
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

DIALOG SYSTEM FOR HUMAN-ROBOT COMMUNI­
CATION

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MARK BIRGER
AUTHOR

B R N O 2015

VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

DIALOGOVY SYSTEM PRO KOMUNIKACI S REAL-
NYM ROBOTEM
DIALOG SYSTEM FOR HUMAN-ROBOT COMMUNICATION

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MARK BIRGER
AUTHOR

VEDOUCÍ PRÁCE Doc. RNDr. PAVEL SMRŽ, Ph.D.
SUPERVISOR

B R N O 2015

Abstrakt
Tato práce se zabývá řešením problémů vývoje dialogového uživatelského rozhraní pro
roboty. V rámci této práce byla vytvořena knihovna, určena pro rychlou implementace
mluvčích dialogových rozhraní pro existující programy. Pomoci této knihovny dá se napsat
popis dialogu ve speciálním značkovacím jazyků, abych kontrolovat tok řízení programu
podle vstupní fráze. Značkovací jazyk umožňuje asynchronní spuštění funkci a jejich další
ovládání, což je důležité pro roboticke prostředí. Tato knihovna využívá Link Grammar
Parser pro zpracování přirozeného jazyků. Pomoci této knihovny byl vyvíjen a ohodnocen
dialogový systém, určeny pro řízení robotů PR2.

Abstract
In this thesis a problematic of spoken dialog systems was discovered. The dialog system
framework was developed for a fast implementation of spoken dialog interfaces for existing
robotics software. This framework allows describing a dialog flow in special markup for­
mat, which allows scope variables manipulating and controlling a flow of general-purpose
programming language software by user input phrase. Markup language is designed for
asynchronous function execution and subsequent manipulations with them. It allows robot
to solve tasks simultaneously. Developed framework uses Link Grammar Parser for natural
language processing. Wi th this framework was implemented a dialog system instance for
PR2 robot control.

Klíčová slova
dialogový systém, komunikace člověka a robota, přirozeně uživatelské rozhraní, dialogové
rozhraní, zpracování přirozeného jazyků, link grammar, PR2, robot

Keywords
dialog system, human-robot communication, natural interface, dialog interface, natural
language processing, link grammar, PR2, robot

Citace
Mark Birger: Dialog System for Human-Robot Communication, bakalářská práce, Brno,
FIT V U T v Brně, 2015

Dialog System for Human-Robot Communication

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana . . .

Mark Birger
May 20, 2015

© Mark Birger, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Goals 3
1.3 Outline 3

2 State of the art 5
2.1 Dialog system background 5
2.2 Specific robotic environment 6
2.3 Dialog system structure 7
2.4 Natural language processing 8
2.5 Relevant applications and technologies 9

3 Design 13
3.1 Requirements 13
3.2 Key features 15
3.3 Dialog description format 16
3.4 Dialog management 20

4 Implementation 21
4.1 Architecture 21
4.2 Modules 22
4.3 Distribution 22
4.4 Third-party components 22
4.5 Parser unittests 24

5 Evaluation 26
5.1 Experiments 26
5.2 Readability comparison with alternative formats 27
5.3 Developer review 29

5.4 Input phrase variability 30

6 Conclusion 32

A C D Content 35

B Manual 36
B . l Virtual environment installation 36
B.2 Custom installation 37
B.3 External dependencies 37

1

B.4 Getting started
B.5 PR2 setup . . .

C OpenDial domain description

D Poster

Chapter 1

Introduction

1.1 Motivation

Estimated personal robots market growth is 6.5 billion dollars (260%) from 2.5 billion
dollars in 2015 to 9.0 billion dollars in 2025 [18]. Personal segment includes robots used for
cleaning, household applications, entertainment and security. As a final good, such robot
will interact with a user and domestic environments.

Spoken language is a very efficient way of communication, if both parties do understand
it [8]. Programming in the broad sense is no longer a task relegated solely to professional
programmers []. As long as robots is widely used in education, we would like to create a
tool with lower barrier to entry programming of dialog interfaces.

Consumer expectations is another reason of this project. Within the quiz about robotics
thematics 50% of respondents answered (37 respondents in total), that they expect personal
robots at the consumer market after 10-25 years from now on and only 9.4% suppose to see
the robots on the market in more than 25 years.

1.2 Goals

Dialog system is a concrete case of program with dialog user interface. The goal is to create
dialog system framework, which allows to create a dialog user interface for a software.

• Dialog system should be a general domain and applicable for a domestic environment.

• This solution should fit into existing robots platforms.

• There is a need to minimize an entry barrier for dialog interfaces programming.

Also one of the goals is to make natural interface for human-robot communication. For
humans, natural communication in domestic environment is a speech with high command
formulation flexibility. Later dialog system equals spoken dialog system.

1.3 Outline

The rest of this thesis is organized as follows:
Chapter 2: State of the art. This chapter contains a survey of domestic environment

and ethnographic approach behind this work, robotic platforms review, dialog interface
basics, natural language processing basics and relevant work review.

3

Chapter 3: Design. This chapter defines requirements for producing a dialog system
framework and contains a project draft, which includes a description language and a dialog
management in the developed system.

Chapter 4: Implementation. This chapter explains how this dialog system frame­
work was developed and what tools were used.

Chapter 5: Evaluation. In this chapter the robot framework implementation is
tested, it is compared with alternative solutions and the project is reviewed by both, the
user and the developer points of view.

Chapter 6: Conclusion. The chapter contains a review of this work and research
results of this work.

4

Chapter 2

State of the art

2.1 Dialog system background

Dialog systems should be definitely be researched in the ethnographic context, because:

• By the Oxford dictionary meaning, artificial intelligence performs tasks, which nor­
mally require a human intelligence. Dialog normally require a human, so this task is
a part of artificial intelligence. To create a dialog system we need to research how
human acts in dialog.

• Dialog system is a Human-Robot interface. To create this interface, we need to take
a notice to the human side.

Ethnographic approach

The literature in social anthropology informs us about the complex notions of a family and
household and patterns of domestic interaction [19]. Due to this fact, most reliable way of
designing dialog systems is based on the use-cases approach.

Natural communication

In domestic environment, human-human communications is based on speech. Speech is a
vocalized form of human communication. Of course, spoken communications isn't depends
only on the phrase semantic. Human use gestures and intonation to extend this meaning.
Current dialog system framework do not considers non-verbal communication. The main
focus is semantic processing of natural language (English language). The basic assumption
for this is that a service robot which offers an interaction model that matches human
language performance in terms of conveying and understanding complex meaning will be
perceived as intuitive, efficient and satisfactory by its users, at least to the same extent that
interaction with people can be said to have these characteristics [11].

Domestic environment

From the robot's perspective, problems that seem trivial to humans often vary wildly be­
tween instances of tasks and environments []. Originality it is encouraged by the society,
therefore the variability of domestic environment is extremely high. Furthermore, different
cultures and lifestyles affect domestic environment variability. In this work we focused on

5

the dialog management and abstracts about this issue. Developers can solve this issue
manually by using available tools and libraries.

Robot use-cases

At the start we've analyzed common use-cases of domestics robots. Main use-cases for
domestic robots are: home appliances control, question answering, assistance; butler, gov­
erness, secretary functionality.

home ^^^^^^^^^^^^^^^^^^^B^^^^^^^^^^^^^K^^^^^^^^KBt
appliances ^ B H

Search, help, ^BPI

Help in the kitchen

Cleaning

Secretary, task ^BRI
management

Education

0 10 20 30 40

Figure 2.1: Questionnaire results. Which functionality is necessary for a domestic robot?

Figure 2.1 shows a distribution of the tasks importance from the consumer point of
view.

Any command for these use-cases contains parameters, which needs to be efficiently
parsed. Interface to provide a task should be similar as in human-human communication.
For example, dialog system need to parse distance for movement command.

Most of activities and/or talking with a user occur simultaneously. Robot should re­
spond to user questions even, when it moves. It is also should be possible to run two
activities, which do not control common hardware at the same time.

Another important situation, which need to be solved by design is situation, when robot
need to initialize a dialog. This feature allows to change dialog flow in case of environment
changes. For instance, when a robot cannot reach a target, it should ask a user for help.

2.2 Specific robotic environment

This framework is designed for robots, and we need to consider robotics hardware and
software.

ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic platforms [].

