
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

USE OF DIFFUSION MODELS IN DEEPFAKES
VYUŽITIE DIFFUSION MODELOV V OBLASTI DEEPFAKES

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DOMINIK TRÚCHLY
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ LAPŠANSKÝ,
VEDOUCÍ PRÁCE

BRNO 2024



 

Institut: Department of Intelligent Systems (DITS)
 

Student: Trúchly Dominik
 

Programme: Information Technology
 

 

Category: Security
 

Academic year: 2023/24
  

Assignment:
 

1. Learn about neural network models for creating synthetic content, such as deepfakes and the tools
that use these models.

2. Learn about the technology of diffusion models and the tools that these models use for creating or
improving the plausibility of deepfakes.

3. Identify the tools used to detect deepfakes and run at least two.
4. Design experiments that use diffusion models, such as DifFace or others, in deepfake generation

that verify the capability of detection methods to detect this synthetic media.
5. Perform the proposed experiments for each deepfakes generation tool.
6. Evaluate the potential security implications of diffusion models.

 

Literature: 
• RATHGEB, Christian, Ruben TOLOSANA, Ruben VERA-RODRIGUEZ a Christoph BUSCH, ed. 

Handbook of Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks.
Cham: Springer, 2022, 487 s. Advances in Computer Vision and Pattern Recognition. ISBN 978-
3030876630. ISSN 2191-6586.

• Koo, H., & Kim, T. E. (2023). A Comprehensive Survey on Generative Diffusion Models for
Structured Data. ArXiv. /abs/2306.04139

• Ivanovska, M., & Štruc, V. (2023). On the Vulnerability of DeepFake Detectors to Attacks Generated
by Denoising Diffusion Models. ArXiv./abs/2307.05397

• Kim, M., Liu, F., Jain, A., & Liu, X. (2023). DCFace: Synthetic Face Generation with Dual Condition
Diffusion Model. ArXiv. /abs/2304.07060

Requirements for the semestral defence: 
Items 1. to 4. of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
 

Supervisor: Lapšanský Tomáš, Ing.
 

Head of Department: Hanáček Petr, doc. Dr. Ing.
 

Beginning of work: 1.11.2023
 

Submission deadline: 9.5.2024
 

Approval date: 6.11.2023

Bachelor's Thesis Assignment
156464

Use of Diffusion Models in DeepfakesTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno



Abstract
A deepfake is a type of synthetic media created through sophisticated machine learning
algorithms, particularly deep neural networks. As an example Generative adversarial neu-
ral networks (GANs), that are capable of generating images that are almost impossible for
ordinary individuals to differentiate from genuine reality. Consequently, deepfake detec-
tion algorithms have been developed to address this growing concern. Leveraging advanced
machine learning techniques, these algorithms analyze various features within images and
videos to identify inconsistencies or anomalies indicative of manipulation. This thesis inves-
tigates the application of diffusion models, commonly utilized in digital image processing to
enhance image quality by reducing noise and blurring, in bolstering the realism of deepfakes.
By using these models, we test their effect on detecting deepfakes images using deepfake
detectors.

Abstrakt
Deepfake je typ syntetického média vytvoreného pomocou sofistikovaných algoritmov stro-
jového učenia, najmä hlbokých neurónových sietí. Ako príklad možno uviesť generatívne
adverzné neurónové siete (GAN), ktoré sú schopné generovať obrázky, ktoré sú pre bežných
jednotlivcov takmer nemožné odlíšiť od skutočnej reality. V dôsledku toho boli vyvinuté
algoritmy detekcie hlbokých falošných správ, ktoré riešia tento rastúci problém. Tieto al-
goritmy využívajú pokročilé techniky strojového učenia a analyzujú rôzne funkcie v rámci
obrázkov a videí, aby identifikovali nezrovnalosti alebo anomálie svedčiace o manipulácii.
Táto práca skúma aplikáciu difúznych modelov, bežne používaných v digitálnom spracovaní
obrazu na zvýšenie kvality obrazu znížením šumu a rozmazania, pre posilňovanie realizmu
deepfakes. Využitím týchto modelov testujeme ich efekt na odhaľovanie deepfakes obrázkov
pomocou deepfake detektorov.
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Rozšířený abstrakt
Deepfake je typ syntetického médiá, ktoré vzniká pomocou sofistikovaných algoritmov stro-
jového učenia, hlavne pomocou hlbokých neurónových sietí. Príkladom sú generatívne
adverzné neurónové siete (GAN), ktoré dokážu vytvoriť obrázky, ktoré sú pre bežných
jednotlivcov takmer nemožné odlíšiť od skutočnej reality. Týmto spôsobom sa dá využiť
táto technológia na realizáciu rôznych typov útokov v rôznych oblastiach populácie, či už
ide o online obťažovanie, politické zasahovanie a manipuláciu s verejným názorom šírením
nepravdivých informácií, alebo na vytvorenie falošných obvinení, ovplyvňovanie súdnictva
či online šikana.

Vzhľadom na túto výzvu sa vyvinuli algoritmy detekcie deepfakes, ktoré majú za úlohu
riešiť tento narastajúci problém. Tieto algoritmy využívajú pokročilé techniky strojového
učenia na analýzu rôznych vlastností obrázkov a videí s cieľom identifikovať jemné nezrov-
nalosti alebo anomálie, ktoré by mohli naznačovať manipuláciu. Medzičasom však neustále
pokroky v oblasti generácie deepfake obsahu komplikujú úlohu detekcie. Algoritmy sa mu-
sia neustále zdokonalovať, aby udržali krok s neustále sa meniacimi technikami vytvárania
deepfakes a ich stále väčšou realistickosťou.

Difúzne modely predstavujú mocný nástroj v oblasti digitálneho spracovania obrazu a
majú potenciál výrazne zlepšiť kvalitu obrázkov a videí. Tieto modely sa často využívajú
na znižovanie šumu a rozmazania v obraze, čím sa dosiahne výrazné zlepšenie jeho vizuálnej
kvality. Táto práca skúma aplikáciu difúznych modelov, bežne používaných v digitálnom
spracovaní obrazu na zvýšenie kvality obrazu znížením šumu a rozmazania, pre podporu
realizmu deepfakes. Využitím týchto modelov testujeme ich efekt na odhaľovanie deepfakes
obrázkov pomocou deepfake detektorov.

Pri výbere detektorov deepfake sme sa rozhodli pre použitie dvoch open source riešení:
detektor GAN obrázkov na architektúre ResNet50 a detektor FaceOnLive. ResNet50 je
hlboká konvolučná neurónová sieť, ktorá je široko používaná v oblasti počítačového videnia
a rozpoznávania obrazu. Je známa svojou schopnosťou efektívne rozlíšiť vzory a vlastnosti
v obrázkoch a je často využívaná na riešenie problémov s klasifikáciou a detekciou objektov.
FaceOnLive je ďalším open source detektorom, ktorý sme zahrnuli do našej analýzy. Tento
detektor sa špecializuje na identifikáciu manipulovaných tvárí a deepfake obrázkov. Jeho
ľahkosť použitia a schopnosť pracovať v reálnom čase je veľmi užitočná pri monitorovaní
obsahu na internete a sociálnych médiách. Výber týchto dvoch detektorov nám umožňuje
porovnať ich výkonnosť, presnosť a schopnosť detekovať rôzne typy deepfake obsahu, čo
nám poskytne ucelený pohľad na ich použiteľnosť a efektivitu v boji proti šíreniu manip-
ulatívnych médií. Okrem toho sme sa rozhodli do našej práce integrovať dva biometrické
systémy: Megamatcher a FaceOnLive Face Recognition. Tieto systémy sú známe svojou
schopnosťou rozpoznávať tváre a môžu prispieť k našej analýze a overovaniu autenticity
obrázkov.

V prvom experimente sme využili technológie StyleGAN2 a StyleGAN3 na generovanie
obrázkov pre našu analýzu. Tieto pokročilé generatívne modely sú široko používané v
oblasti syntetickej grafiky a majú schopnosť vytvárať pôsobivé a realistické obrázky tváre
ľudí. Po vygenerovaní obrázkov sme ich podrobili detekcii pomocou GAN image detektora a
FaceOnLive, aby sme zhodnotili ich detekčnú schopnosť. Následne sme sa rozhodli vylepšiť
vygenerované obrázky pomocou nástroja difúzneho modelu s názvom DifFace. Tento nástroj
je navrhnutý na zlepšenie kvality obrázkov a odstránenie šumu. Po aplikácii DifFace sme
znovu podrobili vylepšené obrázky detekcii, aby sme posúdili či ich kvalita a autenticita
boli zlepšené a či sa stali ťažšie odhaliteľnými detekčnými algoritmami.



