

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Bachelor Thesis

Encryption Algorithms

Babisha Shrestha

© 2021 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
abs. v. š. Babisha Shrestha

Systems Engineering and InformaƟcs
InformaƟcs

Thesis Ɵtle

EncrypƟon algorithms

ObjecƟves of thesis
The thesis focuses on importance of encrypƟon in informaƟon security to protect data. The main goal of
the thesis is to describe commonly used encrypƟon algorithms and scenarios when these algorithms are
used in data security. The supporƟng goal is to implement a prototype applicaƟon which will demonstrate
pracƟcal use case of selected encrypƟon algorithm.

Methodology

Methodology of this thesis is based on analysis and study of various informaƟon sources, with special
emphasis on cryptography and encrypƟon algorithms. Based on synthesis of gained knowledge a prototype
applicaƟon for demonstraƟng the properƟes and typical use case of selected algorithm will be developed
using common soŌware development methods.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
40-50 pages

Keywords
30-50 pages

Recommended informaƟon sources
LOSHIN, Peter. Simple steps to data encrypƟon: a pracƟcal guide to secure compuƟng. Amsterdam:

Elsevier Science, 2013. ISBN 978-0-12-411483-8.
PAAR, Christof a Jan PELZL. Understanding cryptography: a textbook for students and pracƟƟoners. New

York: Springer, 2010. ISBN 978-3-642-04100-6.
SALOMON, D. Data privacy and security: EncrypƟon and InformaƟon Hiding. New York: Springer, 2003.

ISBN 03-870-0311-8.

Expected date of thesis defence
2019/20 WS – FEM (February 2020)

The Bachelor Thesis Supervisor
Ing. Petr Hanzlík, Ph.D.

Supervising department
Department of InformaƟon Engineering

Electronic approval: 25. 11. 2019

Ing. MarƟn Pelikán, Ph.D.
Head of department

Electronic approval: 25. 11. 2019

Ing. MarƟn Pelikán, Ph.D.
Dean

Prague on 14. 03. 2021

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Encryption Algorithms"

by myself and I have used only the sources mentioned at the end of the thesis. As the author

of the bachelor thesis, I declare that the thesis does not break copyrights of any their person.

In Prague on 15.03.2021 ___________________________

Acknowledgement

I would like to thank Ing. Petr Hanzlík, Ph.D. for his advice and support during my

work on this thesis.

Encryption Algorithms

Abstract

The thesis describes the importance of cryptography to protect data, history of cryptology,

cryptoanalysis, goals of cryptography, symmetric and asymmetric encryption algorithms.

The focus of the thesis is on the AES and the RSA encryption algorithms, explaining how

they work in more detail.

Based on the literature review, a prototype application is developed using a hybrid

encryption and decryption method that combines both AES and RSA algorithms together to

compensate for their own weaknesses and achieve better security.

The design of the prototype application is illustrated using data flow diagrams and code

snippets, which describe the main stages of program creation. The security that the

developed prototype application provides is then discussed mainly in relation to the main

goals of cryptography.

Keywords:

Cryptology, Cryptoanalysis, Cryptography, Encryption algorithm, Hybrid encryption

algorithm, Symmetric algorithm, Asymmetric algorithm, AES, RSA, Public key, Private

key.

Šifrovací algoritmy

Abstrakt

Práce popisuje význam kryptografie pro ochranu dat, historii kryptologie, kryptoanalýzu,

cíle kryptografie, symetrické a asymetrické šifrovací algoritmy. Práce se zaměřuje na

šifrovací algoritmy AES a RSA a podrobněji vysvětlují jejich fungování.

Na základě literární rešerše byla vyvinuta prototypová aplikace využívající hybridní metodu

šifrování a dešifrování, která kombinuje algoritmy AES a RSA tak, aby kompenzovala jejich

vlastní slabiny a dosáhla vyšší bezpečnosti.

Návrh prototypové aplikace je ilustrován pomocí diagramů datových toků a fragmentů kódu,

které popisují hlavní fáze tvorby programu. Zabezpečení, které poskytuje vyvinutá

prototypová aplikace, je diskutováno zejména ve vztahu k hlavním cílům kryptografie.

Klíčová slova: Kryptologie, kryptoanalýza, kryptografie, šifrovací algoritmus, hybridní

šifrovací algoritmus, symetrický algoritmus, asymetrický algoritmus, AES, RSA, veřejný

klíč, soukromý klíč.

Table of content

1 Introduction .. 10

2 Objectives and Methodology ... 11

2.1 Objectives ... 11

2.2 Methodology .. 11

3 Literature Review ... 12

3.1 Overview of Cryptology ... 12

3.2 Cryptanalysis .. 12

3.3 Cryptography .. 14

3.3.1 Modern cryptography .. 16

3.3.2 Goals of modern cryptography ... 17

3.4 Symmetric Algorithm ... 17

3.4.1 DES (Data Encyption Standard) ... 20

3.4.2 Triple DES .. 21

3.4.3 AES (Advanced Encryption Standard) ... 22

3.5 Asymmetric Algorithm... 36

3.5.1 RSA Algorithm (Ronald Rivest, Adi Shamir, Leonard Adleman) 37

3.5.2 RSA Encryption .. 38

3.5.3 RSA Decryption .. 38

3.5.4 Strength and weakness of RSA ... 39

3.6 Hybrid Algorithm ... 39

4 Practical Part .. 41

4.1 Programming language... 41

4.2 Design ... 41

4.2.1 Data Flow Diagram level 1 ... 43

4.2.2 Requesting to generate RSA keys ... 44

4.2.3 Generating and exporting of RSA keys .. 45

4.2.4 Encryption processes... 47

4.2.5 Decryption processes .. 50

4.3 Application ... 51

4.3.1 User interface .. 51

4.3.2 Receiver section .. 52

4.3.3 Sender section ... 53

4.3.4 Email section ... 54

5 Results and Discussion ... 55

Conclusion.. 56

6 References ... 57

List of pictures

Figure 1.Classification of Cryptology (author) .. 12

Figure 2. Classification of Cryptography (author) ... 16

Figure 3. Symmetric Algorithm (Paar and Pelzl, 2010) .. 18

Figure 4. Input/output parameters (Paar and Pelzl, 2010) ... 24

Figure 5. Stages in AES (author) ... 25

Figure 6. AES key Expansion (author) .. 26

Figure 7. General overview of AES encryption (author) ... 28

Figure 8. Single round generalization (author) .. 29

Figure 9. Substitution bytes (author) ... 29

Figure 10. S-box (Federal Information Processing Standards Publication 197 Announcing

the ADVANCED ENCRYPTION STANDARD (AES), 2001) ... 30

Figure 11. Shift rows (author) .. 31

Figure 12. Mix columns(author) .. 31

Figure 13. Add round key in inner loop (author) ... 32

Figure 14. Decryption process (source) ... 33

Figure 15. Inv s-box(Federal Information Processing Standards Publication 197

Announcing the ADVANCED ENCRYPTION STANDARD (AES), 2001) 34

Figure 16. Inverse shift rows transformation (author) ... 35

Figure 17. inv mix columns (author) ... 35

Figure 18. Basic protocol of Asymmetric Algorithm(Paar and Pelzl, 2010) 36

Figure 19. Steps to generate RSA keys, inspired by (Paar and Pelzl, 2010) 38

Figure 20. Level 1 DFD (author) ... 43

Figure 21. Sending and receiving request by email (author) ... 44

Figure 22. Connecting to SMTP server and sending email (author) 44

Figure 23. Generating, exporting RSA keys and sending the public key by email(author) 45

Figure 24. Creation of RSA keys, inspired by (Walkthrough: Creating a Cryptographic

Application | Microsoft Docs, no date) .. 46

Figure 25. Encryption stage (author) ... 47

Figure 26. AES key generation and encryption, inspired by (Walkthrough: Creating a

Cryptographic Application | Microsoft Docs, no date).. 48

Figure 27. Encryption (Walkthrough: Creating a Cryptographic Application | Microsoft

