
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

EXTENSIBLE RUST LIBRARY FORTHE DEVELOPMENT
OF EMBEDDED SENSOR APPLICATIONS ON ESP32
PLATFORM
ROZŠIŘITELNÁ KNIHOVNA V JAZYCE RUST PRO PODPORU VÝVOJE VESTAVĚNÝCH

SENZORICKÝCH APLIKACÍ NA PLATFORMĚ ESP32

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

KIRILL MIKHAILOV

Ing. VÁCLAV ŠIMEK,

BRNO 2024

Bachelor's Thesis Assignment
Institut:
Student:
Programme:
Title:

Category:

Department of Computer Systems (DCSY) 156827
Mikhailov Kiri l l
Information Technology
Extensible Rust Library for the Development of Embedded Sensor Appl icat ions
on ESP32 Platform
Embedded Systems

Academic year: 2023/24

Assignment:

1. Survey the existing means of Rust language support for the ESP32 range of microcontrollers. Focus
on approaches to peripherals configuration and usage in common embedded application types.

2. Based on results obtained in point 1) of the assignment, propose a set of frequently used sensors
and other peripherals to be supported by the library.

3. Outline a generic scheme for handling the peripherals in a user-convenient way. The aim is to
isolate end-users from technical details of controlling the peripheral devices.

4. Specify the Rust library interface and architecture. The user interface should be preserved for any
future releases. The architecture must employ modular features.

5. Implement the library based on point 4) of the assignment. Create and deploy appropriate unit tests,
and add examples to demonstrate common use cases.

6. Prepare concise documentation and publish your solution on GitHub under an open-source license
(Apache License preferred, see http://www.apache.Org/licenses/LICENSE-2.0).

7. Evaluate the functionality of the library. Assess the achieved results and try to propose further
directions for the development.

Literature:
• According to the instructions of the supervisor.

Requirements for the semestral defence:
Fulfillment of points 1 to 4 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Simek Vaclav, Ing.
Head of Department: Sekanina Lukas, prof. Ing., Ph.D.
Beginning of work: 1.11.2023
Submission deadline: 9.5.2024
Approval date: 30.10.2023

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

http://www.apache.Org/licenses/LICENSE-2.0
https://www.fit.vut.cz/study/theses/

Abstract
This thesis introduces an extensible Rust l ibrary designed for embedded sensor applications
on the E S P 3 2 platform, addressing the need for simplified development of real embedded
systems i n a Rust language environment on this platform. A significant contr ibution of
this thesis is the development of a user-friendly interface for sensor management. This
interface allows for straightforward sensor instal lat ion, activation, and monitoring, cater
ing to applications like smart homes and automation without requiring in-depth technical
knowledge of peripherals. The l ibrary 's architecture is carefully designed for modular i ty
and extensibility, adhering to Rust 's safety and efficiency principles. Accompanied by com
prehensive documentation, the project is released on G i t H u b under an open-source Apache
License, complete wi th unit tests and use-case examples. The thesis concludes w i t h an
evaluation of the l ibrary 's functionality and potential future enhancements, demonstrating
its pract ical i ty for embedded system developers.

Abstrakt
Tato p r á c e p ř e d s t a v u j e rozš i ř i te lnou knihovnu jazyka Rust u r č e n o u pro ves tavěné sen
zorové aplikace na p l a t fo rmě E S P 3 2 , k t e r á řeší p o t ř e b u z j ednodušeného vývoje reá lných
ves tavěných s y s t é m ů v p r o s t ř e d í j azyka Rust na t é t o p l a t fo rmě . V ý z n a m n ý m p ř í n o s e m
t é t o p r á c e je vývoj už iva te l sky p ř ívě t ivého r o z h r a n í pro s p r á v u senzorů . Toto r o z h r a n í
umožňu je jednoduchou instalaci, akt ivaci a m o n i t o r o v á n í senzorů , což vyhovuje ap l ikac ím,
jako jsou in te l igentn í domy a automatizace, aniž by vyžadova lo h l u b o k é technické znalosti
periferií . Arch i tek tu ra knihovny je pečl ivě n a v r ž e n a s ohledem na modular i tu a rozšiř i tel
nost a dodržu je z á s a d y bezpečnos t i a efektivity R ů s t u . Projekt je doprovázen rozsáh lou
d o k u m e n t a c í a je zveře jněn na p l a t fo rmě G i t H u b pod open-source licencí Apache, d o p l n ě n
unit-testy a p ř í k l ady použ i t í . V závěru p r á c e je zhodnocena funkčnost knihovny a její př í
p a d n á b u d o u c í vylepšení , k t e r á ukazuj í její p r a k t i č n o s t pro vývo já ře ves t avných sy s t émů .

Keywords
Rust, E S P 3 2 , IoT, SoC, embedded systems, embedded applications, user-friendly devel
opment, sensors, microcontroller, embedded Rust , Rust library, Rust crate, Smart Home,
M Q T T

Klíčová slova
Rust, E S P 3 2 , IoT, SoC, ves tavěné sys témy, ves tavěné aplikace, už iva te l sky p ř ívě t ivý vývo j ,
senzory, mikrokon t ro lé r , ves tavěný Rust , knihovna Rust , Rust crate, c h y t r á d o m á c n o s t ,
M Q T T

Reference
M I K H A I L O V , K i r i l l . Extensible Rust Library for the Development of Embedded Sensor
Applications on ESP32 Platform. Brno , 2024. Bachelor's thesis. Brno Univers i ty of Tech
nology, Facul ty of Information Technology. Supervisor Ing. Václav Simek,

Rozšířený abstrakt
Tato p r á c e p ř e d s t a v u j e vývoj rozš i ř i te lné knihovny v jazyce Rust , k t e r á z j ednodušu je vývoj
apl ikací pro ves tavěné senzory na p l a t fo rmě E S P 3 2 . S r o s t o u c í m z á j m e m o ves t avné sys
témy, ze jména pro aplikace, jako jsou in te l igen tn í domy a automatizace, roste p o p t á v k a po
vývojových nás t ro j í ch , k t e r é z jednodušu j í proces p r o g r a m o v á n í . V t é t o souvislosti se ča s to
používaj í m ik rokon t ro l é ry od společnos t i Espressif Systems, k t e r é jsou u z n á v á n y pro svůj
vysoký výkon , v š e s t r a n n o s t a cenovou v ý h o d n o s t . P r o g r a m o v á n í t ě c h t o zař ízení p o m o c í
j azyka Rust v šak navzdory jeho v ý h o d á m z hlediska bezpečnos t i a efektivity p ř ináš í kom
plikace kvůl i s t r m é kř ivce učení tohoto j azyka a s loži tost i ov l ádán í p o t ř e b n é h o hardwaru.

P ro řešení t ě c h t o p r o b l é m ů tato p r á c e vyvíj í knihovnu za loženou na jazyce Rust , k t e r á
abstrahuje s loži tost i spo jené s o v l á d á n í m senzorů a periferií a zp ř í s t upňu je proces vývoje
jak z k u š e n ý m p r o g r a m á t o r ů m , tak i n o v áčk ů m. K n i h o v n a poskytuje už iva te l sky př ívět ivé
r o z h r a n í pro konfiguraci a s p r á v u dat ze senzorů a umožňu je u ž i v a t e l ů m sous t ř ed i t se více
na logiku aplikace než na n ízkoúrovňovou interakci s hardwarem. Implementace knihovny
obsahuje metody pro p ř í m é ov ládán í a č t en í dat z různých t y p ů senzorů , jako jsou senzory
teploty, vlhkost i a osvět lení , s m o ž n o s t í s n a d n é h o rozší ření na dalš í typy periferií .

Me tod ika ov ládán í senzorů v kn ih o v n ě zahrnuje použ i t í r y sů (angl. traits) j azyka Rust
a gener ického p r o g r a m o v á n í pro a b s t r a h o v á n í h a r d w a r o v ý c h funkcí, což umožňu je s n a d n é
p ř i způsoben í knihovny pro r ů z n é typy hardwaru bez nutnosti z m ě n v k ó d u aplikace. Vývo
já ř i tak mohou efektivněji v y t v á ř e t aplikace k o m p a t i b i l n í s r ů z n ý m i senzory a periferiemi
bez h l u b o k ý c h zna los t í de t a i l ů k o n k r é t n í h o hardwaru. K r o m ě senzorů byla knihovna rozš í řena
o podporu displejů a v s t u p n í c h zař ízení . U m o ž ň u j e snadnou integraci s W i - F i a M Q T T ,
což rozšiřuje její využ i t í pro aplikace internetu věcí.

Arch i tek tura knihovny je m o d u l á r n í , což podporuje rozš i ř i te lnos t a ú d r ž b u . Podporuje
ř a d u b ě ž n ě použ ívaných senzorů a periferií , což zajišťuje š i rokou použ i t e lnos t . K n i h o v n a
dodržu je p ř í sné b e z p e č n o s t n í standardy a standardy efektivity Rust a její konstrukce pod
poruje b e z p e č n ý a spolehl ivý vývoj ap l ikac í . P r o zvýšení dostupnosti a m o ž n o s t í p ř i sp ívání
komunity je projekt u m í s t ě n na serveru G i t H u b pod open-source licencí Apache.

K n i h o v n a je d o p l n ě n a rozsáh lou d o k u m e n t a c í , k t e r á obsahuje návody , p ř í p a d y použ i t í a
osvědčené postupy pro implementaci . Součás t í p r á c e jsou p ř ík l ady a j e d n o t k o v é testy,
k t e r é d e m o n s t r u j í možnos t i knihovny v reá lných scénář ích . V y h o d n o c e n í knihovny p ros t ř ed
n i c tv ím teore t ické a n a l ý z y a p r a k t i c k é h o t e s tován í zdů razňu j e její úč innos t př i z j ednodušován í
vývoje ves t avných apl ikac í . Z p ě t n á vazba od už iva te lů nezna lých j azyka Rust i od profe
s ionálů naznaču je , že knihovna v ý r a z n ě snižuje v s t u p n í ba r i é ru pro vývoj ves t avných ap
likací na mik rokon t ro lé rech rodiny E S P .

Závěrem lze říci, že tato p ráce nejen př i sp ívá p r a k t i c k ý m n á s t r o j e m pro vývoj ves t avných
apl ikací , ale t a k é rozšiřuje soubor zna los t í o použ i t í j azyka Rust pro složi té ú lohy interakce
s hardwarem. B u d o u c í p r á c e by se mohla zabýva t h lubš í in tegrac í s da l š ími platformami
internetu věcí, aby se j e š t ě více z jednoduš i l proces vývoje , nebo začleni t více automatizo
vaných n á s t r o j ů a vzdělávacích zdro jů , k t e r é by pomohly n o v ý m už iva t e lům.

Extensible Rust L ibrary for the Development of
Embedded Sensor Applications on ESP32 Plat
form

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Vác lav Simek. The supplementary information was provided
by esp-rs team of Espressif Systems. I have listed a l l the l i terary sources, publications and
other sources, which were used during the preparation of this thesis.

K i r i l l Mikha i l ov
M a y 7, 2024

Acknowledgements
Firs t of a l l , I would like to thank my supervisor Ing. Václav Simek for his good mentoring,
patience and helpful feedback during this work. I a m very happy that we matched each
other in terms of workflow.
I would also like to thank M a r t i n Vychod i l , an employee of Espressif Systems, who made
the contact w i th M r . Simek and this project overall possible.
Of course I want to thank the following Espressif employees and esp-rs team members
for their responsive help wi th the driver and quick response to problems: Scott M a b i n ,
Juraj Sadel, Jesse R o b i n James Braham, B jö rn Quentin, Sergio Gasquez Arcos , and Juraj
Michálek .
A n d last, on the most important - I would like to thank my family and loved ones for their
support, without which I would not have made it through this journey.

Contents

1 Introduction 4
1.1 Mot iva t ion 4
1.2 Thesis Overview 5

2 Rust Fundamentals and E m b e d d e d Systems 6
2.1 W h a t is Rust? 6

2.1.1 Rust Language 6
2.1.2 Disadvantages of Rust 13

2.2 Compar ison of Rust Standard and Bare -Meta l Environments 13
2.2.1 The Standard L ib ra ry 13
2.2.2 Rust for Bare -Meta l Systems 14
2.2.3 Summary 14

2.3 Espressif Microcontrol lers 15
2.3.1 C h i p Range 15

2.4 Rust on Espressif Chips 16
2.4.1 Standard L ib ra ry Support on Espressif Chips 16
2.4.2 Bare -Meta l Programming w i t h Rust on Espressif Chips 17
2.4.3 Peripherals Configurat ion i n esp-rs Drivers 20

3 Design and Implementation 22
3.1 Ex i s t i ng Solutions 22
3.2 Default Set of Proposed Peripherals 24

3.2.1 Envi ronmenta l Sensors 25
3.2.2 Displays 26
3.2.3 Miscellaneous 27

3.3 Conceptual Design for Simplified Peripheral Operations 27
3.4 Peripheral Management Archi tecture 28

3.4.1 On-board Peripherals 28
3.4.2 Ex te rna l Peripherals 29

3.5 A Closer Examina t ion of Peripheral Operations 31
3.5.1 Sensors 31
3.5.2 Input Devices 34
3.5.3 Displays 36

3.6 Connect iv i ty Features 41
3.6.1 W i - F i 42
3.6.2 M Q T T 43

3.7 B u i l d Environment 44
3.7.1 The Role of B u i l d Script 44

1

3.7.2 Configuring Linker Parameters 45
3.8 F i n a l Project Structure 45

4 Release of the Project 47
4.1 L ib ra ry Identity and Communi ty Engagement 47
4.2 Website and Documentat ion Deployment 48
4.3 Get t ing Started 50
4.4 Troubleshooting 52
4.5 Testing 52

4.5.1 Examples 53
4.5.2 Automated Testing 54

4.6 Code Format t ing 55

5 Testing and evaluation 56
5.1 Val ida t ion 56
5.2 User Survey 58

5.2.1 Feedback from Non-Rust Users 58
5.2.2 Feedback from Rust Programmers 59

5.3 Challenges Encountered 59

6 Conclusion 62

6.1 Possible Extensions 63

Bibl iography 64

A Contents of the storage medium 67

B Project related links 68
B . l Compar ison Examples 68

C Feedback from Espressif Systems 69

2

List of Figures

1.1 A study of the popular i ty of the Rust language [29] 4

1.2 D a i l y crate downloads since Rust 1.0, 7-day average [28] 5

2.1 Archi tecture for operating on peripherals (on basis of [11]) 21

3.1 Used environmental sensors [4] 25

3.2 Used displays 26
3.3 Used miscellaneous peripherals 27
3.4 Segments layout for ILI9341 display 41
4.1 Land ing page of the crate 48
4.2 Technical documentation for the l ibrary 49

3

Chapter 1

Introduction

1.1 Motivat ion
The evolution of embedded systems has paved the way for the creation of increasingly
complex and diverse applications - from smart home devices to industr ia l automation.
A significant place i n these developments is occupied by the ESP-series microcontrollers,
known for their versatili ty and fairly cheap price, relative to competitors. However, pro
gramming these devices, especially in the Rust language, might become a tough challenge.
The Rust language, known for its safety and efficiency, currently exhibits a steep learning
curve i n the field of embedded systems, and the code often seems overly complex or intr i
cate [38]. T h i s complexity is an obstacle not only for experienced programmers, but more
important ly for enthusiasts, newcomers and professionals outside of the t radi t ional I T field
who want to immerse themselves in the world of embedded systems. B u t despite this, as we
can see from the Yalant is survey on Figure 1.1, the number of people interested i n Rust is
only growing. This also applies to big companies - Microsoft, Facebook, Discord, Dropbox
and many others are starting to use Rust i n their codebases [38].

The growing percentage of developers that want to develop in Rust

25

\7.i7.

0

2017 2018 2013 2020 2021 2022

Figure 1.1: A study of the popular i ty of the Rust language [29].

4

file:///7.i7

Another indicat ion of popular i ty is how many libraries are downloaded dai ly from crates . io ,
the official package registry of the Rust language. A s demonstrated on Figure 1.2, at the
t ime of wr i t ing this thesis, the average number of l ibrary downloads i n 7 days is i n the
hundreds of mill ions.

Figure 1.2: D a i l y crate downloads since Rust 1.0, 7-day average [28].

The pr imary motivat ion for this project, therefore, is to simplify the process of wr i t ing
embedded applications in Rust for the E S P 3 2 platform. The goal is to transform its ' current
state into a more accessible and convenient format, to approach a state similar to that of
Ardu ino or similar popular solutions i n terms of simplicity. Th i s endeavor is aimed not
only at programmers already interested in Rust on E S P 3 2 , but also at people far from I T
and programming. B y abstracting away the complexities of the Rust language and E S P 3 2
hardware, the project aims to lower the barrier to entry, al lowing a wider range of users to
effectively develop and deploy embedded Rust applications. Whether i t 's a hobbyist looking
to automate their home, a teacher incorporat ing technology into the classroom, or a small
business innovating their services, this l ibrary is designed to give them the tools to bring
their ideas to life without baffling them wi th the technical depths of Rust programming and
microcontroller control.

1.2 Thesis Overview
Each part of this thesis builds on the previous one. Chapter 2 starts w i th an introduc
t ion to the fundamental knowledge of the tools used: the Rust language and its features
and peculiarities that must be kept i n mind to understand the issues, the E S P 3 2 range of
microcontrollers, the support of the aforementioned language on these chips and the in
frastructure providing this support. In Chapter 3 the content w i l l develop from theoretical
research to pract ical analysis, review of existing solutions and the process of solving the
problem, paying attention to both successful and implemented solutions and experimental
ideas that for one reason or another d id not make it to the final solution. Chapter 4 w i l l
cover the public part of this library, the architecture of the Web site, and the design of the
technical documentation for i t . It w i l l also focus on suggested ways to test l ibrary function
ality, providing information on both existing examples for real hardware and automated
testing. A guide on how to get started wi th the l ibrary w i l l also be found i n this part. The
next chapter (5) w i l l provide the reader wi th the an evaluation of the results of the work by
means of pairwise comparison of several programs performing the same functionality but
wri t ten wi th and without using the resulting library. After that , the last, 6th Chapter, w i l l
summarize the whole work.

1crates.io package registry: h t t p s : / / c r a t e s . i o

5

https://crates.io

Chapter 2

Rust Fundamentals and Embedded
Systems

2.1 What is Rust?

A s the beginning of the analysis, the story to ld by Cl ive Thompson [42] of how the creator
of Rust came up wi th the in i t i a l idea is an excellent description of why this language is the
way it is:

Jn 2006, Graydon Hoare was a 29-year-old computer programmer working
for Mozilla, the open-source browser company. Returning home to his apartment
in Vancouver, he found that the elevator was out of order; its software had
crashed. This wasn't the first time it had happened, either.
Hoare lived on the 21st floor, and as he climbed the stairs, he got annoyed.
"It's ridiculous," he thought, "that we computer people couldn't even make an
elevator that works without crashing!" Many such crashes, Hoare knew, are due
to problems with how a program uses memory. The software inside devices
like elevators is often written in languages like C++ or C, which are famous for
allowing programmers to write code that runs very quickly and is quite compact."

— Clive Thompson
From this story reader can see, why M r . Hoare wanted to create a language that would
code that would run fast but have a focus on security.

2.1.1 R u s t L a n g u a g e

Rust is a general-purpose, mult i -paradigm programming language engineered for creating
safe, secure and scalable applications. It was in i t ia l ly designed as a systems programming
language, however, it has emerged as a more versatile language capable of creating a variety
of applicat ion types, including systems programming, web services, desktop applications,
embedded systems, and more [31]. Developed by the aforementioned Graydon Hoare at
M o z i l l a Research, it was first announced i n 2010 and first stable release happened i n 2015.
Rust has since garnered acclaim for addressing many of the pitfalls of system-level pro
gramming [3].

G

Detai led theoretical aspects:

• Ownership and Borrowing: The concepts of Ownership and Borrowing are fun
damental to how the language manages memory and ensures safety, a l l without a
garbage collector. Ownership i n Rust is based on a few core rules. Each value in
Rust has a specific owner - a variable. W h e n the owner goes out of scope, Rust
automatical ly deallocates the memory. This process is automatic and deterministic,
contrasting wi th languages that use garbage collection [26].