V druhom experimente sme sa zamerali na overenie toho, či samotná technológia difúznych
modelov na reálnych obrázkoch nebude nesprávne identifikovaná detektormi ako deepfake.
Na tento účel sme použili súbor reálnych obrázkov z FFHQ datasetu, ktoré boli podrobené
aplikácii difúznych modelov na zlepšenie ich kvality a odstránenie nežiaducich artefaktov.
Tento experiment nám umožnil zistiť, či aplikácia difúznych modelov na reálnych obrázkoch
môže viesť k nesprávnej identifikácii týchto obrázkov ako manipulovaných a poskytol nám
lepší pohľad na ich vplyv pri výsledkoch detekcie deepfake. V tomto experimente sme ďalej
využili technológie biometrických systémov, aby sme zabezpečili, že obrázky po použití
difúznych modelov budú čo najpodobnejšie tým, čo boli pred ich aplikáciou. Tieto biomet-
rické systémy boli použité na analýzu tvárových rysov a charakteristík v obrázkoch pred a
po aplikácii difúznych modelov. Ich úlohou bolo identifikovať a zachovať základné rysy tváre
a overiť, aby transformácia obrázkov pomocou difúznych modelov nezmenila významné as-
pekty tváre, ktoré by mohli ovplyvniť ich identifikáciu a podobnosť s originálom.

V treťom experimente sme sa zamerali na testovanie samotnej generatívnej činnosti
difúznych modelov. Pomocou nástroja Arc2Face sme vytvorili niekoľko deepfakov pre
každú z našich reálnych testovacích fotiek. Po vytvorení deepfakov sme každý z týchto
vygenerovaných obrázkov podrobili analýze deepfake detekcie a následnému biometrickému
porovnávaniu s originálnou fotografiou. Týmto spôsobom sme mohli preskúmať efektívnosť
difúznych modelov pri generovaní deepfake obsahu a ich schopnosť napodobniť skutočné
tváre.

Tieto experimenty nám poskytli cenné poznatky o využití difúznych modelov v kontexte
deepfake technológií a podľa ich výsledkov sme nakoniec vyhodnotili potenciálne bezpečnos-
tné dopady difúznych modelov.
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Chapter 1

Introduction

In an age defined by rapid technological progress, the digital realm has seen the rise of a
trend blurring the lines between what’s real and what’s not, known as deepfakes. Stemming
from combining ”deep learning“ and ”fake,“ deepfakes refer to the artificial intelligence-
driven synthesis of hyper-realistic images, videos, or audio recordings that convincingly
simulate the appearance and behaviour of real individuals. As the accessibility of powerful
computational tools and sophisticated machine learning algorithms has burgeoned, so too
has the capacity for creating deceptive content with unmatched authenticity. The prolif-
eration of deepfake technology introduces countless ethical, social, and security challenges.
While it offers innovative avenues for entertainment and creative expression, it simultane-
ously poses a grave threat to the veracity of digital content and the trust we place in the
media. The potential misuse of deepfakes for malicious purposes, such as misinformation,
identity theft, and political manipulation, underscores the critical need for robust solutions
in both the generation and detection domains [26].

This bachelor’s thesis delves into the intricate landscape of deepfake technology, ex-
ploring the mechanisms behind their generation and the evolving methodologies employed
for their detection and potential usage of diffusion models technology for generating deep-
fakes. Readers will gain a comprehensive understanding of the current state and future
implications of deepfake technology and detection methods, empowering them to navigate
its ethical and societal ramifications. In addition, they will understand the potential of
diffusion models in deepfake generation and will acquire a critical perspective on the future
of media manipulation.

Chapter 2 delves into the intricacies surrounding neural networks and the essential
models utilized both in the creation and detection of deepfakes. Expanding upon this
comprehension, in Chapter 3 we describe popular deepfake attacks and open source model
StyleGAN used for creating face images. In Chapter 4, we will describe in more detail
the methods of identifying deepfake images and two specific detectors that we will test.
Next, we will describe the biometric systems we use in our experiments, which verify the
identity of the person in the picture. In Chapter 5, we will describe the technology of
diffusion models, DifFace, a tool we use for enhancing deepfake and genuine images and
Arc2Face, a tool for generating facial deepfake images from scratch. Chapter 6 contains a
comprehensive summary of our experiments including the design, execution, and results.
Chapter 7 contains a summary of the entire work and an evaluation of the potential impacts
of diffusion models for the creation of deepfakes.
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Chapter 2

Neural networks

Neural networks play a role in the realm of intelligence and machine learning. These
computational models draw inspiration from the organization and functionality of the brain.
Neural networks play a crucial role in both the creation and identification of synthetic media.

2.1 Technical information
Neurons are the building blocks of networks. They receive inputs, perform operations on
them and produce outputs. These neurons work together in layers, such as the input layer,
hidden layers (if any) and output layer. Hidden layers are intermediary layers between the
input and output layers. They perform the complex computations and transformations
necessary to learn meaningful representations of the input data. Weights act as parameters
that determine the strength of connections between neurons. These weights are adjusted dy-
namically during the learning process. When a neuron receives input from multiple sources,
it multiplies each input by a corresponding weight and then sums up these weighted inputs.
Additionally, bias is a parameter for each neuron that compensates for any offset in input
data and helps enhance the network’s adaptability. For example, it could allow the neuron
to have some inherent activation even when all input values are zero. Activation func-
tions are components that introduce non-linearity to networks. They enable the network
to identify relationships within data. Popular activation functions include Rectified Linear
Unit (ReLU) Sigmoid function and Hyperbolic Tangent (Tanh). Each of these functions
contributes to the network’s ability to capture patterns [22].

Mathematically the output of neuron can be calculated as follows:

𝑦 = activation
(︃

𝑛∑︁
𝑖=1

(𝑤𝑖 · 𝑥𝑖) + 𝑏

)︃
(2.1)

where 𝑦 represents the output of neuron, 𝑥1, 𝑥2, ..., 𝑥𝑛 represents inputs, 𝑤1, 𝑤2, ..., 𝑤𝑛

are weights and 𝑏 is bias.
Forward propagation is a step, in networks where input data is passed through the net-

work to generate an output. In each layer, the neurons perform a calculation by considering
the input values, applying an activation function and then passing the result to the next
layer.

During training, the loss function takes the stage as it measures the difference between
predicted and actual outputs. It uses optimization algorithms, such as gradient descent,
which indicates the direction of the steepest decrease of this loss function. The main goal
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Figure 2.1: Neural network layers [7].

is to tune the model’s weights and biases in order to minimize the loss. This process of
improving the model is called backpropagation. Backpropagation systematically calculates
how each model parameter affects the loss functions gradient starting from the output
layer and moving backwards through the network. This information is then used to adjust
weights and biases, gradually improving the network’s accuracy with each iteration [5].

This is the way Mirsky and Lee mathematically defined neural networks [23]. Let 𝑙(𝑖)

denote the 𝑖-th layer in the network 𝑀 , and let ||𝑙(𝑖)|| denote the number of neurons in 𝑙(𝑖).
Finally, let the total number of layers in 𝑀 be denoted as 𝐿. The weights which connect
𝑙(𝑖) to 𝑙(𝑖+1) are denoted as the ||𝑙(𝑖)||-by-||𝑙(𝑖+1)|| matrix 𝑊 (𝑖) and ||𝑙(𝑖+1)||-dimensional bias
vector b̃(𝑖). Finally, we denote the collection of all parameters 𝜃 as the tuple 𝜃 ≡ (𝑊, 𝑏),
where 𝑊 and 𝑏 are the weights of each layer, respectively. Let 𝑎(𝑖+1) denote the output
(activation) of layer 𝑙(𝑖) obtained by computing 𝑓

(︁
𝑊 (𝑖) · ã(𝑖) + b̃(𝑖)

)︁
, where 𝑓 is often the

Sigmoid or ReLU function. To execute a network on an 𝑛-dimensional input x, a process
known as forward-propagation is performed, where x is used to activate 𝑙(1) which activates
𝑙(2) and so on until the activation of 𝑙(𝐿) produces the 𝑚-dimensional output y.

2.2 Convolutional Neural Networks
Convolutional Neural Networks [28](CNNs) are designed with an architecture to effectively
capture patterns and extract intricate features from visual data. The unique design of
CNNs makes them particularly effective in computer vision tasks, such as image recognition,
object detection, and image segmentation. This network is made out of several different
layers: input layer (consists of neurons corresponding to the pixels of the input image),
convolution layer, pooling layer, fully-connected layer and output layer (produces the final
results or predictions based on the learned representations). Each type of layer performs
specific operations and plays a crucial role in the feature extraction and representation
learning process. The convolutional layer will determine the output of neurons which are
connected to local regions of the input through the calculation of the scalar product between
their weights and the region connected to the input volume. It involves a set of learnable
filters or kernels that slide across the input data. Each filter is a small field that captures
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local patterns or features, such as edges, textures or shapes. The filter’s weights are learned
during the training process, enabling the network to automatically discover relevant features
for the given task.

