
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO
KATEDRA INFORMATIKY

DIPLOMOVÁ PRÁCE

Adaptivńı uživatelské rozhrańı
”
Boulevard“ v textovém

editoru

Adaptive User Interface “Boulevard” for Word Processor

2011 Zdenek Eichler

Anotace

Aplikace nab́ızej́ı uživatel̊um stále v́ıce funkcionality. Uživatelská personalisace
aplikaćı je jeden z nástroj̊u k řešeńı tohoto problému. Tato diplomová práce
je zaměřená na vývoj Boulevardu — adaptivńıho kontejneru akćı, implemen-
tovaného v textovém editoru OpenOffice.org Writer. Boulevard se řad́ı mezi
adaptivńı uživatelská rozhrańı. Boulevard funguje na principu sledováńı chováńı
uživatele pomoćı loggeru nazvaném Interceptor a je ř́ızen expertńım systémem. V
závěru práce je popsán také test použitelnosti Boulevardu.

Annotation

Applications are growing in terms of the offered functionality. The personaliza-
tion has been proposed to address the issue. The purpose of this thesis is devel-
opment of Boulevard, an auto-adaptive container, implemented in the OpenOf-
fice.org Writer. Boulevard, an adaptive user interface, collects and evaluates
information about the user’s behavior by a logger called Interceptor. Boulevard
is controlled by the expert system, which perform the adaptation. Finally, we
performed a usability test of Boulevard.

Děkuji mamince a tat́ınkovi, kralce a kloučkovi. Děkuji mé sestře. Děkuji Adélce.
Děkuji svému

”
v̊udci“ Martinu Dostálovi.

Contents

1 Introduction 8
1.1 Aims . 8
1.2 What is Boulevard . 8
1.3 Brief History of User Interfaces 9
1.4 Ribbon User Interface . 10
1.5 The Current Status - What is the Edge of the WIMP Paradigm? . 10

1.5.1 Level Structured Interfaces 12
1.6 Personalization . 13

1.6.1 Adaptable User Interfaces 14
1.6.2 Adaptive User Interfaces 15

2 Previous Work 21

3 Boulevard 22
3.1 Implementation Issues . 28

4 Expert Systems 29

5 Boulevard Expert System 32
5.1 Facts . 32

5.1.1 Item Uniqueness . 34
5.2 Rules . 34

5.2.1 New Action . 34
5.2.2 Compute rank . 36
5.2.3 Sorting Actions . 36
5.2.4 Sweeping back . 38
5.2.5 Visual Representation . 40
5.2.6 Minimal Rank . 42
5.2.7 “Find” Parameters . 43

6 Why OpenOffice.org 46
6.1 Programming under OpenOffice.org 46

6.1.1 UNO . 46

7 OpenOffice.org Interceptor 47

8 Interceptor Architecture and Implementation 50
8.1 Action Logging Implementation 51
8.2 Determining Interaction Style of Performed Action 52
8.3 Example of Performing Logging Algorithm 54
8.4 OOI Limitations . 56
8.5 Rapid Prototyping of Intelligent Interfaces 57

4

8.6 OpenOffice.org Interceptor Installation 57

9 Boulevard Manager and Visualization Layer 59
9.1 Boulevard Manager . 59
9.2 CLIPSJNI . 60
9.3 Boulevard Visualization Framework 60

9.3.1 User Interface Elements Context Synchronization 61
9.4 Boulevard Layout Manager . 62
9.5 Animations . 63
9.6 Visualization Result and Future Work 64
9.7 Boulevard Installation . 64

10 Boulevard Usability Test 66
10.1 Previous Test . 66
10.2 The Test . 66
10.3 Testing Facility . 69
10.4 Test Result . 71

10.4.1 Quantitative Evaluation 72
10.4.2 Questionnaire Evaluation 73

10.5 Test Result and Future Tests . 74

11 Writing This Thesis With Boulevard 75

12 What Have I Done and How? 76

Conclusions 77

Závěr 78

References 79

A Adaptive Menu Implementation in OpenOffice.org 83

B Starting Document in the Usability Test 85

C Questionnaire 86

D Content of the Appended DVD 90

5

List of Figures

1 The Ribbon User Interface . 11
2 Toolbars growth in Microsoft Word 12
3 Menu growth in Microsoft Word 13
4 Microsoft Office Assistant . 17
5 Split menus: static on the left and adaptable on the right 18
6 The font drop-down list in OpenOffice.org Writer 18
7 Microsoft Adaptive Menus . 19
8 The first Boulevard prototype . 21
9 Façades Source Windows . 22
10 Façades Window . 22
11 Possible layouts of the Boulevard 24
12 Sweeping back feature . 25
13 Adaptive representation . 26
14 The original find dialog in OpenOffice.org 26
15 Various Boulevard representations of the find command 27
16 OpenOffice.org Interceptor window 49
17 Logging Algorithm – The Main Part 54
18 Logging Algorithm – The Top Window Listener Event 55
19 Logging Algorithm – The Dispatch Provider Interceptor Event . . 56
20 The Logging Algorithm – Setting init and exec values using

timestamp . 57
21 An Example of using OOI program interface 58
22 Boulevard internals . 59
23 Boulevard administration window 65
24 Tester’s screen . 71
25 Resulting personalized Boulevard 75

6

List of Tables

1 Adaptive Representation Groups 41
2 Log Sample . 48
3 Toolbar test commands . 68
4 Menu test commands . 69
5 Aggregated data . 72

7

1 Introduction

Usability of computers from user’s perspective tends to decrease instead of
increase. Reportedly, the excess of provided functionality is a substantial source
of dissatisfaction [44]. We are talking about software bloat [39], creeping fea-
turism or feature war. All of these terms are a little different in meaning, but
they describe the same phenomenon: a trend of newer software applications to
require more resources like a faster CPU and more memory and provide a high
number of unused features by most of users. Human-Computer Interaction (HCI)
community is particularly interested in such a phenomenon and there have been
some attempts to address the above-mentioned phenomenon, such as personal-
ization, adaptive user interfaces, recommender systems, etc. Our interest focuses
on word processing applications, as they are used by various types of users, from
beginners to professionals and as the above-mentioned phenomenon affect word
processors as well. This trend is obvious from Figures 2 and 3.

1.1 Aims

We aim to implement an adaptive container of personalized user interface
named Boulevard in a word processor and to verify its applicability by usability
tests. Boulevard has come into existence in our previous work focused on adaptive
user interfaces supervised by Martin Dostál, who I and Jakub Černek worked
with. This work continues in the development of Boulevard, and provides new, a
more advanced, implementation of Boulevard. We consider the implementation
of Boulevard in an existing “bloated” application as particullary important for
more relevant testing of its usability in therms of ecological validity1.

Thesis is organized as follows: Details about Boulevard are in Chapter 3.
Why we have decided to use OpenOffice.org Writer is explained in Chapter 6.
An important part of work on every adaptive user interface is a user activity
logger. We developed our own logger called OpenOffice.org Interceptor, further
referred to as Interceptor, for more details see Chapter 7. The last part of work
is a usability test of Boulevard (Chapter 10), which was not performed in the
previous work properly.

1.2 What is Boulevard

Boulevard, an adaptive container, is a new user interface element (an addi-
tion to the menus and toolbars), which automatically collects and orders the
user commands frequently and/or and recently used. The interaction styles and
parameters used to activate commands are also considered. Since Boulevard’s
user interface changes automatically without a direct user’s invitation, therefore

1
The study must follow the real-life conditions. Do not confuse with external validity.

8

Boulevard ranks among adaptive user interfaces. Current Boulevard implemen-
tation is interesting also from an engineer’s point of view, since the integration
of Boulevard in the OpenOffice.org Writer. An important part of Boulevard is
a logger, which we consider as the fundamental part of any adaptive user inter-
face. Our logger called OpenOffice.org Interceptor is unique for several reasons:
(1) combines both common used logging techniques: macro-recorder-based log-
ging and user interface events (and accessibility API)-based logging. (2) The
interceptor provides an Application Programming Interface (API), which makes
the real-time interaction with an adaptive user interface or user testing software
possible.

1.3 Brief History of User Interfaces

To show the current status of user interfaces and their problems, it is good to
know about their history in the first place. The very first type of user interface
was a batch interface, which was not interactive at all, the user only entered the
parameters for a batch task and after the task was completed the interface showed
the result. There was no more interaction with the user. Such an interface was
used strictly by expert users. This user interface was typical for mainframes and
nowadays it is a “dead” interface.

Another important type of user interface is a command line, which was in-
troduced in 1969, when telnet was introduced in RFC 15 [19]. The origin of
a command line interface came from a teletypewriter (TTY). These interfaces
served not only for message switching, but also as the first remote terminals for
mainframes. This already implies a first real interaction between user and com-
puter. Nowadays, command line interfaces are used by experienced users, and
mostly in professional applications, such as Cisco systems IOS (Internetwork Op-
erating System). A command line is also used by interactive program languages,
e.g., LISP. However, the command line is not very user-friendly, because the user
has to remember commands and keystrokes, which are mostly different in every
system. On the other hand, the command line is believed to be faster than GUI
(Graphical User Interface) and also is easy to implement, which might be the
reason why it is still a favorite interface for professionals and it is used in simple
embedded devices.

A breakthrough the from user’s point of view was the Graphical User In-
terface (GUI), especially WYSIWYG (What You See Is What You Get). The
Development of WYSIWYG text editors started in 1974, when Xerox developed
the Bravo text editor, the very first text editor which displays text with for-
matting [26]. Bravo was designed for the Alto computer, which was never sold
commercially, but served as an starting-point for the Xerox Star computer intro-
duced in the 1981. The Star was a major breakthrough in user interfaces. It was
document-centric, so the user did not interact with the program but with the doc-
ument, of course from the user’s point of view. The text editor contained in the

9

Star computer was based on Bravo; moreover it was controlled by icons, therefore
the user did not have to remember dozens of creepy shortcuts and commands, but
could click directly on the icon representing such a command, which was a big
breakthrough. This new interface reportedly greatly reduced the learning time
needed to start using the computer [49]. Xerox was not only a great innovator
of user interfaces, but also has invented a lot of today used technologies, such as
the Ethernet.

Most of today’s applications use the WIMP (Windows, Icons, Menus and
Pointing Device) paradigm, which was developed by Xerox, widely popularized
and a further improved by Apple Macintosh released in 1984. WIMP together
with the direct object manipulation and WYSIWYG is much more user-friendly
than a command line. After that there has not been much innovation in user
interfaces. WIMP is still the most popular interface today. In earlier systems,
there were many implementation issues with the GUI, so the development was
often oriented from technology to a user interface (does not concern the Apple and
the Xerox). However, with today’s technologies we can reverse the development:
from a user interface to technology, which increases the chances to develop a good
user-friendly interface.

1.4 Ribbon User Interface

After Microsoft Office 2003, Microsoft obviously realized that there is no way
to add more items to toolbars or menus. Microsoft performed an extensive but
unpublished research on how users use the Office suite, which resulted in the
Ribbon User Interface, see Figure 1 (image by Richard Ericson). Ribbon User
Interface is organized in tabs containing icons, simple menus and some parts
of dialogs. In the WIMP paradigm, there is one user command available at
multiple places (for example, in a toolbar and a menu), in contrast to Ribbon,
where is one user command available only at one place. This reduces the visual
complexity. Another important Ribbon feature is context behavior. The screen
content, especially an opened tab changes according to the current context (the
cursor position in the document). Ribbon interface belongs to static interfaces,
even through there is some kind of dynamic behavior, like context sensitivity.

There was a study on the user acceptance of the Microsoft Ribbon user in-
terface performed by Martin Dostál [27]. Dostál concludes that Ribbon user
interface is well accepted by a new users to Microsoft Office, on the other hand,
users who switched from previous versions of Microsoft Office found Ribbon user
interface as worse than previous one (WIMP-based).

1.5 The Current Status - What is the Edge of the WIMP
Paradigm?

Today’s applications are much extensive and more complex than before. How-

10

Figure 1: The Ribbon User Interface

ever, in my opinion, WIMP was designed for much smaller applications than we
have today. Thanks to today’s high-resolution displays and high-performance
processors we can now have too many features and items on the screen. Increas-
ing the visual complexity is a problem for users, since they just lose themselves
in all the offered functionality. The applications loses its original elegance. In
this context, we talk about two phenomenons:

• Increasing demands on the hardware (hardware requirements).

• Increasing functionality of the software.

The first phenomenon is not much an issue, since the development of hardware
is always ahead. The second phenomenon already appears to be a problem since
users are not getting better every year like hardware. Users lose themselves in the
massive functionality offered by software. The growing functionality of software
seems like a good thing at first sight: to offer users more options and features
than the previous versions. However, there should be some limitations. The
common causes for the increasing functionality are several, for instance:

11

• Applications have often long history, their development lasts for decades.
Functionality is more often added than removed. Remember the Figures 2
and 3.

• Marketing reasons induces the need to offer more functionality than the
previous version and competing products.

• Widely-used applications, such as word processors, are intended for many
diverse users.

Figures 2 and 3 (by Martin Dostál) expose the development of the toolbars
and the menus size in Microsoft Word in time. The question is, what is the
limit? An interesting study focused on Microsoft Office users and bloatware was
done by McGrenere and Moore, with a poignant title “Are We All in the Same
Bloat?” [44]. Another interesting study, done by Kaufman and Weed, has a
name: “Too much of a good thing?: identifying and resolving bloat in the user
interface” [39].

Figure 2: Toolbars growth in Microsoft Word

1.5.1 Level Structured Interfaces

One approach to achieve better usability of complex software is reducing func-
tionality by offering different versions of the software. One version can focus on
beginners and another at professionals. Possible is also offer “version” behavior

12

Figure 3: Menu growth in Microsoft Word

in one application at the same price. Such an application must provide an in-
terface to change the complexity of the user interface. The application can then
“grow” with the user. A similar approach was used by Joanna McGrenere in [43],
where she introduced the so-called Multiple interface, which is demonstrated on
the Microsoft Word 2000. The Multiple interface concept provides easy switch-
ing between two user interface versions: a full, not personalized, interface and a
limited personalized interface. She found that only 20 % of participants marked
the full, not personalized interface, as their first choice. The disadvantage of
this approach is that there is probably no such thing as an “average user” and
a groups of users. These findings resulted from the survey on word processors
users performed by Martin Dostál [29]. Joel Spolsky uses the Vilfredo Pareto’s
80/20 rule and claims that: ”80% of people use 20% of features. Unfortunately,
it is never the same 20%” [50]. There is a problem how to build a version ladder;
which feature is intended for a beginner or an advanced user, as we know that
users are so different. Another problem with the version control is the switch-
ing between versions. In commercially different versions a user must buy a new
version of the product.

1.6 Personalization

Other approach is personalization; we differentiate between two basic kinds
of personalization: adaptive and adaptable. Both adaptable and adaptive ap-

13

proaches are about customization of software from its default configuration. The
adaptable approach stands for customization performed by the user and whereas
the adaptive approach stands for customization performed by the computer. Just
for precise understanding, by customization we do not understand a customiza-
tion of software by developers, for example, like we “customized” OpenOffice to
support Boulevard.

1.6.1 Adaptable User Interfaces

The adaptable customization is widely supported by today’s applications,
e.g., Microsoft Office 2003 and OpenOffice.org. Although many applications to-
day support personalization, we believe that most users do not personalize. There
was one interesting study on how many users really personalize word processors
and how many users know how to personalize. Such a study has been done on
the WordPerfect word processor; they concluded that 92% of users perform cus-
tomization, however, they consider even a change of zoom level as customization,
not only changes to the user interface [46]. Another study was performed on
UNIX users, how they customize [42]. Just to remind, customization in UNIX
systems is usually performed through editing configuration files, which is not very
user-friendly. The outcome of the study was that only a small number of users
perform customization, mostly because it is too hard to accomplish.

Advantages of an adaptable user interface:

• The user has everything under control, no change can happen in the user
interface without user’s direct invitation.

• Most software is customizable.

Disadvantages of an adaptable user interface:

• Personalization is mostly difficult and a less experienced user does not have
to know how to do it. Some users do not know that such a thing is even
possible. In a study focused on text-editor users it was found that pro-
grammers use customization much more than secretaries (today referred
to as personal assistants) [47]. This causes a paradox: Less experienced
users need to reduce the visual complexity, and thus customize more than
advanced users; but they usually do not know how to do that.

• Personalization is not a simple task and costs user’s time and energy, there-
fore the user can decide not to perform personalization [42]. This disad-
vantage can be avoided by making customization easier. An example of
not a user-friendly customization is OpenOffice.org, where the user must
edit a list, which is later interpreted by OpenOffice.org as a content and
layout of toolbar. A good example of a user-friendly customization is Apple
Pages, where the user can perform customization by direct manipulation
with objects.

14

• User’s needs can change in time, thus repeated customization is needed.

• Users switch can cause very unpleasant and painful experience in the case
when a user starts using someone else’s personalized software, especially for
less experienced users.

1.6.2 Adaptive User Interfaces

By adaptivity we understand an automatic customization of a user interface
without direct user’s invitation, operated by the computer. There is usually some
kind of “intelligence” behind.

There are more approaches of Adaptive User Interfaces (AUIs) distinguished
by its purpose and motivation. We consider as AUI adaptation of the user inter-
face motivated by better usability to the regular users.

There is another approach, adaptation of the user interface to a device or a
platform, such interfaces are sometimes called multi-platform or meta-interfaces.
A meta-language is often used for describing the user interface model, for example
UIML, XIML, ISML or XUL. The list of the most such meta-languages can be
found in [8], the list contains about 40 such languages, which are mostly similar,
XML-based. A meta-language serves only as a descriptor of a user interface
model, but there must be some kind of intelligence (algorithm) behind, which
transforms the meta-language to a particular user interface. This approach has
growing popularity in HCI community, probably because of growing numbers of
various mobile devices. An example of such software is ADUS (ADaptive User
interface System) [1].

Another important approach is to make a user interface more usable for people
with disabilities. This task is difficult, since there are many types of disabilities
and their combinations. An example of such an interface is SUPPLE [14].

The advantages of adaptive user interfaces:

• No skill requirements for a user to do the personalization. Such personaliza-
tion could be, thanks to its automatic behavior, usable for a less experienced
user.

• Such personalization can be done more often and without cost of time and
energy.

• In case of a user switch, or fundamental changes in the user’s behavior,
the software adapts (customizes) the interface automatically to the new
situation.

The disadvantages of adaptive user interfaces:

• The user can be confused and may not understand, what is happening with
the interface. Such behavior is sometimes referred to as annoying and is
considered as the main problem in adaptive user interfaces.

15

• The user interface, which is constantly changing, is hard to learn. The user
must look for commands all the time, which costs time and energy.

There is another kind of intelligent user interfaces, recommender systems [37]. In
the context of user interfaces they are often called agents. Such an agent observes
the user’s behavior and habits. Agents usually do:

• Offer to the user the potentially useful functionality.

• Detect the user’s goals and provide some kind of help (e.g., wizard).

• Detect the user’s workflow and offer automation of such routines.

• Teach the user new skills, we call such an agent pedagogical.

A common difference between AUI and an intelligent agent is that AUI offers
the user functionality used by the user and changes the user interface, while an
agent offers the user functionality not used by the user, which can be useful for
the user, and does not change the user interface. However, there are also many
combinations of both approaches. An example of a recommender system, which
is not represented as an agent, is the Google’s “Did you mean” feature.

Microsoft Office Assistant The Microsoft Office Assistant (also know as
Clippy, see Figure 4) is probably the best known intelligent agent, the most
hated at the same time, which was a target of various jokes. Smithsonian Mag-
azine called Clippy “one of the worst software design blunders in the annals of
computing” [23]. Clippy was not well accepted by users and was removed from
following versions of Office. One reason can be the “smart guy” factor. To our
knowledge, there is not any study focused on Microsoft Office Assistant evalua-
tion.

The most frequent argument against AUIs is that automatic adaptation can
disorient the user, and thus is worse than good for the user. We will describe the
current status and interesting Adaptive User Interfaces with examples.