Docs, no date) .. 49

Figure 28. Decryption (author) .. 50

Figure 29. User Interface of the developed application (author) ... 51

Figure 30. Receiver section of the User Interface (author) ... 52

Figure 31. Sender section of the User Interface (author) ... 53

Figure 32. Email section of the User Interface (author) .. 54

List of tables

Table 1. Difference between block cipher and stream cipher .. 19

Table 2. Status of TDEA (Barker and Roginsky, 2019) .. 22

Table 3. Combination of keys, blocks and rounds (authors work), inspired by (Federal

Information Processing Standards Publication 197 Announcing the ADVANCED

ENCRYPTION STANDARD (AES), 2001) ... 25

Table 4. Process to calculate g (author) ... 27

List of abbreviations

DES - Data Encryption Standard

3DES/3DEA- Triple Data Encryption Standard / Triple Data Encryption Algorithm

AES - Advanced Encryption Standard

ECB - Electronic Code Book

CBC - Cipher Block Chaining

CFB -Cipher Feedback

OFB- Output Feedback

XOR- Exclusive OR Operation

Nb-Block Length

Nk- Key Length

Nr- Number of Rounds

W0- First column

NSA- National Security Agency

NIST- National Institute of Standards and Technology

S-Box- Substitution box

RSA- Rivest-Shamir-Adelman algorithm

Kpub,kpri - Public key, Private key

Gcd- Greatest common divisor

SSL/TLS-Secure Socket Layer/Trasport Layer Security

HTTPS- HypterText Transfer Protocol Secure

1 Introduction

Computer technology is growing faster in today's world and has become essential to our

daily lives. People are using computers in their personal and professional lives. Computer

technology is widely used in business, personal work, administrative work, business

strategy, client personal data, banking transactions, etc. Before the time of computer

technology, people used to store information on paper. The sensitive data was securely stored

through physical protection using security doors, fences, security officers, surveillance

cameras, and vaults. When you lock the door, an intruder may still break in, but they will

need more effort to break the lock. Nowadays the same happens in the digital technology

world. Intruders can effortlessly get access to the data if it remains available without any

protection. Cryptography is like the lock on the door of the digital technology. With the

encryption algorithms, intruders can't read the information even when they have access to it,

if they don't know the encryption key. People feel more secure when they lock the door with

the key rather than leaving it open.

For many years, cryptography was mainly used for government and military purposes.

Cryptography was used to transfer secret information during wars. Later, with the

development of digital technology, computer cryptography became widely used not only for

government or military purposes but also for commercial and personal purposes.

People started using cryptography on the Internet, for example, SSL (Secure Socket

Layer/TLS (Trasport Layer Security) is used to provide a secure connection between the

client and the webserver. SSL/TLS connection is indicated by a padlock icon or HTTPS is

displayed in the web address area in your browser instead of HTTP. Moreover, cryptography

is used in wireless local area networks like WPA/WPA2 PSK, mobile telecommunications

like GSM, payment transactions, video broadcasting like Pay-TV, identity cards, for

example, Belgian eID card, in TOR to provide anonymous communication on the Internet,

in digital currency like bitcoin, etc.(Keith, 2017)

The use of personal computers, laptops, smartphones, and tablets is increasing day by day.

Many of us possess multiple devices to do our day-to-day activities, and the personal data

we store and transfer every day has also increased. This leads to high risk of security concern.

Encryption algorithms provide security on data when it is stored or transferred.

2 Objectives and Methodology

2.1 Objectives

The thesis focuses on importance of encryption in information security to protect data.

The main goal of the thesis is to describe commonly used encryption algorithms and

scenarios when these algorithms are used in data security. The supporting goal is to

implement a prototype application which will demonstrate practical use case of

selected encryption algorithm.

2.2 Methodology

Methodology of this thesis is based on analysis and study of various information

sources, with special emphasis on cryptography and encryption algorithms. Based on

synthesis of gained knowledge a prototype application for demonstrating the

properties and typical use case of selected algorithm will be developed using common

software development methods.

3 Literature Review

3.1 Overview of Cryptology

Figure 1.Classification of Cryptology (author)

Cryptology is the art and science of secret writing and breaking ciphers. It is divided into

two branches(Paar and Pelzl, 2010):

1. Cryptography – the science of writing ciphers.

2. Cryptoanalysis - the science of breaking cryptosystems.

3.2 Cryptanalysis

Cryptoanalysis is the process of breaking a cryptosystem. It is a technique to decrypt the

ciphertext without having access to the key used to encrypt the plaintext. It is a crucial part

of the modern cryptosystem which helps to understand and create more secure algorithms.

The basic theory of cryptoanalysis was expressed by Auguste Kerchoffs, in the 19th century,

which is also known as Kerchoff's principle. It assumed that all of the details of the

cryptosystem along with its algorithms and their implementation are known to the

antagonist, and therefore, the security of the cryptosystem should be built on secret

keys.(Delfs and Knebl, 2007)

There have been many cryptography attacks over the years on the cryptographic algorithms.

Attacks can be classified as passive attacks, where attackers only observe the communication

Cryptology

cyptography cyptoanalysis

channels, threatening data confidentiality, and active attacks, where attackers try to delete,

insert, or alter the transmission on the channels, affecting data confidentiality, authentication

and integrity. Cryptanalytic attacks depend on the types of algorithms and characteristics of

the plaintext. (Menezes, Oorschot and Vanstone, 1996)

There are many possible attack approaches, which are described below(Menezes, Oorschot

and Vanstone, 1996):

1. Known Plaintext Analysis.

The attackers know some combination of plaintext and ciphertext that was already

used and based on this knowledge they try to analyse the encryption key to decrypt

the messages.

2. Chosen Plaintext Analysis.

Chosen plaintext analysis assures that the attackers can take the random plaintext to

be encrypted and obtain the corresponding ciphertext and try to get the key. This

attack can expose the secret information after calculating the secret key.

3. Ciphertext Only Analysis.

The attackers try to get the decryption key and plaintext by only observing the

ciphertext. The encryption algorithms that fail to resist this attack are considered to

be totally insecure.

4. Chosen ciphertext attack.

Attackers select the ciphertext and obtain the corresponding plaintext. To establish

such an attack the intruder needs to get access to the tools used for decryption, but

the main motive behind such attack is to later obtain the plaintext from a different

ciphertext, when no longer having the access to the tools of decryption.

5. An Adaptive Chosen Plaintext Analysis.

It is a Chosen Plaintext Analysis where the choice of the plaintext depends on the

obtained ciphertext from the earlier requests.

6. An Adaptive Chosen-ciphertext attack.

It is a Chosen Ciphertext Attack where the choice of the ciphertext depended on the

plaintext obtained from the earlier requests.

3.3 Cryptography

The art of protecting information from readable format to unreadable format is called

cryptography. In other words, it is a process of hiding confidential information from third

parties so that they cannot get access to it. It is widely used in commercial sectors like

banking, e-commerce, and many more.