As the filters move across the input data they generate feature maps that highlight spe-
cific patterns. Multiple filters are typically used in a single convolutional layer, enabling the
network to learn a diverse set of features simultaneously. The depth of the output volume
corresponds to the number of filters used and each element in a feature map represents how
a specific filter is activated at a location. One of the advantages of convolutional layers is
their ability to capture translational invariance, meaning that the network can recognize
patterns regardless of their position in the input space. This characteristic is crucial for
tasks like image recognition, where the position of an object in an image should not impact
the model’s ability to classify it [28, 14].

Pooling layers, frequently realized through techniques such as max pooling or average
pooling 2.2, play a significant role in diminishing spatial dimensions. This downsizing not
only improves computational efficiency but also augments the network’s capacity to concen-
trate on critical features while discarding superfluous information. Max pooling involves
selecting the maximum value from a local neighbourhood within the input feature map,
commonly used when the network needs to focus on the most salient features and when
translation invariance is desirable (for example, image classification tasks). On the other
hand average pooling calculates the average value, providing a more smoothed represen-
tation of the features which can be suitable for tasks where exact localization is crucial
[38].

Figure 2.2: Illustration of Max Pooling and Average Pooling [38].
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Towards the end of the network, fully connected layers bring together the extracted
features and enable high-level predictions. This architecture allows CNNs 2.3 to adapt easily
for visual recognition tasks such, as image classification, object detection and segmentation.

Figure 2.3: A simple CNN architecture [28].

2.3 Generative adversarial networks
Generative Adversarial Networks (GANs) were introduced by Ian Goodfellow and colleagues
in 2014 [10]. They are renowned for their ability to generate realistic synthetic data. GANs
consist of two neural networks: a generator and a discriminator – engaged in a cooperative
and competitive learning process.

The generator creates data instances by transforming random noise into samples, ini-
tially far from authentic data. Through iterative training, it learns to produce increasingly
realistic outputs. Simultaneously the discriminator distinguishes between genuine and syn-
thetic data, continuously improving its discrimination abilities. Throughout the training
process, the model undergoes a series of fine-tuning adjustments using backpropagation and
gradient descent. The generator minimizes the probability of the discriminator correctly
classifying its samples as fake, while the discriminator maximizes accuracy in distinguishing
between real and synthetic data. This iterative process continues until a stable balance is
achieved, indicated by the high quality of generated samples and the discriminator facing
difficulties in distinguishing them from actual ones [1].

2.4 U-net
Convolutional networks are usually employed for classification tasks, but in scenarios where
localization is crucial, such as assigning a class label to individual pixels, U-Net emerges as
a powerful solution. Its unique architecture, with a focus on both feature extraction and
spatial preservation, makes U-Net especially adept at tasks demanding pixel-level classi-
fication and intricate pattern recognition. Moreover, the network’s capacity to learn and
reproduce complex patterns contributes to the generation of realistic synthetic content in
diffusion models [34, 27].

The U-Net architecture comprises a contracting path on the left and an expansive path
on the right. The contracting path follows a standard convolutional network structure,
employing repeated 3x3 convolutions, ReLU activation, and 2x2 max pooling for down-
sampling, with a doubling of feature channels at each step. The expansive path involves
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Figure 2.4: Generative Adversarial Networks architecture [1].

Figure 2.5: U-net architecture [34].

upsampling, a 2x2 convolution for channel reduction, concatenation with the cropped fea-
ture map from the contracting path, and two 3x3 convolutions with ReLU activation. A
1x1 convolution at the final layer maps each 64-component feature vector to the desired
class count. With 23 convolutional layers, the network ensures seamless tiling of the output
segmentation map, requiring careful consideration of input tile size to maintain even x- and
y-size during 2x2 max-pooling operations [34].
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Chapter 3

Deepfakes creation

The term ”deepfake“ is derived from the combination of ”deep learning“ and ”fake“ empha-
sizing the use of deep neural networks to manipulate or generate visual and audio content
that can look authentic in the human‘s eyes. This technological advancement has raised
significant concerns due to its potential for misuse and the challenges it poses to traditional
methods of content verification. At the core of deepfake technology is the utilization of deep
neural networks, specifically generative adversarial networks (GANs) and autoencoders.

3.1 Deepfake attacks
Deepfakes can be used in many different areas and among the most used attacks are different
types of deepfakes of human faces. In order to gain a better understanding of deepfakes
and the potential harm that can be caused by their abuse, we will delve into a variety of
attacks in this section. The examples below show some of the most frequently encountered
ones, but there can be many more beyond those mentioned [9, 4].

1. The spread of Misinformation and Fake News: Deepfakes have the potential to
generate convincing content that depicts political or other important figures being in places
where they have never been or doing something inappropriate. This could have an impact
on elections or public opinion by manipulating people’s perceptions. Moreover, there is a
concern that individuals could be portrayed as endorsing products, ideologies, or causes
without their knowledge or consent.

For example, just a few days leading up to a crucial election in Slovakia, which would
determine the country’s leadership, a fake audio recording began circulating online. In the
recording, one of the leading candidates appeared to brag about having manipulated the
election [6].

2. Damage to one’s reputation: Deepfakes can be employed to create fabricated
content that shows individuals engaging in criminal activities leading to harm to their
reputation. Innocent people might find themselves wrongly accused of actions they did not
commit due to manipulated content.

3. Extortion and blackmail: Perpetrators could utilize deepfake videos that portray
individuals in compromising situations as a means of extorting or blackmailing them.
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4. Unauthorized access through identity theft: Deepfakes may be utilized as a way
of bypassing voice or facial recognition systems allowing unauthorized individuals to gain
access to information.

In this article, an employee in the finance department of a multinational corporation
was deceived into transferring $25 million to scammers who employed deepfake technology
to impersonate the company’s chief financial officer during a video conference [13].

5. Exploitation and harassment: Deepfakes can be used to create explicit content
featuring individuals without their consent, contributing to online harassment.

6. Fake Profiles and catfishing: Deepfakes can contribute to the creation of fake
social media profiles with realistic face photos. This tactic is often used for catfishing,
where individuals engage in deceptive online relationships.

This article describes how Facebook and Twitter must massively delete fake profiles that
have started to appear on these platforms. They are using GAN technology to generate
fake profile pictures and make them look trustworthy [29].

3.2 StyleGAN
In this section we will describe StyleGAN, a powerful deepfake creation tool used to generate
faces from scratch. Later we will use the pictures generated by this tool in our experiments.

StyleGAN, developed by NVIDIA, serves as a tool for the creation of high-quality and
lifelike images. The StyleGAN generator architecture undergoes a significant redesign,
introducing innovative mechanisms for precise control over the image synthesis process.
It begins with a learned constant input, dynamically adjusting the image ’style’ at each
convolutional layer based on the latent code. This means it can change things like the pose,
lighting, or facial features of the generated image at each layer. Additionally, the method
incorporates noise directly into the network, contributing to the automatic and unsupervised
separation of high-level attributes (e.g., pose, identity) from stochastic variations (e.g.,
freckles, hair) in the generated images. These adjustments facilitate intuitive scale-specific
mixing and interpolation operations. Importantly, these modifications are confined to the
generator, leaving the discriminator and loss function unaltered. This approach stands
independently from current discussions on GAN loss functions. The generator embeds the
input latent code into an intermediate latent space, significantly influencing how factors of
variation are represented within the network [16].

StyleGAN21is still the most used and widespread version of StyleGAN. One notable ap-
plication is showcased in websites like ”thispersondoesnotexists.com“2. Using StyleGAN2
implementation, it generates convincing, entirely fictional faces with each page refresh.
StyleGAN2 introduces modifications to the generator architecture, including skip connec-
tions, which help in better preserving the high-frequency details in generated images. This
results in sharper and more realistic outputs. It also offers faster training times compared
to its predecessor, training up to 40% faster at 61 images per second [17].

