FAKTORY OVLIVŇUJÍCÍ MNOŽSTVÍ A KVALITU LÁTEK FENOLICKÉ POVAHY V RODU SALVIA L. (ŠALVĚJ)

Bakalářská práce

Vedoucí bakalářské práce: Ing. Jarmila Neugebauerová, Ph.D.
Vypracovala: Markéta Šístková

Lednice 2016
Čestné prohlášení

Prohlašuji, že jsem tuto práci: **Faktory ovlivňující množství a kvalitu látek fenolické povahy v rodu *Salvia* L. (šalvěj)** vypracoval/a samostatně a veškeré použité prameny a informace jsou uvedeny v seznamu použité literatury. Souhlasím, aby moje práce byla zveřejněna v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách ve znění pozdějších předpisů, a v souladu s platnou Směrnici o zveřejňování vysokoškolských závěrečných prací.

Jsem si vědom/a, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzavření licenční smlouvy a užít této práce jako školního díla podle § 60 odst. 1 Autorského zákona.

Dále se zavazuji, že před sepsáním licenční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity o tom, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity, a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla, a to až do jejich skutečné výše.

V Lednici dne 2016

Poděkování

Ráda bych poděkovala své vedoucí práce Ing. Jarmile Neugebauerové, Ph.D., za veškerou pomoc, kterou mi během psaní bakalářské práce poskytla, zejména za její rady, které se týkaly odborné stránky této bakalářské práce.
Obsah

1 Úvod .. 6
2 Cíl práce .. 7
3 Literární přehled .. 8
4 Léčivé a kořenínové rostliny ... 8
3.2 Salvia - šalvěj .. 9
 3.2.1 Historie .. 9
 3.2.2 Charakteristika rodu a vybraných druhů .. 10
 3.2.3 Sběr a pěstování .. 16
 3.2.4 Posklizňové úpravy a skladování .. 20
3.3 Obsahové látky šalvěje ... 21
3.4 Charakteristika obsahových látek .. 22
 2.1.1 Silice ... 22
 2.1.2 Antokyany .. 23
 2.1.3 Kumariny .. 24
 2.1.4 Flavonoidy ... 25
 2.1.5 Hořčiny .. 25
 2.1.6 Třísloviny ... 26
 2.1.7 Fenolové kyseliny a deriváty ... 28
3.5 Látky fenolické povahy .. 28
 3.5.1 Neflavonoidní fenolické látky ... 28
 3.5.2 Flavonoidní fenolické látky .. 31
 3.5.3 Ostatní fenolické látky .. 32
3.6 Metody získávání obsahových látek .. 32
3.7 Faktory ovlivňující obsahové látky ... 35
 3.7.1 Půda .. 35
 3.7.2 Podnebí .. 38
 3.7.3 Poloha .. 40
 3.7.4 Allelopatie ... 41
 3.7.5 Živiny v půdě ... 42
 3.7.6 Hnojení .. 45
 3.7.7 Doba sklízně ... 46
 3.7.8 Posklizňové zpracování .. 46
 3.7.9 Škůdci, onemocnění a plevel ... 47
4 Závěr .. 48
5 Souhr + Resume .. 49
1 Úvod

Šalvěj lékařská pochází ze Středomoří. U nás. první dochované písemné zmínky o šalvěji jsou z 4. století před naším letopočtem od autora Theofrasta. šalvěj je velice stará rostlina, která se dochovala do dnešní doby v hojné míře a je stále používána jak v léčitelství, tak v kuchyni. Velmi oblíbenou je také v okrasných zahradách či záhonech a při aranžování.

Šalvěj se, od počátku jejího objevení, používá na téměř jakékoliv onemocnění. Je zejména účinná při léčbě onemocnění dutiny ústní, zubů či dásní. Na počátku byla používána na osvěžení myslí a bystřejší paměť, v dnešní době ji zůstala funkce antiseptické, antifungicidní a desinfekční byliny. V kuchyni se často využívá ke koření a aromatizaci masa a sýrů. Také napomáhá uchovávání a konzervaci potravin.

Hlavní obsahovou látkou šalvěje lékařské je silice, která obsahuje zejména thujon, 1,8-cineol, kafr, borneol, linalool, monoterpeny a sesquiterpeny. Dalšími obsahovými látkami jsou třísloviny, hořčiny a pryskyřice.

Šalvěj muškátová se liší svými obsahovými látkami, především v silici. V silici jsou obsaženy látky octan linalylový, linalool, geranyl acetát a α-terpineol.

Šalvěj červenokojenná obsahuje v kořeni kyselinu rozmarýnovou, lithospermovou, salvianolovou, šalvějovou, dále tanšinony, vitamín E, taniny a další látky.

Faktory ovlivňující složení a množství obsahových látek ve vybraných šalvějích jsou důležité z hlediska pěstování a možnosti ovlivnění výnosu jak rostlinné hmoty, tak fenolických látek v různých částech rostliny. Jedná se o faktory vnitřní či vnější.
2 Cíl práce

Cílem práce na téma Faktory ovlivňující množství a kvalitu látek fenolické povahy v rodu *Salvia* L. (šalvěj) je:

- shromáždит aktuální literární podklady o vnitřních a vnějších faktorech ovlivňujících obsa a složení látek fenolické povahy ve vybraných druzích rodu *Salvia* L.,
- podrobně se zabývat rozdělením, funkcí a chemismem fenolů, ve vztahu k léčivým rostlinám a především k taxonům rodu *Salvia* L.,
- shromáždит informace z odborných článků, porovnat použité metodiky hodnocení fenolických látek.
3 Literární přehled

3.1 Léčivé a kořeninové rostliny

Léčivé a kořeninové rostliny je občas těžké rozdělovat, protože mnoho z jejích vlastností může být v obou funkcích – mít jak léčivé, tak kořeníčí účinky. Mezi tyto rostliny se často zařazují i některé zeleniny (cibule, česnek, křen atd.) a další plodiny jako je čekanka, hořčice či mák.

Jako kořeninové rostliny se určují ty, které mají charakteristickou vůni či chuť a používají se její části – listy, nať, plody, květy, k ochucení a upravení pokrmů. Mohou být čerstvé či sušené. Jsou využívány pouze v malých množstvích.

Aromatickými rostlinami myslíme takové, které jsou charakteristické vůni a které jsou díky této vlastnosti využívány.

Setkáváme se s tím, že více zástupců rostlinné říše, je zařazeno do více kategorií. Obzvláště léčivé rostliny nejsou typickými kulturními rostlinami. Jedná se o pěstování vycházejícího z poznatků o vývojových cyklech rostliny a také pomocí šlechtitelství.

Dělíme tyto rostliny do skupin podle nejvýznamnějších a v největším množství obsažených látek, ve výjimkách podle celého komplexu látek. Bohužel ani v dnešní době stále neznáme veškeré látky obsažené v některých rostlinách (KŘIKAVA, 1993).
3.2 *Salvia* - šalvěj

3.2.1 Historie

V roce 1832-1836 vznikla kniha *Genera et Species Labiatarum* autora George Benthama, která čítala 291 druhů šalvějí. V roce 1837 přidal John Cree dalších 31 druhů šalvěje (SUTTON, 1999).
Šalvěj má i další významné účinky a vlastnosti, např. jako zmlazující posilující prostředek, zvyšuje ženskou plodnost a mužskou potenci, zlepšuje výkonnost paměti, pomoc při bolestech a onemocnění zubů, dásní a celé dutiny ústní (BÜHRING, 2007).

3.2.2 Charakteristika rodu a vybraných druhů

Jedná se o jednoleté, dvouleté či vytrvalé aromatické byliny nebo polokeře, které jsou žláznaté, chlupaté až bělovlnaté, ale málokdy olysalé. Jejich lodyhy jsou přímé a větvené, mají jednoduché, vetšinou celistvé lodyžní listy a často také vyvinutou přízemní růžici listů.

Pylová zrna jsou šesti- nebo sedmikolpátní, s retikulátní skulpturou. Podsemeníkový žláznatý val je čtyřlaločný, s předním lalokem nejdelším. Laloky jsou celistvé, čnělka je nit'ovitá a blizna dvouramenná.

Tvrdky mají kulovitý, vejcovitý až široce elipsoidní tvar a u mnoha druhů ve vlhku vytváří tlustý slizový obal.

Vyskytuje se asi 900 druhů, které jsou rozšířené ve všech částech Starého a Nového světa. Mnohé druhy se pěstují jako léčivé nebo okrasné rostliny.

