0

25

IO
4

26

IO
16

27

IO
17

28

IO
5

29

E
N

3

IO
18

30

IO
19

31

IO
21

33

R
X

D
0/IO

3
34

T
X

D
0/IO

1
35

IO
22

36

IO
23

37

S
E

N
S

O
R

_V
P

4

S
E

N
S

O
R

_V
N

5

IO
34

6

IO
35

7

IO
32

8

IO
33

9

+
3.3V

R
5

10K

+
3.3V

Figure C.1: Schematic of the improved custom PCB design

61

Appendix D

Manual for Creating and Using the
V0.2 Motor Driver

This manual closely describes the process of creating the version 0.2 of the motor driver.
Additionally, the manual includes the necessary steps to install custom blocks in the EV3
programming software and use them to communicate with the driver and control motors
connected to it.

D.1 Printed Circuit Board
The included storage media (Appendix A) includes the necessary files to get the printed
circuit board manufactured in the Driver_V0.2/Archives/V0.2_GBR.zip archive. The
following components are necessary for the board to be functional:

• ESP32-WROOM-32E microcontroller module

• AMS1117-3.3 linear voltage regulator

• Microchip TC4427COA MOSFET motor driver (x4)

• 22𝜇F SMD capacitor

• 330Ω SMD resistor

• 10kΩ SMD resistor (x3)

• 120kΩ SMD resistor

• 3.3V SMD LED diode

• RJ12 socket with a horizontal layout

• 2-pin screw terminal with a 5mm pitch, capable of handling at least 6A (x5)

• Pin header with a 2.54mm pitch (x6 min., OPTIONAL)

• 82KΩ SMD resistor (x2, OPTIONAL)

62

The resistors, the diode, and the capacitor are all of an SMD (surface mount device)
1206 footprint. For the component placement, use the schematic in Appendix C.1 and the
silkscreen of the PCB for guidance. Begin the soldering process with the SMD components
first. Start off with the resistors, the capacitor and the LED, followed by the voltage
regulator, motor drivers, and finally the ESP32 MCU. The board has thermal relief polygons
connected to the ground, so heating up the GND pins of the components might take longer
compared to other pins. After all of the SMD components have been soldered onto the
board, solder the THT (through-hole technology) components, beginning with the shortest
components, the screw terminals. Soldering pins headers is optional, however, it is strongly
recommended as it makes the programming of the microcontroller significantly easier. The
minimum number of pin headers that I recommend solder is six, for the GND, 3V3, EN,
IO0, TX0, and RX0 pins, however, soldering pin headers for all GPIO pins can help with
a diagnostic or debugging process, should such circumstances occur. Lastly, solder the RJ12
socket in place. The R1 and R2 82K pull-up resistors need not be soldered in place, unless
you plan to communicate with the EV3 via the I2C protocol. These resistors are necessary
for the communication to work correctly according to the EV3 Hardware Developer Kit
[27].

D.2 3D Printed Driver Enclosure and Driver Assembly
The Driver_V0.2/Archives/V0.2_Print.zip archive contains the Top.3MF and Bot-
tom.3MF files for printing the enclosure of the driver. Use a freely available software, such
as UltiMaker Cura to prepare the files for printing. As this version of the casing has no-
tably narrower walls on it lower portion, I recommend choosing the cubic infill pattern with
a 20% infill ratio to retain the structural integrity of the enclosure [7]. If the sliding and
locking mechanism does not work correctly, I recommend smoothing the inner surface of the
rails with sandpaper. The battery I used for this driver is KAVAN Li-Po 850mAh/11,1V
40/80C 9,4Wh. After placing the battery in the lower part of the driver, place the PCB
onto the platform above the battery (Figure D.1). For switching the driver on and off, use
a KDC1-101 rocker switch and put it into the opening above the PCB. Solder the positive
(red) cable onto one pin and a wire on the second pin. Use a heat-shrinking tube or tape
to isolate the connections. Screw the other end of the wire into the positive terminal of
the PCB, denoted by the “+” sign of the battery terminal. Afterwards, screw the negative
(black) cable of the battery to the “-” terminal.

For the Power Functions connectors on top of the enclosure, cut two PF cables into
half. Strip the two middle wires (C1 and C2 in Figure 3.4) and increase the rigidity of
the stripped wire by using crimping pliers with wire terminals, or putting a small amount
of solder onto the wire. Push the wires through the openings on the upper part of the
enclosure, then screw the cables into the M1, M2, M3, and M4 terminals. Finally, slide the
driver case closed. After turning on the driver, it automatically enters pairing mode with
the EV3, shown by the slow flashing of the status LED. If the device is connected, the LED
stays on in a dimmer mode and if the battery of the driver is low, the LED flashes fast
for ten seconds before the MCU enters a deep sleep mode. Afterwards, it is necessary to
charge the battery. Turning the driver on and off resets the drivers, which then resumes
regular operation.