The newest version, StyleGAN33focuses on the successful elimination of all sources of
positional references that can cause aliasing. Aliasing becomes especially apparent when

1https://github.com/NVlabs/stylegan2
2https://thispersondoesnotexist.com/
3https://github.com/NVlabs/stylegan3
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Figure 3.1: High-quality human faces generated by StyleGAN3.

rotating an image. When pixels appear fixed to particular positions within the image,
their rotation appears unnatural. By substituting the input constant in StyleGAN 2 with
Fourier features offers the added benefit of inherently defining an infinitely spatial map. This
adjustment not only enhances the outcomes but also aids in computational processes[15, 19].
Overall, StyleGAN3 is one of the most modern and high-quality deepfake generators that
is available for free.

3.3 FFHQ dataset
The FFHQ (Flickr-Faces-HQ) dataset released by NVIDIA in 2019 is a high-quality and
diverse collection of facial images designed for training and evaluating generative adversarial
networks (GANs), particularly for the generation of realistic human faces. The dataset is
curated from images available on the Flickr platform, a popular online photo-sharing service
and only images under permissive licenses were collected. It consists of 70,000 high-quality
PNG images at 1024×1024 resolution and contains considerable variation in terms of age,
ethnicity and image background. It also has good coverage of accessories such as eyeglasses,
sunglasses, hats, etc [3].

Images from this dataset were used for a pre-trained version of StyleGAN2 and Style-
GAN3 and also for the pre-trained version of DifFace (one of our tested diffusion models,
explained in chapter5). For specific segments of our experiments requiring authentic human
faces, will these pictures be selected from the FFHQ dataset4.

4https://github.com/NVlabs/ffhq-dataset
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Chapter 4

Deepfake detection

Detecting deepfakes is a part of the effort to combat the spread of manipulated multimedia
content. With advancements in deepfake technology, it’s becoming more important than
ever to have reliable detection methods in place. Different strategies and techniques have
been devised to recognize and minimize the damage caused by deepfake content. One
prevalent method for detecting deepfakes involves leveraging artificial intelligence (AI) and
machine learning algorithms. These algorithms are trained on vast datasets containing both
authentic and manipulated media to learn the subtle differences between genuine and fake
content.

In the pursuit of identifying manipulated content within images, Convolutional Neural
Networks (CNNs) emerge as a cornerstone in contemporary deepfake detection methodolo-
gies. CNNs are particularly well-suited for this task due to their inherent ability to discern
complex visual patterns and dependencies. These neural networks operate by employing
convolutional layers, allowing them to effectively capture hierarchical features within the
image data. The core of CNN-based deepfake detection lies in the training process. An ex-
tensive dataset encompassing both authentic and manipulated images is essential to enable
the model to learn the nuanced distinctions between the two. During training, the CNN re-
fines its internal parameters to recognize subtle artifacts, inconsistencies, and irregularities
that may be indicative of image manipulation. A pivotal element in fake image detection
involves scrutinizing facial features and expressions [31, 36].

Given that many deepfakes primarily target facial attributes, the CNN is configured to
focus on intricate details such as facial landmarks, skin texture, and expression dynamics.
Detecting fake images involves examining subtle errors that may occur during the genera-
tion process. Despite advancements in deepfake technology, certain common and noticeable
anomalies can serve as indicators of manipulation. Some of the most common are inconsis-
tent lighting and shadows pose, blurry edges and artifacts along the boundaries of the face,
inconsistencies in reflections (especially in the eyes, glasses, or other reflective surfaces) or
simply misalignment of facial features such as eyes, nose, mouth or eyebrows.

4.1 Face liveness detector FaceOnLive
FaceOnLive is a biometrics authentication and ID verification solution provider offering
robust security solutions with advanced facial recognition, liveness detection, and ID docu-
ment recognition technologies [8]. They offer several free and easy-to-use APIs and mobile
application. Their Face liveness tool is available on the internet where the user after reg-
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istering is able to test up to 1000 images per month for free. The API1 is very intuitive
and all you have to do is upload a picture from your computer and send it as a request.
After that, you obtain a response containing information about the face from the picture,
the result and detected liveness score in the form of JSON. The most common results are
deepfake with a score set to -600, genuine with a score from 0 up to 20 and spoof with
low negative number values. Spoof pictures are usually created with basic editing tools like
Photoshop, or editing existing images with simple modifications, whereas deepfake pictures
are generated using advanced AI algorithms to synthesize entirely new content. The only
drawback is the absolute value of -600 for all deepfake results instead of some value from
which we could get more information about the real credibility of the image. In Figure 4.1,
we can see the result of the evaluation returned by this detector in the form of JSON.

Figure 4.1: Face liveness detection for deepfake picture.

4.2 GAN image detector (ResNet50 NoDown)
ResNet50 is a convolutional neural network (CNN) architecture that was introduced by
researchers at Microsoft Research in their paper titled ”Deep Residual Learning for Image
Recognition“ in 2015. The ”50“ in ResNet50 refers to the number of layers in the network.
Specifically, ResNet50 consists of 48 convolutional layers, one max pool layer, and one av-
erage pool layer. ResNet50 was designed as part of the ResNet family of models, which
introduced the concept of residual learning to address the vanishing gradient problem in
very deep neural networks. Traditional deep networks aim to directly learn the underlying
mapping functions between input and output. As networks deepen, gradients tend to di-
minish during backpropagation, making it difficult to update parameters effectively. When
this occurs, the weights of the early layers in the network are updated very slowly or not
at all and as a result, the network fails to learn meaningful representations of the data,
leading to poor performance. To address this, ResNet introduces the concept of residual
learning. Instead of directly fitting underlying mapping functions, ResNet learns residual
functions with reference to the layer inputs. Mathematically, if 𝑥 represents the input to a

1https://rapidapi.com/organization/faceonlive-inc
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given layer, and 𝐻(𝑥) is the desired underlying mapping, ResNet aims to learn the residual
function 𝐹 (𝑥) = 𝐻(𝑥)− 𝑥 [12].

The fundamental unit of ResNet50 is the residual block. Each residual block consists of
two convolutional layers, each followed by batch normalization and ReLU activation. The
input to the block is passed through the first convolutional layer, undergoes normalization
and activation, and then enters the second convolutional layer. Importantly, ResNet50
introduces shortcut connections (or skip connections) that directly feed the input of a
block to its output. This shortcut connection allows the network to learn residuals with
respect to the identity function, facilitating gradient flow and easing the optimization of
deep networks. ResNet50 NoDown architecture does not perform down-sampling in the first
layer. This allows to retain more spatial information in the early stages of the network.
Overall accuracy for GAN generated images is always above 90% irrespective of the type
of architecture and further improves (above 97%) if training is carried out on StyleGAN2
[11, 12].

This detector can be freely tested at the University of Buffalo web site2. They also
provide a code with pre-trained models for ProGAN and StyleGAN2 (trained on 720000
fake images) available at github3. The script tests the network on the image folder and
collects the results in a CSV file with ”logit“ values. A logit value determines how certain
the detector is of its result, the higher the value from zero, the more certain it is that it is
a deepfake, and the smaller the value than 0, the more certain it considers the photo to be
genuine.

4.3 Face recogition FaceOnLive
Face Recognition API4 is by the same manufacturer as FaceOnLive Face liveness detector.
It is also available for free up to 1000 pictures. All you have to do is upload 2 images, and
after a few seconds, you get the JSON result, whether the faces match or not. In addition
you get a percentage similarity rate of uploaded pictures. If the similarity rate is above or
equals 70%, faces are evaluated as the same person.

4.4 Biometric system Megamatcher
MegaMatcher Automated Biometric Identification System [24] is a complete system for
the deployment of large-scale multi-biometric projects that is intended for biometric voter
registration with records deduplication, passport issuing, border control, as well as other
civil or criminal AFIS/ABIS.

The effectiveness of MegaMatcher face recognition heavily depends on the quality of
images during enrollment. It is essential to maintain a minimum distance of 32 pixels
between the eyes for reliable template extraction, with a recommended distance of 64 pixels
for superior results. The face recognition engine accommodates various facial postures,
allowing a head roll range of up to ±180 degrees (default ±15 degrees), head pitch within
±15 degrees (expandable to ±25 degrees), and head yaw within ±90 degrees. It is advisable
to avoid smaller yaw tolerances unless constrained by system limitations. Enrolling multiple
perspectives of the same face comprehensively covers the entire ±90 degrees yaw range [25].

2https://zinc.cse.buffalo.edu/ubmdfl/deep-o-meter/landing_page
3https://github.com/grip-unina/GANimageDetection
4https://rapidapi.com/faceonlive-inc-faceonlive-inc-default/api/face-recognition26/
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Figure 4.2: Faces uploading at Face recognition API.