W h e n it comes to assigning values from one variable to another, Rust transfers owner
ship of the value to the new variable. Example of working wi th this concept is shown
on L i s t ing 2.1.

f n main() {
l e t s i = S t r i n g : : f r o m (" H e l l o , R u s t ! ") ; / / s i owns the s t r i n g
l e t s2 = s i ; / / Ownership o f t he s t r i n g i s moved t o s2

/ / p r i n t l n ! (" O , w o r l d ! " , s i) ; / / E r r o r ! s i no l o n g e r owns the s t r i n g

l e t s3 = &s2 ; / / s3 bor rows the s t r i n g
p r i n t l n ! (" { } , w o r l d ! " , s 3) ; / / OK! s3 o n l y bor rows the v a l u e i n s2

l e t l e n = c a l c u l a t e _ l e n g t h (& s 2) ; / / s2 i s borrowed by c a l c u l a t e _ l e n g t h
p r i n t l n ! (" T h e l e n g t h o f ' { } ' i s { } . " , s 2 , l e n) ;

}

/ / T h i s f u n c t i o n t a k e s a r e f e r e n c e t o a S t r i n g and r e t u r n s i t s l e n g t h
f n c a l c u l a t e _ l e n g t h (s : feString) -> u s i z e {

s . l e n ()
}

Lis t ing 2.1: Ownership and Borrowing example [26]

This unique approach prevents issues like double freeing memory, which is common
in other low-level languages.

The pract ical implications of these features are significant. They make Rust a lan
guage in which memory safety is an essential prerequisite. B y solving the problem
of compile-time memory management through ownership and borrowing, Rust el imi
nates entire classes of bugs that other system programming languages suffer from.

• T y p e System and Lifetimes: Rust 's type system is central to its guarantee of
safe system programming, employing static type checking to validate types at com
pile t ime. This preemptive approach eliminates a range of common software errors,
enhancing both safety and performance.

Furthermore, Rust introduces the concept of L i f e t i m e s . Ownership and Borrowing
(2.1.1) are two of the three pillars in the ownership model, l i f e t i m e s is the final
one [31]. A s shown on L i s t i ng 2.2, it serves to manage data references, ensuring their
val idi ty precisely for their usage duration, thus avoiding issues like dangling references
or premature data deallocation.

7

fn longest< Ja>(x: &'& s t r , y: &'& str) -> &'a s tr {
i f x . len() > y . len() {

x
} else {

y
>

}

Lis t ing 2.2: Lifet ime usage example [26].

In this function, 'a is a lifetime generic parameter that specifies that the lifetimes of
x, y, and the return value are a l l the same. This ensures that the returned reference
w i l l be val id as long as both x and y are val id, preventing dangling references. Lifetime
annotations help the compiler understand how references relate to each other i n terms
of their lifetimes, ensuring memory safety [26, 31].

Pattern Match ing and Functional Features: Pa t te rn matching is one of the
many functional features that maybe new to systems programming, but Rust has
borrowed from functional programming paradigms [6].

In Rust, pat tern matching is pr imar i ly used wi th 'match' statements and in function
arguments. Th is is par t icular ly useful when dealing wi th Rust's enumerations (enums).
The 'Option' type is used to represent an „op t iona l" value: every 'Option' is either
'Some' and contains a value, or 'None' i f does not. 'Result' types, on the other
hand, are richer and are used for functions that can return an error. A 'Result' is
either 'Ok', meaning the operation succeeded, or 'Err ' , meaning the operation failed
[1]. See example, shown in L i s t ing 2.3.

fn divide(numerator: f64, denominator: f64) -> 0ption<f64> {
i f denominator == 0 . 0 {

None
} else {

Some(numerator / denominator)
}

fn main() {
l e t resul t = d i v i d e (1 0 . 0 , 2 . 0) ;
match resul t {

Some(quotient) => println!("Quotient i s : {}", quotient) ,
None => println!("Cannot divide by 0 ") ,

}
/ / "read" function returns "Result"
le t f i l e _ r e s u l t = s td: : f s : :read("tes t . tx t") ;
match f i l e _ r e s u l t {

Ok(content) => p r i n t l n ! (" F i l e content read success fu l ly .") ,
Err(error) => p r i n t l n ! (" E r r o r reading f i l e : {:?}", e r r o r) ,

}

Lis t ing 2.3: Pat tern matching example [1].

8

• Zero-Cost Abstractions: A key principle i n Rust is that abstractions should not
impose a runtime cost [41]. Th is principle, an example of the use of which is shown
in L i s t ing 2.4, is evident i n its efficient i teration constructs, powerful enum classes,
and advanced compile-time generics, a l l of which contribute to performant, high-level
programming constructs. Some examples:

fn main() {
l e t numbers = v e c ! [l , 2 , 3 , 4 , 5] ;

le t doubled: Vec<i32> = numbers. i ter() .map(|&x| x * 2) . c o l l e c t () ;

println!("{:?}", doubled); / / T h i s w i l l p r i n t : [2 , 4 , 6, 8, 10]
}

Lis t ing 2.4: Simple iterator usage example [41].

In this example, ' . i t e r () .map(I &x | x * 2) . co l l ec t () ' looks like it might be creat
ing several intermediate data structures and might therefore be inefficient. However,
due to Rust's zero-cost abstractions, the iterator is compiled into efficient loop code
that directly creates the doubled vector without any addi t ional runtime overhead.

• Generics and Traits: Traits and generics are two powerful features i n Rust that
allow for code reuse and type safety in a flexible and efficient manner.

Traits i n Rust can be thought of as a collection of methods that specific type has
ans can share this behavior w i th other types. Example of basic traits usage is shown
on L i s t ing 2.5. W h e n a type implements a t r a i t , it provides specific behavior for
the trait 's method signatures [26]. Traits are similar to interfaces i n other languages
but w i th some unique Rust-specific properties. To implement a trait , impl keyword
is used, followed by the trai t name for the specific type:

t r a i t Summary {
fn summarize(&self) -> Str ing;

}

struct A r t i c l e {
/ / . . i t ems . .

}

impl Summary for A r t i c l e {
fn summarize(&self) -> Str ing {

format!("{}, by {}", se l f .headl ine , se l f .author)
}

}

Lis t ing 2.5: Trai t implementat ion example [26].

Generics are parameters for types, functions, methods, or structs that allow for the
operation of the code over different data types while s t i l l being type-safe. They allow
developers to write flexible, reusable code that works on any data type [26]. Generic
types are recognized by their usage of angle brackets enclosing one or more type
placeholders, like Vec<T>, where T can be any type, as it is shown on L i s t ing 2.6.

9

struct Point<T> {
x : T ,
y : T,

}

le t i n t _ o r i g i n = P o i n t { x : 0, y : 0 };
l e t f l o a t _ o r i g i n = P o i n t { x : 0.0, y : 0.0 };

Lis t ing 2.6: Generics usage example [26].

• Systems Programming Capabilities: Rust is designed wi th systems programming
in mind . It offers a blend of low-level control w i th high-level safety guarantees, posi
t ioning it as a modern alternative to t radi t ional systems languages like C and C + + .
It's engineered to give developers the abi l i ty to manipulate hardware and memory
layout directly, enabling the development of operating systems, embedded systems,
and other performance-critical applications [38].

W h a t sets Rust apart is its uncompromising emphasis on safety, despite providing
the raw power similar to C and C + + . The language's ownership model, along w i t h
its type system, ensures that unsafe memory access is prevented at compile t ime,
thereby avoiding a whole class of runtime errors typical ly associated wi th systems
programming [38].

However, Rust 's approach to system safety does not entirely preclude the use of
„unsafe" operations, the use of such a section is demonstrated on a L i s t ing 2.7. The
language provides an explicit unsafe keyword that allows developers to perform ac
tions that are not checked by the compiler 's safety guarantees.

fn main() {
le t x : i32 = 10;

l e t r a w _ p o i n t e r : *const i32 = &x as *const i32;

unsafe {

/ / I n s i d e an unsa fe b l o c k , raw p o i n t e r might be d e r e f e r e n c e d ,
p r i n t l n ! (" r a w _ p o i n t e r p o i n t s t o : { } " , * r a w _ p o i n t e r) ;

}

/ / O u t s i d e the unsa fe b l o c k , t h i s o p e r a t i o n i s not a l l o w e d
/ / p r i n t l n ! (" r a w _ p o i n t e r p o i n t s t o : O " , * r a w _ p o i n t e r) ;
/ / C o m p i l e - t i m e e r r o r

}

Lis t ing 2.7: „Unsafe" block example [26].

Another example of powerful unsafe tool i n Rust 's arsenal is std::mem::transmute
(or core::mem:transmute for n o _ s t d approach 2.2.2), which allows developers to arbi
t rar i ly cast a value between types without changing the bits that make up that value.
This function is inherently unsafe and can lead to undefined behavior if not used wi th
extreme caution. However, s imilar tools are often used i n development at the closest
levels to the hardware, such as i n the esp-hal [11].

10

• Cargo and Crates: Cargo is a Rust 's bui l t - in package manager, in tandem w i t h
cra te s . i o 1 , the official package registry, form the backbone of Rust 's package man
agement and dis t r ibut ion system. They work together to greatly simplify several as
pects of the Rust development workflow, from code compilat ion to dependency man
agement.

Rust programs are made of crates. E a c h of them is a complete, cohesive unit: a l l the
source code for a single l ibrary or executable, plus any associated tests, examples, tools
and configuration. Such l ibrary can be downloaded from Crates . io , a git repository
or a path i n a local machine.

Cargo has a lot of different functions and it would not make sense to describe a l l the
features, so for the purposes of this analysis, the focus is set on the most key ones. It
allows the use of different bu i ld profiles. Those are customizable and configurable in
the Cargo. toml file, as shown on L i s t ing 2.8:

[profi le.dev]
opt- leve l = 0
[prof i le .re lease]
opt- leve l = 3
Customizing an optimization l eve l of a p r o f i l e for a spec i f ic package
[prof i le .dev.package.esp-wif i]
opt - leve l = 3

Lis t ing 2.8: Profile configuration i n Cargo. toml [26, 15].

Then , when bui lding, the profile can be selected by passing or not passing the
„ — r e l e a s e " parameter (see L i s t ing 2.9):

$ cargo b u i l d
Finished dev [unoptimized + debuginfo] target(s) i n 0.0s

$ cargo b u i l d —release
Finished release [optimized] target(s) i n 0.0s

Lis t ing 2.9: Bu i ld ing wi th different profiles [26].

A prime example of cargo's capabilities is its straightforward approach to integrating
external libraries (or „cra tes") into a Rust project. This integration is facilitated
through the Cargo. toml file located at the project's root. In this file, developers
can concisely list their project's dependencies, making project setup and management
both clear and efficient. A n example of the part of Cargo. toml file w i th different
ways and features of including is shown in L i s t ing 2.10.

[dependencies]
Basic include
fugit = "0.3.7"
Include from g i t
esp-wifi = { g i t = "https: / /g i thub.com/esp-rs /esp-wif i .g i t" }
Indlude with extra settings
esp-al loc = { version = "0.3.0", optional = true }
embedded-hal = { version = "0.2.7", features = ["unproven"] }

Lis t ing 2.10: Including dependencies in Cargo.toml.

1crates.io package registry: h t t p s : / / c r a t e s . i o

11

http://github.com/esp-rs/esp-wifi.git
https://crates.io

Cargo also supports addi t ional features, al lowing us to condit ionally compile certain
parts of code depending on what chosen features. This is especially useful for enabling
or disabling certain features in the crate, something massively used i n this thesis to
create configurations for specific chips or to customize the l ibrary for specific user
needs. It is also possible to enable and include a dependency that has been marked
as optional i n the bu i ld process, which is demonstrated on L i s t i ng 2.11.

[features]
esp32c6-mqtt = ["esp32c6-wifi", "mqtt"]
a l loc = ["esp-alloc"]
async = ["embassy-executor"]

Lis t ing 2.11: Feature definition.

• Asynchronous Programming Asynchronous programming i n Rust is buil t around
the concept of Futures, special types that represent a value which may not yet be
available. Rust 's async constructs enable non-blocking execution, al lowing other tasks
to progress in parallel to awaiting operations [7].

A n asynchronous function, denoted by the async keyword, returns a Future. Th is
Future doesn't perform any operation un t i l it is expl ici t ly awaited wi th the await
keyword, making it lazy by nature. The execution of asynchronous tasks is managed
by an executor, which is responsible for pol l ing futures to completion [7].

The advantage of this model is its abi l i ty to handle a large number of concurrent
operations efficiently. Basic example of async program is presented i n L i s t ing 2.12.
Also , Rust does not include an executor for running these Futures by default, neces
sitating third-party libraries like tokio 2 or embassy-executory frequently used for
embedded applications.

use tokio::t ime::{s leep, Duration};

async fn perform_delayed_task() {
pr int ln! ("Task starts");
sleep(Duration::from_secs(2)).await;
print ln!("Task ends after a 2-second delay");

}

#[tokio::main]
async fn main() {

perform_delayed_task().await;
}

Lis t ing 2.12: Basic example of async usage. Adap ted from concepts explained i n [7].

• Compi ler and E r r o r Handl ing: The Rust compiler is often recognized for its
comprehensive and instructive error messages. It not only identifies errors but often
provides suggestions on how to rectify them, enhancing the development process by
making debugging more intuit ive and educational [22].

2 tokio executor crate: h t t p s : / / c r a t e s . i o / c r a t e s / t o k i o
3embassy-executor crate: h t t p s : / / c r a t e s . i o / c ra t e s / embassy -execu to r

12

https://crates.io/crates/tokio

• Community: The language benefits from an active and engaged community. Rust
evolves through an open R F C process, enabling community involvement i n its devel
opment.

Observing the esp-rs organization reveals that numerous commits are contributed
by community members, indicat ing a robust community involvement. Furthermore,
some drivers wi th in the ecosystem are supported exclusively by community efforts,
showcasing the collaborative nature of the development [11, 12].

2.1.2 Disadvantages of R u s t

But , of course, like any language, Rust also has drawbacks compared to its competitors C
and C + + [38]:

• Complexity: Compared to more t radi t ional languages like C and C + + , Rust 's learn
ing curve can be quite steep due to its distinctive features like ownership and borrow
ing, which require a new understanding of memory management.

• B u i l d Durat ion: The sophistication of Rust 's type system and its borrow checker,
which provide safety guarantees, can also lead to increased compilat ion times, a factor
that becomes more noticeable i n larger codebases.

• Development Environment: Despite Rust 's growing popularity, its development
tool ing is not yet as mature as that of languages w i t h a longer history, such as above-
mentioned C and C + + , which may present a challenge i n finding the right tools for
specific tasks.

• Direct Hardware Access: W h i l e Rust prioritizes safety, this can sometimes mean
sacrificing a degree of low-level control that languages like C and C + + offer, poten
t ia l ly complicat ing direct hardware interaction or certain optimizations.

• Community: A l though the Rust community is active and expanding, it 's s t i l l smaller
than those of longstanding languages like C and C + + , which means there may be
fewer resources, libraries, and tools available to Rust developers.

2.2 Comparison of Rust Standard and Bare-Metal Environ
ments

In Rust programming, the choice between std and no_std environments is pivotal , espe
cial ly when dealing wi th system-level and embedded applications. Th is decision impacts
how developers w i l l structure their code, manage dependencies, and interact w i th the un
derlying system or hardware.

2.2.1 T h e S t a n d a r d L i b r a r y

The Rust standard library, also known as std, is a r ich set of tools and functionalities
that form the foundation for Rust software development [40]. It offers a wide variety of
data types, such as vectors (2.1.1) and options (2.1.1), and includes util i t ies for tasks like
I / O operations, threading and other functionalities like net, which provides interfaces to

13

work wi th network part. Crate std [1] page provides comprehensive and well-structured
documentation for the standard l ibrary i n a common „Rust Docs" format.

A s stated in Embedonomicon [5]: „ s t d contains functionality that assumes the program
w i l l run on the operating system rather than directly on the metal, std also assumes that
the operating system is a general purpose operating system, like those found in servers and
desktops. For this reason, s td provides a standard A P I for functionality typical ly found in
such operating systems: threads, files, sockets, file system, processes, and so on."

2.2.2 Rust for Bare-Metal Systems

no_std is an essential approach for creating applications that do not rely on the std. It
becomes very useful i n embedded systems, resource-constrained environments, or scenarios
requiring direct hardware interaction. B y opting for no_std, developers leverage the core
functionalities of Rust without the overhead of std, which includes features dependent on
an underlying O S [35].

The core l i b r a ry 1 , which non-standard environments depend on, provides a subset of the
functionalities found i n standard library, focusing on features that do not require OS-level
support. Th is includes basic types, ari thmetic, iterators, and traits but excludes dynamic
memory al location, I / O operations, and concurrency, which are part of std, which means
developers need to manage memory allocation and system ini t ia l iza t ion manually, and may
need to implement platform-specific features, linker scripts and etc. Also there is a Crate
a l loc ' , which provides facilities for dynamic memory allocation, however platform-specific
allocators are required, on top of which this the alloc crate w i l l be used [35]. In case of
Rust on Espressif chips, there is an esp-al loc crate, covered in 2.4.2, which fulfils the role
and deals w i th the functionality of the allocator [10].

2.2.3 Summary

However, despite a l l the convenience and comfort provided by the standard library, more
and more often drivers for microcontrollers and embedded platforms work i n no_std and
here's why:

• Resource Efficiency: Minimizes runtime overhead due to the absence of many
standard functions and data types, which is very important for devices wi th l imited
memory and processing power, despite being more complex to implement.

• Direct Hardware Access: A l lows closer control and interaction wi th hardware
peripherals, essential i n embedded systems.

• Reduced Binary Size: bare-metal approach can lead to smaller binary sizes, an
important factor for systems wi th l imi ted storage space.

• O S Independence: no_std can run i n environments without a full-fledged operating
system, al igning wi th the typica l setup of embedded systems.

A great way to end this discussion is another quote from the author of the Ebedonomicon [5]:

4 Core crate documentation: h t t p s : / / d o c . r u s t - l a n g . o r g / c o r e /
5 A l l o c crate documentation: h t t p s : / / d o c . r u s t - l a n g . o r g / a l l o c /

14

https://doc.rust-lang.org/core/
https://doc.rust-lang.org/alloc/

,J3ecause of these properties, a no_std application can be the first and/or
the only code that runs on a system. It can be many things that a standard
Rust application can never be, for example: The kernel of an OS, firmware, a
bootloader."

- Jorge Aparicio

2.3 Espressif Microcontrollers

Espressif Systems 6 , established i n 2008, has grown from a smal l startup i n C h i n a to a
leading figure i n the I o T / A I o T and semiconductor industry on a global scale. The company
is originally known for its innovative ESP8266 and E S P 3 2 chip series, which, back in a days,
made a sensation w i t h how powerful, versatile and simultaneously cost-effective they are,
relative to the competitors. Espressif's commitment to open-source technology has enabled
developers worldwide to create a number of smart-connected devices, fostering a community
of innovation and collaboration.

2.3.1 Chip R a n g e

This section outlines the current suite of microcontrollers from Espressif Systems, detail ing
their key characteristics. The information is drawn from the company's official website and
documentation [20], supplemented by personal insights and knowledge wi th in the field of
embedded applications development.

• ESP32: Th is platform can now be confidently referred to as a „classic". It gave
incredible popular i ty to Espressif Systems company, becoming a revolutionary micro
controller after the equally popular and s t i l l used, but no longer supported ESP8266 .
Two or one C P U core(s) Tensilica Xtensa' 32-bit microprocessor, 520 K B S R A M
(some variations have 4 4 8 K B R O M) , 2 .4GHz W i - F i module, dual-mode Bluetooth
(classic and B L E) , S D card interface, high-speed S P I , U A R T , I2S and I2C) .

. ESP32-S2: Fol lowing the success of the original E S P 3 2 , ESP32S2 chip was released
wi th a high-performance single-core Xtensa-driven C P U and focus on ultra-low-power
performance wi th a L P RISC-V core. Lacks Bluetooth, which differentiates it signifi
cantly from the E S P 3 2 .

• ESP32-S3: Offers dual-core Xtensa and low-power RISC-V processors, distinguishes
itself w i th A I capabilities and enhanced security features, support ing both W i - F i and
Bluetooth 5. W h i c h makes this chip ideal when it comes to A I o T and smart-home
devices, for example E S P 3 2 - S 3 - B O X 8 product. Currently, it is the last Xtensa chip
released from Espressif.