In the ancient period, people used cryptography to write secret messages. The word

cryptography came from the Greek words ‘Krypto’, means ‘hidden’, and ‘graphene’, means

‘writing’. Many people believe cryptography was born along with the art of writing. With

the evolution of civilization, human beings created groups, tribes, kingdoms. This started the

idea of power, battles, and politics. Because of that, there was a need to communicate in a

secret way which helped to the development of cryptography over the times. Non-standard

hieroglyphics were used by Egyptian scribes around 4000 years ago which was the first

evidence of the use of cryptography. They communicated by messages written in

hieroglyphs, and only scribes were aware of the secret key, who used to transfer the messages

on behalf of their kings.(Cryptography - Quick Guide - Tutorialspoint, no date)

The earlier Roman cryptography system was known as the Caesar cipher, it is a

monoalphabetic cipher with the idea of writing the letter by shifting the letter by the accepted

number and then shifting the letter back by the same number to decode the message. This

encryption method was simple to crack by comparing the beginning of the alphabet to each

subsequent letter. Another way to break it was using the frequency analysis method. This

method uses the idea that some letters in the English alphabet are repeated more often than

others. Thus, a person could go through the message and look for repeated letters and try to

replace them with often used letters. (A Brief History of Cryptography - Inquiries Journal,

no date)

In the sixteenth century Vigenere constructed a cipher, which was probably the first cipher

that used an encryption key. This cipher used multiple Ceaser chipers based on a key, and

this cipher used each letter of the key to decide which Ceaser cipher shift to use. When all

of the letters of the key had been used the cycle began again from the first letter of the

key.Vigenere cipher was secure for 300 year until Kasiski and Kerchoff discovered methods

to break it. These methods were based on key and language repietitiveness. With the

developenment of computer technology this cipher became even easier to crack and is not

secure for today’s standards.(Wilson and Garcia, 2006)

The first electromechanical cipher machine, called Mark I, was invented in 1915 by Edward

Hebron. Two electric typewriters were connected by 26 cables that were used for

monoalphabetic letter substitution. At first, the machine used only one rotor that scrambled

typed letters, but later he redesigned it to use up to five rotors. The rotors rotate one or more

positions as you give input and produce different substitutions of letters. Edward Hebron set

up the first cipher machine company in the U.S. mainly targetting U.S. Army and Navy

markets. In 1923 an encrypted message on this machine was broken by Herbert Yardley,

who worked as a cryptographic clerk for the cryptologic bureau of the Navy. A year later

Edwards company went bankrupt. Hebron made few attempts to restore his business but it

was shut down for good after cancelation of his contract with the Navy in 1934.(Dooley,

2018)

In 1918 the Enigma machine was invented by the German engineer Arthur Scherbius. Its

modified version was accepted by the German Navy in 1926 and two years later the it was

accepted by the German Army. The machine was widely used by the Germans during World

War II. It was an electromechanical cipher machine capable of both encryption and

decryption. During its use by the Germans the number of the rotors the machine used has

changed a few times. Originally, the machine only used three rotors in fixed positions, later

the number of the rotors increased to five, where three rotors could be placed in any position,

and by the end of the war the machine placed four rotors at a time. The Enigma had a

weakness because it prevented letters from encrypting to themselves. In 1932 and 1933

Polish cryptanalysts made a breakthrough that enabled them to decrypt some of the messages

of the German Army version of Enigma. It was the first analytical breach of the Enigma. In

1938 and 1939 Germans modified it and made the Polish solution unworkable.Later, Alan

Turing played a crucial role in making another breakthrough in decrypting the code of an

enigma machine.(Dooley, 2018)

3.3.1 Modern cryptography

Modern cryptography depends on various theories such as number theroy, computational-

complexity, concepts of probability theories. It is the foundation of computer and

communication security. The security of modern cryptography relies on publicly known

algorithms. Therefore, even if someone knows the algorithms, they can not decrypt a

particular message without having access to a secret key. (Cryptography - Quick Guide -

Tutorialspoint, no date)

Modern cryptography is divided into two main parts, the symmetrical algorithm, where the

sender and the receiver use the only key to encrypt and decrypt the data, for example, DES,

AES, 3DES and the asymmetrical algorithm, where the sender uses the public key to encrypt

the data, while the receiver uses the private key to decrypt data, for example, RSA, DH,

DSA. Moreover, the symmetric algorithm is split into the block cipher and stream cipher

which are shown in the Figure 2 below.

Figure 2. Classification of Cryptography (author)

Cryptography

Symmetric

Block cipher Stream cipher

Asymmetric

RSA

DSA

DH

DES
AES

3DES

Twofish

SEAL

RC4

3.3.2 Goals of modern cryptography

The essential goals of modern cryptography system are (Keith, 2017):

• Confidentiality: It is a common aspect of information security. It provides

confidentiality using encryption methods and prevents the third person to view and

obtain the data. It allows authorized users to access sensitive and protected data. An

unauthorized person could get access to the data sent over the internet, hence, various

encryption algorithms have been implemented, so that even if the intruder got access

to the data, he/she would not be able to read it without the private key.

• Integrity: It makes sure the data has not been modified during transit, retrieval, or in

storage by unauthorised way. The failure of integrity can lead to someone modifying

data in-store or in transit. It provides the method to detect if data has been modified

in an unauthorized way. For example, hash function.

• Authentication: Data authentication helps receivers to know if data is sent from the

actual users. It is mentioned as message authentication sometimes, since its primary

purpose is to authenticate the data and not who we are communicating with at the

time we get the data.

• Non-repudiation: It prevents sender from denying participation in all the or part of

the communication. Non-repudiation ensures that the sender cannot deny the fact

that he/she sent the data. Cryptography can ensure non-repudiation using a digital

signature, digital certificate, and public key infrastructure.

3.4 Symmetric Algorithm

The symmetric algorithm is also known as a secret key algorithm. It uses only one key to

encrypt and decrypt the data. The sender uses the key to encrypt the data, and the receiver

uses the same key to decrypt the data. The symmetric algorithm is very secure and fast.

When it comes to encrypting and decrypting big data, the symmetric algorithm is more

suitable. Some of the widely used examples of symmetric algorithms are DES, 3DES, AES,

Twofish, Serpent.

Figure 3. Symmetric Algorithm (Paar and Pelzl, 2010)

According to the Figure above, we have Alice, Bob, and Oscar. If Alice wants to

communicate with Bob using insecure channels, Oscar might get access to the data.

Therefore, Alice and Bob need to communicate securely through the channels. The

symmetric algorithm is one of the solutions to this problem. Using the key k, Alice can

encrypt the plaintext denoted by x to ciphertext denoted by y, and then Bob can decrypt the

ciphertext y to get the plaintext x using the same key. Both encryption and decryption

algorithms are generally publicly known. Therefore, if Oscar got to know the secret key,

then he could easily get access to the data. If the algorithm was keept secret, then such

encryption system would be harder to break, but with the untested algorithm, it would be

difficult to find out whether the algorithm is secure or not. To test it, we need to make the

algorithm public for cryptoanalysis from different cryptographers.(Paar and Pelzl, 2010)

The symmetric algorithm is divided into two categories, which are block cipher and stream

cipher. The difference between a block cipher and a stream cipher is described in Table 1

below.

Table 1. Difference between block cipher and stream cipher

Block Cipher Stream Cipher

• It encrypts and decrypts one block

of plaintext at a time.

• It encrypts or decrypts one bit of

plaintext at a time.

• Block ciphers use confusion

(encryption operation where the

relation between key and

ciphertext is hidden) like

substitution in both AES and

DES. Diffusion (one plaintext is

spread over many ciphertexts for

the purpose of hiding statistical

properties of plaintext) for

instance in DES uses bit

permutation and AES uses more

Advanced Mix column(Paar and

Pelzl, 2010)

• Stream cipher only uses confusion.

• Block Ciphers are versatile (not

only used for encryption also

used for MACs and hash

functions)

• It is compatible, which means it

is used in many applications.

• It is adaptive and is implemented

in a different modes of operations

to obtain different

properties.(Keith, 2017)

• no error distribution: It encrypts the

data 1 bit at a time, therefore, error on

1-bit transformation effect only 1 bit

of plaintext. It is famous for the

protection of mobile communications.

• Less versatile: it is normally used for

only encryption.(Keith, 2017)

• Block cipher is slower than

stream cipher.

• Stream cipher is fast to operate, which

makes it more suitable for real time

encryption of data. For example,

Mobile Telecommunication.

• Most of the block ciphers have a

block size of 64 bits like DES,

TDES or 128 bits like AES.

• 8 bits at a time is converted into

stream cipher.

• It uses Electronic Code Book

(ECB), Cipher Block Chaining

(CBC) algorithm modes.

• It uses algorithm modes like Cipher

Feedback (CFB), Output Feedback

(OFB)

• Block ciphers are more popular in

most domains such as internet

security.

