
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A DECISION PROCEDURE FOR
STRONG-SEPARATION LOGIC
ROZHODOVACÍ PROCEDURA PRO SILNĚ-SEPARAČNÍ LOGIKU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. TOMÁŠ DACÍK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Master's Thesis Specification

Student: Dacík Tomáš, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Mathematical Methods
Title: A Decision Procedure for Strong-Separation Logic
Category: Formal Verification
Assignment:

1. Study separation logic (SL), strong-separation logic (SSL), and possibilities of deciding
formulae of SL and SSL.

2. Propose a decision procedure for SSL having at least some potential advantages compared
with the existing decision procedures (e.g., in terms of their generality, ease of
implementation, and/or scalability).

3. Describe the proposed decision procedure and show its correctness.
4. Implement the proposed decision procedure in a prototype tool and experimentally evaluate

it.
5. Summarise the obtained results and discuss their possible future improvements.

Recommended literature:
Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of
LICS'02, IEEE CS, 2002.
O'Hearn, P.W.: Separation Logic. Communications of the ACM, 62(2), ACM, 2019.
Katelaan, J., Jovanovic, D., Weissenbacher, G.: A Separation Logic with Data: Small Models
and Automation. In: Proc. of IJCAR'18, LNAI 10900, Springer, 2018.
Pagel, J., Zuleger, F.: Strong-Separation Logic. In: Proc. of ESOP'21, LNCS 12648,
Springer 2021.
Pagel, J.: Decision Procedures for Separation Logic: Beyond Symbolic Heaps. Ph.D. thesis,
Vienna University of Technology, 2020.

Requirements for the semestral defence:
Point 1 and Point 2 at least for some suitable logical fragment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Vojnar Tomáš, prof. Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: July 29, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/25151/2021/xdacik00 Page 1/1

Abstract
Separation logic (SL) is one of the most successful tools for verification of programs that
manipulate dynamically allocated memory. Its expressive power, however, comes at a cost of
undecidability when several of its features are combined, especially separating implications.
To circumvent this problem, the recently introduced strong-separation logic (SSL) uses
a stricter definition of the semantics, making it decidable, while remaining suitable for
verification. However, there is currently no implementation of a decision procedure for
SSL. In this work, we propose a decision procedure for SSL based on a translation to first-
order formulae that can be later solved by a specialised solver. Our experimental results
on restricted fragments where SL and SSL coincide show that our approach can effectively
solve formulae obtained from verification tools based on SL and also outperform all other
existing translation-based decision procedures. Moreover, during our experiments, we found
cases of unsoundness of the heuristics implemented in the decision procedure for SL that
is a part of the well-known cvc5 SMT solver. Based on our reports, those heuristics has
been fixed.

Abstrakt
Separační logika (SL) patří mezi nejúspěšnější nástroje pro verifikaci programů pracujících
s dynamicky alokovanou pamětí. Její vysoká expresivita ovšem přináší nerozhodnutel-
nost pokud formule kombinují více jejích spojek, především separační implikace. Jako
řešení byla navrhnuta takzvaná silně-separační logika (SSL), která díky striktnější definici
sémantiky rozšiřuje rozhodnutelný fragment a přitom zůstává vhodná pro verifikaci pro-
gramů. V současnosti ale neexistuje žádná implementace rozhodovací procedury pro tuto
logiku. Tato práce se zaměřuje na návrh a implementaci rozhodovací procedury pro SSL za-
ložené na překladu vstupní formule na formuli v prvořádové logice, jejíž splnitelnost je poté
možné ověřit pomocí specializovaných nástrojů. Experimentální výsledky na omezeném
fragmentu, kde SL a SSL splývají, ukazují, že navržený nástroj je schopen efektivně řešit
formule pocházející z verifikačních nástrojů a výrazně překonává všechny ostatní existující
rozhodovací procedury, které jsou také založené na překladu. Během experimentů jsme také
odhalili několik případů nekorektnosti heuristik použitých v rozhodovací proceduře pro SL
implementované v nástroji cvc5. Na základě našich hlášení byly tyto heuristiky opraveny.

Keywords
Separation logic, strong-separation logic, decision procedure, SMT

Klíčová slova
Separační logika, silně-separační logika, rozhodovací procedura, SMT

Reference
DACÍK, Tomáš. A Decision Procedure for Strong-Separation Logic. Brno, 2022. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor prof.
Ing. Tomáš Vojnar, Ph.D.