Tento rod se dále dělí na jednotlivé sekce – Salvia (syn. Salvia sect. Eusphace Bentham) a Aethiopis (Salvia sect. Stenarrhena (D. Don) Briq.), další sekci je Drymosphace Bentham, Plethiosphace Bentham. Do sekce Salvia je v České republice
zařazen druh *Salvia officinalis* a do sekce *Aethiopis* je řazena *Salvia sclarea*, *Salvia aethiopis*, *Salvia spinosa*. Do sekce *Drymosphace* zařadíme *Salvia glutinosa*. Do poslední sekce *Plethiosphace* řadíme *Salvia austriaca*, *Salvia pratensis*, *Salvia verbenaca*, *Salvia nemorosa* a *Salvia viridis*.

Salvia officinalis L. – šalvěj lékařská

Šalvěj lékařská je polokeř dorůstající do výšky 20-70 cm. Celá rostlina je silně aromatická, s bohatě větveným hlavním kořenem. Její šedoplstnatá lodyha je přímá, čtyřhranná, zřídka kdy větvená a rovnoměrně po celé délce olistěná.

Listy jsou vstřícné, řapíkaté, řapík je 1-5 cm dlouhý. Čepel má podlouhle vejčitý až vejčítě kopinatý tvar, je 35-80 mm dlouhá a 8-20 mm široká. Čepel je na bázi klinovitá až zaokrouhlená a jemně zubatá. Někdy se na bázi vyskytují dva vykrojené segmenty. V mládí je čepel hustě šedoplstnatá, později již olysávající a na svrchní straně má vnořenou žilnatinu, což vytváří dojem svraskalosti.

Obě ramena spojidel jsou přibližně stejně dlouhá, s fertilními prašnými váčky. Podsemeníkový žláznatý val má krátké postranní laloky.

Tvrdky jsou přibližně kulovité, mají 2-3 mm v průměru a jsou tmavohnědé.
Šalvěj lékařská kvete v květnu až červenci.

Je původní planou rostlinou v jižní Evropě a Malé Asii. Pro průmyslové účely je pěstována na teplejších územích i jinde v Eurasií a v Severní Americe. U nás je pěstována a oblíbená zejména jako léčivka (ŠTĚPÁNKOVÁ, 2000).

Tento druh má široké použití ve farmaceutickém průmyslu. Její oficinální drogou jsou za květu sbírané listy (Folium salviae) a nať (Herba salviae). Používá se obvykle ve směsi s jinými bylinami jako čajovina (léčivé čaje Diabetan, Species pectorales, Tormentan aj.). Extrakt z listů je používán pro antiseptické a fungicidní účinky k desinfekci (tinktura Florsalmin). A pro své aromatické vlastnosti se také přidává do různých směsí koření (ŠTĚPÁNKOVÁ, 2000).

Drogou šalvěje lékařské je list (Salviae officinalis folium), sušené listy sbírané těsně před rozkvětem. Dále se jedná o silici šalvěje lékařské (Salviae officinalis aetheroleum) (SCHÖNFELDER et SCHÖNFELDER, 2010). Ze šalvěje lékařské se využívá také šalvějová nať (Salviae officinalis herba). Droga je hořké a svíravé chuti, velmi aromatická a se specifickým pachem. Množství povolených cizích příměsí je nejvíce 2 % příměsí anebo 3 % v případě stonků, které jsou větší než 5 mm. Celkový popel je povolen do hodnoty nejvýše 10,0 %.

Jedná-li se o list šalvěje lékařské, obsah silice musí být nejméně 15 ml/kg neřezané drogy a minimálně 10 ml/kg řezané drogy. V silici šalvěje lékařské je velké množství thujonu. Cizí příměsi jsou povoleny do 3 % stonků a maximálně 2 % jiných příměsí. Obsah celkového popelu je povolen maximálně do 10,0 % (ČESKÝ LÉKOPIS, 2009).

Velmi oblíbená je jako okrasná rostlina v zahrádkách (ŠTĚPÁNKOVÁ, 2000). Šalvěj má mnoho významných kultivarů s různými znaky.
Vybrané kultivary:

´Albiflora´ – tento kultivar má čistě bílé květy, má stejné léčivé účinky jako běžná šalvěj lékařská, využívá se také v kuchyni na dochucení masa, sýrů a dalších jídel, je jedna z rostlin v bylinných směsích.

´Bicolor´ - kultivar má žlutě panašované listy, aroma i léčivé účinky se nemění, musí se množit vegetativně se zárukou kvality a především pravosti.

´Purpurascens´ – Kultivar má purpurově červeně až fialově zbarvené listy, léčivé účinky silné, využívá se v kuchyni. Dále je využíván jako okrasná rostlina.

´Tricolor´ – Odrůda s trojbarevnými listy – šedozelená hlavní barva, bílé okraje a fialové dobarvení, které se vyskytuje pouze na některých listech. Její léčivé účinky se nemění, jsou stejné jako u základního druhu. Množí se vegetativně k zajištění barevnosti. Pro barevnost listů se často vyskytuje v okrasných zahradách či záhonech (ZAHRADNICTVÍ KRULICHOVI, 2006).

´Variegata´ – Kultivar má zelené listy se žlutobílým okrajem (FRANC, 2009). Má jemnější vůni než ostatní druhy a využívá se zejména jako okrasná rostlina (HABÁN et al., 2009).

Další sekci rodu *Salvia* je sekce nazvaná *Aethiopis* Bentham. Synonymem tohoto názvu je *Stenarrhena* (D. Don) Briq..

Salvia sclarea L. – šalvěj muškátová

Je to dvouletá až vytrvalá, silně aromatická bylina s bohatě větveným hlavním kořenem. Lodyha je přímá, vysoká 30-140 cm, větvená a hustě chlupatá. V horní části je žláznatě chlupatá a má vyvinutou přizemní listovou růžici.

Dolní lodyžní listy jsou dlouze řapíkaté, 4-10 cm dlouhé. Čepel je vejčitá až podlouhle vejčitá, 6-25 cm dlouhá, 3-18 cm široká a na bázi srdčitá. Na okraji je
Chobotnatá, na obou stranách s jednoduchými chlupy a vtroušenými, přisedlými žlázkami. Vnořená žilnatina vytváří nápadné svraskání.

Kratší ramena spojidel jsou lopatkovitě rozšířená a navzájem srostlá.

Tvrdky mají tvar vejcovitý, jsou 2-3 mm dlouhé a tmavě hnědé.

Šalvěj muškátová kvete v červnu a červenci.

Vzhledem ke svému vysokému obsahu aromatických látek se používá ve voňavkářském, potravinářském a farmaceutickém průmyslu pro aromatizaci některých produktů. Dříve se hojně používala i v lidovém léčitelství (ŠTĚPÁNKOVÁ, 2000).

Drogou šalvěje muškátové je Sclareae herba, jedná se o kvetoucí vršky výhonů. A především silice, Salviae sclareae aetheroleum (SCHÖNFELDER et SCHÖNFELDER, 2010). Tato silice se získává ze sušených či čerstvých kvetoucích
stonků šalvěje muškátové pomocí destilace s vodní parou. Je bezbarvá, hnědě žlutá nebo světle žlutá kapalina s charakteristikým pachem.

V případě sílce šalvěje muškátové se čistota hodnotí pomocí relativní hustoty (0,890-0,908), indexu lomu (1,456-1,466), optické otáčivostí (-26 ° až -10 ° úhlu optické otáčivosti) a čísla kyselostí (nejvýše 1,0) (ČESKÝ LÉKOPIS, 2009).

Salvia miltiorrhiza Bunge – šalvěj červenokořenná

Je původní v oblastech severovýchodní Číny a severní části Japonska. Dnešní oblasti rozšíření se nachází na různých místech Asie, Evropy, Austrálie, Jižní i Severní Ameriky (SALVIA PARADISE SHOP, 2006). Vyskytuje se na slunných svazích, okolo cest, na březích kanálů a na okrajích lesů (VALÍČEK, 2010).

Využívá se po staletí zejména v tradiční čínské medicíně. Velmi známá je i v Japonsku nebo ve Spojených státech amerických, u nás její využití teprve narůstá.

Její léčivé účinky jsou především využívány v léčbě a prevenci kardiovaskulárních chorob, zlepšuje vlastnosti krve, podporuje krevní oběh, snižuje koncentraci cholesterolu, zvyšuje se pružnost cév, pomáhá při onemocnění jater a sleziny. Míchá se do směsi pomáhající při diabetu II. typu. Dále se využívá při astmatickém zánětu průdušek, u různých druhů cirhóz, hepatitidy B, při chronickém zánětu prostaty a k podpoře hojení epitelové tkáně.

V moderní medicíně jsou využívány její účinky v řadě případů, například angina pectoris, srdeční ischemie, bušení srdece, srdeční arytmie, stav po infarktu nebo mrtvici,
záněty žil, trombózy, embolie, křečové žíly, ateroskleróza, žilní nedostatečnost dolních končetin a v mnoha dalších.