Split menus Split menus (Figure 5) is not an adaptive user interface, but
static. We are mentioning split menus here since they inspired a lot of adaptive
user interfaces related to the menu adaptation. Split menus, introduced by Sears
and Shneiderman [48], divide a menu into two sections: the high-frequency section
contains the most frequently used items and should not contain more than four
items. The low-frequency section contains all other items. Items in both sections
should be sorted by frequency, when there are not many items, and alphabetically
when there are many items. Sears and Shneiderman performed an evaluation and
found that split menus were not worse than ordinary menus and in most cases
split menus were even faster. Split menus inspired also other items than menus,
for example the drop-down list in some software, such as the OpenOffice.org
Writer. Similarity to split menus is obvious, see Figure 6 .

16

Figure 4: Microsoft Office Assistant

Microsoft Adaptive Menus In Microsoft Office 2000 Office Assistant
(Clippy) was removed and new adaptive menus (Figure 7 source: silicoholic.com)
were introduced, the first commercial implementation of an adaptive user inter-
face. The concept is similar to Split menus, but adaptive and there is a different
display of the low-frequency section and the high-frequency section. Menus have
two display modes: (1) an adapted mode with about a half or a third of items.
(2) A Full mode with all menu items. The menu starts in the adapted mode
and the user can switch to the second full-feature mode by a long observation
of menu or by clicking on a special menu item with an arrow symbol. Items in
adapted mode are selected and sorted by an observation of user’s behavior but
the exact algorithm is unknown. Arguments against Adaptive menus are: (1) a
difficult start-up - which items should be placed into the first personalized mode,
remember that there are big differences between users, (2) when user did not find
the requested item in first mode, they must search for it again in the second full
mode, which contains all items from the first mode, but in different order and
mixed together with other unused items. The concept of the Adaptive menus
was abandoned in Microsoft Office, just like Office Assistant, in Office 2007.

An interesting menu-related paper [35] compares static, adaptive and adapt-
able menus. They find out that an adaptive menu was slower than a static
menu, an adaptable menu was not slower than a static one. Another menu-
related work [16] describes an implementation of adaptive menus to the Eclipse
(an integrated development environment), unfortunately, they did not perform
the usability test on volunteers.

17

!"#!$%&!'()*+&!(,-.+
!"#$%&'($&)$&*+$#,-#+./#01$2'3$1&$4&/-'+#$1"#$#)).4.#04.#3$
&)$ 31'1.45$ '6'-1'7(#5$ '06$ '6'-1.8#$ /#0*39$:'4"$ /#0*$ 2'3$
./-(#/#01#6$'3$'$3-(.1$/#0*5$'$6#3.%0$7+.#)(;$.01+&6*4#6$.0$
1"#$-+#8.&*3$3#41.&09$
<1#/3$'+#$-('4#6$.0$ 1"#$ 1&-$&+$7&11&/$-'+1.1.&0$&)$ 1"#$3-(.1$
/#0*$ 7'3#6$ &0$ 1"#$)+#=*#04;$ 2.1"$ 2".4"$ #'4"$.1#/$ "'3$
7##0$3#(#41#6$.0$1"#$-'319$!".3$.3$0&1$6&0#$.0$+#'(>1./#5$7*1$
.3$6&0#$2"#0$1"#$/#0*$.3$.0.1.'((;$3#1*-$'3$'$3-(.1$/#0*9$<0$'$
1+'6.1.&0'($ 31'1.4$/#0*$?&0#$ 1"'1$ 6$ 0&1$ 4&01'.0$ '$ 3-(.1@5$
.1#/3$ /';$ 7#$ &+6#+#6$ 7;$ 31+'1#%.#3$ 3*4"$ '3$ '(-"'7#1.4$ &+$
)*041.&0'($&+6#+.0%9$<0$'$3-(.1$/#0*5$1".3$+#('1.8#$&+6#+.0%$&)$
.1#/3$.3$/'.01'.0#6$2.1".0$ #'4"$ -'+1.1.&09$ A&+$ #,'/-(#5$.)$
!"#"$"$ '--#'+3$ 7#)&+#$%&"#$"$.0$ 1"#$ 1+'6.1.&0'($/#0*$ (';>
&*15$.1$ 2.(($ '--#'+$ 7#)&+#$%&"#$"$.)$ 7&1"$ '+#$.0$ 1"#$ 1&-$ &+$
7&11&/$-'+1.1.&0$&)$1"#$3-(.1$/#0*9$
B#'+3$'06$B"0#.6#+/'0$*3#6$1"#$)&((&2.0%$12&$-+#(./.0'+;$
6#3.%0$%*.6#(.0#3$)&+$1"#.+$31*6.#3$CDEFG$$
D9$ H1$/&31$)&*+$.1#/3$3"&*(6$'--#'+$.0$1"#$1&-$-'+1.1.&09$
I9$!&$3-(.1$ 1"#$/#0*$.01&$12&$-'+1.1.&035$).+31$3&+1$.1#/3$7;$
)+#=*#04;9$B1'+1.0%$2.1"$1"#$(&2#31$)+#=*#04;$.1#/5$34'0$
1"#$(.31$*01.($ 1"#$-&.01$2"#0$1"#$6.))#+#04#$7#12##0$3*4>
4#33.8#$)+#=*#04.#3$.3$ %+#'1#+$ 1"'0$ 1"#$/#'0$ &)$ '(($)+#>
=*#04.#39$!"#$ 1&-$.1#/3$ &0$ 1"#$ ".%"$)+#=*#04;$ 3.6#$ &)$
1"'1$-&.01$'+#$'33.%0#6$1&$1"#$1&-$-'+1.1.&05$*-$1&$'$/',.>
/*/$&)$E9$$

J#$'6&-1#6$ 1"#$).+31$%*.6#(.0#5$7*1$+#(',#6$1"#$3#4&06$&0#$
3*4"$1"'1$)&*+$.1#/3$'(2';3$'--#'+#6$.0$1"#$1&-$-'+1.1.&0$)&+$
'(($1"+##$/#0*$4&06.1.&039$!".3$2'3$6&0#$3&$1"'1$1"#$3.K#$&)$
1"#$1&-$-'+1.1.&0$2&*(6$0&1$7#$'$4&0)&*06.0%$)'41&+9$

&/01+2304565307++

!"#"$%&'()$"&*+,-&
!".3$.3$ '$4('33.4$ 3-(.1$/#0*9$!"#$.1#/3$.0$ 1"#$ 1&-$-'+1.1.&0$
'+#$1"#$)&*+$/&31$)+#=*#01(;$&44*++.0%$.1#/3$.0$1"#$3#(#41.&0$
3#=*#04#$ &)$ 1"#$ #,-#+./#01'($ 1'3L9$!"*35$ 1".3$/#0*$ +#-+#>
3#013$ 1"#$.6#'($ 31'1.4$ 3-(.1$ /#0*$)&+$ 1"#$ 1'3L9$ A.%*+#$ D?'@$
3"&23$ '0$ #,'/-(#$ &)$ 3*4"$ '$ /#0*9$ M&1#$ 1"'1$ 2#$ 6.6$ 0&1$
#,-(.4.1(;$.04(*6#$ '$ 1+'6.1.&0'($ 31'1.4$/#0*$ 3-#4.).4'((;$7#>
4'*3#$-+#8.&*3$+#3*(13$3"&2#6$ 1"'1$'$31'1.4$3-(.1>/#0*$.3$'1$
(#'31$'3$#)).4.#01$'3$'$1+'6.1.&0'($31'1.4$/#0*$CDEF9$$

./#("$0+&'()$"&*+,-&
H0$'6'-1.8#$'(%&+.1"/$6;0'/.4'((;$6#1#+/.0#3$2".4"$.1#/3$
3"&*(6$'--#'+$.0$1"#$1&-$-'+1.1.&0$&)$1"#$/#0*5$7'3#6$&0$1"#$
3#+N3$/&31$)+#=#01(;$ '06$ +#4#01(;$ *3#6$.1#/39$!"#3#$ '+#$
1"#$12&$/'.0$4"'+'41#+.31.43$&)$1"#$O.4+&3&)1$'6'-1.8#$'(%&>
+.1"/$CDIF5$'06$'+#$'(3&$1"#$12&$3*%%#31#6$7;$1"#$(.1#+'1*+#$
CDF9$P*+$%&'($2'3$ 1&$ 4+#'1#$ '3$ -+#6.41'7(#$ '0$ '(%&+.1"/$'3$
-&33.7(#5$7'3#6$&0$1"#3#$12&$4"'+'41#+.31.439$
P*+$'6'-1.8#$-'+1.1.&0.0%$'(%&+.1"/$.3$3"&20$.0$A.%*+#$I9<1
6#3.%0'1#3$ 12&$.1#/3$.0$ 1"#$ 1&-$ -'+1.1.&0$ 1&$ 7#$!"#$%#&'($
)*#+,5$'06$12&$1&$7#$"#'#&'(-)*#+,5$'06$'(2';3$#03*+#3$1"'1$
1"#+#$'+#$)&*+$.1#/3$.0$1"#$1&-$-'+1.1.&09$!"#$.0.1.'($.1#/3$.0$

1"#$1&-$-'+1.1.&0$&)$1"#$'6'-1.8#$/#0*$'+#$1"#$3'/#$'3$1"&3#$
.0$1"#$1&-$-'+1.1.&0$&)$1"#$31'1.4$/#0*9$

./#("#1)+&'()$"&*+,-&
!"#$ '6'-1'7(#$/#0*$.3$ '$ 6;0'/.4$/#0*$ 4&01+&((#6$ 7;$ 1"#$
3#+9$H0$./-&+1'01$%&'($&)$ 1"#$'6'-1'7(#$/#0$6#3.%0$2'3$
1&$/'L#$ 1"#$'6'-1'1.&0$-+&4#33$'3$3./-(#$'3$-&33.7(#9$!2&$
(#8#(3$ &)$ 4*31&/.K'1.&0$ '+#$ -+&8.6#6G$ 4&'+3#>%+'.0#6$ 4*3>
1&/.K'1.&0$ '((&23$.1#/3$ 1&$7#$/&8#6$ 1&$ 1"#$ 1&-$&+$7&11&/$
-'+1.1.&0Q$).0#>%+'.0#6$ 4*31&/.K'1.&0$ '((&23$.1#/3$ 1&$ 7#$
-&3.1.&0#6$.0$3-#4.).4$(&4'1.&03$2.1".0$1"#$1&-$-'+1.1.&09$H3$
3"&20$.0$A.%*+#$D?7@5$'++&2$7*11&03$'((&2$1"#$*3#+$1&$-#+>
)&+/$ 1".3$ 4*31&/.K'1.&0$ 2.1"$ '$ 3.0%(#$ 4(.4L9$ M&1#$ 1"'1$ 1"#$
).0#>%+'.0#6$4*31&/.K'1.&0$'((&23$'0$#,1+'$6#%+##$&)$-+#4.>
3.&0$ 0&1$ '8'.('7(#$.0$ 1"#$ &1"#+$ 12&$/#0*$ 4&06.1.&039$!"#$
&+6#+$ &)$.1#/3$.0$ 1"#$ 7&11&/$ -'+1.1.&05$ "&2#8#+5$ +#/'.03$
31'1.49$
!"#$1&-$-'+1.1.&0$&)$1"#$'6'-1'7(#$3-(.1$/#0*$.3$.0.1.'((;$(#)1$
#/-1;$ '06$.1$.3$ 1"#$*3#+N3$ +#3-&03.7.(.1;$ 1&$'66$.1#/3$?1&$'$
/',./*/$&)$)&*+@9$!"#$+#'3&0$)&+$1".3$.3$1"'1$1"#$(.1#+'1*+#$

?.0.1.'((;G$.1#/9)+#=*#04;$R$.1#/9+#4#04;$R$S@$
3#(#41#6<1#/9)+#=*#04;TT$
3#(#41#6<1#/9+#4#04;RS$
)&+$#'4"$+#/'.0.0%$.1#/C.F$.0$1"#$/#0*$
$$$$$.1#/C.F9+#4#04;TT$
$$$$$.)$1"#$3#(#41#6$.1#/$.3$.0$1"#$1&-$-'+1.1.&0$'(+#'6;$
$$$$$$$$$$6&$0&1".0%$
$$$$#(3#$
$$$$$$$$$$(#'31U#4<1#/$R$$(#'31$+#4#01(;$*3#6$&)$1"#$"#'#&'($.1#/3$
$$$$$$$$$$(#'31A+#=<1#/R(#'31$)+#=*#01$&)$1"#$!"#$%#&'($.1#/3$
$$$$$$$$$$.)$(#'31U#4<1#/9)+#=*#04;$V$(#'31A+#=<1#/9)+#=*#04;$
$$$$$$$$$$$$$$$$/&8#$(#'31U#4<1#/$1&$7&11&/$-'+1.1.&0$
$$$$$$$$$$#(3#$
$$$$$$$$$$$$$$$$/&8#$(#'31A+#=<1#/$1&$7&11&/$-'+1.1.&0$
$$$$$$$$$$$$$$$$3#1$(#'31U#4<1#/91;-#$R$!"#$%#&'(-.1#/$
$$$$$$$$$$/&8#$3#(#41#6<1#/$1&$1&-$-'+1.1.&0$&)$/#0*$
$$$$$$$$$$3#1$3#(#41#6<1#/91;-#$R$"#'#&'(-.1#/$

!"#$%&'()'*+,-."/&',0#1%".23)'

'
?'@$

'
$$$$$$$$$?7@$

!"#$%&'4)'5,6'7.,."8'9-0".'3&:$;'5<6'*+,-.,<0&'9-0".'
3&:$)'

O&8#$.1#/3$*-$
'06$6&20$.0$
1&-$-'+1.1.&0$
$
O&8#$.1#/3$
)+&/$7&11&/$
1&$1&-$-'+1.1.&0

!"#$%&&'$$ $$()*+,$ %'-%.$/*,01$$ $$20+33)4$/567,0)$

$28159+$:4$;59<+,$ $

!
!
!
!
!
!
!
! ! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !

91

Figure 5: Split menus: static on the left and adaptable on the right

Figure 6: The font drop-down list in OpenOffice.org Writer

Aida In 1993 AIDA was presented [24], which was an adaptive system for
interactive drafting and CAD systems. The system managed the contents of
toolbars and menus; the user had two ways to add new items: (1) use a command
from the command-line, such a command was added to the user interface. (2)
The system observed user’s behavior also in the drawing area — some recognized
and repeated operations were also added to the user interface, as a macro.

Flexcel 1993 was a good year for adaptive user interfaces, because in this year
FLEXCEL was also introduced [45], an adaptive user interface for Microsoft
Excel, which was chosen for the same reason as why we have chosen the OpenOf-
fice.org — to perform tests on real software, not a prototype. FLEXCEL was
developed in two stages: FLEXCEL I and FLEXCEL II. The key features were:

• An adaptation toolbar — a toolbar dedicated to control Excel adaptation.

18

Figure 7: Microsoft Adaptive Menus

• Creating new menu items representing existing commands, but with the
user defined parameters.

• A teaching agent, which tells the user tips and hints.

FLEXCEL is probably the most advanced adaptive interface in existing software,
however, it was not well accepted by users. One reason was that users do not
often personalize well, for example, when they were naming new menu items, they
sometimes just quickly entered nonsense characters. FLEXCEL was using LISP
rule based system with CLOS (Common Lisp Object System) objects. Because
of poor interaction between Excel and LISP, the response to the system was very
slow.

In another interesting study [38], they performed a study that examines the
relative aspects of predictability and accuracy on usability of an adaptive user
interface — adaptive toolbar in Microsoft Word. They conclude that the in-
creasing predictability and accuracy strongly improved user’s satisfaction. The
above-mentioned we can summarize as some general statements:

• An adaptive user interface must be reliable, otherwise it is worse than no
adaptation at all.

• To profit from the adaptation, there must be a considerable difference in
frequency of use of commands.

19

• Users do not like the fully adaptive interfaces, they prefer mixed-initiative
user interfaces. The control of the user interface must be very user-friendly.

20

2 Previous Work

The Boulevard implementation in this work is not the very first, but the sec-
ond. The first implementation ([20] and [34]) was a prototype (Figure 8) of a
simple RTF (Rich Text Format) editor with Boulevard, which we programmed
together with Jakub Černek. This prototype was written in Common Lisp, using
the CAPI (Common Application Programmer’s Interface) [7] and LISA (Lisp-
based Intelligent Software Agents) [6] libraries. We decided to make such a pro-
totype mainly due to logging issues in common applications (see Chapter 7),
which is not a issue in prototypes at all. The prototype was unfortunately not
very stable, I guess mostly because of the expert system. Another drawback of
the first prototype is more important: our prototype provided limited function-
ality, it was not “bloatware” at all. For example, the toolbar provided complete
functionality of the RTF editor. Such a prototype was not suited for user test-
ing in terms of ecological validity. However, this first prototype showed the big
potential of Boulevard. So we decided to cut off the disadvantages of the first im-
plementation, especially implementing Boulevard to the existing, “bloated” office
suite.

Figure 8: The first Boulevard prototype

21

3 Boulevard

Boulevard is a panel containing buttons, icons, sliders and many other well-
known user interface elements. The content and layout of Boulevard are changing
automatically without direct user a intervention and for the sake of better user’s
satisfaction. Boulevard does not contain all possible user commands provided by
the application, that is why Boulevard is an additive to menus and toolbars, in
contrast to a replacement of such. Menus and toolbars serve the user as a safety
zone, where all functions are always available at the same place, position and
visual representation.

!"#"$%&'() *%+") !,!%"-).'"!)('%) !"(.)-'/!")"0"(%!)/(."1) 2)
!"#"$%&'()&()%+&!)-'."34))

5&6/1")7)!+'8!)2)/!"1)$'(!%1/$%&(6)2)92:2.")91'-)9'/1).&9;
9"1"(%)1"6&'(!)*%+1"")'()%+")#"9%)&-26"<)'(")'()%+")1&6+%)'("<)
8+&$+) %+") /!"1) +2!) !"#"$%".) '(") 29%"1) %+") '%+"134) =2$+) 1";
6&'()2>>"21!)2!)2()'0"1#2&.)%12(!>21"(%)612,)1"$%2(6#"4)

!
"#$%&'!()!*+,-.&%/.#,$!0!10203'!1&+4!-/&'',!&'5

$#+,-6!(!&'$#+,-!708'!9'',!-':'/.'3!1&+4!.7'!:'1.!

3#0:+$6!+,'!1&+4!.7'!&#$7.)!

!

5&6/1") ?) !+'8!) %+") 92:2.") $1"2%".) 91'-) %+") 9'/1) 1"6&'(!)
!"#"$%".)&()5&6/1")74)@)("8)%''#A'B)&!)A/&#.)91'-)%8')%''#;
A'B"!C)!'-")%''#!)8"1")!"#"$%".)91'-)%+")-2&()DEFG)%''#;
A'B<)2!)8"##)2!)%+")-'!%) &(%"1"!%&(6)>21%!)'9) %+")>"($&#).&2;
#'64) H($") %+") ("8) %''#A'B) &!) $1"2%".<) %+") %8') '%+"1) 8&(;
.'8!)$2()A")+&.."()%')!20")!$1""()!>2$"4)

!
"#$%&'!;)!<=!"0203'!/+,-.&%/.'3!1&+4!.7'!':'4',.-!

40&>'3!#,!"#$%&'!(!

!

@9%"1)%+")IE)52:2.")+2!)A""()$1"2%".<)%+")/!"1)$2()+&.")*'1)
&$'(&9,3) %+")'1&6&(2#)8&(.'8!)2(.)%+")!,!%"-) %12(!>21"(%#,)
>2!!"!)-'/!")-'0"-"(%!) 2(.)$#&$J!) %') %+")/(."1#,&(6)2>;
>#&$2%&'(4) I>.2%"!) %') %+") 8&(.'8) $'(%"(%<) A,) %+") 2>>#&$2;
%&'() 21") ./>#&$2%".) &(%') %+") IE) 52:2."4) K&-#,) '0"1#2,)

8&(.'8) !/$+) 2!)-"(/!) 2>>"21) &() %+") 52:2."4) L+") !,!%"-)
2#!')%12(!>21"(%#,)-2(26"!)%+")9'$/!)2$$'1.&(6)%')!%2(.21.)
8&(.'8) -2(26"1) 1/#"!4) E() "99"$%<) %+") A"+20&'1) '9) 2() IE)
52:2.")&!)&(.&!%&(6/&!+2A#")91'-)%+")/(."1#,&(6)2>>#&$2%&'(4)
@) !$1""() 1"6&'() $2() A") /!".) &() 2!) !"0"12#) IE) 52:2."!) &()
>212##"#)2(.)2)IE)52:2.")$2()$'(%2&()2()21A&%121,)(/-A"1)'9)
1"6&'(!4)E()%+&!) &(!%2(%&2%&'()'9)IE)52:2."!)%+")52:2.")$2(;
('%) A") 1"!&M".<) 2!) %+&!) 8'/#.) 1"N/&1") -'.&9&$2%&'(!) %') %+")
/(."1#,&(6)DIE)%''#J&%!<)A/%)2()"(+2($".)0"1!&'()."!$1&A".)
A"#'8)!'#0"!)%+&!)>1'A#"-4)

@..&%&'(2#)IE)"#"-"(%!)$2()A")2..".)%')2()IE)52:2.")/!&(6)
.126;2(.;.1'>4) E9) %+"1") &!) 2) 91"") !>2$") &() %+") IE) 52:2.")
8&(.'8<)2()"#"-"(%)&!)!&->#,)2..".)*"(#216&(6)%+")8&(.'8)
&9)("$"!!21,34) E9) %+"1") &!)(') 91"") !>2$"<) %+")("8) "#"-"(%) &!)
2..".)%')%+")!&.")'9)%+")8&(.'8)8+"1")%+")$/1!'1)82!)8+"()
%+").1'>)'$$/11".4)E4"4)&9) %+")$/1!'1)82!)("21) %+")%'>)'9)%+")
IE) 52$2.") 8&(.'8<) %+") 8&(.'8) &!) "(#216".) 2>>1'>1&2%"#,)
2(.)%+")IE)"#"-"(%)&!)2..".)2%)%+")%'>)'9)%+")8&(.'84))K"")
5&6/1")O)9'1)2()"B2->#"4)

"#$%&'!?)!@':'/.#,$!0,+.7'&!-/&'',!&'$#+,!A.7'!+B0/5

#.C!-:#3'&6!.+B!:'1.D!0,3!.7',!3&+BB#,$!#.!#,.+!0,!'E#-.5

#,$!<=!"0203'!A.+B!&#$7.D!',:0&$'-!.7'!"0203'!A9+.5

.+4!#40$'DF!-''!.'E.!1+&!3'.0#:-)!

!

E9) %+"1") &!) #&%%#")'1)(')."!J%'>) !>2$")202A#"<)IE)52:2."!)
$2() 2#!') A") $1"2%".) A,) 9&1!%) !"#"$%&(6) !"0"12#) 1"6&'(!) 2(.)
%+"()&(!%2(%&2%&(6)2)("8)IE)52:2.")8&(.'8)%+2%)$'(%2&(!)2##)
2$%&0")!"#"$%&'(!)8&%+)2)!>"$&2#)J",)$'-A&(2%&'(4)

L')"(2A#")N/&$J)1"$2##)'9)2)IE)52:2."<) %+")/!"1)$2()!20")2)
IE)52:2.")2(.)6&0")2)(2-") %')&%) *0&2) 2)K20")52:2.")-"(/)
&%"-)'9) %+")8&(.'8)-"(/)'9) %+")52:2."34)L+")!,!%"-)/!"!)
%+") 6"'-"%1,<) $#2!!<) 2(.) 1"!'/1$") (2-"!) '9) %+") 8&(.'8!)
/!".)A,)%+")52:2.")2!)2()&."(%&9&"1)9'1)2)IE4)@()"(%1,)&()%+")
."!J%'>) -"(/) *202A#") 8&%+) 2) 1&6+%;$#&$J) '() %+") A2$J;
61'/(.3)6&0"!)%+")/!"1)%+")2A&#&%,)%')1"$1"2%")%+")IE)52:2."4)

!"#$%"%&'(')*&+,%'()$-+

P") &->#"-"(%".) IE) 52:2."!) A2!".) '() F"%&!!") QR+2>/&!<)

Figure 9: Façades Source Windows

!"#"$%&'() *%+") !,!%"-).'"!)('%) !"(.)-'/!")"0"(%!)/(."1) 2)
!"#"$%&'()&()%+&!)-'."34))

5&6/1")7)!+'8!)2)/!"1)$'(!%1/$%&(6)2)92:2.")91'-)9'/1).&9;
9"1"(%)1"6&'(!)*%+1"")'()%+")#"9%)&-26"<)'(")'()%+")1&6+%)'("<)
8+&$+) %+") /!"1) +2!) !"#"$%".) '(") 29%"1) %+") '%+"134) =2$+) 1";
6&'()2>>"21!)2!)2()'0"1#2&.)%12(!>21"(%)612,)1"$%2(6#"4)

!
"#$%&'!()!*+,-.&%/.#,$!0!10203'!1&+4!-/&'',!&'5

$#+,-6!(!&'$#+,-!708'!9'',!-':'/.'3!1&+4!.7'!:'1.!

3#0:+$6!+,'!1&+4!.7'!&#$7.)!

!

5&6/1") ?) !+'8!) %+") 92:2.") $1"2%".) 91'-) %+") 9'/1) 1"6&'(!)
!"#"$%".)&()5&6/1")74)@)("8)%''#A'B)&!)A/&#.)91'-)%8')%''#;
A'B"!C)!'-")%''#!)8"1")!"#"$%".)91'-)%+")-2&()DEFG)%''#;
A'B<)2!)8"##)2!)%+")-'!%) &(%"1"!%&(6)>21%!)'9) %+")>"($&#).&2;
#'64) H($") %+") ("8) %''#A'B) &!) $1"2%".<) %+") %8') '%+"1) 8&(;
.'8!)$2()A")+&.."()%')!20")!$1""()!>2$"4)

!
"#$%&'!;)!<=!"0203'!/+,-.&%/.'3!1&+4!.7'!':'4',.-!

40&>'3!#,!"#$%&'!(!

!

@9%"1)%+")IE)52:2.")+2!)A""()$1"2%".<)%+")/!"1)$2()+&.")*'1)
&$'(&9,3) %+")'1&6&(2#)8&(.'8!)2(.)%+")!,!%"-) %12(!>21"(%#,)
>2!!"!)-'/!")-'0"-"(%!) 2(.)$#&$J!) %') %+")/(."1#,&(6)2>;
>#&$2%&'(4) I>.2%"!) %') %+") 8&(.'8) $'(%"(%<) A,) %+") 2>>#&$2;
%&'() 21") ./>#&$2%".) &(%') %+") IE) 52:2."4) K&-#,) '0"1#2,)

8&(.'8) !/$+) 2!)-"(/!) 2>>"21) &() %+") 52:2."4) L+") !,!%"-)
2#!')%12(!>21"(%#,)-2(26"!)%+")9'$/!)2$$'1.&(6)%')!%2(.21.)
8&(.'8) -2(26"1) 1/#"!4) E() "99"$%<) %+") A"+20&'1) '9) 2() IE)
52:2.")&!)&(.&!%&(6/&!+2A#")91'-)%+")/(."1#,&(6)2>>#&$2%&'(4)
@) !$1""() 1"6&'() $2() A") /!".) &() 2!) !"0"12#) IE) 52:2."!) &()
>212##"#)2(.)2)IE)52:2.")$2()$'(%2&()2()21A&%121,)(/-A"1)'9)
1"6&'(!4)E()%+&!) &(!%2(%&2%&'()'9)IE)52:2."!)%+")52:2.")$2(;
('%) A") 1"!&M".<) 2!) %+&!) 8'/#.) 1"N/&1") -'.&9&$2%&'(!) %') %+")
/(."1#,&(6)DIE)%''#J&%!<)A/%)2()"(+2($".)0"1!&'()."!$1&A".)
A"#'8)!'#0"!)%+&!)>1'A#"-4)

@..&%&'(2#)IE)"#"-"(%!)$2()A")2..".)%')2()IE)52:2.")/!&(6)
.126;2(.;.1'>4) E9) %+"1") &!) 2) 91"") !>2$") &() %+") IE) 52:2.")
8&(.'8<)2()"#"-"(%)&!)!&->#,)2..".)*"(#216&(6)%+")8&(.'8)
&9)("$"!!21,34) E9) %+"1") &!)(') 91"") !>2$"<) %+")("8) "#"-"(%) &!)
2..".)%')%+")!&.")'9)%+")8&(.'8)8+"1")%+")$/1!'1)82!)8+"()
%+").1'>)'$$/11".4)E4"4)&9) %+")$/1!'1)82!)("21) %+")%'>)'9)%+")
IE) 52$2.") 8&(.'8<) %+") 8&(.'8) &!) "(#216".) 2>>1'>1&2%"#,)
2(.)%+")IE)"#"-"(%)&!)2..".)2%)%+")%'>)'9)%+")8&(.'84))K"")
5&6/1")O)9'1)2()"B2->#"4)

"#$%&'!?)!@':'/.#,$!0,+.7'&!-/&'',!&'$#+,!A.7'!+B0/5

#.C!-:#3'&6!.+B!:'1.D!0,3!.7',!3&+BB#,$!#.!#,.+!0,!'E#-.5

#,$!<=!"0203'!A.+B!&#$7.D!',:0&$'-!.7'!"0203'!A9+.5

.+4!#40$'DF!-''!.'E.!1+&!3'.0#:-)!

!

E9) %+"1") &!) #&%%#")'1)(')."!J%'>) !>2$")202A#"<)IE)52:2."!)
$2() 2#!') A") $1"2%".) A,) 9&1!%) !"#"$%&(6) !"0"12#) 1"6&'(!) 2(.)
%+"()&(!%2(%&2%&(6)2)("8)IE)52:2.")8&(.'8)%+2%)$'(%2&(!)2##)
2$%&0")!"#"$%&'(!)8&%+)2)!>"$&2#)J",)$'-A&(2%&'(4)

L')"(2A#")N/&$J)1"$2##)'9)2)IE)52:2."<) %+")/!"1)$2()!20")2)
IE)52:2.")2(.)6&0")2)(2-") %')&%) *0&2) 2)K20")52:2.")-"(/)
&%"-)'9) %+")8&(.'8)-"(/)'9) %+")52:2."34)L+")!,!%"-)/!"!)
%+") 6"'-"%1,<) $#2!!<) 2(.) 1"!'/1$") (2-"!) '9) %+") 8&(.'8!)
/!".)A,)%+")52:2.")2!)2()&."(%&9&"1)9'1)2)IE4)@()"(%1,)&()%+")
."!J%'>) -"(/) *202A#") 8&%+) 2) 1&6+%;$#&$J) '() %+") A2$J;
61'/(.3)6&0"!)%+")/!"1)%+")2A&#&%,)%')1"$1"2%")%+")IE)52:2."4)

!"#$%"%&'(')*&+,%'()$-+

P") &->#"-"(%".) IE) 52:2."!) A2!".) '() F"%&!!") QR+2>/&!<)

Figure 10: Façades Window

22

Boulevard was inspired by Façades [51], which is an adaptable interface.
Façades is an add-on window where the user can place items from various places
of screen (Figures 9 and 10) and then use the Façades window as a personalized
area. Façades implementation is based on a Metisse server2 [21] , where Façades
window contains “pointers” to other areas of the screen. From the implementa-
tion come some advantages and limitations. A great advantage is that we can
use Façades with any software under the X server, and from only a visual prin-
ciple we have also synchronized status of commands (for explanation of context
synchronization see chapter 9.3.1). The direct outcome is that Façades cannot
contain an item (command) which is not currently displayed on the screen. In
our opinion, we can avoid this limitation by using different screens; at least one
for displaying tools and one as a area with Façades. Other screens serve only as
visual sources for tools. So from here came the idea to make an add-on window
inspired by Façades, but auto-adaptive. Boulevard got its name, since as Martin
Dostál said:

“Today’s cities are vast and complex, just like today’s applications.
Boulevard is a metaphor of a main street (boulevard), where the users
can find everything they need.”

Boulevard orders items (user commands) in according to ranks. Each Boule-
vard item (user command) has assigned a rank — value between 0 and 1. Rank
considers two factors: recency and frequency. The frequency factor holds the
information about how frequently the user uses the command. The recency fac-
tor indicates how often a command has been used recently. Recency acts as an
accelerator, which helps a rarely-used user command (from the frequency point
of view) to get faster to a more prominent position if it has been used more often
recently. But if such an accelerated command is used no more, it loses the recency
accelerator and goes back to a less prominent position rapidly. Following formula
represents the rank computation for item x:

rank(x) = w
|x|
|T | + (1− w)

�
pi∈Px

(q − pi + 1)
�q

i=1 i
(1)

• w – (weight) is a value between 0 and 1 and indicates how much we care
about the recency factor (0) or the frequency factor (1) (a balance between
recency and frequency).

• |x| – the number of activations of item (command) x

• |T | – the total count of all activations of all items (commands)

2
Metisse is a X Window system designed to make it easy for HCI researchers to implement

new rendering techniques as well as novel window management techniques.

23

• q – the length of the recency queue (FIFO)

• Px – a set which contains the positions of occurrence of the item (command)
x in the queue (the front position of the queue is represented by value 1)

This formula come into existence by modification of previous version of for-
mula, which was introduced in the Bsc. thesis. Formulas are not much different,
but the current version is more balanced (in the frequency/recency point of view)
than the previous one.

Boulevard provides two basic layouts: a vertical and a horizontal (Figure 11).
One the horizontal layout sorts prominent places from left to right, the most
prominent place is on the left (a toolbar style). The vertical layout sorts promi-
nent places from top to bottom, the most prominent place is at the top (a menu
style).

(a) Boulevard horizontal layout

(b) Boulevard vertical lay-

out

Figure 11: Possible layouts of the Boulevard

Boulevard also keeps similar commands together to help the user to perceive
Boulevard. Boulevard has predefined groups of such commands. In one group
there are usually semantically similar user commands. We call this feature Sweep-
ing back. The Figure 12 depict Boulevard with disabled sweeping-back feature
and with enabled sweeping-back feature.

We wanted to make Boulevard more usable, so we added another dimension
— similar to Ribbon. A position of a user command in Boulevard is denoted
by the primary and secondary position. Every primary position is subdivided to

24

(a) Sweeping back disabled (b) Sweeping back enabled

Figure 12: Sweeping back feature

the secondary-positions. The secondary-positions are currently used for sweeping-
back feature — keeping semantically similar user commands together. These user
commands are on the same primary position and are sorted by ranks on secondary
positions. A list of such user commands and more details are in Chapter 5.2.4.

Boulevard also considers how user commands are used (from the user interface
point of view),e.g., if to invoke the command a toolbar or a menu were used (fur-
ther interaction style). This is called an adaptive representation (Figure 13). We
use such information for choosing visual representation of an item (command) in
Boulevard, which is familiar for the user. If a toolbar is preferred, the command is
represented a toolbar button. If a menu is preferred, the command is represented
as a menu-like button. A command activated by a keystroke is not displayed in
Boulevard, since such a command is not required in Boulevard. Adaptive rep-
resentation considers also the parameters of command. The example of such is
the “Find” command. On the Figure 14 is depicted the original OpenOffice.org
dialog. The Boulevard possible adaptations of the “Find” user command are in
Figure 15.

There is a study on how users use the interaction styles performed by Martin
Dostál [28]. In the study, menu is found as prevalent interaction style, toolbars
and keystrokes were particularly used to frequently used user commands. Tool-
bars were found used in document-content context and keystrokes in application
control context.

A user would probably appreciate a way to personalize Boulevard manually
— for example, to fix positions for some commands, add or remove commands
and choose the visual representation style. Unfortunately, such behavior has
not been implemented yet, except one: changing number of items (commands)
and a layout of Boulevard by direct manipulation with the Boulevard (adaptable

25

(a) Menu-like only representation (b) Toolbar-like only representation

Figure 13: Adaptive representation

Figure 14: The original find dialog in OpenOffice.org

26

(a) Simple find (b) Find and replace

(c) Advanced find

Figure 15: Various Boulevard representations of the find command

27

approach).

3.1 Implementation Issues

Implementing Boulevard in to the existing software is tediously difficult. The
first issue is absence of a good suitable logger for building adaptive interfaces.
Without a logger, there is not an adaptive interface. We have several requirements
to such a logger: (1) we need a logger which logs user command, parameters and
even the interaction style. (2) Such a logger must also have some kind of API, as
we need to know about the performed action immediately, not after some time
required to parse the logger data. Implementing such a logger is very difficult
and we suppose this is the main reason, why there are so few adaptive interfaces
prototype for the existing software.

Of course, more than a logger is necessary. There are also many prerequisites,
e.g., context synchronization of items (commands) in Boulevard (e.g., which font
is currently selected, more detail in Chapter 9.3.1), access to the application
icons and also the access to the windows of an application, in which we can draw
Boulevard.

28

4 Expert Systems

Boulevard is driven by an expert system, which provides the above-described
functionality. There were several reasons why we decided to use an expert system
as a core of Boulevard:

• A relatively easy transfer of ideas to the expert system rules.

• Non-sequential declarative programing is easy to extend and modify, which
is important for prototyping and testing.

The history of expert systems begins in 1950’s, when the first languages for
symbolic manipulation were introduced. Symbolic manipulation appeared as a
promising way for Artificial Intelligence (AI) since a higher abstraction level of
programming. The most prominent and well-know a language of this kind is
LISP (LISt Processing). A lot of AI programs were written in LISP, for example
SHRUDLU [52] (program for understanding a natural language), because of its
higher abstraction level, which leads to a more elegant and “intelligent” solution.
Expert systems are mostly very dynamic, for example rules can be added or
removed at the run-time — like in LISP, so the implementation of an expert
system in LISP is easier than in static language (e.g., C).

In 1984 at NASA’s Johnson Space Center, the AI department invented many
prototypes of expert systems based on the most modern hardware and software.
These expert systems appeared as promising, but there was some trouble to
integrate them to other NASA projects. Usage of LISP as a core language turned
out as ambivalent. The benefits of LISP were important, but at that time there
were some complications with LISP, such as low availability of LISP computers,
high cost of LISP software tools and hardware and poor interaction of LISP with
other languages, which is important for complex systems. Just reminding the
FLEXCEL, which was reportedly slow because of poor interaction between LISP
and Microsoft Excel.

In 1985, CLIPS (C Language Integrated Production System) was invented as
a response to eliminate the disadvantages of LISP, but to kept the advantages of
expert systems. CLIPS was released as public domain software and later became
the most widely used expert system, a de-facto standard for expert systems.
CLIPS is more than a language for writing expert systems, today it is also a
complete environment for developing expert systems (IDE).

An expert system is a computer program which is intended to help or simulate
behavior of a human expert. There is a funny, but partly accurate definition of a
human expert in [3]: “One definition of an expert is someone more than 50 miles
from home and carrying a briefcase.” We consider an expert to be someone with
long experience, skills and advanced knowledge in some branch. Someone whose
opinion is widely respected in some area of expertise. To simulate an expert, an
expert system must have the same or similar knowledge like one. There are three
basic types of knowledge in expert systems:

29

Fact — basic high-level information holder, a basic unit of data used by rules.
They can be simple — non structured, like “a rabbit” or “a turtle”, or more
complex — structured, like “A rabbit, which likes carrot”. The complex
facts are structured into slots. Facts represent objects and their structure.

Rule — represent experience knowledge. Rules use IF-THEN form. For exam-
ple: “If rabbit has eaten all food, then give him another”. Every rule has
a Left Hand Side (LHS) and a Right Hand Side (RHS). The LHS acts as
“IF” predicate and the RHS acts as “THEN” part. By other words the LHS
represents a list of premises and the RHS conclusions. The LHS contains
fact “templates” which must be satisfied — associated (unified) with real
facts.

Procedural knowledge — holds knowledge how to do something, in a sequen-
tial way. Such knowledge is represented by functions. For example, a
procedure how to feed the rabbit: “open the cage, insert food, close the
cage”.

The core of an expert system is the inference engine, which is responsible for
which and when rules will be executed. Inference is based on the Modus Ponens
rule, which stands for A → B, A � B. This means, from fact A and rule A → B
infer B (add B to the fact base). Strictly in expert systems, B does not have to
be only a fact, B can be a sequence of commands, which can affect facts, rules
or even the inference engine. The inference engine creates an inference chain,
which is a sequence of executed (fired) rules with their corresponding unified
facts. There are two basic types of chaining:

Backward chaining – has defined goals and tries to resolve goals by determin-
ing whether they are provable and at which circumstances. The result (if
provable) is goals with variables unified by facts. This approach is used by
PROLOG [22].

Forward Chaining –which does not have any defined goals, simply starts in-
ferring (deducing) from the starting facts using defined rules, until there is
nothing to deduce. This approach is used in most expert systems, even in
CLIPS.