Rozšířený abstrakt
Logika se v posledních letech stala velmi užitečným nástrojem v mnoha oblastech in-
formatiky, především v oblasti automatizované verifikace softwaru a hardwaru. Formule
v různých logikách lze použít nejen jako formální jazyk pro specifikaci korektního chování
analyzovaného systému, ale také jako pomocnou technologii v programech, které korektnost
ověřují – například pro reprezentaci nekonečných množin konfigurací programu nebo pro
redukci výpočetně těžkých problémů, které se při verifikaci objevují, na problémy v logice.

Typickým problémem v logice je splnitelnost formule, která se ptá, zda pro danou
formuli 𝜙 existuje objekt (zvaný model), který ji splňuje. V posledních letech bylo věnováno
značné úsilí do vývoje nástrojů pro ověřování splnitelnosti ve výrokové logice (takzvané SAT
solvery) a v teoriích prvořádové logiky (implementované v takzvaných SMT solverech).
Přestože oba problémy jsou NP-těžké a jejich obecné efektivní řešení je tedy považováno za
nedosažitelné, moderní nástroje dokáží efektivně řešit velké množství formulí pocházejících
z praktických aplikací. Tyto aplikace zahrnují například ověřování verifikačních podmínek
vygenerovaných při deduktivní verifikaci nebo automatické generování testovacích vstupů
pro reálné programy.

Mimo klasické logiky existují další logiky specializované pro usuzování o různých as-
pektech počítačových programů. Příkladem je separační logika (SL) [31], která je hlavním
předmětem této práce. Separační logika poskytuje obecný rámec pro modulární usuzování
o sdílených zdrojích a jejich disjunktnosti. V nejčastějším případě je tímto sdíleným zdro-
jem dynamicky alokovaná paměť. Modulární usuzování je zajištěno novou logickou spojkou
zvanou separační konjunkce – formule 𝜓1 *𝜓2 vyjadřuje, že paměťovou haldu lze rozdělit na
dvě části tak, že první splňuje 𝜓1 a druhá 𝜓2. Další novou spojkou je separační implikace
(často nazývaná pro svůj vzhled magic wand – kouzelná hůlka). Formule 𝜙−* 𝜓 je splněna
haldou, pro kterou platí, že pokud je rozšířena o model formule 𝜙, výsledná halda splňuje 𝜓.
Další ingrediencí separační logiky jsou induktivní predikáty, které popisují datové struk-
tury neomezené délky, jako jsou seznamy nebo stromy, jejich varianty (např. dvousměrně
vázané seznamy) a kombinace (např. stromy se zřetězenými listy). Typickým příkladem
je predikát ls(𝑥, 𝑦) reprezentující acyklický jednosměrně vázaný seznam. Konkrétním pří-
padem formule je ls(𝑥, 𝑦) * 𝑦 ↦→ 𝑥 vyjadřující, že haldu lze rozdělit na acyklický seznam
z lokace 𝑥 do lokace 𝑦, a ukazatel z lokace 𝑦 do lokace 𝑥 – formule tedy vyjadřuje cyklický
seznam.

Vysoká expresivita separační logiky sebou ovšem přináší vysokou složitost, v případě
některých fragmentů dokonce nerozhodnutelnost. S. Demri nedávno ukázal, že kombinace
všech výše zmíněných ingrediencí (induktivních predikátů, separační konjunkce a separační
implikace) a booleovských spojek je nerozhodnutelná [12]. Řada verifikačních nástrojů
tak pracuje s jednoduššími fragmenty logiky, které typicky neobsahují separační implikaci.
Separační implikace se ovšem přirozeně objevuje například ve verifikačních podmínkách
generovaných symbolickou exekucí [1] nebo v tzv. bi-abduktivní analýze [10].

Motivováni výše zmíněnou nerozhodnutelností, J. Pagel a F. Zuleger nedávno představili
tzv. silně-separační sémantiku, při které se výše zmíněný fragment stává rozhodnutelným
v polynomiálním prostoru [25]. Vzniklá silně-separační logika (SSL) koresponduje s kla-
sickou separační logikou na tzv. pozitivním fragmentu neobsahujícím negaci a separační
implikaci, a lze se na ni tedy dívat jako na „zpětně kompatibilní“ rozšíření klasické SL.
V práci [25] je představen koncept abstraktních paměťových stavů (konečné abstrakce nad
potenciálně nekonečnými množinami modelů) a navržena rozhodovací procedura založená
na jejich enumeraci. Tato procedura ovšem slouží především pro důkaz rozhodnutelnosti
a nebyla nikdy implementována.