• Stream cipher requires fewer

resources for implementation. The

cell phone is a relevant environment

for a stream cipher.

• DES, AES, TDES, TwoFish • RC4, Vernam One Time Pad, A5/1,

3.4.1 DES (Data Encyption Standard)

A small radical change happened in cryptography in 1972. There was a request for a proposal

for a standardized encryption algorithm in the USA by NBS (National Bureau of Standards)

also known as the National Institute of Standards and Technology (NIST) nowadays. The

concept of standardized encryption was to find a secure and single algorithm that could be

used in differrent commercial applications, such as banking. In 1974, NBS received a

candidate from IBM who could fulfil the requirement. IBM had proposed an algorithm that

was based on the Lucifer algorithm, which was earlier developed by Horst Feistel and was

the first example of a block cipher on digital data. Lucifer encrypted blocks of 64 bits of data

using a 128 bits key.

The proposed algorithm was designed to survive different cryptanalysis, which was

unknown to the public until 1990. To investigate the security of a submitted encryption

algorithm, NBA requested help from NSA (National Security Agency). It was unclear

whether IBM had gained knowledge about cryptanalysis themselves or they were influenced

by the NSA that convinced IBM to reduce the key length from 128 bits to 56 bits, which

showed weaker encryption to brute force attack. The NSA contribution worried some people

that a mystery secret entrance, i.e., a numerical property with which DES could be broken

was known to NSA. There was a major complaint on the decrease of the key estimate. Some

people evaluated that NSA would be able to look through the key of 2^56 and break it,

utilizing brute force attack, but these stresses turned out to be aimless.

Despite all the feedback and worries, in 1977, the NBS has published a modified version of

IMB encryption as a Data Encryption Standard to the public. The cipher was executed at the

bit level. In the standard, the substitution boxes were never officially released. In the 1980s,

the rapid growth of the use of personal computers made all the specifications of DES to be

freely accessible and it became easier to analyze its internal structure. By that time, many

researchers had done various researches and went through DES security but they did not find

any severe weaknesses in the algorithm. It was the most used encryption algorithm until the

year 1999, and finally, AES replaced it.

DES is a symmetric algorithm that uses one secret key to encrypt and decrypt the data. It is

a block cipher with 64 bits of plaintext, and the size of the key is 56 bits. It has iterative

algorithm encryption of 16 rounds, which all perform a similar operation but different

subkeys are used in every round. It uses Feistel’s cipher. It can be a strong cipher if it is

designed carefully. Feistel’s cipher for encryption and decryption uses a similar operation.

Talking about security, the DES key size was not large enough, and therefore, was vulnerable

against brute force attacks. Also, because the substitution boxes were never released, only

the designers of the algorithm would know if there existed an analytical attack that could

exploit the mathematical properties of the substitution boxes. Despite the serious

cryptanalysis of DES, there were not very successful attacks over the lifespan of DES.

Nonetheless, with exhaustive key-search attacks the DES can be easily broken, therefore,

for most applications DES is not appropriate anymore.(Paar and Pelzl, 2010)

3.4.2 Triple DES

Triple DES, also known as TDEA (Triple Data Encryption algorithm), was developed to

overcome the weaknesses of DES without re-designing the whole cryptosystem. It was

widely used in the different financial sectors, biometric and payment systems. It uses the

three DES keys of 56 bits in size, which are k1, k2, k3, and all three keys are referred to as

a bundle. Triple DES is a symmetric key block cipher that implements the triplicate DES

cipher by encrypting the first key k1, decrypting the second key k2, and encrypting the third

key k3. Decryption of the Triple DES consists of the reverse process, first it uses k3 to

decrypt the data, then k2 to encrypt the data, and k1 to decrypt the data.(Keith, 2017)

NIST first began to devalue 64-bit 3DES when it showed serious security vulnerabilities

against the cryptoanalytic attacks made by Karthikeyan Bhargavan and Gaëtan Leurent,

proving great vulnerabilities for protocols like TLS, IPsec, and HTTPS. It was also known

that when 2^32 blocks were encrypted with the single key bundle, the ciphertext collision

would likely occur. These security flaws in the implementation of the TDEA influenced the

necessity for the 128-bit block cipher. As a result NIST planned to reduce the maximum

amount of plaintext allowed to encrypt under a single 3DEA key bundle from 2^32 to 2^20

blocks and urged all TDEA users to move to AES as soon as possible. (Update to Current

Use and Deprecation of TDEA | CSRC, no date)

TDEA comes with two variations: 2 key TDEA and 3 key TDEA. 3 key TDEA is stronger

than 2 key TDEA. The latest version already disallows the use of 2 key TDEA for

cryptography protection. NIST has restricted the 3 key TDEA to apply no more than 2^20

blocks using a single key bundle. NIST has released the draft proposal of encryption 3DES

deprecated through December 31, 2023, using the approved encryption modes.(Barker and

Roginsky, 2019)

Algorithms Status

Two key 3DES encryption Disallowed (algorithm and

key are no longer accept)

Two key 3DES decryption Legacy use (algorithm and

key can use only to process

alreadyprotected information)

Three key 3DES encryption Deprecated(alorithm and key

may use but user has to take

some security risk) through

2023

Disallowed after 2023

Three key 3DES decrytion Legacy use

Table 2. Status of TDEA (Barker and Roginsky, 2019)

3.4.3 AES (Advanced Encryption Standard)

It is mostly used for symmetric encryption nowadays. The term “Standard” refers to US

government applications. AES is used in many commercial standards. For instance, Internet

Security standard IPsec, TLS, WiFi encryption standard 802.11i, Shell Network protocol

(SSH) Secure Shell.

In 1997 NIST requested a proposal with requirements to block cipher, 128 bits of block size,

key lengths must support 128, 192, 256 bits, and the algorithm must be efficient with

software and hardware. In 1998, there were 15 candidates submitted different algorithms

from different countries. NIST announced five finalists among them after the selection

process of algorithms in the year 1999. They were Mars, by IBM

cooperation, RC6 by RSA laboratories, Rijndael, by Joan Daemen and Vincent

Rijmen, Serpent, by Ross Anderson, Eli Biham and Lars Knudsen, and Twofish,

by Bruce Schneier, John Kelsey, Dough Whiting, David Wagner, Chris Hall, and Niels

Ferguson.

Eventually, in 2000 NIST announced that they had chosen Rijendael as AES, and it was

accepted by the US federal standard and published as a final standard (FIPS PUB 197) in

2001. In 2003, The US National Security Agency (NSA) announced that it allows AES to

encrypt classified documents up to the level secret for all key lengths and up to the top-secret

for the key of either 192 or 256 bits.(Paar and Pelzl, 2010)

Outline of AES

The design of the AES is referred to as a substitution-permutation network that means it

relies on a series of connections or operations like replacing input with specific output,

shifting bits around. AES does all the computations on bytes. The AES encryption is

dependent on series of lookup tables and XOR operations, which are very fast to perform on

a computer.(Keith, 2017)

Encryption is the process that converts plaintext into ciphertext, and decryption is an inverse

of encryption where we convert cipher to plaintext. AES is a symmetric algorithm. It is a

widely used block cipher which encrypts 128 bits of data at a time. It treats 16 bytes as a 4

by 4 matrix. Data that are longer than 128 bits are broken into blocks of 128 bits. If the data

are not divisible by the block length, then the padding will be added. AES encryption is a

process of encrypting the plaintext using a secret key and getting the ciphertext, and AES

decryption is a process of using the same secret key to decrypt the ciphertext into original

plaintext.

State

It is a two-dimensional array of bytes having four rows and Nb (number of columns, or

number of 32-bit words). State is the output from the XOR operations between plaintext and

key.

Input and output

In AES, input and output consist of sequences of 128 bits which are also called blocks. AES

standard only calls for a block size of 128 bits which is represented by Nb=4, where Nb is a

number of 32-bit words or a number of columns in the state.