6

Willow Garage PR2

The PR2 is a mobile manipulation platform built by Willow Garage. The PR2 software
system is written entirely in ROS. As such, all PR2 capabilities are available via ROS
interfaces [9].

Domestic robots

A machine capable of carrying out a complex series of actions automatically, especially one
programmable by a computer is robot. "Complex series of action" meaning allow to classify
some consumer electronics as robots. A n example is iRobot Roomba, an autonomous
vacuum cleaner [2]. This device has a traditional for consumer electronics buttons interface.
Intelligent devices are balanced at the high options variability and automatic decisioning.
Voice control is an appropriate tool to tune this class of devices.

2.3 Dialog system structure

Human-Robot communication

Human-Robot communication is a multidisciplinary topic about human-computer interac­
tion and an artificial intelligence. The main aim of this discipline is to understand user
expectation and modify robot behaviour for effective collaboration between human and
robot. From the other side, we can teach humans how to understand robots [1]. As long as
human mind is flexible, society education in robot interaction is an effective way to increase
efficiency of human-robot collaboration.

Defining a dialog system

The goal of a dialog system is to interpret conversation with a human. Dialog system is
wide meaning term. Simplest systems such a GUI Wizard up to complex expert systems
such as Wolfram Alpha can be classified as a dialog system.

Components

Architecture of dialog systems is variable. Typical dialog system architecture is represented
in the figure 2.2. Input recognizer produce a plain text (with meta information in case of
gesture rezognizer). Natural language understanding unit parse data from this plain text.
This data and task managers results are processed by dialog manager component. At the
output semantic data, transformed to natural language by output generator, are played by
output renderer [13].

Dialog manager

Dialog manager is a dialog system component, which controls a dialog flow. Usually this
component receives parsed semantic data. As the output, dialog manager produces com­
mand to other parts of the dialog system, including an output generator. Dialog manager
is always depends on the state (uses stateful model).

7

Input recognizer —

automatic speech recognition
gesture recognizer

handwriting recognizer

I plain text |

domain-specific

Task manager

Output renderer

text-to-speech engine
robot

Proper Name identification
part of speech tagging
syntax/semantic parser

Natural Language
Understanding

unit

semantic information
(data)

Dialog manager

Output generator

natural language generator
gesture generator

layout engine

Figure 2.2: Dialog system architecture.

2.4 Natural language processing

Natural language processing (NLP) is computational linguistics topic. Technologies based
on N L P are becoming increasingly widespread. For example, phones and handheld comput­
ers support predictive text and handwriting recognition; web search engines give access to
information locked up in unstructured text; machine translation allows us to retrieve texts
written in Chinese and read them in Spanish. By providing more natural human-machine
interfaces, and more sophisticated access to stored information, language processing has
come to play a central role in the multilingual information society [1].

Natural language understanding

Natural language understanding is N L P subtopic, focused at semantic data parsing.

Natural language generation
Natural language generation is the process of deliberately constructing a natural language
text in order to meet specified communicative goals [10]. Layout engine is an example of
simple natural language generation unit.

Overview of tools

There are a few tools for a natural language processing:
Gensim is a Python library for topic modeling, document indexing and similarity

retrieval with large corpora. Target audience is the natural language processing (NLP) and
information retrieval (IR) community [17].

N L T K was originally created in 2001 as part of a computational linguistics course in
the Department of Computer and Information Science at the University of Pennsylvania.

8

Since then it has been developed and expanded with the help of dozens of contributors.
N L T K defines an infrastructure that can be used to build N L P programs in Python. It pro­
vides basic classes for representing data relevant to natural language processing; standard
interfaces for performing tasks such as part-of-speech tagging, syntactic parsing, and text
classification; and standard implementations for each task that can be combined to solve
complex problems [1].

The G A T E family of tools has grown over the years to include a desktop application
for developers, a collaborative workflow-based web application, an index server, a Java
library, an architecture and a process. The G A T E family is intended to minimise time and
effort in developing and maintaining rich information extraction, retrieval and management
systems, while staying at or near to the state of the technological art, partly by favouring
interoperation and reuse over reinvention [5].

The Link Grammar Parser is a syntactic parser of English, based on link grammar,
an original theory of English syntax. Given a sentence, the system assigns to it a syntactic
structure, which consists of a set of labeled links connecting pairs of words. The parser also
produces a "constituent,, representation of a sentence (showing noun phrases, verb phrases,
etc.). The system is written in generic C code, and runs on any platform with a C compiler.
There is an application program interface (API) to make it easy to incorporate the parser
into other applications. Davy Temperley, Daniel Sleator and John Lafferty develop a formal
grammatical system called a link grammar, show how English grammar can be encoded in
such a system, and give algorithms for efficiently parsing with a link grammar. Although
the expressive power of link grammars is equivalent to that of context free grammars,
encoding natural language grammars appears to be much easier with the new system. The
performance of this preliminary system both in the breadth of English phenomena that it
captures and in the computational resources used indicates that the approach may have
practical uses as well as linguistic significance [21].

2.5 Relevant applications and technologies

Intelligent personal assistant

Intelligent personal assistant is a software, mostly at the mobile devices (but it is planed
to be realized at the desktops). It provides s speech user interface to existing software.
Examples: Siri, Google Now, Cortana.

Siri is a proprietary intelligent personal assistant. Provides speech interface and as­
sistant features. In contrast to the robot dialog system, intelligent personal assistant in
smartphones are depend at the context (geodata, time, usage data). Some points are com­
mon, for example in secretary use-cases.

Voice command device

Also existing a class of hardware devices, designed for software described above. This
devices are controlled by speech, can control some smart home devices, but cannot interact
with objects or move (Jibo has moving parts). Examples: Jibo, Amazon Echo, Cubic.

Chatter-bots

Chatter-bot is software, which imitates dialogs with human without any finite task. Mostly
is non-commercial, created by enthusiasts. Widely criticised Turing test defines quality of

9

such software.
Chatter bots is an undervalued part of the dialog systems. Entertainment sphere affects

robotics a lot. Some robots are designed as an android robots because of entertainment, not
because of construction benefits. Another example is gamification. Gamification has been
widely applied in software, which has a regular (touch/buttons/mouse) interface. In spoken
interface this interaction use-case is natural. For example Siri has at least 95 humorous
answers. That positively affects popularization of robotic technologies and user experience.
As we can see strict and unnatural speech commands aren't a good option for domestics
robots control.

A I M L (Artificial Intelligence Markup Language) is a markup language for chatterbots.
It uses templates and states, but this system not includes natural language processing.
Plus, this solution does not allow to bind dialogs with a code.

Listing 2.1: A I M L example.

1 <category>
2 <pattern>WHAT IS YOUR NAME</pattern>
3 <template>My name is <bot name="name"/>.</template>
4 </category>

VoiceXML

VoiceXML is designed for creating audio dialogs that feature synthesized speech, digitized
audio, recognition of spoken and D T M F key input, recording of spoken input, telephony,
and mixed initiative conversations. Its major goal is to bring the advantages of Web-based
development and content delivery to interactive voice response applications [23].

Listing 2.2: VoiceXML example.

1 <?xml version="l.0" encoding="UTF-8"?>
2 <vxml xmlns="http://www.w3.org/2001/vxml" version="2.0">
3 <form>
4 <block>
5 <prompt>
6 Hello, world!
7 </prompt>
8 </block>
9 </form>

10 </vxml>

None of the systems above aren't designed for robots. Robots in contrast to virtual
helpers can physically interact with environment. Dialog state transitions should depend
on the environment interaction state too.

Frameworks for creating dialog systems

There are relevant dialog system frameworks list:
Olympus is a framework for creating spoken dialog systems, created at Carnegie Mel­

lon University. Olympus uses the Raven-Claw dialog management framework (Bohus and
Rudnicky, 2003). In a RavenClaw-based dialog manager, the domain-specific dialog task is
represented as a tree whose internal nodes capture the hierarchical structure of the dialog,

10

http://www.w3.org/2001/vxml

and whose leaves encapsulate atomic dialog actions (e.g., asking a question, providing an
answer, accessing a database). A domain-independent dialog engine executes this dialog
task, interprets the input in the current dialog context and decides which action to engage
next. In the process, the dialog manager may exchange information with other domain-
specific agents (e.g., application back-end, database access, temporal reference resolution
agent) [3].

OpenDial is a Java-based, domain-independent toolkit for developing spoken dialogue
systems. The primary focus of OpenDial is on dialogue management, but OpenDial can
also be used to build full-fledged, end-to-end dialogue systems, integrating e.g. speech
recognition, language understanding, generation, speech synthesis, multimodal processing
and situation awareness. The purpose of OpenDial is to combine the benefits of logical
and statistical approaches to dialogue modelling. The toolkit relies on probabilistic rules
to represent the domain models in a compact and human-readable format. Supervised or
reinforcement learning techniques can be applied to automatically estimate unknown rule
parameters from modest amounts of data. The hybrid approach adopted by OpenDial
makes it possible to easy incorporate expert knowledge and domain-specific constraints
within a robust, probabilistic framework [].

The Alex Dialogue Systems Framework (ADSF) is being developed by the dia­
logue systems group at U F A L , the Institute of Formal and Applied Linguistics, Faculty of
Mathematics and Physics, Charles University in Prague, Czech Republic. Currently this
framework includes mature components for public telephone network connectivity, voice ac­
tivity detection, automatic speech recognition, statistical spoken language understanding,
and probabilistic belief tracking. The A D S F is used in a real-world deployment within the
Public Transport Information (PTI) domain. In PTI , users can interact with a dialogue
system on the phone to find intra- and inter-city public transport connections and ask for
weather forecast in a desired city. Based on user responses, vast majority of the system
users are satisfied with the system performance [6].

The Semaine project is an E U - F P 7 1st call S T R E P project and aims to build a S A L ,
a Sensitive Artificial Listener [20]. This multimodal dialogue system can:

• interact with humans with a virtual character

• sustain an interaction with a user for some time

• react appropriately to the user's non-verbal behavior

T R I N D I (Task Oriented Instructional Dialogue) is an EU-funded research project
concerned with

• human-machine interaction using natural dialogue

• task-oriented instructional dialogues are dialogues that enable the user to make choices
in the performance of a certain task

• route planning and instructional texts for xerox machine maintenance (as particulare
examples)

• finding general and portable technology that will enable the construction of dialogue
systems

• increasing the flexibility and knowledge richness of dialogue systems by representing
the information which is exchanged in a dialogue

11

developing a dialogue toolbox which allows developers to define dialogue rules for
information update and to experiment with different kinds of information representing
the current state of the dialogue

T R I N D I K I T is a toolbox for the development of dialogue systems. It focuses on the
development of dialogue move engines. A dialogue move engine updates the information
state of the dialogues system on the basis of observed dialogue moves and selects appro­
priate moves to be performed. Apart from proposing a general system architecture, the
T R I N D I K I T also specifies formats for defining information states, update rules, dialogue
moves and associated algorithms. In T R I N D I K I T toolbox developer describes an infor­
mation state (dialog system states). Dialogue Move Engine changes this state by dialogue
moves [12].

The taking of initiative has significance in spoken language dialogue systems and in
human-computer interaction. A system that takes no initiative may fail to seize opportu­
nities that are important, but a system that always takes the initiative may not allow the
user to take the actions he favours. P E D is a dialogue management system that uses a
probabilistic nested belief model to choose dialogue strategies from a Bayesian game tree.
A nested belief model is a representation of the beliefs of the speakers in the dialogue,
including their beliefs about each other. P E D constructs game trees to model the possible
outcomes of the dialogue [15].

12

Chapter 3

Design

This system is designed as an appropriate tool for solving natural spoken interface use-
cases. In most cases any robots activities are described in general-purpose programming
languages. For example, a developer would like to move a robot forward. In most popular
environments, such as ROS this task could be done with code in C++/Python. At this
moment general solution for describing activities does not exist. From here, a code in
general-purpose programming language, which describes any robot activity or manipulation
is called "activity code".

In most cases domestic dialogs are linked with activities. This dialog systems frame­
work/library allows to easily create spoken dialog interface for existing activity code, except
some cases, where a code should be designed for outside interaction. Of course it allows to
implement dialog systems without any activities/evaluations, only with dialog description
features, but this type of dialog system is not useful in robots, because they can't interact
with an environment.

3.1 Requirements

Final dialog system solution needs to be easy to use. It should be easy to integrate into
existing robots hardware. Dialog system should not depend on the specific domain. It must
be designed for robots, and their domestic use-cases.

The main idea of the dialog description is a state machine. But it has some differences
with a formal finite state machine. Let's take a look at the non-formal description of the
dialog.

Figure 3.1 demonstrates a scheme of dialog example. User would like to order a pizza,
with the specific parameters in the specific pizzeria. Circles represent answer states, except
idle and activity states. Transitions are initiated with user phrases. Some transitions change
internal state (in our dialog system they change activity code global scope variables). Some
transitions can lead to several states. In this figure the question initiates an answer and
an activity at the moment. Some user inputs can initiate several answers at the moment.
Therefore, this system has a several passed states at the same time.

This dialog can be simplified to a tree structure. In this example user can repeatedly
change pizza's type with transition. But inside this task, we can change a state in any
moment. Wi th several actual states this process can be simplified to structure at figure 3.2.

Structure like this in dialog description file can be created using indentations. We've
defined two levels inside dialog description file: question level and answer level. Not only

13

I do not want pizza

Order another
type of pizza

Order in
another place

Where do i
need to

order pizza?

At the Charlie pizzeria

v / I
No, order it at the Charlie pizzeria

~̂ - these states will change variables

_J Activity \
call

Ok, i'm ordering a
pizza

Figure 3.1: Dialog states diagram for pizza ordering dialog.

questions can be at the question level and not only answers can occur at the answer level.
There are some more states, which provide linking of the dialog with an activity code. At
the listing 3.1 we can see an example of the dialog description for this use-case:

Listing 3.1: Dialog description for diagram 3.2.

1 Order a pizza
2 What kind of pizza are you would like?
3 I don't want a pizza
4 'pizza_type~Pepperoni'
5 I order a 'pizza_type' pizza at the 'pizzeria' pizzeria?
6 Order a 'pizza_type~Pepperoni' pizza
7 I order a 'pizza_type' pizza at the 'pizzeria' pizzeria?
8 I do not want a pizza
9 Ok

10 Ok, i'm ordering a pizza
11 'order_a_pizza?'
12 "failure"
13 Sorry, i wasn't able to order a pizza
14 . . .

14

I D L E
Order a pizza

What kind of pizza are you would like?

do not want pizza

•
•

• question states

answer states

Pepperoni Margheritaj

I order a pepperoni pizza at the Sanchez pizzeria?

Order a pepperoni pizza

I order a pepperoni pizza at the Sanchez pizzeria?

do not want pizza

O k

Ok, i'm ordering a pizza

Activity call

Order another
type of pizza

Order in
another place

Where do i need to order pizza?

At the Charlie pizzeria

I order a pepperoni pizza at the Charlie pizzeria?

No, order it at the Charlie pizzeria

I order a pepperoni pizza at the Charlie pizzeria?

Figure 3.2: Tree-structured diagram for pizza ordering dialog.

3.2 Key features

For example we have a code, which allows robots to bring an object. Even such a simple
task can't be easily done with existing robots software, one needs to deal with computer
vision, indoor navigation, object manipulation. In a real environment people delegate this
task using speech, and this framework is designed for similar tasks. It is possible to describe
communication with a dialog description file.

Dialog description is a special format, which defines, which part of an activity code
should be initiated at different states of the dialog. It is tree-structed natural language
with special escape sequences. Complete dialog description will be described in section 3.3.

Control flow is always delegated to dialog system. Dialog system interacts with user
and with activity code. We've designed two possibilities of programming dialog systems
with our library/framework:

• activity code is master. In this case activity code imports dialog system framework
at the end of the code, creates dialog system object, selects dialog description file(s)

15

and then dialog system locks the main process until exit.

• activity code is slave. In this case we need to run dialog system interpreter and
provide all of the activity programs and dialog descriptions. Then dialog system
server imports global scope from each of the activity codes, parses dialog descriptions
and starts the dialog.

Slave mode can be useful for implementing multi-agent systems. In section 5.1 will be
described realization of web interface for the dialog system. This realization creates new
dialog system instance at each connection.

3.3 Dialog description format

To link phrases with activities we need to describe them with a dialog description file.
Dialog description file contains dialog description language strings. Dialog system can be
run with several dialog description files. It is useful for splitting some topics of the dialog.