Cílem této práce je navrhnout a implementovat rozhodovací proceduru pro SSL. Nově
navržená rozhodovací procedura pracuje na jiném principu – převádí vstupní formuli v sep-
arační logice na ekvisplnitelnou formuli v prvořádové logice. Motivací tohoto přístupu
je snaha efektivně využít moderních nástrojů pro řešení SMT problému. Několik podob-
ných překladů již bylo navrženo pro klasickou separační logiku, tato práce ovšem výrazně
rozšiřuje fragment, který lze přeložit, o omezené použití separační implikace a libovolnou
kombinaci booleovských a prostorových spojek. Navíc je v práci navrženo několik metod
snižujících velikost přeložené formule, například díky výpočtům dolních a horních omezení
na délky seznamů.

Navržená rozhodovací procedura je implementována v novém nástroji Astral a díky
korespondenci klasické SL a SSL umožňuje řešit i řadu formulí v klasické separační logice.
Mimo jiné například formule obsahující seznamy a libovolně kombinované disjunkce a sep-
arační konjunkce, což je podle autorů [5] fragment, který není žádnými dalšími nástroji
podporován.

Experimenty na fragmentu, kde SL a SSL splývají, ukazují, že Astral je schopen efek-
tivně řešit formule pocházející z verifikační nástrojů a překonat ostatní existující rozhodovací
procedury založené na překladu do SMT. Během experimentálního srovnání s rozhodovací
procedurou pro fragment se separační implikací, ale bez induktivnách predikátů, implemen-
tovanou v nástroji cvc5, jsme také odhalili chybně vyřešené formule obsahující separační
implikace. Ukázalo se, že se jedná o důsledek několika nekorektních heuristik a tyto heuris-
tiky byly posléze na základě našich hlášení opraveny.

A Decision Procedure for Strong-Separation Logic

Declaration
Hereby I declare that this master thesis was prepared as an original author’s work under the
supervision of prof. Ing. Tomáš Vojnar, Ph.D. The supplementary information was provided
by doc. Mgr. Adam Rogalewicz, Ph.D. and Associate Prof. Dipl.-Math. Dr.techn. Florian
Zuleger. All the relevant information sources, which were used during preparation of this
thesis, are properly cited and included in the list of references.

. .
Tomáš Dacík
July 29, 2022

Acknowledgements
I would like to thank my supervisor Tomáš Vojnar for numerous pieces of advice to this
thesis and for a great opportunity to work on such an interesting research topic. I also wish
to express my thanks to Florian Zuleger and Adam Rogalewicz for consultations, and to all
members of the VeriFIT research group for an inspiring working environment. Furthermore,
I would like to thank my family for their support during my studies.

I acknowledge the support received from the project Snappy of the Czech Science Foun-
dation.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Mathematical Notation . 5
2.2 First-Order Logic and Satisfiability Modulo Theory 6

2.2.1 Syntax and Semantics . 6
2.2.2 Satisfiability Modulo Theory . 6
2.2.3 Generalised Theory of Arrays . 7

2.3 Separation Logic . 8
2.3.1 Syntax . 8
2.3.2 Memory Model . 9
2.3.3 Semantics . 10
2.3.4 Decision Procedures for Separation Logic 11

3 Strong-Separation Logic 13
3.1 Syntax . 13
3.2 Weak- and Strong-Separation Semantics . 14
3.3 Comparison of Weak- and Strong-Separation Semantics 17
3.4 Abstract Memory States . 18
3.5 Small-Model Property . 22

4 Decision Procedure for SSL 25
4.1 Overview . 26
4.2 Translation of List-Segment Predicates . 27
4.3 Translation of Separating Conjunctions . 30
4.4 Translation of Septractions . 33
4.5 Translation to SMT . 35
4.6 Proof of the Correctness . 40

4.6.1 SMT Models . 40
4.6.2 Composition of SMT Models . 42
4.6.3 Translation Invariants . 44

5 Optimisations 49
5.1 Tighter Bounds for Symbolic Heaps . 49
5.2 Tighter Bounds for General Formulae . 51

6 Implementation 54
6.1 Architecture . 54

1

6.2 Front-end . 54
6.3 SMT Back-end . 55

7 Experimental Evaluation 57
7.1 Comparison with Translation-Based Decision Procedures 57
7.2 Evaluation of List-Length Bounds Computation 60
7.3 Comparison with cvc5 . 61

7.3.1 Parametric Formulae . 61
7.3.2 Randomly Generated Formulae . 63

7.4 Summary and Future Work . 64

8 Conclusion 66

Bibliography 67

A Contents of the Attached Medium 70

B Installation and Usage 71

2

Chapter 1

Introduction

In recent years, logic proved to be a very useful tool in many fields of computer science,
including in the area of automated software and hardware verification. Formulae in various
logics can be used not only as formal languages for specification of the correct behaviour
of the analysed system, but they can also serve as a backend technology in tools that
attempt to verify the specification – e.g., to succinctly represent infinite sets of program
configurations, or to reduce computationally hard problems that appear during verification
to problems in logics, which can be solved by specialised solvers.

One of the most common problems in logic is satisfiability of a formula 𝜙 which asks
whether there exists an object (called model) that satisfies 𝜙. In recent years, a significant
research effort has been invested into development of satisfiability solvers for propositional
logic (so-called SAT solvers) and various theories in first-order logic (implemented in so-
called SMT solvers). While both problems are NP-hard (and some SMT problems even
harder) and therefore considered as intractable in general, existing solvers can effectively
handle large classes of formulae originating from practical applications. Those applications
are, e.g., discharging preconditions generated by deductive verification tools, checking en-
tailment or emptiness in abstract interpretation based on logic, automatic generation of
test cases for real-life programs, and many others.

Besides the classical logics, there are also logics developed to reason about specific as-
pects of computer programs, such as separation logic (SL) [31], which is the main subject of
this thesis. It is a logical framework for modular reasoning about shared resources and their
disjointness. In the most common setting, the shared resource is a heap-allocated memory.
The modular reasoning is due to a new connective called the separating conjunction – a for-
mula 𝜓1 *𝜓2 states that a heap can be split into two disjoint parts such that the formula 𝜓1

is satisfied in the first part and 𝜓2 is satisfied in the second. Another new connective is the
separating implication (often called as the “magic wand”). A formula 𝜙 −* 𝜓 is satisfied
by a heap such that for each its extension satisfying 𝜙, their composition satisfies 𝜓. The
last ingredient are inductive predicates describing data structures of unbounded size such
as lists or trees. For example, the predicate ls(𝑥, 𝑦) is used to express an acyclic singly-
linked list, i.e., a sequence of pointers from 𝑥 to 𝑦. A concrete example of an SL formula
is ls(𝑥, 𝑦) * 𝑦 ↦→ 𝑥 which states that a heap can be decomposed into an acyclic list from 𝑥
to 𝑦, and a pointer from 𝑦 to 𝑥. In other words, it expresses a cyclic list.

However, the high expressive power of separation logic comes with the price of high
complexity and even undecidability when several of the aforementioned features are com-
bined together. In particular, as recently shown by Demri [12], a quantifier-free fragment of
SL combining separating conjunctions, magic wands, and list-segment predicates is unde-

3

cidable under the classical semantics. Most verification tools therefore sacrifice the magic
wand. Magic wands do, however, naturally appear in verification conditions generated by
symbolic execution [1] and in the so-called bi-abductive analysis [10].

To tackle the undecidability and allow verification tools to automate magic wands, Pagel
and Zuleger proposed a so-called strong-separating semantics under which the mentioned
fragment becomes decidable in PSPACE [25]. The resulting strong-separation logic (SSL)
coincides with the classical SL on the so-called positive fragment that does not contain
negations and magic wands. SSL therefore can be seen as a backward compatible extension
of the classical SL. In [25], they propose a concept of abstract memory states (AMS is a
finite abstraction over possibly infinite sets of models) and a decision procedure based on
their enumeration. However, the algorithm serves as a proof of decidability and was never
implemented.