• E S P 3 2 - C 3 : Stands out w i th its RISC-V 9 single-core C P U , marking a shift in ar
chitecture. It brings Bluetooth 5.0 into the low-cost and low-power domain. A l so
brings hardware acceleration for cryptographic algorithms. Espressif also released an

6Espressif Systems about themselves: ht tps: / /www.espressif .com/en/company/about-espressif
7 Xtensa architecture: h t t p s : / /www.cadence.com/en_US/home/ tools /s i l icon-solut ions /compute- ip /

t e n s i l i c a - x t e n s a - c o n t r o l l e r s - a n d - e x t e n s i b l e - p r o c e s s o r s / x t e n s a - l x - p r o c e s s o r - p l a t f o r m . h t m l
8 E S P 3 2 - S 3 - B O X showcase: https://www.youtube.com/watch?v=KGVOilMrjbO
9 R I S C - V official page: h t t p s : / / r i s c v . o r g

15

https://www.espressif.com/en/company/about-espressif
http://www.cadence.com/en_US/home/tools/silicon-solutions/compute-ip/
https://www.youtube.com/watch?v=KGVOilMrjbO
https://riscv.org

esp-rust-board 0 that ran on the E S P 3 2 - C 3 chip. In a way, there was a slight inac
curacy here, as Rust is supported on a l l of the company's released chips, but because
of the naming, some part of the community assumed that it was only supported on
this board.

• E S P 3 2 - C 6 : A successor of E S P 3 2 - C 3 board wi th the same processor, but character
ized by its support for I E E E 802.15.4 1 1 and W i - F i 6, first in a whole lineup.

. E S P 3 2 - H 2 : 32-bit RISC-V core on board, w i th support of I E E E 802.15.4 and Blue
tooth 5, but no W i - F i module, designed for low power consumption, considered as
a very suitable chip for Thread 1 2 end devices and border router, Zigbee 1 3 protocol
communcation and Matter 1 1 brigde by combining it w i th some E S P SoC w i t h W i - F i .

• E S P 3 2 - C 2 : New chip from the C-l ine w i th RISC-V processor and support for W i -
F i and Bluetooth 5.0. T h i s chip was made wi th a focus on price efficiency and for
the most part is used by big customers (their list is private company data) to create
various Smart-Home products, meaning if this chip is procured, it is procured by the
thousands and there are not that many feedback or issues from the community on
G i t H u b .

2.4 Rust on Espressif Chips

Following on from previous sections on the powerful Rust type system and its commit
ment to memory safety, and given the wide range of Espressif chips, the integration of
Rust programming wi th Espressif hardware is a notable step forward in embedded system
development and another step towards popularising the Rust language. Th is combination
leverages the strict safety and efficiency principles inherent i n Rust , along wi th the signifi
cant computat ional and connectivity features offered by Espressif chips. This collaboration
not only promises to increase the rel iabi l i ty of embedded applications, but also opens up
new opportunities for innovation i n the IoT ecosystem.

W h e n Espressif d id decide to start support ing the Rust language, a separate team was
created to do so. A separate organisation was created for it on G i t H u b - esp-rs. W h i c h
means Rust drivers are not under the ma in Espressif 1'' organization.

2.4.1 Standard Library Support on Espressif Chips

W i t h i n the broader context of using Rust w i th Espressif microcontrollers, the esp-idf-hal
project warrants a brief mention. A l t h o u g h this thesis focuses on bare-metal implementa
tions, as the main focus of the esp-rs team at the moment is also the development of no_std
implementation, understanding the scope and purpose of e sp- idf -hal , which is std driver,
adds depth to the overall understanding of Rust 's integration wi th E S P 3 2 hardware.

1 0 Rust-board project: h t t p s : / / g i t h u b . c o m / e s p - r s / e s p - r u s t - b o a r d
1 1 I E E E 802.15.4 standard: h t tps : / / s tandards . ieee .Org/ ieee /802.15.4 /7029/
1 2 Thread protocol: ht tps: / /www.threadgroup.org/What-is-Thread/Thread-Benef i t s
1 3 Zigbee protocol: h t t p s : / / c s a - i o t . o r g / a l l - s o l u t i o n s / z i g b e e /
1 4 M a t t e r protocol: h t t p s : / / c s a - i o t . o r g / a l l - s o l u t i o n s / m a t t e r /
1 5 Espressif organization on Gi tHub: h t t p s : / / g i t h u b . c o m / e s p r e s s i f

16

https://github.com/esp-rs/esp-rust-board
https://standards.ieee.Org/ieee/802.15.4/7029/
https://www.threadgroup.org/What-is-Thread/Thread-Benef
https://csa-iot.org/all-solutions/zigbee/
https://csa-iot.org/all-solutions/matter/
https://github.com/espressif

This project is part of the esp-rs ini t iat ive, aimed at providing a H A L for Espressif chips,
u t i l iz ing the E S P - I D F 1 6 . Basically, this driver is a Rust-centric wrapper over the lower-level
details provided by the E S P - I D F , offering Rust developers a more familiar and time-tested
interface to work wi th [12].

It is also worth not ing an interesting fact that perfectly describes the community of Rust
and Espressif - at the current moment this project is entirely maintained by the community,
which means that the employees of the esp-rs team only rarely make new commits there.

2.4.2 Bare-Metal Programming with Rust on Espressif Chips

This section w i l l explore the pr imary Rust driver for bare-metal programming on Espressif
chips, known as esp-hal, which is a central tool i n the development of the project discussed.
This project and no_std functionality is a pr ior i ty for the esp-rs team - e sp- id f -ha l is a
complete and working driver, but it s t i l l doesn't reveal the full potential of the Rust lan
guage and utilizes E S P - I D F functions anf entirely dependant on it , which makes projects
rather „heavy".

Th is subsection w i l l delve into the expansive ecosystem surrounding the esp-hal project,
discussing the various modules that together enhance the functionality of the main driver,
providing a comprehensive toolki t for development w i th Espressif's chips.

esp-hal

esp-hal is the Hardware Abs t rac t ion Layer (H A L) for Espressif chips [11] provided as
a c ra t e 1 7 . Current ly supports these chips:

. E S P 3 2 Series: E S P 3 2

. E S P 3 2 - C Series: E S P 3 2 - C 2 (aka ESP8684) , E S P 3 2 - C 3 (aka ESP8685) , E S P 3 2 - C 6

. E S P 3 2 - H Series: E S P 3 2 - H 2

• E S P 3 2 - P Series: E S P 3 2 - P 4 (Support for the E S P 3 2 - P 4 microcontroller remains rel
atively l imi ted at this t ime, which has led to the exclusion of support for this chip
wi th in the scope of the current project.)

. ESP32-S Series: ESP32-S2 , ESP32-S3

Detai led description of the entire chip range is i n Section 2.3.1.

Core features:

• Support for a l l peripherals available on each chip. Despite the fact that the README
to the driver says „Drivers are currently implemented for a significant number of
peripherals, but they have varying levels of functionality" [11], i n practice, the driver
is observed to be quite reliable and extensively implemented across a wide range of
functionalities.

1 6 E S P - I D F project: h t t p s : / / g i thub .com/espress i f / e s p - i d f / t r ee /mas te r
1 7 esp-hal crate: h t t p s : / / c r a t e s . i o / c r a t e s / e s p - h a l

17

https://crates.io/crates/esp-hal

• Th is l ibrary is designed to be compatible w i th embedded-hal w i th its collection of
traits representing common embedded functionalities, erasing the specific details and
unifying access to core functionality. In the Rust community, it 's common practice for
driver developers, bo th microcontrollers and sensors, to use common traits from this
crate, so for the most part libraries for external peripherals are platform-agnostic [2].

Also historically speaking, for a long t ime the most used and stable version was
embedded-hal 0.2.7. However, not long ago a version 1.0.0 was finally released.
Thus, a huge number of drivers s t i l l work on 0.2.7, but 1.0.0 is also gaining momen
tum. The esp-hal l ibrary offers compat ibi l i ty for both current and past versions of a
crate. This feature was part icular ly beneficial dur ing the development of the project,
as many of the fundamental sensor drivers relied upon are s t i l l u t i l iz ing version 0.2.7.

• Support for L P Cores, esp-hal crate provides (yet l imited) support for programming
low-power RISC-V co-processors, found on E S P 3 2 - C 6 , ESP32-S2 and ESP32-S3 [11].
This functionality can be found in the esp-hal p ro jec t 1 8 , as well as the examples
for it .

• Avai labi l i ty of informative documentation unique to each chip [14].

• Au tomat ion wi th the x task 1 9 tool . It significantly simplifies the process of running ex
amples, testing in UI , building documentation. A n example of usage is demonstrated
on L i s t ing 2.13

Running examples
cargo xtask run-example esp-hal esp32c6 hello_world
Bui ld ing examples for ESP32(useful for automated testing)
cargo xtask build-examples esp-hal esp32
Loca l ly b u i l d documentation
cargo xtask build-documentation esp-hal esp32s2

Lis t ing 2.13: X ta sk usage example [11].

• Pre t ty informative examples, The Rust on ESP Book [17] and Cont r ibu t ion guide,
which makes it easier for newcomers to get into this development environment and
gives clear guidelines on how to create own contributions.

• Code styl ing and formatting. The root folder of the repository contains a
rustfmt.toml file, which is further discussed in a later section (see Section 4.6) and
a shell script pre-commit, which, when run, shows a l l places that do not match
the declared format for the repository. To make the cargo fmt command from this
script fix everything itself, user just needs to remove the last pass of the „—check"
argument i n the pre-commit script and execute ./pre-commit once again.

espflash

The espflash tool is a pivotal component wi th in the Rust ecosystem for Espressif chips,
designed for compil ing and deploying Rust applications to E S P hardware.

'esp-lp-hal: h t t p s : / / g i t h u b . c o m / e s p - r s / e s p - h a l / t r e e / m a i n / e s p - l p - h a l
'xtasks documentation: h t t p s : / / d o c s . r s / x t a s k s / l a t e s t / x t a s k s /

18

http://github.com/
https://docs.rs/xtasks/latest/xtasks/

It's a serial flasher u t i l i ty for those devices, loosely based on esptool.py , which is a E S P -
I D F tool also for serial communicat ion wi th a board [16].

There are two versions of espflash available:

• A s a command-line tool (Lis t ing 2.14)

I n s t a l l tool
cargo i n s t a l l espflash
Flash binary and monitor output
espflash f lash b i n a r y . e l f —monitor

Lis t ing 2.14: Install and flash wi th espflash (C L I tool) [16].

• A s a cargo extension (Lis t ing 2.15)

I n s t a l l tool
cargo i n s t a l l cargo-espflash
Bui ld and f lash the project (executed from the root)
cargo espflash f lash

Lis t ing 2.15: Install and flash wi th espflash (cargo extension) [16].

esp-alloc

This crate offers a simple no_std heap allocator for the processors from Espressif and
supports a l l currently available [10] (see in i t ia l iza t ion in L i s t i ng 2.16). Th is unlocks one
more component of the Rust language besides the core l ibrary - the a l loc 2 1 crate. It makes
it possible not only to use smart pointers and heap, but also to use std Rust data types
such as S tr ing or Vec.

#[global_allocator]
s ta t i c ALLOCATOR: esp_alloc::EspHeap = esp_alloc::EspHeap::empty();

fn init_heap() {
const HEAP_SIZE: usize = 32 * 1024;

s ta t i c mut HEAP: MaybeUninit<[u8; HEAP_SIZE]> = MaybeUninit: :uninit() ;

unsafe {

ALLOCATOR.init(HEAP.as_mut_ptr() as *mut u8, HEAP_SIZE);
}

}
Lis t ing 2.16: G l o b a l allocator in i t ia l iza t ion wi th esp-alloc [10].

esp-wifl

The esp-wifi crate serves as a comprehensive driver for managing W i - F i , Bluetooth, and
E S P - N O W 2 2 communicat ion on Espressif chips. Developed under the esp-rs project, it

2 0 esptool documentation: h t t p s : / / d o c s . e s p r e s s i f . c o m / p r o j e c t s / e s p t o o l / e n / l a t e s t / e s p 3 2 /
2 1 C r a t e alloc: h t t p s : / / d o c . r u s t - l a n g . o r g / a l l o c /
2 2 E S P - N O W protocol: h t t p s : / /www.espressif . com/en/so lu t ions / low-power-so lu t ions /esp-now

19

http://essif.com/projects/esptool/en/latest/esp32/
https://doc.rust-lang.org/alloc/
http://www.espressif

facilitates the integration of these communicat ion technologies wi th in the Rust ecosystem,
making it an essential tool for developers working on communicat ion features w i th Espres-
sif's microcontrollers in a no std environment. The list of supported methods is also
located at the source [15].

The main esp-wifi driver also uses the support ing esp-wifi-sys directory located at the
root of the repository. It provides pre-compiled drivers and generated bindings generated
from the C header files from E S P - I D F .

Due to the fact that this driver is quite complex, very careful management of features is
crucial , as activating a specific feature i n the user's Cargo . toml unlocks part icular func
tionalities. Addi t ional ly , passing special parameters to the compiler is necessary for the
driver's correct operation. These aspects are examined and detailed further i n the section
discussing the project's implementat ion related to W i - F i and M Q T T (see Section 3.6).

esp-pacs

This l ibrary houses Per ipheral Access Crates (P A C s) for every Espressif SoC available.
These P A C s are the lowest level of abstraction over raw registers and microcontroller pe
ripherals, which wraps them into accessible data structures, providing driver developers
wi th the necessary interfaces to bu i ld higher-level abstractions. They are generated using
the svd2rust 2 3 tool from Espressif S V D s [13].

The project is structured to allow for adjustments or corrections to S V D files through
patch files i n „.yaml" format. W h e n modifications are required, these patches can be ap
plied using the xtask too l (see footnote 19), regenerating the entire S V D for the specific
chip that was altered.

2.4.3 Peripherals Configuration in esp-rs Drivers

In the context of the esp-rs ecosystem, peripheral configuration and management are han
dled through a structured and systematic process. Th is process begins w i t h the data struc
tures that are generated from S V D files wi th in the esp-pacs crate. These data structures
form the foundation upon which the esp-hal crate operates. Here, a singleton pattern
is employed to instantiate a Peripherals structure. Access to the hardware peripher
als is then obtained by „ tak ing" this singleton at the start of the program using the
p e r i p h e r a l s : :take() ;" command. This approach is standard in embedded applications,
providing a controlled mechanism to ensure that peripheral access is managed safely and
efficiently, preventing concurrent access conflicts.

2 3 svd2rust tool: h t tps : / /g i thub.com/rus t -embedded/svd2rus t /

20

https://github.com/rust-embedded/svd2rust/

Microcont ro l le r
(esp32xx)

I2C SPI

M E M U S B

G P I O A D C

Usab le I tems of Peripherals s t ruc ture

e s p - p a c s esp-ha l

I2C SPI

M E M U S B

G P I O A D C

Figure 2.1: Archi tecture for operating on peripherals (on basis of [11]).

A s part of the answer to one of the questions posed i n this thesis, it is worth not ing that
the esp-hal driver itself, as well as none of the elements of the esp-rs infrastructure, does
not support external peripherals and focuses only on the internal peripherals of a part icular
chip, as shown the the Figure 2.1.

21

Chapter 3

Design and Implementation

This section w i l l introduce a developed solution aimed at simplifying the task of program
ming embedded devices wi th Rust . It w i l l present an analysis of existing projects already in
place to address this challenge, describe the structure and reasoning behind the suggested
crate, and detai l part icular implementat ion strategies. Addi t ional ly , the text w i l l guide the
reader through the use of the library, cover both successful ideas and those not used because
they were ineffective, and discuss updates made to existing drivers for peripheral devices.
The section w i l l also cover i l lustrative examples and the approach to automated testing.

The purpose of this part is to clarify the designs of the project, the difficulties encoun
tered, and the the methods used to overcome these difficulties.

3.1 Exist ing Solutions

In order to offer a really new and valuable solution to the market, it is essential to conduct a
thorough review of existing products that address the problem at hand. Drawing from the
strengths and weaknesses of current offerings, an improved vision for tackling this challenge
can be proposed.

esp-bsp-rs: This repository on G i t H u b offers Rust Bare M e t a l Boa rd Support Packages
tailored for ESP32-based boards, w i t h an emphasis on compat ibi l i ty w i th the Embassy
Async 1 runtime for embedded applications i n Rust [32].

The main functionality of this l ibrary is to provide an interface for in i t ia l iz ing displays
for specific devkits, including E S P 3 2 - C 3 - L C D K i t 2 , M 5 S t a c k 3 or ESP32-S3-Box 4 . In
this crate there are macros that return prepared pins to the user depending on the con
figuration and used board, as well as macros that return the type of a specific display for
specific devkits, which is a nice relief because due to the security of this language, a strict
and specific data type is required wi th a l l generic parameters provided. Posit ive and nega
tive sides of this solution are l isted i n Table 3.1.

1 Embassy embedded framework: ht tps: / /gi thub.com/embassy-rs/embassy
2 E S P 3 2 - C 3 - L C D K i t : h t t p s : / / d o c s . e s p r e s s i f . c o m / p r o j e c t s / e s p - d e v - k i t s / e n / l a t e s t / e s p 3 2 c 3 /

e sp32-c3- l cdk i t /use r_gu ide .h tml
3 M5Stack product: ht tps: / /m5stack.com
4ESP32-S3-Box(discontinued): h t t p s : / / d o c s . p l a t f o r m i o . o r g / e n / s t a b l e / b o a r d s / e s p r e s s i f 32/

esp32s3box.html

22

https://github.com/embassy-rs/embassy
http://espressif.com/projects/esp-dev-kits/en/latest/esp32c3/
https://m5stack.com
http://platformio.org/en/

Pros Cons

• H i g h modular i ty wi th in the
code, facil i tat ing easy updates or
changes to board configurations.

• Supports a range of
configurations, promoting
scalabili ty across different
hardware platforms.

• Organized and maintainable
code using Rust 's enums,
structs, and macros effectively.

• Complex i ty due to extensive use
of macros, which may be
difficult for new users to
understand. However, there is a
reason for this and there is no
other option i n Rust to declare
and work wi th such types, or
use pins that are part of a larger
peripherals structure(see Section
5.3).

• Support for only a narrow range
of selected devkits and only for
two displays (deduced from the
code [32]).

Table 3.1: Pros and Cons of the esp-bsp-rs crate.

The O x i d E S P a r k project on G i t L a b is a Rust-based ini t iat ive for the Rust E S P Board ,
which has been already mentioned i n 2.3.1, based on the E S P 3 2 - C 3 microcontroller. Unl ike
crate, which was observed above, this one is based on the e sp- id f -ha l driver (see 2.4.1),
which depends on ESP-IDF [30]. However, the concept and problem that this l ibrary solves
corresponds to the topic of this research paper, so there is no reason why it should not be
analyzed as well.

It supports both internal microcontroller sensors (S H T C 3 0 and ICM-42670-P 6) and
external devices, potential ly covering a range of sensors and peripherals commonly used in
IoT applications. A t the current stage only TSL2561 ' and W S 2 8 1 2 B 8 L E D strips are
supported, B M E 2 8 0 9 and M P U 9 2 5 0 1 0 are coming soon. P lanned features are aimed at
extending this support, integrating more functionality and wider device compatibil i ty. For
the most part, the project also utilizes already existing libraries for sensors.

Th is l ibrary opens the possibil i ty for the user to customize his project w i th a separate
file in „ . toml" format, the specified parameters from which w i l l later be applied to the
project [30].

5 S H T C 3 temperature and humidity sensor: h t tps : / /www.sensi r ion.com/products /ca ta log/SHTC3/
6 ICM-42670-P accelerometer and gyroscope sensor: h t tps : / / invensense . tdk .com/products /mot ion-

t r a c k i n g / 6 - a x i s / i c m - 4 2 6 7 0 - p /
7 TSL2161 visible and infrared light sensor: ht tps: / /ams-osram.com/products /sensors/ambient-

l i g h t - c o l o r - s p e c t r a l - p r o x i m i t y - s e n s o r s / a m s - t s l 2 5 6 1 - a m b i e n t - l i g h t - s e n s o r
8 WS2812B R G B L E D strips: ht tps: / /cdn-shop.adafruit .com/datasheets/WS2812B.pdf
9 B M E 2 8 0 temperature, humidity and pressure sensor: ht tps: / /www.bosch-sensortec.com/products/

environmental-sensors /humidi ty-sensors-bme280/
1 0 M P U 9 2 5 0 accelerometer, gyroscope and magnetometer sensor: h t tps : / / invensense . tdk .com/

p roduc t s /mot ion- t r ack ing /9 -ax i s /mpu-9250 /

23

https://www.sensirion.com/products/catalog/SHTC3/
https://invensense.tdk.com/products/motion-
https://ams-osram.com/products/sensors/ambient-
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://www.bosch-sensortec.com/products/
https://invensense.tdk.com/

Pros Cons

• H igh ly modular structure,
al lowing for flexible
development.

• Supports not only internal Rust
B o a r d sensors, but also external
devices, which expands the
range of covered use-cases.

. Basic W i - F i and M Q T T
support.

• Configurat ion v i a external
toml file.

• The example in the repository
covers a l l use-cases that this
l ibrary simplifies, al though there
is only one of them

• Focus on one specific chip.

