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Fabrication and functionalization of graphene-based materi­
als: comparison between experiment and density functional 
theory calculations 

Abstract 

Since its discovery in 2004, graphene and its derivatives—collectively known as gra­

phene-based materials (GBM)—have intrigued scientists with their potential to revolutionize 

various industries. This thesis investigates the synthesis of oxidized graphene-based materials 

using both the traditional, hazardous Hummers method and a novel, environmentally friendly 

electrochemical exfoliation technique. The study demonstrates that electrochemical exfoliation 

may address several significant challenges currently impeding the widespread application of 

graphene-based materials, including those related to large-scale production and the environ­

mental and temporal costs associated with traditional fabrication methods. In this work, we 

successfully synthesized graphene-based materials using both methods mentioned above, in­

corporating a novel chemical agent for the electrochemical exfoliation process. Both sets of 

materials were then functionalized with ethylenediamine (EDA) and subjected to comprehen­

sive characterization. Spectroscopic techniques such as Fourier Transform Infrared Spectros­

copy (FTIR) and Raman Spectroscopy were employed to evaluate and thoroughly compare the 

outcomes of the two procedures. Furthermore, Scanning electron microscopy (SEM) and En­

ergy-dispersive X-ray spectroscopy (EDS) were used to study the morphology and composition 

of produced materials. 

Additionally, the properties of the synthesized materials were investigated not only ex­

perimentally but also through theoretical approaches, including Density Functional Theory 

(DFT) and semi-empirical method. Given the complex and large-scale structure of graphene-

based materials, which encompass thousands of atoms and would require prohibitive computa­

tional resources, simplified models using coronene and its derivatives were utilized. These mod­

els facilitated the calculations of the spectroscopic properties of graphene-based materials, 

providing insights that bridge theoretical predictions with experimental observations. 

Keywords: Graphene-based materials, graphene oxide, functionalization, DFT 



Výroba a funkcionalizace materiálů na bázi grafenu: srovnání 

experimentu a výpočtů teorie ŕunkcionálu hustoty 

Abstrakt 

Od jeho objevení v roce 2004 graf en a jeho deriváty—dohromady označován jako ma­

teriály na bázi grafenu—zaujali vědce svým potenciálem přivést revoluci do různých odvětvý 

průmyslu. Tato bakalářská práce zkoumá syntézu oxidovaných materiálů na bázi grafenu za 

použití tradiční, nebezpečné Hummerovy metody a nové, ekologicky šetrné techniky elektro­

chemické exfoliace. Studie ukazuje, že elektrochemická exfoliace by mohla vyřešit několik 

značných problémů, které v současné době brání širokému uplatnění materiálů na bázi grafenu, 

které souvisí s velkoobjemovou produkcí a enviromentálními a časovými náklady spojenými s 

tradičními výrobními metodami. V této práci, jsme úspěšně syntetizovali materiály na bázi gra­

fenu pomocí obou výše zmíněných metod, přičemž jsme pro proces elektrochemické exfoliace 

použily nové chemické činidlo. Oba materiály byly poté funkcializovány ethylendiaminem 

(EDA) a podrobeny komplexní charakterizaci. Spektroskopické techniky jako infračervená 

spektroskopie s Fourierovou transformací (FTIR) a Ramanova spektroskopie byly využity 

k důkladnému vyhodnocení a porovnání obou výsledků. Dále byly ke studiu morfologie a slo­

žení vyrobených materiálů použity skenovací elektronová mikroskopie (SEM) a energiově dis­

perzní rentgenová spektrometrie (EDS). 

Vlastnosti syntetizovaných materiálů byly studovány nejen experimentálně, ale taté te­

oreticky, použitím teorie funkcionálu hustoty (DFT) a semiempirické metody. Vzhledem ke 

složité a rozsáhlé struktuře materiálů na bázi grafenu, která zahrnuje tisíce atomů a vyžadovala 

by neúnosné výpočetní prostředky, byly využity zjednodušené modely využívající coronene a 

jeho deriváty. Tyto modely usnadnily výpočty spektroskopických vlastností materiálů na bázi 

grafenu a poskytly poznatky, které propojují teoretické předpovědi s experimentálním pozoro­

váním. 

Klíčová slova: Materiály na bázi grafenu, grafen oxid, funkcionalizace, DFT 
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1 Introduction 

Carbon, a pivotal element on Earth, is ubiquitously found in an extensive array of de­

rivatives across nearly all organic compounds. It naturally exists predominantly in two allo-

tropes: diamond and graphite. In the diamond allotrope, carbon atoms are organized into a 

periodic crystalline structure characterized by sp3 hybridization. Conversely, graphite, another 

crystalline form of carbon, consists of planar sheets where carbon atoms form a honeycomb 

lattice through sp2 hybridization. These individual graphite sheets are primarily interconnected 

by van der Waals forces, a weak noncovalent interaction [1]. 

1.1 Carbon allotropes 

With the advancement of characterization techniques and the capability to analyse ma­

terials at the nanoscale, the turn of the millennium witnessed the discovery of three new carbon 

allotropes: fullerenes, carbon nanotubes, and graphene. These materials are characterized by 

the significant feature that at least one of their dimensions measures in the nanometer scale [2]. 

In 1985, fullerenes were first discovered through the chemical vapour deposition of carbon in 

a helium atmosphere by Curl, Kroto and Smalley. These are spherical carbon compounds, com­

prising atoms arranged in hexagonal and pentagonal cycles bonded through sp2 hybridization 

to form a sphere, containing a precise number of carbon atoms (e.g., C60, C70) [3]. Subse­

quently, in 1991, Iijima identified and described carbon nanotubes (CNTs), another allotrope 

where carbon atoms bonded in a hexagonal lattice (sheets of graphene) are "rolled " to form a 

hollow cylindrical shape [4]. Finally, in 2004, after extensive scientific investigation, gra­

phene—a single layer of graphite—was isolated and thoroughly characterized by Geim and 

Novoselov. This groundbreaking discovery happened during their Friday night experiments, 

where they isolated a thin layer (few atoms) from graphite by scotch tape. This material, derived 

from graphite, demonstrated exceptional properties and swiftly garnered significant interest for 

scientific research [5]. 

These seminal discoveries played a vital role in invoking the emergence of nanotech-

nology, a scientific discipline dedicated to the study of materials with characteristic dimensions 

at the nanometer scale. By definition, nanomaterials are those that possess at least one dimen­

sion measuring less than 100 nm. Depending on the number of dimensions in which a material 

does not exhibit nanoscale properties, they can be classified into 0D (zero-dimensional), ID 

(one-dimensional), and 2D (two-dimensional) nanomaterials. Fullerenes, CNTs, and graphene 
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serve as quintessential examples of OD, ID, and 2D nanomaterials, respectively [6]. The struc­

tures of all aforementioned carbon allotropes, both natural and synthetic, are illustrated in Fig­

ure 1. 

1.2 Graphene 
Graphene, along with other graphene-based materials (GBM), has rapidly emerged as 

one of the most extensively researched novel materials across a broad spectrum of scientific 

fields due to its unique structure and extraordinary properties. This intriguing material has been 

subject to in-depth study over the years. Graphene comprises a single layer of sp2 hybridized 

carbon atoms—similar to graphite and CNTs—arranged in a honeycomb lattice with a bond 

length of 1.42 A [7]. Its distinction lies in being a mere single layer of carbon atoms, which 

bestows upon it an immense surface-to-volume ratio, a characteristic shared with many nano­

materials, thus rendering it an exceptional candidate for sensing and adsorption applications 

among others [8-10]. Moreover, the sp2 hybridization facilitates each carbon atom in contrib­

uting its 7i electrons to a delocalized electron system above and below the graphene plane, en­

dowing graphene with remarkable conductive properties. These electrical properties, coupled 

with its significant surface area, render graphene an ideal material for use in electronic devices 

12 



and fuel cells [11]. Furthermore, the strong covalent bonding in graphene's periodic structure 

imparts remarkable physical properties, including toughness and flexibility. This makes gra-

phene a valuable additive for enhancing the mechanical properties of construction materials and 

for application in flexible or wearable technology [12, 13]. Despite the global scientific com­

munity's extensive efforts to explore graphene (as illustrated in Figure 2), challenges remain 

that hinder the full exploitation of its potential. Nonetheless, due to its myriad of compelling 

characteristics, graphene continues to be regarded by many as a material with the potential to 

revolutionize numerous industries, though barriers to its complete utilization persist [14]. 

Graphene, as noted previously, boasts an array of remarkable physical properties. How­

ever, its structural configuration, which underpins these attributes, also introduces certain lim­

itations, particularly in terms of its chemical properties. The lattice of graphene is characterized 

by strong o-bonds between carbon atoms, rendering it a nonpolar compound, and its tendency 

to agglomerate due to %-% stacking of graphene sheets. Consequently, graphene demonstrates 

hydrophobic behaviour, complicating the creation of stable dispersions in polar solvents such 

as water. The practicable solvents for graphene are primarily non-polar, yet these are often toxic 

and volatile, significantly narrowing the scope of graphene's applications and posing challenges 

for its industrial-scale utilization [15]. Moreover, despite graphene's physical robustness—even 

as a monolayer of atoms—it exhibits considerable chemical resistance to a multitude of reac­

tions. This resistance complicates efforts to chemically modify and tailor graphene for specific 

applications, presenting an additional layer of difficulty in exploiting its full potential [16]. 
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Figure 2: Number of publications per year for keyword "graphene". Data 

were taken from database of ISN Web of Science (data from May 2024). 

1.3 Graphene and graphite oxide 
In order to address the aforementioned challenges associated with G B M , functionaliza-

tions are essential. Historically, the Hummers method has been the most prevalent technique 

for the fabrication of functionalized G B M [graphite oxide (GrO)] [17]. This method, exten­

sively researched and optimized over time, now employs a modified protocol that reduces the 

use of hazardous chemicals. It fundamentally relies on the application of strong acids and oxi­

dizing agents over several days to incorporate oxygen-containing functional groups—such as 

hydroxyl, epoxy and carboxyl—into the structure of G B M [18]. The bonds of these functional 

groups exhibit different properties in terms of length and energy, in contrast to the uniform 

bonding system of graphite, which enables their detection through spectroscopic methods such 

as FTIR and Raman spectroscopy. However, the requirement for a significant volume of haz­

ardous chemicals renders the process costly, environmentally detrimental, and challenging to 

scale for industrial production. Consequently, there is an urgent demand for more sustainable 

and scalable methods to produce oxidized G B M . In response to this need, recent years have 

witnessed the development of novel, environmentally friendly approaches, notably the electro­

chemical method [19, 20]. This technique facilitates the production of graphene oxide (GO) 

14 



from graphite sheets through electrochemical exfoliation. In this process, a graphite sheet, serv­

ing as an anode, is positioned within a reaction chamber opposite a cathode, typically made of 

platinum or titanium [21]. The chamber is filled with an electrolyte—commonly a water solu­

tion of inorganic salts—which acts as the oxidizing agent. This innovative method represents a 

significant stride towards greener production processes for G B M , leveraging electrochemical 

principles to minimize environmental impact and potentially ease the transition to industrial-

scale applications [22]. 

The oxidation process introduces oxygen functional groups onto the planar surfaces of 

graphene, fundamentally altering its electronic and chemical properties [23]. The high electro­

negativity of oxygen disrupts the previously uniform electron distribution within the graphene 

planes, drawing electrons towards these oxygen groups and significantly increasing the materi­

al's overall polarity. This increased polarity of GO facilitates the formation of stable dispersions 

in water, thereby broadening its applicability in aqueous environments [24]. Furthermore, oxi­

dation compromises the sp2 bonding network of carbon atoms in graphene, disrupting the 

7i-electron cloud that extends above and below the GO plane. This disruption renders GO non-

conductive, a property markedly distinct from pristine graphene. However, the conductivity of 

GO can be partially reinstated through the reduction of oxygen functional groups. Among var­

ious reduction methods, the simplest and most commonly employed involves physical reduc­

tion at elevated temperatures and pressures [25, 26]. This process of oxidation followed by 

reduction provides a foundational approach for the functionalization of G B M , enabling the fine-

tuning of their properties for specific applications. The structural transformations from graphite 

to GO, and subsequently to reduced graphene oxide (rGO), are illustrated in Figure 3. Models 

for graphene structures were created utilizing python script made by Muaru et al [27]. 

Figure 3: Scheme of structural changes of graphene after oxidation to GO followed by reduction 

to rGO. 
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GO exhibits significantly greater reactivity compared to graphite, a characteristic at­

tributed to the presence of oxygen functional groups. These groups are amenable to typical 

organic reactions, paving the way for the further modification of GO. This capacity for modifi­

cation is of paramount importance, as it facilitates the synthesis of functionalized graphene 

derivatives tailored for specific applications. The functionalization of GO has been the subject 

of extensive research over the years, resulting in the discovery and publication of numerous 

novel methodologies. A considerable portion of this literature focuses on the functionalization 

of GO with thiolated and aminated compounds, highlighting the breadth of potential modifica­

tions [28-30]. The development and application of functionalized G B M continue to advance 

across various research disciplines. These fields predominantly explore the utilization of gra­

phene derivatives in drug delivery systems, biomedical sensors, antibacterial applications, and 

the removal of pollutants from water. The ongoing innovation in these areas underscores the 

versatile potential of G B M in addressing a wide array of scientific and environmental chal­

lenges [31-34]. 

A plethora of techniques is employed in the characterization of novel materials, encom­

passing microscopic methods such as Scanning Electron Microscopy (SEM) and Transmission 

Electron Microscopy (TEM), diffraction methods including X-Ray Diffraction (XRD) and En­

ergy-Dispersive X-ray Spectroscopy (EDS), as well as the extensively utilized spectroscopic 

techniques: Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy [35]. 

FTIR works by detecting the wavelengths at which a sample absorbs infrared radiation, creating 

a molecular fingerprint that is unique to its chemical composition. This method leverages the 

vibrations of the molecular bonds within a sample when exposed to IR radiation, providing 

insights into the molecular structure and functional groups present [36]. On the other hand, 

Raman spectroscopy involves illuminating a sample with a laser and analysing the scattered 

light. The frequency shift in this scattered light reveals vibrational modes in the molecules, 

allowing for the identification of chemical structures and the study of material properties [37]. 

The detailed understanding of quantum mechanisms underlying spectroscopic techniques has 

further enabled the modelling of these characterizations through quantum computations. 

1.4 Quantum computations 

Ab initio calculations, based on quantum mechanical principles, are used to solve the 

Schrodinger equation for electronic systems, primarily using the Hartree-Fock (HF) method. 
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This technique emerged from the need to simplify the many-body problem of electron interac­

tions in a system, facilitated by the Born-Oppenheimer approximation, which separates the 

electronic motion from the nuclear motion. The HF method approximates the complex many-

electron wavefunction as multiple one-electron wavefunctions, allowing for a tractable solution 

by assuming electrons move independently within an effective Coulombic field generated by 

other electrons and nuclei. The total energy calculation in HF includes the kinetic energy of 

electrons, nuclei-electron attractions and electron-electron repulsions [38]. However, HF does 

not account for electron correlation effects—interactions between electrons—which are signif­

icant for accurate energy calculations. This limitation is addressed in post-Hartree-Fock meth­

ods such as Configuration Interaction (CI), Multiconfiguration Self-Consistent Field (MCSCF), 

and Coupled Cluster (CC) techniques [39-41]. These methods enhance accuracy by better in­

corporating electron correlation, though they remain computationally intensive and are typi­

cally feasible only for smaller systems due to scaling issues. 

Density Functional Theory (DFT) revolutionised the field of computational chemistry 

by offering an alternative approach to wavefunction-based methods like HF. DFT focuses on 

electron density rather than wave functions, simplifying the calculations, particularly for large 

systems. The foundation of DFT lies in the Hohenberg-Kohn theorems, which establish that the 

ground state properties of a system are uniquely determined by its electron density [42]. DFT 

translates the quantum behaviour of electrons into a three-dimensional problem, reducing the 

computational complexity significantly compared to traditional ab initio methods. The Kohn-

Sham (KS) equations within DFT further refine the theory by introducing specific forms for the 

kinetic energy and exchange-correlation functionals, allowing for accurate calculations of elec­

tronic structures. These equations treat electrons in a fictitious non-interacting system to repli­

cate the electron density of the real interacting system. The iterative KS scheme recalculates 

electron density until it converges to a desired level of precission [43]. Advancements in DFT 

include the development of various exchange-correlation functionals, from the Local Density 

Approximation (LDA) to more sophisticated ones like Generalized Gradient Approximation 

(GGA) and meta-GGA, which account for electron density gradients and kinetic energy density, 

respectively [44-46]. Hybrid functionals combine DFT methods with exact exchange from HF, 

offering improved accuracy for a wide range of chemical phenomena, though at a higher com­

putational cost. Innovations continue with functionals designed for specific applications, ensur­

ing DFT remains a pivotal tool in computational chemistry, capable of handling complex 

molecular systems efficiently and accurately. 
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Ab initio and DFT methods, which some literature also classifies ab initio, demand sub­

stantial computational resources for large systems, particularly with larger basis sets. Since the 

inception of computational chemistry, the limitations in computational capacity have prompted 

the development of semi-empirical methods. These methods reduce computational complexity 

through a series of approximations and the integration of empirical parameters, such as atomic 

ionization potentials and electron affinities, which are derived from experimental data or high-

level theoretical calculations. Semi-empirical methods are beneficial for studying large organic 

molecules and complex reaction mechanisms where comprehensive ab initio approaches are 

computationally prohibitive. However, the dependence on empirical parameters means that 

their accuracy is confined to the compound types and specific conditions for which these pa­

rameters have been optimized. This often results in substantial discrepancies when these meth­

ods are applied to systems outside their validated range. In this study, we also employ the semi-

empirical tight-binding method GFN2-xTB, developed by Grimme's group, which is instru­

mental for conducting simulations that are computationally intensive for standard ab initio and 

DFT methods [47]. 

Among computational methods, Density Functional Theory (DFT) stands out as the 

most effective in terms of precision and computational resource efficiency. The first introduc­

tion of DFT computational methods into popular Gaussian 3 software has markedly propelled 

the field of computational chemistry, witnessing a growing adoption among scientists [48]. 

Moreover, the availability of both paid and free software has provided access to these compu­

tational tools, allowing researchers to conduct these complex computations from their personal 

computers. 

In this study, we have synthesized G B M employing both traditional (Hummers method) 

and novel (electrochemical method) fabrication techniques. Subsequently, these materials were 

functionalized with E D A to augment their chemical properties. For the first time, an exhaustive 

characterization of the resultant materials was undertaken to assess and compare the attributes 

of G B M synthesized via both methodologies. Furthermore, we engaged in computational mod­

elling and performed calculations to elucidate the spectroscopic properties of these materials. 

In order to mitigate the computational demand typically associated with the analysis of exten­

sive systems like graphene, simplified models and semi-empirical methods were employed. The 

findings from these computational analyses were then meticulously compared with experi­

mental data, providing a comprehensive evaluation of the material characteristics and efficiency 

of these calculations. 
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2 Materials and Methods 

2.1 Chemicals 

Used chemicals were obtained as follows. Graphite powder was purchased from Merck 

(Prague, Czech Republic). Graphite foil 0.5 mm, 99.8% was purchased from ThermoScientific 

(Brno, Czech Republic). Ethylenediamine (EDA), potassium permanganate (KMn04), and hy­

drogen peroxide aqueous solution (H2O2, 30%) were purchased from Sigma-Aldrich (Prague, 

Czech Republic). Sodium persulfate (NaiSiOs, 99%) and sulphuric acid (H2SO4, 98%) were 

purchased from Penta (Prague, Czech Republic). 

2.2 Fabrication of the materials 

In this study, we employed two distinct methodologies to synthesize oxidized G B M . 

The first, an older and conventional technique, is an improved version of the Hummers' method. 

This method utilizes graphite powder as the starting material and results in the production of 

graphite oxide (GrO), which could be exfoliated into graphene oxide through various methods, 

such as ultrasound treatment. The second, a more recent approach, is electrochemical exfolia­

tion. This method uses solid graphite, typically in the form of a sheet or rod, as the precursor 

and yields graphene oxide (GO). Each method offers unique advantages in terms of yield, qual­

ity, and functional properties of the resulting G B M . The difference between graphene oxide 

and graphite oxide is just in the number of layers. In the literature, both materials are titled 

mostly GO. For the purpose of this work, GrO is referred to as material fabricated by Hummers 

method, and GO is material fabricated by electrochemical exfoliation. 

2.2.1 Improved Hummers method 

The procedure for the fabrication of graphite oxide (GrO) was conducted in accordance 

with protocols outlined in a work by Lavin-Lopez and colleagues [49]. Graphite powder, used 

as the precursor material, was not subjected to further purification. Initially, 5 g of graphite 

powder was introduced into a reaction vessel along with 250 mL of concentrated sulphuric acid. 

The mixture was stirred at room temperature for 24 hours. Following this initial mixing period, 

30 g of potassium permanganate (KMn04), acting as a strong oxidising agent, was added. Sub­

sequently, the reaction temperature was raised to 55 °C and the mixture was stirred continuously 

for 72 hours to promote oxidation. After this extended reaction period, 20 mL of 30% hydrogen 

peroxide was introduced into the mixture, leading to a colour change from dark brown to dark 
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yellow. This colour transition indicates the reduction of manganese from higher to lower oxi­

dation states. The mixture was then allowed to settle, and the supernatant was decanted from 

the solid product. The resulting GrO was subjected to multiple washing and separation cycles 

using distilled water in a centrifuge until a neutral pH was reached. Finally, the clean GrO was 

frozen and subsequently dried via lyophilisation to obtain the final product. A schematic of the 

reaction steps is depicted in Figure 4 . 
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Figure 4: Individual steps of GrO fabrication through modified Hummers method. 

2.2.2 Electrochemical exfoliation 
Electrochemical exfoliation represents a distinct approach from traditional methods for 

synthesizing graphene oxide (GO), as it avoids the use of hazardous chemicals such as concen­

trated acids and strong oxidizing agents. Instead, this method utilizes an applied electrostatic 

potential along with various electrolytes, which not only facilitate the exfoliation process but 

also act as an oxidizing agent [50]. The electrochemical exfoliation process can be delineated 

into two sequential steps. Initially, the applied electric field induces the dissociation of water 

molecules, generating hydroxyl groups with a negative charge. These hydroxyl groups are then 
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attracted to the anode, where they slightly oxidize the edges of the graphite sheets. This initial 

oxidation allows electrolyte molecules, which are also dissociated by the electric field, to inter­

calate between the graphite layers. The intercalated ions from the electrolyte subsequently un­

dergo electrochemical reactions with the graphite. These reactions lead to the oxidation of 

graphite and the concomitant release of gas molecules, such as O 2 and others, depending on the 

electrolyte, which usually is sulphate-based; thus, often S O 2 is released. The expansion of these 

gas molecules generates sufficient force to overcome the van der Waals forces between the 

graphite layers, thereby facilitating the exfoliation of graphite into GO [19]. 

In this study, a 0.1 M solution of sodium persulfate (NaiSiOs) was employed as the 

electrolyte for the electrochemical exfoliation process. Upon application of an electric field, the 

NaiSiOs decomposes into sulphate radicals, which facilitate the electrochemical oxidation of 

graphite. Previous studies have demonstrated the efficacy of sulphates in the electrochemical 

production of graphene oxide (GO), making them a preferred choice for this application 

[51]. Contrary to the horizontal configurations commonly reported in the literature, our exper­

imental setup featured a vertical arrangement [52]. The cathode, composed of titanium mesh, 

was positioned at the bottom of the reactor, while the anode, a graphite sheet, was suspended 

approximately 2 cm above the centre of the cathode. In order to maintain a consistent spacing 

of 2 cm, the graphite sheet was gradually lowered as the reaction progressed. Both electrodes 

were connected to a direct current (DC) power supply, with an electric potential set at 10 volts. 

Upon activation of the DC power, the immediate release of gases (a combination of O 2 and 

S O 2 ) was observed, alongside the initial exfoliation of GO. A schematic of the entire setup and 

reaction steps is depicted in Figure 5. The reaction continued with the progressive lowering of 

the graphite sheet until complete exfoliation of the entire volume of graphite sheet was 

achieved. Subsequently, the mixture containing the electrolyte and produced GO was subjected 

to vacuum filtration. During filtration, the product was thoroughly washed with distilled water 

to remove any residual electrolyte, ensuring a neutral pH. The purified GO was then frozen and 

dried via lyophilisation. A l l steps of this procedure are depicted in Figure 5 and mechanism of 

electrochemical exfoliation is illustrated in Figure 6. 
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Figure 5: Scheme illustrating process of fabricating graphene oxide by electrochemical exfoliation. 

A B C D 

0 negatively charged sulphate particles 

• OH" lonts 

Q gas molecules (SO2,02) 

Figure 6: Mechanism of electrochemical exfoliation, where A is bulk sheet of graphite with its 

layers, B is intercalation of negatively charged particles between planes of graphite, C produc­

tion of gas molecules as a result of electrochemical reaction and D single or few layers thick 

exfoliated graphene sheets. 