The application is available online 5 where after registration and activation can be
launched a free trial for one month. To confirm a person’s identity, the person has to be
enrolled with his biometric data and photos. After that, in the Identify window, you can
add pictures of faces you want to compare with, and in a few seconds of evaluation, you get
the results of whether the faces match or not. In the result, there is also a score, but even
when comparing the same photo of a person, it is almost a random value from 0 to 200,
and according to the information from developers, we could not find out what exactly the
score means, so we will not take it into account. They also provide a downloadable demo
application for easier testing of entire directories.

Figure 4.3: Megamatcher ABIS user interface.

5https://www.megamatcher.online/
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Chapter 5

Diffusion models

Diffusion models belong to a category of denoising generative models designed to generate
an image from random noise by progressively removing noise over time. They serve as
generative models, tasked with generating data resembling their training data, but unlike
traditional generative models that directly model the data distribution, diffusion models
approach the problem by considering a sequence of transformations applied to a simple
initial distribution. This sequence of transformations, known as the diffusion process, grad-
ually transforms the initial distribution into the desired target distribution. They operate
by introducing Gaussian noise incrementally to the training data, subsequently learning
to reverse this process. Notably, Diffusion Models offer advantages such as eliminating
the need for adversarial training and addressing documented challenges associated with
it. Furthermore, they exhibit scalability and parallelizability, enhancing training efficiency
[27].

Diffusion models involve a forward process where controlled Gaussian noise is progres-
sively added to an input image. The noise is added at each time step t, according to the
equation:

𝑞(𝑥𝑡|𝑥𝑡−1) := 𝒩 (𝑥𝑡; (1− 𝛽𝑡)𝑥𝑡−1, 𝛽𝑡𝐼) , ∀𝑡 ∈ {1, . . . , 𝑇} (5.1)

Here, 𝑥𝑡 represents the image at time step 𝑡, 𝛽𝑡 is a variance schedule controlling the
amount of noise added at each step, and 𝐼 is the identity matrix with the same dimension
as the input data 𝑥0 [21].

In the reverse process, a model aims to predict the initial noise from the corrupted
image. The loss function ℒ quantifies the discrepancy between the predicted noise and the
initial noise:

ℒ = E𝑡,𝑋0,𝜖

[︁⃦⃦
𝜖𝜃
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√
1− 𝛼𝑡𝜖⏟  ⏞  

𝑋𝑡

, 𝑡
)︀
− 𝜖
⃦⃦2
2

]︁
(5.2)

Here, 𝜖𝜃(𝑋𝑡, 𝑡) represents the model used for predicting the noise, 𝜖 is the initial noise,
and 𝛼𝑡 := 1 − 𝛽 is a scheduling scalar controlling the balance between the original image
and the added noise. [18, 21].

The only requirement for the model is that its input and output dimensionality must
be identical. Because of that, diffusion models are often implemented with the U-Net
architecture, which allows them to effectively capture and reconstruct intricate details in
complex data distributions.
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One of the key advantages of diffusion models in image generation lies in their ability to
capture complex dependencies and intricate details present in natural images. By iteratively
denoising the input noise, diffusion models effectively learn the underlying structure of the
data distribution, allowing them to generate images with realistic textures, shapes, and
patterns. This capability is particularly valuable in applications where generating visually
coherent and lifelike images is essential, such as in computer graphics, artistic rendering, and
virtual reality. Furthermore, diffusion models can be tailored to specific image generation
tasks by adjusting parameters such as the level of noise added at each step and the number
of steps in the diffusion process. This flexibility allows practitioners to fine-tune the model’s
behaviour and generate images with desired characteristics, such as varying levels of noise,
resolution, or style. Additionally, diffusion models can be conditioned on additional input
information, such as class labels or semantic maps, enabling controlled generation of images
belonging to specific categories or exhibiting certain attributes [20, 35].

Beyond image generation and denoising, diffusion models have demonstrated versatil-
ity in various other domains. For instance, researchers have explored their applications
in audio generation, where they have shown promise in synthesizing realistic sounds and
music. Additionally, diffusion models have been adapted for text generation tasks, includ-
ing language modeling and text completion. These extensions highlight the flexibility of
diffusion models and their potential to be applied across a wide range of signal processing
and generative modeling tasks [32, 37].

5.1 DifFace
DifFace is a diffusion model framework that we decided to use for our deepfake-generated
images. Its main purpose is blind face restoration. This refers to the process of recon-
structing an accurate and clear representation of a person’s face from an input image that
is degraded or of low quality, such as containing noise or blur. The creators Zongsheng
Yue and Chen Change Loy stated [39] that difFace is capable of gracefully handling unseen
and complex degradations without the need for complicated loss designs. The key lies in
the posterior distribution from the input low-quality (LQ) image to its high-quality (HQ)
counterpart. Specifically, DifFace utilizes a transition distribution from the LQ image to
the intermediate state of a pre-trained diffusion model. This transitional information is
then gradually transmitted from the intermediate state to the HQ target by recursively
applying the pre-trained diffusion model.

Figure 5.1: Overview of the DifFace method [39].
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The inference process involves deriving an intermediate diffused variable 𝑥𝑁 (where
𝑁 < 𝑇 ) from the low-quality image 𝑦0 using a specialized neural network, referred to as a
diffused estimator. This network is designed to predict the diffusion step 𝑥𝑁 based on the
input image 𝑦0. Subsequently, the desired 𝑥0 is determined from this intermediate state.
This approach offers efficiency gains compared to the full reverse diffusion process from 𝑥𝑇
to 𝑥0 by leveraging a pre-trained diffusion model from 𝑥𝑁 to 𝑥0. Moreover, there’s no need
to retrain the diffusion model from the beginning. Notably, this method handles unknown
and complex degradations without requiring multiple constraints during training [2].

Figure 5.2: Examples of old photos restoration [39].

The 2 most important parameters that we can change when using DifFace are the
number of initial diffusion steps (default set to 100) and the hyper-parameter ETA (default
set to 0.5) that controls the fidelity-realness trade-off and can be adjusted between 0.0
and 1.0. The hyper-parameter ETA is used for regulating the randomness of the inference
process and offers a lever by which we can control the capability of fidelity preservation of
DifFace [39].

It’s important to note that DifFace is not specifically designed or optimized for attacking
deepfake detection systems. The primary objective is to assess the usage of open-source,
available diffusion models based systems. The DifFace code is publicly available on github1

with a pre-trained version on the FFHQ dataset containing 70,000 HQ photos.

5.2 Arc2Face
Arc2Face is a face foundation model that operates based on identity conditions. It utilizes
the ArcFace embedding of an individual to produce a wide range of photo-realistic images.
Compared to existing models, Arc2Face achieves a remarkable level of facial similarity in its
generated images, all while preserving diversity in the output. Arc2Face can benefit various
industrial and research applications, including media, entertainment, and data generation
for face analysis and synthesis [30].

1https://github.com/zsyOAOA/DifFace
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Figure 5.3: Arc2Face male generated photos examples.

The Arc2Face model builds upon a robust Stable Diffusion framework, facilitating the
effective generation of top-notch images [33]. The process of generating facial images in-
volves utilizing pre-trained face recognition networks and latent diffusion models. The
Latent Diffusion model compresses images for efficient training. It also uses a universal
conditioning mechanism to enhance image generation. The model comprises a perceptual
autoencoder and a U-net denoiser. The autoencoder encodes facial images into a simpler
latent space and then reconstructs them, effectively capturing crucial visual details. Mean-
while, the U-net denoiser eliminates noise from input images, enhancing the quality of the
generated images. To maintain key facial features, the model employs cross-attention layers,
focusing on relevant aspects of the input images and embeddings during both the encoding
and decoding phases. Throughout the training process, standard loss functions are fine-
tuned to minimize disparities between the reconstructed and genuine images, progressively
improving the model’s capability to produce high-quality facial images. The dataset used
for training is primarily WebFace42M. Additionally the model is fine-tuned on FFHQ and
CelebA-HQ datasets for enhanced quality and less constrained face images. As a result,
Arc2Face generates FFHQ-aligned images at 512 × 512 pixels, providing high-quality facial
image synthesis [30].

Arc2Face code is publicly available at their github2, and they provide easy-to-test API
built with Gradio on hugging face website3. All you have to do is to upload a photo, and
with a few simple settings, you can generate pictures like in Figure 5.3 in just a few seconds.

2https://github.com/foivospar/Arc2Face
3https://huggingface.co/spaces/FoivosPar/Arc2Face
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Chapter 6

Experiments

In our preceding discussions, we underscored the pivotal role of GAN technology in the gen-
eration of deepfake images and delved into the rapidly evolving domain of diffusion models.
Yet, the unexplored potential lies in the synergy between these technologies, presenting
novel opportunities and prospective benefits.