Although these appear as very different approaches, they are not so different.
Backward chaining is more a deduction calculus, forward chaining is more suit-
able for dynamic systems, where the change of situation’s conditions is frequent.
Forward chaining is particularly more useful for adaptive user interfaces, since
the user’s action triggers a new inference.

The forward chaining inference engine starts by creating a list of all possible
rules that satisfy LHS. Such a list we call an agenda. This means trying to unify

30

the fact templates in LHS with particular facts from the fact list. A rule with
associated facts which satisfies LHS is one item in the agenda. There can be one
rule contained more times, but with different associated facts. An agenda is a set
of rules with unified variables which satisfy LHS and so can be executed (fired).

It is common that there are more than one item at one time in agenda, so that
is why there are strategies. Strategies act as a conflict-resolution mechanism for
such cases. It is possible to write expert systems without the need of strategies,
such a program always has only one possible rule for execution. But then such a
program becomes completely sequential, thus writing such a program as an expert
system is meaning less and more complicated than under imperative paradigm.
So, in true expert systems conflict-resolution strategies are needed. Of course,
there are many ways how to resolve a conflict, for example a random choice or
other more sophisticated approaches. The default CLIPS’s conflict-resolution
strategy is the depth-first strategy: newer activated rules (recently added to the
agenda) are placed before the older activated rules. Every rule can have a defined
salience, which acts as a priority of a rule. Salience is respected by the resolution
strategy as more important than other aspects.

Expert systems have a important mechanism to avoid cycling. Activation is a
pair of a rule and corresponding unified facts. If a rule is activated, this activation
is remembered since the same activation is denied to avoid cycling. We should
remember that an activation pair contains an internal representation of a fact, so
if a fact is modified to the same value, its internal representation ID changes so
that such a pair can be activated again.

A naive implementation of an expert system can be relatively easy, but very
slow in terms of performance. Checking and unifying LHS of every rule on every
fact is a very computationally exhausting task. There is a much more clever algo-
rithm which reduces the complexity of task. It is called the RETE algorithm [36].

31

5 Boulevard Expert System

There are several reasons to use an expert system in Boulevard. The main
reason is a relatively easy transfer of an idea of Boulevard behavior to correspond-
ing rules. In most cases, one Boulevard feature is ensured by one corresponding
rule. Such rules are easy to read and write, and therefore easy to modify. It is
also unimportant where such a rule should be placed in the program, in contrast
to procedural programs. It is easy to enable or disable some Boulevard features
by simply enabling or disabling the corresponding rules. This is very useful for
Boulevard testing on users.

Use of an expert system has also some disadvantages, like higher requirements
to the quality of code since a poorly implemented expert system often loses its
advantages. Such an expert system is then hard to understand and modify.
Another disadvantage of expert systems is related to difficult debugging, the
reason is obvious: we do not know in which sequence rules are fired. A good
expert system is non-sequential at all, do not use any additive synchronization
facts and is independent of the used strategy (in the point of view of correctness,
not performance).

5.1 Facts

The most important fact type in the expert system is action, which is a
fundamental further inseparable item, mostly one user command, for example
“Bold” or “AddTable”. The name action originated before before we changed
the used terminology — from user action to user command. This fact type is a
fundamental part of the expert system, so it is described in detail with all slots:

• name — an internal name of an command, mostly same as UNO command
in OpenOffice.org

• label — a user-friendly name of a command, used for item visualization.
There is problem with localization of Boulevard in current CLIPS version
since a label cannot contain for example Czech characters.

• in-boulevard — this Boolean indicates if the item should be in Boulevard
or not.

• rank — this number indicates the rank of an item, used for determine
prominence of the item. For how rank is computed see formula 1.

• total — this number indicates the total activation of an item

• representation — contains determined representation style of an item

• boulevard — the count of activations of an item from Boulevard

32

• toolbar — the count of activations of an item from a toolbar

• menu — the count of activations of an item from a menu

• context-menu — the count of activations of an item from a context-menu

• keystroke — the count of activations of by a keystroke

• toolbar-dialog – the count of activations using a toolbar-dialog interaction
style, which means a toolbar for initiating a user command and a dialog for
executing the user command

• menu-dialog — the count of activations using a menu-dialog interaction
style

• context-menu-dialog — the count of activation using a context-menu-dialog
interaction style

• keystroke-dialog — the count of activation using a keystroke-dialog inter-
action style

• boulevard-primary-position — an arrangement of items in Boulevard is or-
dered by prominence of positions. Every item in Boulevard has its own
unique position, determined by the primary and secondary position. The
primary position represents primary prominence of an item. More items
can have the same primary position, which indicates that these items are
in the same sweeping back group.

• boulevard-secondary-position — indicates the secondary position of an
item.

• parameters — this slot holds a list of several recently used parameters to
an command, like the particular size of the used font-height.

• ui-element — an exact user interface element used to visualize an item
in Boulevard, like toolbar-button, menu-button, find-simple. This is
one of the outputs from an expert system, so the visualization layer must
understand these values.

The fact called boulevard-parameters holds the parameters of Boulevard,
such as frequency-recency weight, the count of total used commands, the queue
of recent commands, the number of commands in recency queue, the minimal
rank, the rank difference-tolerance and the count of recent parameters.

The fact sweeping-back-group just defines which commands are attended
to sweping-back.

33

5.1.1 Item Uniqueness

A very important fact is that mostly every user command is considered unique
by its name. But there are commands which are unique as a pair of a name
and a parameter. These commands are currently only color-related commands:
“FontColor”, “FontBackground” and “FontHighlight”. This is because we wanted
such command to be presented as a separate item with its own parameters, rank
and so on. That also explains why these commands are in strange one-element-
only sweeping-back groups. For good understanding of the color handling see
Figure 13.

Another important fact type is new-action, which is used for non-processed
commands by the expert system, this fact holds information about which user
command was used (with corresponding information like parameters and interac-
tion style). An expert system processes this fact by updating an existing action
fact or creating a new action fact and then retracts this new-action fact (in
dependence of an item uniqueness).

5.2 Rules

There are twenty-six rules in our expert system and each of them has its own
responsibility and ensures a different feature. Some rules seem to be very similar
and contain a few of the same assumptions. It is a compromise between a non-
sequential expert system and code reuse. Expert system rules can be divided into
several categories:

• process new action

• sort actions

• rank computation

• sweeping back

• visual style - representation

• minimal rank

• find parameters

5.2.1 New Action

The Interceptor gives information about performed user command (with all
important details) on the input of the expert system. The Boulevard manager
ensures the assertion of this information as a new-action fact to the expert sys-
tem. There are three possible cases: the very first command, the first command
and an update command. Every case is ensured by a different rule.

34

The first-action rule ensures a case, when there is no item (command)
in Boulevard at all, so we assert the action fact at primary-position 1 and
secondary-position 1. This rule seems redundant, but it simplifies other rules and
there is no need to hold another extra fact. The total-number-of-activations
is updated every time (holds the total number activations used for computing
ranks). This is not necessary and can be computed as the sum of all items, so
this is only optimization.

(defrule first-action
?f1 <- (new-action (name ?name) (initiated ?initiated)

(executed ?executed) (parameter ?parameter))
(not (action))
?boulevard-parameters <- (boulevard-parameters)
=>
(process-action (assert (action (name ?name) (label ?name)

(boulevard-primary-position 1))) ?initiated ?executed ?f1
?boulevard-parameters ?parameter))

The create-action rule ensures a case, when there are items in Boulevard,
but not exactly an item with the same name as the new-action — item in
Boulevard is unique (see section 5.1.1 about item uniqueness). So a new action
fact with the corresponding attributes is asserted..

(defrule create-action
?f1 <- (new-action (name ?name) (initiated ?initiated)

(executed? executed) (parameter ?parameter))
(not (action (name ?name)))
(action (boulevard-primary-position ?pp1))
(not (action (boulevard-primary-position ?pp2 &:(> ?pp2 ?pp1))))

?boulevard-parameters <- (boulevard-parameters)
(Unique-actions (actions $?actions))
(test (not (member$?name ?actions)))
=>
(process-action (assert (action (name ?name) (label ?name)

(boulevard-primary-position (+ ?pp1 1)))) ?initiated ?executed ?f1
?boulevard-parameters ?parameter))

And an update-action rule ensures case a when in Boulevard is an item with
the same name as the new-action — item is not unique in Boulevard, so it is
important to update an action fact with new information, such as new usage of
action by the user and parameters.

(defrule update-action
?f1 <- (new-action (name ?name) (initiated ?initiated)

35

(executed ?executed) (parameter ?parameter))
?action <- (action (name ?name))
?boulevard-parameters <- (boulevard-parameters)

(Unique-actions (actions $?actions))
(test (not (member$?name ?actions)))
=>
(process-action ?action ?initiated ?executed ?f1 ?boulevard-parameters

?parameter))

5.2.2 Compute rank

The computation of rank is ensured by only one rule . The rule for each fact
action calculates the rank and if the newly calculated rank is different from the
original one, the action fact is modified with a new calculated rank. For rank
calculation there is a function which represents procedural knowledge about how
to calculate rank from the given values. The function is called compute-rank and
takes the following parameters: the item name, the items’s total activations, total
activations of all functions, the recency actions queue and the frequency-recency
ratio. For more information about rank, see Formula 1.

5.2.3 Sorting Actions

These rules serve to reorganize Boulevard, especially by rank. For
this purpose, there are two rules: swap-primary-positions and
swap-secondary-positions. The first is used to sort by primary posi-
tions and the second one for sorting by secondary positions. Sorting by primary
position is quite simple. The rule “search” (in our context means it that there
are facts which satisfy condition) for two items, where the first one has a higher
rank than the second one and the first one has a higher primary position than
the second one, which means that the first one is on a less prominent position
than the second. If this is satisfied, the primary positions of both items are
swapped. To be more exact, swapped are not only these items, but all items with
the same primary positions. Swapping entire rows on a specific primary position
is handled by function swap-primary-positions-function. Only items with
secondary position 1 are considered, since they are the most prominent items
on primary positions — with the highest rank. To avoid frequent changes in
Boulevard caused by meaningless rank changes, we use a rank-difference
constant. Difference in ranks of items which we want to swap must be greater
than the rank-difference.

(defrule swap-primary-positions
?action1 <- (action (rank ?rank1) (boulevard-primary-position ?pp1)

(boulevard-secondary-position 1))
?action2 <- (action (rank ?rank2) (boulevard-primary-position ?pp2)

36

(boulevard-secondary-position 1))
(test (and (> ?rank1 ?rank2) (> ?pp1 ?pp2)))
(boulevard-parameters (rank-difference ?rank-difference)

(minimal-rank ?minimal-rank))
(test (or (> (abs(- ?rank1 ?rank2)) ?rank-difference)

(< ?rank2 ?minimal-rank)))
=>
(swap-primary-possitions-function ?pp1 ?pp2))

Sorting by the secondary position rule is very similar to sorting by the primary
position rule. This rule is only for actions that are “swept-back”, so there are
more than one item on one primary position. Consider two items, the first one
and the second one, both on the same primary position. If the first one has a
higher rank than the second one and the first one is on a higher secondary position
than the second one, then the secondary positions of both items are swapped.
Unlike sorting by primary position, only considered items are swapped, not the
entire row or column. And also in this case the rank-difference is used for
avoiding frequent insignificant changes in Boulevard.

(defrule swap-secondary-positions
?action1 <- (action (rank ?rank1) (boulevard-primary-position ?pp1)

(boulevard-secondary-position ?sp1))
?action2 <- (action (rank ?rank2) (boulevard-primary-position ?pp1)

(boulevard-secondary-position ?sp2))
(test (and (> ?rank1 ?rank2) (> ?sp1 ?sp2)))
(boulevard-parameters (rank-difference ?rank-difference)

(minimal-rank ?minimal-rank))
(test (or (> (abs(- ?rank1 ?rank2)) ?rank-difference)

(> ?rank1 ?minimal-rank)))
=>
(modify ?action1 (boulevard-secondary-position ?sp2))
(modify ?action2 (boulevard-secondary-position ?sp1)))

Positions of items are changed also because we do not want to have gaps (empty
positions) in Boulevard. A gap on the primary position appears after sweeping-
back since two or more actions are given on the same primary position, so empty
positions may appear. In the previous versions of the expert system also avoiding
gaps on secondary positions were ensured. Gaps on secondary positions appeared
when there were several items on the same primary position and rank of one
of them fell below minimal rank. Such an item is not included in the final
Boulevard, but may occur that another item with a higher secondary position
has a higher rank and thus is included in the final Boulevard, but these items are
not swapped since the difference of ranks is below the rank-difference. Now it
is not necessary, since we have modified the sorting rules so that they prevent the

37

ussie of minimal rank. The rule is simple: If there is an item that has no other
item above, except the item with primary-position 1, such an item is moved “up”
by one position.

(defrule avoid-gap-primary
?action <- (action (boulevard-primary-position ?pp1)
(boulevard-secondary-position 1))
(not (action (boulevard-primary-position ?pp2 &:(= (- ?pp1 1) ?pp2))
(boulevard-secondary-position 1)))
(test (not (= ?pp1 1)))
=>
(modify ?action (boulevard-primary-position (- ?pp1 1))))

5.2.4 Sweeping back

The sweeping-back rule keeps Boulevard organized. This rule uses predefined
groups of items (commands) which we want to have together, no matter their
ranks (except, of course, cases below minimal rank). The groups contain similar
user commands, like Bold, Italic and Underline. The currently defined groups
are:

• FontColor

• BackgroundColor

• BackColor

• CharFontName,FontHeight

• Bold, Italic, Underline

• Undo, Redo, Repeat

• LeftPara, RightPara, CenterPara, JustifyPara

• Cut, Copy, Paste, SelectAll

• Open, Save, SaveAs, SaveAll, Reload, NewDoc

• ExportTo, ExportToPDF

• DefaultNumbering, DefaultBullet

• ShowTrackedChanges, TrackChanges, ProtectTraceChangeMode, Com-
mentChangeTracking, MergeDocuments

• DecrementIndent, IncrementIndent

38

• PrintPreview, Print Printer

• BrowseView, PrintLayout ,Zoom, FullScreen

• DeleteColumns, DeleteRows

• InsertColumns, InsertRows

• SplitCell, MergeCells

• InserPageHeader, InsertPageFooter, InsertFootNote, InsertBookmark, In-
sertAnnotation,

• InsertTable, InsertFrame, InsertGraphic

• InsertDateField, InsertTimeField, InsertPageNumberField, InsertPage-
CountField, InsertTopicField, InsertTitleField, InsertAuthorField

• InsertSection, SetHyperlink

• SpellingAndGrammarDialog, Therauzus, SpellOnline

• SetAnchorToPage, SetAnchorToPara, SetAnchorAtChar, SetAnchor-
ToChar

• BringToFront, SendToBack, ObjectForwardOne, ObjectBackOne

• FlipVertical, FlipHorizontal

• LineSpacing, LeftRightMargin, TopBottomMargin, TabStops

Please note the special groups FontColor, BackgroundColor and BackColor,
which consist of only one action. This certainly looks strange, but it is all right
and it is because these actions are special. Their uniqueness is given not only
by a name, but also a parameter. See Chapter 5.1.1. This feature is provided
by a single rule. Let us consider two items. The first one keeps its position
and the second one is moved. The first one and the second one are together in
one sweeping-back group. The first one has a lower primary-position than the
second one. If this is satisfied, then the second one is moved to the same primary-
position as the first one and to the secondary-position of one greater than the
current greatest secondary position.

(defrule sweeping-back
(sweeping-enable)
(action (name ?name1) (boulevard-primary-position ?pp1)

(boulevard-secondary-position ?sp1)) ;ke ktere
?action2 <- (action (name ?name2) (boulevard-primary-position ?pp2))
(not (action (boulevard-primary-position ?pp1) (

39

boulevard-secondary-position ?sp4 &:(> ?sp4 ?sp1))))
(sweeping-back-group (group $?group))
(test (and (member$?name1 ?group) (member$?name2 ?group)))

(test (< ?pp1 ?pp2)) ; 6.4.201
=>
(modify ?action2 (boulevard-primary-position ?pp1)

(boulevard-secondary-position (+ 1 ?sp1))))

There is also a rule for disabling the sweeping-back feature. This is simply since
we wanted to be able to enable or disable this feature at run time. This is useful
for testing, better understanding and presenting the sweeping-back feature. The
rule is not important, so it is not presented in detail. The rule simply takes items
on secondary position greater than 1 and puts them to the bottom of Boulevard.
Such items are later sorted to the right position.

5.2.5 Visual Representation

Boulevard has some kind of simple meta-GUI built-in, because of an adaptive
representation. We must describe the item’s interaction model which is used for
generation of proper user interface visualization and behavior. This ensures what
we call adaptive representation, which means adapting visual representation of
items (commands) contained in Boulevard to the users preferred interaction style.

This task consists of two parts. In the first part, the most frequently used
interaction style is selected and in the second one a specific user interface element
is assigned. The first part consists of the calculation of the most frequently
used interaction style based on values stored in action slots, such as: toolbar,
menu, context-menu, keystroke and Boulevard. For this purpose there is the
select-representation rule. The main computation is performed by function
which returns the most used interaction style. The computed value is stored in
the representation slot.

The second part uses the above computed value stored in the
item’s representation slot, special facts actions-interaction-group
and interaction-representation-ui-element. For this purpose, there
are these rules: select-ui-element, select-default-ui-element and
select-ui-element-exception.

(defrule select-default-ui-element
?action <- (action (representation ?representation) (name ?name)
(ui-element ?ui-element))
(interaction-representation-ui-element (representation ?representation)
(interaction no-selection) (ui-element ?element))
(not (actions-interaction-group (actions $?actions &:(member$?name
?actions))))

(test (not (eq ?ui-element ?element)))

40

(not (ui-element-exception (action ?name)))
(test (not (eq ?name ExecuteSearch)))

=>
(modify ?action (ui-element ?element)))

The rule select-default-ui-element considers item and its representation
and using defined interaction-representation-ui-element fact assignes a de-
fault user interface element used for non-selection interaction. The Rule uses
interaction-representation-ui-element groups, which defines the user in-
terface element for representation and interaction style. The groups are in Ta-
ble 1. We consider three possible interactions for group of items (exactly, there

Preferred interaction style Command interaction UI element
toolbar single-selection ToolbarToggleButton
toolbar no-selection ToolbarButton
toolbar multiple-selection ToolbarDropDownList
menu single-selection MenuToggleButton
menu no-selection MenuButton
menu multiple-selection ToolbarDropDownList
context-menu single-selection MenuToggleButton
context-menu no-selection MenuButton
context-menu multiple-selection ToolbarDropDownList

Table 1: Adaptive Representation Groups

can be only single item in a group). The possible interactions are: no-selection,
single-selection and multiple-selection. No-selection is the default interaction,
used for cases when an item cannot be active or inactive, like undo or redo.
Please be careful in distinguishing between active and enabled, inactive and dis-
abled. “Command is active” means that the user command is currently used, like
boldface or bullets, but “command is enabled” means that the command is possi-
ble to use. Single-selection is interaction when item can be active or inactive. For
simplicity, such behavior you can imagine like check box. And multiple-selection
interaction is for actions, which can have more than two values (on/off), for
example font size or font name.

You can see that ToolbarDropDownList is used for all possible representations
since this kind of interaction is used by a small group of commands and for all of
them and for all possible representations the ToolbarDropDownList is intended.
Also for the context-menu and the menu representation there is always the same
ui-element assigned. The reason is we consider context-menu and menu visual
style as very similar for the user. But the system is ready for a simple change.

Single selection items are: Bold, Italic, Underline, Strikethrough, LeftPara,
RightPara, CenterPara, JustifyPara, ControlCodes, SpellOnline, TableBound-

41

aries. Possibly, there are some commands missing here, but some missing com-
mands are intended, like bullets since in current OpenOffice.org version 3.2 bullets
in toolbar use surprisingly no-selection interaction style, so Boulevard uses the
same style as toolbar.

Multiple-selection items are: FontHeight, CharFontName and StyleApply.
No-selection items are not defined since it is the most frequently used inter-
action style, so it is the default style. Only for the special items above listed
we use different style. This approach has also the advantage that new items
that are not defined in Boulevard expert system are displayed correctly with
big probability and the definition of all items is not necessary. This is ensured
by select-default-ui-element rule. The rule select-ui-element assigns ui-
element for single-selection and multiple-selection interaction.