2.23 Fuectionalizatioe of GO and GrO by EDA 
The functionalization process for the oxidized G B M , specifically GO and GrO, was 

uniformly executed. Initially, a 4 g/L aqueous dispersion of GO and GrO was prepared via 

ultrasonic treatment for 20 minutes. These dispersions were then transferred to sealable reac­

tors, which were subsequently placed in an oil bath maintained at a temperature of 70 °C. Upon 

the dispersions reaching 70 °C, ethylenediamine (EDA) was introduced at a volumetric ratio of 

4 uL per mL of dispersion [53]. The reaction proceeded within these sealed reactors for a du­

ration of 3 hours under constant mixing at a speed of 300 rpm. Post-reaction, the products were 

22 



subjected to a washing process using a 1:1 mixture of water and ethanol, facilitated by centrif-

ugation. The washed products were then frozen and subsequently lyophilized to yield a dry 

powder of functionalized GO-EDA and GrO-EDA. 

2.3 Characterization 

A l l fabricated materials were comprehensively characterised by FTIR (Nicolet iZIO, 

Thermo Scientific, USA) and Raman spectroscopy (Raman microscope DXR. Thermo scien­

tific, USA). FTIR spectra were measured in the range from 4000 to 400 cm"1 with a resolution 

of 4 cm"1. Raman spectra were measured in the range from 3500 to 50 cm"1 by a 532 nm exci­

tation laser. S E M analysis was carried out by Helios 5 PFIB CXe (Thermo Scientific, USA) 

and EDS analysis was done by Ulti Max EDS detector (Oxford Instruments, UK). A l l charac­

terization procedures were carried out with materials after fabrication (as described previously) 

in solid (powder) form without further purification. 

2.3.1 FTIR 

FTIR, an essential analytical technique for characterizing materials by measuring their 

infrared absorption or emission spectra, was used to characterize fabricated materials. In FTIR 

spectroscopy, an infrared light is passed through a sample, and the absorbance or transmittance 

of light at different wavelengths is recorded, generating a spectrum. This spectrum represents 

the molecular fingerprint of the sample, with unique peaks corresponding to the vibrations of 

the bonds within the molecules [54]. This method is particularly useful in identifying functional 

groups and understanding the molecular structures of G B M like graphene oxide and function­

alized graphene oxide. For graphene oxide, FTIR can detect oxygen-containing functional 

groups such as hydroxyl, epoxy, and carbonyl. When graphene oxide is functionalized, FTIR 

helps confirm the attachment of new functional groups, such as amine groups, indicating suc­

cessful functionalization, which is crucial for tailoring material properties for specific applica­

tions [55]. 

2.3.2 Raman spectroscopy 

Raman spectroscopy stands out as an indispensable tool for characterizing G B M , par­

ticularly emphasizing the D and G bands owing to their intrinsic significance. The D band, 

associated with disorder-induced phonon modes, reflects structural imperfections and defects 

within the graphene lattice, offering insights into its quality and purity. The G band in Raman 
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spectroscopy indicates that graphene has a well-ordered crystal structure and a network of car­

bon atoms bonded in an sp2 configuration. The ratio of these bands, often denoted as the ID/IG 

ratio, is one of the most important metrics for evaluating structural disorder and graphene layer 

stacking [56]. However, from Raman spectroscopy studies of a single layer of graphene with 

precisely tailored defects, we know about the existence of other bands, which are not noticeably 

visible at first glance and often have to be found through deconvolution of original spectra, 

which serve as a better tool to understanding properties of G B M [57]. The most significant is 

the understanding that the apparent G peak (G a p p ) , commonly labelled as G peak, around 

1600 cm"1 is a superposition of real G and D ' peaks [58]. Understanding these two peaks and 

their contribution to visible G a p p was mainly studied in the transition from GO to rGO [59]. 

Raman spectroscopy not only enables non-destructive and rapid characterization but also pro­

vides intricate details regarding the structural properties and quality of G B M . 

2.4 Computational methods 

In this research, the quantum chemistry package ORCA 5.0.4 was utilized to conduct an 

in-depth study of the spectroscopic properties of G B M [60]. The inherently periodic structure 

of graphene and graphite, characterized by occasional defects such as holes, presents significant 

challenges in accurately modelling these systems. Moreover, the structure of functionalized 

G B M can vary considerably depending on the synthesis method employed. Although both the 

modified Hummers method and the electrochemical method used in this study effectively oxi­

dize graphite powder, the resultant GO may differ in terms of structural defects, the degree of 

oxidation, and the distribution of oxygen-containing functional groups on the GO surface. Fur­

thermore, the increase in the number of atoms in the system corresponds to an exponential 

increase in the system's degrees of freedom, necessitating a corresponding rise in computational 

resources for the calculations. 

Given these complexities, we opted to use coronene as a simplified model to investigate 

the behaviour of G B M . Various studies have validated this approach as an effective method for 

modelling G B M [61-63]. Employing coronene as a model significantly reduces the computa­

tional costs, thereby allowing for the use of more precise functionals and higher basis sets that 

would otherwise be computationally prohibitive. 
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2.4.1 Modelling of a system 

In this study, all models were constructed using Avogadro, an open-source molecular 

editor [64]. Initial coordinates for coronene were sourced from Avogadro's built-in library. 

Subsequently, functionalized models of coronene were derived from the base structure. In order 

to facilitate the quick and efficient preselection of conformers with the lowest energy for each 

system, a simple Python script leveraging the RDKit library was employed [65]. This script 

generated several random conformers, which were then swiftly optimized using Avogadro's 

built-in optimization tools. The conformer with the lowest energy was selected as the input for 

further calculations. 

In order to comprehensively study the spectroscopic properties of G B M , multiple mod­

els were created using coronene as a simplified model. Specifically, 6 models of coronene were 

designed to investigate the structure of graphene oxide (GO). One model represented pure cor­

onene without any functionalization, while the other three models were oxygenated derivatives, 

each incorporating one of the primary oxygen functional groups found on the surface of GO. A 

similar approach was applied to model functionalized GO-ED A. For this derivative, two models 

were created, each representing the structure following the reaction of E D A with one of the 

individual oxygen functional groups. A l l models used for our calculations, with their optimized 

geometries, are depicted in Figure 7. 
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Figure 7: Models of coronene with different functional groups. A coronene, B coronene-hy-

droxyl group, C coronene-epoxy group, D coronene-carboxyl group, E coronene-epoxy group 

after reaction with EDA, F coronene-carboxyl group after reaction with EDA. 
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2.4.2 Details of computations 

Calculations were conducted using the ORCA 5.0.4 software, employing DFT and semi-

empirical methods. Predominantly, literature on DFT calculations for G B M has utilized the 

hybrid B3LYP functional [66]. However, given the continual advancements in the theory of 

DFT functionals and the introduction of new computational methods by researchers, we also 

incorporated the newer composite functional r2SCAN-3c based on the comprehensive review 

by Bursch et al. [47, 67]. Alongside these DFT functionals, the semi-empirical method GFN2-

xTB was employed for its significant computational speed advantage—approximately two to 

three orders of magnitude faster—to assess its efficacy in calculating the spectroscopic proper­

ties of our simplified system of G B M [68]. 