Diffusion models demonstrate exceptional skill in capturing subtle details and relation-
ships within data, which makes them a powerful tool for image denoising or generation.
Integrating them with GANs or other existing approaches for making deepfakes could make
them look smoother and more natural. This integration poses a challenge for observers, as
the subtle distinctions make it increasingly more difficult to detect anomalies. Furthermore,
the adeptness of diffusion models in capturing intricate details and correlations within data
suggests that their incorporation into the GAN framework could yield deepfakes character-
ized by enhanced facial expressions, realistic movements, and intricate visual details. This
consequently contributes to an overall augmentation of credibility in the synthetic content
produced.

This endeavour not only strives to expand the frontiers of deepfake technology but also
introduces new challenges for detection mechanisms, thereby advancing the sophistication
of synthetic media generation. The primary objective of our work is to rigorously assess
whether diffusion models can indeed enhance the quality of generated deepfake images
or create entirely new ones. We will evaluate the success rates of deepfake detectors on
deepfake images generated or enhanced by diffusion models to assess their effectiveness in
detecting this unique form of manipulated media. Furthermore, we also plan to test these
deepfakes on biometric face verification systems, which should also be able to detect any
alterations made to the facial features of the individual. Our expectation is that diffusion
models hold the potential to rectify the classic flaws inherent in deepfake generation, that
are often exploited by existing detection mechanisms. By mitigating these imperfections,
smoothing out discernible traces, and improving overall image quality, diffusion models have
the potential to render deepfakes more convincing and, consequently, impact the outcomes
of deepfake detectors.

To evaluate our results, we will mainly focus on absolute changes in the count of indi-
vidual results of deepfake detectors.

The subsequent section outlines a series of meticulously designed experiments aimed
at unravelling the practical implications of this integration and its consequential impact
on the deepfake landscape. These experiments will serve as a critical exploration of the
potential benefits and challenges associated with diffusion models and based on the results,
we should find out whether it makes sense to use them for creating or enhancing deepfakes.
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6.1 Experiment 1: Enhancing human GAN generated faces
with integration of diffusion models

In this experiment, we select exclusively deepfake images of human faces generated by
StyleGAN and subject them to deepfake detectors. Testing on genuine photos will only take
place in the second experiment. For this experiment, we will be testing deepfake pictures
generated by both StyleGAN2 and StyleGAN3 versions. We used official repositories that
provide pre-trained models trained on the Flickr-Faces-HQ (FFHQ) dataset. Subsequently,
we enhance these images using a diffusion model tool DifFace and re-evaluate those pictures
with the detectors, examining any changes in the detectors success rates based on the
number of correctly identified images. We aim to assess how the incorporation of diffusion
models influences the realism and credibility of the generated content and, subsequently, how
these enhancements affect the performance of deepfake detectors. This experiment will be
divided into 2 parts. In the first part of the experiment, we will focus on how diffusion
models change the results of the most modern types of deepfakes and measure the detector’s
ability to detect deepfakes generated by StyleGAN3, which they are not trained for. This
will be used as something like a blackbox testing of detectors.

On the other hand, both of our tested detectors should be able to detect images gener-
ated by StyleGAN2. Therefore, in the second part of the experiment, we will use older types
of deepfakes and we will see if the diffusion model can remove all the artifacts according to
which the detectors mark them as deepfakes.

6.1.1 StyleGAN3 results

We initiated the dataset acquisition process by employing the pre-trained StyleGANv3 tool
to synthesize a wide array of facial images. Thanks to the fact that it is the most modern
image generation tool available, we expect very good and realistic-looking image results
with various facial expressions, lighting conditions, and backgrounds.

First of all, we test the artificially created images using FaceOnLive and GAN detector
to set a starting point for how well the detectors can identify them. For our testing we
pick up only faces that both detectors returned a valid result. Common problems were that
on some pictures, there was no face detected, the face was too small, multiple faces were
detected, or the face was not fronted, and therefore, the detector could not return a valid
result. Those pictures were returned with an error message instead of an evaluation result.
Because of this, we had to keep only 712 of the original 867 StyleGAN3-tested images that
we planned to test.

Table 6.1: FaceOnLive initial results
Face Status Count Average Liveness Score

Genuine 393 3.845
Deepfake 242 -600

Spoof 77 -1.738

Table 6.2: GAN detector initial results
Face Status Count Average logit

Genuine 659 -4.652
Deepfake 53 1.098
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In Table 6.1 and Table 6.2, we can see the results of 712 tested StyleGAN3-generated
images. We can see that if we calculate the ratio of correctly rated images, we get about
45% for the FaceOnLive detector and only 7% for the GAN detector. StyleGAN3 deepfakes
results are already impressive, with pretty high average liveness scores for genuine evaluated
pictures and detectors that are not strictly trained for it have big problems finding deepfakes
artifacts. GAN detector with the pre-trained version on StyleGAN2 recorded very little
success. This proves how much better the newer versions of deepfakes are and how difficult
it is to detect deepfakes, which detectors are not trained for.

Nevertheless, the FaceOnLive deepfake detector was able to detect some very high-
quality generated deepfakes. In Figure 6.1, we see examples of very realistically created
pictures on which it would be very difficult to find any anomalies or signs of deepfake
technology for the human eye. However, all of them were correctly marked as fake by the
FaceOnLive detector.

Figure 6.1: Very realistic pictures detected as deepfakes.

First of all, for the correct execution of our experiment, we tried to find ideal DifFace
parameters that would have the highest chance of improving our test results. We picked 100
randomly selected pictures from our dataset and tried to find out how the change of initial
diffusion steps and ETA parameter would affect the test results for the FaceOnLive deepfake
detector. Because of already very low success rate of the GAN detector, we decided to find
ideal parameters only based on the FaceOnlive detector results. Later when we find out
the best parameters, we fully execute our experiment for both face liveness detectors on all
712 pictures.
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Figure 6.2: Different diffusion steps.

In Figure 6.2, we can see how increasing the number of diffusion steps slowly changes
the individual details of the image, such as wrinkles, hair, or scars on the face. At 120
initial diffusion steps there are visible changes that differentiate from the original picture
and DifFace starts to fail when restoring our photos, that’s why we didn’t test higher
values. The change of ETA parameter does not cause any significantly visible changes for
the human eye.
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Figure 6.3: Percentage of tested images with genuine result and average Liveness Score for
different ETA parameter
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Figure 6.4: Percentage of tested images with genuine result and average liveness score for
different diffusion steps.

In Figure 6.3 and 6.4, we can see the statistics results of the detector for different
ETA and diffusion steps values. The best overall results were obtained for 100 diffusion
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steps, where the number of genuine pictures changed from 56 to total of 72. The average
liveness score for genuine pictures is slightly lower, but that could be caused because 16
pictures that were previously marked as fake are also included in the calculation. The ETA
parameter did not make any change to the picture for the human eye and did not cause
significant changes in the overall results, but it did slightly affect the average liveness score.
Thanks to these results, we were able to determine the ideal parameters of diffusion steps at
100 and ETA at 0.5. These results already indicate that the improvement of the diffusion
model really increased the reliability of the tested deepfakes, but for better results we need
to perform the experiment on more samples and both detectors. After these findings, we
could fully execute our experiment for both tested detectors.

Table 6.3: FaceOnLive results for 100 diffusion steps and 0.5 ETA
Face Status Count Average Liveness Score

Genuine 512 3.705
Deepfake 93 -600

Spoof 87 -1.746
Face could not be tested 20 x

Table 6.4: GAN detector results for 100 diffusion steps and 0.5 ETA
Face Status Count Average logit

Genuine 712 -5.421
Deepfake 0 x

Genuine Deepfake Spoof Face could not be tested
−200

−100

0

100

200

119

−149

10 20

A
bs

ol
ut

e
C

ha
ng

e
in

C
ou

nt
s

Figure 6.5: Absolute changes of 712 pictures after DifFace for FaceOnLive detector.
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Figure 6.6: Absolute changes of 712 pictures after DifFace for GAN detector.

In Table 6.3 and Table 6.4, we can see the final results of both detectors. Figures 6.5
and 6.6 show how the absolute count has changed for individual results categories. The
GAN detector has completely lost its ability to recognize these deepfakes. The success rate
with StyleGAN3 photos was already low, but not a single photo was detected as a deepfake
after the enhancement. Artifacts left by StyleGAN3 generation were removed, and even if
some other types of artifacts could appear by using DifFace, the detector was not trained
for them and did not consider them as evidence of deepfake. In addition, the average value
of the logit for the images decreased, which means that the images are more trustworthy
and the detector considers them to be real.