Figure 4. Input/output parameters (Paar and Pelzl, 2010)

Key length

The length of the cipher key in AES is 128, 192, or 256 bits. The length of the key is

represented by Nk = 4, 6, 8, where Nk is the number of 32 bits words in the cipher key. The

size of the key determines how many rounds are to be performed. If Nk=4 then Nr=10, if

Nk=6 then Nr=12, Nk=8 then Nr=14, where Nr is the number of rounds. (Federal

Information Processing Standards Publication 197 Announcing the ADVANCED

ENCRYPTION STANDARD (AES), 2001)

Table 3. Combination of keys, blocks and rounds (authors work), inspired by (Federal Information

Processing Standards Publication 197 Announcing the ADVANCED ENCRYPTION STANDARD (AES),

2001)

Figure 5 indicates different stages during the AES encryption process. Firstly, we have keys

and the key expansion process, which will be discussed below. Key expansion and Add

Round key are the initial steps in AES. After that, a series of rounds are performed, which

is also known as transformation. The number of rounds depends on the size of the key. There

will be four transformation processes in each round, which are Sub Bytes, Shift Rows, Mix

Columns, and Add Round Key, but there won't be Mix Columns transformation in the

final round.

Figure 5. Stages in AES (author)

No of bits in key Key length (in words) Nk Key rounds Nr Block length

(in words) Nb

128 4 10 4

192 6 12 4

256 8 14 4

AES Key Expansion

We have one original key, and each round performs modification of a key, which is called

Key Expansion. It switches the key in such a way that it is different for each round.

 Figure 6. AES key Expansion (author)

Let us consider we have the key in the form of matrix 4*4. The first column is called a word

(1 word = 4 bytes), represented by W0, the second column is represented by W1, the third

is represented by W2, and the fourth is represented by W3, respectively. For 128 bits size of

the key, the number of rounds performed is 10. Using W0, W1, W2, W3, which is subkey

0 (original key), we can generate W4, W5, W6, W7, which is subkey1, and so on. We follow

the procedure below to expand the key.

Firstly, to get W4, we can transfer W3 to g, which represents the complex function, and

XOR it with W0. Once we obtain W4, we can XOR it with W1 to get W5, and so on.

W4 = W0 XOR g(W3)

W5= W1 XOR W4

W6= W2 XOR W4

W7= W3 XOR W5 and so on.

We calculate g using the following process.

 Table 4. Process to calculate g (author)

The rot word performs a one-byte circular shift to the left, where the subword performs a

byte substitution on each byte of its input word using s-box, and finally, we do XOR

operation with y1 and r-con (round constant), to get the result of g (w3).

AES Encryption Process

According to the Figure 7, the plain text is divided into a block of 128 bits, and there are 128

bits of subkey 0, which is also the original key. We XORed plaintext with subkey 0, and this

operation is called Add Round Key. The result state array is then sent to the round 1, which

is also called the transformation process. There are different processes within the rounds:

Sub bytes, Shift Rows, Mix Columns, and Add Round Key.

The Key Expansion process uses the subkey 0 to generate subkey 1, and subkey 2 is then

generated from subkey 1, and so on.

The output of the initial step moves to round 1 and performs all the operations and uses

subkey 1 for the Add Round Key, which is transferred to round 2, and then round 2 performs

similar methods and uses subkey2 for Add Round Key and so on. There will be ten rounds

for 128 bits of the size of the key, the process will repeat ten times, and finally, we get the

output as a ciphertext.

W3 Rot

word(x1)

Sub word (y1) y1 XOR

rcon=g(W3)

b13 b14 b’14 g(B13)

b14 b15 b’15 g(B14)

b15 b16 b’16 g(B15)

b16 b13 b’13 g(B16)

Figure 7 demonstrates the process for encryption of 128 bits block of plaintext using the 128

bits of the key. The rounds vary, depending on the size of the key.

Figure 7. General overview of AES encryption (author)

Figure 8 shows what happens in single rounds. The same process repeats for each round,

except the final round, where will not be a Mix column.

Figure 8. Single round generalization (author)

Add round key (at the initial step)

Suppose we have a plain text of 128 bits, we represent it as 4*4 matrix of 16 bytes, and then

XOR it with the subkey0 that is also represented in a form of 4*4 matrix. The output matrix

is called the state array and it is sent to round 1. Add Round key will then be performed at

the end of all next rounds.

Substitute bytes (Sub bytes)

It is a non-linear substitution, operating each byte independently. S-box is invertible. Each

byte of the state is replaced with another byte depending on the key. Figure 10 shows the

Rijndael s-box that consists of 256 bytes arranged in 16*16 matrix.

Figure 9. Substitution bytes (author)

Let us suppose we have A0=(C7) hex, which we consider as (x, y), where x represents rows

and y represents the columns.

B0= (C6) hex

If A5= 28 then, B5=34

A14=F7 then, B14=68, etc.

We substitute using the substitution box down below.

Figure 10. S-box (Federal Information Processing Standards Publication 197 Announcing the ADVANCED

ENCRYPTION STANDARD (AES), 2001)

Shift Rows

This method is also called permutation, which is a shift in a byte. AES permutation is done

at the byte level. The rules of shift row in encryption are described below:

• Shifting to the left

• The number of the shift depending on the number on the rows of the state

• Row0 = no shifts

• R1 = 1, byte cyclic shift to the left

• R2 =2, byte cyclic shifts to the left

• R3 =3, byte cyclic shifts to the left

Figure 11. Shift rows (author)

Mix Columns

Mix Columns is the third crucial step in transformation. The columns of the state are

considered to be polynomials over finite field GF(2^8), and multiplied modulo x^4+1 with

a fixed polynomials C(x)=03x^3+01x^2+01x+02.(Daemen and Rijmen, 1999)

Mix Column operates on each column individually. Each byte is mapped into a new

value that is a function of all four bytes in that column. Take each word/column that is 4

bytes or 4 by 1 matrix and multiply with a constant matrix. You will get a new state matrix.

It is a central diffusion process in AES.

Figure 12. Mix columns(author)

Add Round key (in the inner loop of the rounds)

Add Round Key that occurs within the rounds is the last process of each round. The process

is the same as at the initial step. 128 bits state array is XORed with a corresponding 128 bits

subkey. It proceeds one column at a time. It adds the subkey word with each state column

matrix. It is an important stage in AES. Both the key and input data are structured in a 4 by

4 matrix of bytes. The Figure 13 shows the Add Round key process of round 1, where state

array is XORed with subkey1.

Figure 13. Add round key in inner loop (author)

Decryption AES

The decryption process is like encryption but in a reverse way. We take the ciphertext and

Add Round Key, and get the state array, that state array sent to round 1, then we perform the

transformation for the decryption processes like Invsub bytes, InvShift Rows, InvMix

Columns, and Add Round Key. The encryption transformation can be inverted and

implemented in reverse order to get decryption. The inverse mix columns is not required in

the last round of decryption.

Figure 14. Decryption process (source)

Invsubbyte

AES s-box is a bijective that is one to one mapping. The inverse of the affine transformation

can be obtained by taking the multiplicative inverse in GF(2^8). It is the inverse of the byte

substitution.(Federal Information Processing Standards Publication 197 Announcing the

ADVANCED ENCRYPTION STANDARD (AES), 2001)

For example:

Ai=S-1(Bi) , Ai= c7 then Bi=31

Figure 15. Inv s-box(Federal Information Processing Standards Publication 197 Announcing the

ADVANCED ENCRYPTION STANDARD (AES), 2001)

Invshiftrows transformation

It is the inverse of shift rows transformation. The bytes of the last three rows are shifted to

the right. The number of the shifts depends on the number of the rows of the state.

• Row0= no shifts

• R1= 1 cyclical shift to the right

• R2= 2 cyclical shifts to the right

• R3= 3 cyclical shifts to the right

Figure 16. Inverse shift rows transformation (author)

Invmixcolumns

To reverse the operation of the Mix Columns, the inverse of the matrix is used. The input 4

bytes of a column of the state is multiplied by the constant inverse 4*4 matrix.