• W h i l e the l ibrary currently
supports a range of external
peripherals, not a l l bu i l t - in
sensors are yet accommodated.

• Us ing the std environment,
while embedded development
tends towards no std.

• Hav ing the abi l i ty to choose
between configuration directly
i n the code or v ia toml file
could be a great feature.

Table 3.2: Pros and Cons of the O x i d E S P a r k crate.

It's worth not ing that the project is s t i l l a work i n progress and the author makes private
commits quite often and has some experiments i n branches besides main [30]. Structured
pros and cons of this solutions are shown i n Table 3.2 above.

Also worth mentioning is a project related to the Espressif Systems E S P - I D F core driver
that served as the inspirat ion for esp-bsp-rs - the esp-bsp project. Th is is where the
original idea of support ing and simplifying the work w i t h different Espressif devkits and
their features came from, providing higher level of abstraction for working wi th peripherals
such as cameras, touchscreens, audio, card slots, etc [18].

Th is driver w i l l not be discussed in detail , because it is rather indirect ly related to the
problem of simplifying the development of embedded applications in Rust on Espressif
platforms, which is addressed in this research, being only an example of the fact that such
a problem is also addressed i n C drivers from Espressif Systems.

3.2 Default Set of Proposed Peripherals

This section w i l l describe the set of sensors that have been selected for default support.
The word „default" is used because the l ibrary has been designed and implemented to be
easily extensible, and when the l ibrary is released it w i l l be open to further extensions from
both the developer and the community.

24

3.2.1 Environmental Sensors

Environmenta l sensors are an integral part of most embedded applications, so when these
sensors were selected, the intention was to cover as many types of measured data as possible:
temperature, humidity, l ighting, air pol lu t ion and so on. Set of chosen sensors is shown on
Figure 3.1.

A H T 2 0 B M E 2 8 0 S G P 3 0

TSL2591 H C - S R 0 4

Figure 3.1: Used environmental sensors [4].

• A H T 2 0 : Cost-effective I2C temperature (°C) and relative humidi ty (%RH) sensor

[4]-

• B M E 2 8 0 : A sensor from Bosch, belonging more to the medium-high price category.
It can operate on both S P I and I2C buses and is capable of measuring temperature
(°C), barometric pressure (hPa) and air humidi ty (%RH) [4].

. SGP30: I2C-driven sensor for getting information about T V O C (P P M) and e C 0 2 (P P B)
in the air. However, it is important to know that this sensor is not suitable for use in
laboratories and other ultra-precise calculations [4].

• TSL2591: Ultra-high-range (600,000,000:1) luminosi ty sensor (lux) also t ransmit t ing
data v ia the I2c bus, however, changing the address, unlike a l l previous sensors w i l l
not work, so user should be careful when using wi th other peripherals so that it
doesn't come to address interference [4].

• H C - S R 0 4 : A sensor that allows to measure distance. The best result is achieved at
a distance of 10-250cm from the target. Th is sensor does not work on any bus, using
the simplest connection v i a G P I O pins. It works on the principle of echolocation - one
speaker emits a wave (trigger), the second speaker waits for the reflected wave (echo)
and wi th the help of simple calculations from the difference i n time, sound speed and
temperature of the surrounding environment the final distance to the object from
which the sound wave was reflected is obtained [4].

25

V = 331 .3+ (0.606 * T)

S = V * At

(3.1)

(3.2)

where V is a speed of sound i n the environment, T - temperature i n the environment,
S - distance to the object and A t is the t ime difference between the emission and
reception of the reflected wave. Constants: 331.3 m/s is a base speed of sound i n air
at 0 degrees Celsius and 0 .606 is the increase of speed of sound per degree Celsius [9].

3.2.2 Displays

In some use-cases it is also important to be able to deduce information not only on the
terminal of P C connected to the board, but also on some displays, so it was decided to
introduce support for displays shown on Figure 3.2.

. ILI9341: Dr iver for a 2.8/3.2 inch R G B T F T L C D display wi th 240x320 pixel reso
lut ion, operating v i a S P I bus [24]. In Espressif Systems products it is used as part of
the extension board for E S P 3 2 - S 2 - K a l u g a - l K i t

• M A X 7 2 1 9 : This driver allows 64 Dot L E D 8x8 display modules w i th only 16 pins
through mul t ip lexing [4].

• PCD8544: Classic monochrome L C D display used in various N o k i a phones. Often
used i n battery powered devices due to its low power consumption. Be sure to use
this display w i t h a 5 V power supply output [21].

C h a i n of 8x8 displays
w i t h M A X 7 2 1 9

Figure 3.2: Used displays.

26

3.2.3 Miscellaneous

• P I R Sensor: M o t i o n sensor is the simplest, yet quite useful element for smart home
systems, security systems or other embedded applications. The simplest sensor is
controlled by reading a single data pin .

• Joystick: A n analog 2-axis joystick is also a common element in such use-cases, so
it was decided to include its support i n the l ibrary as well.

• Button: B u t t o n support and simplification should be part of any such A P I , as this
crate provides. Meaning a normal but ton wi th one data contact.

Figure 3.3: Used miscellaneous peripherals.

3.3 Conceptual Design for Simplified Peripheral Operations

The design of this l ibrary strategically utilizes Rust 's advanced features to streamline the
interaction wi th peripherals. B y implementing traits, the crate defines a set of common
behaviors that various peripherals must adhere to, promoting a uniform interface for pe
ripheral management. This abstraction allows users to interact w i th different hardware
components through a consistent set of high-level functions, abstracting the complexities
associated wi th direct hardware manipulat ion.

It w i l l also be a task to bypass such peripherals that do not fit any of the generaliza
t ion traits, requiring more or different input parameters. Potent ia l difficulties also include
the appearance of possible generics, which, al though a very useful element of the language,
can cause a lot of problems when t ry ing to satisfy the compiler.

A key element of a l l such libraries and frameworks is to provide an intuit ive, simple, and
memorable A P I for peripherals, be it a display, sensor, or but ton. Tha t is what this crate
w i l l strive for as well.

27

3.4 Peripheral Management Architecture

This subsection describes a general approach to peripheral management in the library, bo th
internal on E S P device and external supported peripherals (see Section 3.2) designed to take
the complexity out of device management for end users. Users interact w i th peripherals
using high-level functions or macros, e l iminat ing the need to manage complex details such
as p in configuration or device-specific protocols.

3.4.1 On-board Peripherals

The root file of the l ibrary (esp-ward/src/lib.rs, see project structure 3.8) contains most of
the functionality related to working wi th internal peripherals of E S P 3 2 devices. Here there
are both pr imit ive simplifications, for example macro „ t a k e _ p e r i p h " and „ t a k e _ s y s t e m " ,
which exist in order to reduce the complexity of the syntax of these operations itself, and
also macros aimed at providing a shorter and more complex ones, like simplified ini t ia l iza
t ion of SPI and I2C structures necessary for the development of embedded applications or
general chip in i t ia l iz ing macro „ i n i t _ c h i p " .

The above-mentioned „ i n i t _ c h i p " macro serves as a u t i l i ty to ini t ial ize the essential hard
ware components required for operations. It takes identifiers peripherals and system as
inputs, and uses them to init ial ize the clocks to their default settings, configure G P I O pins,
and create a delay object based on the system clocks. It returns a tuple of three ini t ia l ized
components, making them readily available for immediate use i n the system's runtime en
vironment. This macro also imports the necessary traits from embedded hal (Section
3.5.1) for the correct operation of the delay into the program of the end user [2].

l e t peripherals = esp_ward::take_periph!();
l e t system = esp_ward::take_system!(peripherals);
l e t (clocks, p ins , mut delay) = esp_ward:: init_chip!(peripherals , system);

Lis t ing 3.1: In i t ia l in i t ia l izat ion using the library.

A s demonstrated on L i s t i ng 3.1, it was decided to return the delay source as well due to
the fact that it is used quite often i n applications. However, if there is no need for it , the
user can s imply put the „ _ " sign instead of assigning it to the „delay" variable, which w i l l
satisfy the Rust compiler.

Two in i t ia l iza t ion variations, default and custom, were implemented for I2C and S P I pe
ripherals, see L i s t ing 3.2. In the default variation, the program instances of the peripherals
are designed to fit most possible configurations of both the chips themselves and the ex
ternal peripherals used, so as not to create interference wi th , for example, A D C pins (see
Section 3.5.2)

l e t i2c_bus = esp_ward:: init_i2c_default! (peripherals , p ins , c locks);
l e t spi_bus = esp_ward:: init_spi_default! (peripherals , p ins , c locks);

Lis t ing 3.2: Default I2C and S P I ini t ia l izat ion.

These macro calls w i l l return an I2C instance, where:

. GPI06 - S D A p in

. GPI07 - S C L pin

and an instance of S P I , where:

28

GPIOO - S C L K p in GPI04 - M O S I p in

. GPI02 - M I S O p in . GPI05 - C S p in

It is also possible to create a completely custom structure on the pins and frequency that
the user w i l l require i n a way, shown on L i s t i ng 3.3.

l e t i2c_bus =
esp_ward::init_i2c_custom!(peripherals, feclocks,
pins.gpio21, pins.gpio22, 100u32.kHz()

) ;

l e t spi_bus =
esp_ward::init_spi_custom!(peripherals, c locks,
p ins .gp io l8 , pins.gpio23, p ins .gp io l9 , pins .gpio5,
100u32.MHz()

) ;

L i s t ing 3.3: C u s t o m I2C and S P I ini t ia l izat ion.

The knowledge to implement these macros was obtained from the esp-hal l ibrary [11].

Also i n the root file of the l ibrary is a macro that handles the preini t ia l izat ion of the
allocator, which is required for some applications. This functionality is represented i n the
macro prepare_alloc. Example is demonstrated on L i s t ing 3.4. It should be called once
and only once i n the program at the very beginning, even before in i t ia l iz ing the chip itself.

esp_ward::prepare_alloc!();
l e t peripherals = esp_ward::take_periph!();
l e t system = esp_ward::take_system!(peripherals);

l e t (_clocks, p ins , delay) = esp_ward:: init_chip!(peripherals , system);

Lis t ing 3.4: Al loca tor preparation example.

The concept and knowledge for this functionality was taken from the l ibrary esp-alloc [10].

3.4.2 E x t e r n a l Per iphera l s

The „esp-ward/src/peripherals/mod.rs" (see project structure 3.8) directory serves as a cen
t ra l module for managing external peripherals. Th is file structures the integration and man
agement of these devices through Rust traits, which define common interfaces for various
types of peripheral interactions. These traits facilitate the implementat ion of standardized
methods for operations like reading from or wr i t ing to peripherals, ensuring consistency
across different hardware components. The design emphasizes modular i ty and reusability,
allowing developers to extend functionality without altering the core system, thus stream
lining the development process for applications involving diverse external devices.

The l ibrary emphasizes adhering to conventional naming conventions in order to create
an intuit ive A P I . Thus, the following general standards for working wi th peripherals have
been defined:

• create_on_<bus> - functions and macros in i t ia l iz ing any sensor or other external
peripheral adhere to this standard. <bus> can be „ i2c" , „sp i" or „p ins" i n case the
periphery does not operate on any bus but shares information direct ly v ia pins.

29

• get_<data> - functions that are used to retrieve data from a part icular device. <data>
is the type of the returned metric. T h i s logic also applies to the W i - F i functionality
(except for the M Q T T) provided by this crate, this is covered i n section 3.6.1.

For example, the I2cPeriph trait defines a method „ c r e a t e _ o n _ i 2 c " , which standardizes
the creation of peripherals on the I2C bus, emphasizing ease of use and consistency. This
trait definition is shown on L i s t i ng 3.5. The same applies to the trait SpiPeriph - it
performs the same functionality, but for peripherals working on the S P I bus.

pub t r a i t I2cPeriph {
type Returnable;
fn create_on_i2c(

bus: I2C<'static, esp_hal:peripherals: :I2C0>,
delay: Delay,

) -> Result<Self::Returnable, PeripheralError>;
}

Lis t ing 3.5: I2cPeriph trait definition.

Here the flexibility that the Rust language allows can be seen. A Returnable type has
been declared wi th in the trait itself, which ensures that when implementing this trait , the
developer w i l l be able to declare that the instantiat ing method w i l l return some custom
data type. This unleashes the unification of methods.

It was decided not to create trait N o B u s P e r i p h for peripherals that do not operate on
any bus, but communicate w i th the chip v ia G P I O communicat ion, because unification
of in i t ia l iz ing function parameters w i l l not be able to cover most cases, due to the fact
that different peripherals may require different amounts and types of input data. In view
of this it was decided to keep the name convention and use for this k ind of peripherals
„ c r e a t e _ o n _ p i n s " , but not to create any str ict ly defined trait for this.

Th is module also defines a set of traits that describe the behavior of sensors of specific
environment values, such as temperature, humidity, pressure, i l luminat ion, C 0 2 concentra
t ion. Th is w i l l allow flexible implementat ion of traits for peripherals w i t h different purposes
and, as i n the case of B M E 2 8 0 (see 3.2.1), w i l l also allow convenient handling of sensors
that combine measurements of different types of data.

pub t r a i t TemperatureSensor {
/ / Reads the temperature i n degrees Celsius
fn get_temperature(&mut self) -> Result<f32, PeripheralError>;

}

Lis t ing 3.6: Example of type-specific measurement trait .

The Unif iedData t rai t in this l ibrary is designed to provide a standardized way to get data
from a l l readable peripherals. This trait includes a read method that takes a Delay object
as an argument (which is a type from esp-hal and w i l l be retrieved by the i n i t_ch ip
function, see 3.4.1) and returns a Result containing the serialized data retrieved from the
peripheral. Th is trait allows to declare what type of data w i l l be extracted from the device
(see 3.4.2) and return at once a l l data received from the sensor serialized to the form of
tuple.

30

In the crate, a l l functions that interact w i th peripherals return a Result type. In the event
of an error, when .unwrap () is called on the result, it w i l l return a standardized error type
from the PeripheralError enum. This approach ensures that error handling is consistent
across the library, al lowing developers to more easily manage and debug issues related to
peripheral operations.

These traits encapsulate specific behaviors and operations, making them essential for en
suring that peripheral interactions are both efficient and error-resistant, which is crucial for
reliable embedded systems development.

3.5 A Closer Examination of Peripheral Operations

This section offers a thorough examination of peripheral operations wi th in the library, go
ing beyond basic usage to explore the detailed configuration and management processes. It
w i l l highlight the techniques and internal mechanisms used to interact w i th devices such
as sensors, buttons, joysticks and displays, providing insights into the l ibrary 's handling
capabilities. Th is closer look aims to equip reader w i th a nuanced understanding of pe
ripheral integration and opt imizat ion i n their embedded system projects. The methods of
implementing support for certain peripherals can be divided into several groups and certain
devices can be assigned to them. This is discussed in the following sections.

3.5.1 Sensors

The concept of implementing support for the environmental sensors that have been listed
i n 3.2.1 (with the exception of H C - S R 0 4) is almost identical. It w i l l be explained on the
example of B M E 2 8 0 sensor as the most complex of the presented devices i n terms of the
number of provided metrics.

Fi rs t step is to find the right crate i n the official package registry of the Rust language
- crates.io, which was covered i n 2.1.1. F i n d i n g the right l ibrary can be a major challenge
because many of them are either abandoned or made only for the std environment, which
is what this project encountered when support ing the MAX7219 display (see 3.5.3). The
best place to start looking for a suitable crate is based on the date of the last update -
these drivers are most l ikely to support current versions of embedded-hal (see, through
which the E S P 3 2 line chip w i l l communicate using esp-hal (see 2.4.2) and my l ibrary) . The
second and most important cri terion would be whether the driver for the desired sensor
operates i n no std. After selecting the right driver - proceed to its study, often many
of them have excellent documentation, i n a uniform format for a l l Rust libraries, so that
even if the driver author has not prepared examples, after some time spent on s tudying the
driver, the a lgori thm of working wi th it can be bui l t . In this case, a suitable d r i v e r 1 1 was
found quite quickly, so the next step could be ini t iated.

Fi rs t of a l l , it is necessary to implement the ini t ia l izat ion function wi th in the trait for
the bus selected for communicat ion. In the case of BME280, this sensor can operate on both
I2C and SPI, but at the moment I2C was chosen because after many attempts it was found
out that there is a conflict between the structures i n the driver for the sensor and esp-hal

1 1 B M E 2 8 0 rust crate: h t t p s : //docs.rs/bme280/0.5.1/bme280/

31

wi th in SPI , more about it i n the Section 5.3 devoted to testing, problems encountered and
evaluation .

Wrapper Structure

Next , an addi t ional new structure must be created that wraps the original structure pro
vided by the driver for the sensor. This is done so that:

• Have a l l the data needed for the sensor i n a single data unit (e.g., delay source).

• One of the goals of the project is to unify access to peripherals, so it is important that
the interface to a l l peripherals and sensors can be obtained by impor t ing only one my
l ibrary into the user's code, rather than a l l libraries associated wi th these devices.

• The names of these structures should have the same format.

• Mos t sensor structures require generics. If wrapper structure is used, the „default"
value w i l l be passed to that generic, shielding the user from working w i t h this complex
element.

use bme280::{i2c::BME280 as ExternalBME280_i2c};
pub struct Bme280Sensor {

/ / / The in terna l BME280 dr iver from the 'bme280' crate used over I2C.
pub inner: ExternalBME280_i2c<I2C<'static, e s p j i a l : p e r i p h e r a l s : : I 2 C 0 » ,
/ / / A delay provider for timing-dependent operations.
pub delay: Delay,

}

Lis t ing 3.7: Wrapper structure.

A s can be seen, the BME280 structure from the original driver for this sensor requires hav
ing the 12 C type as a generic parameter - the full type is stat ically declared i n the newly
created wrapper.

The inner field wi th in the Bme280Sensor structure encapsulates the device's interface,
specifically using an I2C type stat ically l inked to the I2C0 peripheral. The choice of I2C0
as the default peripheral across E S P chips is strategic: while some E S P models feature a
second I2C1 peripheral, a l l are equipped wi th basic I2C0, making it a universally appli
cable option [13]. This standardization simplifies the design, ensuring compat ibi l i ty and
reducing complexity in configuration processes. Moreover, the examples i n esp-hal also
always use I2C0 [11]. Us ing a „ ' s t a t i c " reference ensures that the I2C interface remains
val id for the lifetime of the sensor object, preventing issues related to dangling references
or inval id hardware access in embedded systems programming.

Also , after examining the driver for this sensor, it turns out that a delay source w i l l
be required to measure the data - this is also included i n the wrapper structure on L i s t ing
3.7.

A l l this makes this structure usable and suitable for the logic of operations wi th the internal
peripherals (see 3.4.1) of the Espressif chip and allows to work on simplification further.

32

Initialization

The next step is to implement the trait that is responsible for in i t ia l iz ing the sensor on
this bus, the process is demonstrated i n L i s t ing 3.8. In this case, it is I2cPeriph (see
3.4.2). Us ing the knowledge obtained from the driver for this sensor, the output is a similar
function for sensor instantiation.

impl I2cPeriph for Bme280Sensor {
type Returnable = Sel f ;

fn create_on_i2c(
bus: I2C<'static, esp_hal:peripherals: :I2C0>,
mut delay: Delay,

) -> Result<Self::Returnable, PeripheralError> {
l e t mut sensor = ExternalBME280_i2c::new_primary(bus);
match sensor.init(&mut delay) {

0k(_) => {}
Err(_) => return E r r (P e r i p h e r a l E r r o r : : I n i t i a l i z a t i o n F a i l e d) ,

}
0k(Bme280Sensor {

inner: sensor,
delay: delay,

})
}

}

Lis t ing 3.8: Peripheral in i t ia l iza t ion trait implementation.

Us ing pattern matching, an error of type PeripheralError is returned (see 2.1.1 and 3.4.2)
or, i f successful, the function continues its process and returns the above defined structure
wi th the sensor instance inside. Thus, a l l that remains is to create an A P I for operations
on it.

Measurements

Then the final step remains to provide the A P I for the selected sensor to the end user - the
implementation of metric-related traits for this new structure. It is necessary to select one
of the provided traits, which is suitable for this device and write the body of the getter
function for this metric declared by a trait . In this part icular case the implementat ion only
for temperature is demonstrated on L i s t ing 3.9, other implementations can be found in the
files dedicated to sensors (see project structure i n 3.8).

impl TemperatureSensor for Bme280Sensor {
fn get_temperature(&mut self) -> Result<f32, PeripheralError> {

match self.inner.measure(&mut se l f .de lay) {
Ok(measurement) => Ok(measurement.temperature),
Err(_) => Err(Per iphera lError: :ReadError) ,

}

}
}

Lis t ing 3.9: Met r ic trait implementation.

33

This uses the measure method from the l ibrary for this sensor, which returns Result. In
stead of the typica l unwrap, a match pattern is used here, so that if the temperature is
returned successfully, it returns this value „ w r a p p e d " in Ok (so that the data type matches
the Retrurn type declared in the returned value of this function), and in case of any error
(the „ _ " sign), it returns Err w i th an error packed inside, standard for the l ibrary being
created (see 2.1.1 and 3.4.2).

Th is completes the addi t ion of support for common environmental sensors. A l l the l i
braries used to support these sensors can also be found in the Cargo. toml file, the l ibrary
names are unambiguous and unique and can be found by name on crates.io.

3.5.2 Input Devices

The following peripherals were allocated to the Input Devices category: P I R sensor (mo
t ion sensor), button, and joystick. This subsection w i l l describe how the A P I for these
components, which are important i n many embedded applications, was developed.

P I R sensor

It was decided to write an interface for this sensor and not to use ready-made libraries, as
this is a rather simple peripheral and this approach w i l l reduce the number of imported
libraries, respectively, and the size of the binary. The P I R module
(esp-ward/src/peipherals/pir.rs, see project structure i n 3.8) i n my l ibrary is designed to
abstract and simplify the interaction wi th typica l P I R mot ion sensors that transmit data
by a single p in , described i n 3.2.

The module defines a PirSensor structure that encapsulates the input p in used for mo
t ion detection. It was decided to use the InputP in trait from the embedded-hal l ibrary
(version 0.2.7, see 3.5.1), since the p in structures from esp-hal implement i t . Th is struc
ture is ini t ia l ized wi th a specific G P I O p in configured as a pull-up resistor input using
the create on pins function (see 3.4.2). The only operation that must be performed to
make it work correctly, make it to not cause cr i t ica l errors during program run and satisfy
the compiler is to override the error type in InputP in w i th core: : convert: : I n f a l l i b l e ,
according to what is used i n the gpio module i n esp-hal [11]. Th is is demonstrated on
L i s t ing 3.10.

impKPIN: InputPin<Error = core:: convert:: I n f a l l i b l e » PirSensor<PIN> {
pub fn create_on_pins(pin: PIN) -> Self {

PirSensor { inner: p in }
}

Lis t ing 3.10: Redefining the Er ro r type i n generic argument.

The same should be done in a l l peripherals requiring pins from the E S P chip.

M o t i o n detection is done using the read method, part of the Unif ledData trait (see 3.4.2),
which checks the state of the p in and returns true if mot ion is detected (input p in is in
high state), otherwise false.

34

But ton

The B u t t o n driver i n this l ibrary (esp-ward/src/peipherals/button.rs, see project structure
in 3.8) contains functionality to control but ton inputs w i th debugging logic.

It defines an Event enumeration wi th states Pressed, Released, and Nothing to repre
sent possible but ton events. The B u t t o n structure contains an input p in (see reference in
previous P I R sensor sub-subsection 3.5.2) and tracks the state of the but ton i n pressed
i tem of a structure.

The debouncing mechanism provides a reliable readout of the but ton state by introducing a
fixed delay after detecting a state change, and then checking the state again to confirm the
change, which reduces false positives due to noise. This setup enables accurate detection of
high-level events through method calls, s implifying user interaction wi th hardware buttons.
The a lgor i thm was implemented by me personally, w i t h inspirat ion drawn from an article
by The Ganssle Group [23]. It was also tested on examples I created on W o k w i . c o m 1 2 [33].

To retrieve data from a but ton i n code using this driver, user would typical ly uti l ize the read
method provided by the UnifiedData trait implemented for the Button structure. Th is
method includes debouncing logic function to ensure the button's state is stable before a
read operation is performed.

Joystick

This module (esp-ward/src/peipherals/joystick.rs, see project structure i n 3.8) is designed
to facilitate intui t ive control over a 2-axis joystick wi th a bu i l t - in select but ton described
in 3.2 and shown on Figure 3.3, configured specifically for E S P devices.

The Joystick structure stores and utilizes dedicated A D C pins for the X and Y ctX6S 5 Cell* 6-

fully selected based on their general availabil i ty and uniformity across different Espressif
chip models, based on information obtained from the official Espressif Systems documenta
t ion [20] and the esp-hal driver [11]. A D C pins were also selected for each chip specifically
so that there is no interference wi th other default G P I O s , e.g. i n „default" I2C or S P I
configurations, analyzed i n 3.4.1. Structure also stores a custom p in connected to select
pin. Th is ensures broad compat ibi l i ty w i th other parts of driver and simplifies setup.

Due to the specific architecture of the esp-hal and its A D C driver, the ini t ia l izat ion of
the joystick and its A D C settings is implemented using a macro instead of a function.
This macro approach avoids the potential „par t i a l move" error in Rust , which can occur
when t ry ing to access parts of the Peripherals structure mult iple times (see 5.3). The
create_joystick macro effectively bypasses this l imi ta t ion by allowing mult iple accesses
to the Peripherals i n one scope, thus enabling dynamic configuration of A D C pins during
runtime.

In addi t ion to managing the joystick's axes through A D C pins, it also incorporates a But
ton structure (see previous sub-subsection 3.5.2) to handle the select but ton functionality.

Wokwi.com - IoT simulations in browser: ht tps: / /wokwi.com

35

http://Wokwi.com12
http://Wokwi.com
https://wokwi.com

This driver setup does not conform to the standard peripheral traits like UnifiedData,
mainly because these operations require access to the A D C for reading p in voltages, which
does not align well w i th the static trait method signatures designed for more general use
cases. Despite this, the A P I and naming for the functions was made i n line w i th the rest
of driver and can be found i n the detailed Rust format documentation for this library, pre
sented i n 4.2.

However, there is a significant problem wi th A D C - this peripheral cal ibrat ion is only
available on a l imi ted number of Espressif microcontrollers, which means that the user's
joystick w i l l either have to be „equal ized" w i th an auxi l iary resistor or the final applicat ion
of the potential user w i l l have to work according to how the A D C works without calibra
t ion. Despite this, this module works correct and also introduces the ROUGH_THRESHOLD
constant, which represents the threshold for side-to-side transi t ion on any axis under ideal
conditions. Th is w i l l be used as part of the example on the aforementioned Wokwi .com
simulator when analyzing performance results i n 5.1.

H C - S R 0 4 (ultrasonic distance sensor)

Last sub-module i n the peripherals provides an interface for ultrasonic distance sensor
H C - S R 0 4 . It operates by triggering ultrasonic pulses v ia an output p in (trigger) and mea
suring the t ime unt i l the echo is received v ia an input p in (echo), stored i n the structure
USDistanceSensor, which also includes a delay source to manage t iming.

The in i t ia l izat ion method create_on_pins prepares the sensor by setting the trigger p in
low ini t ial ly. The get_distance method sends a pulse and calculates the distance based
on the echo delay, factoring i n the ambient temperature to adjust for variations i n sound
speed, using algori thm and equation covered in 3.2.1.

None of the existing crates were suitable for the chosen environment, so it was decided
to implement a driver for this independently. F i n a l driver does not implement the U n i
fiedData t rai t due to the need for an ambient temperature parameter, which does not
conform to the trait 's method signature.

Dur ing the implementat ion of this driver, a system timer source was needed to get the
A t (see equation i n 3.2.1). Pr ivate constants for this are also declared. W h i l e a l l other E S P
line microcontrollers have it , it is not available on E S P 3 2 . Therefore it was necessary to use
the esp-wifi driver and its current_mi l l i s function, which is an analog of this function.
Therefore, i n order to use this sensor on the E S P 3 2 chip, the feature „ e s p 3 2 - w i f i " (see
features configuration i n 4.5.1) must be activated. Yes, this w i l l increase the size of the
binary, but the sensor w i l l become available on that chip wi th the s implic i ty of the A P I
preserved, which I considered to be a fairly equivalent exchange [15, 11].

3.5.3 Displays

The display (esp-ward/src/'display directory, see project strucutre in 3.8) module i n the
presented software architecture provides interaction wi th different types of displays us
ing a structured set of traits. It includes a Display trait for basic display operations
such as setting pixels and wr i t ing text, and an EGDisplay trait that integrates w i t h the
embedded-graphics [36] l ibrary for advanced and more flexible graphics capabilities. Th is

36

http://Wokwi.com

customization allows complex drawing operations and text rendering using different fonts.

The DisplaySegment enum categorizes the sections of a display where text or graphics
can be specifically targeted. This enumeration includes TopLeft, TopRight, BottomLeft,
BottomRight, and Center. E a c h of these values represents a specific area on the display,
allowing for localized control over where content is rendered. This is par t icular ly useful
for applications needing to organize information spatially or enhance the user interface by
aligning content precisely wi th in designated areas of the screen. In terms of default dis
plays, it is used i n ili9341 module below i n text.

The specific display drivers are organized into submodules wi th peripherally appropriate
names, each for a specific display, such as the ILI9341, M A X 7 2 1 9 , and P C D 8 5 4 4 , cov
ered i n 3.2. E a c h display type supports different in i t ia l iza t ion parameters, so a universal
constructor function is not possible, but specific constructors such as create_on_pins or
create_on_spi (depending on the specific device) are provided for each display type to
meet their in i t ia l izat ion requirements.

These features and the modular design of the drivers enable flexible and scalable inte
gration of displays. W h i c h enhances the usabil i ty and customizabil i ty of display functions
in embedded systems using this library.

M A X 7 2 1 9

The M A X 7 2 1 9 module facilitates operation of M A X 7 2 1 9 L E D mat r ix displays (see 3.2) by
performing tasks such as setting ind iv idua l pixels on L E D s and displaying scrolling text.
The driver is buil t around O u t p u t P i n traits from embedded-hal [2] for data pins, chip
select, and clocking, al lowing direct interaction wi th the hardware. Ini t ia l iz ing the display
involves setting up these pins and configuring the number of daisy-chained devices i n the
create_on_pins signature function.

Try ing to find a suitable crate for this peripheral was unsuccessful: some of them worked
only i n the std environment, others were completely customized for other companies' chips
and architecture. Therefore it was decided to take as a basis a driver made by P h i l i p p
Schuster [39] for another platform and modify it in such a way that it clearly fits the esp-
rs infrastructure. A l so dur ing the analysis of this driver it turned out that al though the
author writes i n the description that crate supports no std, i n reality it turned out that
the code is not adapted to it.

I started the driver redesign by making a fork of the author's repository to make it clear
that this project was not wr i t ten by me from scratch, but only significantly improved.
Fi rs t of a l l , it was decided to make this crate really no std. Fortunately, it turned out
that from the std environment the author used only the sleep function and the Duration
data type, which is intended for the aforementioned function [39, 1]. After modifying a l l
the places i n the code where sleep was used and replacing it w i th conditions suitable for
ordinary Delay from esp-hal driver, using traits from embedded-hal, the l ibrary became
fully usable as bare-metal [2]. Then a l l references and attributes related to std were re
moved.

37

The next step was to add esp-alloc, covered in 2.4.2, to the list of project dependen
cies, because al location functions used for dynamic memory management when working
wi th displays requires a custom allocator for a part icular platform (see 2.2.2). A l l function
ality related to this has already been implemented by M r . P h i l i p p Schuster [39].

I have also added a function to represent static text, which is used i n my l ibrary 's A P I .
W r i t i n g a text of unl imi ted length that scrolls in a loop was already implemented i n the
original version of the library.

Next , it was discovered that the l ibrary uses typica l bit mappings for a l l characters that
can be displayed on a single 8x8 L E D Dot display.

pub const CAP_C: SingleDisplayData = [
ObOl l l l lOO,
ObOlOOOOOO,
ObOlOOOOOO,
ObOlOOOOOO,
ObOlOOOOOO,
ObOlOOOOOO,
ObOlOOOOOO,
ObOll l l lOO

];

Lis t ing 3.11: Example of letter mapping i n max-7219-led-matrix-uti l crate [39].

It was noticed that many letters and symbols were left unrealized and i n my revised ver
sion of the l ibrary I decided to finalize them by analogy wi th the existing ones (example is
demonstrated on L i s t ing 3.11) so that a l l L a t i n alphabet, numbers and t r iv ia l punctuat ion
marks such as comma, question mark would be covered. Some of the already implemented
ones were also redesigned for better and more explicit representation.

A s it was said before, the driver requires an allocator, therefore users should make sure
that feature „ a l l o c " is activated i n their project's Cargo. toml file when impor t ing my
l ibrary i f they want to use this module, read more about using this functionality i n 3.4.1.
Cus tomiz ing this feature is important to support dynamic content, such as scrolling text,
which depends on memory al location at runtime.

The improved version of the l ibrary has been renamed to the descriptive esp-max7219-
nos td 1 3 . Under this name, using an import from the G i t H u b repository, this l ibrary is in
cluded, defining the chip w i th which my l ibrary w i l l be used (see 2.1.1).

The max7219 module itself offers several key functions to interface w i th these L E D ma
t r ix displays. A Max7219Display structure is presented that has an internal instance
of the periphery itself, as well as a private delay source and a vector (see 2.4.2) i n the
actual state of the display or chain of displays. The write_str_looping function displays
scrolling text on the matr ix , looping it to infinity. Th is function locks the entire program
because it constantly updates the display in a loop. set_pixel sets, correcting the posit ion
in a sequential chain of displays, reset is part of the Display trait defined i n mod.rs file

1 3 Modi f i ed library for M A X 7 2 1 9 display: h t t p s : / /g i thub .com/p layf ulFence/esp-max7219-nostd/ t ree/
alpha/0.2.0

38

of display module, it clears a l l L E D s i n the display, effectively resetting the mat r ix to an
empty state. write_str is part of the same trait , it displays static text on the L E D matr ix .
The length of the text is l imi ted only by the number of displays connected i n the chain in
the user configuration. It is impossible to somehow predict and l imi t the m a x i m u m number
of characters, because different characters take up different amounts of display space, so
this is left to the l ibrary user. The driver does not implement the E G D i s p l a y trait because
there is no support w i th the embedded-graphics driver.

P C D 8 5 4 4

The P C D 8 5 4 4 display module is designed for the display of the same name. It provides
basic functions for in i t ia l iz ing and operating the display, including drawing text and setting
ind iv idua l pixels. A n existing driver has been used here for a low-level operations.

The Pcd8544Display structure encapsulates the hardware-specific customization asso
ciated wi th the various control pins using a function i n the create_on_pins signature
(detailed documentation is described in the 4.2).

A l l provided functionality is a consequence of the Display trait implementat ion covered at
the beginning of the 3.5.3 section and also touched upon in the previous paragraph about
M A X 7 2 1 9 . The user has access to l ighting certain pixels by coordinates, wr i t ing lines to
the display, and resetting the display The structures and methods are implemented using
the embedded-hal trait to unify the pins.

ILI9341

The ILI9341 module is a complete solution for interfacing wi th the ILI9341 L C D using the
SPI bus. Th is module, buil t using the functionality of the mipidsi l i b r a r y 1 1 , extends its
functionality by integrating into the embedded-graphics ecosystem, offering both basic
and advanced graphics capabilities. The driver allows not only basic pixel manipulat ion,
but also sophisticated graphical rendering, including wr i t ing text into predefined segments
for more informative data display.

The Ili9341Display structure is presented, wrapping the internal instantiat ion of the pe
ripheral itself running i n Rgb565 mode, and taking care that the user does not have to
configure a l l the complex types, generic parameters and in i t ia l iza t ion manually.

pub struct Ili9341Display<
T: _esp_hal_spi_master_Instance + ' s t a t i c ,
M: IsFullDuplex,
RST: OutputPin<Error = core : :convert : : Infa l l ib le> ,
DC: OutputPin<Error = core::convert::Infal l ible>> {
pub inner: mipidsi::Display<

SPIInterfaceNoCS<spi: :master: :Spi< ; l stat ic , T, M>, D O ,
mipidsi::models::ILI9341Rgb565, RST>,

}

Lis t ing 3.12: Il i9341Display structure.

1 4 mip ids i crate: h t t p s : / / c r a t e s . i o / c r a t e s / m i p i d s i

39

https://crates.io/crates/mipidsi

The structure from Lis t ing 3.12 is being instanced wi th create_on_spi function i n a way
demonstrated i n L i s t i ng 3.13. A l l types and generic parameters expected in the structure are
satisfied i n this function and the display itself is set to default settings. A l l this was created
wi th the expectation that it would be combined wi th getter macros for S P I peripherals
(see 3.4.1).

pub fn create_on_spi(
sp i : sp i : :master: :Spi<'s tat ic , T, M>,
reset: RST,
dc: DC,
mut delay: Delay,

) -> Ili9341Display<T, M, RST, D O {
l e t d i = SPIInterfaceNoCS::new(spi, dc);

l e t mut display = mipidsi : :Bui lder:: i l i9341_rgb565(di)
.with_display_size(240 as u l6 , 320 as ul6)
.with_orientation(mipidsi::Orientation::Landscape(true))
.with_color_order(mipidsi::Color0rder::Rgb)
.init(&mut delay, Some(reset))
.unwrap();

display.clear(Rgb565::WHITE).unwrap();

Ili9341Display { inner: display }
}

Lis t ing 3.13: create_on_spi function for ILI9341 Display.

It was decided that the basic fonts included wi th embedded-graphics are somewhat l imited
and may not be suitable for most user projects, so this module uses predefined M o n o -
TextStyle type fonts from the profont 1 ' package, which range from small to large sizes,
allowing text to be displayed in a clear and varied manner. Used profont crate is an up
dated version by Samuel Benko of original package created Wesley Moore . Upda ted version
is adjusted to latest changes in embedded-graphics environment. 3 default font styles
have been created that a user of my l ibrary can use wi th this display. They are buil t and
available i n constants DEFAULT_STYLE_<SIZE>, where < S I Z E > can be „ S M A L L " (14pt),
„ M I D " (18pt) or „ L A R G E " (24pt).

To accommodate different display needs, the module includes a Display trait for basic
functions such as pixel setting and display resetting, as well as an E G D i s p l a y trait . The
latter extends capabilities to more sophisticated operations such as segment-specific text
rendering and advanced graphical layouts that optimize display usage and enhance user
interfaces.

The module utilizes features related to the enum DisplaySegment covered in 3.5.3 -
the user w i l l be able to write out data from their sensors to the display in a more struc
tured way. The functions write_segment_name, which writes the name of the segment
itself on top of it and write_to_segment, which writes the data directly to the center of

1 5 updated profont package: h t tps : / /g i thub.com/sambenko/profont / t ree /master

40

https://github.com/sambenko/profont/tree/master

the segment, serve this purpose. Inside these functions, using match pattern covered in
2.1.1 and simple math calculations, the point where the string should be wri t ten is consid
ered based on the segment passed to the function. The segments are arranged so as not to
overlap each other, see L i s t ing 3.4.

TopLeft Top Right

Center Center

BottomLeft BottomRight

Figure 3.4: Segments layout for ILI9341 display.

In addit ion, the driver in my l ibrary manages display orientation and color ordering directly
through mipidsi 's default configurations, sparing the user from complex settings. Th is
integrated approach not only simplifies the development process, but also improves the
performance and flexibility of applications u t i l iz ing the ILI9341 display.

3.6 Connectivity Features

This section w i l l cover the basic W i - F i and M Q T T related functionality of this library.
Th is was not part of the assignment and can be seen as an extension, but I thought it was
worth implementing at least relatively basic connectivity related functions for the sake of
completeness.

Fi rs t of a l l , i n order to make this functionality of my crate available, <chip_name>-wif i
feature should be activated i n l ibrary import i n i n case the user is going to use the W i - F i
only functionality, or <chip_name>-mqtt i n case the user is going to use M Q T T . O n l y one
of these features must be activated! This approach greatly simplifies the process of import
ing this functionality from esp-wifi, due to the fact that this driver from esp-rs is quite
complex, so the different modules are connected by configuring certain features, in which an
inexperienced user of the Rust language and esp-rs infrastructure w i l l find it quite difficult
to get confused [15]. So a l l the work is done for h im.

Also , to simplify code modulat ion, two so-called „marker features" were created i n the
Cargo. toml file of this project - feature „mqtt" and feature „wi f i" . The point is that
esp-wifi also requires selecting a microcontroller v i a features on which to run this library.
Thus, it is s imply not possible to combine and unify a l l imports for W i - F i and M Q T T
functionality for each into one or two features. A n d this is where the si tuation is saved by

41

the above-mentioned marker traits, which have no dependencies or only general ones. W i t h
their help, as it was said before, it is possible to modulate the code and, provided that the
„ m q t t " feature has been activated, to make this or that functionality active.