Dialog description language is a syntax structure for describing dialog states, activity
calls and also it provides some instruments for parsing data from the dialog, and phrase
generation. Dialog description language combines declarative and imperative paradigms.

In this project we avoided using X M L , which is quite classic for the similar solutions.
Our main goal was to provide an easier instrument. Dialog description language inter­
acts with activity code scope, so it is partially a programming language. Coding in the
most general-purpose programming languages is not visual (for example Scratch is V P L) .
Handwriting an X M L file isn't easy. So we've designed dialog description format as an
instrument, which doesn't require special software to create a description.

Dialog description language has a set of features, which will be discussed in following
subsections.

Expected set of phrases

At any moment dialog system expects a set of phrases. This set can be changed by any
input/output phrase (called activities can change expected phrases set too).

When user asks a question, dialog system accepts all of its child states. Child states
are states below the current state, at the next indentation level. Each acception of answer
state extends expected phrases set to its child states. As a result, user can ask different
questions.

At the moment dialog system does not lose any states. This depends on the context
a lot. In some situations it is needed to loose the previous state immediately. In another
situation it is needed to loose all parent states at reaching some of the leaf nodes. In some
cases it is not needed to loose any state. Dialog system allows to run one scenario until
expected states set is filled. Loosing state could be done manually from the activity code.

Control flow

When human says phrase, dialog system selects the most similar phrase from the expected
phrases set. Then it parses data from the input phrase, and extends expected phrases set
to this question state's children.

Usually dialog system selects input phrase from the expected phrases set using pattern.
A I M L uses * for any word number, some system use regular expressions. This dialog system

16

•
•

• question states

- answer states

- answers accept

- •>• - set of expected
phrases extenstion

Figure 3.3: Expected set of phrases. Extension example.

uses another mechanism for phrase selection, it is comparison of words links, produced by
natural language parser. Link Grammar Parser is used as a natural language processing
unit. This parser returns syntax tree of each input sentence. It selects phrase with the
most similar structure from expected phrases set. This process will be explained in more
details in section 4.4.

In later subsections reviewed dialog description language features:

In-line data
Use case: robot have to answer a with phrase, which contains human name.

In any phrase inside a dialog description file we can use in-line data substitution. The
syntax is: 'variable_or_function_name'. It doesn't matter, which of the two objects
(function or variable) will be provided. In case of callable object, it will be evaluated
immediately. Note: function call can lock dialog system, simplex routine (section 3.3) is
an appropriate way to call resource-intensive function.
Use case: human asks a specifying question.

It is also possible to use in-line data substitution in question phrases, each phrase will
be evaluated right before syntax structure comparison.

Another option is to use dialog system variables. This variables allows to get recognition
quality, origin phrase etc.

Setters

Sometimes we need to get some data from the user phrase. The easiest way to do this is
to create a setter inside of the dialog description file. There are two types of setter: fixed
setters and flexible setters.

Fixed setters

Use case: user uses abusive language and it should affect dialogs/activity.

17

Setter allows to set any variable in global scope with fixed setter. In fact it is an
assign operation. Another naming is used for flexible setter compatibility. The syntax is:
'variable_name:Python l i t e r a l ' . This setter can be used on both question or answer
level. When dialog moves through state, dialog system accepts all fixed setters. Setter
acceptation assigns value to the variable at the activity code global scope.

Flexible setters

Use case: dialog system need to parse user name from input phrase.
Flexible setters are another option to set data in global scope. Wi th this setter we

set a variable to a word, which is at the similar position inside input inside. It uses link
grammar parser to detect the needed word. The syntax is: 'variable_name~word'. They
are used only at the question level. Assigned value is always string, developer needs to
manually convert this value to the needed data type inside of an activity code. More
detailed information in section 4.4.

Routines

It is possible to call a function from dialog description in another asynchronous process.
When function blocks dialog process for more than acceptable response time, it is recom­
mended to call this function as a routine, even if it is not a mechanical activity. Routines
can communicate with the dialog process via queues. It allows robot to initiate a dialog
in case of changing an activity state (real life environment state). There are two types of
routine: simplex and duplex. Usage of routines needs special structure of an activity code.
At this moment this software becomes a framework.

Simplex routines

Use case: robot needs to download a file, and report after downloading.
Simplex routines only allows to send data from a routine to the dialog. It is possible to

run two activities with the same name simultaneously.
The syntax inside a dialog description:

Listing 3.2: Dialog description contains a simplex routine call.

1 question
2 'function_name?'
3 value1
4 answer phrase
5 value2
6 other answers
7 questions etc.

Python function receives a Queue object, and can't send any data to the dialog system
process.

Listing 3.3: Example of simplex routine activity code.

1 def function_name(responses):
2 time.sleep(4)
3 responses.put("value2")

18

In this example user asks a question. Dialog system selects question state because of
most similar sentence structure. Then it accepts its child - simplex routine state. When
this state is accepted, function_name function is called in another process. After 4 seconds
pause, it puts a value2 string to responses queue. Dialog system, if user not talking with it,
receives this value and compares it with each of the simplex routine state children. value2
equals to value2, then dialog system initiates a dialog with a user with other answers
and extends expected phrases set with questions etc. states.

Duplex routines

Use case: robot is going to make a coffee, user would like to undo this command, or specify
a sugar portion.

Duplex routines allows us to send data to a routine and to receive a data from a routine.
For now it is not possible to detect one of the activities with the same name, when two or
more activities with the same name are running simultaneously.

Duplex routines have another syntax, than simplex routines. Code of this function
should be designed another way. Not any routine is non-blocking, and our realization
of duplex routines allows to create communication with the dialog even if an activity is
blocking.

Any activity is a loop of atomic blocking operations. At the beginning of each cycle,
routine needs to check the input queue for messages from the dialog system. To avoid
manually coding all of these cases, dialog system framework provides decorator, which runs
this code in a loop, and can run callback(s) before each loop. It also allows non-obligatory
function calls, which run at the start or at the end of an activity. Figure 3.4 demonstrates
duplex routine code structure.

Listing 3.4: Example of duplex routine activity code.

1 def callbackl(scope, responses):
2 pass #it is possible to manipulate with scope object here
3
4 def callback2(scope, responses):
5 pass
6
7 callbacks = {
8 valuel: callbackl,
9 value2: callback2

10 >
11
12 def before(scope, responses):
13 pass #function called at activity start
14
15 def after(scope, responses):
16 pass #function called at activity finish
17
18 ©handle(ca l lbacks , before=before, after=after)
19 def function_name(requests, responses, scope): # atomic step
20 #any blocking code, manipulations with scope
21 scope.exit = True #assign to terminate activity

19

What about a scope? Of course there is a problem with changing activity code global
scope from another process, but another problem - we need to share data between several
functions. Because of closures, it's not possible to share internal scope inside these func­
tions. The solution is to create an empty object scope with metaclass, fill it with global
variables from the global scope at the decorator level. A l l of the duplex activity function
can communicate with the dialog system process and get global scope data with scope ob­
ject. As an opposite to simplex routines, duplex routines can have a question as a child.
Also there is a special syntax to send data to routines, showed at lines 12 and 14 in listing
3.5.

Listing 3.5: Example of dialog description for duplex routine.

1 question
2 answer
3 'function_name?!'
4 >value
5 answer phrase
6 >value
7 answer phrase
8 >value
9 other answers

10 questions etc.
11 question
12 answer 'function_name < value'
13 another question
14 okay 'function_name < value'

In this example, when user asks a question, dialog system accepts it child states. Dialog
system answers with the answer states, and calls a function_name in another process.
This call will be decorated, and atomic_step will be run in a loop, until scope._exit
attribute is set to True. This routine can put any value to responses multiprocessing
queue. In this case, dialog system will initiate dialog with an answer phrase. But after
routine calls a set of expected phrases was extended to question and another question
states. When user asks a question, dialog system will respond with an answer, and this
sequence 'function_name<value' will put a value to the requests multiprocessing queue.
Decorator at the next iteration of loop will check this queue and find a key in key-value
callbacks storage. Value is callbackl function, it will run before the next loop iteration.
This function can change attributes of a scope object, which affects routine behavior.