Figure 17. inv mix columns (author)

Add round key

The output from mix column is XORed with (w36-w39) 4*4 matrix and the result is sent to

the next round. The same process will repeat for 9 rounds apart from the last 10th round,

where the inverse mix columns will be excluded.

3.5 Asymmetric Algorithm

The asymmetric algorithm is a relatively new and complex method of encryption. It was

introduced by Whitfield Diffie, Martin Hellman, and Ralph Markle in 1976. The

symmetric key is very secure, fast, and widely used, but there are some drawbacks like safe

key exchange, fraud against the sender. Diffie, Hellman and Markle had a revolutionary

proposal to overcome these problems.

Figure 18 shows the basic principle of how Public-key cryptography works. We have Alice

as a sender and Bob as a receiver. At first, Bob generates public and private keys, and he

sends a public key to Alice. She then uses the public key to encrypt the plain text. Once Alice

encrypts the plaintext, she will send it back to Bob, and he will use his private key to decrypt

the message.

Figure 18. Basic protocol of Asymmetric Algorithm(Paar and Pelzl, 2010)

The Public key is available to everyone but the private key is kept secret. The sender uses

the public key to encrypt the data, while the receiver uses the private key to decrypt the data.

There are hundreds of symmetric algorithms that have been introduced, a lot of them have

been found unsecure, but there still exist many symmetric algorithms which are secure and

are used in different fields. As for asymmetric algorithms there are only three main public-

key families based on practical significance, which are:

• Integer Factorization Schemes: Based on the fact that it is difficult to factor large

integers. Example: RSA algorithm.

• Discrete Logarithm Schemes: Based on discrete logarithm problem in finite field.

Examples: DH, DSA algorithms.

• Elliptical curve schemes: The generalization of discrete logarithm algorithm.

Algorithm examples: ECDH, ECDSA.

There are also other public-key algorithms, but some of them are not secure, poorly

implemented, and not efficient.(Paar and Pelzl, 2010)

3.5.1 RSA Algorithm (Ronald Rivest, Adi Shamir, Leonard Adleman)

RSA was developed in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adleman. The

acronym RSA is made from the initial letters of their surnames Rivest, Shamir, and Adleman.

It is the most popular asymmetric algorithm. RSA is based on one-way functions that are

easy to calculate but hard to invert. In particular, it is easy to calculate the product of two

large prime numbers, but it is difficult to factor output of the product. RSA is more

appropriate for encrypting small size of data, key exchanges, and digital signatures. RSA

does not replace symmetric encryption like AES, but it rather compliments it and helps to

create a safer system. RSA is slower than symmetric encryption because of the many

calculations involved while implementing it. RSA is often used together with symmetric

encryption such as AES, where the symmetric encryption is used for the actual encryption

of large size data.

The RSA uses a public key (known to all the users in the network) and a private key (secret

key known to the only receiver) to encrypt and decrypt the message. To generate the public

and private key, the receiver generates two primes p and q, and multiplies p*q to get the

output n, then calculate Ø(n)=(p-1)(q-1). After that, the receiver selects e that is relatively

prime to Ø(n), and the pair of numbers (e, n) is the public key, which is later sent to the

sender to encrypt the message. Eventually, the receiver needs to find the inverse of e to

calculate the private key, which is denoted by d. The private key is a crucial part of the

decryption process and only the receiver should know it. (Paar and Pelzl, 2010)

Figure 19. Steps to generate RSA keys, inspired by (Paar and Pelzl, 2010)

Once we generate the key using the steps above, we can encrypt and decrypt the data with

the following mathematical formulas.

3.5.2 RSA Encryption

Once we generate the key using the steps above, the sender can encrypt the data with the

following mathematical formulas.

Given the public key Kpub = (n, e), plaintext x, and integer ring Zn={0,1,….n-1}, where x

in a bit string representation is an element in Zn and so the binary value of the plaintext must

be less than n, the RSA encryption function y is calculated as:

𝑦 = 𝑒𝑘𝑝𝑢𝑏(𝑥) = 𝑥𝑒 𝑚𝑜𝑑 𝑛

where x, y ∈ 𝑍𝑛, and e is an encryption exponent.

3.5.3 RSA Decryption

Given the private key Kpri = d and ciphertext y, and integer ring Zn={0,1,….n-1}, where y

in a bit string representation is an element in Zn and so the binary value of the ciphertext

must be less than n, the RSA decryption function x is calculated as:

𝑥 = 𝑑𝑘𝑝𝑟𝑖(𝑥) = 𝑦𝑑 𝑚𝑜𝑑 𝑛

where x, y ∈ 𝑍𝑛, and d is a decryption exponent.

3.5.4 Strength and weakness of RSA

The RSA became very popular due to the use of two keys, known as public and private keys.

Any key of the pair could be used for encryption of data, as long as the remaining unused

key would be used to decrypt it. It provides confidentiality, authenticity, integrity, and non-

reputability of data. It is crucial to use two large prime numbers to calculate modulus n, since

weak keys make RSA vulnerable to the attackers. The RSA algorithm is very effective,

because while multiplying two primes is easy, it is very difficult to factor large integers into

primes. The Federal Information Processing Standards Publication specified three choices

of length of modulus n as being secure, which are 1024 bits, 2048 bits, and 3072 bits. (Nisha

and Farik, 2017)

3.6 Hybrid Algorithm

We can encrypt the data only by using a symmetric algorithm, but we need more effort on

key management and less effort to provide a non-repudiation function. On the other hand,

the public key can provide all the necessary security, but it is very computationally intensive

and very slow compared to the symmetric key algorithm. Considering all the drawbacks, it

is best to use both algorithms together, which are called hybrid algorithms, where symmetric

and asymmetric algorithms are used together to make the system secure. (Paar and Pelzl,

2010)

There are many studies on Symmetric and Asymmetric algorithms about how they can work

better together, compensating each other’s weaknesses. Symmetric and asymmetric

algorithms have their advantages and disadvantages, and to overcome their flaws, a hybrid

encryption has been introduced, where two or more encryptions are merged for better results

and strength of security. For instance, using RSA you cannot encrypt a block of information

that is bigger than the size of its key, while AES can solve this problem, it still has an issue

with safe key exchange over an insecure channel like the Internet.(Chudiwale, Mungse and

Chaudhari, 2018)

Al-Shabi (Al-Shabi, 2019) discussed several important symmetric and asymmetric

encryption algorithms, and compared them in terms of speed and security to determine

whether or not each encryption algorithm was good. According to the research, the

comparative analysis was based on the pros and cons of symmetrical and asymmetrical

algorithms. Considering factors such as battery consumption, time consumption, block size,

round, structure, types of attack, software and hardware implementation, it was determined

that the symmetric algorithm AES performed the best in terms of speed of encryption and

decryption, structure, length of the key, and usability. While the comparison between

symmetric and asymmetric algorithms showed that symmetric algorithms were faster .(Al-

Shabi, 2019)

4 Practical Part

The practical part consists of demonstration of application of file encryption/decryption

using AES and RSA algorithms. These two algorithms complement each other and provide

better and safer solutions. This application was focused on providing the confidentiality

between sender and receiver. The application simulates interaction of Alice (sender) and Bob

(receiver) based on the literature review. It consists of the various stages and methods used.

The communication over the Internet is provided by emails using a SMTP server. The

processes of the application are described through the Data Flow Diagrams and each process

is then described. The application is then presented, and its user interface is explained.

4.1 Programming language

I have decided to develop a desktop application in the .NET framework using the high-level,

object-oriented programming language C#. The .NET framework provides all the neccessary

libraries to work with files, to implement AES and RSA algorithms, to connect to mail

servers and send emails with attachments for key exchanges and encrypted data transfer. To

build the program I have used the Visual Studio Community version, which is free for

students.