Využívá se jejich silných antioxidačních účinků. A také má pozitivní vliv na prevenci a účinek při léčbě rakoviny.

Pěstuje se u nás poměrně obtížně, je zvyklá na jiné prostředí. Preferuje dobře zavlažovanou půdu a dokáže přežít i teploty do -10 °C. Kořeny se sklízí u tříletých rostlin až na podzim v podvečerních hodinách. Doporučuje se kořeny sušit (SALVIA PARADISE SHOP, 2006).

Drogou šalvěje červenokořenné je kořen a oddenek (Salviae miltiorrhizae radix et rhizoma). Jedná se o sušený oddenek a kořen, který je sbíraný na jaře či na podzim. Může být celý či úlomky kořene. V droze musí být obsaženy nejméně 3,0 % kyseliny salvianolové a 0,12 % tanšinonu IIA. Celkový obsah popela je povolen do hodnoty 10 % a popela nerozpustného v kyselině chlorovodíkové maximálně 3,0 % (ČESKÝ LÉKOPIS, 2009).

3.2.3 Sběr a pěstování

Sběr

Chemické složení rostlin se během dne mění – nadzemní části mají největší obsah účinných látek ráno, jakmile oschní ranní rosa a než slunce vysuší většinu vlhkosti. Kořeny zase nejvíce večer a v noci (BRISTOW, 2005).

Rostliny se před vysokými teplotami chrání vypařováním silic (BÜHRING, 2007).
Nať se sbírá na začátku rozkvětu, protože rostliny všechny své síly soustředí do květů. Nať se může u některých druhů také sbírat ještě před rozkvětem. Sklízení probíhá asi 2-3 x do roka, z toho první obsahuje nejvíce účinných látek. V průběhu dne je ideální dobou poledne (GATO, 2013). Nať ve velkém množství v zemědělství se sklízi srpem či žacím nakladačem. Je ponecháno vyšší strniště 5-10 cm, a tím umožníme další sklizeň během vegetace (KŘIKAVA, 1993).

Během sušení se vytrácí z rostlinného materiálu voda, což vlastně znamená, že dochází ke konservaci a léčivá bylina se mění v rostlinnou drogu (BRISTOW, 2005).

Pěstování

V lidovém léčitelství je využívána také šalvěj luční (Salvia pratensis L.), která má ovšem prokazatelně jiné složení účinných látek. Významnou látkou šalvěje luční je silice (0,073 %) s hlavní složkou E-karyofylenem (26,4 %). Kafru, α-pinenu, sabinenu a limonenu bylo v silici malé množství 0,1 %. Množství 1,8-cineolu bylo 0,4 % (ANAČKOV et al., 2008). Nadzemní části šalvěje luční obsahují zejména triterpenoidy – germanicol, β-amyrin, lupeol a loranthol (ANAYA et al., 1989).

Šalvěj muškátová (Salvia sclarea) snáší suchá stanoviště, a proto roste často na pobřeží (TIBALDI et al., 2010). Jinak není příliš náročná na pěstování, často se pěstuje jen pro vůni a vysoké barevné lichopřesleny, které kvetou od června do září (BRISTOW, 2005).

Šalvěj má raději slunné polohy, s jižním sklonem a chráněným stanovištěm. Roste na humózních, vápenatých, středně těžkých půdách. Vhodné nejsou jílovité nebo podmáčené půdy. Jedná se o suchovzdornou, mrazuvzdornou rostlinu, která dobře přezimuje v oblastech s teplotami do -30 °C. V průběhu vegetace je ovšem náročná na teplo. V případě nízkých teplot v průběhu vegetace se snižuje úroda. Může se jednat o rostlinu, která tvoří podkulturu v mezírádcích u ovocných výsadeb (KŘIKAVA, 1993).
Před zakládáním porostu, během základního zpracování půdy je nutné nahnojit, ideálně hnojem živočišného původu, přibližně v dávce 20-30 t/ha. V případě, když je pH půdy nízké, upraví se vápněním, dávkou 1,5 t/ha. Z průmyslových hnojiv lze použít před výsevem či výsadbou dusík (45 kg/ha), superfosfát (50-60 kg/ha) a draselná sůl (40 kg/ha). Rostliny jsou na jednom místě 5-7 let, ale po čtvrtém roce se výnos snižuje.

V ideálních podmínkách k pěstování se využívají pozemky mimo hlavní osevní postup (MOUDRÝ et KALINOVÁ, 2004).

Množí se přímým výsevem či pomocí předpěstovaných sazenic. Dalším způsobem může být i vegetativní množení (KŘIKAVA, 1993).

V případě přísad, výsevy probíhají v březnu a dubnu do pařeniště. Na 1 hektar je potřeba 1500 g osiva. Přísady se vysazují v dubnu a červnu, ve vzdálenosti 50x20 cm (NEUGENBAUROVÁ et NEČAS, 2009).

Přepichování probíhá ve stádiu klíčících rostlin na vzdálenost asi 5x5 cm. Po přepichování sazenice získá lepší kořenovou soustavu a silnější vzrůst rostliny. Asi 10-12 dní před výsadbou je nutné sazenice otužit větráním a omezením závlahy. Vysazujeme, jakmile mají přibližně 3-4 pravé listy nebo po odeznění jarním mrazíků (KŘIKAVA, 1993).

V prvních dvou až třech letech se formuje malý keř, proto je nutné u těchto víceletých rostlin podpořit zakořeňování. Na jaře se pak šalvěj seřeže na 8-10 cm od země. Od třetího roku a dál se seřezává ještě niž, až těsně nad zem. Tímto získáme mladé letorosty, které nebudou mít květenství.

Jestliže pěstujeme rostliny na semeno, ponecháme ty, které jsou nejvíce vyvinuté a nejschopnější. V plné zralosti se rostliny posbírají, semena se vymlátí a vyčistí. Na slunci se nechají vyschnout 1-2 dny. Z 1 ha pozemku získáme až 150-200 kg osiva (KÓŇA, BARÁTOVÁ, KÓŇOVÁ, 2013).

Výnos šalvěje jsou mezi 2-3 t sušené drogy na 1 hektar. Neskleněná šalvěj slouží jako pastva pro hmyz, hlavně včely (KŘIKAVA, 1993).

3.2.4 Posklizňové úpravy a skladování

Posklizňové úpravy šalvěje probíhají přirozeným nebo umělým teplem po teploty do 40 °C (NEUGEBAUERová et NEČAS, 2009).

Na usušení květů je potřeba 3-8 dnů, v případě listů 3-6 dnů (BÜHRING, 2007).

Při sušení rostlinný materiál ztrácí většinu svého objemu a hmotnosti. Sesychací poměry jsou –kořeny 3-4:1; nať 4:1; list 5:1. Výnos silice je 8-10 kg/ha, výnos suché nať 2-3 t/ha, listů 1-1,5 t/ha (MOUDRÝ et KALINOVÁ, 2004).

Dalšími vhodnými způsoby skladování šalvěje je zamrazení a naložení do octa nebo oleje.

Zmrazování je vhodné zejména pro bylinky kuchyňské. Lze je zmrazit jednotlivě a poté uskladnit v sáčku, nakrájet a zmrazit po porcích nebo zamrazit například ve
formě na ledové kostky. Nikdy není vhodné rozmrazené bylinky znovu zamrazovat. Takto uskladněné vydrží 6-8 měsíců, nejdéle jeden rok.

Naklápání do octa nebo oleje způsobí odebrání obsahových i chuťových látek médiem. Používá se na skladování kuchynských bylinek. Používají se pouze kvalitní oleje. Směs se luhuje na světlém místě dva až tři týdny a poté se předči přes sítko, aby se odstranily kousky bylinek. Postup k výrobě octa je totožný. Liší se jen tím, že oct při zalévání je zahřátý a nechává se louhovat několik týdnů (AHNERT, 2007).

3.3 Obsahové látky šalvěje

Ve všech částech šalvěje lékařské, kromě zdřevnatělých stonků jsou obsaženy tyto látky – silice (v listech 1-2,5 %), třísloviny (3-8 %), hořčiny, pryskyřice a další. Typy a množství látek v silici je následující – thujon (30-60 %), cineol (15 %), kafr (8 %), borneol (6 %) a pínen a jiné (GROMOVÁ, 1993). Autoři Schönfelder a Schönfelder uvádí, že silice obsahuje 35-60 % thujonu, 6-16 % cineolu (eukalyptolu), 14-37 % kafru a dále borneol, linalool, monoterpeny a sesquiterpeny. Další látky obsažené v šalvěji jsou třísloviny – například kyselina rozmarýnová; dále diterpenové hořčiny (karnosol nebo pikrosalvin), triterpeny (kyselina ursolová), fenolové glykosidy a flavonoidy.