This thesis presents a first implementation of a decision procedure for a fragment of
SSL. Rather than performing a custom enumeration of AMSs, we perform a translation to
an equisatisfiable first-order formula to leverage capabilities of existing SMT solvers. Such
translations already exist for classical SL, but we significantly extend the fragment being
translated. The extensions cover limited usage of magic wands and arbitrary mixing of
boolean and spatial connectives. We also propose several new heuristics to decrease the
size of translated formulae, e.g., by computing bounds on lengths of list-segment predicates.

The proposed decision procedure was implemented in a new solver called Astral. Due
to coincidence of the classical SL and SSL, Astral can be also used to solve a wide class of
SL formulae. Those include, e.g., formulae with list-segment predicates which are mixing
disjunctions and separating conjunctions that are according to authors of [5] currently not
supported by any existing tool.

Experimental results on simpler fragments show that our approach can effectively solve
formulae obtained from verification tools based on SL and also outperform other existing
translation-based decision procedure implemented in tools Sloth [17] and Grasshop-
per [28]. We have also compared our tool with the cvc5 SMT solver which implements
a decision procedure for SL with magic wands but without inductive predicates. During
those experiments, we found and reported several incorrect results for formulae containing
magic wands. Those turned to be results of unsound heuristics and were later fixed based
on our reports.

Structure of the thesis. The rest of the thesis is structured as follows. Chapter 2
introduces a notation used throughout the thesis and give an overview of the classical
separation logic and existing decision procedures. Strong separation logic is then presented
in Chapter 3. Chapter 4 proposes a new translation-based decision procedure for a fragment
of SSL and proves its correctness. In Chapter 5, we propose several optimisations of the
translation and in Chapter 6 we discuss its implementation in the tool called Astral.
Chapter 7 is devoted to an experimental evaluation. Finally, Chapter 8 concludes the
thesis and suggests several directions of the future research.

4

Chapter 2

Preliminaries

This chapter presents the theoretical background of the thesis. First, we introduce basic
mathematical notation used throughout the thesis. Further, we briefly recall syntax and
semantics of first-order logic and the problem of satisfiability modulo theory. Then we
introduce separation logic and give an overview of existing decision procedures for it.

2.1 Mathematical Notation
Partial functions. We write 𝑓 : 𝑋 ⇀ 𝑌 to denote a partial function from 𝑋 to 𝑌 . Let 𝑓
be a partial function, we use 𝑓(𝑥) = ⊥ to denote the fact that 𝑓 is undefined for 𝑥, and
we write dom(𝑓) and img(𝑓) to denote the domain and the image of 𝑓 , respectively. The
function is total if dom(𝑓) = 𝑋. A restriction of 𝑓 to a set 𝐴 ⊆ 𝑋 is a partial function 𝑓 |𝐴
defined as 𝑓(𝑥) if 𝑥 ∈ 𝐴 and undefined otherwise. The size of a function 𝑓 is defined as the
size of its domain, i.e., |𝑓 | = |dom(𝑓)|.

We sometimes use a set notation to define partial functions. For example, the set
{𝑥1 ↦→ 𝑦1, . . . , 𝑥𝑛 ↦→ 𝑦𝑛} represents a partial function that maps each 𝑥𝑖 to 𝑦𝑖 and is unde-
fined for other values.

Graphs and paths. Let 𝐺 = (𝑉,−→) be a directed graph. A path 𝜋 ∈ 𝑉 + is a sequence
of vertices ⟨𝑣0, 𝑣1, . . . , 𝑣𝑛⟩ such that for all 0 ≤ 𝑖 < 𝑛 it holds that 𝑣𝑖 −→ 𝑣𝑖+1. The domain
of the path 𝜋 is the set dom(𝜋) = {𝑣0, 𝑣1, ..., 𝑣𝑛−1} and the length of the path is defined as
|𝜋| = |dom(𝜋)| = 𝑛. In particular, for every vertex 𝑣 ∈ 𝑉 there is the empty path 𝜋 = ⟨𝑣⟩
with dom(𝜋) = ∅ and |𝜋| = 0. A path is simple if it does not contain any vertex more than
once. All simple paths are therefore acyclic. We write 𝑥 𝜋

⇝ 𝑦 to denote the fact that 𝜋 is a
simple path from 𝑥 to 𝑦.