Also, when testing on the FaceOnLive detector, the quality of deepfakes increased.
The most important part is that after enhancements, the count of images classified as
strictly deepfakes significantly decreased to 93. This indicates a substantial improvement
in the perceived authenticity of the images, as fewer were detected as synthetic by the
deepfake detector. Initially, 393 images were classified as genuine, with an average liveness
score of 3.845. Post-enhancement, the number of images classified as genuine increased to
512, even though with a slightly lower average liveness score of 3.705. That is a pretty
impressive improvement of more than 30% images. For some reason, 20 images that have
been previously in one of 3 unambiguous results (genuine, spoof, deepfake) could not be
tested. This indicates a potential area where diffusion models might introduce artifacts
or changes that are not typical of genuine images or failure of the diffusion model. In
Table 6.5, we have also processed the specific occurrences of the changes in the evaluation
of this detector.
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Table 6.5: FaceOnLive changes occurances
Change Occurrences
genuine remained the same 326
genuine changed to spoof 32
genuine changed to deep fake 27
genuine changed to face could not be tested! 8
deep fake remained the same 58
deep fake changed to genuine 157
deep fake changed to spoof 22
deep fake changed to face could not be tested! 5
spoof remained the same 33
spoof changed to deep fake 8
spoof changed to genuine 29
spoof changed to face could not be tested! 7

6.1.2 StyleGAN2 results

In the second part of our first experiment, we will use an older version of StyleGAN2,
for which our detectors should be better prepared. We collected 500 images generated by
StyleGAN2 which were initially tested by our detectors with valid testing results. The
results of this testing are shown in Table 6.6 and Table 6.7.

Table 6.6: FaceOnLive initial testing results
Face Status Count Average Liveness Score

Genuine 135 3.603
Deepfake 313 -600

Spoof 52 -2.967

Table 6.7: GAN detector initial testing results
Face Status Count Average logit

Genuine 0 X
Deepfake 500 14.257

We can see that especially the GAN detector recorded a significant improvement in de-
tecting deepfakes compared to deepfakes generated by StyleGAN3. The pre-trained version
for StyleGAN2 seems to be of really good quality and in our case, it recorded 100% success
and correctly marked all images as deepfakes. Also, the FaceOnLive detector recorded an
initial improvement and correctly identified almost 73% of deepfakes or modified images.

After that we enhanced all pictures with DifFace using 100 diffusion steps and 0.5 ETA
value, just like for StyleGAN3 generated deepfakes.
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Table 6.8: FaceOnLive results for 100 diffusion steps and 0.5 ETA
Face Status Count Average Liveness Score

Genuine 359 4.064
Deepfake 45 -600

Spoof 85 -1.846
Face could not be tested 11 x

Table 6.9: GAN detector results for 100 diffusion steps and 0.5 ETA
Face Status Count Average logit

Genuine 500 -4.554
Deepfake 0 X

Genuine Deepfake Spoof Face could not be tested

−200

0

200
224

−268

33 11

A
bs

ol
ut

e
C

ha
ng

e
in

C
ou

nt
s

Figure 6.7: Absolute changes of results FaceOnLive detector.
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Figure 6.8: Absolute changes of results GAN detector.

In Table 6.8 and Table 6.9, we can see the final results of both detectors. In Figures 6.7
and 6.8 we see how the absolute count has changed for individual categories. The final
results were really surprising. Although the GAN detector initially correctly evaluated
all the images as deepfakes, there was not a single one after using the diffusion model

27



enhancements. The diffusion model really managed to remove all the artifacts that this
detector considered as signs of deepfake, even in extreme cases when StyleGAN2 failed and
generated some kind of glitched image. This type of images 6.9, would be easily recognizable
even by a human eye. However, because of subtle changes made by DifFace, the detector
could not detect them correctly.

Figure 6.9: Examples of easily detectable deepfakes.

DifFace also achieved success with the FaceOnLive detector. 72% of pictures were
evaluated as genuine and the average liveness score rose to 4.064. Although this detector
was able to detect deepfakes as in Figure 6.9, it also had problems with more credible-
looking deepfakes.

Summarizing the results of this experiment, we found out that by enhancing deepfake
images using diffusion models, we managed to improve their credibility for deepfake detectors
and thus significantly increase their chances of being considered genuine.

6.2 Experiment 2: Testing deepfake detectors on real pic-
tures enhanced by diffusion model

In this experiment, we will test the use of diffusion models on exclusively genuine images
and find out whether deepfake detectors will not start to consider them as deepfakes. While
diffusion models excel in enhancing visual quality, they might inadvertently introduce subtle
changes that could be detected by the deepfake detection system. The challenge lies in
striking a balance between visual enhancement and maintaining the authenticity cues crucial
for accurate classification.

This experiment involves a comparative analysis between two sets of images: original,
unaltered real images and their counterparts that have been enhanced or modified using
diffusion models. Both sets will be subjected to deepfake detection to assess the impact of
diffusion model processing on the detection outcomes. We will observe whether the result
of the diffusion model does not leave noise on the photos, which could confuse deepfake
detectors with noise generated by GAN tools and thus mistakenly mark the images as
deepfakes. However, with real photos, we often want the photo to remain as close to the
original as possible and thus with unchanged facial features. Because of that, we test them
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on Megamatcher and FaceOnLive biometric systems and find out if they can still accurately
match an enhanced image to its original, unaltered counterpart, thereby determining the
impact of such image modifications on biometric verification processes.

The usage of the FFHQ dataset provides a wide range of subjects, lighting conditions,
and backgrounds to ensure comprehensive testing. All images are standardized to a consis-
tent 1024x1024 resolution and format, ensuring that any variations in detection outcomes
are attributable to the application of the diffusion model rather than unexpected external
variables. We randomly selected 500 pictures from this dataset and subjected them to ini-
tial testing to make sure all of them would be tested as genuine. We deleted all misaligned
or badly-fronted pictures. Due to the capacity of one of our tested detectors, we will test
all 500 images only for 100 diffusion steps, for other number of diffusion steps we will test
only the first 100 images.

Table 6.10: FaceOnLive detector initial testing results
Face Status Count Average Liveness Score

Genuine 500 3.498

Table 6.11: GAN detector initial testing results
Face Status Count Average logit

Genuine 500 -16.793

It is interesting that the average liveness score of 500 random photos (3.498) from
the FFHQ dataset is lower than in the initial testing of photos generated by StyleGAN v3
(3.845) in the previous experiment. This indicates how developed and trustworthy deepfake
generators are and how difficult it is to recognize real photos. Artificially generated images
exhibit face artifacts that appear even more convincing than those found in real photos.

After that, we tried to change initial diffusion steps and observe how the deepfake de-
tection results will change. Ideally, diffusion models should refine and improve the visual
appearance of genuine images without introducing characteristics that mimic the manipu-
lations typically associated with deepfakes.
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Figure 6.10: Percentage of tested images with genuine result and average liveness score by
FaceOnLive detector.
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Figure 6.11: Percentage of tested images with genuine result and average logit by GAN
detector.

In Figure 6.11 we can see the results GAN image detector testing for different diffusion
steps. As we found out also in the previous experiment, this detector is pre-trained on
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StyleGAN2 pictures, and it seems that it is not able to detect any other kind of deepfakes,
so it was expected that even in this experiment, it had no problem considering all images,
as genuine, regardless of the number of diffusion steps.

In Figure 6.10 we can see the results of FaceOnLive detector testing and how the average
liveness score changed. Images are less visibly changed in fewer diffusion steps but tend
to have lower quality for human observers. The average liveness score of tested pictures
significantly decreased, this can be due to the quality of the image or the poor processing
of certain parts of the face by the diffusion model (such as when rendering the eye), errors
are introduced into the image. These errors sometimes occur, as shown in Figure 6.12. We
are not sure why these errors appear, but most of the time, it is enough just to restart the
DifFace with the original picture, and the result is without error.

With more diffusion steps, there is a possibility of over-enhancement. The diffusion
process might unintentionally amplify certain patterns that trigger the deepfake detection
system and evaluate face liveness as insufficient. Overall, we found that the detectors
mostly do not consider the images modified by the diffusion model to be deepfakes. If such
a situation did occur, it was mostly due to an error in the diffusion model as in Figure 6.12,
which was detected by the FaceOnLive detector. The GAN detector, which is focused on
detecting only GAN-generated deepfakes, was not able to detect even such failures and
considered all photos to be genuine.

Figure 6.12: Incorrectly processed eyes by diffusion model. Original on the left and picture
enhanced by DifFace with 100 diffusion steps on the right.

After that, we uploaded those upgraded pictures into our face-matching systems to find
out how sensitive they are to changes made by diffusion models when identifying a person
and whether, by any chance, they will not consider the enhanced image of a person to be
false.
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Figure 6.13: Face recognition FaceOnLive results.
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Figure 6.14: Megamatcher identification results.