Šalvěj muškátová v nadzemních částech obsahuje silici. V silici byl obsažen především octan linalylový (19,75-31,05 %), linalool (18,46-30,43 %), geranyl acetát (4,45-12,1 %) a α-terpineol (5,08-7,58 %) (SCHÖNFELDER et SCHÖNFELDER, 2010) (PITAROKILI et al.,2002).

Šalvěj červenokořenná obsahuje v kořeni kyselinu rozmarýnovou, lithospermovou a salvianolovou (CHEVALLIER, 2004). Obsahové látky vyskytující se v šalvěji červenokořenné jsou kyselina šalvějová, kyselina salvianová, tanšinony II (zejména tanšinony IIA), tanšinony I, dihydrotanšinony, beta-sitosterol, baikalin, vitamín E a
šalvěj obsahuje celkem přibližně 80 látek s různou stavbou (SALVIA PARADISE SHOP, 2006).

Působení těchto látek je široké. V malých dávkách, které jsou podávány formou chladného nápoje se snižuje pocení. Šalvěj je prospěšná při gynekologických obtížích, hlavně u žen začínajících menstruovat a na druhou stranu v období přechodu. Droga také silně antibioticky působí na široké spektrum mikrobů při léčbě močových cest, bolestí v krku a angín, zažívacího ústroji a gynekologických zánětů. Droga má i široké zevní použití, například na nehojící se rány, jako koupelové médium, kloktadlo a mnoho dalších (JANČA, ZENTRICH, 1996).

3.4 Charakteristika obsahových látek

Nejvýznamnějšími skupinami obsahových látek šalvěje jsou silice, a glykosidy (do této skupiny patří antokyany, kumariny, digitalisové glykosidy, flavonoidy a hořčičné silice), hořčiny a třísloviny, saponiny, slizové látky, mastné oleje, anthranoidy a také salicin (SCHÖNFELDER, SCHÖNFELDER, 2010; BÜHRING, 2007).

2.1.1 Silice

Šalvějová droga obsahuje silice, především thujon, cineol, kafr, borneol. Dále obsahuje katechinové třísloviny, pseudotřísloviny, kam patří některé organické kyseliny jako kyselina kávová. Dalšími jsou triterpeny, hořčina karnosol, diterpenové hořčiny abietanového typu, lakton salvin s fytoncidní účinností, saponiny, pryskyřičné látky, vitamíny skupiny B a látky podobné ženskému hormonu estrogenu (JANČA, ZENTRICH, 1996).

Jelich čistá forma je tekutá, těkavá a na vzduchu nestálá. Ve vodě jsou nerozpustné, tvoří emulze, ale rozpustné jsou v organických rozpouštědlech (KŘIKAVA, 1993).
Nejčastějšími látkami obsaženými v silici jsou monoterpeny, sesquiterpeny a sloučeniny fenylpropanu, také jejich alkoholy, aldehydy, ketony a epoxidy (SCHÖNFELDER, SCHÖNFELDER, 2010). Thujon, mentol, karvon, karvakrol, tymol, linalol, nerol, borneol, citral, 1,8-cineol, eugenol, anetol nebo skořicové aldehydy (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

Silice získáme nejlépe z čerstvých rostlin destilací s vodní párou nebo pomocí lihu (etanolu) (BÜHRING, 2007).

Šalvějová silice se využívá při péči o dutinu ústní, onemocnění zubů, dásní, ničí choroboplodné zárodky. Dalšími významnými funkcemi mohou být uklidňující účinky (SCHÖNFELDER, SCHÖNFELDER, 2010; BÜHRING, 2007).

Na druhou stranu silice a aromatika také mohou mít různé vedlejší účinky, například vyvolávat alergie, dráždit kůži, způsobit potrat, ale také poškozovat játra nebo ledviny.

2.1.2 Antokyany

Tyto látky jsou-li v rostlinách obsažené, jsou většinou ve formě glykosidů. Mezi jejich léčebné vlastnosti patří antioxidační aktivita, protizánětlivé, antibakteriální účinky, proti infekcím močových cest. Dále působí pozitivně na kardiovaskulární soustavu. Také se používají při léčbě onemocnění oční sítnice a k podpoře hojení ran a také jako prevence vzniku rakoviny. Neexistuje žádné pravidlo, které by omezovalo
spotřebo či použití rostlin, které obsahují antokyany (BÜHRING, 2007; KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

Ve fialových květech šalvěji se vyskytuje cyanidin a peonidin, v modrých nebo fialových květech delfinidin (SAITO, HARBORNE, 1992).

Příklady antokyany jsou peonidin, pelargonidin, cyanidin, malvidin, petunidin a delfinidin (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

2.1.3 Kumariny

Kumarinové glykosidy neboli kumariny připomínají svou vůní seno, komonici lékařskou nebo mařinku vonnou. Obvykle však jsou přítomny v podobě východních látek, které postrádají jakýkoli pach či vůni (například v zelených lučních travách) a uvolňují typickou vůni tepce při vadnutí a usychání rostlinného materiálu. V čerstvých rostlinách je kumarin (1,2-benzopyron) obsažen ve sloučeninách s glykosidy. Jednoduché kumariny jsou rozpustné v tucích, to znamená, že jsou lipofilní a jsou dobře vstřebávány ve sloučeninách a glykosidy. Většina z nich je patrně chemicky nenáročná, přesto jsou označovány jako látky s antikoagulačním, antifugálním a některé i s antitumorovým účinkem. Využívá se jich při snižování otoků, uvolňují křečovité cívky, povzbuzují odtok lymfy. Jedním nebezpečím je specifická vlastnost furanokumarinů, které významně pohlcují UV záření a vyvolávají fotodermatitidu – vytvoření zarudnutí, popř. i puchýřů. Tato vlastnost se ovšem dá využít i při léčbě (BÜHRING, 2007; SCHÖNFELDER, SCHÖNFELDER, 2010).

Hydroxykumariny a metoxykumariny jsou využívány v přípravcích proti slunci, protože mají schopnost zachytit ultrafialové světlo určité vlnové délky. Pyranokumariny jsou významné schopností uvolňovat křeč (SCHÖNFELDER, SCHÖNFELDER, 2010).

Rostliny obsahující kumariny jsou používány vnitřně, ve formě čajů a hotových preparátů, nebo zevně, ve formě obkladů. Tyto látky mohou být i toxické.
a nedoporučuje se je užívat dlouhodobě či v nadměrných dávkách (malátnost, zvracení, bolesti hlavy) (BÜHRING, 2007; KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

2.1.4 Flavonoidy

Rozdělují se na flavony, flavonoly, flavanony, flavo lignany a isoflavony. Nejvíce se využívají rutin a hesperidin (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012; SCHÖNFELDER, SCHÖNFELDER, 2010).

Mez flavonoidy patří například rutin, kvercetin, hesperidin, vitexin, apigenin, luteolin a genistein (SCHÖNFELDER, SCHÖNFELDER, 2010).

2.1.5 Hořčiny

Jsou obsažené v rostlinách, kterých se využívá výhradně terapeuticky pro jejich hořkou chuť. Jiné rostliny také mohou chutnat hořce, ovšem využívány pro tuto složku nejsou. Nepatří k nim ani glykosidy ovlivňující činnost srdce ani alkaloidy, které jsou jedovaté (SCHÖNFELDER, SCHÖNFELDER, 2010).

Hořčiny se dělí na amara pura a amara aromatica. Amara pura jsou drogy obsahující jen hořčiny bez dalších látek. Amara aromatica jsou hořčiny, které také obsahují sílice a jsou označovány jako aromatické hořčiny. K určení stupně hořkosti se využívá hodnota hořkosti. Rovná se převrácené hodnotě koncentrace výluhu drogy, ve kterém chutná látká ještě rozpoznatelně hořce. Nejvíce hořká látká přírodního původu je amarogentin obsažený v hořci s hodnotou hořkosti 58 000 000 (SCHÖNFELDER, SCHÖNFELDER, 2010).

U lidí se nachází chuťové pohárky pro rozpoznání hořké chuti na kořeni jazyka. Děti mají chuťových pohárků více a tak jsou více citlivé na hořké látky. Starší lidé mají naopak pohárků méně a tím se snižuje citlivost na jakékoliv chuť (BÜHRING, 2007).

Příklady hořkých obsahových látek jsou aukubin, asperulozid, naringin, humulon, gencianoza, chinin (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

2.1.6 Třísloviny

Hydrolyzovatelné třísloviny neboli gallotaniny jsou chemickou povahou hlavně estery kyseliny gallusové nebo kyseliny ellagové. Vyskytují se například v rebarboře a kontryhelu. Gallotaniny se extrahují z hálek, které jich obsahují až 80%.