#[cfg (feature = "wifi")]
pub mod connectivity;

Lis t ing 3.14: Condi t ioned code activation by enabled feature.

The module responsible for connectivity features is located i n the esp-ward/src/'connectivity
directory. Who le project structure is covered i n 3.8.

The root file of this module (connectivity/mod.rs) is the central point for this module
and i f the „mqtt" feature is activated, includes the corresponding module wi th the mqtt
sub-module in a same way that shown in L i s t ing 3.14. A l so a macro called „ i n i t _ w i f i " has
been implemented i n this file. The reason why it is a macro and not a function is the same
- access to the Peripherals structure, which, as it was explained above i n the text, is not
possible through the function because of the „par t i a l value move" error. It has two varia
tions, of which the desired one is also selected based on the cf g at tr ibute - for configuration
wi th only feature „wif i " enabled and for configuration using M Q T T functionality. For the
end user there is no difference in cal l ing this macro, the only difference is the data returned.
The point is that a slightly different a lgori thm is required to work wi th the M Q T T stack.
This is discussed further i n the subsections devoted to these two communicat ion methods.
The creation of this functionality is inspired by the documentation and examples provided
in esp-wifi [15]. It was necessary to break down this knowledge into specific pieces and
compose functions that would greatly simplify and shorten the code for in i t ia l iz ing the W i -
F i module and accessing the network. W h i c h I believe has been accomplished successfully,
detailed documentation can be seen through the 4.2 section and the use cases described in
the 4.5.1 section.

3.6.1 W i - F i

The wifi submodule provides the necessary functionality for networking wi th the esp wifi
l ibrary and the embedded svc 1 6 helper crate. K e y features include the abi l i ty to create
and manage sockets, making it easy to send and receive data over network connections.
K e y features and capabilities:

• Socket Management: The sub-module allows user to create sockets w i th specified
IP addresses and ports using the create_socket function, enabling the sending and
receiving of data. This is very important for interfacing wi th various network services.

• IP address processing: Functions for converting string IP addresses into byte arrays
are included, which ensures proper processing of IP data required for working inside
the program - function ip_string_to_parts.

• T i m e Synchronization: Includes methods to retrieve the current t ime from the server.
For this purpose, the W o r l d T i m e A P I se rv ice 1 7 has been chosen, which, as part of
normal insecure communicat ion, w i l l send a message w i t h the current t imestamp
as the first response. Conversions of U N I X timestamps into more readable formats

1 6embedded-svc crate: h t tps : / / c ra t e s . io / c ra t e s / embedded-svc
1 7 W o r l d T i m e A P I : h t t p : / /wor ld t imeap i . o rg

42

https://crates.io/crates/embedded-svc

(hours, minutes, seconds, days of the week) are also implemented. The function
get_time, which returns tuple i n the format (hours, minutes, seconds), and the func
t ion get_timestamp, which returns raw U N I X t imestamp. The functions
timestamp_to_hms and weekday_from_timestamp are also implemented to convert
it into a readable format.

• D a t a Transfer: Users can send requests to remote servers using established sockets,
w i t h support for response processing that includes utili t ies to parse timestamps from
server responses. Two functions send_request and get_response serve this purpose.

• E r ro r Handl ing : Robust error handling of various errors is buil t into the functions to
ensure reliable and stable network operation, including resolving potential transmis
sion and reception problems.

Detai led documentation for a l l functions, including input parameters and returnables can
be found i n the Section 4.2.

The inspirat ion for the t ime and t imestamp functions came from experiments i n my own
project i n the past [34]. General knowledge about W i - F i was obtained from the esp-wifi
project [15].

3.6.2 M Q T T

This module in the l ibrary provides communicat ion wi th M Q T T brokers, al lowing devices
to send and receive messages using this protocol. Th is includes creating network sockets,
managing connections, and handling the sending and receiving of data using well-defined
interfaces and procedures.

It is worth not ing that this module operates entirely i n async mode, the features of which
were discussed i n 2.1.1. The reason for this is that at the t ime of creating the project
described i n this thesis, no l ibrary was found that would provide a working M Q T T client
in no std environment (see 2.2.2) that would work i n blocking (non-async) mode. Whi l e
creating such a l ibrary is theoretically possible, it would be very t ime consuming and add
enormous complexity. Such a client in itself requires a completely different stack knowl
edge and would be a significant complicat ion of the task, going far beyond its scope. Core
Functionalities:

• Ini t ia l iz ing W i - F i communication: A s mentioned in the previous 3.6.1 sub-section on
W i - F i , and above in the text - this M Q T T module uses its own variat ion of macro
i n i t _ w i f i . It w i l l be selected automatical ly when the user activates the feature
<chip-name>-mqtt.

• Socket Creat ion and Management: Establishes sockets for communicat ion, handles
IP address configurations, and manages data buffers for sending and receiving infor
mation.

• Creat ing and managing sockets and connection: Creates sockets for communicat ion
wi th in features, handles I P address configuration while creating a channel w i t h the
M Q T T broker. Functions exist i n the l ibrary to communicate w i th the H i v e M Q Web-
socket C l i e n t 1 8 , which is chosen as the default M Q T T broker due to its extraordinary

1 8 H i v e M Q Websocket Client: https:/ /www.hivemq.com/demos/websocket-client/

4 3

https://www.hivemq.com/demos/websocket-client/

ease of use. The function mqtt_connect_def ault is responsible for this functional
ity, which w i l l return to the user a ready-made M Q T T client already connected to
H i v e M Q . There is also a mqtt_connect_custom function by itself, which w i l l jo in a
given broker using D N S Query. The user can pass user name and password to it ,
if they are needed. If not, user only needs to pass „None" for these parameters when
call ing the function (see 2.1.1). A l l connections are made v i a T C P / I P stack.

• Message handling: Features for sending requests to M Q T T brokers, subscribing to
topics, and receiving messages. They include robust error handling mechanisms to
ensure reliability, such as reconnection strategies in case of network failures. The
functions mqtt_send, mqtt_subscribe and mqtt_recieve are responsible for these
functions.

• Executor tasks: The l ibrary also offers two necessary functions to ensure that the con
nection to the selected W i - F i network is established and the network stack is started.
Implemented under the # [embassy_executor: :task] attribute, these two functions
are appropriate functions to let into the task spawner of the embassy executor
library, which was briefly discussed in the 2.1.1 section.

• U t i l i t y Functions: This module also provides a set of helper macros that greatly
enhance the user-friendliness of the entire A P I . Such as prepare_buf f ers, which
returns a tuple of four buffers of different sizes, which are needed for various M Q T T
functionality. The wait_wifi macro w i l l asynchronously wait un t i l the W i - F i stack
is fully configured and the network is connected, while get_ip w i l l make sure that
the Espressif chip running the code gets its IP address before starting the M Q T T
communicat ion itself. create_stack makes sure that the wifi interface obtained from
the above in i t_wi f i is wrapped up to the type that w i l l be used i n a l l of the above
M Q T T functions.

A s w i th the previous W i - F i section 3.6.1, this module was wri t ten based on a basis of an
analysis of an existing project from an esp-rs team member Juraj Sadel, that was shown
at Espressif D e v C o n 2023 [37]. After carefully examining the functionality of this example,
as wel l as looking at side drivers, a p lan was made to make it as easy as possible for new
users of the esp-rs infrastructure to access M Q T T functionality.

A n example use case can be found through the 4.5.1 section.

3.7 Bu i ld Environment

W h e n programming embedded systems, especially when working wi th different microcon
troller architectures, it is very important to carefully customize the bu i ld environment. This
ensures that the compiled code is a perfect fit for the intended hardware. M y project uses
the build.rs script as well as special settings in the .cargo/config.toml file to manage
this complex task, ensuring a smooth bu i ld process for different microcontrollers.

3.7.1 The Role of Bui ld Script

The build.rs file plays a p ivota l role i n project setup. It is a bu i ld script, automatical ly
executed by Cargo before the m a i n bui ld process begins. This script is used to perform

4 4

custom bu i ld actions that are outside of Cargo ' s typica l bu i ld capabilities. In this case,
build.rs handles the compilat ion of necessary components, sets up the linker, and configures
various flags and options essential for the proper functioning of firmware on different M C U s .

It checks that exactly one chip-specific feature has been activated for the l ibrary and in
case of an error writes an error to the terminal and ends the bu i ld process.

Also , for correct parameter passing to the linker (see next 4.3 subsection), it controls i f
the marker trai t „ w i f i " is activated, which signals the use of W i - F i functionality (cov
ered i n 3.6.1) i n the project and means that another parameter should be passed to the
linker. I got the information about this from a similar bu i ld script i n esp-wifi [15]. General
knowledge about bu i ld scripts was obtained from „The Cargo Book" [8].

3.7.2 Configuring Linker Parameters

The .cargo/config.toml file provides a centralized configuration for specifying bui ld pa
rameters and options. In my project, this configuration file is used to define custom linker
arguments for different target architectures. The rus t f lags parameter specified i n the file
contains important arguments for that direct the compiler to use our specialized linkall.x
linker script to determine the memory location for flashing. Necessary information about
this configuration was taken from esp-hal [11] and esp-wifi [15] projects.

3.8 Final Project Structure

The structure of the project was conceived to facilitate the development and testing of
embedded systems components, w i th a clear divis ion of tasks evident through the directory
layout.

• .cargo/, .github / : Configuration for cargo bu i ld system (covered in 3.7) and G i t H u b -
specific workflows (like C I / C D processes) (described i n 4.5.2).

• examples / : Contains various example programs demonstrating the usage of the
l ibrary's features, which cover a l l implemented functionality (see 4.5.1).

• src/: The source directory, encompassing the core l ibrary code.

— lib.rs - The root file of the entire library. Th is is where the key macro for
controll ing internal peripherals and the connection logic of other modules are
located. Detai led description is present in 3.4.1.

— connectivity/: Modules related to network connectivity features like W i - F i and
M Q T T communicat ion. Covered i n 3.6.

— display/: Handles display functionalities, possibly interfacing wi th different
types of screens. Described i n 3.5.3.

— peripherals / : Code for interacting wi th external devices such as sensors and
buttons. See 3.5.1 and 3.5.2.

• resources/: Th is directory contains data, required for the documentation website.
Detai led description can be found i n 4.

4 5

• Cargo.toml: Defines package information, dependencies, used crates, and provides
features for specific configurations, described in mult iple sections above.

. L I C E N S E - A P A C H E , C O N T R I B U T I N G . m d and R E A D M E . m d : Standard
documentation files for open-source software explaining licensing, contr ibut ion guide
lines, and project information. More details are described in Chapter 4.

• rustfmt.toml: This file contains settings for formatting Rust code. This helps keep
the code style consistent throughout the project. Due to the fact that it is difficult to
keep a uniform and beautiful code style, and the l ibrary is intended as an open-source
project, such a measure is s imply necessary. See 1.6 for more details.

46

Chapter 4

Release of the Project

One of sub-tasks i n the assignment is to publ ish the l ibrary on G i t H u b . Because of this, it
was decided to use the git tool as a version control system from the very beginning of the
project.

M a n y times when working wi th different libraries, a programmer comes across the fact
that the creator s imply does not provide any tutor ia l guide, which artif icially prolongs
the t ime of working wi th the required functionality. Indeed, having good documentation,
examples of how to use the l ibrary 's functionality, automated testing, and a well-defined
contr ibuting guide are a big part of the success of any library. Th is w i l l shorten and make
it more pleasant for a potential user to learn the A P I of the crate.

Th is chapter w i l l describe what and how my project has done to make its public resources
user-friendly and understandable.

F i n a l version of l ibrary is available on: https://github.com/playfulFence/esp-ward

4.1 Library Identity and Community Engagement

The name of the public l ibrary should be simple, memorable and reflect the idea of the
project. It was decided to name the crate as „esp-ward" . Th is name is an amalgamation of
the words „ E S P " , referring to the Espressif systems on which the l ibrary runs, and „ward" ,
meaning protection or surveillance, a reference to the popular W o r l d of Warcraft series of
games. Together, „ e s p - w a r d " symbolizes the l ibrary 's role in securing and facili tating the
development process on E S P devices. Th is name reflects the l ibrary 's core mission to pro
vide reliable and user-friendly tools for developers working wi th Espressif chips, enhancing
their abi l i ty to efficiently manage and deploy sensor-based applications.

This section also discusses the R E A D M E . m d and C O N T R I B U T I N G . m d files required
for in i t i a l guidance of users and potential contributors to the esp-ward project.

The R E A D M E . m d serves as the in i t i a l interface for the project, providing an overview of
key features, instal lat ion instructions, and a quick start guide. It emphasizes the l ibrary 's
ease of use, modular architecture, and the extensive support for various peripherals and
features. Addi t ional ly , it directs users to detailed documentation (see Section 4) and offers

47

https://github.com/playfulFence/esp-ward

troubleshooting tips.

The C O N T R I B U T I N G . m d guide encourages community involvement by detail ing how
to contribute to the project. It includes guidelines for submit t ing issues and pu l l requests,
outlines the code of conduct, and provides instructions for setting up a development envi
ronment. Th is document is crucial for maintaining a healthy and productive community,
fostering contributions that help enhance the project. Similar practices have been found in
many open-source projects, such as esp-hal as well [11]. The general idea and necessary
patterns for this guide were found i n an article from M o z i l l a Science L a b [27].

4.2 Website and Documentation Deployment

Such libraries should always be accompanied by rigorous technical documentation, w i th
which you can conveniently find the information you need about a part icular crate func
tionality. Th is section details the deployment and hosting of the project's website and
documentation on G i t H u b Pages. Th is method was chosen because of its s implic i ty and
convenience at the same time - bo th the project and its website are located on the same
site, and to activate the abi l i ty to deploy the website you only need to configure it i n the
repository options.

The site's landing page (see Figure 4.1), wri t ten i n „ i n d e x . h t m l " file and located i n the
„ r e s o u r c e s " directory, serves as an entry point. It has been wri t ten to fit a l l styles into the
general style of the Rust documentat ion (which can be seen in generated documentation).
The general concept was taken from a similar page in esp-hal, which I wrote for esp-rs
[11]. The landing page is pretty minimalis t ic , but informative. It leads to several key links
in the project, including the technical documentation itself.

esp-ward

Repository Visit the GitHub repository

Docs Rust documentation for the crate

Examples Here you can find examples that cover some common use-cases.

Contributing guide If you want to make a contribution - check out this guide first!

Figure 4.1: Land ing page of the crate.

18

The project documentation (see Figure 4.2) is automatical ly generated and updated for each
commit to the project dur ing the continuous integration process (which is described in the
4.5.2 section) specified i n the „ . g i t h u b / c i . y m l " file under the „ b u i l d - a n d - d e p l o y - d o c s "
task. The documentation is created using the cargo doc too l [8], specifically for the
E S P 3 2 C 6 (chosen randomly) chip wi th „ e s p 3 2 c 6 - m q t t " enabled, ensuring that a l l l ibrary
functionality is fully included in the documentation. Detai led doc strings wi th „ / / ! " at the
beginning of the comment were wr i t ten to create documentation throughout the code.

The G i t H u b action „ J a m e s I v e s / g i t h u b - p a g e s - d e p l o y - a c t i o n @ v 4 . 5 . 0 " 1 is used to de
ploy project to the G i t H u b Pages. This act ion is chosen for its ease of use and efficiency
in deploying web content directly to the G i t H u b repository. Documentat ion and landing
pages are created i n a v i r tua l environment and then deployed to a dedicated „ g h - p a g e s "
branch that hosts the G i t H u b Pages site. W i t h this setup, the project website is constantly
updated wi th the latest documentation and resources, providing a reliable and informative
platform for users and contributors.

esp_ward
0.1.0

All [terns Crate esp.ward m source-H

McduLes - - esp-ward
Macros

Structs

En urns

e s p - w a r d is a. Rust crate designed as a higher-level abstraction over e s p - h a l to simplify the usage of ESP32, ESP32S2, ESP32C3,

ESP32C6, ESP32S3, and ESP32H2 chips with Rust I t provides common APIs, traits, and structs t o interact with various peripherals

such as GPIOs, I2C, and SPI devices.

Traits

Attribute Macros
This crate i s targeted at developers new to the e s p - r s ecosystem or those who prefers simplified interface for common

operations.

Crates Features
esp_ward

• Traits and structs for common peripheral interactions.

• Easy configuration o f SPI and I2C.

• Predefined macros for common operations and setup routines.

• Compatible with various ESP32 family chips.

• Simplified W i - F i and MQTT features

• Traits and structs for common peripheral interactions.

• Easy configuration o f SPI and I2C.

• Predefined macros for common operations and setup routines.

• Compatible with various ESP32 family chips.

• Simplified W i - F i and MQTT features

Usage
To use e s p - w a r d , include it as a dependency in your C a r g o . toml and refer to the following examples to start interacting with

your ESP device's hardware features.

Quick Start
Here's how you might initialize the system peripherals and configure I2C and SPI with default settings:

use e s p _ w a r d : : { i n i t _ c h i p , t a k e _ p e r i p h , t a k e _ s y s t e m } ;

l e t p e r i p h e r a l s = t a k e _ p e r i p h 1 () \

"Let s y s t e m = t a k e _ s y s t e m ! (p e r i p h e r a l s) ;

l e t (c l o c k s , p i n s) = i n i t _ c h i p ! (p e r i p h e r a l s , s y s t e m) ;

/ / N o w y o u c a n u s e ^ c l o c k s ' a n d " p i n s * t o i n t e r a c t w i t h t h e p e r i p h e r a l s

Figure 4.2: Technical documentation for the library.

Documentat ion is available by cl icking on the „Docs" l ink on the landing page. Detai led
documentation for a l l functionality, modules and macros is available there.

1 James Ives deploy action: h t tps : / /g i thub .com/JamesIves /g i thub-pages -dep loy-ac t ion

49

https://github.com/JamesIves/github-pages-deploy-action

The l ibrary 's website is available on https: / /playfulfence.github. io/esp-ward/. It
can also be buil t and run locally using the build_docs. sh script located i n the resources
folder. The script must be run from the resources folder. Before executing it , run the
chmod +x build_docs. sh command or similar, depending on your system. After running
the script, it w i l l be enough to open the index.html file from the same folder i n a browser.

4.3 Getting Started

The first th ing to do to start wr i t ing any embedded applicat ion i n Rust is to instal l a l l the
necessary software environment for i t . A similar guide from „ T h e Rust on E S P Book"
is briefly quoted here [17]:

• Install Rust from the rustup website 2 w i th a command demonstrated in L i s t i ng 4.1.

$ c u r l —proto '^https' — t l s v l . 2 -sSf h t t p s : / / s h . r u s t u p . r s I sh

Lis t ing 4.1: Rust instal lat ion.

Us ing homebrew, apt-get or other default package managers may result i n incorrect
instal lat ion of components and lead to further incompatibil i t ies.

• T h e n direct ly v ia „cargo" (see L i s t ing 4.2) user needs to instal l the official esp-rs
tool - espup \ which w i l l instal l the entire environment for using the language wi th
Espressif chips.

$ cargo i n s t a l l espup
$ espup i n s t a l l

Lis t ing 4.2: esp-rs environment instal lat ion.

• Now that a l l the necessary drivers are installed, user can get started on the new
project itself. Then it is possible to deploy a new project according to a pre-prepared
template from the esp-rs team. Use the cargo generate tool (see L i s t ing 4.3) to
create a new template project.

$ cargo i n s t a l l cargo-generate
$ cargo generate esp-rs/esp-template

Lis t ing 4.3: esp-rs environment instal lat ion.

After answering a few clarifying questions, a folder w i th the project w i l l be created
in the terminal where the user w i l l select the chip of interest and other clarifying
details. To the question „Configure advanced template options?" it is necessary to
choose „false", because it w i l l s t i l l require other further customization of the project,
which is described below.

• T h e n in the project folder the user should go to the file Cargo.toml, i n which he
needs to change the versions of libraries of the organization esp-rs to those on which
my l ibrary esp-ward operates (more details are described i n 5.3).

2 rustup website: h t t p s : / / r u s t u p . r s
3espup tool: h t tps : / /g i thub .com/esp- r s /espup

5 0

https://playfulfence.github.io/esp-ward/
https://sh.rustup.rs
https://rustup.rs
https://github.com/esp-rs/espup

esp-hal = { version = "0.16.1", features = ["ehl"]}
esp-pr int ln = { version = "0.9.1"}
esp-backtrace = { version = "0.11.1", features = [

"panic-handler",
"exception-handler",
"print ln",

]}

esp-wifi = { version = "0.4.0", features = ["wifi-default"] }

Lis t ing 4.4: Versions of esp-rs drivers used i n library.