3.4 Dialog management

In this project we focused on dialog management and semantic parsing. Produced dialog
system should contain Speech-To-Text (STT) and Text-To-Speech (TTS) units. Flexible
setters and the Link Grammar parser allows us to parse unknown words from an input
phrase. Most local STT engines (such as C M U Sphinx) limited by acoustic model and
dictionary of sound sequences. We decided to use an external application programming
interfaces (APIs) for STT and TTS processing. Dialog manager in designed dialog system
can be compared to a regular finite state machine with multiple states. But the model do
not equals because of an assign operation at the variables scope, which affects dialog flow.

20

Chapter 4

Implementation

As a programming language for this project we selected Python. This project requires a
lot of text processing, parallel programming and algorithms implementations. High-level
language as Python and object oriented paradigm give us a chance of faster development of
an easy-to-contribute software. Also Python has a low entry barrier to start programming
robots, which is good for education purposes.

Manufactured robots like a PR2 have a regular operating system. Spoken dialog system
requires a STT and T T S modules. Most of microcontrollers aren't powerful enough for
STT and T T S . This dialog system is not intended for an embedded robotic solution with
a microcontrollers control boards.

4.1 Architecture

Speaker Microphone

Figure 4.1: Architecture of the dialog system framework.

21

Dialog system in the architecture level is a multiprocess application. Listener process
listens a microphone and starts recording after a threshold value. Then it sends raw recorded
data to a recognizer process. This process communicates with a Google or A T & T APIs and
sends recognized string to a dialog manager process. After evaluation of this input phrase,
dialog manager sends an output text string to a speaker process, which also uses Google or
A T & T A P I and plays synthesized answer. Also a dialog manager creates a new process for
each started routine. Speaker or listener processes use shared event object. One of them
locks itself, when another uses an audio input/output.

4.2 Modules

Dialog system package contains these modules:

• interpreter.py is a dialog manager, which manages input/output phrases and states
transitions

• link-parser.py Link Grammar Parser bindings
• parser.py module for parsing dialog description files
• phrase.py implements a phrase object, which can be accepted, compared and evalu­

ated
• returns.py manages routine calls to a dialog manager
• scope.py manages shared dialog description and activity code variables scope
• server.py implements a websocket server
• speech.py is a STT and T T S converter, which uses the third-party APIs
• states.py is a state structure of different types, to which transitions can be applied.

4.3 Distribution

In ROS a regular way to create a package is to make a workspace. Workspace is a folder
structure, which contains sources, build, development and installation spaces. Due to the
fact, that Python is a scripting programming language, its software does not require a com­
pilation stage and is distributed as sources. This framework hasn't any ROS dependencies,
so it's distributed as a Python package, not a ROS package. More information about how
dialog system was run at ROS at section 5.1. Source codes of the dialog system framework
was published at the GitHub social coding platform under the M I T license.

4.4 Third-party components

Link Grammar Parser is a natural language processing library. It will be discussed in more
details in section 4.4.

This packages are used for audio processing:

• Portaudio and Pyaudio (portaudio Python bindings) used for recording raw data from
the microphone.

• f lac linux utility for wav to flac conversion.

These external APIs used for speech to text and text to speech processing:

22

• A T & T STT, T T S A P I . Has a high quality speech synthesis. Has higher requests
limits, than Google A P I . Supports a lot of input formats, including a raw data.

• Google STT A P I . At the moment limited to 50 requests/per day for non-commercial
purposes. Works better than A T & T STT. Receives only F L A C data format.

• Google Translator unofficial speech synthesis. Lower quality, than A T & T T T S . Has
a lower response time, unlimited requests.

Link Grammar Parser

For natural language processing this dialog system uses an existing parser named Link
Grammar Parser. This parser is based on the link grammar theory of syntax by Davy
Temperley and Daniel Sleator. This parser is language independent and depends only on
rules database. Rather than N T L K parser, link grammars are suitable for languages with
flexible word order. Besides English language, it has Russian language support.

At the moment of dialog system creation, there wasn't any link parser bindings for
Python 3, but link parser can generate postscript serialized data format. Dialog system
parses postscript format.

Principles. Link grammar uses link rather than part-of-speech tags. Each word has
connectors. Each connector has a type, and direction (left or right). A link connects
connectors. Each word has rules. Sentence is valid, when each of its words has a valid
linkage and global rules are satisfied [21].

Here is an example of a rule:

wordl word2: (A- & B+) or (B- & C- & @D+) & \{E-\};

This rule works for wordl and word2. A- is type A link at the left side. &, or and
brackets create possible variants for linkage. @ represents multi-connector, curly braces
defines non-obligatory connection.

Global rules are planarity rule and connectivity rule. Link can't be crossed and each
word should be indirectly connected with any other.

Here is an example a of structure, received by the link-parser:

Listing 4.1: Parsed sentence structure example.
1 + >WV >+
2 + W d + |
3 | +Ds**c+—Ss-+-0st-+
4 1 I I I I
5 LEFT-WALL my.p name.n is .v John.m

Postscript serialized format:

Listing 4.2: Postscript serialized format example.
1 [(LEFT-WALL)(my.p)(name.n)(is.v)(John.m)]
2 [[0 3 2 (WV)][0 2 1 (Wd)][2 3 0 (Ss)][1 2 0 (Ds**c)][3 4 0 (Ost)]]
3 [0]

Dialog system compares parsed structures not strictly, it compares only high-level links
(Wi - W) . As a future imprrovement it is possible to define links weights. That could
increase phrase selection accuracy.

23

Usage in phrase selection. Natural language processing used as a mechanism for
input phrase selection. Dialog system selects a phrase with the most similar sentence
structure from the expected phrases set. It allows to avoid expressions inside of the dialog
description. And this comparison has a higher quality, than regular expression match.

Main weakness of this method, is that doesn't use recognition quality quotient at the
phrase selection level. Because of it, phrase selection depends a lot on the speech to text
engine quality.

Usage in flexible setters. Natural language processing is also used in flexible setters
mechanism. Following listings showing main principles.

At the dialog description:

Listing 4.3: A phrase at the dialog description.
1 My name is 'name"John'

Preprocessed string is "My name is John,, is directed to the Link Grammar parser.
Parsed dialog description:

Listing 4.4: Syntax tree of sentence "My name is John".
1 + >WV >+
2 + W d + |
3 | +Ds**c+—Ss-+-0st-+
4 1 I I I I
5 LEFT-WALL my.p name.n is .v John.m

Parsed input phrase "My name is Mark,,:

Listing 4.5: Syntax tree of sentence "My name is Mark".
1 + >WV >+
2 + W d + |
3 | +Ds**c+—Ss-+-0st-+
4 1 I I I I
5 LEFT-WALL my.p name.n is .v Mark.b

As we can see, O-type link connects transitive verbs to an objects. Then this phrase
will be selected. Dialog system detect a word in input structure, which has an O-type link
with is .v word. After that, it assigns variable name to the string "Mark,,. We can use
this variable inside later dialog.

Effectivity. At the initialization, dialog system need to parse structures for each
sentence inside a dialog description file. Link parser works relatively slow. To improve
its speed, dialog system caches every parsed structure to a binary file. Link parser speed
grows exponentially by sentence length. But anyway, it is a useful tool for small phrases.
Obviously domestic dialogs do not contains huge monologs. Human-robot communications
mostly contain questions or imperative sentences from a user to a robot.

4.5 Parser unittests

Dialog system is a high risk area. Robots, which interacts with human and with a hu­
man environment are potentially dangerous. Safety is one of the critical issues that must

24

be guaranteed for successful acceptance, deployment and utilization of domestic robots.
Control systems should keep up with mechanical design and actuation advancements to
guarantee stability and provide acceptable manipulation capability [22]. Dialog system, as
a control system, should be highly tested.

Dialog description parser is the core of right dialog systems interpretation. A l l available
escape sequences was tested. Each method of parser class was tested at least with Edge
Coverage (EC), several method was tested using Edge Pair Coverage (EPC) . Regular ex­
pressions was tested by corrsponding control flow graph. By testing, four bug have been
found and all of them are fixed at the moment.

25

Chapter 5

Evaluation

First of all, this dialog system is an interface. Basic software was implemented for experi­
ments on each platform (e.g., robot, web). After the dialog interfaces was implemented.

5.1 Experiments

For an experiment we have created several dialog systems using this framework.

PR2 experiments

To demonstrate dialog system at the PR2 robot, was implemented a dialog interface for
PR2 movement control, this dialog system also allows PR2 to move its head and take a
picture using the camera. The aim is to test dialog system framework with an acceptable
for a domestic environment use-cases.