Katechinové třísloviny (kondenzované) obsahují jako základní složku katechin a leukoantokyanidin. Na vzduchu tvoří méně hodnotné sloučeniny, které jsou nerozpustné ve vodě. Příkladem rostliny, která tyto látky obsahuje je například mochna nátržník či dub. Ovšem mnoho drog obsahuje látky obou skupin, liší se místem výskytu.

Zvláštní skupinou jsou třísloviny hluchavkovitých. Jedná se o deriváty kyseliny kávové, což je kyselina chlorogenová a kyselina rozmarýnová (SCHÖNFELDER, SCHÖNFELDER, 2010).

Tyto látky se nesmí aplikovat při zácpě, na vysušené sliznice či pokožku. Dále citlivější osoby by se měli vyvarovat užívání tříslovin. Rostliny s vyšším obsahem tříslovin nejsou vhodné pro dlouhodobější léčbu. Nejlepší je užívat je po dobu maximálně jednoho týdne a opět se k nim vrátil až po určité přestávce (BÜHRING, 2007).

Příklady tříslovin jsou kyselina gallová, kyselina ellagová, epikatechin, epigalokatechin, kyselina chlorogenová (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).
2.1.7 Fenolové kyseliny a deriváty

Jedná se o deriváty kyseliny hydrobenzoové a hydroxyskoricové, také k nim patří fenolové glykosidy. Tyto látky mají antioxidační účinky a mírní záněty, některé působí na žlučník, podporují trávení a chrání játra, také jsou preventivními látkami při infekci močových cest a ničí choroboplodné zárodky.

Příkladem těchto látek jsou kyselina kávová, kovylichnová, rozmarýnová, ferulová, sinapová, echinakozid, tillirozid, verbaskozid, cynarin, arbutin, salicin (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

3.5 Látky fenolické povahy

Tyto látky se dělí na základě chemické struktury – na neflavonoidní, flavonoidní a ostatní. Tyto skupiny mohou být dále děleny na látky podle počtu uhlíků a povahy vazeb. Druhá možnost dělení je podle jejich vlastností, to znamená, že jsou látky chuťové (taniny), barviva (flavonoidy, lignany, xanthony), přírodní antioxidanty (flavonoidy) a vonné látky (benzochinony, kumariny) (FIEDOROVÁ, 2008).

3.5.1 Neflavonoidní fenolické látky

Obrázek 1: Fenol
Fenolové sloučeniny mají velmi různorodé biologické účinky. Především se jedná o antimikrobní a antioxidační vlastnosti. Na druhou stranu jsou toxické, především fototoxicita, estrogenní a karcinogenní účinky.

Fenolová (benzoová) kyselina (viz obrázek 2) je nejjednodušší aromatická kyselina. V rostlinnách je poměrně rozšířena. Přítomnost volné benzoové kyseliny neovlivňuje vůni silice. Vyskytuje se v silici ve formě esterů. Vzniká z kyseliny skořicové.

![Kyselina benzoová](image)

Obrázek 2: Kyselina benzoová

Kyselina gallová (viz obrázek 3) se vyskytuje v malém množství v hydrolyzovatelných tříslovinách (gallotaniny). Její dimer, **kyselina ellagová** (viz obrázek 4) a další příbuzné sloučeniny se také objevují ve složení taninů (ellagotaniny).

![Kyselina gallová](image) ![Kyselina ellagová](image)

Obrázek 3: Kyselina gallová **Obrázek 4: Kyselina ellagová**

Skořicové kyseliny (viz obrázek 5) se vyskytují v rostlinách jako vonné látky obsažené v silici. Avšak ve větším množství se vždy nacházejí jako estery, amidy či glykosidy (VELÍŠEK et HAJŠLOVÁ, 2009). Látky odvozené od kyseliny skořicové jsou hydroxyskořicové kyseliny (FIEDOROVÁ, 2008).
Kumariny jsou formálně odvozeny od \(o \)-hydroxysořicových kyselin. V přírodě se nalézá více než 1000 kumarinů, ale pouze základní kumarín (viz obrázek 6) má význam jako vonná látka. Většina kumarinů se řadí mezi biologicky aktivní, ale toxické látky. Kumarin voní po čerstvém jetelu a vzdáleně lze poznat i vanilku, proto se přidává do parfémů a dalších výrobků. Přírodní kumarin je získáván z tonkových bobů ze stromu silovoň obecný (\textit{Dipteryx odorata}). Vykazují fototoxicitu a také další toxické úřinky. V rostlinách se obsah kumarinů mění na základě části rostliny a klimatických faktorech. Při stresových podmínkách se obsah kumarinů zvyšuje.

\[\text{Obrázek 5: Kyselina skořicová} \]

\[\text{Obrázek 6: Kumarin} \]

\[\text{Obrázek 7: Kyselina rosmarinová} \]
3.5.2 Flavonoidní fenolické látky

Flavonoidy jsou velmi širokou skupinou fenolů vyskytujících se v rostlinách. Jejich chemická struktura je tvořena dvěma benzenovými kruhy spojenými třiuhlíkovým řetězcem. Množství dnes známých látek patřících k této skupině se pohybuje okolo 5000, ale stále jsou nacházeny nové látky. Flavonoidy jsou odvozeny od kyslíkaté heterocyklické sloučeniny 2H-chromenu (viz obrázek 8). Nacházejí se v podobě volných látek, ale častěji je lze nalézt jako glykosidy, acylované glykosidy a také jako polymery. Jejich vlastnosti se liší, a proto jsou uváděny jako samostatná skupina barviv rostlinného původu.

![Obrázek 8: 2H-chromen](image)

Můžeme flavonoidní látky rozdělovat na skupiny podle struktury – katechiny, leukoanthokyanidiny, flavanony, flavanonoly, flavony, flavonoly a anthokyanidiny (viz obrázek 9).

![Obrázek 9: Flavonoidní látky](image)
Obrázek 9 vyjadřuje skupiny flavonoidních látek výše vyjmenované a popisuje jejich vlastnosti. V řádku zleva doprava roste oxidační stupeň jednotlivých sloučenin a roste také intenzita jejich barvy. Sloupce vyjadřují stupeň oxidace.

Flavonoidy vykazují antioxidační účinky a jedná se o primární antioxidanty. Flavonoly a substituované flavony na sebe váží kovy a tvoří s nimi neúčinné komplexy. Některé flavonoidy jsou důležitými barvivy rostlinného původu, naopak některé jsou důležité pro svoji chuť (trpká a hořká chuť). Další látky jsou barvivy, které mohou mít červenou až modrou a žlutou barvu.

3.5.3 Ostatní fenolické látky

Taninny jsou fenolické látky, které reagují s bílkovinami a jinak se nazývají třísloviny. Dělí se na dvě skupiny – hydrolyzovatelné a kondenzované.

V případě **hydrolyzovatelných tanninů** se jedná o polymery esterů kyseliny gallové. **Kondenzované třísloviny** jsou polymery některých látek flavonoidního typu. Mohou se dále vyskytovat kombinace těchto dvou druhů, poté se látky nazývají komplexními tříslovinami.

Přírodní antioxidanty jsou antioxidační látky, které podporují konzervování některých potravin. Mezi nejvíce účinné jsou rozmarýna a šalvěj (VELÍŠEK et HAJŠLOVÁ, 2009).

3.6 Metody získávání obsahových látek

Chemické složení látek se určuje z pohledu kvalitativního a kvantitativního složení. Kvalitativní znamená, že jsou zjišťovány přítomné složky určité látky a jako kvantitativní označujeme stanovení množství a zda jsou obsaženy všechny látky. Výběr metody zjišťování je ovlivněn obsahovými látkami v rostlině.

Extrakce je způsob získávání obsahových složek, když se jedná o složky rozpustné v různých rozpouštědlech (KÓŇA, BARÁTOVÁ, KÓŇOVÁ, 2013).

Ty složky v silici, které brání destilaci (rozloží se), se dají získat lisováním. Silice v tomto případě se nacháží ve větším množství zejména v povrchových částech. Silice takto získaná obsahuje navíc terpenické uhlovodíky, které nehrají žádnou roli ve vůni. Ty se dají odstranit pomocí extrakce nebo destilace za sníženého tlaku (KÓŇA, BARÁTOVÁ, KÓŇOVÁ, 2013).

Existují různé postupy extrakce, a to – macerace, jednoduchá perkolace, reperkolace, protiproudová extrakce (KOŠŤÁLOVÁ, FIALOVÁ, RAČKOVÁ, 2012).