In a l l these crates, as a feature, user needs to pass the name of the chip on which
the user's project w i l l operate. This w i l l already be done i n the template or check an
example of such an operation i n the 2.1.1 section.

• Next , the user needs to configure the .cargo/config.toml file, which contains the
parameters i n the linker script. It is already preconfigured by the template, it is only
necessary to double-check that everything is set exactly as it should be.

[target.riscv32imc-unknown-none-elf]#esp32c3, esp32c2

rustf lags = [" - C " , " l ink-arg=-Tl inka l l . x" , " - C " , "force-frame-pointers"]

[target.riscv32imac-unknown-none-elf] #esp32c6, esp32h2
rustf lags = [" - C " , " l ink-arg=-Tl inka l l . x" , " - C " , "force-frame-pointers"]

[target.xtensa-esp32-none-elf] #esp32
rustf lags = [" - C " , " l ink-arg=-Tl inkal l .x"]

[target.xtensa-esp32s3-none-elf] #esp32s3
rustf lags = [" - C " , " l ink-arg=-Tl inkal l .x"]

[target.xtensa-esp32s2-none-elf] #esp32s2
rustf lags = [" - C " , " l ink-arg=-Tl inka l l . x" , " - C " , "force-frame-pointers"]

Lis t ing 4.5: config.toml l inker parameters configuration for different architectures.

If allocator w i l l be used („a l loc" feature, see feature layout i n 4.5.1), user needs to
make sure that the „al loc" parameter is passed to the „ b u i l d - s t d " setting in this file.
This determines which parts of the standard l ibrary are used i n a no std applicat ion
(see section 2.2.2). If W i - F i functionality is used, the „rus t f lags" setting should
also include the parameter , , - C " , Mlink-arg=-Trom_functions .x". Unfortunately,
l ibrary can't do anything about these complexities on its end and these customizations
need to be done by the user i n their own project.

• Install espflash according to description in 2.4.2.

• Import esp-ward l ibrary wi th necessary features as it shown on L i s t i ng 4.6 (see
feature layout i n 4.5.1).

esp-ward = { g i t = "https:/ /github.com/playfulFence/esp-ward.git",
features = [Mesp32c3-wifi", "alloc"]}

Lis t ing 4.6: L i b r a r y import .

51

http://github.com/playfulFence/esp-ward.git

• Based on the provided examples described i n 4.5.1 and documentation covered i n 4.2,
user can start wr i t ing his own project.

• Project could be flashed wi th command demonstrated i n L i s t i ng 4.7:

$ cargo espflash f lash —target=<chip-architecture> —release —monitor

Lis t ing 4.7: F lash ing wi th espflash.

Where <chip-architecture> should be set according to the targets seen i n the 4.5.

4.4 Troubleshooting

• If something is wrong wi th a bui ld ing process and C I i n repository is green after
latest commit to 'esp-ward' - problem is on users side.

• Check i f toolchains and the rest of environment are correctly installed. Use T h e Rust
on E S P Book [17] or 4.3 for more info.

• T r y to pass correct toolchain to cargo executing command, (esp for Xtensa chips,
nightly for ' R I S C - V microcontrollers, see 2.3.1):
cargo +<toolchain> espflash f lash . .

• O n Xtensa targets linker issues might be encountered. User should instal l and export
the esp-idf like it is demonstrated i n L i s t i ng 4.8, according to guide in repository of
this project [19].

$ g i t clone —recursive h t tps : / /g i thub .com/espress i f / e sp- id f .g i t
$ cd esp-idf
$. / i n s t a l l . s h a l l
$. . / export . sh

Lis t ing 4.8: E S P - I D F instal lat ion [19].

4.5 Testing

Testing of the final solution w i l l take place in two paradigms. F i rs t of a l l , we need to provide
a set of examples that show not only what can be done w i t h the functionality provided by
the library, but also how to specifically use the resulting A P I i n various situations.

The second testing paradigm is mixed wi th evaluation of results - it w i l l compare several
applications i n a „before-and-af ter" format, where on one side there is a program wri t ten
without using esp-ward, and on the other side there is a code that performs the same task,
but using the A P I of the resulting library. In this way we w i l l t ry to find out whether my
l ibrary has simplified the work wi th external peripherals and the development of embed
ded applications in general. Natural ly , this type of testing cannot do without interviewing
people who have been asked to use the library. The i r comments w i l l also be included i n the
evaluation.

Also , this part w i l l talk about the various experiments and decisions that were made while
working on this project, but in the end never made it into the final crate version.

52

https://github.com/espressif/esp-idf.git

4.5.1 Examples

In the repository wi th the project, i n the folder „ e x a m p l e s " there are programs that show
how to work wi th the l ibrary and cover most of the functionality implemented in esp-ward.
The following examples have been implemented:

• display_button - this example demonstrates the simplest interaction wi th the func
t ionali ty of a but ton and a display, where when a but ton is pressed, there is an
instantaneous response on the display showing which but ton was pressed.

• display_data - a complex example of displaying several types of data on ILI9341 -
temperature and humidi ty using B M E 2 8 0 and time using W i - F i functionality of the
library.

• distance_sensor - basic example of a full use of distance sensor. Due to its design,
this peripheral requires the ambient temperature, which i n the example is received
from the measurements of the A H T 2 0 sensor 3.5.1.

• etch_a_sketch - adaptat ion of the popular game of the same name, using M A X 7 2 1 9
and joystick. Y o u can use the joystick to control the drawing pointer, and pressing
the joystick w i l l erase the drawing and move the pointer to the start ing point. In this
example, there is a l imi ta t ion related to A D C calibrat ion, see section 3.5.2 for more
details.

• l ed_scro l l ing - this example also uses the M A X 7 2 1 9 display (see 3.5.3), which
w i l l show the scrolling text specified in the example.

• motion_detect - the simplest example, signaling mot ion detected on the P I R sensor
shown i n 3.5.2 to the terminal .

• mqtt_client - an example of an M Q T T client that subscribes to a default theme
and sends a default message to the websocket client from H i v e M Q , which has been
selected as the default client, it was covered i n 3.6.2. The example demonstrates how
to work wi th M Q T T and shows the correct in i t ia l iza t ion and use of functions wi th in
the async environment. In real usage, the user must first configure the H i v e M Q client
itself, then set the generated Client ID and topic name i n the example. A l so , the user
can bu i ld addi t ional sensor measurements into the code themselves, for example from
sensor i2c and pass the values from it to the mqtt_send function.

• send_request - this example shows how you can interact w i th W i - F i functionality,
open sockets, and send and receive messages from a remote server. It is based on the
example idea from the esp-wifi repository [15].

• sensor_i2c - demonstrates the simplest measurement from sensors and output t ing
that data to a terminal .

A n y example might be flashed wi th a command from L i s t i ng 4.9.

$ cargo espflash f lash —example=<example-name>
—features=<chip-feature> —target=<target> —release —monitor

Lis t ing 4.9: F lashing examples.

5 3

Where <chip-feature> - i f chosen example utilizes Wi -F i - r e l a t ed features - enable cor
responding „wifi" chip feature (example: esp32s2-wif i) , same works wi th M Q T T func
tionalities (example: esp32c6-mqtt). In case allocator is going to be used (led scrolling
and etch a sketch) - make sure to enable alloc feature (example: „ e s p 3 2 , a l l o c ") . In
case just basic functionality is used - just name of required chip to a feature list (example:
esp32s3). <target> is architecture of a chip (see 4.5):

. xtensa-<chip>-none-elf - for E S P 3 2 , E S P 3 2 S 2 and E S P 3 2 S 3

. riscv32imc-unknown-none-elf - for E S P 3 2 C 3 and E S P 3 2 C 2

• riscv32imac-unknown-none-elf - for E S P 3 2 C 6 and E S P 3 2 H 2

These examples fulfill several important tasks: they show users on visual examples how to
use the provided A P I , on these examples you can see how and to what extent the resulting
l ibrary simplifies the developer's process of wr i t ing a year when working w i t h supported
peripherals, s implifying both the code itself i n terms of syntax and introducing a common
and understandable architecture for a l l supported devices. The second important role of
these examples is in directly testing the implemented methods, which allowed me, as a
developer of the l ibrary itself, to understand whether this or that functionality works as
expected, whether the proposed design is intuit ive and more pleasant for me myself.

4.5.2 Automated Testing

The esp-ward l ibrary 's continuous integration process ensures that every existing example
in the „ e x a m p l e s " folder (to be described i n section 4.5.1) and feature set is tested on a l l
supported Espressif chips (see 2.3.1). Th is robust testing strategy helps mainta in control
over the rel iabi l i ty and compat ibi l i ty of the l ibrary wi th different hardware configurations.
In a project w i t h so many moving parts and dependencies, this measure is s imply necessary.

C I is configured to automatical ly bu i ld and test the l ibrary itself and its examples for differ
ent chips, ensuring comprehensive coverage. This is done using G i t H u b Act ions , which or
ganizes testing i n a mat r ix of target environments. The process tests the l ibrary on Xtensa
and R I S C - V architectures. E a c h chip has specific target specifications and toolchains to
meet their unique architectural requirements (see section 4.3). This includes bui ld ing wi th
basic functions and, where possible, addi t ional functionality such as „ a l l o c " , „ w i f i " and
„mqtt". Such step ensures that the core l ibrary and its functional extensions compile wi th
out errors i n a l l supported configurations.

Depending on the requirements of the example and the capabilities of the chip, differ
ent feature flags are applied during the bu i ld process. Th is ensures that each example
is tested under conditions simulat ing real-world usage. Special conditions are applied to
exclude certain examples from chips where they are not supported or relevant, e.g., omit
W i - F i and M Q T T examples for an E S P 3 2 - H 2 chip that does not carry a W i - F i module (see
brief chips specifications i n section 2.3.1).

The C I configuration is designed to automate the verification of each commit to the repos
itory. B y testing a l l supported chips and configurations, C I ensures that any changes to
the l ibrary w i l l not break compat ibi l i ty w i th existing features or hardware, and i f there are
any errors, they w i l l be expl ici t ly detected.

5 4

The basic knowledge stack for implementing this functionality was obtained from the Jet-
Brains C I / C D guide [25], as well as from the example of similar testing i n esp-hal [11].

4.6 Code Formatting

In the esp-ward project, the formatt ing of the code directly is controlled by the
rustfmt.toml file. Th is configuration file ensures that the codebase adheres to a uniform
style, making it easier to read, mainta in and contribute to. It sets the rules for formatting
the code. A m o n g the key settings are enabling formatt ing i n comments, in function defi
nitions, in function calls, and so on, l imi t ing the length of a line of code so that the code
lines up i n a readable vert ical structure.

B y automating code formatting, the project minimizes stylistic inconsistencies and sim
plifies the review process, facil i tat ing smoother collaboration w i t h the community. This
practice is especially useful i n open source projects where mult iple contributors may have
different coding styles.

Format t ing can be used w i t h the cargo fmt [8] command from the project root folder
or enable the format on save feature in the code editor. For this purpose, for example, in
the V S Code editor user needs to download the rust-analyzer extension, which w i l l activate
this functionality.

Due to the focus on cooperation wi th the esp-hal driver, it was decided to use the same
code style as in the aforementioned crate [11].

5 5

Chapter 5

Testing and evaluation

This chapter w i l l provide an evaluation of how esp-ward simplifies wr i t ing embedded ap
plications, makes code clearer, shorter and more readable. The analysis is performed in
„before-after" format by comparing two programs wi th the same functionality, but one of
them w i l l be wri t ten without using my l ibrary and the other w i th i t . Th is way it is possible
to clearly understand whether the goal of the project has been achieved, i.e. whether writ
ing s imilar applications i n the Rust language on the Espressif chip platform has become
easier.

Those pairs of programs are listed on the media attached to this thesis, there is a „ c o m p a r e "
folder, it contains Rust format (.rs) files w i th a source code of observed examples, but
they are not buildable and are not intended to be used, their only purpose is to serve
as a visual comparison. A l l examples wri t ten using esp-ward are named in the format
<example_name>_ward, where <example name> is the name of the original example
from W o k w i or other sources.

5.1 Validation

One of the validat ion methods I chose was the W o k w i 1 simulator. Th is is a platform where
you can create a hardware configuration, flash code to it and see in real t ime how the same
process would run on a real device. Lucki ly , W o k w i has a collaboration wi th the esp-rs
team, there is even a l ink to existing Bare-metal Rust examples on the t i t le page. These
are the ones I ' l l be using.

1) Compar ison w i l l start from one of the examples from the Rust page - „Crispy C l i c k " 2 .
A s mentioned i n 3.5.2 this example and the a lgori thm to run it was developed by me per
sonally. This program demonstrates the basic ini t ia l izat ion of the display and buttons, the
interaction between them, and the graphical functionality. The typica l in i t ia l iza t ion of on
board peripherals such as SPI and G P I O , done in classic esp-hal is also shown. There w i l l
be no further mention of this, it applies to a l l programs using the native esp-hal driver.
Also to work wi th buttons it is required to implement a complex debounce mechanism,
otherwise it w i l l not work in expected way. It is noticeable the need for rather complex
technical customization of internal peripherals, impor t ing a large number of libraries and

1 Wokwi .com browser IoT simulator: ht tps: / /wokwi.com
2 Cr i spy Click example: https://wokwi.com/projects/341706650098336338

5 6

https://wokwi.com
https://wokwi.com/projects/341706650098336338

modules, which requires a lot of t ime to study.

A s a counterpoint, I implemented a version^ of it using the esp-ward l ibrary i n the W o k w i .
Wha t ' s immediately noticeable is the significant reduction i n the amount of code. The read
abil i ty of the code has also improved significantly - even a person who doesn't know the
Rust language fully understands what 's going on i n the code. The settings of the internal
chip have also been greatly simplified. The programmer uses pre-defined macros that w i l l
return a l l preconfigured peripherals to variables. Ini t ia l izat ion of the display has also been
greatly simplified to just passing a bus instance, two pins and a delay source to a func
t ion, instead of complex configuration of resolution, orientation, color order and so on. A l l
provided methods for comfortable work wi th buttons also give their results - after in i t ia l
ization, it is enough just to use the method „read", debounce and low-level work is done
without user's part icipat ion. A l so , wr i t ing inscriptions to the display has been simplified
to l i teral ly one line and function, instead of careful customization by coordinates and font.
These functions also work completely correctly, first scrubbing the area and then wri t ing
new text. In the table esp-hal version, this has to be done manually.

2) The second example to be compared is the M A X 7 2 1 9 Dot mat r ix display, which shows
a scrolling text . Here the user has to find how to ini t ial ize the allocator on their own, as
well slightly more complicated display setup.

In the redesigned example'' using my library, the alligator setup is accomplished wi th a
single ca l l to the appropriate macro prepare_alloc! . There is also no need to extra im
port libraries for this display - everything is already enabled v i a esp-ward. F r o m this
example, you can see that simplification is more apparent when the project i n which the
l ibrary is used is more complex. However, the code has definitely become more readable.

3) The last example discussed i n W o k w i is an example wri t ten i n the std environment,
but this does not prevent the study from comparing it to a s imilar implementat ion using
the resulting library. The most complex example is analyzed - esp-clock b . In the example,
the chip connects to W i - F i and shows the t ime and day of the week. It does a huge range of
settings. A n incremental, complex and deep ini t ia l izat ion of W i - F i peripherals is done, w i th
the need to get non-obvious peripheral instances to the user beforehand. S N T P protocol
is used, which is a convenient way to get t ime. The code uses a lot of wrapped C-functions,
which requires explicit use of unsafe sections, which is not a nice practice for this k ind of
use-case [12]. Usually, unsafe code is used at the lowest levels of hardware communicat ion,
but not i n the appl icat ion itself. In general, due to the very high complexity of such a
program i n embedded programming, the source code is very huge, a lot of low-level and
confusing settings are used, which may rather scare off a newcomer. A l so the code is un
readable without knowing the context of the program and the resulting output.

O n the other side of the comparison is an example I wrote that performs similar actions.
It also shows the t ime and day of the week on the screen, though without the introductory

3 Cr i spy Click emulator, remade using esp-ward: https://wokwi.com/projects/396547396717778945
4 M A X 7 2 1 9 Scrolling Text example: https://wokwi.com/projects/344869867332043347
5 M A X 7 2 1 9 Scrolling Text example, using esp-ward: https://wokwi.com/projects/396544824213521409
6esp-clock project on Wokwi: https://wokwi.com/projects/357451677483992065
7esp-clock with esp-ward: https://wokwi.com/projects/396552224931760129

57

https://wokwi.com/projects/396547396717778945
https://wokwi.com/projects/344869867332043347
https://wokwi.com/projects/396544824213521409
https://wokwi.com/projects/357451677483992065
https://wokwi.com/projects/396552224931760129

esp-rs logo and graphics for W i - F i communicat ion. However, the above functionality has
a rather minor effect on the complexity of the original example, so the comparison can be
considered fair. The comparison by the number of code lines w i th almost the same func
t ional i ty speaks volumes - 400+ lines of code against 75, i n the case of the example using
esp-ward. The readabili ty of the code is incomparably higher, the A P I is easy to read
and use, considering that a l l documentation is in one place (see 4.2). The downside is that
developer have to use a third-party function to write numbers into str ing format, but this
is more a problem of the no std environment (see 2.2.2).

The provided reflection on the introduced functionality and simplification is not only the
subjective opinion of the author, but also of the users to whom the l ibrary was offered for
testing. Read more about the results of the survey i n the next section 5.2

5.2 User Survey

This section w i l l describe the results of a survey of users who I asked to test the l ibrary and
give their opinion on whether esp-ward accomplishes its goal of simplifying the development
of embedded applications in Rust on E S P chips. One of the goals of the project is to
simplify not only for people who already program i n this language, but also for newcomers
(the methods of testing the project w i t h them are described i n the 5.2.1 subsection).

5.2.1 Feedback from Non-Rust Users

From testing the l ibrary on people who do not write i n Rust and on those for whom this
language is not a profile language, it is impossible to get any deep analysis of the resulting
A P I and functionality. However, another valuable metric can be received from them - how
much more readable programs using my crate are than projects wri t ten without i t . The
interviewees were asked to consider several programs that used esp-ward and the same or
similar programs wri t ten using drivers from esp-rs as they are (the principle is similar to
what is described in the 5.1 section). The questions were posed as follows: „From which of
these two codes is it clearer to you what is happening in the program? D o you th ink you
could write a simple program using my project faster than without i t?" .

The answers from a l l of the interviewees were mostly laudatory toward the library. Some of
them became interested in developing embedded applications i n Rust and expressed a desire
to start learning it . A l so very important to the newcomers was the clear and descriptive
G i t H u b repository and in part icular the technical documentation described i n 4.2. It was
easy for them to navigate through i t . Examples covering most of the functionality were also
well received. A l t h o u g h not a l l specific sensors were involved, by analogy users were able to
understand how to work wi th peripherals that are not involved i n the examples themselves.

F rom the negative feedback - because macros are used instead of functions, the exten
sions for Rust do not tel l what arguments should be i n a function, for the same reason,
some of the libraries used inside macros are not loaded automatical ly (as they are in func
tions), because of this the user has to include some libraries that are not obvious to them
i n the project. Such problems were expected, and are discussed i n the 5.3 section as well.

58

5.2.2 Feedback from Rust Programmers

From the testing of people competent in Rust and embedded development i n this language,
it is possible to emphasize a deeper and more professional analysis of the resulting project.
We also managed to show the l ibrary to members of the esp-rs team.

This testing group went through the whole code and functionality very specifically, thanks
to which it was possible to identify several places i n the project where improvements were
needed. Dur ing testing wi th them it was discovered that the #[cfg(. . .)] attribute,
which is responsible for running different code depending on the features configuration, of
ten didn ' t work correctly inside the macro when the l ibrary was imported into the project.
The problem has been fixed, more on this i n Section 5.3. They also recommended a few
changes to the connectivity module A P I (described i n 3.6) related to the type of data
passed to functions. P r io r to this comment, these functions received, for example, string
as input . The developers also noted that setting compiler parameters in the .cargo/con-
fig.toml file on the user's side could be confusing for the user. B u t w i th this also at the
moment nothing can be done on the Rust language side, the parameter must be passed to
the linker. The process is described in more detai l i n 4.3.

A l l the positive feedback given by newcomers to the Rust language i n the 5.2.1 section
was also highlighted by this test group. They also praised the fact that when using a l l
„default" ini t ial izations, no conflicts i n pins occur. The structure of the project was also
praised in terms of its openness to commits from the community, and the idea of a C O N
T R I B U T I N G guide (see 4.1) has paid off. A m o n g other things, the idea of unifying access
to supported peripherals and the way various difficulties related to the peculiarities of the
Rust language were overcome was well appreciated.