(defrule select-ui-element
?action <- (action (representation ?representation)
(name ?name) (ui-element ?ui-element))
(interaction-representation-ui-element (representation ?representation)
(interaction ?interaction)
(ui-element ?element))
(actions-interaction-group (interaction ?interaction)
(actions $?actions))
(test (member$?name ?actions))

(test (not (eq ?ui-element ?element)))
(not (ui-element-exception (action ?name)))
=>
(modify ?action (ui-element ?element)))

There is also a rule used for exceptions, which is currently only one: Zoom
command. In this case the ToolbarSlider ui-element is assigned to the Zoom-
Slider action, no matter on the representation. This rule is intended as a relatively
easy way to adjust a small set of items.

(defrule select-ui-element-exception
?action <- (action (name ?name) (ui-element ?element-orig))
(ui-element-exception (action ?name) (ui-element ?element))

(test (not (eq ?element ?element-orig)))
=>
(modify ?action (ui-element ?element)))

5.2.6 Minimal Rank

We have these simple rules mainly due to sweeping-back, because this fea-
ture places items on the higher primary position than they should be strictly

42

by rank. So without this rule only a once used item (command) with the rank
close to zero never disappears from Boulevard since this item is in the same
sweeping-back group with a frequently used item. This is an unwanted behav-
ior. So this rule uses a minimal-rank constant, which is minimal rank of item
to be contained in Boulevard. The rule add-action-to-boulevard is attended
for adding items to Boulevard by modifying the slot value in-boulevard to
true, if the item has a higher or equal rank as defined minimal-rank. The rule
remove-action-from-boulevard removes an item from Boulevard if the item’s
rank is lower than the minimal-rank.

(defrule add-action-to-boulevard
?action <- (action (rank ?rank) (in-boulevard false)
(representation ?repre))
(boulevard-parameters (minimal-rank ?minimal-rank))
(test (>= ?rank ?minimal-rank))
=>
(modify ?action (in-boulevard true)))

(defrule remove-action-from-boulevard
?action <- (action (rank ?rank) (in-boulevard true))
(boulevard-parameters (minimal-rank ?minimal-rank))
(test (< ?rank ?minimal-rank))
=>
(modify ?action (in-boulevard false)))

5.2.7 “Find” Parameters

These special rules are used only for the find item (command). This command
is special since it has complex parameters which are considered for assigning ui-
element. The first rule is for processing a newly-asserted find-parameters fact,
similar to new-action. We want to store only a limited number of last-used find
parameters, for this purpose an index is assigned to every find-parameters. This
value is stored in the slot index. The first rule process-new-find-parameters
finds the currently highest value of index, and stores this value incremented
by one to the new one. The second rule is attended for removing old
find-parameters. The required quantity of stored find-parameters is stored
in the parameters-quantity slot in the boulevard-parameters fact. So this
rule retracts find-parameters facts with index lower than the currently max-
imum index minus parameters-quantity. The rest rules are for assigning the
proper ui-element. The rules are: select-find-simple, select-find-replace,
select-find-simple-parameters and select-find-replace-parameters.
This rules choose that ui-element, which contains all interaction and possible
parameters used by the user. The corresponding representations of the “Find”
user command are in Figure 15.

43

(defrule select-find-simple
?find <-(action (name ExecuteSearch) (ui-element ?ui-element))
(not (find-parameters (find-type findAll)))
(not (find-parameters (find-type replace)))
(not (find-parameters (find-type replaceAll)))
(not (or (find-parameters (match-case true))

(find-parameters (backwards true))
(find-parameters (reg-exp true))
(find-parameters (whole-words true))))

(test (not (eq ?ui-element FindSimple)))
=>
(modify ?find (ui-element FindSimple)))

(defrule select-find-replace
?find <-(action (name ExecuteSearch)(ui-element ?ui-element))
(or (find-parameters (find-type findAll))

(find-parameters (find-type replace))
(find-parameters (find-type replaceAll)))

(not (or (find-parameters (match-case true))
(find-parameters (backwards true))
(find-parameters (reg-exp true))
(find-parameters (whole-words true))))

(test (not (eq ?ui-element FindReplace)))
=>
(modify ?find (ui-element FindReplace)))

(defrule select-find-simple-parameters
?find <-(action (name ExecuteSearch) (ui-element ?ui-element))
(not (find-parameters (find-type findAll)))
(not (find-parameters (find-type replace)))
(not (find-parameters (find-type replaceAll)))
(or (find-parameters (match-case true))

(find-parameters (backwards true))
(find-parameters (reg-exp true))
(find-parameters (whole-words true)))

(test (not (eq ?ui-element FindSimpleParameters)))
=>
(modify ?find (ui-element FindSimpleParameters)))

(defrule select-find-replace-parameters
?find <-(action (name ExecuteSearch)(ui-element ?ui-element))
(or (find-parameters (find-type findAll))

(find-parameters (find-type replace))

44

(find-parameters (find-type replaceAll)))
(or (find-parameters (match-case true))

(find-parameters (backwards true))
(find-parameters (reg-exp true))
(find-parameters (whole-words true)))

(test (not (eq ?ui-element FindReplaceParameters)))
=>
(modify ?find (ui-element FindReplaceParameters)))

45

6 Why OpenOffice.org

At the beginning we performed a feasibility study and we have chosen OpenOf-
fice.org for several reasons. OpenOffice.org is very similar to Microsoft Office
2003, which is probably the most widely used office suite. But in contrast to
Microsoft Office, OpenOffice.org is an open source, which brings better ways for
extending and customizing. OpenOffice.org itself is very popular office suite, ver-
sion 3 has been downloaded more than 100 million times and has been translated
to more than 100 languages [12]. We consider OpenOffice.org as a very good plat-
form for HCI research. For such purpose our logger OpenOffice.org Interceptor
can be very useful.

6.1 Programming under OpenOffice.org

OpenOffice.org extensions have been introduced in version 2.0.4. Extensions
use an approach similar to the one used in Mozilla Firefox. Is is intended as an
easy way to add new functionality and behavior to the existing OpenOffice.org
instance without modifying the source and reinstalling the OpenOffice.org. The
user just double-clicks on extension, Extension Manager opens and user confirms
the plan to install extension. That is all. Extension is one file which is in fact a
ZIP archive containing special directory and file structure. There are XML files
describing details of extensions, such as used toolbars and their icons, menus, and
so on. Creation of OpenOffice.org extension in our case ensures the Netbeans
OpenOffice.org plug-in [9].

6.1.1 UNO

UNO (Universal Network Objects) is a concept used for interoperability be-
tween various programing languages, object models and even hardware architec-
tures. For every UNO supported language must exist a corresponding so-called
language binding. Currently supported languages are Python, C++ and JAVA
for developing new UNO objects, and OpenOffice.org BASIC, OLE automation
and .NET CLI for using UNO objects. UNO RunTime is a virtual environment,
where UNO objects run and interact. There is a meta-language for describing
UNO objects called UNOIDL (Universal Network Object Interface Definition
Language), which is used for specifying UNO Components. It is similar to C
header files. UNOIDL definition file contains information about object, espe-
cially about used interfaces, methods, structures, services or other entities with
its corresponding parameters and parameters types.

46

7 OpenOffice.org Interceptor

The most difficult part of implementation of any adaptive user interface to
existing software is a logger. For our purposes we didn’t find any suitable logger
that would satisfy all our needs, so we developed our own logger called OpenOf-
fice.org Interceptor. It uses advanced techniques and it is a combination of two
logging approaches: it utilizes a build-in macro recording facility (underlying
function call) and also considers user interface events.

Macro recording approach is used for detecting user commands and corre-
sponding parameters. Example of such logger is OWL [41], which, however, do
not log the commands parameters. The advantage of this approach is the ab-
sence of need of interpretation of the user interface events as user commands,
which is a difficult task. However, from its nature comes it’s limitation: since it
fundamentally apart form the user interface events, it is impossible to log user
interface event-based information, e.g., the interaction style.

User interface events-based logger gathers information about low-level (e.g.,
key presses and mouse move) and high-level (e.g., window move) user interface
events. Such information could be useful for certain types of studies, e.g., examine
the user interface layout and user interface controls position. However, for studies
on users activity from user commands point of view such loggers are unsuitable.
Some user interface events loggers can produce more than 100 lines of log for one
simple user command. Example of such loggers are RUI [40] or AppMonitor [17].
There is also a problem to detect only command really performed by the user. By
really performed command we consider command which was really executed, not
only initiated and then canceled. For example, if the user opens the font dialog,
selects font and font size, and then clicks on the cancel button. This command
is only initiated, but not performed, so then we do not care about this action.
Such a behavior would be difficult to implement using only user interface events
approach.

An important part of our logger is API. Since Interceptor is implemented as a
standard UNO object, it is possible to use it from various programming languages,
which are supported by UNO. Such API is important for adaptive user interfaces,
because of accurate and immediate response from the logger. This feature is
also useful (and actually used) for user testing, such as conditioned tests (an
interactive test design, where future tests depend on the previous user’s behavior)
and test control. Using UNO, our logger can be used from OpenOffice.org BASIC,
which is an easy-to-use programming language for programming OpenOffice.org.
Using OpenOffice.org BASIC even a less experienced user can experiment with
adaptive user interfaces. We have written a 78-lines-long program that utilizes
OpenOffice.org Interceptor to create adaptive menu on OpenOffice.org Writer
using BASIC (Appendix A). OpenOffice.org with Interceptor is a framework
for easy user interface experiments, like prototiping adaptive interfaces and user
testing.

47

OOI provides the functionality of common loggers, like exporting of a log
to a file. The information provided by the Interceptor is indicated by the log
structure, which follows:

• User command — a string identifying the name of a performed command,
e.g. “Bold”, “SaveAs” or “Paste”.

• Interaction style used to initiate a command

• Interaction style used to execute a command

• Time and date — time and date of the command in YYYY-MM-DD
hh:mm:ss:mss format. This information represents time of command ac-
complishment, except a few cases, where the time of command invoke start
is used.

• User — a string identifying the user. This parameter can be set in the OOI
settings.

• App — particular application of the OpenOffice.org Suite (currently Writer
or Calc).

• Command parameters — parameters that have been applied to command.

The low-level user interface events are not logged, since such type of infor-
mation is only required for a certain kind of user studies. However, Interceptor
can be easily extended to provide such information, eventually. Key press events
(except keystrokes) are not logged in order to preserve privacy.

We present a log sample in Table 2. The table is divided into two separate
parts, the second part contains “Parameters” column with corresponding param-
eters and values.

Action Initiated Executed Date&Time User App
Bold toolbar toolbar 2009-04-20 18:12:55 Dostal Writer

FontColor toolbar toolbar 2009-04-20 18:13:02 Dostal Writer
InsertTable menu dialog 2009-04-20 18:13:29 Dostal Writer

Zoom toolbar dialog 2009-04-20 18:13:41 Dostal Writer

Parameters
Bold: true;
FontColor: 65535;
TableName: Sallary;Columns: 2;Rows: 4;Flags: 9;
Zoom.Value: 110;Zoom.ValueSet: 28703;Zoom.Type: 0;

Table 2: Log Sample

48

Interceptor user interface is divided into three tabs — the first tab contains
the above discussed log, the second tab contains a brief statistics (aggregated to
particular user commands). The third tab is attended to configuring Interceptor’s
settings.

Figure 16: OpenOffice.org Interceptor window

49

8 Interceptor Architecture and Implementation

This section describes how user commands and user interface events are in-
ternally handled in OO (OpenOffice.org) in order to understand the logging al-
gorithm described in Section 8.1. This chapter is adopted from an unused part
of OOI (OpenOffice.org Interceptor) article, which we have written together with
Martin Dostál. The term action originated before before we changed the used
terminology — from user action to user command. Let us discuss user interface
events first. Events (such as mouse clicks, key presses, window activations or
document events) which happen during OO operation are handled by objects
called Listeners. A component that handles an event must create and register a
corresponding listener to the object that generates the handled event. A listener
code is executed when such an event happens.

Another important part of OO internals is a Dispatch framework that is in-
tended for executing commands provided by OO, or more precisely by a partic-
ular OO application (i.e. Writer naturally provides different functionality than
Calc). Every user interface command has its own unique name, called URL
that is handled by a corresponding dispatcher. Dispatchers are obtained from
DispatchProvider objects. If an object requests a dispatcher, it should call Dis-
patchProvider that for given URL provides a corresponding Dispatcher object.
For instance, when the user clicks on the “boldface” button in toolbar, the but-
ton calls dispatcher (obtained from DispatchProvider) that will perform the cor-
responding action — setting a boldface. Another important fact is that it is
possible to change the dispatcher provided by DispatchProvider at runtime using
DispatchProviderInterceptor object that is responsible for managing dispatchers.
In other words, Dispatch framework is useful for unified communication between
user interface and OO. It completely separates commands from their user in-
terface representation. This separation is clearly an advantage in the sense of
program architecture but also a huge complication for implementation of log-
ging. The consequence is that it is unable to determine interaction style used
to perform user action straightforwardly. Now we will shortly describe the main
components used to retrieve information about user activity:

• A Top Window listener — listens for topwindow events. A topwindow is
considered as a rectangular container area in an OO window, represented by
menus, popup menus, toolbars or dialogs, except the system dialogs that are
not topwindows and thus must be handled separately. Topwindow events
are used to inform about activation, deactivation or closing a topwindow.
This information is required for determining the interaction style.

• A Key listener — listens for key press events. We are concerned only about
keystrokes — key combinations that include a “Control” key modifier. This
listener is required for determining the keystroke interaction style, such as
pressing “CTRL + S” to perform the “Save” action.

50

• A Macrorecorder — is an object which records user activity and produces
a macro source code. For instance, the default OO macrorecorder produces
macros in OpenOffice.org Basic syntax. Macrorecorder is informed about
most of the performed actions and their parameters. Such actions we call
macrorecordable. However, there are some actions which do not inform
macrorecorder about their activation and thus must be handled separately,
namely “RecentFileList”, “NewDoc” and “InsertSection”.

• A Document event listener — listens for document events. A document
event is a high-level action related to entire document, such as “Print”,
“Save”, “Close”, “NewDoc”, etc. We handle only “NewDoc” document
event, because this action is not macrorecordable thus can not be logged
using the macrorecording facility.

• A DispatchProviderInterceptor — is intended for replacing a dispatcher
by another one. We replace the original dispatchers for such actions that
may take unpredictable time to perform or such actions that are not
macrorecordable. In the case of this kind of action, we need to be in-
formed about action before starts its execution, or respectively, before it
ends. Please note that our dispatchers also calls the original (replaced)
dispatchers to preserve original functionality of a dispatcher.

• Accessibility — we use UNO Accessibility API (UAA) [10] to determine a
type of a topwindow. Furthermore, if the topwindow type is a dialog, then
the name of the dialog provided by the Accessibility API is also considered.
The topwindow type is used to determine a menu, a popup menu or a dialog
as an interaction style.

8.1 Action Logging Implementation

This subsection introduces logging actions implementation. Generally, there
are three ways we use to log an action:

• Using macrorecorder — as we stated above, most actions are logged us-
ing this approach. OOI implements own macrorecorder that is responsible
for logging macrorecordable actions. Due to internal OO architecture, the
default OO macrorecorder cannot be used with OOI simultaneously. The
consequence is that OOI disables recording macros.

• Using DispatchProviderInterceptor — this approach is used to log actions
that are not macrorecordable or may take unpredictable time to complete.
Such actions are: “Paste”, “Save”, “Export”, “Copy”, “InsertFormula”,
“WebHtml”, “SaveAsTemplate”, “RecentFileList”, “NewDoc”, “InsertSec-
tion”. Fortunately, the corresponding dispatcher is provided with action

51

parameters in the same way as macrorecorder is, so that actions are logged
correctly including all parameters.

• Using document event listener — this approach is used to log only “New-
Doc” action that is neither macrorecordable nor can be logged using Dis-
patchProviderInterceptor approach so it must be handled using a Document
event listener.

8.2 Determining Interaction Style of Performed Action

In this section we introduce how an interaction style used to initiate or exe-
cute an action is being determined. This part of logging is a much more complex
task than action logging and uses similar techniques as event based loggers. We
have mentioned the main four problems of determining interaction style in OO.
The main pitfall lies in the fact that there is no straight way to determine initia-
tion and execution style correctly due to separation of actions from user interface
representation. Another complication arises from the fact that a dispatcher of a
performed action is executed after closing of the topwindow (a dialog, a menu or
a popup menu) where the action has originated. Nevertheless, the performed ac-
tion must be associated with an originating topwindow that was used to initiate
or execute the action in order to detect used interaction style. The third limita-
tion is that toolbars can not be directly identified as an interaction style such
as a menu, a dialog or a popup menu. The only possible solution is to consider
a toolbar as used interaction style, whenever a keystroke, a menu, a dialog or a
popup menu has not been determined. The fourth problem is that the dispatcher
of a performed action informs the macrorecorder after such an action was com-
pleted. Such a solution may seem cumbersome, but it also yields an important
advantage. OO toolbars contains many different and complex user interface ele-
ments with a a complex behavior (a formula editor, a media browser, drop-down
listboxes, additional toolbars, etc.), whose activity can not be determined using
Accessibility API nor any other source of user interface events available in the
OO API. Now we will describe our logging algorithm in detail. The algorithm
uses following variables to keep track on recent user interface events related to a
recent action:

• init — contains the interaction style used to initiate an action. Possible
values are a keystroke, a menu or a popup menu.

• exec — contains the interaction style used to execute an action. Possible
values are a keystroke, a menu, a dialog or a popup menu.

• timestamp— contains time in milliseconds. This variable is used to validate
values of the init and exec variables.

• indialog — a boolean variable which indicates that a dialog has focus.

52

Setting values of the above variables is not entirely straightforward and it is
described at Figures 17, 18, 19 and 20. Now we continue the algorithm descrip-
tion with focus on topwindow events and dialogs. When a topwindow event is
triggered (for instance, clicking “Paste” menu item in the “Edit” menu category),
init, exec and timestamp variables are set. The timestamp variable is set to
the current time. Therefore, when an action is performed, the timestamp and
current time values are compared. If the difference between timestamp value and
current time is less than 500 ms, then init and exec variables are proclaimed as
valid and therefore, their values are used to identify the initiation and execution
style of action. In other case, the variable values are considered as invalid and set
to “toolbar”, except a few special cases that require special handling as depicted
on Figure 17.

For dialogs, init and exec variables must be handled more specifically. The
exec variable is set to “dialog”, when an action is executed from a dialog. The
init variable value is observed when a dialog is opened and gets focus. It is also
possible to have more than one dialog open when some of the opened dialogs
are not modal. The init value is stored in the list of currently opened dialogs
including the dialog name provided by the Accessibility API. This processing
ensures correct behavior of the logging algorithm for non-modal dialogs. For
instance, when the “Find and Replace” dialog is being opened, any possible
action can be performed due to non-modality of the dialog.

Special handling is required for standard system dialogs that are provided
by operating system, namely “Open” and “Save”. The reason is that standard
dialogs are not handled by a topwindow listener, and thus must be processed
individually as seen on Figure 18. Figures 17, 18, 19 and 20 depict the logging
process in appropriate detail. A few comments on Figure 17:

• The algorithm always starts in Figure 17; Figures 18, 19 and 20 describe
corresponding blocks of the algorithm in more detail.

• Most actions imply that the logging algorithm must be performed more
than once to log an action including all logged parameters. Therefore, the
algorithm variables are not initialized at the start of the next iteration of
the logging algorithm.

• Record action process: adds a new log entry according to the current values
of iniit, exec variables of the recently performed action.

• Record Action Using Timestamp process: the process consists of two parts.
The first part is described by “setting init and exec using timestamp” (see
Figure 20) and the second part is described in a bullet above.

• Intercepted URL means an URL which is handled by DispatchProviderIn-
terceptor in order to determine init and exec values correctly. See Section
8.1 for enumeration of intercepted URLs.