Formulae. We use several notations related to formulae, no matter whether they are from
separation or first-order logic. Let 𝜙 be a formula. We write 𝜙[𝑡/𝑥] to denote the formula
obtained from 𝜙 by simultaneously replacing all free occurrences of the variable 𝑥 with the
term 𝑡. We write vars(𝜙) to denote the set of all free variables in 𝜙 and call 𝜙 closed if
vars(𝜙) = ∅. Further, we write subformulae(𝜙) to denote all sub-formulae of 𝜙. Moreover,
we use the predicate distinct(𝑥1, . . . , 𝑥𝑛) to denote that all variables 𝑥𝑖 are pairwise different,
i.e., as syntactic sugar for

⋀︀
𝑖 ̸=𝑗 𝑥𝑖 ̸= 𝑥𝑗 .

5

2.2 First-Order Logic and Satisfiability Modulo Theory
This section briefly recalls the syntax and the semantics of single-sorted first-order logic
with equality (FOL) and the problem of satisfiability modulo theory (SMT). The section is
based on [8].

2.2.1 Syntax and Semantics

Syntax. A signature Σ is a set of function and predicate symbols with associated arities.
We assume that each signature contains the binary equality symbol =. A function symbol
with arity 0 is called a constant. Let 𝒳 be a set of variables disjoint from Σ. A Σ-term 𝑡 is
either a variable or an application of an 𝑛-ary function symbol 𝑓 to an 𝑛-tuple of terms. A Σ-
atom (atomic formula) is either a boolean constant (⊤,⊥), an equality of two terms, or an
application of an 𝑛-ary predicate 𝑝 to an 𝑛-tuple of terms. A Σ-formula is constructed from
atomic formulae using classical boolean connectives (∧, ∨, ¬, −→,←→) and quantifiers (∀, ∃).

Semantics. Let Σ be a signature. A Σ-interpretation ℳ is a pair (𝒟, (·)ℳ) where 𝒟 is a
non-empty set called the domain of ℳ and (·)ℳ is a total function called the assignment
that maps each 𝑛-ary function symbol 𝑓 to an 𝑛-ary total function 𝑓ℳ : 𝒟𝑛 −→ 𝒟, each
𝑛-ary predicate symbol 𝑝 to an 𝑛-ary predicate 𝑝ℳ ⊆ 𝒟𝑛, and also each variable 𝑥 ∈ 𝒳 to
an element 𝑥ℳ ∈ 𝒟. The symbol = is always interpreted as the equality on 𝒟.

The evaluation of a term 𝑡 in an interpretation ℳ is denoted as 𝑡ℳ and is defined
inductively over the structure of the term 𝑡 in the usual way. Similarly, the evaluation of
a formula 𝜙 in an interpretation ℳ is defined. We say that a formula 𝜙 is satisfied in
an interpretation ℳ (or equivalently that ℳ is a model of 𝜙), denoted as ℳ |= 𝜙, if 𝜙
evaluates to true in ℳ.

Satisfiability and validity. A Σ-formula 𝜙 is satisfiable if there is a Σ-interpretation ℳ
such that ℳ |= 𝜙, 𝜙 is called valid if for all Σ-interpretations ℳ it holds that ℳ |= 𝜙.
Satisfiability and validity are dual, a closed formula 𝜙 is valid iff ¬𝜙 is unsatisfiable.

2.2.2 Satisfiability Modulo Theory

Theories and the SMT problem. A Σ-theory 𝒯 is a set of closed Σ-formulae called ax-
ioms. A Σ-interpretationℳ is called a 𝒯 -interpretation ifℳ |= 𝒜 for all axioms 𝒜 ∈ 𝒯 . A
theory 𝒯 is consistent if there exists a 𝒯 -interpretation. A formula 𝜙 is called 𝒯 -satisfiable,
if there exists a 𝒯 -interpretation ℳ in which 𝜙 is satisfied, denoted as ℳ |=𝒯 𝜙. The
problem of satisfiability modulo theory (SMT) asks to determine whether 𝜙 is 𝒯 -satisfiable
or not, given a fixed theory 𝒯 .

SMT solvers. Commonly used theories are, e.g, linear integer arithmetic (LIA), real
arithmetic or the theory of fixed-size bit vectors. Algorithms for deciding those theories are
implemented in so-called SMT solvers. Usually, they implement a dedicated sub-solver for
each theory. For some theories, those sub-solvers may be modularly combined using, e.g.,
the Nelson-Oppen combination method. Prominent examples of SMT solvers are Z3 [21]
and cvc5 [3].

Definitions of common theories as well as an input language of SMT solvers are stan-
dardised in the SMT-LIB format [4]. The input format is formalised in many-sorted FOL
in which domains of interpretations are split into multiple sub-domains called sorts (they

6

roughly correspond to basic types in programming languages). In this thesis, we, for sim-
plicity, present our translation of separation logic in single-sorted FOL. Its actual imple-
mentation in many-sorted setting is, however, a very straightforward modification.

2.2.3 Generalised Theory of Arrays

As an example of a first-order theory, we will describe the generalised theory of arrays [20]
that we will also use as the “target language” of our translation of separation logic.

The basic theory of arrays 𝒯𝐴 has the signature Σ𝐴 = {·[·], ·⟨· ▷ ·⟩} where a term 𝑎[𝑖]
represents a read from the array 𝑎 at the position 𝑖 and a term 𝑎⟨𝑖 ▷ 𝑣⟩ represents a modi-
fication of the array 𝑎 by writing the value 𝑣 at the position 𝑖. This intuitive behaviour of
reading and writing to an array is captured by the following axioms.

• ∀𝑎, 𝑖, 𝑗. 𝑖 = 𝑗 −→ 𝑎[𝑖] = 𝑎[𝑗] (array congruence)

• ∀𝑎, 𝑣, 𝑖, 𝑗. 𝑖 = 𝑗 −→ 𝑎⟨𝑖 ▷ 𝑣⟩[𝑗] = 𝑣 (read-over-write 1)

• ∀𝑎, 𝑣, 𝑖, 𝑗. 𝑖 ̸= 𝑗 −→ 𝑎⟨𝑖 ▷ 𝑣⟩[𝑗] = 𝑎[𝑗] (read-over-write 2)

The theory of arrays is undecidable, but its quantifier-free fragment is decidable in NP.
The generalised theory of arrays 𝒯 +

𝐴 [20] adds combinators which allow one to ex-
press certain universal properties without relying on quantifiers. A combinator K(𝑥) rep-
resents a constant array whose all elements are 𝑥. For an 𝑛-ary function 𝑓 , a combinator
map𝑓 (𝑎1, . . . , 𝑎𝑛) represents an array obtained by applying the function 𝑓 point-wise to
arrays 𝑎1, . . . , 𝑎𝑛. It can therefore express operations such as point-wise addition of two
integer arrays. Those combinators are axiomatised by the following axioms (the second is,
in fact, an axiom scheme).

• ∀𝑥, 𝑖. K(𝑥)[𝑖] = 𝑥

• ∀𝑎1, . . . , 𝑎𝑛, 𝑖. map𝑓 (𝑎1, . . . , 𝑎𝑛)[𝑖] = 𝑓(𝑎1[𝑖], . . . , 𝑎𝑛[𝑖]) for each 𝑛-ary function 𝑓

As for the basic theory of arrays, the generalised version is decidable in NP. A decision
procedure for 𝒯 +

𝐴 is implemented in the SMT solver Z3 [20].

Encoding finite sets as arrays. The generalised theory of arrays can be used to encode
basic operations over finite sets. This will be useful when translating separation logic to
express properties such as the requirement that the domains of two heaps are disjoint. Given
a finite universe 𝑈 , a set 𝑋 ⊆ 𝑈 can be encoded as an array representing its characteristic
function, i.e., mapping each element 𝑥 ∈ 𝑈 to a boolean value representing its membership
in 𝑋. In this encoding, a constant set can be represented as:

{𝑥1, 𝑥2, ..., 𝑥𝑛} ≜ K(⊥)⟨𝑥1 ▷⊤⟩⟨𝑥2 ▷⊤⟩ ... ⟨𝑥𝑛 ▷⊤⟩

Basic set operations and predicates can be expressed as follows.

𝑋 ≜ map¬(𝑋)

𝑋 ∪ 𝑌 ≜ map∨(𝑋,𝑌)

𝑋 ∩ 𝑌 ≜ map∧(𝑋,𝑌)

𝑋 = ∅ ≜ 𝑋 = K(⊥)
𝑥 ∈ 𝑋 ≜ 𝑋[𝑥]

𝑋 ⊆ 𝑌 ≜ map−→(𝑋,𝑌) = K(⊤)

The theory of finite sets with cardinality constraints is also supported natively by the
cvc5 SMT solver [2], but it is not standardised in the SMT-LIB standard.