V případě iontové výměny se jedná o metodu založenou na schopnosti látky vyměnit určité ionty za jiné, které se nacházejí v roztoku. Poté se tento vyměněný iont v roztoku vystraží.

Chromatografie je způsob, kdy se složky rozdělují mezi dvě fáze – pohyblivou a nepohyblivou. Metod této povahy je mnoho, dělí se podle způsobu distribuce složek.
Podle mobilní fáze se rozdělují na chromatografii (C), plynovou chromatografii (GC) a kapalinovou chromatografii (LC). Plynová chromatografie se může dále dělit podle fázi, kdy probíhá mezi plynem a kapalinou (GLC) anebo mezi plynem a tuhou látkou (GSC). Kapalinová chromatografie se rozdělou velmi podobně, a to na dvě kapaliny (LLC) a kapalinu a tuhou látku (LSC). Podle nepohyblivé fáze se dělí na kolonovou (sloupcovou) chromatografii (CC), chromatografii v plošném uspořádání, dále na papírovou (PC) nebo tenkovrstvou (TLC).

Metody výše zminěné (plamenová fotometrie, fluorimetrie) spočívají na měření optických veličin, kdy na sebe působí látky a elektromagnetické záření.

Mezi nejpoužívanější metody získávání silic patří destilace vodní parou, anfleráž, extrakce organickými rozpouštědly, superkritická fluidní extrakce pomocí CO₂ a lisování.

Ke stanovení obsahu fenolických látek se obvykle používají tyto tři metody - **FCM** (s Folin-Ciocalteu činidlem). Podstata této metody redukce směsi fosfomolybdenanu a fosfowolframanu fenolickými sloučeninami za vzniku produktů modré barvy. Dále **PBM** (metoda Price a Butlera). V této metodě se jedná o oxidaci aniontu fenolátu na radikál fenolátu a zároveň dojde k redukci hexakyanoželezitanu na hexakyanoželeznanat (tvoří se berlínská modř). A třetí metodou je **AAPM** (s 4-aminoantipyrinem). Tato metoda je založena na vytvoření barevného komplexu mezi 4-aminoantipyrinem a obsaženými fenoly v přítomnosti oxidačního činidla. (KREJZLOVÁ, 2013).
3.7 Faktory ovlivňující obsahové látky

Faktory, které ovlivňují pěstování a tím i obsahové látky v rostlině, se dělí na vnější a vnitřní, vnější se dále dělí na abiotické a biotické (KÓŇA, BARÁTOVÁ, KÓŇOVÁ, 2013). Tyto faktory jsou uvedeny a rozepsány níže.

Rostlina v prostředí, kde se vyskytuje tvoří jeden celek se svým okolím. Prostředí působí na rostlinu a rostlina zase naopak na prostředí (KŘIKAVA, 1993).

Vnější faktory

3.7.1 Půda

Půdy můžeme rozdělit na základní typy, a to černozemě, hnědozemě a podzolové půdy.

Černozemě se nachází zejména v nízkých nadmořských výškách do 200 m.n.m., kde dochází k nižším srážkám a není zde podstatný ani vliv spodní vody. Podnebí je teplejší než v jiných oblastech. Dochází zde proto k většímu odpařování vody do ovzduší, což způsobuje, že živiny obsažené v půdě se nevymývají. Proto jsou tyto půdy velmi úrodné, bohaté na živiny a je zde velké množství humusu. Jejich půdní reakce je neutrální až zásaditá.

Hnědozemě je typ půdy, který se vyskytuje ve vyšších polohách mezi 250 až 350 m.n.m.. V těchto půdách dochází pouze k částečnému vymývání živin do spodních vrstev půdy.

Podzolové půdy jsou rozšířené v oblastech, kde je množství srážek vyšší než odpařování vody z půdy. Proto v těchto typech půd dochází k velkému vymývání živin do hlubších vrstev a ty jsou pro rostliny ve většině případů nedostupné. Z toho důvodu tyto půdy nejsou příliš úrodné.

Existují ještě další typy půd, které ovšem již nepatří mezi základní rozdělení.
Rašelinné půdy se vyskytují v nížinách, kde působí velké množství spodní vody a vyznačují se vysokým množstvím vápníku – tyto se nazývají slatiny. Naopak ve vyšších polohách taktěž v prostředí s vysokým množstvím srážek, ale bez přítomnosti vápníku vznikají vrchoviště. Hromadění rašeliníku probíhá nad vrstvou vody, zatímco spodní vrstvy postupně umírají. V případě rašelinných půd platí, že slatiny je možné využít a zúrodnit, zatímco vrchoviště toho nejsou schopny.

Půdy solné se nacházejí v teplých oblastech s dostatečným množstvím srážek, které nemají čas proniknout do větší hloubky půdy a odpařují se, a tím dochází k nahromadění soli v povrchové vrstvě. Pro velké množství soli není půda úrodná.

Půdy kamenité jsou obvykle ve vyšších polohách, kde vznikají rozpadem matečné horniny. Nejvyšší vrstva zvětralé půdy je ovšem stále odplavována a tak tato půda je extrémně neúrodná.

Půdy náplavové jsou tvořeny činností tekoucí vody, kdy se půda unášená tokem ukládá na okraje a vrství se. Tyto půdy nejsou vhodné k pěstování.

Půdy se dají rozdělovat také na půdy velmi plytké (ornice do 15 cm), plytké (15-30 cm), středně hluboké (30-60 cm), hluboké (60-100 cm) a velmi hluboké (nad 100 cm).

Šalvěj vyžaduje středně těžké půdy, což znamená půdy hlinité a jílovitohlinité. Podle tabulky 1 hlinité půdy obsahují 30-40 % částic o velikosti 0,001 až 10 mikronů (1 mikron = 0,001 mm). Půdy jílovitohlinité obsahují 40-50 % těchto částic. Částice o této velikosti se označujeme půdní koloidy.
Tabulka 1: Rozdělení půd podle procentuálního obsahu částic o velikosti 1 až 10 mikronů (HENEBERG, 1992).

<table>
<thead>
<tr>
<th>Typ půdy</th>
<th>Počet částic o velikosti 0,001 až 10 mikronů [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>písčité</td>
<td>0-10</td>
</tr>
<tr>
<td>hlinitopísčité</td>
<td>10-20</td>
</tr>
<tr>
<td>písčitohlinité</td>
<td>20-30</td>
</tr>
<tr>
<td>hlinité</td>
<td>30-40</td>
</tr>
<tr>
<td>jílovitohlinité</td>
<td>40-50</td>
</tr>
<tr>
<td>hlinitojílovité</td>
<td>50-60</td>
</tr>
<tr>
<td>jílovité</td>
<td>60-75</td>
</tr>
<tr>
<td>jil</td>
<td>nad 75</td>
</tr>
</tbody>
</table>

V půdě se vyskytuje voda a roztoky soli ve vodě, velmi důležité je hlavně voda kapilární. Po vsáknutí vody do půdy vyplňuje póry a kanálky, které mají menší rozměry než 0,2 mm. Pro rostliny je tato voda nejlépe přístupná.

Voda gravitační je obsažena v půdě a je zde držena gravitačními silami a její funkcí je zaplňovat všechny póry v půdě. Tato voda vyjadřuje hladinu spodní vody.

Dále jsou v půdě obsaženy látky rostlinného nebo živočišného původu, které se postupně rozkládají. Ve vztahu k rostlinám je nejdůležitější obsahu humusu v půdě (viz tabulka 2). Humus na sebe váže vodu a půdy tolik nevysochají.

Propustnost půd lze ovlivnit vápněním, kypřením nebo můžeme obohacovat humusem (HENEBERG, 1992).
Tabulka 2: Rozdělení půd podle procentuálního obsahu humusu (HENEBERG, 1992).

<table>
<thead>
<tr>
<th>Typ půdy</th>
<th>Množství humusu [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>humózní</td>
<td></td>
</tr>
<tr>
<td>slabě humózní</td>
<td>1-2</td>
</tr>
<tr>
<td>středně humózní</td>
<td>2-3</td>
</tr>
<tr>
<td>humózní</td>
<td>více než 3</td>
</tr>
<tr>
<td>humusové</td>
<td>20-50</td>
</tr>
<tr>
<td>rašelinové</td>
<td>nad 50</td>
</tr>
</tbody>
</table>

Rostliny, které se pěstují pro kořen, požadují půdy hlubší (KŘIKAVA, 1993).

3.7.2 Podnebí

Patří mezi činitely klimatické, důležitý je vliv světla, tepla, vody a složení vzduchu.

Světlo je druhým velmi důležitým faktorem pěstování léčivých rostlin. Podle tohoto nároku rozdělujeme byliny na stínomilné, světlomilné a slunné druhy.