While the EV3 uses RJ12 ports, the latch on the connector is offset to the side. To
create a compatible cable, cut the end of an EV3 cable, strip the wires, then place them in
an RJ12 connector with a centered latch, and use a crimping tool to secure the cables in

63

the connector. Alternatively, you can remove the latch of the EV3 connector and use this
to connect to the driver, however, note that the connector will not be secured. An image
of the driver connected to the EV3 and the motors can be seen in Figure D.3.

Figure D.1: Assembly of the motor driver

D.3 Programming the Microcontroller
To program the microcontroller, use an Espressif ESP-Prog programmer or an equivalent
alternative device. Connect the 6 pins (GND, 𝑉𝑃𝑅𝑂𝐺, EN, IO0, TX0, RX0) to the corre-
sponding pins of the MCU (Figure D.2). Do not forget to remove the jumper for the 𝑉𝑃𝑅𝑂𝐺

pin if you program the MCU while connected to an external power source. Use Arduino
IDE software or the Visual Studio Code editor with PlatformIO IDE extension to flash
the files located in the Driver_V0.2/Driver_Code directory of the attached storage media
after choosing the correct device in the board menu. When the ESP-Prog is connected, it
uses two COM ports, use the latter one to program the board.

D.4 Using the EV3 Software
Download the EV3 Lab Software1and install the app on your device. To import new
blocks, firstly create a new project program, then navigate to the Tools tab. There, select
Block Import, find the motor block in the wizard (EV3-G_Blocks/Thesis_Block.ev3b
in the storage media), then press Import. The software then prompts you to restart it.
Afterwards, the motor control block will be available for use in the Sensor section of the
blocks.

Create a program for the brick, which should begin with the Start block and conclude
with the Stop Program block. Add the motor block to the program and choose one of the
UART modes of the block to control the motors, filling out the desired parameters. Connect

1https://education.lego.com/es-mx/downloads/retiredproducts/mindstorms-ev3-lab/software/

64

https://education.lego.com/es-mx/downloads/retiredproducts/mindstorms-ev3-lab/software/

the EV3 brick to your computer via cable, Bluetooth, or Wi-Fi, then download the program
to the brick and run it. A picture of the EV3 software interface can be seen in Figure D.4.
Object number one shows a program example, where all motors are set to run with a duty
cycle of 10 out of 15 for ten seconds, then stop for three seconds in an indefinite loop.
Number two shows the command block tray with Sensor blocks selected, while number
three points to the Motor Control block. Buttons for downloading the program to the brick
and running it are located by marker number four. Marker number five shows the Tools
tab, where the Block Import wizard is located.

Figure D.2: Programming the motor driver V0.2 with an Espressif ESP-Prog

Figure D.3: Driver V0.2 connected to the EV3 and four Power Functions motors

65

Figure D.4: EV3 Lab Software

66

	Introduction
	Development of Programmable LEGO Bricks
	LOGO Brick
	MIT Grey/Red Brick
	RCX
	Scout
	NXT
	EV3
	Third-Party Extensions to EV3's Functionality
	Third-Party Alternatives to the EV3

	Robot Inventor
	Spike
	Other Programmable LEGO Products
	Technic Interface A
	Technic Control Center
	Control Lab Serial Interface
	Code Pilot
	WeDo 1.0
	WeDo 2.0/Powered Up

	An Overview of LEGO Powered Bricks
	4.5V Motor Line
	9V Motor Line
	Power Functions
	Powered Up

	The Current State of Compatibility Between EV3 and Motorized LEGO Products
	Stock EV3 Firmware and its Compatibility
	Compatibility with the ev3dev Firmware
	Compatibility with the leJOS Firmware
	Available Protocols for Communicating with the EV3
	I2C Protocol
	UART Protocol
	LEGO UART Sensor Protocol
	LEGO EV3-G Blocks

	Improving the Compatibility Between EV3 and LEGO Motors
	Controlling Power Function Motors via Arduino
	Connection via the I2C Protocol
	First Prototype
	Prototype with a Motor Driver
	Prototype Communication Protocol
	Enhanced Communication Protocol
	EV3 and Arduino Code Implementation

	Streamlining the Prototype
	Schematic of the Board
	Designing the PCB
	Functionality of the Driver Board
	Assembly of the Prototype
	Designing an Enclosure for the Prototype
	Implementation of the Microcontroller's Code
	Flaws of the Design

	Implementing a Corrected and Improved Custom Motor Driver
	Design of the Improved Board
	Program Modifications
	Updated Case Design
	Stress Testing the Driver
	Driver Implementation in LEGO Creations

	Enhancing Communication Capabilities via EV3-G Blocks
	Creating Blocks for the LEGO UART Sensor Protocol and Repairing Existing I2C Blocks
	UART Communication Speed Testing
	Blocks for Controlling the Motor Driver
	Summary of Contributions to the Code Block Interface

	Conclusion
	Bibliography
	Contents of the Included Storage Media
	ESP Motor Driver V0.1 Schematic
	ESP Motor Driver V0.2 Schematic
	Manual for Creating and Using the V0.2 Motor Driver
	Printed Circuit Board
	3D Printed Driver Enclosure and Driver Assembly
	Programming the Microcontroller
	Using the EV3 Software