PR2 control package differs from the regular dialog system framework distribution due
to PR2 hardware/software difference.

First of all we wasn't able to use Kinect microphone at the PR2 robot. Architecture
of the dialog system was changed to client-server architecture. Distributed dialog system
can be executed in network mode. In this case dialog system manager listens a socket for
an input phrase. At the client side starts only part of the dialog system, which listens an
input phrase and recognizes it locally at the client. Anyway, network mode is similar to
the spoken mode and robot speaks all of output phrases using its speakers.

Another problem is PR2 uses ROS hydro distribution. ROS hydro is seventh ROS dis­
tribution release and it's primarily targeted at the Ubuntu 12.04 LTS. Most of this ROS
version Python packages uses Python 2 interpreter, and it's hard to develop a Python3
application under this environment. This problem was solved with execnet Python pack­
age, which allows to run both Python2 and Python3 interpreters and serially communicate
between this interpreters.

Implemented dialog system firstly was ran in the simulation with pr2_gazebo package.
After, when we was tested PR2 control dialog system, we tested it at the PR2 robot.
Everything worked as planned, robot is able to move the platform and the head, able to take
a picture using a dialog interface. Due to robot availability reasons, dialog system for robot
control wasn't tested at the users. We can test all of the metrics, such as recognition quality,
phrase selection quality in another experimental dialog system, which doesn't require a
robot. In addition to that, we have tested this dialog system from the developer's point of
view in section 5.3.

26

Figure 5.1: PR2 robot, on which the experiment was performed.

WebSocket implementation

To make some experiments with this dialog system publicly, we've developed WebSocket
server. Websocket is full-duplex protocol over T C P connection. When connection is estab­
lished, server boot a new dialog system instance in text mode. When user type a phrase into
a browser, JavaScript client side send this phrase to the WebSocket server, which forward
the phrase to the dialog system instance. It works both ways. In the end, we could test our
dialog system throughout the Internet. This Websocket implementation used in interac­
tive demonstration, included to the dialog system online documentation. Anyone can test
predefined dialog system or use this dialog system server in web-based conversation agent
implementation.

5.2 Readability comparison with alternative formats

Here is a comparison of the dialog description in this framework and in alternative solutions:

Listing 5.1: Our dialog description format exmaple.

1 make 'target~me' a 'object_name~coffee'
2 Ok, i'm going to make 'target' a 'object_name'
3 make a 'object_name~coffee'
4 Ok, i ' l l just make a 'object_name'
5 I want 'object_name~coffee'
6 I give you 'object_name'

27

Listing 5.2: A I M L domain description.

1 <category>
2 <pattern>make me a coffee</pattern>
3 <template>
4 Ok, i'm going to make <bot name="target"/> a <bot name="object_name"/>
5 </template>
6 </category>
7 <category>
8 <pattern>make a coffee</pattern>
9 <template>Ok, i ' l l just make a <bot name="object_name"/x/template>

10 </category>
11 <category>
12 <pattern>I want coffee</pattern>
13 <template>I give you <bot name="object_name"/x/template>
14 </category>

A I M L language hasn't natural language understanding features, so we can't equal this
two descriptions.

Another comparison is with OpenDial dialog system framework. OpenDial domain
description can be found in appendix C . l . This dialog system allows movement (base_move
function) and stopping of the robot platform. _ARQ and _RQ are the dialog system service
variables, which contains recognition quality.

Listing 5.3: Dialog description for the movement dailog.

1 go 'way"forward'
2 move 'way"forward'
3 turn 'way~left'
4 'move?'
5 "Move"
6 Ok, moving 'way'
7 "AskRepeat"
8 Sorry, could you repeat?
9 stop

10 'stop?'
11 "Stopping"
12 Ok, stopping
13 "AskRepeat"
14 Sorry, could you repeat?

Listing 5.4: Activity code for the movement dailog.
1 def move(responses):
2 i f _RQ > (0.95 * _ARQ):
3 i f way in ["forward", "straight", "forwards"]:
4 base_move(1.0)
5 e l i f way == "backward":
6 base_move(0.5)
7 e l i f way == "left":
8 base_rotate(-90)

28

9
10
11
12
13
14
15
16
17
18
19
20
21

e l i f way == "right":
base_rotate(90)

else:
responses.put("AskRepeat")
return

Comparing with the XML- l ike descriptions, our format is easy-to-read and briefer. From
the other side, it does not allow changing a description structure. In case of a deep tree
structure this format is not convenient. There are several possibilities to solve this issue:

• named states. Named states, like in OpenDial, should allow to describing transtitions
without a tree structure.

• require escape sequence. This should allow to import a dialog description file into
another one at the selected indentation level.

• scope based states. Question will be available in the expected questions set in case of
valid global scope variable value.

• goto escape sequence. Transition to a tagged set.

The third option is complex, but the most solid. The second option is easy to implement
and will be added in the next version of the dialog system framework.

5.3 Developer review

This dialog system was tested from the developer view. After source codes of this dialog
system was published, two developers tested this framework for their tasks. Here is a review:

Starting of developing various applications which needs "talk" with user is quite
simple with presented dialog system framework. On the GitHub page there
are straightforward installation instructions which are easy to follow. Several
examples are delivered with the dialog system, which user can use as a starting
point for his own application. Beside the github readme page, there is also an
interactive demo, where user can try "talking,, with example application. User
can find there also documentation of D D L (dialog description language), which
is used for definition of dialog system. Various features of presented dialog
system framework are explained here on examples. Usage of this framework
is very easy. User just have to import Dialog class to his python application,
define dialog system in .dig file and create variables and routines which are used
in the dialog description file.

Ing. Michal Kapinus

29

Dialog system (DS) is a comprehensively documented system; it is useful for
a simple human-robot communication. Specific robot implementation is shown
in several examples, designed for PR2 robot. Dialog description language is
easy to understand and flexible enough for a quick start of programming own
dialogs. Python implementation is well designed, classes and their methods are
documented using standard docstrings; there is a set of unit tests. Moreover,
the option is very useful, since it allows to using system in both ways, audio
and text modes.

- Ing. Zdenek Materna

5.4 Input phrase variability

Input variability evaluation was done with a dialog system, described by the code in listing
5.1.

Listing 5.5: Text mode execution of the dialog 5.1.

1 (env) dialog git:(master) python3 examples/evaluation/main.py
2 Data storage path: /Users/xbirgeOO/Desktop/dialog/tmp
3 Dialog system started in text mode by default.
4 ======
5 make me a coffee
6 make a coffee
7 I want coffee
8 ======
9 You> Please make them a huge sandwich without onion

10 ======
11 1.00 [4] make me a coffee
12 1.00 [3] make a coffee
13
14 0.00 [0] R I want coffee (object_name)
15 ======
16 target <= them
17 object_name <= sandwich
18 Bot> 0k, i'm going to make them a sandwich
19 You>

As we can see, dialog system accepted a phrase with semantic difference. 1.00 is a
score of sentence structure. This means, that dialog system found a 100% of this phrase
structure as an input phrase substructure. Second parameter defines absolute number of
shared links. This number is a second sorting key, so dialog system tries to select a phrase
with most advanced structure, if more than one phrases have the same score. It allows to
parse more data from the dialog (target and object_name variables in this case). Under
the threshold we can see a phrase with an R mark. Dialog system provides a guarantee of
semantic parsing. Dialog system can't parse object_name variable for "I want cofee" state.
This state will be rejected even in case if it has a higher score. At the end we have assigned
variables list and an answer phrase, generated by layout engine.

30

structure from the dialog description these links allows to parse

LEFT-WALL please.v make.v them a huge.a sandwich.s without onion.n-u

additional variabilty

Figure 5.2: Sentence structure with additional words.

At the figure 5.2 showed a structure of the parsed sentences. Potentially we can change
input phrase to any other input sentence with this substructure. Phrase variability depends
generally at the Link Grammar parser output and particularly at its dictionary size.