Mezi rostliny stínomilné, které nesnesou přímé sluneční ozáření, patří brutnák lékařský, hořec žlutý, máta peprná a kozlík lékařský.
Mezi světlomilné, které mají rády osvětlení, patří například bazalka pravá, divizna velkokvětá, topolovka, levandule lékařská, majoránka zahradní, měsíček lékařský, pělyněk, dobromysl obecná, routa vonná a šalvěj lékařská. Jedná se především o rostliny teplomilné a z jižních zemí.

Světlo je důležitým faktorem při tvorbě obsahových látek, například silice zároveň za vyšší teploty. Obsah alkaloidů v rulíku na slunečném místě je mnohem vyšší než ve stíně. Obsah látek v rostlinách se mění i během dne. Obsah alkaloidů v listech durmanu je největší ráno a někdy se přesouvá do kořenů.

V práci autora YanLi et al. uváděné v práci autora Kintzios (2000) se porovnávají vzorky rostlin šalvěje lékařské a tymiánu obecného při různém zastínění v podmínkách skleníku. Nejvyšší celkový obsah silice (0,38 % FW = fresh weight – čerstvá váha) v rostlinách, které rostly na 45 % plného osvětlení. Při této úrovni osvětlení silice měla vyšší obsah alfa-thujonu a nižší obsah kamforu v porovnání s těmito látkami v rostlinách rostoucích při jiném stupni osvětlení.

Hydrofyty jsou rostliny, které mohou pouze minimálně odolat nedostatku vody a pro vývoj potřebují velké množství vody. Patří mezi ně andělika lékařská, libeček lékařský, máta peprná, jírocel kopinatý, kozlík lékařský a violka trojbarevná.

Mesofyty tvoří rostliny, které mají průměrnou odolnost proti suchu. K tomuto druhu patří většina našich lčivých rostlin.

Většina léčivých rostlin vyžaduje chráněné polohy bez prudkého větru a průvanu. Způsobují také poléhání vysokých rostlin a vymletí plodů z rostliny (KŘIKAVA, 1993).

V práci autora Bernath (1986) se při zavlažování šalvěje, označených jako xerofyty, snížila hladina koncentrace silice v závislosti na zvyšování zavlažování. Na druhou stranu celkový výnos se zvýšil z důvodu zvýšené rychlosti růstu a tím i vyššího množství zpracovávané biomasy.

V práci, kterou uvádí Giannouli (2000), se předpokládalo, že vyšší výnosy silice jsou podmíněny suchým stresovým prostředím. Ale vyšlo najevo, že šalvěj pěstovaná pouze v suchém a teplém prostředí, měla menší a méně kvalitní obsah silice než šalvěj pěstovaná v podmínkách, ve kterých se nestresovala. Navíc experiment pěstování s kotrolovanými podmínkami ukázal, že faktory jako teplota, ozáření a fotoperioda má značný vliv na výnos a kvalitu.

3.7.3 Poloha

Poloha pozemku, na kterém budeme pěstovat je faktorem, který zohledňuje nadmořskou výšku a polohu ke světovým stranám.

Vzhledem k nadmořské výšce je možné pěstovat rostliny jak v horských oblastech, tak nižších polohách. Podle polohy se určuje typ půdy, který je vhodný, například do horských poloh je vhodnější lehčí, písčitá půda a jsou doporučeny rostliny, které se v oblasti vyskytují i planě.

Nadmořská výška má přímý vliv na obsah látek v rostlinném materiálu. Například obsah alkaloidů v semenech ocúnu je menší, když roste ve výškách větších než 160 m.n.m.. Obsah silice se zvyšuje ve vyšších polohách, pouze u kminu je více silice v semení v nížině. Nebo například největší množství slizu nalezeného v ibišku bylo v poloze přibližně 900 m.n.m. (HENEBERG, 1992).
Do oblastí horských a podhorských, nebož pícninářských a bramborářských, jsou vhodnější rostliny, které nejsou příliš citlivé na nižší teploty. Ostatní druhy je proto lepší pěstovat v oblastech řepařských (TRAXL, 1992).

Šalvěj roste i ve vyšších nadmořských výškách, okolo 1800 m.n.m. (HENEBERG, 1992).

Maric, Maksimovic a Milos (2006) uvádí ve své studii pozorování šalvěje ve dvou lokalitách s různou nadmořskou výškou (110 a 400 m.n.m.) v oblasti střední Herzegoviny poblíž Mostaru. Sbírali vzorky ve čtyřech stádiích – vegetativní stádium (list a stonek, leden 2003), před kvetením (list a stonek, duben 2003), v průběhu kvetení (kvetoucí vrcholy, list a stonek, květen 2003) a po kvetení (list a stonek, srpen 2003). Výnos silice se pohyboval okolo 0,29-1,07 %. Kvalita složek se neměnila. Další se ovšem rozložily rozdíly v složkách v průběhu vývojových stádií. Hlavní složkou byl α-thujon (9,3-35,6 %), následoval kamfor (6,9-29,1 %) a viridiflorol (6,0-24,0 %). Další složkami byly α-humulen (3,1-13,6 %), manool (3,0-13,3 %), 1,8-cineol (8,6-12,7 %) a borneol (2,0-5,5 %).

Co se týká orientace pozemku ke světové straně, je to stejně důležité jako jiné faktory. Teplomilné rostliny je vhodné pěstovat na jižních stranách, kdežto severní strany nejsou vhodné téměř pro žádné rostliny. Na severních stranách nemohou byliny dokončit svůj vývoj. Lépe je zvolit pozemek chráněný, schovaný pod lesem nebo kopcem. Sklon využívaného místa by neměl být větší jak 15 stupňů (HENEBERG, 1992).

3.7.4 Allelopatie

Rostliny v přirozených podmínkách rostou v různých rostlinných společenstvech, ve kterých se buď podporují anebo si navzájem zabraňují růstu. Funguje na principu vylučování látek do prostředí pomocí kořenů nebo nadzemními částmi. Příkladem jsou hořčiny pelyňku, které zabraňují klíčení fenyklu. Dalším případem je šalvěj lékařská a saturejka horská, které vylučují látky ovlivňující četnost, druhy a podporují zakrmení plevelu (KŘIKAVA, 1993). Co se týká šalvěje, meďuňka lékařská působí na dobu kvetení šalvěje a oddaluje ji. Naopak kopřiva dvoudomá zvyšuje tvoření silice u šalvěje a dalších bylin.
K tomuto tématu se vztahuje i únava půd. Je způsobena mnoha faktory, ale jedním z nich je i pěstování jednoho druhu, někdy rodu na stejném místě po delší dobu, a tím i vylučování škodlivých látek do půdy (HENEBERG, 1992).

3.7.5 Živiny v půdě

<table>
<thead>
<tr>
<th>Skupina prvků</th>
<th>Prvky</th>
</tr>
</thead>
<tbody>
<tr>
<td>makrobiogenní</td>
<td>uhlík, kyslík, vodík, dusík, síra, fosfor, draslík, vápník, hořčík, železo</td>
</tr>
<tr>
<td>nepostradatelné</td>
<td></td>
</tr>
<tr>
<td>postradatelné</td>
<td>křemík, sodík, chlór</td>
</tr>
<tr>
<td>mikrobiogenní</td>
<td>jód, mangan, bór, zinek, měď, molybden, kobalt, hliník, jód</td>
</tr>
</tbody>
</table>

V případě vyššího výnosu hmoty a tím i obsahových látek je nutné mít kvalitnější půdu a více živin v půdě (TRAXL, 1992).

Druhy, ze kterých jsou sbírány listy, potřebují v půdě dostatek dusíku a dalších živin (KŘIKAVA, 1993).

Uhlík je základní látkou, ze kterého se skládá rostlinná masa. Je přijímán ze vzduchu jako oxid uhličitý a využitím fotosyntézy se začleňuje do složitějších sloučenin. Kyslík je také základní složkou, která tvoří rostlinu, stejně tak se získává z oxidu uhličitého. Vodík je získáván z vody.

Šalvěj je nejbujnější na půdě, která obsahuje velké množství vápníku (KŘIKAVA, 1993).

Hořčík je důležitým stavebním prvkem bílkovin, umístěný v rostlině v květech a rezervních pletivech. Je-li jej nedostatek, dochází ke žloutnutí listů, zpomalení růstu a úhynu rostliny.

Půdy mohou podle pH být zvlášť velmi kyselé (pH 3), velmi kyselé (pH 4), kyselé (pH 5), slabě kyselé (pH 6), neutrální (pH 7), slabě zásadité (pH 8), zásadité (pH 9), velmi zásadité (pH 10) nebo zvlášť velmi zásadité (pH 11) (TRAXL, 1992).