In Figure 6.13 and Figure 6.14, we can see the results of our biometric identifiers. To
summarise the results, we can see that up to 100 diffusion steps images are not really
changed for the human eye or biometric system. In almost all cases, the pictures are
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evaluated as the same person and no synthetic modifications of the face are detected to
such a level that it could be considered a different person’s picture or not match its original.
However, at 120 starting diffusion steps, we observe changes in the evaluation as both face
recognition systems reject some pictures. 100 initial diffusion steps still seem to be the
optimal value for using our model. At this value, the improvement of the image is most
noticeable, and even if fine details are changed in the image, it is still within the assessment
limits of the same human face. Exceeding this value, however, leaves much larger changes
in the image. At this value, the positive assessment by the biometric systems decreases,
and changes are also visible to the human eye (for example, the colour and shape of eyes
on Figure 6.15).

Figure 6.15: Visible changes in pictures at 120 initial diffusion steps.

From this experiment, we learned that using the DifFace tool on authentic images only
slightly changed the test results, and the vast majority of images passed the deepfake detec-
tion testing as genuine. In addition, we found out that using this tool to improve the picture
quality does not change the individual features of the human face to such an extent that the
picture does not pass the biometric comparison with the original picture.

6.3 Experiment 3: Generating faces with diffusion model
This experiment aims to assess the performance of deepfake detection systems on images
generated by the Arc2Face diffusion model. The process involves two main stages: image
generation and deepfake detection evaluation. Later, we will also test the generated images
with biometric systems, which will compare the similarities of the inserted images with the
generated ones.

Firstly, 500 facial images will be generated using the Arc2Face model. To achieve
this, we selected various photos of people from the FFHQ dataset and tried to generate
4 samples for each. Arc2Face produced high-quality 512x512 images with features based
on input identity data. Then, we inserted these resulting images into the FaceOnLive and
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GAN image deepfake detectors. The results of our testing can be seen in Table 6.12 and
Table 6.13.

Table 6.12: FaceOnLive results for 500 Arc2Face deepfakes
Face Status Count Average Liveness Score

Spoof 230 -3.306
Genuine 202 2.508
Deepfake 11 -600

Face could not be tested 57 X

Table 6.13: GAN detector results for 500 Arc2Face deepfakes
Face Status Count Average logit

Genuine 500 -9.816
Deepfake 0 X

We can see that the success of genuine photos exceeded 40% with the FaceOnLive
detector and 100% with the GAN detector. Although the average liveness score is not as
high as with the photos enhanced by DifFace in experiments 1 and 2, this success rate is still
very high. Only 11 of these photos are directly classified as deepfakes by the FaceOnLive
detector. It evaluated most of the images as spoofs, probably considering them authentic
pictures edited with Photoshop or another similar tool. 57 photos could not be detected,
mostly due to bad face alignment or small face.

Next, we performed testing with biometric systems, the results of which can be seen in
Table 6.14 and Table 6.15.

Table 6.14: Results of FestOnLive face recognition system
Diffusion Steps Matched Total Average Similarity (%)

same 477 83.68
different 23

Table 6.15: Results of Megamatcher matched images
Result Matched
Same 465

Different 35

The biometric system recognized the majority of the deepfake images as being the
same as the original reference images. This suggests that the biometric systems struggled
to effectively distinguish between genuine and deepfake images, resulting in a significant
number of false positive identifications. These results underscore the remarkable ability of
Arc2Face to produce deepfake images that closely mimic the characteristics of the original
reference images and moreover, they highlight the challenges caused by diffusion-based
deepfake generation methods in terms of detection and authentication by biometric systems.

Overall, in this experiment, we achieved the rapid generation of high-quality deepfake
images of human faces, many of which were evaluated as genuine by face liveness deepfake
detectors and, moreover, passed biometric identification tests.
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Chapter 7

Conclusion

The proliferation of deepfake technology poses significant challenges to society, particularly
in misinformation, privacy invasion, and the erosion of trust in digital media. Through the
lens of this thesis, we’ve explored how diffusion models can be leveraged to create more
convincing and sophisticated synthetic media, raising both the promise of innovation and
the spectre of heightened societal risks.

It is indisputable that this technology has great potential use in areas such as enter-
tainment, visual effects, and virtual reality. By refining the synthesis process, researchers
and content creators can produce highly realistic simulations with unprecedented levels of
fidelity, opening new avenues for creative expression and immersive storytelling. However,
this very same technology also amplifies the dangers posed by deepfake manipulation. The
ability to enhance or generate synthetic content indistinguishable from reality exacerbates
existing concerns about deepfakes. As both deepfake generating software and diffusion
models architectures become more accessible to the general public, the barrier to entry
for producing sophisticated deepfakes diminishes, amplifying the potential for widespread
abuse and manipulation.

In this thesis, we tested 2 different detectors that recognize face liveness in pictures
and detect synthetic media and tested whether they would still be able to detect this
content just as well, even after using diffusion models for enhancing the original image or
generating new one. As a diffusion model tool for enhancing deepfakes we chose and used
DifFace, which is intended for the face restoration of images. Our endeavours revealed
the inherent difficulty in finding a one-size-fits-all detector for deepfakes. We tested the
GAN detector with ResNet50 architecture that was specifically focused and pre-trained
on pictures generated by the StyleGAN2 generator. Even though it was very capable of
detecting these pictures, only a subtle adjustment of the diffusion model was enough for
the detector to lose its ability to recognize these images and the same images that were
previously considered to be deepfakes were evaluated to be genuine. Another detector was
the FaceOnLive face liveness detector, which appeared to be more universal and pre-trained
for various types of deepfakes. This detector was not so much focused on specific artifacts
generated by one tool and thus had a slightly better chance of detecting deepfakes improved
by the diffusion model. However, the success rate remained low, reaffirming our realization
that diffusion models will challenge existing detection algorithms.

Traditional detection methods, reliant on static features or artifacts inherent in deepfake
generation processes, struggled to discern subtle alterations introduced by diffusion-based
enhancement. As a result, the efficacy of detectors was compromised, leading to increased
false negative rates and diminished confidence in detection outcomes. The DifFace archi-
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tecture was not specially modified to improve deepfakes, and it can be expected that if it
was, the images would be even more believable and more difficult to recognize from the real
ones.

In our next experiment, we tested the diffusion model on real photos. The main use of
our test model, DifFace, was the restoration of mostly old or low-quality images. That’s
why we wanted to find out whether such images will still be considered genuine by deepfake
detectors and will not be mistakenly evaluated as deepfakes. We also used 2 biometric
systems with which we tested the similarity of the images before and after enhancement
with our model. In most of the tested cases, these enhancements did not trigger our face
liveness detection architectures, and for the classic use of DifFace with default values, the
images were evaluated as the same by both biometric systems. Even though unexpected
DifFace errors appeared when restoring the image in rare cases, we can evaluate that it is
a high-quality architecture with very good results for face restoration.

In our third experiment, we focused on photos generated by the diffusion model tech-
nology from scratch, instead of enhancing already existing images. We used the Arc2Face
model, which can generate high-quality deepfakes of a given subject using only his face
embedding. We tried to test these generated pictures with our deepfake detectors and then
with biometric systems, which were supposed to confirm their similarity with the original
photo. The resulting images were very similar to the original images and passed biometric
testing with high success. Face liveness was also high and none of our used detectors could
consistently detect these deepfakes. The results were both remarkable and concerning,
as the diffusion model demonstrated an unprecedented ability to rapidly and effortlessly
generate highly realistic deepfake images of a given person with exceptional quality.

One possible approach could be to train a deepfake detector capable of detecting the
usage of diffusion models technology on images. For example, a discriminator model trained
specifically on artifacts generated through a fixed number of denoising iterations. This
discriminator could potentially effectively identify manipulations associated with the level
of diffusion noise corresponding to the specific number of diffusion steps used. While such
a detector could excel in detecting diffusion model enhancements, it might struggle to
generalize its detection capabilities to other types of deepfake attacks. To address this
limitation, a more comprehensive deepfake detection system needs to be developed that
would incorporate diverse training data and employ techniques that enhance the model’s
ability to detect various types of manipulations and artifacts commonly found in different
deepfake generation methods.
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Appendix A

Attached media

The Src folder contains subfolders of python scripts used for working with individual tools
in this thesis:

• Arc2Face: A script for generating pictures with API

• FaceOnLive_detector: Script for detecting deepfakes with API and to process out-
puts

• Face_recognition: Scripts for comparing two pictures with API and to process
outputs

• GAN_image_detector: A script to process outputs

• Megamatcher: A script to process outputs
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