5.3 Challenges Encountered

This section w i l l talk about various difficulties encountered during the project, l imitat ions,
ideas not realized or canceled for various reasons.

Fi rs t of a l l , it is worth mentioning again that some percentage of functionality i n the
l ibrary is i n the form of macros rather than functions. Th is is due to both the ownership
and borrowing mechanism in Rust , as described i n 2.1.1, and the way the Peripherals
structure is organized in the esp-hal driver [11]. Th is certainly complicates the A P I some
what, because if an inval id parameter is passed, the error message w i l l not be as intuit ive
as in the case of a function.

Also w i t h the use of macros comes the need to import non-obvious libraries into the
Cargo. toml file i n the user's project. For example, a user uses some macro that uses
some functionality from the embedded-hal l ibrary. In this case, the compiler w i l l gener
ate an error like „use of undeclared l i b r a r y <crate_name>", which makes it absolutely
clear which l ibrary should be included, and the user can also look in the Cargo . toml of the
project esp-ward to find out the specific version of the driver needed (which is a common
practice i n Rust development). I have par t ia l ly reduced this problem by using the full path
to a particular module or function inside a l l macros, which saves the user from having to
import in code (use <crate_name>, see 2.1.1). However, it is not possible to completely

5 9

get r id of this consequence of necessary use of macros.

Initially, there was idea to create a structure similar to the one specified in L i s t ing 5.1.

pub struct ChipConfig< Ja> {
/ / The f i e l d s here represent the peripherals that have been i n i t i a l i z e d
pub clocks: esp_hal::clock::Clocks< 'stat ic>,
pub gpio: esp_hal::gpio::Pins ,
pub periph: k'a. esp_hal: :per ipherals : :Peripherals ,

}

Lis t ing 5.1: Unsucceeded prototype of Ch ipConf ig structure.

Such an approach could have further simplified on-board ini t ia l izat ion, but such an approach
crashed w i t h the security and Ownership and Borrowing concept of the Rust language de
scribed i n 2.1.1. For a long time I tr ied to get the code working, inventing various tricks, but
nothing worked at the moment of testing. So I decided to ini t ial ize a l l internal peripherals
s imply through macros and just have their instances i n the code (see 3.4.1).

I was also t ry ing to create a mechanism that would allow peripherals that support bo th
SPI and I2C buses (like the B M E 2 8 0 , see 3.2) to be ini t ia l ized on one of them wi th a single
function. Such a mechanism would be a great innovation and something new, because be
fore this sort of thing was handled by s imply having two structures for two different buses
in the driver for that peripheral. The prototype is shown in L i s t ing 5.2. However, after
much experimentation, the concept was not successful due to various l imitat ions and the
fact that the size of the items in the structure must be known at compile-time [26].

pub enum Bme280Interface {
I2C(ExternalBME280_i2c<I2C<' s t a t i c , I 2 c l n s t a n c e ») ,
SPI(ExternalBME280_spi<Spi<'s, Spilnstance, F u l l D u p l e x M o d e ») ,

}

pub struct Bme280Sensor {
inner: Bme280Interface,

}

Lis t ing 5.2: Unsucceeded prototype of adaptable bus concept.

Also , it was not possible to implement S P I mode for B M E 2 8 0 chip due to incompat ib i l i ty
of this bus driver i n esp-hal [11] and used sensor library.

One of the most insidious problems was the unexpected inabi l i ty to use the # [cfg(. . .)]
attribute, which filters l ibrary code based on the feature passed to the macro. In cases like
the one described in L i s t ing 5.3, the last option was always chosen.

l e t mut x_axis = adcl_config.enable_pin(
#[cfg (any (feature = "esp32"))]
$pins.gpio32.into_analog(),
#[cfg(not (feature = "esp32"))]
$pins .gpiol . into_analog() ,
esp_hal::analog::adc::Attenuation::Attenuationl ldB,);

Lis t ing 5.3: Unsucceeded p in selection wi th condit ion in macro.

60

In this code, pin 32 should have been selected for the E S P 3 2 configuration and p in 1 i n a l l
other cases, but always i n such constructions inside the macro, regardless of the activated
feature, the last option i n order was selected. I solved this problem by creating several
macros i n the way shown in L i s t ing 5.4.

#[cfg(not(feature = "esp32"))]
#[macro_export]
macro_rules! get_x_adc_pin {

($pins:expr) => {
$pins.gpiol . into_analog()

};

}

#[cfg(feature = "esp32")]
#[macro_export]
macro_rules! get_x_adc_pin {

($pins:expr) => {
$pins.gpio32.into_analog()

};

}

Lis t ing 5.4: Solut ion for condit ional attributes in macros issue.

This way, the macro itself is selected depending on the configuration, not any of its macros.
In the code that follows, it is the one that is used, which no longer creates such problems.

It should also be noted that since a l l the esp-rs drivers are under active development,
they may be unstable i n one way or another. Therefore, fixing the l ibrary on certain ver
sions of them is a necessity. The specific versions can be found i n the Cargo . toml file
of the project. Th is restriction is introduced for stabil i ty reasons, because often breaking
changes can occur that w i l l break the whole project. A s stated i n 2.4.2, the project is i n an
active stage of development, so fixing on a version is a necessity. Further, i n the lifecycle
of the project, there w i l l be constant updates to the most current stable versions of these
drivers. Exac t versions are listed i n L i s t i ng 4.4.

6 1

Chapter 6

Conclusion

To summarize, it is necessary to mention the goal of the project. The main goal was to
offer an open-source l ibrary that would simplify the development of embedded sensor appli
cations i n the Rust language on microcontrollers from Espressif Systems. A n architecture
and specific methods were designed that uti l ize the broad capabilities of this language. A n
A P I was developed which, on the one hand, simplifies for the l ibrary user the use of sensors
and other peripherals when creating his own applicat ion, and on the other hand, for the
developer who was offered a convenient interface to work direct ly wi th the hardware itself.
The project affects both internal peripherals of chips (e.g. SPI , I2C, simplified ini t ia l izat ion
of allocator) and a set of proposed external devices. Access to them was unified and s impl i
fied, a l l work wi th deep settings is done in the l ibrary itself, and the user works wi th a clear
interface. A s one of the testers said, the l ibrary wi th its sense and meaning resembles a
similar Ardu ino project, which is a reference and the choice of many users when developing
embedded applications. The project went a bit beyond the scope of the task - support was
added not only for sensors, but also for some displays and input devices, such as buttons,
joysticks and mot ion sensors. A n important aspect and a very useful extension is also the
addi t ion of support for network functionality, al lowing user systems to uti l ize W i - F i and
M Q T T communicat ion. A l l this allows my l ibrary to be suitable not only for basic sensor
applications, but also for more complex systems.

One of the tasks was to post the project on G i t H u b under the A P A C H E license. A l so ,
the l ibrary was intended to be an open-source project, imply ing community involvement in
the development. Work was also done in these areas - the structure of the project creates
convenience and clearly shows the logic of modules, which makes it easy to navigate in
the repository. For those interested i n the development of the project, a detailed guide on
how to do it has been compiled. A detailed R E A D M E provides information on what func
t ional i ty is supported by the l ibrary and how to start using it i n your projects, including
troubleshooting. A s part of the public part, a website hosted by G i t H u b Pages has been
created. The landing page is designed i n the classic Rust Docs style, which gives the user
a sense of unified design. It provides access to the documentation, which the interviewed
users praised for how detailed and clear the A P I is described.

Considering a l l said above, the project can be called a success. It not only fulfills a l l
the requirements, but also significantly expands the support offered.

62

6.1 Possible Extensions
Possible improvements to the l ibrary functionality include, for example, expanding the range
of supported peripherals. Also add support for more networking functionality, including
some esp-specific ones like esp-now 1 .

1esp-now communication protocol: h t tp s : / /www.espress i f . com/en / so lu t ions / low-power - so lu t ions /
esp-now

63

https://www.espressif.com/en/solutions/low-power-solutions/

Bibliography

[1] Crate std [online], [cit. 2024-04-18]. Available at:
https: //doc.rust-lang.org/std/index.html.

[2] Embedded_hal [online], [cit. 2024-04-18]. Available at:
https: / / crates.io/crates/embedded-hal.

[3] O X D E A D B E E F (N I C K N A M E) . Rust (programming language) [online]. 2024 [cit.
2024-04-18]. Available at:
https: //en.wikipedia.org/wiki/Rust_ (programming_language) .

[4] A D A F R U I T - I N D U S T R I E S , L L C . Adafruit Official Website [online], [cit. 2024-04-18].
Available at: https://www.adafruit.com.

[5] A P A R I C I O , J . The Embedonomicon (CC BY-NCSA 4.0) [online], [cit. 2024-04-18].
Available at: https: //docs.rust-embedded.org/embedonomicon/pref ace.html.

[6] B L A N D Y , J . , O R E N D O R F F , J . and T I N D A L L , L . F . S. Programming Rust. 2nd ed.
O'Reilly Media, Inc., June 2021 [cit. 2024-04-18]. ISBN 978-1-492-05259-3.

[7] C R A M E R , T . Asynchronous Programming in Rust [online], [cit. 2024-04-18]. Available
at: https://rust-lang.github.io/async-book/.

[8] C R I C H T O N , A . , K L A B N I K , S. and N I C H O L S , C . The Cargo Book [online], [cit.
2024-04-18]. Available at: https://doc.rust-lang.org/cargo/.

[9] D E B A K K E R , B. HOW to use an HC-SR04 Ultrasonic Distance Sensor with Arduino
(CC BY-NCSA 4.0) [online], [cit. 2024-04-18]. Available at:
https: //www.makerguides.com/hc-sr04-arduino-tutorial/.

[10] E S P - R S . Esp-alloc [online], [cit. 2024-04-15]. Available at:
https: //github.com/esp-rs/esp-alloc.

[11] E S P - R S . Esp-hal [online]. [cit. 2024-04-15]. Available at:
https: //github.com/esp-rs/esp-hal.

[12] E S P - R S . Esp-idf-hal [online], [cit. 2024-04-15]. Available at:
https: //github.com/esp-rs/esp-idf-hal.

[13] E S P - R S . Esp-pacs [online], [cit. 2024-04-15]. Available at:
https: //github.com/esp-rs/esp-pacs/tree/main.

[14] E S P - R S . Esp-rs docs [online], [cit. 2024-04-15]. Available at:
https: / / docs.esp-rs.org/esp-hal/.

64

http://lang.org/
http://en.wikipedia.org/
https://www.adafruit.com
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/cargo/
http://www.makerguides.com/hc-sr04-arduino-tutorial/
http://docs.esp-rs.org/esp-hal/

[15] E S P - R S . Esp-wifi [online], [cit. 2024-04-15] . Available at:
h t tp s : / / g i thub.com/esp-rs /esp-wif i / t r e e / m a i n / e s p - w i f i .

[16] E S P - R S . Espflash [online], [cit. 2024-04-15] . Available at:
h t tp s : / / g i thub.com/esp-rs /espf lash.

[17] E S P - R S . The Rust on ESP Book (CC BY-NCSA 4.0) [online]. 2018 [cit. 2024-04-15] .

Available at: h t tps : / /docs .esp- rs .o rg /book/ .

[18] E S P R E S S I F S Y S T E M S (S H A N G H A I) C O . , L T D . . Esp-bsp [online], [cit. 2024-04-18] .

Available at: h t tps : / /g i thub .com/espress i f / esp-bsp .

[19] E S P R E S S I F S Y S T E M S (S H A N G H A I) C o . , L T D . . Esp-idf [online], [cit. 2024-04-18] .

Available at: h t tp s : / / g i thub .com/esp res s i f / e sp - id f / t r ee /mas te r .

[20] E S P R E S S I F S Y S T E M S (S H A N G H A I) C o . , L T D . . SOCS [online], [cit. 2024-04-18] .

Available at: ht tps: / /www.espressif .com/en/products/socs.

[21] E S P R U I N O . PCD8544 LCD driver (Nokia 5110) [online], [cit. 2024-04-18] . Available at:
h t tp s : //www.espruino.com/PCD8544.

[22] E V A N S , J . A couple of Rust error messages [online], [cit. 2024-04-18] . Available at:
h t tp s : / / j vns.ca/blog/2022/ 12 /02 /a -couple -of - rus t -e r ror -messages / .

[23] G A N S S L E , J . A Guide to Debouncing, or, How to Debounce a Contact in Two Easy
Pages [online], [cit. 2024-04-18] . Available at:
h t tp s : //www.ganssle.com/debouncing.pdf.

[24] I L I T E C H N O L O G Y C O R P . . A-Si TFT LCD Single Chip Driver 240RGBx320
Resolution and 262K color [online], [cit. 2024-04-18] . Available at:
h t tp s : / /cdn-shop.adafruit .com/datasheets/ILI9341.pdf.

[25] J E T B R A I N S . TeamCity CL/CD Guide [online], [cit. 2024-04-18] . Available at:
h t tp s : //www. j e tb ra in s . com/ t eamc i ty / c i - cd -gu ide / .

[26] K L A B N I K , S. and N I C H O L S , C . The Rust Programming Language. 2nd ed. N o Starch
Press, February 2023 [cit. 2024-04-18]. I S B N 978-1-7185-0311-3.

[27] L A B , M . S. Wrangling Web Contributions: How to Build a CONTRLBUTLNG.md
[online], [cit. 2024-04-18] . Available at:
h t tp s : / /moz i l l a sc i ence .g i thub . io /work ing -open-workshop /con t r ibu t ing / .

[28] L E S I N S K I , K . Rust crates ecosystem statistics [online], [cit. 2024-04-18] . Available at:
h t t p s : / / l i b . r s / s t a t s .

[29] M A I D A N , M . and P A N A S E N K O , Y . Rust market overview: reasons to adopt Rust, Rust
use cases, and hiring opportunities [online], [cit. 2024-04-18] . Available at:
h t tp s : / / y a l an t i s .com/blog/ rus t -market -overview/ .

[30] M A R P A U D , C . OxidESPark [online]. [cit. 2024-04-18] . Available at:
h t tp s : / / g i t l a b . com/ cy r i l -marpaud /ox ide - spark.

[31] M A R S H A L L , D . Programming with Rust. Addison-Wesley Professional, December
2023 [cit. 2024-04-18]. I S B N 978-0-13-788965-5.

65

http://github.com/esp-rs/
http://github.com/esp-rs/
https://docs.esp-rs.org/book/
https://github.com/espressif/esp-bsp
https://github.com/espressif/esp-idf/tree/master
https://www.espressif.com/en/products/socs
http://www.espruino.com/PCD8544
http://www.ganssle.com/debouncing.pdf
http://shop.adafruit.com/datasheets/ILI9341.pdf
http://jetbrains.com/teamcity/ci-cd-guide/
https://mozillascience.github.io/working-open-workshop/contributing/
https://lib.rs/stats
http://antis.com/blog/rust-market-

[32] M I C H Á L E K , J . Esp-bsp-rs [online], [cit. 2024-04-18]. Available at:
https: //github.com/georgik/esp-bsp-rs.

[33] M I K H A I L O V , K . Crispy Click (Wokwi example) [online], [cit. 2024-04-18]. Available at:
https://wokwi.com/projects/341706650098336338.

[34] M I K H A I L O V , K . Esp-clock-nostd [online], [cit. 2024-04-18]. Available at:
https: //github.com/playf ulFence/esp-clock-nostd/tree/main.

[35] M U N N S , J . The Embedded Rust Book (CC BY-NCSA 4.0) [online], [cit. 2024-04-18].
Available at: https://docs.rust-embedded.org/book/intro/index.html.

[36] R U S T E M B E D D E D G R A P H I C S . Embedded_graphics [online], [cit. 2024-04-18]. Available
at: https : //crates.io/crates/embedded-graphics.

[37] S A D E L , J . Esp32c3-no-std-async-mqtt-demo [online], [cit. 2024-04-18]. Available at:
https: //github.com/ JurajSadel/esp32c3-no-std-async-mqtt-demo.

[38] S A D E L , J . Rust + Embedded: A Development Power Duo . Elektor Magazine [online].
December, 2023, [cit. 2024-04-18].

[39] S C H U S T E R , P . Max_7219_led_matrix_util [online], [cit. 2024-04-18]. Available at:
https: / / crates.io/crates/max-7219-led-matrix-util.

[40] S E M E N U K , B . Exploring The Rust Standard Library [online], [cit. 2024-04-18].
Available at: https://marketsplash.com/tutorials/all/rust-standard-library/.

[41] S E Q U E I R A , R . Learning Rust: Understanding Zero-Cost Abstraction with Filter and
Map [online]. M a y 23, 2023 [cit. 2024-04-18]. Available at:
https: //raiiveersequeira.medium.com/learning-rust-understaiiding-zero-cost-
abstract ion-with-filter-and-map-e967d09fff79.

[42] T H O M P S O N , C . HOW Rust went from a side project to the world's most-loved
programming language [online]. February 2023 [cit. 2024-04-18]. Available at:
https: //www.technologyreview.com/2023/02/ 14/1067869/rust-worlds-fastest-
growing-programming-language/.

6 6

https://wokwi.com/projects/341706650098336338
https://docs.rust-embedded.org/book/intro/index.html
https://marketsplash.com/tutorials/all/rust-standard-library/
http://sequeira.medium.com/learning-rust-understaiiding-zero-
http://www.technologyreview.com/2023/02/

Appendix A

Contents of the storage medium

• /esp-ward - source code of the library.

• / compare - a folder w i th visual examples of how the l ibrary has simplified code
wri t ing.

• / latex - source code of the bachelor's thesis text

• xmikhaOO.pdf - text of bachelor's thesis.

6 7

Appendix B

Project related links

• https://github.com/playfulFence/esp-ward - project repository.

• https: / /playfulfence.gi thub. io/esp-ward/ - library's website, hosted on GitHub
Pages.

• https: / / p l a y f u l f ence.github.io/esp-ward/docs/esp_ward/index.html - API doc
umentation.

B . l Comparison Examples

• https://wokwi.com/projects/341706650098336338 - official Crispy C l i c k exam
ple.

• https: //wokwi.com/projects/396547396717778945 - Crispy C l i c k example remade
with my library.

• https: //wokwi.com/pro jects/344869867332043347 - official text scrolling on MAX7219
example.

• https://wokwi.com/projects/396544824213521409 - text scrolling on MAX7219
example, remade with my library

• https://wokwi.com/projects/357451677483992065 - official esp-clock example.

• https: //wokwi.com/projects/396552224931760129 - example, similar to esp-clock,
remade with my library (may not work due to a bug with internal Wokwi builder, in
this case - used proof of concept).

• https: //wokwi.com/projects/342697409287029332 - official etch-a-sketch exam
ple.

• https://wokwi.com/projects/396539527833650177 - etch-a-sketch example, re
made with my library (may not work as expected due to incompatibility of ADC1
and Wokwi, used as a proof of concept).

68

https://github.com/playfulFence/esp-ward
https://playfulfence.github.io/esp-ward/
http://ence.github.io/esp-ward/docs/esp_ward/
https://wokwi.com/projects/341706650098336338
https://wokwi.com/projects/396544824213521409
https://wokwi.com/projects/357451677483992065
https://wokwi.com/projects/396539527833650177

Appendix C

Feedback from Espressif Systems

In order to get an opinion from the company about my project, I personally asked the team
leader of the esp-rs to write a short text w i th his conclusion.

,psp-ward is a high-level wrapper for esp-hal and esp-wifi. esp-ward allows
for rapid prototyping and experimentation in the Espressif Rust ecosystem by
abstracting over common actions many users will need to bring up their appli
cation. Rust is notoriously hard to learn, so having esp-ward as an option for
new users is a great boon to the ecosystem.

esp-ward has a CI workflow to ensure it's always building with the latest esp-rs
crates and helpful self-hosted documentation under
https://playfulfence.github.io/esp-ward/. Within the repository, there
are several helpful examples that showcases the simplicity of applications when
using esp-ward.

esp-ward doesn't just abstract over esp-rs crates, it adds valuable integrations
into other third-party crates and drivers. The most common feedback we receive
as the maintainers of esp-rs is that it's hard to glue all the separate pieces of
the ecosystem together; esp-ward can help alleviate this issue by providing these
integrations. Along with the integrations, esp-ward adds its own project building
blocks such as a PIR sensor, Ultrasonic Distance sensor (HC-SR04) and button
abstractions. There are also networking abstractions for WiFi and MQTT.

Finally, esp-ward holds the same values as we do when it comes to commu
nity contributions, after all, most of the esp-rs team is from the community; it
has a thorough contribution guide to ensure that community contributions can
be made frictionlessly. "

— Scott Mabin

69

https://playfulfence.github.io/esp-ward/