31

Chapter 6

Conclusion

As a result, we have created the dialog system framework, which is an easy-to-integrate
solution. It is proven at the real examples, tested at the real robot. This solution is designed
as a tool for creating of spoken dialog interface for existing robotic software, not as complete
robotic task manager. We can see benefits of dialog system and N L P unit integration. This
allows to easily define semantically parsed data in the domain description and more-or-less
provide a guarantee of the right context in the phrase. This dialog system is focused at
the recognized text-phrases interpretation and uses external speech processing, but dialog
system depends at the STT and T T S technologies a lot. Obtained delay on the answer is
acceptable for an artificial conversation, but not comparable with a human answers delay. It
is hight-priority objective to create fast domain-independent local STT and T T S software.
This work bind interaction with the dialog, but there a lot of thing inside a human-robot
interaction, which can't work apart, for example computer vision and dialog systems, indoor
navigation and object interaction. At my opinion, main goal of the future robotics is to
integrate this solution together.

As for a practical usage of dialog system framework, for now it is possible to implement
dialog interface for robots, which are working under ROS operation system. Also this
framework can be applied for any Python software, without asynchronous calls benefit for
robots. Most relevant spheres, where dialog system software can be applied, are: technical
support, consulting and help service.

Further development of this software lies in reorganizing of the dialog description lan­
guage. Dialog description language should be extended to the non-tree structure, which
allows to loose states and has some scope condition statements. Also we think, that it is
good option to integrate more STT an T T S solutions, including a local TTS engine. This
should reduce the answering delay.

32

Bibliography

[1] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O'Reilly Media, Inc., 1st edition, 2009.

[2] David Bisset. Service robotics use cases: Cleaning, security, other... Vilamoura,
Portugal, 2012. Presented as the I E E E / R S J International Conference on Intelligent
Robots and Systems.

[3] Dan Bohus, Antoine Raux, Thomas K . Harris, et al. Olympus: an open-source
framework for conversational spoken language interface research. Technical report,
School of Computer Science, Carnegie Mellon University, 2007.
h t tp : / /wiki . speech.cs .emu.edu/olympus/ images/1/ la /01ympus-f inal .pdf .

[4] Maya Cakmak. Mental model alignment in human-robot communication. Seattle,
USA, 2013. Presented as the U W - M S R Summer Institute on Understanding Situated
Language in Everyday Life.

[5] H . Cunningham, V . Tablan, A . Roberts, and K . Bontcheva. Getting more out of
biomedical documents with G A T E ' s full lifecycle open source text analytics. PLoS
Computational Biology, 9(2), 2013. h t t p : / / j o u r n a l s . p l o s . o r g / p l o s c o m p b i o l /
ar t ic le?id=10.1371/ journal .pebi .1002854.

[6] Jurčíček Fil ip, Dušek Ondřej, Plátek Ondřej, and Žilka Lukáš. Alex: a statistical
dialogue systems framework. Technical report, Charles University in Prague Faculty
of Mathematics and Physics Institute of Formal and Applied Linguistics, 2014.
ht tp: / /www.tsdconference.org/tsd2014/download/preprints/628.pdf.

[7] Open Source Robotics Foundation. About ROS, 2015.
h t tp : / /www.ros .org /about - ros / [Online; accessed 16-May-2015].

[8] Wilbert O. Galitz. The Essential Guide to User Interface Design: An Introduction to
GUI Design Principles and Techniques. Published by Wiley Publishing, Inc.,
Indianapolis, IN, USA, third edition, 2007.

[9] Willow Garage and Clearpath Robotics. PR2 manual, 2015.
h t tps : / / p r 2 s . c l ea rpa th robo t ics . com/wiki/PR2°/ 020Manual [Online; accessed
16-May-2015].

[10] Claire Gardent. Mental model alignment in human-robot communication. Nancy,
France, 2012. Presented as the Laboratoire Lorrain de Recherche en Informatique et
ses Applications.

33

http://wiki.speech.cs.emu.edu/olympus/images/1/la/01ympus-final.pdf
http://journals.plos.org/ploscompbiol/
http://www.tsdconference.org/tsd2014/download/preprints/628.pdf
http://www.ros.org/about-ros/

[11] Anders Green. Designing and Evaluating Human-Robot Communication. PhD thesis,
K T H Royal Institute of Technology, Stockholm, Sweden, 2009.

[12] S. Larsson and D. Traum. Information state and dialogue management in the trindi
dialogue move engine toolkit. Natural Language Engineering, 6:323-340, 2000.

[13] James Lester, Ka r l Branting, and Bradford Mott. The Practical Handbook of Internet
Computing: Conversational Agents. Chapman and H a l l / C R C , Florida, USA, 2004.

[14] P. Lison. Structured Probabilistic Modelling for Dialogue Management. PhD thesis,
University of Oslo, 2014.

[15] Bryan McEleney and Gregory O'Hare. Decision theoretic dialogue planning for
initiative problems. Technical report, Department of Computer Science, University
College Dublin, 2005. h t tp : / /p laneffd ia .sourceforge .net /um05.pdf .

[16] Timothy Scott McNerney. Tangible programming bricks: A n approach to making
programming accessible to everyone. Master's thesis, Massachusetts Institute of
Technology, Cambridge, M A , USA, 2000.
http:/ /xenia.media.mit .edu/~mcnerney/mcnerney-sm-thesis.pdf.

[17] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45-50, Valletta, Malta, May 2010. E L R A .
h t t p : / / i s .mun i . c z /pub l i c a t i on /884893 / en .

[18] Alison Sander and Meldon Wolfgang. The rise of robotics, August 2014. [Online;
posted 27-August-2014] ht tps: / /www .bcgperspect ives.com/content /ar t ic les/
bus iness_uni t_s t ra tegy_innovat ion_r ise_of_robot ics / .

[19] Nit in Sawhney and Herve Gomez. Communication patterns in domestic life:
Preliminary ethnographic study. Technical report, University of Paris X Nanterre,
Nanterre, France, 2000. h t tp : / / c i t eseerx . i s t .psu .edu/v iewdoc/download?doi=
10.1.1.25.2281&rep=repl&type=pdf.

[20] Marc Schroder. The semaine api: Towards a standards-based framework for building
emotion-oriented system. Advances in Human-Computer Interaction, 2010, 2009.

[21] Daniel D. K . Sleator and Davy Temperley. Parsing english with a link grammar.
Technical report, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA, 1991. http://www .cs.cmu.edu/afs/cs.cmu.edu/project/
link/pub/www/papers/ps/tr91-196.pdf.

[22] T.S. Tadele, T. de Vries, and S. Stramigioli. The safety of domestic robotics: A
survey of various safety-related publications. Robotics Automation Magazine, IEEE,
21(3):134-142, Sept 2014.

[23] Steph Tryphonas, Jerry Carter, Daniel Burnett, Brandon Porter, Peter Danielsen,
Scott McGlashan, Bruce Lucas, J im Ferrans, Kenneth Rehor, and Andrew Hunt.
Voice extensible markup language (VoiceXML) version 2.0. W3C recommendation,
W3C, March 2004. http://www.w3.org/TR/2004/REC-voicexml20-20040316/.

34

http://planeffdia.sourceforge.net/um05.pdf
http://xenia.media.mit.edu/~mcnerney/mcnerney-sm-thesis.pdf
http://is.muni.cz/publication/884893/en
https://www.bcgperspectives.com/content/articles/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/
http://www.w3.org/TR/2004/REC-voicexml20-20040316/

Appendix A

CD Content

— poster.pdf

— sources

— L I C E N S E . t x t

— README.md

— clean.sh

— dialog

I — i n i t .py

I — int erpr et er. py

I — link_parser.py

I — parser.py

I — phrase.py

I — returns.py

I— scope.py

I— server.py

I — speech.py

+— states.py

— docs

+— . . .
— examples

+— . . .
— i n i t . s h

— remote

I — spoken_mode.py

+— text_mode.py

— setup.py

+— tests

+— . . .

thesis

+— . . .

thesis.pdf

poster

M I T license

readme and manual

environment leaving script

dialog systems framework sources

generated documentation

examples of the dialog systems

environment setup script

remote dialog system components

installation scripts
tests for the parser

tech. report LaTeX sources

tech. report

35

Appendix B

Manual

B . l Virtual environment installation

Please, make sure, that you have a python3 and pip3 and/or easy_install-3.x installed.
Also curl utility is needed.

sudo apt-get instal l python3-setuptools python3.4-dev python3-pip

It is possible to create a virtual environment with python dependencies. Make sure,
that you have pyvenv-3.4. Only this version of pyvenv works great with pip3. To check,
if pyvenv-3.4 is installed:

which pyvenv-3.4

You should see a path to the executable. If it is available, you can run initialization
script:

. . / in i t . sh

in i t . sh file creates a virtual environment, downloads and compiles the Link Grammar
parser. Anyway, to run spoken dialog system you also need to install this packages:

sudo apt-get instal l portaudiol9-dev mpgl23 flac

After, you can run examples:

python3 examples/pr2_control/main.py

To leave the virtual environment:

deactivate

To activate the environment again:

source env/bin/activate

To leave and delete the virtual environment:

. ./clean.sh

36

B.2 Custom installation

Recommended way to install this package is using the pip3. Run this command inside of
a project directory.

pip3 instal l . /

If you do not have a root:

pip3 instal l —user . /

After this command, you can import dialog system framework inside of your python3
programs. Also this installation adds a command-line dialog_system command. Use this
command to run slave activity code.