53

Start

Event

source

New

Document
Record action

using timestamp

Intercepted

URL

Record Action

Record action

using timestamp

OOI macrorecorder

(input: action URL,

action parameters)

yes

no

Control key

pressed

init := key

exec := key

yes

Key Listener

(input: key)

Document listener

(input: document event)

DispatchInterceptor

Provider event

(fig.6)

Top window

listener event

(fig. 5)

yes no

DispatchInterceptorProvider Top Window Listener

Figure 17: Logging Algorithm – The Main Part

8.3 Example of Performing Logging Algorithm

In order to clearly understand the logging algorithm we provide an example
of action processing in logging algorithm. We will describe what happens when a
user opens a font dialog using the menu. Then he selects “boldface” in the dialog
and after that clicks the “OK” button. Then the user selects “boldface” again,
but using a toolbar. In this case logging algorithm must be processed six times
to process these two actions correctly:

1. The first incoming event is a topwindowlistener event “closed”. The topwin-
dow type is “menu”, so that init and exec are set to “menu”, timestamp is
set to the current time (user selected “Character...” menu item in “Format”
menu category).

2. The second incoming event is a topwindowlistener event “Activated”: the
topwindow type is “dialog”. Since “Character” dialog is not opened yet,
we continue with the “set init and exec” process: timestamp is valid, so
that no changes to variables are required. Then the dialog is added to
the list of currently opened dialogs including init actual value and dia-
log name provided by accessibility, so that the list contain the following
values: ((‘‘Character’’ ‘‘menu’’)). Variable indialog is set to true.
(Character dialog has been displayed)

3. The third incoming event is a topwindowlistener event “Deactivated”: top-
window type is “dialog” and indialog is set to false. (User selected boldface
and clicked on OK)

54

Event type

Top Window listener

(input: event type, window type, window name)

closedW. type

init := get dialog's init from list

exec := dialog

delete dialog from list

timestamp := current time

init := w. type

exec := w.type

timestamp := current time

menu, popup

dialog

W. type

activated

menu,

popup

W. type

indialog := false

deactivated

dialog

Start

Dialog in list
Set init and exec using

timestamp
init := get dialog's init from list

dialog

yes no

Add new dialog to list with init

indialog := true

Stop

other

Figure 18: Logging Algorithm – The Top Window Listener Event

4. The fourth incoming event is topwindowlistener event “Closed”: topwindow
type is “dialog”, then init is set to “menu” (obtained from list of currently
opened dialogs), exec is set to “dialog” and timestamp is set to the current
time. The dialog is deleted from the list. (Dialog has been closed)

5. Next event is processed by macrorecorder. Since “Bold” is not an inter-
cepted URL, “Record Action Using Timestamp” is performed: timestamp
value is valid, so that no variable value is changed. The resultant log entry:

Bold, menu, dialog, 2009-05-08 16:14:01, Dostal, Writer,
"Bold: true;"

6. Now we continue with the second action: the user clicks on “Bold” tool-
bar button. The incoming event is handled by the macrorecorder. URL is
“Bold”, which is not an intercepted URL, so “Record Action Using Times-
tamp” process is performed: timestamp value is proclaimed as invalid and
indialog is false, thus init and exec variables are thought as invalid and
then both rewritten to “toolbar”. Afterwards “Record action” is performed
and the following log entry is added:

Bold, toolbar, toolbar, 2009-05-08 16:14:15, Dostal, Writer,
"Bold: false;"

55

Set init and exec

using timestamp

(fig. 7)

Macrorecord

able

 URL

Record Action

Interceptor

(input: action URL, action parameters)

no

url = save

and file has

no path

exec :=dialog

yes

Start

yes

Stop

Figure 19: Logging Algorithm – The Dispatch Provider Interceptor Event

8.4 OOI Limitations

This section briefly discusses OOI limitations. Note that they are mainly
caused by bugs in OO version and UNO limitations.

• Although OOI is written as platform independent, it works under Windows
and Linux but not under Mac OS X. This limitation is caused by OO and
Mac OS X compatibility problems. We believe that this problem will be
solved in a future version of OO for Mac OS X.

• OOI is limited to work with Writer and Calc only. Another OO applica-
tions are disabled at the present due to their insufficient stability of the
macrorecording interface. We assume that the reason is that macrorecord-
ing support under Impress, Draw, Base and Math applications has been
added recently, and thus must be improved in order to provide enough
compatibility and stability of OO API.

• It is not possible to record macros when OOI logging is enabled. This
limitation is caused by the internal architecture of OO which does not enable
using more than one macrorecorder at a time. In other words, there can
be more than one macrorecorder created at a time but switching between
macrorecorders — a “logging” macro recorder used by OOI and original
OO macrorecorder is not possible. Nevertheless, this issue may be solved
in future OO versions if developers make appropriate changes to OO API.

56

Start

Is timestamp

valid

indialog

leave init and

exec unchanged

init := toolbar

exec := toolbar

false

yes

no

true

Stop

Figure 20: The Logging Algorithm – Setting init and exec values using
timestamp

8.5 Rapid Prototyping of Intelligent Interfaces

OpenOffice.org Interceptor offers one more feature important for HCI re-
searchers — a program interface. It can be used as a logging framework for
developing intelligent user interfaces under OO. Most present loggers do not pro-
vide any logging API, do not provide information about parameters of performed
actions. Also logged data must be processed further to understand user activity
which limits their applicability as logging framework for developing intelligent
user interfaces. OOI overcomes those limitations. In order to provide a standard
program interface, OOI is implemented as an UNO component, so user actions
may be logged in any programming language with UNO bindings. The OOI
program interface is easy to use, see Figure 21 that presents simple OO Basic
program which displays logged information about recently performed action.

How does the program depicted in Figure 21 work? Using createUnoService
and createUnoListener an OOI instance is created. The addListener installs
a listener object responsive for logging. When an action has been performed,
the listener calls ooi_listen with following parameters: “action”, “initiated”,
“executed”, “time”, “user”, “application” and “parameters”.

8.6 OpenOffice.org Interceptor Installation

Current version works with OpenOffice.org 3.2.1 (default installation) under
Microsoft Windows XP Service Pack 3 and JAVA 1.6.20. Please notice the In-

57

Option Explicit
Global ooi As Object
Global ooi_listener As Object

Sub RegisterLogHandler
ooi = createUnoService("org.openoffice.oointerceptor.XOOInterceptor")
ooi_listener = createUnoListener("ooi_", _

"org.openoffice.oointerceptor.XOOInterceptorListener")
ooi.addOOInterceptorListener(ooi_listener)
End Sub

Sub ooi_listen(action, initiated, executed, time, user, application, _
parameters)
MsgBox "action: " & action & ", initiated: " & initiated & _
", executed: " & executed & ", time: " & time & ", user: " & _
user & ", application:" & application & ", parameters: " & parameters
End Sub

Sub Main
RegisterLogHandler
End Sub

Figure 21: An Example of using OOI program interface

terceptor limitations described in Chapter 8.4.

1. Open the file Interceptor.oxt by double clicking or with OpenOffice.org
Extension Manager.

2. Confirm installation.

3. After installation, relaunch OpenOffice.org.

58

9 Boulevard Manager and Visualization Layer

This controls the expert system, connection to instance of OpenOffice.org,
Interceptor and also ensures the visualization of Boulevard. The project is written
in JAVA language using Netbeans IDE and its OpenOffice.org plug-in [9] for easy
extending of OpenOffice.org. We used this plug-in to create a so-called extension,
(in other words plug-in), which can be used for extending OpenOffice.org without
modifying the source of OpenOffice.org. For boulevard visualization JAVA [4] and
SWING library [15] are used, which is a newer and more sophisticated library
than earlier AWT(Abstract Window Toolkit).

9.1 Boulevard Manager

Boulevard manager is an important part of Boulevard, it utilizes and controls
Interceptor, CLIPS expert system and Boulevard Window. We will describe the
process (Figure 22) more closely from the user command to redrawing Boule-
vard (if necessary). The process is initiated by an intercepted user command
by OpenOffice.org Interceptor. The intercepted user command is asserted to the
expert system as a new-action fact and inference is started. When inference
ends, the action facts are read from the expert system memory and these facts
are then used for visualization of Boulevard.

OpenOffice.org Writer

Writer Adaptive User Interface
Extension

Logger

Expert System

Adaptive User Interface
Presentation Layer

Performed user
commands

Adaptive user
interface contents

Figure 22: Boulevard internals

59

9.2 CLIPSJNI

CLIPSJNI [2] stands for CLIPS Java Native Interface, which is an interface
for using CLIPS from Java environment. For Windows, it uses CLIPS DLL
library3, which is used as CLIPS run time and environment. CLIPSJNI provides
almost full control of CLIPS as in standard CLIPS IDE. We can obtain facts
from CLIPS environment as JAVA objects, which is very useful. We cannot use
the precompiled CLIPSJNI jar, because there is a condition to have CLIPS DLL
file contained in WIN32 system directory. This was an unacceptable limitation
for our Boulevard implementation as an easy to install OpenOffice.org extension.
Such installation would require Administrator access to write CLIPS DLL file to
WIN32 system directory. So this is why we have compiled our own version of
CLIPSJNI, where it is possible to select path for CLIPS DLL, which we have
contained in our JAR file. Except this, there are not any other changes.

Inference is started by CLIPSJNI, but we do not use normal RUN command
starting inference, but RUN with parameter of maximum number of inferences
instead. In the current version, it is 1000. That was useful for unstable versions
of the expert system, where cycling of expert system was possible, so inference
never ended and thus OpenOffice.org stopped responding. With this limitation,
the user just received a message about cycling of the expert system and then
Boulevard was visualized in state where the inference stopped after 1000 steps.
Also it is possible to see the current and previous status of Boulevard, so the
problem can be easily debugged.

There is also a mechanism for easier debugging. In Boulevard options window
(in Figure 23), we can enable Boulevard debug mode, and then we can step expert
system inference. After every step we can see the current status of all stored facts,
and also visualization in real Boulevard window.

We also always measure the number of inferences after every used user com-
mand. We can generally say by simple observation that even when there are many
items, about 100, and the minimal-rank value is not 0, but a greater number like
0.01, the number of inferences is relatively small, mostly between 10 to 20 after
every used user command.

9.3 Boulevard Visualization Framework

This layer takes output from the expert system as input, which describes
what Boulevard should look like now. After the inference finishes, we read using
CLIPSJNI all facts of type of action. Then we use all important slot values like
the primary and secondary position, if an item should be placed in boulevard,
ui-element and parameters. This is all the information we need to visualize
Boulevard. We also remember current Boulevard state and when we receive a

3
Dynamic Link Library – shared library concept used in Microsoft Windows, file has usually

DLL extension

60

new version from the expert system, we compare these versions and determine,
which items are newly added, which items changed its position and which items
are removed. This information we use mainly for animations. See more about
animations in Chapter 9.5.

9.3.1 User Interface Elements Context Synchronization

In this section we will explain the issue, which lies in synchronizing Boule-
vard items status with currently opened OpenOffice.org window and its cursor
position in document which indicates context. Simply put, for example, whether
the user click in the text to where boldface is on or off, the boldface icon in tool-
bar must also be enabled or disabled by the current cursor position, which we
call in this case context. This problem makes implementation of an alternative
user interface in the existing software very difficult. Information from loggers is
not enough since the context can change without performing any user command
and without redrawing any icon, which could be logged by some user interface
logger. Luckily, OpenOffice.org provides UNO objects called Dispatchers, which
are used internally for performing user commands, and also for determining the
status of such commands. Every command in OpenOffice.org has its own Dis-
patcher, which has its own unique UNO Command URL. By this URL, we can
obtain an appropriate Dispatcher, and register our own listener. Listener is an
object, which generally has a method called Listen. We create such an object
and implement Listen method on our own. Then we register our listener into
the Dispatcher, by calling method of the dispatcher “register listener”, with our
listener as parameter. Then the dispatcher call ours listener method listen, when
status of dispatched command changes. This is how we handle this problem in
OpenOffice.org.

Every user command can be enabled or disabled, for example, we cannot
delete a table column, if we do not have the cursor in the table. However, it is
more complex issue since many user commands have more possible statuses than
active or inactive and enabled or disabled. Commands with complex parameters,
like the currently used font and its size are problematic. Such commands must
be handled specially, since such information is not presented as a basic type
like Boolean or integer, but as a standard UNO object like FontHeight. In such
cases, we must have predefined how to handle these objects and how to obtain the
desired value. This is why such a issue cannot be solved by a general solution,
we must take special care of every command with more complex parameters
than Boolean. Currently, such commands are: Font, FontHeight, Style, Zoom,
BackGroundColor, FontColor, FontHeighlight and Find.

After the information from the listener about changing the user command
status is received, change of the status of our visualized action must be performed.
For example, select the appropriate align icon, and deselect the other currently
unused align icons.

61

A relatively special case is colors, as we have to generate the appropriate icon
with the right color. In OpenOffice, there is only one icon for all colors. Precisely,
color is expressed in the font color icon as a rectangle at the bottom. We have
to repaint this rectangle by a particular color and generate a new icon, which
is then used as a icon for color command with a special parameter. There is
another specialty about color, and that is that they are not unique commands
in Boulevard, for more see Section 5.1.1. There is also an interesting problem
with color icon design in OpenOffice.org: some users interpreted color icons as
underline command (color icons are on Figure 13).

9.4 Boulevard Layout Manager

The layout manager is responsible for what Boulevard looks like. We have im-
plemented our own layout manager, because we didn’t find any standard SWING
layout manager, which served our purpose well. The layout manager is called ev-
ery time, when Boulevard content or window size are changed. It calculates the
position for every item. The layout computation depends on the currently used
layout style — horizontal or vertical. Computation follows the same direction
as item prominence in Boulevard. Simply speaking, the difference between the
horizontal and the vertical layout lies in swapping the computed x coordinates
with the computed y coordinates.

The proper icons for representing user commands were needed, so we ob-
tained them from OpenOffice.org source and included in our extension. We did
not find the way to make the Boulevard window a native window of the OpenOf-
fice.org, so we created a new ordinary window for our purposes. But this window
could not be really ordinary since such a window contains a big system title bar,
which is undesirable for Boulevard. We wanted the window to look as a part of
OpenOffice.org as much as possible, so we used a so-called undecorated window
and implemented our own small title bar, moving and resizing features. Other
specialty of our window is a always-on-top behavior, since the Boulevard window
can then be in the OpenOffice.org window and never goes under another window.

Such implementation has some limitations, except the different look of the
Boulevard window from the OpenOffice windows, there is also a focus issue.
When the user uses Boulevard, OpenOffice loses focus and vice versa, when the
user uses OpenOffice, Boulevard loses focus. This causes a issue with tooltips,
which is an important part of the user interface.

The layout manager also initiates painting of items. Not just Boulevard items,
but also auxiliary items for better orientation in Boulevard, such as line separa-
tors. The layout manager also checks if every item can be painted to Boulevard
properly in the sense of item size. If an item does not fit in the Boulevard window
properly, it is not painted at all. This is useful for the user, since he can set the
intended number of items in Boulevard by a simple change of Boulevard window
size, and not only on the primary position, but also on the secondary position.

62

The window size, particularly the ratio between height and width of window also
induces the layout — horizontal or vertical.

The layout manager also initiates animations, and not only the entire anima-
tion, but also every animation step. We use the standard SWING timer for such
purpose. The layout manager holds instance of timer, which calls all interested
listeners.

The layout manager also cares about cursor position. Boulevard cannot
change its content when the cursor is in the Boulevard window, because such
behavior could be confusing and annoying for user. Imagine that the user once
uses a command by clicking on it and after that, without moving the cursor, under
the cursor there now appears a different command. Such behavior would increase
the number of errors made by the user and it would also be very annoying.

9.5 Animations

The reason why we implemented animations into Boulevard is simple — they
helps the user to better understand and perceive Boulevard. For example, which
item was moved and where, which item was removed or added. If the Boulevard
window be just repainted in a second, the user would not even notice the change,
not even knowing exactly which item was changed and how. We implemented
three types of animations: The first and most important animation is used for
item, whose location is changed, but in both states the item was painted into
Boulevard. We animate smooth motion of an item in Boulevard. The animation
consist of ten steps and every step has the same duration, which is 50ms. The
number of pixels by which the item moves is variable during the animation —
less at the beginning and the end of the animation than in the middle. That is
because we wanted a smoother movement.

Another animation is used for adding a new item into Boulevard. This is
because we want to notify the user about a new item (command) which they can
use. The animation looks a like “blow-up”. The item is gradually magnified from
the size of a few pixels to multiple size, and then downsized back to regular size.
It all takes less than a second. This animation cannot be implemented by simply
changing the size of the SWING object (container). Changing directly the size
of items is a slow method, since it initializes the layout manager, which can also
initiate another layout manager of the contained item. For these reasons, this
animation is implemented in the following steps. At the beginning, we have an
item which we want to animate. We “tell” this item to paint itself, but not into
the Boulevard window, but into an image object. Then we use this image for
animations. Changing size of an image is a much simpler task than changing the
size of a complex SWING button object. But to keep an animated item in the
right place during the animation, we have to change its position in every step,
since the item is positioned in the left top corner, not the center.

63

The last type of animation is to remove an item from Boulevard. This anima-
tion is very similar to the above mentioned “blow-up” animation. This animation
is almost inverted with a few exceptions. The item is not magnified but decreased.
Also the position is not changed after every step of the animation. The animation
looks like the item is collapsing to its left top corner. The animation is different,
not just inverted for better recognition by the user.

9.6 Visualization Result and Future Work

This part of Boulevard is much important, since it indicates how the user
sees and perceive Boulevard. The visualization has also the most implementation
issues. There should be done much more in the future, namely:

• Animations are poorly implemented. Animation was not the goal of this
work, but we could not resist even trying to play with them. So we imple-
mented basic animations, but in the current state it is hard to implement
more types of animations. Reimplementation of the layout manager with
an appropriate animation framework would be great.

• The Boulevard window is not a part of OpenOffice, causing focus and
tooltips issues. This induces reimplementation of the entire visualization
part of Boulevard.

9.7 Boulevard Installation

Disclaimer: Boulevard is definitely not software for end-users, it is a prototype,
which serves as a tool for evaluation of an adaptive user interface design. There is
absolutely no warranty. However, if someone wants to experience Boulevard, here
are simple installation instructions: Current version works with OpenOffice.org
3.2.1 Writer (default installation) under Microsoft Windows XP Service Pack 3
and JAVA 1.6.20 (however, Boulevard was reported as working also under the
Windows 7). Please notice the Interceptor limitations described in chapter 7.1.4,
which are the same as for the Boulevard.

• Open the file Boulevard.oxt by double clicking or with OpenOffice.org
Extension Manager.

• Confirm installation.

• After installation, relaunch OpenOffice.org. Please be careful with the
OpenOffice.org speed luncher, which may cause the incomplete relaunch
of the OpenOffice.org.

Boulevard has an administrative window (Figure 23) implemented, which can be
invoked from the OpenOffice.org Writer’s menu. In the administration window it

64

is possible to change Boulevard’s parameters, such as: Recency-Frequency ratio,
minimal rank, rank tolerance. We can also enable or disable some Boulevard
features, like animations, sweeping-back and adaptive representation. The ad-
ministration window also helps to debug the expert system by stepping inference
and offers a function to save and load Boulevard from a file. Other tabs contain
just some debug output.

Figure 23: Boulevard administration window

65

10 Boulevard Usability Test

An important part of work was a usability test. We were very curious about
the test results. User experience consists of two basic aspects: quantitative (e.g.,
task time cost and error rate) and qualitative (user’s satisfaction). We can mea-
sure the quantitative aspect by a logger, however, from a log analysis we cannot
extract real user’s satisfaction, which is also important. For measuring user’s sat-
isfaction questionnaires are used. There are many types of usability tests, each
is suitable for a different stage of software development:

• Early prototype testing — may be done by discussion with the user after
prototype presentation.

• Prototype testing — may be done by direct observation of the user’s behav-
ior and discussion or by other more sophisticated method, like the SUS [18].

• Almost complete prototypes — usually done by performing benchmarks;
measuring the time taken by the tester to complete a given task, may be
combined with questionnaires.

• Complete prototypes, software for end users — long-term studies, collect-
ing volumious data from a high number of users, analyzing and planning
changes for improvements for future versions.

10.1 Previous Test

In the previous work, Jakub Černek performed only simple tests of Boulevard
usability by direct observation of user’s behavior by the screen recording software.
In his thesis [20] there are four videos (the videos are also available on Dostál’s
www page [25]) taken by screen recording software. There is also some kind of
conclusion, which is more a commentary to the videos than an evaluation.

10.2 The Test

Unfortunately, because of time limitations we performed only a pilot study —
a preliminary evaluation of the implemented prototype. There should be more
tests in the future. Our test consist of a simple benchmark, we measured the time
needed to complete a given task and an error rate of three different interaction
styles: toolbar, menu and Boulevard interaction style. After that the testers filled
in questionnaires.

The test was structured as follows:

1. Briefing

2. Meet the OpenOffice.org Writer

66

3. The test

4. Toolbar test

5. Menu test

6. Boulevard test

7. Questionnaire fill in

The test began with a simple briefing about user experience and information
needed for the test, like what a toolbar, a menu and Boulevard are. The briefing
took about ten minutes accompanied by five simple slides. There were some
general and particular problems about which we also talked about in the briefing:

• We are not testing users, we are testing the software.

• The test is not about document content, but about performing user com-
mands (activating / deactivating). However, we created an initial document
for the test (see Appendix B).

• However, some actions need the correct context (cursor position) for acti-
vation, for example, issuing “Copy” command assume a selected part of the
document.

• When users look for a tested user command, they should not activate com-
mands which they do not want to. This has two main reasons: (1) we
measured various aspects of every tested command, apart from duration
of activation also the number of errors made by the user — the num-
ber of wrongly activated actions. (2) Due to Interceptor implementation,
which causes that if the user opens a dialog at first, then makes no changes
and closes the dialog by clicking OK, information about performing action
named mostly as a dialog is logged. In this case we measure one error made
by the user, since the user performed a different command than he should.
But if the user clicks on CANCEL, then nothing is logged, so we do not
measure any error made by the user. This was presented to the testers as
important.

• There was the abort button on the test window for case when the user cold
not complete the task.

The next part was designated mainly to users who have never worked with
OpenOffice.org Writer. The users had about three minutes to meet the OpenOf-
fice.org Writer. As an observer I have to say that most users did nothing. Then
the main test began by the toolbar part — choosing user commands strictly from
a toolbar (using only a toolbar interaction style). List of tested commands is in
Table 3.

67

UNO Command Description
Bold Tučné ṕısmo (Bold)
Italic Kurźıvu (Italic)
Underline Podtržeńı (Underline)
FontHeight Libovolnou velikost ṕısma (Font Height)
CharFontName Libovolný font ṕısma (Font)
RightPara Zarovnáńı doprava (Align Right)
CenterPara Zarovnáńı nastřed (Align Center)
DefaultBullet Odrážky (Bullets)
DefaultNumbering Č́ıslováńı (Numbering)
IncrementIndent Zvětšit odsazeńı (Increment Indent)
FontColor Libovolnou barvu ṕısma (Font Color)
Undo Zpět (Undo)
Copy Označte prvńı slovo a zkoṕırujte jej do schránky (Copy)
Paste Vložte slovo ze schránky na libovolné mı́sto (Paste)
InsertTable Vložte tabulku na libovolné mı́sto (Insert Table)

Table 3: Toolbar test commands

There were fifteen particular commands in the toolbar test and each command
was randomly repeated four-times, and for all the participants in the same order.
The total number of toolbar tests is sixty.

After that the menu test began, where users should use only menu interaction
style. This part was the most difficult for several reasons: (1) menus contains all
possible commands of OpenOffice.org Writer, instead of a toolbar and Boulevard.
Some commands are accessible directly from a menu, however many commands
are accessible from a tab in a dialog, invoked from a menu. (2) There was also
a naming issue, reported by some testers: in OpenOffice.org Writer is the “font
dialog” named in the menu as Character..., not Font... (like in the Microsoft
Office). This was reported by some testers as confusing. There were twenty
actions in the menu part and each was repeated three times — sixty tests. A list
of commands tested in the menu part is in Table 4.

When the menu part finished, Boulevard was displayed on the user’s screen.
Boulevard was build on the user’s behavior in the previous test parts (toolbar
and menu). So every user’s Boulevard was unique. There was a problem if the
user did not find the command in the previous parts, then such a command was
not contained in Boulevard, since the user did not used such a command. Such
a behavior of Boulevard is correct, so we did not care about this issue in the test
design, however, it complicated the evaluation of the test, especially the error
rates.

Commands in the Boulevard test were selected as union of commands from the
toolbar part and the menu part, namely: Ruler, WordCountDialog, Zoom, Table-

68

UNO Command Desctiption
SelectAll Vybrat vše (Select All)
Italic Kurźıvu (Italic)
Underline Podtržeńı (Underline)
FontHeight Libovolnou velikost ṕısma (Font Height)
CharFontName Libovolný font ṕısma (Font)
ViewBounds Zobrazit hranice textu (View Bounds)
LeftPara Zarovnáńı vlevo (Align Left)
RightPara Zarovnáńı vpravo (Align Right)
SplitCell Rozdělit buňky (Split Cells)
DeleteRows Odstranit ·̌rádky z tabulky (Delete Rows)
FontColor Libovolnou barvu ṕısma (Font Color)
Undo Zpět (Undo)
Copy Označte prvńı slovo a okoṕırujte jej do schránky (Copy)
Paste Vložte slovo ze schránky na libovolné mı́sto (Paste)
InsertTable Vložte tabulku na libovolné mı́sto (Insert Table)
DeleteColumns Odstraňte libovolný sloupec z tabulky (Delete Columns)
TableBoundaries Hranice tabulky (Table Boundaries)
Zoom Lupa (Zoom)
WordCountDialog Počet slov (Word Count)
Ruler Zobrazte prav́ıtko (Ruler)

Table 4: Menu test commands

Boundaries, DeleteColumns, DeleteRows, SplitCells, LeftPara, RightPara, Cen-
terPara, ViewBounds, SelectAll, Bold, Italic, Underline, FontHeight, CharFont-
Name, DefaultBullet, DefaultNumbering, IncrementIndent, FontColor, Undo,
Redo, Copy, Paste, IntertTable. There were twenty-six actions in the Boulevard
part and each was repeated three times, which is seventy-eight tests of Boulevard
interaction style.

10.3 Testing Facility

To conduct the test, we needed Interceptor to gain the information about the
user’s activity in OpenOffice.org Writer. We used such information not only for
measuring quantitative aspects of the test, but also for an implementation of the
testing software itself. The testing software shows the user instructions about
the currently tested command and leads the user through the entire test. When
the user successfully performs a given command, the testing software displays
the next instructions automatically. Such behavior would be almost impossible
to implement without the Interceptor API. The testing facility is implemented
directly into Boulevard. The internal logic is simple:

69

1. Creates the test window and sets the intended size and position of the
OpenOffice.org Writer window and the Boulevard window (to accomplish
uniform conditions for all testers).

2. Downloads the test design file from the server using SSH File Transfer
Protocol 4.

3. Loads the test design file — XML file containing tested commands with an
appropriate interaction style and other test related data.

4. Runs test — show every particular test task to the user, measure time from
the start and check for accomplishment criteria, like command and required
interaction style to past the test successfully, if defined.

5. When the entire test finishes, creates the log of test and uploads the file to
the server.

Since our participants speak Czech, we had to translate the tested actions into
Czech.

The tested commands were selected with respect to the frequency of usage,
given by [29], however, there are some exceptions given by the interaction style.

The quantitative aspect of test was measured using Interceptor, the log struc-
ture follows (enumerated in same order as in log):

1. Boolean — Did the user abort the test?

2. integer — the number of fails (number of wrong activated actions)

3. integer — the test number

4. long — accomplishment duration time in milliseconds

5. string — the tested command

6. string — the interaction style used to initiate command

7. string — the interaction style used to execute command

8. integer — the test phase (1 indicates the toolbar phase, 2 the menu and 3
the Boulevard)

9. string — the user’s ID, which consist of the the hostname, the username,
the date and the time of test start.

10. string — command parameters from Interceptor

4
Poznamka: Secure Shell protocol (SSH) extension to provide secure file transfer

70

Figure 24: Tester’s screen

Here is an example of a line from the log:

false,0,1,999,FontHeight,menu,dialog,2,U502-1-usr-2010-12-09-18-19,
"FontHeight.Height:22.0;FontHeight.Prop:100;FontHeight.Diff:0.0;"

The qualitative aspects were measured using a questionnaire. We used the
Lime Survey software [5] for an on-line survey, because of easier data collecting
and easier evaluation. Lime Survey offers an export directly to “R” statistical
software [13], which was used for statistic evaluation. Users completed the ques-
tionnaires just after they finished the test. The questionnaire consisted of sixteen
questions, see Appendix C.

10.4 Test Result

Let us start with more detailed information about our participants. Our
sample do not follow the normal population. The test were performed by eighteen
subjects of various age (M= 30.5, Min.= 21, 1st Qu.= 23, Mdn= 25, 3rd Qu.=
32.25, Max= 55, Sd= 11.33). There were 14 (78 %) males and only 4 females
(22 %). The highest completed education level of subjects: high school — 7
subjects (38.89 %), university degree — 11 subjects (61.11 %). In our sample

71

there were 8 students, 3 academics or teachers, 3 administrative workers, one M.D.
and one unspecified. The participants have long-term experience with computers
(M= 12.94, Min.= 5, 1st Qu.= 10, Mdn= 11.5, 3rd Qu.= 15.5, Max= 25, Sd=
4.74). The number of years of working with text editor is very similar to working
time with computers. Mode of computer skills on scale from 1 from to 5, where
1 means no skills and 5 indicates pro user, is 4.

Unfortunately, not all participants completed the test successfully, however,
all of them worked with Boulevard for long enough, so we evaluated at least their
questionnaires. So we have only 12 complete logs from the test.

10.4.1 Quantitative Evaluation

At first, we filtered out the aborted tests and tests that took more than 30
seconds to complete. Out filtered data were evaluated later as error rates. After
that the data were aggregate by the median for every user and every test phase
(toolbar, menu and Boulevard) and also such times were expressed in percentage
against the toolbar phase, which is here the 100 % (Table 5).

ID Toolbar Menu Boulevard Toolbar Menu Boulevard
time (ms) time (ms) time (ms) % % %

1 2656 7125 2750 100 268 103
2 3109 5969 2984 100 191 95
3 4734 8758 4702 100 185 99
4 5625 7422 4516 100 131 80
5 5938 9516 4984 100 160 83
6 5296 7219 6071 100 136 114
7 5922 8531 3484 100 144 58
8 2726 6031 3235 100 221 118
9 4344 7859 6203 100 180 142
10 2312 5882 2640 100 254 114
11 7852 11757 10219 100 149 130
12 3500 6992 3797 100 199 108

Table 5: Aggregated data

Table 5 shows that the menu is the most time-consuming interaction style,
however this was a presumable result since menu contain many more items than
a toolbar and Boulevard. The arithmetic mean of percentage for a menu is about
185 % against a toolbar. Boulevard was slighly more time consuming than a
toolbar. The mean of percentage related to user for Boulevard is 104 %. Toolbar
time : 4.5 s mean and 4.5s median, menu time: 7.8s mean and 7.3 median,
Boulevard time: 4.6s mean and 4.2 median. If we compare the median, Boulevard
beats all other interaction styles.

72

We also performed a repeated-measures one-way ANOVA to find out, if there
is statistical significance in the used interaction styles. Mauchly’s test did not
show a violation of sphericity against interaction style(W (2) = 0.77, p = 0.26).
With one-way repeated-measure ANOVA, we found a significant effect of inter-
action style on time (F (2, 22) = 63.7, p < 0.01, partial η2 = 0.97). A post-hoc
pairwise comparison, computed using the Bonferroni adjustment, revealed sig-
nificant differences between toolbar and menu (p < 0.01) interaction style, and
between Boulevard and menu (p < 0.01) interaction style.

Error rates correlate to the above evaluation. The number of aborted or
timed-out tests (previously out-filtered) in the toolbar test is 19, in the menu
test 67 and in the Boulevard test 24. The number of fails (activation of the
wrong activated commands) in the toolbar test is 450, in the menu test 709 and
in the Boulevard test 671.

10.4.2 Questionnaire Evaluation

The printable version of the questionnaire can be found in Appendix C. The
questionnaire started with two ranking questions: The participants were asked to
order the interaction styles (toolbar, menu and Boulevard) by subjective speed
(time consumption). As subjectively fastest interaction style 12 participants
ranked Boulevard, 6 toolbar and none menu. In the second place (second fastest):
11 toolbar, 6 Boulevard, 1 menu. As the slowest interaction style 17 participants
voted for menu and one for toolbar.

The second ranking-question was about the satisfaction with particular in-
teraction styles. Ten participants ranked Boulevard as the most satisfying in-
teraction style and eight toolbar. On the second place 10 participants voted for
toolbar, 8 for Boulevard. As the least satisfying interaction style was considered
menu by all 18 participants. The participants were asked to evaluate the follow-
ing on the five-point Likert scale [33], where 1 mean “I strongly disagree” and 5
mean “I strongly agree”.

1. “I understand the basic principles and behavior of Boulevard” (Mode 4).

2. “Boulevard is intuitive and predictable” (Mode 4).

3. “Boulevard is interesting” (Mode 5).

4. “I like Boulevard” (Mode 5).

5. “I would use Boulevard” (Mode 5).

We were somewhat surprised by suspiciously so good users response to Boule-
vard.

73

10.5 Test Result and Future Tests

We were very pleased by the test result. The quantitative measurement did
not showed statistically significant difference between the toolbar and the Boule-
vard interaction style. However, Boulevard is the best interaction style by the
qualitative aspect, which is also important. We have shown that adaptive user
interfaces can be well received by the users. In my opinion, there can be done
more evaluation on the already collected data, such as:

1. To reveal a dependence between the measured speed of a particular inter-
action style and the perceived speed obtained from the questionnaire.

2. Find particular user commands with the significantly higher error rates
depending on the interaction style. Some such commands are expected, like
align-related commands, since they are visually similar and their positions
are unstable in Boulevard in contrast to the toolbar or menu.

It is important to perform various other tests, particularly, test every fea-
ture of Boulevard, such as: user commands ranking (short-term vs long-term),
adaptive representation, sweeping back, the general impact of animations on the
acceptance of Boulevard by users and test many types of such animations. Also
it is important to perform long-term studies. Long-term studies are substan-
tially difficult, since such studies cannot be done on prototypes. However, such
studies are important, because users can like certain behavior during the short
test, but the same behavior can be annoying in a long-term use. Some long-term
observations can be found in Chapter 11.

74

11 Writing This Thesis With Boulevard

This work has been written on OpenOffice.org Writer with Boulevard. We
did not want to miss the opportunity to try Boulevard in real work, so we did
not use the good old-fashioned LATEX (typographic engine without GUI) at first,
but the OpenOffice.org. This decision was not a victimless since OpenOffice.org
is definitely not a good tool for writing a thesis (for example, does not support
BibTeX). On the Figure 25 is the resulting, personalized, Boulevard as it was
at the end of my work on this thesis. I did not have much time to perform a
long-term study, so here are some of my observations:

• Boulevard is better a for less experienced user who uses the word proces-
sor as a typewriter (thus uses various formatting commands), but not so
suitable for a user who uses styles, since they ensure most of functionality
automatically. However, Dostál’s observation [29] indicates that a lot of
users not use styles.

• At the beginning, Boulevard was annoying and stressful for me, however,
the reason can be that I was suspicious about it’s proper functionality,
which cold be caused by the fact that I am the author of implementation.

Figure 25: Resulting personalized Boulevard

However, the current version of my thesis is obviously not written in OpenOf-
fice Writer. I have rewritten my almost-complete thesis to LATEX, since I was very
unsatisfied by OpenOffice.org.

75

12 What Have I Done and How?

Because of the wide aim of this work and due to a close cooperation with my
thesis “leader” — supervisor, Martin Dostál, it is important to specify my role.

• Expert system design — This was the second version of the Boulevard
expert system, I have done the first one in my Bsc. thesis. We wanted the
second implementation to be almost perfect, so many rules are consulted
with Martin Dostál.

• OpenOffice.org Interceptor — We assume Interceptor as critical part of
any AUI and there is no such logger as Interceptor, which combines macro
recorder approach and user interface events approach. The implementation
was not easy and it contains some unconventional solutions, which is why
the implementation took much more time than we expected. Sometimes
we got into a dead end, so we both cooperated and studied OpenOffice
API [11] to solve the problems. Here also lies the part of Dostál’s work.

• JAVA implementation of Boulevard — This implementation was relatively
easy since we learned how to interact with OpenOffice when working on
Interceptor.

• Testing facility — The software used to perform test was designed by me.

• Benchmark test design and evaluation — The test design was done by me
(of course, with some consultations), which is probably the reason why it is
far away from perfect, but it helped us to better understanding of usability
testing in practice.

During the work on Boulevard we also tried to publish some Boulevard-related
papers. I am a co-author of the following papers: [30], [31] and [32].

76

Conclusions
The main objective of this thesis was to implement the Boulevard in the OpenOf-
fice.org Writer and perform a usability study. We have presented the details of
the Boulevard implementation and also of the by-product: the OpenOffice.org
Interceptor — a hybrid approach logger.

The preliminary usability study of Boulevard fall out well, since Boulevard is
comparable to toolbars by quantitative measurement (no statistically significant
difference found). However, Boulevard was rated as better interaction style than
toolbar by most of test participants (described in detail in Chapter 10.5).

The OpenOffice.org Interceptor — a hybrid approach logger, which originated as
a by-product of Boulevard, turn out as an interesting and quite unique logger.
The logger combines a user interface events logging approach and macro-recording
logging approach at the level of underlying function calls. The combination of
both the logging approaches makes possible to log the performed user commands
with parameters and interaction style.

Future development of the Boulevard is challenging. It should be focused mainly
on usability tests and more appropriate visual layer implementation (described
in Chapter 9.6).

It would be great to implement Boulevard as an integral part of operation system.
Such Boulevard would support various applications. Another possible direction
in the development of Boulevard is a Boulevard for people with disabilities, which
adapts to their particular disability. It could be interesting to implement a work-
flow analysis feature into Boulevard, which can automate often-performed tasks.
A combination with a recommender system would be helpful as well.

The recommender system in Boulevard could be based on collaborative filtering
— central collecting and processing of a lot of data from a high number of users.
Such approach has two phases: finding usage patterns in collected data and then
offer such found patterns to users.

Other future work should be aimed at developing loggers. Improvement of the
Interceptor, and developing another Interceptor-like logger for other software,
such as Microsoft Word 2003 and 2007. Such loggers can make the Boulevard
implementation into other software than OpenOffice.org possible in the first place.
However, also testing and measuring user’s behavior on other platforms would
be very useful, like comparison between WIMP-based Microsoft Word 2003 and
Ribbon-based Microsoft Word 2007.

And, of course, continue in developing Boulevard, implementing all known miss-
ing features, such as adaptable features and delivering the public available version
of the Boulevard. But most important is to test and verify all the already imple-
mented Boulevard core behavior, such as adaptive representation, ranks (recency
vs frequency) and sweeping back.

77

Závěr

Hlavńım úkolem této diplomové práce bylo implementovat Boulevard do tex-
tového editoru OpenOffice.org Writer a provést testy jeho použitelnosti. Podrobně
jsme ukázali detaily implementace Boulevardu a loggeru OpenOffice.org Intercep-
tor — vedleǰśıho produktu Boulevardu.

Prvotńı studie použitelnosti Boulevardu dopadla dobře, jelikož dle kvantita-
tivńıho měřeńı je Boulevard porovnatelný s toolbarem (nebyl nalezen statisticky
významný rozd́ıl). A nav́ıc, Boulevard byl většinou účastńık̊u testu označen jako
lepš́ı interakčńı styl než toolbar (v́ıce v kapitole 10.5).

OpenOffice.org Interceptor — hybridńı logger, který vznikl jako vedleǰśı produkt
Boulevardu, se ukázal jako jedinečný. Interceptor kombinuje dva zp̊usoby logo-
vańı: zachycováńı událost́ı v uživatelském rozhrańı a zachycováńı uživatelských
akćı pomoćı makrorekordéru na úrovni voláńı obslužných funkćı. Kombinace
těchto dvou př́ıstup̊u umožňuje logovat ne jen uživatelské akce a jejich parametry,
ale také interakčńı styl.

Daľśı vývoj Boulevardu by měl pokračovat, a to zejména uživatelské testy a re-
implementace vizualizačńı vrstvy Boulevardu (v́ıce v kapitole 9.6).

Je mnoho daľśıch směr̊u, kterými Boulevard lze rozv́ıjet, např́ıklad Boulevard jako
součást operačńıho systému, adaptivńı rozhrańı pro lidi s postižeńım, analýza
work-flow a následná automatizace často prováděných úkon̊u.

V Boulevardu by se mohl také uplatnit takzvaný recommender system, který by
mohl být nav́ıc založený na technologii collaborative filtering — centrálńı sběr a
zpracováńı velkého možstv́ı dat od velkého množstv́ı uživatel̊u. Tento př́ıstup má
dvě fáze: nalezeńı uživatelských vzor̊u v datech a poté nab́ızeńı nalezených vzor̊u
daľśım uživatel̊um.

Daľśı práce by se mohly zaměřit na implementaci logger̊u do jiných platforem než
OpenOffice.org. Takový logger by mohl umožnit implementaci Boulevardu pro
jiné aplikace a také umožnit provádět některé uživatelské testy, jako např́ıklad
srovnáńı Microsoft office 2007 (Ribbon User Interface) s Microsoft Office 2003
(WIMP).

Nicméně je třeba nejdř́ıve implementovat všechny možnosti a funkce Boulevardu
a proměnit náš prototyp v aplikaci vhodnou pro koncové uživatele. Také provést
všechny chyběj́ıćı testy př́ımo zaměřené na určité vlastnosti Boulevardu, jako
např́ıklad adaptivńı reprezentace, sweeping-back a ohodnocováńı prominence akćı
v Boulevardu.

78

References

[1] ADaptive User Interface System ADUS.
http://sid.cps.unizar.es/ANTARCTICA/ADUS/.

[2] CLIPS Java Native Interface.
http://clipsrules.sourceforge.net/CLIPSJNIBeta.html.

[3] CLIPS User’s Guide.
http://clipsrules.sourceforge.net/documentation/v630/ug.pdf.

[4] Java. http://www.java.com.

[5] LimeSurvey. http://www.limesurvey.org/.

[6] The Lisa project. http://lisa.sourceforge.net/.

[7] LISP Works CAPI. http://www.lispworks.com/products/capi.html.

[8] List of similar meta-languages for device-independent user interfaces.
http://www.usixml.org/index.phpmod=pages&id=58.

[9] OpenOffice NetBeans Integration.
http://wiki.services.openoffice.org/wiki/OpenOffice NetBeans Integration.

[10] OpenOffice.org Accesibility API. http://ui.openoffice.org/accessibility/unoapi.html.

[11] The OpenOffice.org API Project. http://api.openoffice.org/.

[12] OpenOffice.org Press Kit. http://marketing.openoffice.org/press kit.html.

[13] The R Project for Statistical Computing. http://www.r-project.org/.

[14] SUPPLE: Automatic Generation of Personalizable User Interfaces.
http://www.cs.washington.edu/ai/supple/.

[15] What is SWING?
http://download.oracle.com/javase/tutorial/ui/overview/intro.html.

[16] Developing an Adaptive User Interface in Eclipse. the Eclipse Technology
eXchange Workshop at European Conference on Object Oriented Program-
ming, 2006.

[17] Jason Alexander and Andy Cockburn. Appmonitor: a tool for recording user
actions in unmodified windows applications. Behavior Research Methods,
40(2):413–421, May 2008.

79

[18] J. Brooke. SUS: a” quick and dirty” usability scale. Usability evaluation in
industry, pages 189–194, 1996.

[19] C.S. Carr. Network subsystem for time sharing hosts. RFC 15, September
1969.

[20] Jakub Černek. Adaptivńı uživatelská rozhrańı. Bsc thesis, 2008.

[21] Olivier Chapuis and Nicolas Roussel. Metisse is not a 3d desktop! In
Proceedings of the 18th annual ACM symposium on User interface software
and technology, UIST ’05, pages 13–22, New York, NY, USA, 2005. ACM.

[22] Alain Colmerauer and Philippe Roussel. History of programming
languages—ii. chapter The birth of Prolog, pages 331–367. ACM, New York,
NY, USA, 1996.

[23] Richard. Conniff. What’s behind a smile?, 2007.

[24] J. A. Cote-Munoz. Aida: An adaptive system for interactive drafting and cad
applications. In M. Schneider-Hufschmidt, T. Kühme, and U. Malinowski,
editors, Adaptive User Interfaces: Principles and Practice, pages 225–240.
North-Holland, Amsterdam, 1993.

[25] Martin Dostál. Interceptor homepage.
http://dostal.inf.upol.cz/oo-interceptor.html.

[26] Martin Dostál. Základy tvorby uživatelského rozhrańı.
http://dostal.inf.upol.cz/data/0910/URO/uro-18-12-2010.pdf.

[27] Martin Dostál. User acceptance of the microsoft ribbon user interface. In
Proceedings of the 9th WSEAS international conference on Data networks,
communications, computers, DNCOCO’10, pages 143–149, Stevens Point,
Wisconsin, USA, 2010. World Scientific and Engineering Academy and So-
ciety (WSEAS).

[28] Martin Dostál. An analysis of usage patterns in utilization of interaction
styles. In In Proceedings of the Human-Computer Interaction International
Conference, CCIS. Springer, 2011.

[29] Martin Dostál. On the differences in usage of word processing applications.
In In Proceedings of the Human-Computer Interaction International Confer-
ence, CCIS. Springer, 2011.

[30] Martin Dostál and Zdenek Eichler. Fine-grained adaptive user interface for
personalization of a word processor user interface: Principles and a prelimi-
nary study. In In Proceedings of the Human-Computer Interaction Interna-
tional Conference, CCIS. Springer, 2011.

80

[31] Martin Dostál and Zdenek Eichler. A hybrid approach to user activity in-
strumentation in software applications. In In Proceedings of the Human-
Computer Interaction International Conference, CCIS. Springer, 2011.

[32] Martin Dostál and Zdenek Eichler. A research framework for performing
user studies and rapid prototyping of intelligent user interfaces under the
openoffice.org suite. In Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. ACM, 2011.

[33] Diane R. Edmondson. Likert scales: A history. In CHARM - the Conference
on Historical Analysis and Research in Marketing, volume 12, page 127,
2005.

[34] Zdenek Eichler. Adaptivńı uživatelská rozhrańı. Bsc thesis, 2008.

[35] Leah Findlater and Joanna McGrenere. A comparison of static, adaptive,
and adaptable menus. In Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’04, pages 89–96, New York, NY, USA,
2004. ACM.

[36] Charles Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17–37, 1982.

[37] François. Fournier. Recommender Systems:Technical Report and Liter-
ature Review. http://knol.google.com/k/françois-fournier/recommender-
systems/2eyelehhior52/1.

[38] Krzysztof Z. Gajos, Katherine Everitt, Desney S. Tan, Mary Czerwinski, and
Daniel S. Weld. Predictability and accuracy in adaptive user interfaces. In
Proceeding of the twenty-sixth annual SIGCHI conference on Human factors
in computing systems, CHI ’08, pages 1271–1274, New York, NY, USA, 2008.
ACM.

[39] Leah Kaufman and Brad Weed. Too much of a good thing?: identifying and
resolving bloat in the user interface. SIGCHI Bull., 30:46–47, October 1998.

[40] Kukreja, Urmila, Stevenson, E. William, Ritter, and E. Frank. Rui: Record-
ing user input from interfaces under windows and mac os x. Behavior Re-
search Methods, 38(4):656–659, November 2006.

[41] Frank Linton, Deborah Joy, Hans-Peter Schaefer, and Andrew Charron. Owl:
A recommender system for organization-wide learning. Educational Technol-
ogy & Society, 3(1), 2000.

[42] Wendy E. Mackay. Triggers and barriers to customizing software. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems:

81

Reaching through technology, CHI ’91, pages 153–160, New York, NY, USA,
1991. ACM.

[43] Joanna McGrenere, Ronald M. Baecker, and Kellogg S. Booth. An evaluation
of a multiple interface design solution for bloated software. In Proceedings of
the SIGCHI conference on Human factors in computing systems: Changing
our world, changing ourselves, CHI ’02, pages 164–170, New York, NY, USA,
2002. ACM.

[44] Joanna McGrenere and Gale Moore. Are we all in the same bloat? In
Graphics Interface’00, pages 187–196, 2000.

[45] Reinhard Oppermann, editor. Adaptive user support: ergonomic design of
manually and automatically adaptable software. L. Erlbaum Associates Inc.,
Hillsdale, NJ, USA, 1994.

[46] Stanley R. Page, Todd J. Johnsgard, Uhl Albert, and C. Dennis Allen. User
customization of a word processor. In Proceedings of the SIGCHI conference
on Human factors in computing systems: common ground, CHI ’96, pages
340–346, New York, NY, USA, 1996. ACM.

[47] M.B Rosson. The effects of experience on learning, using, and evaluating a
text-editor. Unpublished manuscript, 1983.

[48] Andrew Sears and Ben Shneiderman. Split menus: effectively using selection
frequency to organize menus. ACM Trans. Comput.-Hum. Interact., 1:27–51,
March 1994.

[49] David C. Smith, Frank E. Ludolph, and Charles H. Irby. The desktop
metaphor as an approach to user interface design (panel discussion). In
Proceedings of the 1985 ACM annual conference on The range of computing
: mid-80’s perspective: mid-80’s perspective, ACM ’85, pages 548–549, New
York, NY, USA, 1985. ACM. Chairman-Johnson, Jeff A.

[50] Joel Spolsky. Strategy Letter IV: Bloatware and the 80/20 Myth.
http://www.joelonsoftware.com/articles/fog0000000020.html.

[51] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel.
User interface facades: towards fully adaptable user interfaces. In Proceed-
ings of the 19th annual ACM symposium on User interface software and
technology, UIST ’06, pages 309–318, New York, NY, USA, 2006. ACM.

[52] Terry Winograd. Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. PhD thesis, MIT, 1971.

82

A Adaptive Menu Implementation in OpenOf-
fice.org

Global PopupMenuContainer As Object
Global MenuBar As String
Global MenuBarSettings As Object
Global ModuleCfgMgr As Object
Global ooi As Object
Global ooi_listener As Object

Sub RegisterLogHandler
InsertMenu("Favorites")
ooi = createUnoService(_
"org.openoffice.oointerceptor.XOOInterceptor")

ooi_listener = createUnoListener("ooi_", _
"org.openoffice.oointerceptor.XOOInterceptorListener")

ooi.addOOInterceptorListener(ooi_listener)
End Sub

Sub ooi_listen(action, initiated, executed, time,_
user, application, parameters)

For i = 0 to PopupMenuContainer.getCount() - 1
item = PopupMenuContainer.getByIndex(i)
If item(0).Value = ".uno:" + action Then
PopupMenuContainer.removeByIndex(i)
Exit For

End If
Next i
MenuItem = CreateMenuItem(".uno:" + action, action)
PopupMenuContainer.insertByIndex(0, MenuItem)
ModuleCfgMgr.replaceSettings(MenuBar, MenuBarSettings)
DisplayTextStatusBar("Action: " & action & _
", initiated: " & initiated & ", executed: " & _
executed & ", time: " & time & ", user: " & _
user & ", application:" & application & _
", parameters: " & parameters)

End Sub

Function InsertMenu(MenuName as string)
MenuBar = "private:resource/menubar/menubar"
ModuleCfgMgrSupplier = createUnoService(_
"com.sun.star.ui.ModuleUIConfigurationManagerSupplier")

83

ModuleCfgMgr = ModuleCfgMgrSupplier.getUIConfigurationManager(_
"com.sun.star.text.TextDocument")
MenuBarSettings = ModuleCfgMgr.getSettings(MenuBar, true)
PopupMenu = CreatePopupMenu("vnd.openoffice.org:FavoritesMenu",_
MenuName, MenuBarSettings)

PopupMenuContainer = PopupMenu(3).Value
MenuBarSettings.insertByIndex(0, PopupMenu)
ModuleCfgMgr.replaceSettings(MenuBar, MenuBarSettings)

End Function

Function CreatePopupMenu(Command, Label, Factory) as Variant
Dim PopupMenu(3) as new com.sun.star.beans.PropertyValue
PopupMenu(0).Name = "CommandURL"
PopupMenu(0).Value = CommandId
PopupMenu(1).Name = "Label"
PopupMenu(1).Value = Label
PopupMenu(2).Name = "Type"
PopupMenu(2).Value = 0
PopupMenu(3).Name = "ItemDescriptorContainer"
PopupMenu(3).Value = Factory.createInstanceWithContext(_
GetDefaultContext())

CreatePopupMenu = PopupMenu()
End Function

Function CreateMenuItem(Command as String, Label as String) as Variant
Dim MenuItem(2) as new com.sun.star.beans.PropertyValue
MenuItem(0).Name = "CommandURL"
MenuItem(0).Value = Command
MenuItem(1).Name = "Label"
MenuItem(1).Value = Label
MenuItem(2).Name = "Type"
MenuItem(2).Value = 0
CreateMenuItem = MenuItem()

End Function

Function DisplayTextStatusBar(DisplayedText as String)
oFrame = ThisComponent.getCurrentController().getFrame()
oBar = oFrame.createStatusIndicator()
oBar.start(DisplayedText, 100)
wait 3000
oBar.end()

End Function

84

B Starting Document in the Usability Test

��������	
�

��������	
��������	�
����
�����	��
�

�������	��������
����������������
�
����	����
�	������
��	��
���

��	��������
	���
���������
�	��
��
�����
�
�����
��
�����
����

�����
����	�����
��������	
��
�
����� �

�����
�
��
���������
	�����		����
��
�����	
��
�
���
��

�
��

���	��������
�	������
�����	���

�	��
 �

���	��
�

�������������

��

��
�
����
��
��������
�����������������	
����������
����
�
	���	���

��
���
	����
�����
�
�����	������	�
����������
�	����	
�	������������
���
���
���������
�
���	
�����	
����

����	���
���������
��
�������
	����
���
	��������
�	�
��������	��
�
��������
	���������
��������
���
	 �

��

�	�
��	
��
����
�
�
����	��	
�	�
����
��
�
��
��	
��
��
��	
��
��� ������������	���
�
	���
������
	��
�� �

!�
�������������
�����������
��
����	�������
�
�"
	
���������
��
���������	����
��������	�	��
����
�	 �

��
���
	���������������
���	
	����������	
��������	�
����
�����	��
�

�������	��������
�������������

���
�����
���
������������������	������

�����
�����������

����� ���	� �	
��
��

��
� ������
�	�
� ��������

���
	
��	
��
� �
�
	

����������	
��	����
����	����������
�
�
�����������������
��
������������������������
���������������	��	�� �

�����	��������������
������������������
�
��������������
����������
�������������
����	�������
��
 �

�������������
���������
��	����������
�������������	��	���	
������
��������������	��	�
������������� �

������������
����
���	
���
���
����
�����
�������	����	�����������������������������
�������� �

�������	��	����������
���������
�����������������
���
��������������������������	���
������������	
�	� �

���	���
�����������	��	��
���������
��	
�	����
������	�����	��	�����
��������������	���	�����
�
�
 �

���
��������������
���
���
����
������
������������	����������
���
��
��	���������	������	���������� �

��
����
���

�������	� �	
��
�� ����	�

�

�
� �����	
�
�����	

�
������ ������

� �

�
�

��	
��
�
�����
�	����
��������
��	
��
��	���������
	����

���	����
��	�
���
	���	
�����
�	������
�

�
�	
	������
�	���������
����������
��	��
���	���#�������
��������
�	�
��	�����
���������
�	�
���
�

���������
�����	
�	��
���������������		����	�������������	���

�	���
����
�����
��������
����

�������
�	 �

���
�	�����
�
�����
��
�	�����
��������
��
�	�����������
����
�	����
���������
�	�
���
��

�
��

����
���
�����������������
��
�����	���������

���
�	�
���
	����
��	���

�
���
��

�
�����

	��

 ���
������
��	������������	
�	��$
	����
�������
�
�����	�����������������������
���#���
����
�

������������
���

�
����
�������
�����	������	���	
�����
�����
���
���
	���������
���
��
���������
�

��

	�

����������������	��

�
��

���	
�� ��
��	��� �������

85

C Questionnaire

Tento dotazńık slouž́ı jako doplněk k 1. testu Boulevardu.
Dobrý den,
na závěr Vás prośım o vyplněńı tohoto dotazńıku.

Osobńı informace o testerovi
1 [name]Uved’te prośım jméno a př́ıjmeńı.
Prośım napǐste svou odpověd’ zde:

2 [age]Uved’te prośım Váš věk. *
Prośım napǐste svou odpověd’ zde:

3 [sex]Uved’te prośım Vaše pohlav́ı. *
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
Muž
Žena

4 [education]Uved’te Vaše nejvyšš́ı dosažené vzděláńı.
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
Základńı
Středoškolské
Vysokoškolské

5 [work]Uved’te obor Vašeho zaměstnáńı.
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
Administrativa
Odborná práce
Student
Lékař
Právńık
Obchod
Řemeslo
Uměńı
Vzděláváńı, nebo věda a výzkum
Jiné

6 [comp-years] Kolik let pracujete s poč́ıtačem?
Prośım napǐste svou odpověd’ zde:

7 [word-years]Kolik let pracujete s textovými editory?
Prośım napǐste svou odpověd’ zde:

86

8 [comp-skills] Ohodnot’te Vaši celkovou znalost poč́ıtač̊u.
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
1
2
3
4
5
1=ńızká,5=vysoká

Boulevard
Část dotazńıku týkaj́ıćı se Boulevardu - testovaného software
9 [boul-rank-phases]Seřad’te toolbar, menu a Boulevard subjektivně podle
rychlosti použit́ı. *
Prośım oč́ıslujte každé okénko podle preferenćı od 1 do 3

Toolbar

Menu

Boulevard

10[boul-rank-phases-sat]Seřad’te toolbar, menu a Boulevard podle toho,
jak Vám jednotlivé zp̊usoby vyhovovaly.
Prośım oč́ıslujte každé okénko podle preferenćı od 1 do 3

Toolbar

Menu

Boulevard

11 [boul-text] V této části dotazńıku prośım ohodnot’te následuj́ıćı tvrzeńı,
a to takto:
1=naprosto nesouhlaśım, 2=nesouhlaśım, 3=nev́ım, 4=souhlaśım, 5=naprosto
souhlaśım
12 [boul-understand]Pochopil jsem základńı principy (chováńı) Boulevardu. *
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
1
2
3
4

87

5
1=naprosto nesouhlaśım, 2=nesouhlaśım, 3=nev́ım, 4=souhlaśım, 5=naprosto
souhlaśım

13 [boul-intuitive]Boulevard je intuitivńı a předv́ıdatelný. *
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
1
2
3
4
5
1=naprosto nesouhlaśım, 2=nesouhlaśım, 3=nev́ım, 4=souhlaśım, 5=naprosto
souhlaśım

14 [boul-interest]Boulevard mě zaujal. *
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
1
2
3
4
5
1=naprosto nesouhlaśım, 2=nesouhlaśım, 3=nev́ım, 4=souhlaśım, 5=naprosto
souhlaśım

15 [boul-like]Boulevard se mi ĺıb́ı. *
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
1
2
3
4
5
1=naprosto nesouhlaśım, 2=nesouhlaśım, 3=nev́ım, 4=souhlaśım, 5=naprosto
souhlaśım

16 [boul-use]Boulevard bych použ́ıval.*
Prośım zvolte pouze jednu z následuj́ıćıch možnost́ı:
1
2
3
4
5
1=naprosto nesouhlaśım, 2=nesouhlaśım, 3=nev́ım, 4=souhlaśım, 5=naprosto
souhlaśım

88

17 [boul-comment]Budeme rádi, pokud nám naṕı̌sete co se Vám na testu
či Boulevardu ĺıbilo nebo neĺıbilo.
Prośım napǐste svou odpověd’ zde:

Odeslat Váš pr̊uzkum.
Děkujeme Vám za vyplněńı tohoto pr̊uzkumu.

89

D Content of the Appended DVD

The appended DVD is organized as follows:

bin/
Installable Boulevard.oxt, Boulevard-test.oxt and Interceptor.oxt
extension files.

doc/
This thesis in PDF and LATEX (with all sources).

src/
Complete sources of the Interceptor and Boulevard.

install/
Installation file of the OpenOffice.org 3.2.1 for Windows

videos/
Some videos with Boulevard or Interceptor.

tests/
Collected data in the usability test (the logged data —
concatenated-file.csv, anonymized data from the questionnaires
— Questionnaire.csv), the test-design XML file (test.xml), R source
code for data evaluation.

90