4.2 Design

The following application consists of a combination of symmetric and asymmetric

algorithms which are described as a hybrid algorithm in literature review. It uses AES to

encrypt the data and uses RSA to share the key. The application is broken down into the

following stages or event list:

• Sender logs in to email account.

• Sender sends an email to the receiver requesting him/her to generate RSA

keys.

• Receiver logs in to his/her email account and reads the sender’s request.

• Receiver creates the private and public RSA keys.

• Receiver stores the private RSA key locally and sends the RSA public key to

the sender.

• Receiver sends public key to sender by email.

• Sender logs in to email account.

• Sender acquires the RSA public key by email.

• Sender uploads the file to the program.

• Sender generates AES Key and encrypts it using the RSA public key.

• Sender encrypts the source file using AES encryption.

• Sender sends the encrypted file to receiver by email.

• Receiver logs in to his/her email account.

• Receivers acquires encrypted file from email.

• Receiver decrypts the key using the private RSA key to obtain secret AES

key and decrypts the AES encrypted file.

4.2.1 Data Flow Diagram level 1

Figure 20 shows the level 1 data flow diagram, which represents the flow of data through

the main functional areas of the information system.

Figure 20. Level 1 DFD (author)

4.2.2 Requesting to generate RSA keys

Figure 21. Sending and receiving request by email (author)

This process starts from the sender, who connects to an email server using his/her own

account and requests the receiver by email to generate RSA keys. The receiver acquires the

request sent from the sender by checking his/her own email. A built-in library of .NET

framework provides support for sending emails using SMTP servers. In C# this can be

achieved with the help of System.Net.Mail namespace. In the program I used Gmail accounts

to connect to Google’s SMTP mail server.

Figure 22. Connecting to SMTP server and sending email (author)

The Figure 22 shows how the connection is made to the smtp.gmail.com server using user’s

account details and how the mail is sent to another email account. At this stage, the program

did not send any attachments yet, only the email notification of sender’s desire to send an

encrypted file.

4.2.3 Generating and exporting of RSA keys

Figure 23. Generating, exporting RSA keys and sending the public key by email(author)

Figure 23 shows the data flow diagram of the second stage, where on the receiver’s side the

RSA keys were generated and exported to separate files, after obtaining a request from the

sender. The private RSA key then safely stayed with the receiver and the public RSA key

was sent to the sender by email, using the earlier described technique of connecting to

Google’s SMTP server. The private key will later play a crucial role in decrypting the data.

The public key is sent over the internet without fear of anyone getting an unauthorised access

to it, because even if someone acquired the public key, he/she would not be able to use it

later to decrypt the data.

To implement RSA and later AES algorithms in C#, I used System.Security.Cryptography

namespace. In my program I used the default RSA key size of 1024 bits, but the built-in

library allows to make changes to the size of the generated keys, so it is possible to make

RSA encryption even stronger.

Figure 24. Creation of RSA keys, inspired by (Walkthrough: Creating a Cryptographic Application |

Microsoft Docs, no date)

Figure 24 shows C# code for RSA key creation. The Boolean variable

PersistKeyInCsp allows or disallows the keys to be persisted to local storage. In my program

the variable is set to allow keys to be persisted, because the initial goal of the application is

to work with encrypted data through email service, which means that the receiver needs to

send the public key over the internet and needs to store the private key to local storage, since

there are no time constraints on the sender to send the encrypted data.

Using StreamWriter and a ToXmlString function of the System.Security.Cryptography

namespace, both keys were saved to separate XML files. The XML file of the public key

was then attached to an email and sent to the sender.

4.2.4 Encryption processes

Figure 25. Encryption stage (author)

Once the sender obtains an email with an attached file containing RSA public key, he/she

can start encrypting any chosen file using AES encryption algorithm. AES uses only one key

to encrypt and decrypt the data. Using the program, the sender uploads any file of his/her

desire that is then encrypted using AES encryption algorithm with the generated AES key.

The AES key itself gets encrypted with the RSA algorithm using the earlier obtained RSA

public key. The encrypted output is then sent to the receiver by email.

In the literature review it was described that such scenario where RSA compliments AES

creates a safer system. As good as AES algorithm is, it has one safety issue, that is the

problem of sending the key over the internet. If the key gets obtained by the third party, then

it can be used to successfully decrypt the data.

RSA, as mentioned before, is slower than AES, but it is good at encrypting small size of

data, so it can be used effectively in key exchanges. The size of an AES key used in my

program was 128 bits.

Figure 26. AES key generation and encryption, inspired by (Walkthrough: Creating a Cryptographic

Application | Microsoft Docs, no date)

Figure 26 shows C# code how AES key and initialization vector (IV) are generated by

CreateEncryptor() method and then the key is encrypted using RSA encryption algorithm

with the imported public RSA key from the XML file sent earlier by the receiver.

In the literature review it was explained that AES is a block cipher which encrypts 128 bits

(or 16 bytes) of data at a time. The process for encryption of 128 bit block of plaintext was

described step by step. But in real world practice and also in my own application there is a

need to encrypt the data that is bigger than 16 bytes. This poses a security problem, because

it allows repetition of patterns that may be recognized by the attacker.

If the key doesn’t change throughout encryption process then identical ciphertext blocks will

be generated from identical plaintext blocks. Therefore, it is best to avoid pattern repetition

in different ciphertexts. This is done by implementing an initialization vector (IV) that adds

randomness to encryption, making it probabilistic instead of deterministic. Use of

initialization vector helps prevent exploiting weaknesses of deterministic encryption and

increases the security of block ciphers such as DES, 3DES and AES. Initialization vector is

some randomly chosen number that is usually used only once. If IV is used only once, then

it is also called a nonce. Use of IV makes sure that encryption of the same inputs will result

in different outputs. Initialization vector can be freely transmitted between communicating

parties and doesn’t have to be kept secret. (Paar and Pelzl, 2010)

The application of IV can be demonstrated with one of the modes of operation called Cipher

Block Chaining mode(CBC). The first block of plaintext is XORed with IV and the result is

then encrypted using the key. The resulting ciphertext is then XORed with the next block of

plain text, hence, the output from the previous block is always fed into the present block.

With such approach the ciphertext of each block becomes unique even if the plaintext is the

same. Using the key and IV the process can be reversed and the ciphertext blocks can be

decrypted.

Figure 27 shows how using the CryptoStream Class it is possible to output a file that will

consist of an encrypted AES key, initialization vector IV and the encrypted source file.

Figure 27. Encryption (Walkthrough: Creating a Cryptographic Application | Microsoft Docs, no date)

To read the source file and at the same time encrypt it or decrypt it, the program used the

FileStream class combined with the CryptoStream class. The contents of a source file were

read and encrypted in specified number of bytes at a time. This approach made file

encryption more efficient, allowing the program to work with larger files. Earlier encrypted

AES key (by RSA) and the generated initialization vector were also added at the beginning

of the output file, along with their length values. As a result, the final encrypted output file

consisted of an encrypted AES key and its length value, IV and its length value, and the

encrypted source file. The encrypted output was then sent by an email to the receiver.

4.2.5 Decryption processes

Figure 28. Decryption (author)

The Figure 28 illustrates the final stage, where the receiver obtains an encrypted file

from email and decrypts it.

The encrypted bundle consisted of an RSA encrypted AES key and its length value,

IV and its length value, and AES encrypted source file. Using the FileStream class

the program read the lengths of the initialization vector and of the encrypted AES

key from the received bundle file and then extracted the key and IV. The extracted

encrypted AES key was then decrypted using previously locally stored private RSA

key.

The decryption of the source file was based on the same algorithm that encrypted it.

The program used the FileStream and the CryptoStream classes to read the contents

of an encrypted file in the same number of bytes at a time. Using the obtained AES

key and IV, the encryption was reversed, and the source file was successfully

decrypted.

4.3 Application

This section will show and describe the created desktop application for encryption and

decryption of files using AES and RSA methods from the receiver’s and the sender’s

point of view.