Křemík je součástí buněčných membrán. **Chlóru** je nejvíce v listech a jeho přítomnost ovlivňuje příjem vápníku, hořčíku a je využíván při transportu škrobu (HENEBERG, 1992).

Tabulka 4: Obsah hlavních minerálních látek v půdě (HENEBERG, 1992)

<table>
<thead>
<tr>
<th>Minerální látka</th>
<th>Obsah v půdě [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>dusík</td>
<td>0,10</td>
</tr>
<tr>
<td>oxid draselný</td>
<td>0,25</td>
</tr>
<tr>
<td>oxid fosforečný</td>
<td>0,10</td>
</tr>
<tr>
<td>oxid vápenatý</td>
<td>0,20-0,40</td>
</tr>
</tbody>
</table>
3.7.6 Hnojení

Hnojiva mohou být statková a minerální. Statková obsahují živiny, humus, mikroorganismy, stopové látky a další. Napomáhají díky humusu udržovat vodu v půdě. Hlavním statkovým hnojivem je chlévský hnný, močůvka, kompost a také zelené hnojení.

Minerální hnojiva mohou být dusíkatá, fosforečná, superfosfáty, draselná a vápenná. Hnojení probíhá rozmetáním po celém pozemku nebo do řádků, hnojíme každou rostlinu zvlášť nebo hnojíme pomocí zálivky.

Hořečnatá hnojiva napomáhají tvorbě silice, dusíkatými hnojivy přihnojujeme rostliny na sběr nati a listu a ty rostliny, ze kterých se sbírá kořen, je vhodné hnojit draselnými hnojivy (HENEBERG, 1992).

V práci autora Karamanose (1995) se říká, že při aplikaci dusíkatého hnojiva se zvýší obsah silice, protože dusík značně podporuje tvorbu rostlinné hmoty.
El-Keltawi et Croteau uvádí, že při aplikaci foliární výživy fosfon D je stimulován růst a zvyšuje se výnost silice až o 50-70 %. Při použití AMO-1618 a DCPTA se taktéž zvyšuje obsah silice. V neposlední řadě přípravek daminozide snížil výnos silice. Tyto výsledky z kontrolovaného pěstování ukazují, že je reálná možnost použití růstových regulátorů.

3.7.7 Doba sklizně

Manou et al. Uvádí, že se obsah silice v šalvěji vyskytoval v maximálním množství při sběru v létě a minimum v zimě a brzkém jaru, a tím obsah silice reagoval na výkyvy teploty a vodních srážek.

Pitarevic et al., Putievsky et al. a Hay uvádějí, že nejvyšší obsah silice se vyskytuje ve sbíraných listech při plném květu.

Naopak Perry et al. (1996) ve své práci uvádí, že šalvěje, které rostly v různých částech světa, mají větší obsah siličných látek v nekvetoucích částech (0,23 % FW) než je tomu u kvetoucích (0,14 % FW). Silice z obou částí se liší složením, kdy v kvetoucích bylo větší množství thujonů, β-karyophyllenů a viridiflorolu.

Další studie autorů Yoshida a Sawasaki (1978) uvádí, že bylo nalezeno maximum silice ze šalvěje muškátové z rostlin ve fázi, kdy rostliny uskutečnily kvetení.

Putievsky et al. (1986) uvádí, že nejnižší koncentrace silice je na jaře (0,7-2,2 %), nejvyšší brzy na podzim (2,0-3,4 %) a střední v zimě (1,7-2,5 %). Pozorování jiného druhu šalvěje rostoucího na Krétě odhalilo, že hlavní obsahové složky silice jsou ovlivněny střídáním období.

Podle dalšího výzkumu stejného autora jako v předešlé práci, se testovaly rostliny pocházející z Izraele, sesbíraného v červenci a poté i v říjnu až listopadu. Obsahové látky byly vysoké v thujonech a nízké v kamphoru, koncentrace silice byla vyšší jak 1,5 %.

Karamanos (1995) uvádí, že první rok je výnos po posečení nižší, ve druhém roce se zvýší. Výnos silice se pohybuje mezi 100-220 kg/ha.

3.7.8 Posklizňové zpracování
Důležitým faktorem zpracování je vysušit biomasu ve stínu. Na slunci se vypařují těkavé látky silic. Silice z listů jsou bohatější na 1,8-cineol a myrcen, chudší na α-pinenu a kamfor, čímž se liší od stonků a květů. V případě extrakce silice musím použít pouze čerstvý materiál (PUTIEVSKY et al., 1986).

Skladování vysušeného rostlinného materiálu po dva roky sníží obsah silice až o 15-25 %. Snížení teploty z pokojových 20 °C na -2 až -18 °C nemá žádný vliv na skladování. Při skladování sušené hmoty se snížil obsah siličného komponentu α-terpinenu na 30 %, ovšem tato ztráta není příliš důležitá, protože silice této látky obsahuje pouze 0,2-0,6 % (Paillard, 1994).

3.7.9 Škůdci, onemocnění a plevel

Pank (1990) ve své práci uvádí, že při použití herbicidů v polním pokusu bez viditelných fytoxických účinků na rostlinu, tíhne šalvěj k většímu olistění, snížení sušiny a zvýšení thujonu v silici.
4 Závěr

Šalvěj je stále perspektivní léčivou rostlinou, využívanou jak v léčitelství, tak v potravinářském odvětví. Obsahuje důležité látky ve všech částech rostliny.

Obsahové látky v hodnocených druzích šalvějí se liší. Šalvěj lékařská obsahuje silici (1-2,5 %), třísloviny (3-8 %), hořčiny, pryskyřice V silici jsou obsaženy látky thujon (30-60 %), cineol (15 %), kafir (14-37 %), borneol (6 %) a α-pinén, linalool, monoterpeny, sesquiterpeny a další látky.

Šalvěj muškátová se liší svým obsahovým složením – v silici je octan linalylový (19,75-31,05 %), linalool (18,46-30,43 %), geranyl acetát (4,45-12,1 %) a α-terpineol (5,08-7,58 %).

Naopak ze šalvěje červenokořenné se sbírá její kořen. Obsahové látky jsou kyselina rozmarýnová, kyselina lithospermová, kyselina šalvějová, kyselina salvianová, dále tanšinony různých skupin, baikalin, vitamín E a třísloviny.

Ještě bohužel nejsou známy všechny obsažené látky v těchto rostlinách. Jsou získávány základními metodami jako destilace s vodní parou či kapalinová chromatografie, ale je stále otevřená budoucnost vědě a výzkumu, které nás seznámí s dalšími významnými látkami.

Vnitřní a vnější faktory velmi výrazně ovlivňují vztah prostředí a rostliny, a tím i její obsah z hlediska fenolických látek. V této práci se jednalo o faktory vnější – půda, podnebí, světlo, voda, poloha pozemku vzhledem k nadmořské výšce a orientace ke světové straně, hnojení, živiny. Dále se jednalo o dobu sklizně – fenologická fáze vývoje rostliny, doba sběru v určité denní hodině. Důležitým faktorem bylo posklizňové zpracování a onemocnění.

K vnitřním faktorům patří genetické predispozice, taktéž doba sběru z pohledu fenologické fáze rostliny.
5 **Souhr + Resume**

Tato bakalářská práce se zabývá vlivem vnitřních a vnějších faktorů na obsahové látky fenolické povahy ve vybraných druzích šalvěje - *Salvia* L..

Součástí této práce je rozdělení látek fenolické povahy, uvedení obsahových látek jednotlivých vybraných druhů a zejména jsou vyčteny faktory, které ovlivňují svými účinky obsah látek.

Klíčová slova: *Salvia officinalis, Salvia sclarea, Salvia miltiorrhiza*, fenolické látky, silice, vnější a vnitřní faktory

This bachelor paper studies the influence of inner and outer factors to substances of phenolic character on chosen species of sages – *Salvia* L..

Chosen species were *Salvia officinalis* – common sage, *Salvia sclarea* – clary sage and *Salvia miltiorrhiza* – Dan Shen.

Part of this paper is sorting the substances of phenolic character, presenting compounds of chosen species and there are specifically mentioned factors, which influence the effect of compounds.

Key words: *Salvia officinalis, Salvia sclarea, Salvia miltiorrhiza*, phenolic compounds, essential oil, inner and outer factors
Seznam použité literatury

34. SAITO, Norio; HARBORNE, Jeffrey B. Correlations between anthocyanin type, pollinator and flower colour in the Labiatae. Phytochemistry, 1992, 31.9: 3009-3015.

37. SUTTON, John. The gardener's guide to growing salvias. Port

43. ÚKZÚZ. *Přípravek na ochranu rostlin* [online]: Scatto. 2015 [cit. 2016-08-05]. Dostupné z:

