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I N T R O D U C T I O N 
Almost every country in the World set up its own Vertical Datum (VD). These datums differ from 
each other in the origin of each Vertical Datum, the theory used of the basic surface which the heights 
are measured from or in the way how they deal with Earth's tides. One of the major breakthroughs 
to set up the unified Global Vertical Reference Frame (GVRF) was the determination of the constant 
Wo ([1], [2],[3], [4]). The constant represents the value of the gravity potential on the geoid surface, 
the geopotential equipotential surface of the Earth's gravity field which best fits, in a least-squares 
adjustment sense, the global mean sea level. Excluding the GNSS measurements, all the other deter
minations of the physical heights are strongly dependent on the Earth's gravity field, its shape and 
magnitude. 

The Earth's gravity field can be split into two independent components, the first one is the grav
itational component and the second one is the centrifugal part. For calculating the centrifugal part 
of the gravity it is necessary to know the position of an arbitrary point with relevance to the axis 
of the rotation and angular speed of the rotary motion. The gravitational component is the one that is 
challenging to determine. If Newton's law of gravitation is taken into consideration, this direct compu
tation of the attraction force is not possible. The reason for this is that there are no sufficient data. For 
precise modelling, the detailed shape of the Earth must be known, also the density distribution inside 
the Earth plays a crucial role. The global gravitational field models are based namely on terrestrial 
and satellite gravimetry, satellite gradiometry and satellite altimetry. 

The satellite missions such as GOCE([5]), GRACE([6]) and CHAMP ([7]) are well known for 
their abilities to measure the components of the gravity field - the first and second derivatives of the 
gravitational potential. Biggest advantage of the satellite measurements is the global coverage (except 
the area of South and North pole). Their disadvantage is their spatial resolution, the most modern 
models are computed up to degree and order 300 ([8],[9]). The approximate spatial resolution of such 
model is 67 km, which means that the higher frequencies are missing. For determining the short-wave 
characteristics of the gravity field, the terrestrial gravity data and the gravity data from the aerial 
survey are commonly used. Combining all available data, the global gravity field models (GGFMs) 
are produced nowadays such as EIGEN-6C4([10]), GECOQll]), EGM08([12]). The latest models are 
using Stokes' coefficients up to degree and order 5540, such as XGM2019e ([13]). 

The gravitational field is a conservative potential field and quantity used to describe is called 
gravitational potential. Based on the potential theory, the gravitational potential outside the masses 
of the Earth can be expressed as an infinite series of spherical harmonics and such series is represented 
by a set of spherical coefficients. Using a set of coefficients with four fundamental constants in geodesy 
GM (geocentric gravitational constant), u (speed of the Earth's rotary motion), J<i (second Stokes' 
zonal coefficient) and Wo can lead to the definition of the Global Vertical Reference Frame. Because 
any model can be only an approximation of the reality, the theoretical infinite harmonic series is cut 
off at some degree n and the remaining coefficients are neglected. 

For the purpose of this doctoral thesis, the GVRF is represented by G G F M and previously men
tioned four fundamental constants in geodesy. Because the directly measured terrestrial gravity data 
are very problematic to obtain for the territories of the Czech Republic and the Slovak Republic, 
the alternate approach is suggested. To obtain the highest possible frequencies of the gravity signals, 
the method of residual terrain modelling was chosen. It means that the GGFM's Stokes' coefficients 
are used up to maximum possible degree and order and the higher frequencies are computed using 
forward gravity field modelling and suitable terrain model. For example, for the model EGM08 the 
dataset of surface 5' x 5' gravity anomalies is related to the global elevation model DTM2006.0. This 
elevation model serves as a common surface for all gravity anomalies and is also used consistently 
in the computation of all terrain-related quantities necessary for the pre-processing of the gravity 
data and for the subsequent use of EGM08. This can be translated as follows: To perform a spectral 
combination, for example, the combination of gravity disturbances computed from EGM08 and higher 
frequencies of the gravity signal, modelled from the digital elevation model, only those topography 
masses between the mean elevation surface represented by DTM2006.0 and the topography should 
be taken into account. This process was done using the D E M model of GMTED10 ([14]) in its finest 
resolution. For the cases where the real topography is below the mean elevation surface, the ques
tion what to do about the harmonic correction rises. In these cases, the harmonic correction plays a 
role, and the available model is capable to model gravity outside the masses as a harmonic function 
and inside the masses as a non-harmonic function. The geopotential models expressed in the form 
of spherical harmonics are not capable of handling the non-harmonic part. Thus, the non-harmonicity 
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of functions inside the masses should not be corrected. 

Goals of the doctoral thesis 
Since independent countries are using their own independent vertical reference frames, the main aim 
of this doctoral thesis is to provide the outline for the unification of local vertical datums, especially 
using the methods based on solving the geodetic boundary value problems, global gravity field models 
and GNSS/levelling sites. To accomplish the main goal, the following steps will be discussed: 

• Short summary of historical development of the Local vertical datums for the territories of the 
Czech Republic and the Slovak Republic. 

• A description of the current state of development. 
• Characteristic of different types of physical heights which are used worldwide. 
• Characteristic of available data for creation of GVRF, such as global gravity field models, discrete 

gravity data, digital elevation models, GNSS/levelling sites, etc. 
• The role of the permanent tide systems in the realisation of the vertical reference frame. Also, 

provide a brief overview of the transformation between various types of tidal systems will be 
provided. 

• Derivation of the mathematical framework for creating the GVRF. 
• Definition of the geodetic boundary value problem with Dirichlet's and Newton's boundary 

problem. 
• Provide the mathematical framework for dealing with topographic masses and also describe the 

mathematical framework for Residual Terrain Modelling. 
• Summary of distribution GNSS/levelling benchmarks, available gravity data for the territories 

of the Czech Republic and the Slovak Republic. 
• Provide a case study of realization of the GVRF for the territories of the Czech Republic and 

the Slovak Republic while using the fundamental constants in Geodesy. 
To be able to practically achieve the above-outlined goals it is necessary to have appropriate 

software available. The source codes dedicated to numerical computations created for the purpose 
of this doctoral thesis will be provided publicly and free of charge under the MIT licence. 
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1 T H E O R E T I C A L B A C K G R O U N D 

1.1 Overview of the current state of selected height systems 
used over the world 

The creation of a unified height system is a long-lasting discussion in geodesy. There are suitable 
global applications which are focused on the realization of the Unified Vertical Reference System -
World Height System (WHS) (see [15], [16], [17]) and also many regional applications, that differ for 
individual regions (for example Europe [18], Australia [19], New Zealand [20], etc). 

The importance of this task is supported by the joint effort of scientists all around the globe. 
The intermediate step to achieve the goal to unify the vertical datums is to create one common joint 
reference frame for the individual continents. 

The joint project for Africa continent is the African Geoid Project (AGP) and is an attempt to 
produce a uniform precise geoid model for Africa. The result of this project is geoid model AGP2007 
(published [21]) which together with GNSS measurements are part of African Geodetic Reference 
Frame (AFREF). 

For the continent of South America the initiative called Sistema de Referencia Geocéntrico para 
las Americas (S1RGAS) was established during the 1AG Scientific Assembly in 1997 ([22]). Its main 
objective is to define a modern unified vertical reference system for S1RGAS. Therefore, the goal is 
to establish the corresponding reference frame and to transform the existing LVDs to this new set up 
vertical datum. 

Similarly the North American Vertical Datum of 1988 (NAVD88) ([23]) was established in 1991 
for the continent of North America. The NAVD 88 was established by the minimum-constrained 
adjustment of the Canadian-Mexican-United States levelling observations, ft held fixed the height of 
the primary tidal bench mark, referenced to the new International Great Lakes Datum of 1985 local 
mean sea level height value, at Father Point/Rimouski, Quebec, Canada. 

The brief overview of current state of height systems used in Europe is shown in table 1.1. ft 
is clearly visible that there are unique LVDs across Europe which are using different height types, 
reference tide gauges or adopted tidal systems. 

1.2 Theoretical background for strategy of setting out the ver
tical reference frame 

The creation of the global unified vertical reference frame is one of the main tasks of the International 
Association of Geodesy (1AG). The Global Geodetic Observing System (GGOS) of the IAG takes 
care and provides a precise geodetic infrastructure for monitoring of the dynamic System Earth by 
quantifying our planet's changes in space and time. Which promotes the standardization of height 
systems worldwide. The special part of GGOS which is focusing on this task is GGOS Focus Area 
Unified Height System (GGOS-FA-UHS). The main result is the compilation of the IAG resolution for 
the 'Definition and realization of an International Height Reference System (1HRS)' approved during 
the 2015 General Assembly of the International Union of Geodesy and Geophysics (1UGG) in Prague, 
Czech Republic. Currently the chairman of this committee is Laura Sanchez .. The technical reports 
suggesting the realisation of the vertical reference frame are [25], [26]. 

Rummel in his study [27] stated that there are three possible ways how to achieve the goal of 
vertical datum unification. The first strategy proposed by him is the direct connection by levelling and 
gravimetry. This method, however, can only be applied for those local datums which are connected via 
land - e.g., for example, the common adjustment of the 27 national European levelling networks so-
called UELN (United European Levelling Network2). The second strategy overcomes the disadvantage 
of a direct connection by land and it is called the oceanographic approach. This approach is done by 
oceanic levelling ([28]). The basic principle is based on usage of the satellite altimetry to determine 
the height of the mean sea level (above or below geoid). By combining the measured data with global 
gravity field models and other oceanographic models (such as density model, temperature model, etc.), 
the relative datum offset is obtained. The third proposed strategy is solving the geodetic boundary 

iDeutsches Geodä t i s ches Forschungsinstitut, Technische Unive r s i t ä t Munchen, Germany 
2 Th i s common adjustment was done in the units of gravity potential m 2 s — 2 to avoid dealing wi th different height 

systems across the Europe 



T a b . 1.1: H e i g h t reference frame u n i f i c a t i o n i n E u r o p e : E s t i m a t e d offsets f rom g r a v i t y f ield ( G F ) a p p r o a c h 
based o n the filter-combined G O C O 0 3 S + E G G 2 0 0 8 g r a v i t y field m o d e l a n d geodet ic l eve l l i ng a p p r o a c h . A l l 
values refer to Uo o f G R S 8 0 a n d are c o m p u t e d i n zero- t ide s y s t e m [24] - m o d i f i e d t ab le a n d d e s c r i p t i o n b y 
[author]. 

C o u n t r y Adopted G F Geodetic Levelling Reference H e i g h t s 
t idal system [m] [m] t ide gauge t y p e 

A u s t r i a m e a n -0.269 -0.350 Tr ies te norm.-orthometric 

B u l g a r i a m e a n +0.304 +0 .213 K r o n s t a d t n o r m a l 

C r o a t i a m e a n -0.259 -0.328 Tr ies te norm.-orthometric 

C z e c h i a m e a n +0 .149 +0.115 K r o n s t a d t n o r m a l 

D e n m a r k tide-free -0.069 -0.019 10 different T G o r t h o m e t r i c 

F i n l a n d zero -0.033 -0.024 A m s t e r d a m n o r m a l 

F r a n c e m e a n -0.494 -0.486 M a r s e i l l e s n o r m a l 

G e r m a n y m e a n +0 .000 +0 .000 A m s t e r d a m n o r m a l 

G r e a t B r i t a i n m e a n -0.418 +0 .030 N e w l y n norm.-orthometric 

H u n g a r y m e a n +0.214 +0 .147 K r o n s t a d t n o r m a l 

I t a l y m e a n -0.155 -0.291 G e n o a o r t h o m e t r i c 

L a t v i a m e a n 0.129 0.139 K r o n s t a d t n o r m a l 

L i t h u a n i a m e a n 0.119 0.106 K r o n s t a d t n o r m a l 

N e t h e r l a n d s tide-free -0.029 0.009 A m s t e r d a m no-gravity correction 

N o r w a y zero -0.056 -0.023 A m s t e r d a m n o r m a l 

P o l a n d tide-free 0.211 0.156 K r o n s t a d t n o r m a l 

P o r t u g a l m e a n -0.311 -0.265 C a s c a i s o r t h o m e t r i c 

R o m a n i a m e a n 0.125 0.047 C o n s t a n t a n o r m a l 

S l o v a k i a m e a n 0.198 0.126 K r o n s t a d t n o r m a l 

S l o v e n i a m e a n -0.331 -0.402 Tr ies te norm.-orthometric 

S p a i n m e a n -0.433 -0.501 A l i c a n t e norm.-orthometric 

Sweden zero -0.042 -0.023 A m s t e r d a m n o r m a l 

S w i t z e r l a n d m e a n -0.108 -0.143 Pierres du N i t o n norm.-orthometric 

value problem (GBVP). This method connects the local disjointed vertical datums and also provides 
the Local Vertical Datums (LVDs) offsets. The GBVP approach with multiple vertical datums was 
developed and investigated by [29], [30], [31], [32], [33]. 

One of the most important values for determining the global vertical reference frame is Wo, the 
value of the gravity potential on the geoid's surface. This value was computed using fixed GBVP 
in ocean areas. The first value of Wo that IUGG agreed on is 62 636 856.0 m 2 s - 2 [34], [35]. 
The latest value is set to Wo = 62636853.4m2s~2 [4], but this value is not accepted by IUGG. 

The LVDs are based on the computation of local geoid or quasi-geoid models and these models 
are based on Stokes' integration with corresponding gravity data. To create global vertical datum, the 
connection between local data and the Global Gravity Field Models (GGFMs) is required. 

A different approach is to combine the G G F M of the highest spherical harmonics degree with the 
local gravity anomalies and digital elevation models (such as SRTM data [36]) with high resolution 
for computation of the topographic contribution to gravity measurements and gravity data. 

As it was mentioned above, all the national height reference systems are based on levelling networks 
combined with gravimetry. For each height reference system, the fixed datum point is required with 
the basic reference level from which the heights are measured as a length of the vertical or plumbline 
between the reference surface (geoid, quasi-geoid3) and point on the Earth's surface. The fixed datum 
points - the tide gauges stations - are usually used. On these stations, the sea level is observed over 
a long period of time and the value of mean sea level is obtained. This value is strongly dependent on 
the geopotential value on the level surface which the tide gauge is placed on. 

The gravity field approach uses the information of GNSS/levelling benchmarks such as ellipsoidal 
heights, their global position and the physical heights in the LVD. Height datum offsets are then cal
culated by comparing the biased undulations resulting from GNSS/levelling data with corresponding 
unbiased undulations derived from independent gravity field information. 

3 Quasi-geoid is not an equipotential surface and does not have a special meaning in geophysics. 
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1.3 Basic principle of acquiring the reference surface - G B V P 

Fig. 1.1: Overview of the basic principle of physical heights [author]. 

The Figure 1.1 shows the two most common physical height types. The Molodensky's concept of 
normal heights and the Stokes' concept of the orthometric heights. The geoid ([37]) is an important 
equapotential surface used in geodesy and geophysics. The geoid serves as the ideal reference surface 
for height systems in all the countries that adopted the concept of the orthometric heights. The 
geometric interpretation is that hort is length of the plumbline between the geoid (point Pj,o) and 
point on the Earth's surface (point Pj). The geoidal normal n! is displayed with dotted line for point 
Pj. The angle between the normals n and n' is called deflection of the vertical at point Pj. Nowadays, 
the most used simplification of Stokes' solution is Helmert's Earth body regularization [38]. 

1.4 Geoid 
The geoid as a fundamental surface for the orthometric heights. The original idea is credited to C. 
F. Gauss. The name of the surface is credited J. B. Listing. The geoid is a continuous, smooth and 
convex closed surface, and also is the equipotential surface of the Earth's gravity field which best fits, 
in a least squares sense, global mean sea level4. 

The basic formula is 

hel=N + hort, (1.1) 

where hei stands for ellipsoidal height5, N is the geoid undulation and hort is orthometric height. 
To determine the basic level surface such as geoid, the geodetic boundary value problem has to be 
solved. This leads to the boundary value problem of Newton's type. The Newton's BVP ([39]) is 
defined as follows 

AT(f) = 0 for ||r|| > rg 

te)p0-^fe)Qo

T(Po) = " A ^ o ) ondtl = Sg, ( L 2 ) 

lim T(f) =0 
||f||->oo 

4 E v e n though we adopt a definition, that does not mean we are perfect i n the realization of that definition. For 
example, i n al t imetry it is often used as a definition of the "mean sea level" in the oceans, but al t imetry is not global 
method (missing the near polar regions). A s such, the fit between "global" mean sea level and the geoid is not entirely 
conclusive. Also , there may be non-periodic changes i n sea level (like persistent rise in sea level, for example). 

5 Length of the vertical between the reference ellipsoid and the point on the Ear th ' s surface. 
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where Sg is the surface of the geoid as a boundary surface, T is the disturbing potential, ne is 
normal/vertical line at point P and 7 is normal gravity value, rg is a radius of the sphere which 
approximates the geoid. The boundary condition is 2 n d equation in 1.2, is also the fundamental 
equation in physical geodesy. In the case of the Stokes' GBVP, the Qo is point placed on the reference 
ellipsoid. 

Considering the values on the boundary as known, we solve the disturbing T outside the boundary. 
The following equation 1.3 is the solution of the Newton's BVP on sphere6. We obtain the value of 
the disturbing potential 

T(P0) = + ?z II S(ipPo,n)Ag(n) dfi , (1.3) 
4TT 

where AGM is the unknown error of the adopted value of the geocentric mass constant, r is 
geocentric length for point PQ, R is a radius of the geocentric sphere which roughly approximates 
geoid (often referred to as Brillouin sphere which is a sphere that includes all masses of the Earth), 
S(ipp0iQ) is Stokes' kernel. The solution described in equation 1.3 is a spherical approximation where 
the integration domain f2 is the surface of the 'Brillouin sphere', the df2 is an infinitesimal area of 
such sphere. In this case f2 is used as a dummy variable representing the position on the integration 
domain (in this case - reference sphere ft = (<j),X), —TT/2 < <j) < TT/2, 0 < A < 2TT)7. The equation 
describing the relation between the disturbing potential and gravity anomaly is often referenced as 
fundamental geodetic equation. The Stokes' function S(ip) (published in [37]) in its closed form 
is given by equation 

^ , , r o , „ (... i> , _:„2 i> ^(•0) = /— 6 sin I — I + 1 — 5 COST/' — 3cosi/> • In I sin — + sin — I , (1.4) 
s in f V 2 / V 2 2 J 

the Stokes' kernel can be also expressed in the form of an infinite series - spectral form ([41]) 

0 0 9 -1-1 

n=2 

where ip is obtained from spherical trigonometry ([42]) as the spherical distance (central angle) 
between the geocentric vectors of computation point and running point of the integration. The term 
Pn stands for the Legendre's polynomials ([43]). 

The main problem with the solution of the equation 1.3 is that all the measurements are done on 
the topography surface or above it and the boundary surface is geoid. That requires reducing all the 
measurements down to the geoid level while using the approximate value of the orthometric heights. 
This process is called downward continuation and can be found in publications such as [44], [45], [46]. 
The disturbing potential must be a harmonic function outside the geoid (eq. 1.2), that means the 
measured gravity data must be corrected using the topographic corrections. 

Converting the disturbing potential to geoid undulation is then given by equation 

N(P0)=T(P0)/1(Qo). (1.6) 

1.4.1 Frequency components of the geoid 
Since the disturbing potential T satisfies the Laplace's equation 1.2, T is a harmonic function. In that 
case it can be expressed in the form of an infinite harmonic series. In the spherical coordinates (r, <fi, A) 
it can be written as ([47]) 

CM 0 0 / R\n+1 

r(r ,0,A) = — J2 - r n ( 0 , A ) , (1.7) 
T»=0 ^ ' 

6 T h e r e is a unique solution i n a form of the Green integral [40]. Green's integral theorems relate the gravitation 
potential of a continuous mass-density dis t r ibut ion i n a l imited area to integrals over the normal derivative of the 
potential and the potential itself at the boundary. Tha t means the Ear th ' s exterior gravitat ional potential can be 
calculated from observed data on the boundary. 

7 The symbol f i s the usual abbreviat ion for an integral extended over the whole unit sphere (f2o) —>• f2 C QQ. 
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where Tn ale Laplace's surface spherical harmonics ([47]) 

n 
cos(mA) + Sn^m sin(mA)]P n j T O(sin^). (1.8) 

m=0 

Pn}m are Legendre's functions of degree n and m and C „ i m , S ^ m are numerical spherical har
monic coefficients. Such approach is numerically very unstable since (from numerical stand point the 
coefficients usually underflow or overflow). And the practical applications are using fully normalized 
coefficients Cn,m, Sn^m and fully-normalized associated Legendre's functions P „ j j n

8 ([47], [49]). 

1.4.2 Orthometric heights 
The biggest problem of the rigorous definitions of the orthometric height is the evaluation of the 
mean value of the Earth's gravity acceleration along the plumbline between the level surface and the 
topography. To determine the orthometric height of an arbitrary point P above the level surface WQ , 
based on the potential theory we use the equation ([47]) 

hort(P) = (W0-W(P))/g, (1.9) 

where g is the mean value of real gravity acceleration between the point P and level surface, 
measured along the real plumbline. The orthometric height can be computed from the geopotential 
number (eq. 1.9), if available. More practical approach is to compute it from spirit levelling measure
ments using the so-called orthometric correction, in which the mean value of gravity is embedded 
([50]). 

The main problem for the determination of orthometric heights is to develop a method for ob
taining the mean gravity value. The first definition is attributed to Helmert ([51]). His definition of 
the orthometric height is based on Poincare-Prey gravity gradient which is used to evaluate the ap
proximate value of mean gravity from gravity observed on the Earth's surface. Later, the mean value 
of the gravimetric terrain correction inside the topography was taken into account ([52], [53]). More 
recently, the further corrections were introduced due to the vertical and horizontal variations in the 
topographical density ([54], [55] and [56]). 

1.5 Detailed look at the Molodensky's problem 
Because the Czech Republic and the Slovak Republic both use Molodensky's normal heights, the 
further look at Molodensky's problem is required. There are many ways how to approach this issue. 
Two basic concepts will be shown here. First one is related to the pre-GNSS era when measuring the 
ellipsoidal height directly was not possible. Instead, the normal heights obtained by geometric levelling 
played a huge role. In this case, the quasi-geoid is calculated using the free-air gravity anomalies. 

Nowadays, when measuring the ellipsoidal height using GNSS technologies, it is not a problem any 
more. Hotine's solution is becoming quite common. This solution uses gravity disturbances instead of 
gravity anomalies. 

1.5.1 Quasi-geoid 
Since the Czech Republic and the Slovak Republic both use Molodensky's normal heights, the further 
look at Molodensky's problem is required. There are many ways how to approach this issue. Two basic 
concepts will be shown here. First one is related to the pre-GNSS era when measuring the ellipsoidal 
height directly was not possible. Instead, the normal heights obtained by geometric levelling played 
a huge role. In this case, the quasi-geoid is calculated using the Molodensky free-air gravity anomalies. 

Nowadays, when measuring the ellipsoidal height using GNSS technologies, it is not a problem any 
more. Hotine's solution is becoming quite common. This solution uses gravity disturbances instead of 
gravity anomalies. 

In the case of Molodensky's problem, the reference surface is not the geoid but the surface telluroid9. 
The biggest advantage of using the Molodensky's theory is that it can be solved without the proper 
knowledge of the topographic density distribution. This allows to avoid the necessity to extend the 

8 W h i c h are solution of the Associated Legendre Differential Equa t ion ([48]) 
9 T h e tel luroid (S) is used as an approximation to the Ear th ' s surface ([57]). 
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gravity measurements from terrain down to geoid level. The telluroid is not a level surface because 
there is no constant value of geopotential. One of the possibilities of how to define the telluroid is 
through the gravity anomaly potential ([58]) 

AW(P) = W(P) - U(Q), (1.10) 

where the gravity anomaly potential10 at P is given as a difference between gravity potential at 
that point W(P) and normal potential at the point on telluroid's surface and lying on the vertical line 
passing the point P. The telluroid can also be defined by equation ([58]) 

Ag(P) = g(P) - 7(Q), (1.11) 

where Ag is gravity anomaly vector. If the telluroid is defined by an appropriate way, it is possible 
to make one of the two anomalies equal zero. Because of this simplification compared to the Stokes' 
GBVP, equation 1.2 can be rewritten into 

(jr) ~— f l 1 ) T(P) = -^9(P) ondfl = Sv, (1.12) \dneJp 7 Q \dneJQ 

where d/dne is derivative in the direction of the vertical line to ellipsoid and boundary <9f2 is 
Earth's surface. 

The disturbing potential for Molodensky's problem is then given by 

T(P) = AGM + M_ff styPfl) • (Ag(Q) + 9l{Sl) + g2(Q) + ...) dfi 

" (1-13) 
T(P) = ^M+T0(P) + T1(P) + T2(P) + ... 

Where Ag is free-air gravity anomaly, P is an arbitrary point on the Earth's surface and terms 
gi are members of the Molodensky's series and will be discussed in the following section 1.5.2. The 
relation between the ellispoidal heights hei and Molodensky's normal heights hn is given by following 
equation 

hei = hn + (, (1.14) 

where £ is height anomaly representing the vertical difference between topography and telluroid 
at point P 

C(P) = T(P) / 7 (Q) (1.15) 

1.5.2 Molodensky's problem - free boundary value problem 
Using the gravity anomalies to determine the physical surface of the Earth is known as Molodensky's 
problem. The surface gravity anomalies are linear functions of the harmonic potential outside the 
Earth masses and so they can not be directly used in Stokes' integral (see eq. 1.3). This is because 
they are related to the physical surface, which can not be considered as the equipotential surface of 
the gravity field. Isozenithal11 lines are not in general perpendicular to telluroid, that resolves into 
solving the linear boundary problem with oblique derivation (see for example [60], [61]). The spherical 
approximation of the equation 1.12 with the use of Marussi telluroid (AW = 0) is 

Ag{P) = 2^p-- (j^j ondQ = Sv, (1.16) 

The classical solution is often marked as Simple Molodensky's problem (SMP) because it uses the 
expansion into infinite series (see eq. 1.13). In the case where only the first two members of the infinite 
series are used, it is called the gradient solution. This approach uses the free-air gravity anomalies 
AgFA 

g0(P) = AgFA{P), (1.17) 
1 0 F o r example the commonly used Maruss i tel luroid is defined by condit ion AW(P) = 0. 
1 : L Isozenithal of the normal gravity field is a line on which a l l the gravity vectors parallel to themselves, for isozenithal 

lines related to Molodensky 's problem see [59]) 
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n 
where hn and hn(P) stand for Molodensky's normal heights of the integration point and compu

tation point P. The To is initial approximation of the disturbing potential12. And lo(P, ^) is given by 
equation 

l0(P,fl) = 2 i ? s i n ^ p . (1.19) 

Listed formulas (published in [62]) show that instead of a straightforward integration of the AgpA, 
the iterative process is required. This process also involves height differences between the running 
point of the integration and the rest of the points on the terrain. In Molodensky's theory, the height 
anomaly £ can be expressed as infinite series ([63]): 

C = Co + Ci + C2 + . . . + C n , neN . (1-20) 

In many practical applications, only the first two terms are needed. The higher terms are necessary 
only in mountainous areas. In paper [64] the use of Molodensky series up to 3 r d order is studied for a 
mountainous Alps region located near Mount Blanc. The contribution of £i reaches maximum values 
up to 0.10 m, £2 contributes up to 0.01 m and the contribution of £3 is practically negligible. It is also 
important to mention that the Molodensky series converges only when the terrain inclination is less 
then 45° ([65]). That means that when using very high-resolution DEMs it can cause some numerical 
instabilities. 

1.5.3 Molodensky's problem - fixed boundary value problem 
The most common computation method for the quasi-geoid calculation is so-called remove-restore 
technique ([66]). With the development of the GNSS technology and other advanced remote sensing 
technologies, the Earth's surface can be observed with few centimetres accuracy. The conclusion of 
this technology development is that the Earth's surface can be considered as given. The usage of the 
telluroid as a reference surface is still necessary. This problem is called the fixed GBVP and has been 
investigated in many publications [67] , [68] , [69]. 

When the Earth's surface is considered as the boundary and the gravity disturbance 5g is given 
on that boundary, assuming that no masses are outside the Earth, then for the relation between 
disturbing potential T and 5g under linearisation and spherical approximation the following equation 
is given 

dT 
on the Earth's surface S , (1-21) 

s 
also two other conditions must be fulfilled 

V 2 T =0 on and outside of S , 
lim T{r) =0 . ( i - 2 2 ) 

||r||->oo 
The equations in 1.21 and 1.22 are formulation of the Neumann's boundary value problem. 
To avoid the density hypothesis, the Molodensky's solution for the equation 1.21 is given by 

T(P) = T0(P)+T1(P) = ^JJ5g{il)HW>Pin)dil + £ | | f f t ( f l ) i r ( ^ ) d f l , (1.23) 
n n 

where H(tp) is the Hotine's function [70] in closed form 

ffM = — - I n 1 + — , (1.24) 
sin f y sin f J 

reminder: to(P)-y(Q) = T0 
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or it can be expressed in form of the infinite series - spectral form ([41]) 

E -
n=0 n - 1 

Pn(cOS1p) , (1.25) 

Analogously to the previous chapter where the free boundary problem was discussed the terms 
are the terms of the Molodensky series. The first term is given by 

Sgi(P) 
2TT 

hel(n) - hel(p) 
i*(p,n) 

5g(Q) ^jj Sg(Q)H(i;)dn (1.26) 

This solution is explained further in [71]. 
However, the lacking availability of globally distributed 5g can create some complications. Since 

the majority of available gravity measurements are from pre-GNSS era, when the ellipsoidal heights 
have not been determined. 

The gravity disturbances can not be compiled, since the gravity measurements have been used to 
compute the gravity anomalies and the original data are almost impossible to obtain. In the article 
[72], the effect of local datum offset on gravity anomalies is mentioned and the relation between the 
Sg and Ag is discussed to a large extent. 

1.6 Computing the connection between Local Vertical Datum 
and Global Vertical Reference Frame 

Due to the high count of the local vertical datums, the Earth's surface is partitioned into n disjoint 
zones A 1 , i = 1,2,... ,n. Important to mention is also that there is no intersection13 of these datum 
zones A \ It means that £ = U f = 1 A l while A 1 n A-? = 0 for every i ^ j. The "origin" of each datum 
zone is defined by its own level surface, e.g. the gravity potential value Wo,i- Such case is displayed in 
the figure 1.2. 

Fig. 1.2: Schema of the disjoint vertical datums. Each VD has its origin Wo,i and a set of GNSS/lev-
elling points distributed over the territory [author]. 

For these GNSS/levelling sites, the ellipsoidal heights heiti are unbiased and normal heights hn are 
biased. For these benchmarks, the biased height anomaly £, can be linked to the disturbing potential 
T by the generalized Brun's formula ([73]): 

r ( n _ r * ( p ) ~ (W<M ~ go) _ T(P) + AWp 
i{Qi) i{Qi) 

where Uo stands for the constant normal gravity potential value on the surface of the reference 
ellipsoid, 7 is the normal gravity value at the Earth's surface and AWQ = Wo — Uo. The <5Wo,; = 
Wo,i — Wo- Inserting last two terms into equation 1.27 we get 

T*(P)-AW0 6W0ti 

1 3 C o m m o n boundary is allowed. 
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where the last term is the unknown height datum offset of the i-th LVD. The disturbing potential 
can be obtained from solving boundary value problem based on the gravity disturbance (section 1.5.3 
Molodensky's problem - fixed boundary value problem) or based on free-air gravity anomalies (section 
1.5.2 Molodensky's problem - free boundary value problem). 

Let us consider the Global Vertical Reference System and the ((P) is given in the same way as 
£ l (P) , the unknown height offset correction is given by 

A C = C(P) ~ C(P) (1.29) 

Since the C(P) is given as a official reference surface used in the i-th country it is the ((P) that 
needs to be determined using the fixed-GBVP. 

1.7 ' F A S T ' G B V P connection to W H S 
Since the territories of the Czech Republic and the Slovak Republic use Molodensky's concept of 
normal heights, they will be discussed more thoroughly. For normal heights based on Molodensky's 
theory, the equation 1.9 is rewritten into 

hn(P) = (W0-W(P))/j, (1.30) 

where 7 is mean value of the normal gravity measured along the normal vertical between the point 
P and level surface represented by level ellipsoid E0 (see equation 1.41) where Wo,; is the value of 
gravity potential at the i-th tide gauge station. That means that different tide gauges have difference 
value of gravity potential and in general they are not at the same equipotential surface. 

The FAST GBVP connection is based on method previously developed for testing the geopotential 
models ([1], [74]). The difference between the normal gravity potential and the real one is directly 
related to the £ value and then, of course, also to the hn value. So the practical realisation of GVRS 
can be derived from the following equations. Let the Wo represent the GVRS and Wo,% the LVD. And 
let 

U0 = Wo ? Wo, (1.31) 

The value Wo is well known and the Wo,i is the value to be determined. At point Qi the normal 
potential is equal to gravity potential at point P. 

Fig. 1.3: The difference between LVD and GVRS [author]. 

U(Qi) = W(P). (1.32) 

The spatial position of Qi is defined by normal Molodensky's height. But at Q 

U(Q)?W(P), (1.33) 

because the spatial position of this point is related to different ellipsoid EQ. In that case 

U(Q) -U0 = U{Qi) - U0,i or U(Q) -W0 = W(P) - W0,i, (1.34) 
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that means that the normal height is identical in both cases. The offset between Wo and Wo,i is 
then given by 

U(Q) - W(P) = W 0 - WM = -SW0,i. (1.35) 

The last equation defines the difference between the LVD and GVRS. This methodology for geopo-
tential model testing was developed by [1]. As a by-product of testing geopotential models, the tech
nology was developed for determining the geopotential values at the tide gauge stations, which are 
used for specifying the LVDs over areas covered by GNSS/levelling sites ([3]). This technology is based 
on boundary condition defined by the equation 1.10. The final equation is then given by 

SW0,i = W(P) - U(Q). (1.36) 

The W(P) can be obtained either from G G F M model or by converting the normal height to 
geopotential number using equation 1.30. 

In modern world this information can be measured by GNSS technologies (coordinates of the point 
P). The second member of the mathematical statement U(Q) in equation 1.36 is computed based on 
Molodensky's theory using the level ellipsoid and normal height, thus 

U(Q) = U(E0(GM,co,J20,W0),HN) or U(Qt) = U{E0}i{GM, to, J 2 0 , W0}I), HN), (1.37) 

if the use of different Wo,, is required. The computation of the normal potential can be done using 
the equations published in [75], [76]. But for numerical computations done for the purpose of this 
doctoral thesis the curvilinear coordinates were used [77]. The radial distortion SR of the LVD is then 
given by equation 

S R = - ( ^ r ^ - s w ^ - (°8) 
{W0,i) 

1.7.1 The definition of the level ellipsoid 
In order to connect the GGFMs with the geopotential value on the level surface of the geoid (Wo), 
it is necessary to calculate the parameters of the level ellipsoid EQ. The level ellipsoid has the same 
potential value on its surface as the geoid. 

The computation can be performed using following equations ([15]): 

/i+i = f i + + e f 2 - [ ^ i - a r c t a n / 

ai+i = • j: a r c t a n ( w i ) + l^cii, 

- l 

(1.39) 

where ao is reference radius of the used G G F M , J2Q is derived from G G F M coefficients using 
equation J2$ = — V5C2,o, Wo is value of the geopotential on the geoid surface, u> is angular velocity 
of the Earth's body, e is first numerical eccentricity. 

In order to check if the computed level ellipsoid has the same geopotential value on its surface as 
geoid, the following equation can be used : 

GM ( e \ 1 9 9 , 
WQ = arctan + - w V , (1.40) 

1 - / 
Such defined level ellipsoid can be expressed as function of four fundamental constants used in 

geodesy. For a general value of Wo,, the level ellipsoid E 0 } I is given by equation 

EOii = EOii(GM,u,J2o,W0,i). (1.41) 

In the table 1.2 the parameters for the level ellipsoids are shown. The computation used the same 
value for GM, ui and Wq j . The value C2Q however changes for different tide systems. 
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Tab. 1.2: Parameters of the level ellipsoids using the C 2 0 from EGM08 model, GM = 3.986004415-10^ m 3s" 2, 
oo = 7.292115 • 10 - 5 rad • s _ 1 . The values are listed for the different values of Wo and for all three permanent 
tide systems [author]. 

Permanent Tide System Parameters Geopotential value Wo [m2s 2] Permanent Tide System Parameters 
62635856.0 62635853.4 

Tide Free 

a-axis [m] 6378136.545 6378136.810 

Tide Free 
b-axis [m] 6356751.898 6356752.163 

Tide Free / _ 1 [dimensionless] 298.257755 298.257748 Tide Free 

C20 • 10 - 4 [dimensionless] -4.841651 -4.841651 

Tide Free 

7 E [ms-2] 9.738129 9.738129 

Tide Free 

7P [ms-2] 9.836951 9.836950 

Mean Tide 

a-axis [m] 6378136.415 6378136.681 

Mean Tide 
b-axis [m] 6356752.156 6356752.420 

Mean Tide / _ 1 [dimensionless] 298.263141 298.256520 Mean Tide 

C20 • 10 - 4 [dimensionless] -4,841471 -4,841471 

Mean Tide 

7 E [ms-2] 9.738130 9.738129 

Mean Tide 

7P [ms-2] 9.836950 9.836950 

Zero Tide 

a-axis [m] 6378136.574 6378136.840 

Zero Tide 
b-axis [m] 6356751.840 6356752.104 

Zero Tide / _ 1 [dimensionless] 298.256527 298.256520 Zero Tide 

C20 • 10 - 4 [dimensionless] -4.841693 -4.841693 

Zero Tide 

7 E [ms-2] 9.738129 9.738129 

Zero Tide 

7P [ms-2] 9.836951 9.836950 

1.7.2 The permanent tide role in height systems and transformation be
tween them 

The treatment of the permanent tidal deformation of the Earth's crust plays an important role in the 
realisation of the height system and also in GNSS positioning. With modern possibilities and increasing 
precision of GNSS based coordinates, all methods of the height system unification require precise and 
consistent way how to handle the tides. Different concepts of how to handle these deformations are 
described in [78], [79], [80]. 

The tides are generated by external bodies: the Moon and the Sun. Their gravity generates forces 
that deform the shape of the Earth. The tidal deformations are usually divided into two groups: 
permanent (time-independent part) and periodic. 

A tide-free (TF) (or non-tidal) system eliminates the permanent deformation from the shape of 
the Earth. Both parts, the tide generating potential and the deformation potential of the Earth (the 
indirect effect), are eliminated from the potential field quantities (such as gravity, geoid, potential, 
etc.). Thought experiment behind is that the external bodies such as the Sun and the Moon are 
physically moved to infinity. That means the Earth is rid of all direct and indirect effects of the Sun 
and the Moon. Typically the permanent deformation is treated using the Love numbers h and k, and 
the Shida number I. 

The tide-free gravity field and Earth's crust do not compare with the real Earth and gravity 
quantities are not directly observable (see [81] , [82]). 

A mean-tide (MT) system does not remove the permanent effect from the Earth's shape. The 
shape corresponds to the long-time average under tidal forcing. The potential field preserves the 
potential of time-average shaped Earth. Mean-tide potential field basically characterizes how water 
flows and clocks run according to Einstein general relativity ([83]). 

A zero-tide (ZT) potential is generally a middle alternative for treating the tidal deformations. 
It eliminates the tide generating potential but possesses its indirect effect (effect mostly related to 
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= HTF 

HZT = HTF 

HMT = H Z T 

the elasticity of the Earth is retained). The gravity field is generated only by Earth's mass plus the 
centrifugal force. 

The permanent tide in height systems can not be considered separately from the permanent tide in 
other geodetic and gravity quantities. The IAG Resolution Number 16 adopted in 1983 at the General 
Assembly in Hamburg ([84]) states that: that the indirect effect due to the permanent yielding of the 
Earth should be not removed. 

Once the height of an arbitrary point is acquired, the tidal transformation equations can be ex
pressed in following way. In case of the transformation of the heights, the following equations are 
used: 

(1 + k + h)- AWZT • g-1 

(k-h)- AWZT • g-1 (1.42) 
AWZT • g-1, 

where k and h are the tidal Love numbers. The term AW • g^1 in equations 1.42 can be calculated 
with sub-centimetre accuracy using the following expression ([85]): 

AWZT /3 1\ 

— - — w -0.198P2,o(sincV)[m] = -0.198 ( - sin 2 - - J [m]. (1.43) 

1.8 Residual terrain modelling 
As it was mentioned before, many GGFMs do not contain the high-frequency content of the gravitation 
field. The high frequencies are generated mostly by the terrain near the evaluation point. The gravity 
quantity can be evaluated separately using the D E M and then added to the reference part of the signal 
computed from G G F M . This combination of data was chosen in order to calculate the connection 
between the local height system and the WHS because of the lack of well-distributed quality gravity 
data. Then the gravity anomaly Ag can be expressed as 

Ag{P) « Ag{P)GGFM + Ag{P)R™ , (1.44) 

where Ag(P)GGFM stands for the gravity anomaly obtained from G G F M at an arbitrary point P 
and Ag(P)R™ is the residual terrain part of the gravity anomaly computed from DEM. The error of 
the approximation of the true gravity anomaly acquired by combining the G G F M with RTM technique 
is given by equation: 

Ag « Ag -> Age = Ag - AgGGFM - AgR™ . (1.45) 

According to the [86], the error of the approximation is mainly effected by: 

• commission error of the Ag(P)GGFM (caused by errors in G G F M coefficients), 
• errors in Ag(P)R™ (caused by limited knowledge of the density inside, 

the Earth's topography, precision of D E M and used method of the evaluation), 
• non-seamless spectral separation of two terms in equation 1.44, 
• missing higher frequencies (caused by limited resolution of the DEM), 
• errors in upward or downward continuation of the Ag between the mean 

surface and the real topography. 

The main problem with the RTM is the fact that the gravitational signal of the topography 
contributes to all frequencies of the gravitation potential. That means that it contributes also to the 
frequencies that are already included in GGFMs. For example the EGM08 or EIGEN-6C4 already 
contain the gravity signal contribution of the world topography. For the spectral combination of 
AgGGFM and AgRTM, only the AgRTM frequencies that are higher than the maximal frequency of 
G G F M should be considered. 

1.9 Gravity field modelling 
The gravity field modelling using tesseroids ([87]) is being used for calculation of the gravity quantities 
from DEMs. Residual terrain modelling (RTM) is a technique that allows forward modelling of the 
high-frequency gravity effects from the topographic mass ([66]). 
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Since the shape of the Earth's body is well known today due to the development in creation of 
DEMs and methods of collecting data, it is possible to compute the contribution of the topographic 
masses to gravity data such as gravity disturbance or gravity anomaly and many others. Forward 
gravity field modelling (FGFM) is based on well known Newton's integral for gravitational potential 
of a solid body <r £ K 3 : 

where G denotes Newton's gravity constant, p(cr) is density function, I = l(P,a) is Euclidean 
distance between the attracted computation point P € R 3 and the running mass point Q S a. By 
solving the equation 1.46, we can obtain the value of gravitational potential of surrounding terrain. 
Applying the Leibniz integral rule, the other parameters of a gravity field, such as first and second 
derivatives of a gravitational potential, can be obtained respecting the chosen coordinate system. 

Modern way how to treat with contribution of topographic masses to gravity based values (potential 
and its derivatives) is the usage of tesseroid geometry. Let's have point P(r, ip, A) for which the values 
are computed. Each tesseroid is given as a volume with following boundaries a = [ri,r2\ x [<̂ 1,<̂ 2] x 
[Ai,A2] <G M 3 . Also the required condition is P ^ a, but it can be part of the tesseroid's boundary 
P <G da, and an arbitrary point Q € a has coordinates (r ' , ip', A'). The geometry of spherical tesseroids 
and its solution is published in [88]. Optimized tesseroid formulas based on Cartesian integral kernels 
were introduced in [87]. 

The RTM techniques can be used in context of smoothing the gravity field observations, for ex
ample, the remove-restore gravity field computations ([89]) or determining the high frequency geoid 
models ([90]). Another application of RTM techniques can be the extension of the spectral content of 
GGFMs to the short-wave length domain not originally included in GGFMs (e.g [91]). The spectral 
enhancement method can be also used to fill the spectral gap between the spherical harmonics models 
and gravity field observations (for example the deflections of the vertical [92], GNSS/levelling [93], 
etc.) Possible applications are also predicting the values of gravity field quantities ([94]) or for the 
purpose of this doctoral thesis, the height system unification ([95]). 

Using the RTM for high-frequency G G F M augmentation, spectral inconsistencies can resolve into 
errors. The spectral inconsistencies can be reduced by using a spherical harmonic reference surface 
([91]) which is related or obtained directly from D E M data itself via spherical harmonics analysis ([96]). 
However, the calculated R T M gravity effects are related to approximation errors, because filtering in 
the topography and in gravity domains are not equivalent operations (known as RTM filter problems). 

1.9.1 Terrain effects 
The terrain effect (TE) is an effect of the physical terrain on the gravitational potential of the planet's 
body or its other derivatives. The definition of the terrain can be defined as the part of the topography 
which rises above or below the local horizon of an arbitrary point P located on the planet's surface. 
The surface of the Earth is best represented by DEM. D E M can be provided in various forms. 

Height in those models can be given above different surfaces such as geoid (orthometric heights), 
quasi-geoid (normal heights) or reference ellipsoid (ellipsoidal heights). Because of the fact that the 
terrain is characterized by relative elevation of the topography with respect to an arbitrary point P 
and also most of the computations of TE are done up to a maximum distance of tens of arc minutes, 
or maximally up to one degree, the differences between various types of heights using the spherical 
approximation can be neglected. 

1.10 Mean elevation surface 
The main thought behind the combination of D E M with G G F M is adding the topography to gravity 
quantities calculated from geopotential models. The merge is done by using a mean elevation surface 
(MES) that corresponds to given G G F M , i.e. has the same spatial resolution. MES helps to distin
guish the signals that are already a part of G G F M from the signals generated by the best available 
DEM. MES can be given in various forms, but from frequency point of view, the spherical harmonics 
expansion of the global topography to the same degree and order as G G F M is the most suitable 
format. 

(1.46) 

a 
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ref. surface 

Fig. 1.4: The comparison of mean elevation surface and real topography. The residual terrain effect is also 
shown on the picture [author]. 

The main difference between the classic terrain correction (CTC) and TE is that the CTC repre
sents the gravitational effect of topography masses between a constant elevation level of an arbitrary 
point P and the topographical surface, while TE represents the gravitational effect of masses between 
MES and actual topography. 

On figure 1.4 the RTM anomalies are shown. They consist mostly of balance set of positive and 
negative density anomalies, representing the areas where the topography is either above or below the 
MES. Hence the gravitational effect of the RTM will in general cancel out in larger distances from 
a computational point (in [86] distance of 2-3 times the of the MES resolution is mentioned). 

However, there are two important aspects of RTM. The first one is the harmonic correction. The 
second variable is large effect generated by the unlimited Bouguer layers. 

1.10.1 Harmonic correction 
The gravitational effect, in this case, is modelled by using the spherical (or planar) approximation. 
The bottom edge of the prism has an elevation of h9(P) and the height at the top edge has the 
value h(P). The harmonic correction (HC) deals with the case where h(P) < h9(P). In that case, 
it is necessary to evaluate an arbitrary point P inside the MES. That situation is not automatically 
managed by the forward gravity field modelling methods and so the correction known as harmonic 
correction has to be taken into account. This problem was mentioned for the first time in [97]. In this 
paper, the harmonic correction was developed only for gravity anomaly, therefore no other harmonic 
corrections for other gravity quantities were introduced. That problem was mentioned multiple times 
in papers such as [98] or [99]. Omang et al. proposed the approach where the P is moved above the 
MES, then the topography is removed and the final step is to analytically continue the calculated 
value back to the original point P below MES. In paper [66], the conventional solution to harmonic 
correction is expressed as 

H C ^ f ^GphR™(P), hR™{P) < 0 
[ 0, otherwise 

where hRTM(P) is defined as hRTM(P) = h(P) - h9(P) . 
The HC relies on a mass condensation based on a double Bouguer reduction with slap thickness 

hRTM(P). The value of hRTM(P) has oscillating nature. The gravity anomaly from RTM in the 
spherical coordinates is given by equation: 

i/>o 2tt R+h(P) 
AgRTM^HC + GpJJ J ( r ' ) 2 , ( r ~ r ' C ° S ^ V W s i n V / d V / , (1.48) 

0 0 R+hs(P) 

where R is the radius of the reference sphere, a is azimuth and ip is geocentric angle. 
The harmonic correction has its place in cases when the available model is capable to model 

gravity outside masses as a harmonic function and inside masses as a non-harmonic function. The 
GGFMs which are expressed as a series of spherical harmonics are not capable of handling the non-
harmonic functions. That means that the values obtained from G G F M above the reference ellipsoid 
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act as harmonic functions. That applies also for points which are in reality inside the masses. The 
non-harmonicity of functions inside masses is not part of G G F M and should not be corrected. 

1.11 Remove-Compute-Restore Technique 
To avoid the numerical integration around the whole globe, the Remove-Compute-Restore (RCR) tech
nique is used ([62]) to determine the quasi-geoid with an accuracy on the cm level which matches the 
accuracy of GNSS heights. In this thesis, the disturbing potential is computed using the convolution 
technique for fast approach. The RCR method removes from the measured data the long-wavelength 
component (predicted by GGFM) and a short-wavelength part (predicted by topography). Both parts 
are removed from the original gravity data. Then the remaining wavelength part of the signal is trans
formed into the height anomaly representing the quasi-geoid. This step is carried out either using the 
Hotine's or Stokes' integral or using the Least Squares Collocation (LSC). After this step, the signals 
originally removed from the data are restored. The advantage of the LCS over the Stokes'/Hotine's in
tegral is that it does not require the gridded gravity anomalies as the FFT approach of the mentioned 
integrals do. Also, the LSC provides the error estimation for the resulting quasi-geoid models. 

Since the real gravity data are not easily obtainable, the modification of the RCR method was used. 
For these calculations, the G G F M model with a combination of the D E M representing the topography 
was used. For example, the integration radius was set to 1.1° w 122 km. The signal representing the 
global contribution is the value computed only from the coefficients of the G G F M up to degree and 
order 164. From degree and order 165 to the maximum possible degree and order, the values represent 
the gravity signal which is then integrated. The remaining high frequencies which are not included in 
G G F M are added via residual terrain modelling (RTM, see section 1.8 Residual terrain modelling), 
are integrated accordingly to their spatial resolution. 

It is important to mention that using the full form of the integral kernels is legitimate when the 
Ag/Sg contain all the frequencies. Otherwise the spectral form of this functions is needed. In case, 
when the frequencies from degree and order 165 up to 2190 are used the spectral form of the integral 
kernel. For the Stokes' kernel we assume the bandwidth n = 165... 2190 in equation 1.5. So the 
notation Sf(ip) is used for bandwidth limited kernel. The Hotine's kernel can be defined analogously. 

The final value of the disturbing potential using G G F M such as EIGEN-6C4 or EGM08 can be 
expressed in the following form using the Stokes' integral: 

T = rpGGFMg64

 + £ ff{AgGGFM™° + GGFM?£°)S?190(^)dfi 

(1.49) 
+£ ff(AgK™ + g?™)m) - S & 9 0 WO " S2

164(V0)dtt , 
n 

or the Hotine's integral: 

T = TGGFMr + M_ Jf{SgGGFM?™ + S g G G F M - o ) f f ^ ^ 

(1.50) 
+ £ II(S9R™ + 6g?™)(H(iP) - HU!°m - ff0

164 W ) d « • 
n 

Since for the RTM obtained values it is quite hard to determine the frequency numbers, the 
remaining value of the kernels is used (H(ip) = H(tp) — H^tp)). 
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2 T H E C A S E S T U D Y F O R T H E T E R R I T O R I E S O F T H E 
C Z E C H R E P U B L I C A N D T H E S L O V A K R E P U B L I C 

2.1 Input data 
The data used for the Vertical Reference Frame connection to the WHS were the D E M GMTED10 
[14], which is freely available, and different GGFMs namely EIGEN-6C4, EGM08 and XGM2019e. For 
the results verification, the points from the territories of the Czech Republic and the Slovak Republic 
with known ellipsoidal heights and also the normal Molodensky's heights were used. The number of 
points differs for both countries. For the territory of the Slovak Republic, the total number of points 
is 5614 and for the territory of the Czech Republic, it is 2430. For every j — th GNSS/levelling point 
the gravity potential W(Pj) and normal potential using the level ellipsoid for corresponding point 
on the telluroid surface U(Qj) is computed. The difference between these values is converted from 
geopotential numbers to SI scale unit-m, using the 7 value. Some of these points were rejected in 
the adjustment process as the error exceeding the condition \v\ > 3 • <ro, where the ao is aposteriori 
standard deviation and v is error value. Such values are considered to be remote and are removed 
from the process. 

When the FAST GBVP approach was computed, 10% of all points were reserved to verify the 
results, thus they were not used in the adjustment process. 

The GNSS/levelling data from the territory of the Czech Republic are so called Points of Selected 
Maintenance1, these points have their heights measured by GNSS technologies and also by spirit 
levelling. They were primarily used for creating the National coordinate reference frame Jednotná 
trigonometrická sit katastrálni2 (S-JTSK). One downside is the fact that spirit levelling, in this case, 
is mostly done only by technical levelling. The kilometre error in millimetres for such levelling line is 
20 • \JR [km], where R is the length of the levelling line in kilometres. The geodetic coordinates are 
determined in ETRS89 coordinate system by static method with length of observation of 3 hours or 
longer. The expected precision in ellipsoidal height is around a few centimetres. 

The GNSS/levelling points from the territory of the Slovak Republic are mostly points of the high 
precise levelling lines, so their normal heights are measured in millimetre precision, but their ellipsoidal 
heights are often measured by GNSS-RTK method. Expected height precision is around ±3 — 4 cm. 

The digital elevation model GMTED10 is an enhanced global D E M developed by the U.S. Ge
ological Survey (USGS) and the National Geospatial-Intelligence Agency (NGA) which replaces the 
D E M GTOPO30. For all the computations the 7.5" resolution was used since the Europe coverage is 
provided in high resolution. For the latitude of the Czech Republic the grid resolution is approximately 
225 [m] x 150 [m]. 

2.2 Adjustment process 
The results obtained from previously discussed methods (see section 1.7 'FAST' GBVP connection to 
WHS and section 1.6 Computing the connection between Local Vertical Datum and Global Vertical 
Reference Frame) were processed using the equation 2.1. 

AQ + VÍ = ÔR + a • (ipi - ipo)M + b- (A; - \0)N cos tp0 , (2.1) 

where A£ is difference between the local quasi-geoid and the quasi-geoid describing the WHS, 
Vi is residual value, OR is vertical offset of the local datum, a is tilt of the local geodetic datum in 
north — south direction and b is tilt in west —east direction, ipo, XQ is the origin of the local coordinate 
system in latitude direction, longitude direction, M is meridional radius for ipg, N is radius of curvature 
in the prime vertical for ipQ. The unknown variables in this equation are 6R, a, b. By using the Least 

1ln Czech language: B o d y výberové údržby. 
2 Translation: D a t u m of Uni form Trigonometric Cadast ra l Network 
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Square Adjustment the design matrix for the projection between the measured quantities and the 
unknown parameters is: 

A 
02 

<p0)M (Ai 
<p0)M (A2 

1 (vi-Vo)M (Ai 

and the unknown parameters are then given by: 

Sx = (ATQU

1A)-1ATQU

1A<: = A r M ^ Q ^ A C , 

Ao)iVcos <̂o 
Ao)-/Vcos <̂o 

Ao)iVcos <̂o 

7—1 j T n - i , 

(2.2) 

(2.3) 

where Q;; is the covariance matrix of measured parameters. The order of estimated variables in 
vector 5x is 5R, a and b. The estimates for the standard deviations of the unknown parameters are 
computed and multiplied by the square of unit aposteriori standard deviation. 

E 
0Q./V 1 where 0% = —— (2.4) 

The n is number of observed parameters, k is number of unknown parameters. 
The members of the main diagonal of the £ r a matrix are estimates of standard deviation for 

unknown parameters (in order a$R, a\, of). In the tables which are summarizing the results, the 
values are listed under STD columns. 

2.3 Results by F A S T G B V P 
The method called FAST GBVP in this doctoral thesis as FAST GBVP was applied to the territories 
of the Czechia and the Slovakia which both are using the Kronstad Height Datum (KHD) 3 . Various 
G G F M models were used and the adjustment process was applied to each country separately and 
also using all available data. The reference value Wo was set to either value 62 636 586.0 [m2s~2] or 
62 636 583.4 [m 2s - 2]. The summary of these calculations is in table 2.1. The constants of tilt a and b 
from equation 2.1 were transformed into format m/100 km, since the original values were in magnitude 
of 10~8. 

The results clearly show that the value of chosen WQ has practically no impact on the solution in 
case of precision or tilt values, except for the difference in the value of the datum shift SR. The vertical 
shifts of LVDs when treating both territories separately are very similar, they differ only by a couple of 
millimetres when using the same G G F M . Interestingly, the tilt values a and b for both territories differ 
quite much. For example, using the G G F M EGM08, the [a, b] values for Czechia are [-0.0098, +0.0019] 
and for Slovakia [+0.0321, —0.0088], all dimensions for values a, b are in m/100 km. A possible expla
nation for this fact may be that despite their common history, the adjustment of both networks in the 
past and also nowadays, were done separately as block adjustments. Another factor contributing to 
this difference may be the fact that from these two countries, Slovakia is the more mountainous one. 
The last column TEST in previously mentioned table stands for the standard deviation computed 
from model testing. That means the use of previously reserved 10% of the GNSS/levelling points. 
Values were interpolated from created model and then compared with the value computed for the 
individual points. 

Comparison of results between the use of EGM08 and EIGEN-6C4 shows the difference in SR ap
proximately 2 cm for the territory of Slovakia. For the solution calculated only for the Czech Republic, 
the 5R differs in range of a few millimetres. 

The G G F M solutions using XGM2019e were split into two parts. The first solution was achieved 
with the gravity potential computed up to degree and order 2190 and the second one up to maximum 
available degree and order, i.e. 5540. A similar pattern shows as in the previous case as for the territory 
of the Czech Republic the difference between two solutions is most likely negligible, but for the territory 
of the Slovak Republic, there is difference mainly in north-south tilt parameter. The main hypothesis 
is that in the direction from south to north the terrain elevation rises. This and higher frequencies 
included in the solution, i.e. using all available coefficients of the model, may actually cause this effect. 

3 B a l t i c Ver t ica l D a t u m After Adjustment 
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Using the values of the radial offset for LVDs, the Wo,i can be computed for both territories. In 
the table 2.2, the values for local Wo,i are summarized using different models and level ellipsoids. It is 
clear that such value is independent of the used level ellipsoid. For the territory of the Czech Republic, 
the table shows that at the centimetre level precision the Wo,i is quite independent of the model used. 
For more mountainous Slovak Republic this statement is not true. 

Tab. 2.1: Summation of all the computations based on the different data usage [author]. 
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Tab. 2.2: The value of Wo,i f° r LVDs used on territories of the Czech Republic and the Slovak Republic using 
different GGFMs [author]. 

Territory Wo Used model Datum shift [m] Wo,i [mV 2 ] ÖWo,i [mV 2 ] Territory Wo Used model SR STD Wo,i [mV 2 ] ÖWo,i [mV 2 ] 

EGM08 -0.072 0.0004 62636855.29 0.71 
CM EIGEN-6C4 -0.093 0.0004 62636855.09 0.91 

> o 1 
02 

XGM2019e up to 2190 -0.091 0.0006 62636855.11 0.89 
m a XGM2019e up to 5540 -0.096 0.0006 62636855.06 0.94 
a q EGM08 -0.078 0.0006 62636855.23 0.77 
o 

36
85

6 EIGEN-6C4 -0.081 0.0006 62636855.20 0.80 

Cz
e 36
85

6 

XGM2019e up to 2190 -0.083 0.0009 62636855.18 0.82 Cz
e 

CO CM XGM2019e up to 5540 -0.086 0.0009 62636855.16 0.84 
CP 

CO 
II EGM08 -0.074 0.0004 62636855,27 0.73 

a EIGEN-6C4 -0.089 0.0004 62636855.12 0.88 
1 XGM2019e up to 2190 -0.088 0.0005 62636855.13 0.87 
ü XGM2019 up to 5540 -0.092 0.0005 62636855.09 0.91 
a EGM08 0.193 0.0004 62636855.30 -1.90 

CM EIGEN-6C4 0.172 0.0004 62636855.10 -1.70 
> o 1 

02 
XGM2019e up to 2190 0.174 0.0006 62636855.12 -1.72 

m a XGM2019e up to 5540 0.169 0.0006 62636855.07 -1.67 
EGM08 0.187 0.0006 62636855.24 -1.84 

s 
o 36

85
3 EIGEN-6C4 0.184 0.0006 62636855.21 -1.81 

Cz
e 36
85

3 

XGM2019e up to 2190 0.182 0.0009 62636855.19 -1.79 Cz
e 

CO CM XGM2019e up to 5540 0.179 0.0009 62636855.16 -1.76 
-a 
CP 

CO 
II EGM08 0.191 0.0004 62636855.28 -1.88 

^° EIGEN-6C4 0.176 0.0004 62636855.13 -1.73 
a XGM2019e up to 2190 0.177 0.0005 62636855.14 -1.74 
o 
ü 

XGM2019e up to 5540 0.173 0.0005 62636855.10 -1.70 

2.3.1 Models - F A S T G B V P 
All the models computed for the purpose of this doctoral thesis are included on the DVD to the 
doctoral thesis. The NODATA area for these models is basically outside the countries borders. These 
values are by default set to —9999.999, the rest of the data is stored in millimetre precision. The 
resolution in the latitude and also in the longitude direction is 7.2". 

On figure 2.1 the connection corrections for joining the LVD of the Slovak Republic with the GVRS 
represented by G G F M EGM08 and WQ = 62 636 856.0 m 2s~ 2 is shown. Also the histograms (figure 
2.2) describing the distribution of 5R and Vi are introduced. The histograms are organized in pairs 
where each left histogram (a) shows the distribution of the radial distortion term and histogram on 
the right sight (b) shows the error distribution when the final model was tested using the spare 10% 
of the points. It is clear, that all histograms have normal distribution. 

For the territory of the Czech Republic the connection corrections are displayed on figure 2.3 and 
related histograms are in figure 2.4. 

The histograms are organized in pairs where each left histogram (a) shows the distribution of the 
radial distortion term and histogram on the right sight (b) shows the error distribution when the 
final model was tested using the spare 10% of the points. It is clear, that all histograms have normal 
distribution. 
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Fig. 2.2: Histograms for the connection between the KHD and WHS for the territory of the Slovak Republic. 
WHS is represented by G G F M EGM08, W0 = 62 636 856.0 m V 2 , GM = 3.986004415 • 10 1 4 m 3 s" 2 . The figure 
(a) shows the errors distribution for the data used for model creation, the figure (b) shows errors distribution 
when tested [author]. 
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O O O O O i - H i - H r H 

d d d d d d d d 
m 

Fig. 2.3: The differences between the K H D and the WHS represented by G G F M EGM08, W0 = 
62 636 856.0 m 2 s" 2 , GM = 3.986004415 • 10 1 4 m 3 s" 2 for the territory of the Czech Republic. Average value 
from the raster layer SR = 0.077 ± 0.025 m, data range [—0.013,0.166] m [author]. 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

(a) (b) 

Fig. 2.4: Histograms for the connection between the KHD and WHS for the territory of the Czech Republic. 
WHS is represented by G G F M EGM08, W0 = 62 636 856.0 m 2 s" 2 , GM = 3.986004415 • 10 1 4 m 3 s" 2 . The figure 
(a) shows the errors distribution for the data used for model creation, the figure (b) shows errors distribution 
when tested [author]. 
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2.4 Classical G B V P approach 
In this section, the results of the second method used in this doctoral thesis are summarized. Similarly 
to the previous section, the results are split into table section, the model's figure section and the 
histogram section. It is important to mention how the models were created. Using the slightly modified 
RCR (see section 1.11) method the disturbing potential was obtained. The computation of G G F M used 
ellipsoid WGS84 as reference ellipsoid and so the normal gravity field is then related to its constants. 
Al l the computations were done in the zero-tide system and only the results were transformed into 
the mean-tide system in order to compute the connection. So to use the commonly accepted WQ, the 
equation 2.5 has to be used 

AW0 = W 0 - U 0 , (2.5) 

where Uo is related to ellipsoid WGS84. 
For example, AW0 = 62 636 856.0 - 62 636 851.714 = 4.286 m 2s~ 2 may seem to be some kind of 

error but when computing the height anomalies directly from the models such as EGM08 or EIGEN-
6C4, the zero degree term is missing. This term converts geoid undulations that are intrinsically 
referenced to an ideal mean-earth ellipsoid into undulations that are referenced to WGS84. The value 
of —41 cm derives from a mean-earth ellipsoid for which the estimated parameters in the tide free 
system are: a = 6 378136.58 m and f-1 = 298.257686 ([100]). The difference AW0 must be taken 
into account. For the case of using different values of geocentric gravity constant, the second term is 
AGM. Consider the case when the GM value is different for level ellipsoid and the used GGFM: 

AGM = G M G G F M - GMELL , (2.6) 

where G M G G F M is the value used by G G F M and GMELL is referred to the reference ellipsoid. 
To transform the term AGM to potential units, it is necessary to divide the term by radius of 
the reference sphere AGM/R. This step is particularly important for example when the millimetre 
precision is required, taking into account the GM value from reference ellipsoid WGS84 and G G F M 
EGM08. In this case, the difference transformed to geopotential units is —0.047m2s~2. 

For a practical demonstration, all the calculations were done in the zero-tide system. And in the 
end, it was transformed into the mean-tide system. Solving the fixed-GBVP (equations 1.23 and 1.26) 
and including the members in equations 2.5 and 2.6 provides the value which represents the GVRS: 

T G V R S = AGM_AW»+T + T O + T I 

R 7 

Where the T stands for the contribution of low degree harmonics (from 0 to 164), To is the contri
bution of the zero term of Molodensky's series and the T± is the contribution of the first member of the 
expansion (equations 1.20 and 1.27). The T term contains around 98% of the signal, To contributes 
at the level of decimetres and Ti at the centimetre level, since T are geopotential numbers they have 
to be converted to height anomalies (eq. 1.27). 

Since for these computations the slightly modified Remove-Compute-Restore method was used, 
the higher terms than T\ were neglected. Even for the mountainous areas of High Tatras for the 
integration radius (~ 122 km), the higher terms can be omitted and we will still be able to reach the 
cm precision. For the practical computations the equation 1.50 was used. Also all the computations 
were done using the developed package PhysGeo. 

Since the LVDs for the territory of the Czech Republic and the Slovak Republic use the mean tide 
system, the TGVRS was converted to ^ G V R S > Z T and then transformed into the mean-tide system. 

2.5 R T M contribution 
In this doctoral thesis, the RTM method was used to model the missing frequencies in used GGFMs. 
Then the results were applied to solution obtained from gravity data computed from the EGM08 
and EIGEN-6C4. The RTM technique was performed while using the D E M GMTED10 and the MES 
model DTM2006.04. For different GGFMs it can be required to use different model for MES. However, 
the EIGEN-6C4 has been generated by using data from LAGEOS, GRACE RL03 GRGS, GOCE-SGG 
(November 2009 till October 2013) plus a 2' x 2' free-air gravity anomaly grid (altimetry over the 

4 F u l l name Coeff_Height_and_Depth_to2190_DTM2006 

26 



oceans, EGM08 over the continents). Since the high frequencies in EIGEN-6C4 over the continents are 
derived from EGM08, the same reference surface was used for both models. The constant density value 
of 2670 kg • m~ 3 for land areas was used. However, some test calculations onshore used 1030 kg • m~ 3 

for sea area. 

Tab. 2.3: The brief description of the RTM contribution [author]. 

RTM with 10 km radius RTM with 18 km radius 
Territory (a) Czechia (b) Slovakia (a) Czechia (b) Slovakia 

Data range [m] [-0.05, +0.03] [-0.06,+0.03] [-0.06,+0.02] [-0.07,+0.03] 
Average value [m] 0.004 0.004 0.001 0.001 

STD of avg. value [m] 0.006 0.007 0.006 0.007 

2.5.1 Models - classic G B V P 
To continue in the previously used notations, let us consider the C,LVD for LVD and (^ G V R S for GVRS. 
The difference is than calculated as: 

A C = CGVRS _ CLVD ^ CGVRS = ^ + QLVD ( 2 § ) 

Using equation 2.1 for such defined values A£ leads to summary in the table 2.4. Results are 
divided for both used values of Wo and also for the territory of the Czech Republic and the Slovak 
Republic. The columns labelled as error stand for the residual value, the minimum and maximum 
values are listed. It is important also to clarify what quasi-geoid models were used. For the territory 
of the Czech Republic the quasi-geoid model used is Podrobný kvazigeoid QGZU-20135 ([101]) and 
for the Slovak Republic DVRM05 ([102]). 

The solution of GBVP was combined with the RTM technique. The computation radius used for 
the RTM was set to either 10 km or 18 km. As it was explained in section 1.10.1 Harmonic correction, 
the harmonic correction was not applied, since the GGFMs which are expressed as a series of spher
ical harmonics are not capable of handling the non-harmonic functions. That means that the values 
obtained from G G F M above the reference ellipsoid act as harmonic functions. That applies also for 
points which are in reality inside the masses. The non-harmonicity of functions inside the masses is 
not part of G G F M and should not be corrected. 

In the table the results are listed for these GGFMs: EGM08, EGM08 + RTM-10 km and EGM08 + 
RTM-18km. The same process was done with the G G F M EIGEN-6C4. When examining the results 
it is clear that the used radius significantly impacts the values SR and a but the tilt in east-west 
direction - b, does not display any significant change at all. Therefore, the cut-off distance for RTM 
plays a significant and important role. For the less mountainous territory of the Czech Republic, the 
tilt value a in north-south direction is not changing significantly. This brings up the hypothesis that 
for mountainous areas, the RTM technique should be put to test and 'redeveloped'. For the G F M , the 
average density value 2 670 kg • m~ 3 was used. In report [103], the average density values for Tatras' 
types of sediments and rocks is in interval 2 600 — 2 800 kg • m~ 3 . Also, in the south-center part of 
Slovak Republic, there are some density anomalies, where the density of rocks and sediments are in 
range 2 000 — 2 670 kg • m~ 3 . The density differences alone can theoretically contribute in relative scale 
up to 25% for quantity computed by GFM. 

Solving the GBVP was combined with the RTM technique. The computation radius used for the 
RTM was set to either 10 km or 18 km. As it was explained in section 1.10.1 Harmonic correction, 
the harmonic correction was not applied, since the GGFMs which are expressed as a series of spher
ical harmonics are not capable of handling the non-harmonic functions. That means that the values 
obtained from G G F M above the reference ellipsoid act as harmonic functions. That applies also for 
points which are in reality inside the masses. The non-harmonicity of functions inside the masses is not 
part of G G F M and should not be corrected. Also the HC in the listed form is for gravity anomalies. 

In the table the results are listed for these GGFMs: EGM08, EGM08 + RTM-10 km and EGM08 + 
RTM-18km. The same process was done with the G G F M EIGEN-6C4. When examining the results 
it is clear that the used radius significantly impacts the values SR and a but the tilt in east-west 

5 translation: Detai led quasi-geoid Q G Z Ú - 2 0 1 3 . 
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Tab. 2.4: Summation of all the computations based on the different data usage [author]. 
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direction - b, does not display any significant change at all, therefore, the cut-off distance for RTM 
plays a significant and important role. For the less mountainous territory of the Czech Republic, the 
tilt value a in north-south direction is not changing significantly This brings up the hypothesis that 
for mountainous areas, the RTM technique should be put to test and 'redeveloped'. Some form of 
terrain simplification (low-pass filter, area averaging algorithm, etc.) should be considered. Also for 
the F G F M , the average density value 2 670 k g - m - 3 was used. In report [103], the average density 
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values for Tatras' types of sediments and rocks is in interval 2 600 - 2 800 kg • m~ 3 . Also, in the South-
Center part of Slovak Republic, there are some density anomalies, where the density of rocks and 
sediments is in range 2 000 — 2 670 kg • m~ 3 . The density differences alone can theoretically contribute 
in relative scale up to 25% for quantity computed by FGFM. 

The connection corrections A£ are shown on following figures. For the figures 2.5 and 2.6 the 
W0 = 62 636 856.0m2s~2. The first figure shows the use of only G G F M EGM08 6 alone, second figure 
shows the RTM with the integration radius 18 km. The presence of the higher-frequencies obtained by 
RTM technique is clearly visible. The unexpected negative A£ are shown for the area of the capital 
city of the Czech Republic - Prague and the mountain chain Little Carpathians, located in the Western 
part of Slovakia. 

The connection corrections A£ while using the Wo = 62 636 853.4 m 2s~ 2 is basically the same with 
just constant 'height shift'. 

When returning to the equation 2.1, there are two important terms. The first one is the connection 
correction A£ and the second one is the term for residual value v. The residual value is obtained 
from least square adjustment process. For the figure 2.5 the related histograms are figures 2.7 and 2.8, 
respectively. For the figure 2.6 the related histograms are figures 2.9 and 2.10. The histograms are 
organized in pairs where each left histogram (a) shows the distribution for the connection correction 
AC, histogram (b) shows the residuals from the least square adjustment. 

When examining closely the histograms on the left side, it reveals some systematic error is in
volved in the process of computing the connection correction, especially for the territory of the Slovak 
Republic. Let's for example take the histogram (a) on figure 2.8. Al l of these A£ values are located 
in East Slovakia and correspond with the azure/blue areas displayed on figure 2.5. This effect may be 
caused by some systematic error in original GNSS/levelling data, residual anomalies in GGFMs, etc. 

The models which are not shown i n this chapter can be found i n the enclosed D V D of the doctoral thesis. 
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Fig. 2.5: Connection between the K H D and WHS. WHS is represented by G G F M EGM08 and by W0 = 
62636856.0m2s"2 [author]. 
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(a) (b) 

Fig. 2.7: Histograms for the connection between the KHD and WHS for the territory of the Czech Republic 
using the classical GBVP approach. WHS represented by GGFM EGM08, W 0 = 62 636 856.0 m 2s" 2. The 
figure (a) shows the A£ distribution. Figure (b) shows residual distribution [author]. 

Fig. 2.8: Histograms for the connection between the KHD and WHS for the territory of the Slovak Republic 
using the classical GBVP approach. WHS represented by GGFM EGM08, W0 = 62 636 856.0 m 2 s - 2 . The 
figure a) shows the A£ distribution. Figure (b) shows residual distribution [author]. 
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(a) (b) 

Fig. 2.9: Histograms for the connection between the K H D and WHS for the territory of the Czech Republic 
using the classical G B V P approach. WHS represented by G G F M EGM08 with residual terrain modelling 
(radius = 18km), W0 = 62 636 856.0 m V 2 . The fi gure a) shows the A£ distribution. Figure (b) shows residual 
distribution [author]. 
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Fig. 2.10: Histograms for the connection between the K H D and WHS for the territory of the Slovak Republic 
using the classical G B V P approach. WHS represented by G G F M EGM08 with residual terrain modelling 
(radius = 18km), W0 = 62 636 856.0mV 2 . The fi gure a) shows the A£ distribution. Figure (b) shows residual 
distribution [author]. 

33 



3 C O N C L U S I O N S A N D O U T L O O K 
The main goal of this doctoral thesis was fulfilled. The purpose was to provide methods for connection 
between Local Vertical Datums, used on the territories of the Czech Republic and the Slovak Republic, 
and Global Vertical Reference Frame. In contrast to geometrically defined global terrestrial reference 
systems, physical height systems suffer from discrepancies up to ±1 — 2m due to the individual 
definition of their local vertical datum. In order to realize a comparison of physical heights, a height 
system unification is required. 

Following methods were suggested and introduced: 
The first method tested in this doctoral thesis is distinguished as FAST GBVP. This method was 

derived originally from the method used for testing GGFMs. 
The second method relied on solving the Molodensky's fixed GBVP (discussed in section 1.5.2 

Molodensky's problem - free boundary value problem), using the gravity disturbances (Sg) in numerical 
computations. The 6g values were either computed from G G F M up to maximum possible degree and 
order or the missing signal of the gravity field was modelled using the residual terrain modelling. 

The spatial resolution of models used in this thesis differs. For models such as EIGEN-6C4 and 
EGM08, the resolution is around 10km. The last model used in this doctoral thesis was XGM2019e 
which contains the coefficients up to degree and order 5540. This means that the spatial resolution is 
approximately 4 km. 

The first two models were also combined with RTM where 5g was computed from integration 
radius of 10 km and 18 km. Results showed that the cut-off distance does not have a significant impact 
on the computation outcome, however, the main impact of the cut-off distance is on the value of the 
total datum shift. Analysis of the results has also shown that for the precision at the centimetre level, 
the cut-off distance is practically negligible. 

Close examination of the table 2.3 provides us with the fact that the change in the integration 
radius does not impact the average value for the datum shift. Especially when examining the results 
in table 2.4, it can be seen that the datum shift value SR is not influenced significantly. The values of 
the tilt for the LVDs of the Czech Republic and the Slovak Republic are also practically unchanged 
when taking the RTM effect into consideration. 

When examining the results in the table 2.4, it is clearly visible that the RTM contribution to 
overall vertical datum shift is around 1 cm. Also the impact on the datum tilt is insignificant. The 
change of the integration radius slightly impacts the interval in which the RTM effect contributes to 
height anomalies and the impact on the vertical datum shift is imperceptible. 

Analysis of computation outcomes, when using the XGM2019e model with two different degree 
and order levels - 2190 and 5540 respectively, has shown that the difference in the results is negligible 
at the cm level of precision. 

The method used for geopotential models testing is fast and comfortable to use, the only data 
needed are the geopotential models and GNSS/levelling points. This can also become a disadvantage 
because of their distribution and also the quality. Most of the levelling lines are through the valleys, 
and for this reason, the coverage in mountainous areas is sparse or none. When the 'FAST' GBVP 
method was applied on the territories of the Czech Republic and the Slovak Republic, the 10 % of 
total number of points were not used for computing the connection correction but were used later to 
test this connection. 

3.1 Summary of results 
In this thesis, two methods were used to address the set up goal to manage the connection between 
the LVD and GVRS. 

The first method distinguished as 'FAST G B V P ' holds advantage over the second method. It is 
caused by the fact that it is easy to perform, and there is practically no need is no need to obtain the 
gravity data from vast overlapping around the interest areas to perform numerical integration of the 
Stokes' or Hotine's integral. However, the gravity data are required for processing the precise levelling 
data. It is highly recommended to obtain sufficient data from neighbouring countries to examine the 
discrepancies at the borders. Also if taken into extreme case, use of this method does not require the 
connection of the relative and precise levelling network to tide gauge. And since the combination of 
the precise levelling network and GNSS measurements the connection can be computed safely at cm 
level precision. 
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The second method heavily depends on availability and quality of the gravity data for not only 
the territory of interest but also vast areas around that territory. For example if the remove-compute-
restore technique is used, consider an integration radius of 167 km. Since in this thesis the computation 
of the quasi-geoid was performed that means that not only data 167 km beyond the borders are 
needed but also the data beyond another 167 km are needed since they are required to compute the 
additional member from Molodensky's series expansion. This can be a problem mainly for two reasons. 
The first reason is that some countries does not provide such data for public users or those data are 
classified, especially high frequency data that have means of an economic interest. The second problem 
is homogeneity of such data, since on national level the way how the gravity data are obtained may 
differ. 

The unification of the national height reference frames based on GNSS/levelling data is an inter
esting and also very suitable approach to achieve the goal. Further improvements can be expected 
using newly adjusted National Vertical reference frames, GNSS/levelling data with higher density and 
also use of the results of new satellite gravity missions. Also in the future it is important to address the 
inconsistencies in the international standards and conventions for geometric and also gravity reference 
frames. 

Delivered results: 

• provided he theoretical background for highly precise physical reference frame 
• satisfy the condition hei — hn — £ = 0 at the centimetre level 
• support the determination and combination of geometric and physical heights 
• establish the realisation of the GVRF and the connection between the LVDs 

of the Czech Republic and the Slovak Republic and such created GVRS. 
• the suggestion how to treat the singularities when the closed form 

of the integration kernels is used 

3.2 Recommendations for future work 
Nowadays, the completion and new gravity measurements for the territory of the Czech Republic takes 
place. If the output of this measurement renewal is publicly accessible, new options for computing the 
connection between LVD and GVRS will open. 

In this thesis, two experiments related to cut-off distance were done. One of them was using the 
cut-off distance 10' (suggested in [97]) which can be translated as approximately 18 km. The second 
experiment was using only half of the previous value (5' w 10 km). As it was shown in table 2.4, it 
does not effect the results at the centimetre level significantly. Most of the difference takes place at the 
millimetre level, therefore the change in the integration radius is practically negligible in this study. 

For future work, the fixed-GBVP seems to be the most effective due to the availability of global 
data such as GGFMs (EIGEN-6C4, EGM08, etc.), DEMs (SRTM, GMTED10, E T O P O l etc.) and 
local data such as GNSS/levelling points or gravity measurements. 

The impact of approximation errors on the presented spherical solution in fixed-GBPV should be 
investigated and taken into account by suitable reductions, especially for the global geometry. 

Another issue is the usage of the latest up to date D E M with the appropriately high resolution. In 
this study, the GMTED10 which provides sufficient coverage for Europe was used. For more precise 
modelling, model with higher resolution should be used. For example the latest D E M for the territory 
of the Czech republic is the DMR 5G 1 and has declared precision cr± 0.18 m for the territory without 
dense vegetation and cr±0.30 m otherwise. The similar project is currently being in progress in Slovakia. 
The other option is to use other models such as SRTM3 which offers global coverage except the polar 
areas or the its derived products. 

In the future the treatment of time-dependent components of various parameters, proper evaluation 
of the reference period and the period of the measurement will be required in order to achieve precision 
at the millimetre level. Time dependent parameters are for example C^o, hn (separation of the vertical 
crust movements), Woti for reference tide gauges, etc. 

1 Translated from the Czech language: D ig i t a l elevation model of the fifth generation, originally i n the Czech language: 
Dig i tá ln í model reliéfu České republiky 5. generace. B u t unfortunately for scientific use provided i n exchange for money. 
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3.3 Contribution of the doctoral thesis 
The main contribution of this doctoral thesis is the exploration of the two suggested options for 
connecting the Local Vertical Datums to the Global Vertical Reference Frame at the cm level precision. 

Both presented strategies for connecting the LVDs to the GVRS are based on solving the geodetic 
boundary value problem. Hence, both methods can be applied on multiple disjointed LVDs and provide 
the connection corrections. The first proposed method is more suitable for inland countries, but it is 
very reliable when it comes to determination of the LVDs offsets. The second proposed method is a 
more general method because with the use of altimetry data it can be also used for island countries 
or it can be used offshore. Also, the combination of G G F M with the RTM technique can be used to 
thicken the data for remote areas or areas with some form of restricted accessibility. 

3.4 P H Y S G E O package 
The PHYSGEO package is the software created and used for all the computation of this doctoral 
thesis. The whole package has more than 25 000 lines of code written in C++ and Python and it was 
given out free of charge under MIT licence. The package PHYSGEO is capable of computing 

• the synthesis from GGFMs, 
• the synthesis from GGFMs using the gradient approach (using the expansion 

of the functionals into Taylor's series), 
• the gravity field modelling from DEMs (constant mass density or raster with 

mass density values), 
• Residual Terrain Modelling, 
• solving the Stokes' and Hotine's integrals in closed form or in the spectral form 

using the 'convolution' algorithm, 
• creation of various plots of the results. 

The code devoted to computing all previously mentioned tasks is written in C++ using the 
OpenMP project for multi-threading and parallel computations using the CPU. Most of the algo
rithms used are optimized for a good performance. For displaying the results, the Python code is 
available. Since all of the source codes are given away, anyone can modify them for their own need 
and use. 
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ABSTRACT 
One of the main problems of current physical geodesy is the unification of local height systems and 
the creation of the unified global vertical reference frame, whose primary definition constant will be the 
geopotential value of WQ on the level surface, such as geoid. This problem encounters several pitfalls, such 
as different types of physical heights used in the world, ways of eliminating the effects of tides on the shape 
of the Earth's body, or the ability to agree internationally on a reference value of Wo-
This thesis is divided into two main parts. The first part is a description of the theoretical foundations 
concerning the description of the Earth's gravitational field, the basics of height theory and the description 
of the Newton's boundary value problem and Neumann boundary value problem, together with the solution 
of the Hotine's and Stokes' integral. Due to the fact that the data of directly measured gravity acceleration 
for the territory of the Czechia and the Slovakia are not freely available with sufficient coverage, these data 
were replaced by gravity disturbances calculated from the Global Gravity Model of the Earth. To improve 
the data obtained from geopotential models, so-called residual terrain modelling was used. It is a spectral 
combination of gravity field models with relevant Earth's gravitational field quantities, which are obtained 
by modelling from a digital terrain model and a height model that represents the mean value of topography. 
The combination of these data consists of calculating those frequencies of the gravitational signal from the 
digital terrain model that are not a part of the signal obtained from geopotential models that in general 
have a lower spatial resolution. 

Two methods were used to connect the local height systems of the Czech Republic and the Slovak Republic. 
The first method was to use the solution of Molodensky's problem. Input data were gravity disturbances that 
were calculated from various global geopotential models. Subsequently, the solution using the combination 
of data mentioned in the previous paragraph was also calculated. The second method used is originally 
a method developed to test geopotential models. The disadvantage of this method is that it relies only on 
GNSS/levelling points. Both methods were tested on a set of measuring points (GNSS/levelling points) 
and their results are tabled in the second part of the thesis which is focused on the summary of the results. 
Practical calculations have shown that the offset of the height systems for both republics is almost identical, 
with a maximum difference of 3cm, using the same input data. However, the plane approximation shows 
that the tilt value differs for different height systems. At the same time, the results combining the global 
gravity field model with the residual terrain modelling technique provide improved behaviour in mountainous 
areas. 
The results of the doctoral thesis are accompanied by a programmed package of functions written in the 
C++. This package can compute the synthesis of gravity parameters from global gravity models, model 
the Earth's gravitational field from a digital terrain model, solve the Stokes integral and many others. All 
source codes can be found on the enclosed DVD as an attachment to this thesis. All the source codes are 
also available free of charge under MIT licence on: https://gitlab.com/buday2/physgeo.. 
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physical geodesy, physical heights, geodetic boundary value problem, residual terrain modelling, height 
system unification 
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