4.3.1 User interface

Figure 29. User Interface of the developed application (author)

In Figure 29 is shown a full user interface of the created application. The desktop

application consists of only one window form, where its content is visually separated

into sections. The right half of the window is dedicated to entering email details,

composing an email, and sending it to the recipient. On the left side of the window

there is a section called “Receiver” and a section called “Sender”. The user can assume

the role of a receiver or a sender depending on the tasks he/she needs to perform. In

the bottom left corner, the RSA Public Key is displayed when it is exported by clicking

on a button called “Export RSA Keys” in the receiver’s section or when it is imported

in the sender’s section by clicking on a button called “Import RSA Pub Key”. It is

more just a visual feature. The key can be manually copied from the bottom left corner

and sent as part of email text, but such action is not required, since the RSA public key

can be attached to email by clicking on the button called “Attachment”.

4.3.2 Receiver section

The UI section is devoted to the receiver operations.

Figure 30. Receiver section of the User Interface (author)

The receiver section consists of four buttons and four corresponding text fields that

indicate if the processes were completed by pressing the buttons. In Figure 30 is shown

an example where the button “Create RSA Keys” was pressed and the corresponding

text field was updated from “Keys are not created” to “Keys are created”, highlighted

with red colour. In this section a user can create and export RSA keys, import private

RSA key and decrypt the source file sent by the sender.

4.3.3 Sender section

The UI section is devoted to the sender operations.

Figure 31. Sender section of the User Interface (author)

The sender section consists of two buttons and two corresponding text fields that tell

if the processes were completed after the buttons have been pressed. The button

“Import RSA Pub Key” opens the file browser window and lets the user import the

public RSA key that was earlier sent by the receiver. The key is then loaded into the

program memory. The button “Encrypt file with AES” also opens the file browser

window and lets the user select a file that he/she wants to encrypt. After the file is

selected the rest of the processes are performed automatically. The AES and IV are

generated, the AES key is encrypted using RSA key and the source file is encrypted

using AES encryption. The resulting encryption package is saved in local storage as

one file.

4.3.4 Email section

The UI section is devoted to the email operations.

Figure 32. Email section of the User Interface (author)

The email section lets the user type in his own Gmail account and password, email

address of a recipient, compose an email, and add file attachment. Here the sender can

request the receiver to generate RSA keys or send him/her the encrypted data. The

receiver uses this section to send RSA public key to the sender.

5 Results and Discussion

The prototype application has been successfully tested using different types of files of

different sizes. The encryption algorithm used its own preset file extension when encrypting

the data and did not store information about the original extension of the source file, hence,

the sender needed to send this information to the receiver by email. Encryption and

decryption algorithms were tested on audio, video, image, xml, and text files. As a result,

the confidentiality of the data was assured. Even if the sender’s or receiver’s email accounts

would get compromised and a hacker would get access to the decrypted files, he/she would

not be able to decrypt them, because the private RSA key has never been transmitted over

the Internet. As to authentication, the program used client’s authentication(credentials) to

connect to Gmail SMTP server, which required a username and a password. This way the

origin of the data was assured through identification of the creator of the email, even if the

email itself was sent by the service provider, unless the account got stolen. Regrettably, an

integrity check was not implemented in the application, so there was no way to tell if the

data was modified during the transit. This security weakness could be removed by

implementing a hash function inside the program, an algorithm that would map the encrypted

data to a fixed and unique output. This way the receiver would be able compare the hash

values of the received data and tell if the data has been modified.

The program used the default settings when generating RSA and AES keys, but the built-in

library allows to make changes to the size of the generated keys, so it is possible to further

improve the encryption, making it even stronger. The user could be offered more options for

selection of key sizes. For the RSA algorithm there could be given more choices, such as

using RSA keys of 1024-bits, 2048-bits, or 3072-bits in size. AES encryption/decryption

options could include 128-bit, 192-bit, and 256-bit keys. Using bigger key sizes would make

the encryption more secure and harder to break, but it would also slow down the encryption

and decryption processes.

Conclusion

The research conducted for this thesis was focused on the commonly used symmetric

encryption algorithms such as DES, TDES, AES and an asymmetric algorithm RSA. The

special emphasis was put on the detailed explanation of the RSA and the AES algorithms.

The importance of data security has been studied through the perspective of two branches of

cryptology: cryptoanalysis and cryptography. Study of the cryptanalytic attacks and goals of

cryptography lead to a better understanding of strengths and weaknesses of the developed

prototype application concerning data security. Based on the study of various information

sources related to computer encryption, a prototype application was developed using a C#

programming language. In the practical part, the design of the prototype application was

illustrated using Data Flow Diagrams and different stages and processes of the application

were explained. The program implemented a hybrid encryption method that incorporated

both AES and RSA algorithms to encrypt and decrypt files of any given extension type and

size. The application has also provided communication over the Internet by the use of Gmail

SMTP server, which enabled transfer of encrypted data and key exchanges by emails. As a

result, the program turned out to be successful in assuring confidentiality of transmitted data

and its origin. The absence of the integrity check in the program, and the lack of the choice

given to the user regarding the key size selection left room for further improvements in the

future work.

6 References

Al-Shabi, M. A. (2019) ‘A Survey on Symmetric and Asymmetric Cryptography

Algorithms in information Security’, International Journal of Scientific and Research

Publications (IJSRP), 9(3), pp. 576–589. doi: 10.29322/ijsrp.9.03.2019.p8779.

Barker, E. and Roginsky, A. (2019) ‘Transitioning the Use of Cryptographic Algorithms

and Key Lengths’, NIST Special Publication 800-131A Revision 2, (March), pp. 17–18.

Available at: https://doi.org/10.6028/NIST.SP.800-131Ar2.

Chudiwale, G., Mungse, A. and Chaudhari, R. (2018) ‘Hybrid Encryption/Decryption

Technique Using Public and Symmetric Key Algorithm’, International Journal of

Advanced Innovative Technology In Engineering (IJAITE), 3(2), pp. 20–23.

Cryptography - Quick Guide - Tutorialspoint (no date). Available at:

https://www.tutorialspoint.com/cryptography/cryptography_quick_guide.htm (Accessed:

12 January 2021).

Daemen, J. and Rijmen, V. (1999) AES Proposal:Rijndael. doi: 10.9783/9780812294491-

001.

Delfs, H. and Knebl, H. (2007) Introduction to Cryptography principles and Applications.

2nd edn. Springer-Verlag Berlin Heidelberg.

Dooley, J. (2018) History of Cryptography and Cryptanalysis. Springer International

Publishing AG, part of Springer Nature 2018. doi: https://doi.org/10.1007/978-3-319-

90443-6_1.

Federal Information Processing Standards Publication 197 Announcing the ADVANCED

ENCRYPTION STANDARD (AES) (2001). Available at: http://csrc.nist.gov/csor/.

Keith, M. (2017) EverydayCryptography:Fundamental Principles and Applications. 2nd

edn, Oxford University Press. 2nd edn. Oxford University Press.

Menezes, A., Oorschot, P. and Vanstone, S. (1996) Applied Cryptography, CRC Press.

doi: 10.1.1.99.2838.

Paar, C. and Pelzl, J. (2010) Understanding Cryptography, Springer-Verlag Berlin

Heidelberg. doi: 10.1007/978-3-642-04101-3.

Walkthrough: Creating a Cryptographic Application | Microsoft Docs (no date). Available

at: https://docs.microsoft.com/en-us/dotnet/standard/security/walkthrough-creating-a-

cryptographic-application (Accessed: 15 March 2021).

Wilson, P. and Garcia, M. (2006) ‘A Modified Version of the Vigenère Algorithm’,

International Journal of Computer Science and Network Security (IJCSNS), 6(3), pp. 140–

143. doi: 10.1.1.385.6615.

	BP PEF, ČZU v Praze
	dde2a696ba22e0acf739ec2898c019ecdf342b884f63a37e3430820f51d70a0f.pdf
	BP PEF, ČZU v Praze