To uninstall this package:

pip3 uninstall dialog

B.3 External dependencies

A l l of this dependencies will be automatically installed in case of environment setup. This
dependencies required only in case of a custom installation. This DS framework use Link
Grammar parser for natural language processing. You can install Link Grammar parser
from the aptitude:

sudo apt-get instal l link-grammar

Another option is to compile from sources: ht tp: / /www.abisource.com/projects /
link-grammar/#download. DS tested with the 5.2.5 version.

If you would like to run spoken dialog system (not in text mode):

sudo apt-get instal l portaudiol9-dev mpgl23 flac
easy_install-3.x pyaudio

For WebSocket DS you also need a Tornado webserver:

pip3 instal l tornado

B.4 Getting started

Your code could have this structure:

Listing B . l : Activity code structure.
1 from dialog import Dialog
2
3 # your variables definitions
4 # your functions/callable objects definition
5
6 i f name == " main ":
7 DLG = Dialog(globalsO, storage="./")
8 DLG.load("example.dig")
9 DLG.start_spoken()

37

http://www.abisource.com/projects/

In storage directory DS will create tmp folder for recorded answers/questions and sen­
tences database. Storage directory by default is the current directory. DLG.start_text()
or DLG. start_spoken() methods defines spoken or text mode.

First of all, take a look at the unfinished documentation here: h t tp : / /markb i rge r .
i n f o / d i a l o g / . It also includes version 0.2 interactive demo. This version doesn't support
duplex routines, but can explain some principles.

In examples directory you can find a few usage examples:

• features_demo uses all DS framework features

• pr2_control allows to control PR2 robot

B.5 PR2 setup

The PR2 robot don't have an access to the Kinect microphone. Spoken DS is not be able
to record an audio at the PR2. We've created a DLG.start_socket(port=42424) option
to run DS. In this example dialog system listens 42424 port, receives text messages and
responds with speech. You need to run special remote configuration at the basestation,
which can send recognized messages to the socket.

python3 remote/text_mode.py -p 42424 127.0.0.1
python3 remote/spoken_mode.py -p 42424 127.0.0.1

Note, that spoken mode client stores questions in ./tmp/ directory!

38

http://markbirger

Appendix C

OpenDial domain description

Listing C . l : OpenDial domain definition.

1 <!— Author: Pierre Lison, Language Technology Group —>
2 <!— University of Oslo —>
3 <!— Step-by-step example. —>
4 <!— The f u l l XML specification for the dialogue domain. —>
5 <!— https://github.com/plison/opendial —>
6 <!— domains/examples/example-step-by-step_fixed.xml —>
7
8 <?xml version="l.0" encoding="UTF-8"?>
9 <domain>

10 <!~ NLU model —>
11 <model trigger="u_u">
12 <rule>
13 <case>
14 <condition operator="or">
15 <if var="u_u" value="turn * left" relation="contains" />
16 <if var="u_u" value="move * left" relation="contains" />
17 <if var="u_u" value="go * left" relation="contains" />
18 </condition>
19 <effect prob="l">
20 <set var="a_u" value="Request(Left)" />
21 </effect>
22 </case>
23 <case>
24 <condition operator="or">
25 <if var="u_u" value="turn * right" relation="contains" />
26 <if var="u_u" value="move * right" relation="contains" />
27 <if var="u_u" value="go * right" relation="contains" />
28 </condition>
29 <effect prob="l">
30 <set var="a_u" value="Request(Right)" />
31 </effect>
32 </case>
33 <case>

39

https://github.com/plison/opendial

34 <condition operator="or">
35 <if var="u_u" value="move * forward" relation="contains" />
36 <if var="u_u" value="go * forward" relation="contains" />
37 <if var="u_u" value="move * forwards" relation="contains" />
38 <if var="u_u" value="go * forwards" relation="contains" />
39 <if var="u_u" value="go * straight" relation="contains" />
40 </condition>
41 <effect prob="l">
42 <set var="a_u" value="Request(Forward)" />
43 </effect>
44 </case>
45 <case>
46 <condition operator="or">
47 <if var="u_u" value="move * backward" relation="contains" />
48 <if var="u_u" value="go * backward" relation="contains" />
49 </condition>
50 <effect prob="l">
51 <set var="a_u" value="Request(Backward)" />
52 </effect>
53 </case>
54 <case>
55 <condition>
56 <if var="u_u" value="stop" relation="contains" />
57 </condition>
58 <effect prob="l">
59 <set var="a_u" value="Request(Stop)" />
60 </effect>
61 </case>
62 </rule>
63 </model>
64
65 <!— Action selection model —>
66 <model trigger="a_u">
67
68 <rule id="movement">
69 <case>
70 <condition>
71 <if var="a_u" value="Request({X})" />
72 </condition>
73 <effect util="l">
74 <set var="a_m" value="Move({X})" />
75 </effect>
76 </case>
77 </rule>
78 <rule id ="negative">
79 <case>
80 <effect util="-0.5">
81 <set var="a_m" value="Move(*)" />

40

82 </effect>
83 </case>
84 </rule>
85 <rule id="repeat">
86 <case>
87 <effect util="0 .2">
88 <set var="a_m' " value="AskRepeat" />
89 </effect>
90 </case>
91 </rule>
92 </model>
93
94 <!— NLG model —>
95 <model trigger="a_m">
96 <rule>
97 <case>
98 <condition>
99 <if var="a_m" value="Move({X»" />

100 </condition>
101 <effect util="l' ">
102 <set var="u_m' " value="0k, moving {X}" />
103 </effect>
104 </case>
105 <case>
106 <condition>
107 <if var="a_m" value="AskRepeat" />
108 </condition>
109 <effect util="l' ">
110 <set var="u_m' " value="Sorry, could you repeat?" />
111 </effect>
112 </case>
113 </rule>
114 </model>
115
116 <!— Prediction model for the next user dialogue act —>
117 <model trigger="a_m">
118 <rule>
119 <case>
120 <condition>
121 <if var="a_m" value="AskRepeat" />
122 </condition>
123 <effect prob="0 .95">
124 <set var="a_u' ~p" value="{a_u}" />
125 </effect>
126 </case>
127 </rule>
128 </model>
129 </domain>

41

Appendix D

Poster

DIALOG SYSTEMS FRAMEWORK
j Easy-to-use | t

General domain I Easy-to-use I Natural

t t t t t
t t t t t

consumers expect
domestic robots
in less than next 25 years

HOW TO CREATE DIALOG INTERFACE?

1. Make or select a software
It's possible to create interface for any
Python software. You can use all of the
ROS features in Python

2. Describe a dialog in the dialog
description format

???????
3. PROFIT for user and developer

THE MAIN FEATURES

Auto semantic parsing

| _ ^ " | Shared variable scope

Spoken dialog systems . 5 ^ ^ >

ĵ f̂r Asynchronous activities

: : : R O S
• • • Enabled

1 BRNO
UNIVERSITY

/ OF TECHNOLOGY

CONTROL YOUR ROBOTS USING SPEECH

TRY AN INTERACTIVE DEMO AT THE DOCS

SUPERVISOR: P A V E L SMRŽ

FACULTY
OF INFORMATION
TECHNOLOGY

Fork at the Github!
kusha/dialog (MIT)

: : \ 3] v _.3 : i IA: : =:VAI:AT_ 3 3 3 3 3 : \ :-.A\ : : v : ;::\ : ' -T- :\3: : IVVAT =:.\:AT:\ :='E . S:^CE RDBDTICE FOUNDATION, tec BY 3.0:

Figure D . l : Research illustration.

42