A l l calculations were carried out on the def2-TZVPP basis set [69]. In order to ensure a 

fair comparison of their performance in spectroscopic applications, all models were optimized 

using the r2SCAN-3c method. The optimized structures then served as the input for further 

calculations (with all mentioned methods) to determine the spectroscopic properties, specifi­

cally the Infrared (IR) and Raman spectra. Calculations of vibrational frequencies were done 

for each model separately. The resulting spectroscopic data were combined to appropriately 

model functional groups of a given material (except for clear coronene as a model of graphite) 

using Multiwfn, allowing for a comprehensive evaluation of each method's effectiveness [70]. 
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3 Results and discussion 

3.1 SEM and EDS analysis 
The morphology of fabricated materials was characterized using S E M images (Figure 

8). The material produced by the Hummers method (GrO) exhibited a denser structure with 

smaller and less distinct individual sheets. In contrast, the material prepared through electro­

chemical exfoliation (GO) displayed a less condensed structure featuring larger individual 

sheets. Both results are in accordance with published literature [71, 72]. The functionalization 

by EDA, apart from the small deformation of the sheets, did not affect the structure of the 

materials. 

Figure 8: S E M images of A GrO, B GO, C GrO-EDA and D GO-EDA. 

The elemental composition of all synthetized materials was obtained by EDS analysis. 

The sample of GrO was found to contain a higher proportion of oxygen atoms, approximately 

33 at%, in contrast to GO, which contained about 15 at% of oxygen. It should be mentioned 

that the EDS cannot provide a precise comparison in such heterogeneous samples due to the 

fact that it is a point analysis. Nonetheless, in both samples, small traces of sulphur, likely im­

purities from fabrication methods, were found. Following the reaction with EDA, nitrogen was 
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detected in both materials, confirming successful functionalization. Specifically, in GrO-EDA, 

oxygen and nitrogen were measured at approximately 23 at% and 6 at%, respectively. In 

GO-EDA the levels were approximately 5 at% for oxygen and 9 at% for nitrogen. Despite the 

lower oxygen content in materials prepared by electrochemical exfoliation, they are more sus­

ceptible to functionalization by EDA. This may indicate that GO has more reactive oxygen 

functional groups, such as epoxy functionality, on its surface. 

3.2 Raman spectra 

The spectroscopic analysis yielded spectra for both fabrication methods via Raman 

spectroscopy that are consistent with findings reported in the existing literature [73]. For all 

examined materials, the D and G a p p bands were distinctly observed at approximately 1350 cm" 1 

and 1600 cm" 1, respectively. In addition to the D and G a p p bands, other characteristic bands 

such as 2D, D+G, and 2D' were also detected across all spectra, albeit at varying intensities. 

These bands observed at frequencies around 2700 cm" 1, 2930 cm" 1, and 3200 cm" 1, respec­

tively, are typical for G B M exhibiting certain defect levels and align with documented literature 

findings [74]. The spectra corresponding to each fabrication method are depicted in Figure 9. 

In addition, the spectra of graphite—identical in both plots—exhibit a D+D" peak. A slight 

presence of the D ' peak is also observable in the graphite spectra, which has been emphasized 

by fitting a yellow line to the data, as detailed in Section 2.3.2. Probably, these peaks are not 

visible in other spectra due to the samples being analysed in their solid (powder) state as fabri­

cated, without undergoing further purification or separation into individual sheets of graphite. 

The positions of the D and G a p p bands remain nearly constant across both oxidation 

methods and even after functionalization with EDA. A comparison with the graphite spectra 

confirms that the position of the D band is stable, maintaining the same frequency. As antici­

pated, the relative intensity of the D peak compared to the G peak increased following oxida­

tion; this enhancement was slightly amplified by subsequent functionalization by EDA. The 

relative intensification of the D peak was more pronounced in samples prepared through elec­

trochemical exfoliation. In comparison to graphite, the G a p p peak exhibited a slight shift towards 

higher frequencies, suggesting an increased contribution from the D ' peak. The functionaliza­

tion process introduced a significant shoulder between the D and G a p p peaks, relative to graph­

ite. This shoulder has been previously identified as the D " band, associated with the presence 

of amorphous carbon. In the sample designated as GrO (fabricated by modified Hummers 
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method), this shoulder appears more prominent, indicating a higher content of amorphous car­

bon, which we attribute to the use of strong chemicals during the fabrication process. For bands 

at higher frequencies (such as 2D, D+G, and 2D') around 2900 cm" 1, the relative intensity is 

greater in materials fabricated through electrochemical exfoliation. Notably, in the GrO-EDA 

samples, the peaks at 2D and 2D' were nearly undetectable. 

In order to elucidate the structural properties of our G B M , we calculated the ID/IG ratios 

for all materials [75]. Intensities were calculated directly from the spectra, the deconvolution 

of the spectra into separate peaks was not considered in this study. For graphite, the ID/IG ratio 

stands at 0.13. This value, as expected, is the lowest when compared with modified materials 

and reveals some structural imperfections in natural graphite powder. Typically, in pure graph­

ite—a fully periodic system of sp2-bonded carbon atoms—no D peak should be observed, as it 

arises from defects within the sp2 plane. In natural graphite, we assume that the majority of the 

defects contributing to the slight presence of the D peak are holes within the individual planes, 

as no chemical modification is expected. For oxidized G B M fabricated using the modified 

Hummer's method and electrochemical exfoliation, the calculated ID/IG ratios are 0.94 and 0.95, 

respectively, aligning with findings reported in the literature [76,77]. These results suggest that 

the defects induced by the oxidation process, which now encompass not only structural holes 

but also the successful incorporation of oxygen functional groups onto the carbon atoms, are 

comparable in both materials, apart from the previously discussed higher content of amorphous 

carbon in GrO. For materials functionalized with EDA, the ID/IG ratios are 1.00 and 1.10 for 

GrO-EDA and GO-EDA, respectively. These ratios exceed those observed for GrO and GO, 

indicating that functionalization was successfully achieved. Based on these values, it can be 

assumed that the structure of GO-EDA was more significantly impacted than that of GrO-EDA, 

resulting in a higher degree of functionalization. 

Based on the research by A. K. King and colleagues, a comparative analysis of the ox­

ygen content in our materials was conducted using the obtained Raman spectra [59]. According 

to their findings, the difference in frequencies between the D ' and G bands can be correlated 

with the C/O ratio of graphene oxides, where a smaller difference indicates a lower C/O ratio. 

Although the D ' peak is not visible in our spectra, it can be obtained simply by halving the 

vibration of the 2D' peak. For our materials, the calculated differences in the D ' - G band 

frequencies are 1.3 for GO and 2.7 for GrO, respectively. Without the application of additional 

methods to determine a more precise C/O ratio, we can only make a comparative assumption 

that the oxygen content in the fabricated materials is relatively similar. Nonetheless, GO, which 
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was prepared by electrochemical exfoliation, based on these data, might have achieved a 

slightly higher level of oxidation. This comparative approach underscores the utility of Raman 

spectroscopy in gauging the oxidation levels in graphene oxides, reflecting subtle variations in 

their chemical compositions. 

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 

Raman shift [cm"1] Raman shift [cm"1] 

Figure 9: Raman spectra of graphite (same for both) as a precursor and of fabricated materials, 

on the left by modified Hummer's method and on the right by electrochemical exfoliation. 

33 FTIR spectra 
Analogous to the Raman spectroscopy approach, FTIR spectra were obtained for all four 

fabricated materials, as well as for graphite, which was used as the precursor material. As an­

ticipated, the FTIR spectra of graphite did not exhibit any significant peaks. Notably, while 

some studies have identified minor bands corresponding to adsorbed water moieties and vibra­

tions of C=C at approximately 3300 cm"1 and 1600 cm" 1, respectively, this feature was not 

observed in our analyses [78, 79]. This further underscores the chemical resistivity of bulk 

graphite [80]. A l l spectra are depicted in Figure 10. 
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The FTIR spectra of GrO display a broad band spanning from approximately 3700 cm 

to 2500 cm" 1, with its peak intensity at 3217 cm" 1. This characteristic broad band arises from 

the collective single-bond stretching vibrations of O-H and C-H bonds [81]. The peak observed 

at 1722 cm" 1 is attributed to the C=0 stretching vibrations of carboxyl and possibly carbonyl 

groups [82]. Subsequent to this, the band at 1599 cm" 1 is indicative of C=C vibrations within 

the sp2 carbon network [83]. The spectral region extending from approximately 1300 cm" 1 to 

950 cm" 1 is associated with C-0 or O-H vibrations stemming from various oxygen functional 

groups. Within this range, the peak at 1034 cm" 1, which exhibits the highest intensity, is iden­

tified as the C-0 vibrations of tertiary hydroxyl groups on the surface of the graphene [84]. 

Additionally, a slight shoulder detectable at 1150 cm" 1 can be assigned to C-0 stretching vi­

brations of epoxy groups [83]. 

The functionalization of GrO with E D A results in the emergence of a small peak at 

3337 cm" 1 within the FTIR spectrum, attributable to N - H stretching vibrations [85]. This peak 

adds intensity to the broad band comprising O-H and C-H vibrations. A comparative analysis 

of GrO-EDA and GrO reveals the complete disappearance of the peak associated with C=0 

vibrations of carboxylic acid, suggesting that most carboxyl groups reacted with EDA. The 

peak at 1593 cm" 1, indicative of C=C vibrations, remains unchanged. Additionally, a marginal 

decrease in spectral intensity is observed in the region from approximately 1300 cm" 1 to 

950 cm" 1, which in GrO corresponded to C-0 or O-H vibrations from various oxygen function­

alities. The peak assigned to C-0 vibrations of the hydroxyl group is slightly shifted post-func-

tionalization from 1034 cm" 1 to 1053 cm" 1, yet remains evident. A general decrease in oxygen 

functionalities, resulting from reactions with EDA, unveils a new peak at 1346 cm" 1, which can 

be assigned to O-H vibrations of hydroxyl groups [84]. These findings suggest that the majority 

of hydroxyl groups remained unaffected by the functionalization process. The successful func­

tionalization of GrO by E D A is primarily confirmed by the appearance of a new peak at 

1232 cm" 1, corresponding to vibrations of newly formed C-N bonds, alongside the disappear­

ance of vibrations from carboxyl and epoxy groups [86]. 
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The FTIR spectra of GO and GO-EDA do not exhibit the same quality as those of GrO 

and its GrO-EDA, likely due to variations in structural properties resulting from different fab­

rication methods. Nonetheless, they share similar characteristic peaks. Similar to GrO, a broad 

band from approximately 3400 cm" 1 to 2800 cm" 1 is detected in GO, which is attributed to the 

combined vibrations of C-H and O-H. Additionally, a small peak at 1704 cm"1 is observed, 

which is associated with C=0 vibrations of the carboxylic group, and a peak at 1637 cm" 1 is 

indicative of C=C stretching. The bands at 1394 cm" 1 and 1061 cm"1 are likely related to the 

O-H and C-0 stretching vibrations of hydroxyl groups, respectively. 

In the case of GO-EDA, a noticeable change is observed in the broad band at higher 

frequencies, indicating the addition of N - H vibrations with a peak at 3323 cm" 1. This alteration 

suggests the incorporation of amine groups into the structure. Moreover, the band associated 

with O-H vibrations has shifted toward lower frequencies, moving from 1394 cm" 1 to 

1336 cm" 1, which may be attributed to the influence of newly formed C-N bonds. Additionally, 

an intense new peak at 823 cm" 1 has emerged, representing the vibrations of new C-N bonds, 

further confirming the successful functionalization of the material with E D A [87]. 
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Figure 10: FTIR spectra of graphite and fabricated materials, on the left by modified Hum­
mer's method and on the right by electrochemical exfoliation. 
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3.4 Comparison with computations 

We have computed the vibrational frequencies for both Raman and infrared (IR) spectra 

using the methods described earlier. The graphite spectra were calculated exclusively from the 

coronene model. For the oxidized G B M , the spectra were generated through a combination of 

individual calculations from models of coronene and coronene with various oxygen functional 

groups. Spectra of materials functionalized by E D A were obtained by combining the calculated 

spectra from models of coronene, coronene with a hydroxyl group (which is not expected to 

react with EDA), and coronene modified with epoxy and carboxyl groups post-reaction with 

EDA. These calculated spectra are then compared with selected spectra obtained from experi­

mental analysis of GO and GO-EDA. 

The calculated Raman frequencies are illustrated in Figure 11. The frequencies obtained 

via both DFT methods (B3LYP and r2SCAN-3c) show a minimal discrepancy, with differences 

within 50 cm" 1. These methods predict that the D band of graphite appears at frequencies ap­

proximately 20 c m - 1 and 40 c m - 1 higher than the experimental value when calculated by 

B3LYP and r2SCAN-3c, respectively. For the G band, both DFT methods compute frequencies 

that are about 80 cm" 1 higher than the observed values. This trend of overestimating the fre­

quencies for the D and G bands is also evident in other models. While the DFT methods seem 

to predict the position of the 2D' band accurately, the intensity is significantly overestimated 

due to the numerous C-H bonds on the edges of coronene. Additionally, the DFT calculations 

suggest the presence of the D+G band, which is consistently misplaced by approximately 

30 cm" 1. This consistent overestimation across the spectra indicates a potential systematic error 

in the theoretical approach employed for these specific bands. 

DFT methods, apart from omitting the 2D band, seem to predict the Raman spectra of 

graphene-based material quite precisely and could be used to approximate experimental spectra. 

On the contrary, the semi-empirical method of these simplified models delivers inaccurate re­

sults. 
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Figure 11: Calculated Raman spectra of A graphite, B GO, C GO-EDA by coronene 

and functionalized-coronene models in comparison with obtained experimental data. 

Presented spectra were calculated by two DFT methods (B3LYP and r 2SCAN-3c) and 

semi-empirical method GFN2-xTB (in short XTB) . 
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The calculations of the IR spectra are presented in Figure 12. Spectra of graphite are 

omitted as no peaks were measured in the experimental spectra. Overall, the calculated spectra 

by DFT methods appear to predict some functional groups' positions accurately. The maximum 

position of the peak responsible for C-H vibrations is off by only about 50 cm" 1 across the entire 

broad peak. Additionally, the vibrations of the - C O O H and - O H , expected at approximately 

1760 cm" 1 and 1340 cm"1, seem to be correctly predicted, diverging only about 40 cm"1 from 

the experimental value. In contrast to calculations of Raman spectra, the performance of the 

semi-empirical method for calculations of IR spectra does not differ as drastically from DFT, 

apart from relative intensities, because semi-empirical methods are built for calculations on 

larger systems. Therefore, the semi-empirical method could be used for quick aproximatory 

predictions. 

In computations, vibrational frequencies are calculated for the ground state, which is 

typically represented as an isolated molecule in a gas phase, which, together with approxima­

tions to harmonic vibrations, may present a certain level of inaccuracies. The chosen computa­

tional methods, with a simplification of the complex system to the models of coronene, have 

demonstrated their capability, within a certain level of accuracy, to predict the vibrational fre­

quencies of specific functionalities of G B M . Although it seems that different strategies need to 

be employed to model such a complex system with many interactions as a whole, While the 

semi-empirical GFN2-xTB method did not perform as well compared to the DFT methods, the 

differences are not substantial. We also have to consider the significantly lower computational 

demand of the semi-empirical method for computational resources, being able to complete cal­

culations (on a standard PC) in minutes, whereas DFT might take over a day. Semi-empirical 

methods are our best option for modelling a larger system. Such a system would more closely 

resemble the real structure of G B M , suggesting that GFN2-xTB could offer significant ad­

vantages in accurately modeling these complex structures. 
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Figure 12: Calculated IR spectra of A GO, B GO-EDA by coronene and functionalized-coro-

nene models in comparison with obtained experimental data. Presented spectra were calculated 

by two DFT methods (B3LYP and r 2SCAN-3c) and semi-empirical method GFN2-xTB (in 

short XTB). 
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Conclusion 

In this study, we successfully fabricated oxidized G B M using two distinct methodolo­

gies: a common method involving hazardous chemicals and a novel, environmentally friendly 

procedure. 

The traditional approach utilized an improved Hummers method with slight modifica­

tions, employing strong oxidizing agents and acids over a prolonged period. In contrast, the 

innovative method of electrochemical exfoliation employed electric potential and an electro­

lyte, presenting a more environmentally friendly alternative for the fabrication of G B M . Sub­

sequently, these materials were functionalized using EDA. A l l synthesized materials underwent 

comprehensive characterization through SEM, EDS as well as FTIR and Raman spectroscopy, 

confirming their successful preparation. Raman spectroscopy analysis, based on the ID/IG ratio, 

suggested comparable levels of defects in materials fabricated by both methods. However, a 

larger portion of amorphous carbon was inferred in the material produced by the modified Hum­

mers method, indicated by the distinct shoulder between the D and G peaks. The ID/IG ratios 

also suggested that the structure of materials fabricated by electrochemical exfoliation was more 

significantly altered by E D A functionalization. FTIR results confirmed the successful oxidation 

of the G B M for both methods, as evidenced by the appearance of bands primarily associated 

with carboxyl, epoxy, and hydroxyl functional groups. Additionally, FTIR analysis indicated 

successful functionalization by EDA. Results from spectroscopic methods were further con­

firmed by EDS analysis, which showed a larger content of oxygen in material prepared by the 

Hummers method and a larger amount of nitrogen atoms in E D A functionalized material pre­

pared by electrochemical exfoliation, supporting the result from Raman spectroscopy. 

We further compared these spectroscopic characterization results (Raman and FTIR) 

with outcomes from DFT and semi-empirical computational methods. Our attempt to model the 

spectroscopic properties of G B M using a simplified coronene model delivered sufficient, but 

not completely precise, results for the approximate modelling of Raman spectra by DFT meth­

ods, while the semi-empirical method has proven to be insufficient for the calculation of Raman 

spectra by this simplified strategy. Calculated IR spectra, by the described methods, are able to 

quite precisely predict the vibrational frequencies of specific functionalities, although, for spec­

tral calculations of such a complex system, it seems that a different approach needs to be em­

ployed. For the calculations of IR spectra, the difference in performance between DFT and the 

semi-empirical method was not that noticeable despite saving a large amount of computational 

resources. This suggests that it would be advisable to calculate IR spectra on a larger system, 
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representing G B M , with the semi-empirical method, and for Raman, it seems inevitable to use 

DFT methods with a lower basis set to reduce computational cost. 
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