7

2.3 Separation Logic
Separation logic (SL) was developed to reason about imperative programs manipulating
dynamically allocated memory [31], including the so-called shape analysis capturing the
shapes of memory-allocated structures, and it quickly becomes probably the most successful
approach in this area. Meanwhile, many various flavours of SL were introduced [26], some of
them for reasoning about shared resources other than the memory such as concurrency [23],
but heap-manipulating programs are still the most common domain.

This section presents an introduction into the classical semantics of separation logic
and discusses its existing decision procedures. A flavour of SL called strong-separation
logic which is studied in this thesis is introduced later in Section 3.

2.3.1 Syntax

Let Var be an infinite set of variables with a distinguished variable nil ∈ Var. The syntax
of first-order separation logic is given by the following grammar where 𝑥, 𝑦 ∈ Var:

𝜙𝑎𝑡𝑜𝑚 ::= 𝑥 = 𝑦 | 𝑥 ̸= 𝑦 (pure atoms)
| emp | 𝑥 ↦→ 𝑦 (spatial atoms)

𝜙 ::= 𝜙𝑎𝑡𝑜𝑚

| 𝜙 * 𝜙 | 𝜙−* 𝜙 (spatial connectives)
| 𝜙 ∧ 𝜙 | ¬𝜙 (boolean connectives)
| ∃𝑥. 𝜙 (quantifiers)

A pure atomic formula is either an equality 𝑥 = 𝑦 or a disequality 𝑥 ̸= 𝑦. A spatial atomic
formula is either the empty heap predicate emp, which intuitively expresses that the heap
does not contain any pointers, or a points-to assertion 𝑥 ↦→ 𝑦 intuitively expressing that a
heap consists of exactly one pointer from the location 𝑥 to the location 𝑦1. The formulae
are obtained using quantifiers, boolean connectives and spatial connectives * (separating
conjunction) and −* (separating implication also called the magic wand). Intuitively, a
formula 𝜓1 * 𝜓2 states that a heap can be split into two (disjoint) parts such that 𝜓1 is
satisfied in the first of them and 𝜓2 is satisfied in the second. Similarly, a formula 𝜙−* 𝜓
intuitively states that each (disjoint) extension of a heap by another heap satisfying 𝜙 yields
a heap satisfying 𝜓. Concrete flavours of SL may differ in the way how disjointness of two
heaps is defined.

For a set of formulae Φ = {𝜙1, 𝜙2, ..., 𝜙𝑛}, we define an 𝑛-ary version of the separating
conjunction:

*Φ =

{︃
emp if n = 0
𝜙1 * 𝜙2 * ... * 𝜙𝑛 if 𝑛 > 0

A frequently used fragment of SL is the so-called symbolic heap fragment. A formula 𝜙
is a symbolic heap if it is of the form Π∧Σ where Π ≜

⋀︀
𝜓𝑖 is a conjunction of pure atoms

called the pure part and Σ ≜ *𝜓𝑖 is a separating conjunction of spatial atoms called the
spatial part. Although the fragment is significantly restricted, it is still expressive enough to
be useful for program verification, e.g., for symbolic execution in the Smallfoot analyser
[7] and many other similar analysers.

1In a more general setting, points-to assertions can be of the form 𝑥 ↦→ ⟨𝑦1, . . . , 𝑦𝑛⟩ intuitively expressing
that a heap consists of a pointer from 𝑥 to an object consisting of fields 𝑦1, . . . , 𝑦𝑛.

8

1 : 𝑥 2 3 4 : 𝑦, 𝑧

5 : 𝑢 6 : 𝑣

0 : nil

Figure 2.1: An example of a graph representation of a stack-heap model (𝑠, ℎ). It holds
that (𝑠, ℎ) |= ls(𝑥, 𝑦) * ls(𝑢, 𝑣) * 𝑧 ↦→ 𝑦. The corresponding decomposition of the heap ℎ is
depicted using green boxes.

2.3.2 Memory Model

We will interpret SL over stack-heap models. Let Loc be a countably infinite set of memory
locations with some fixed linear order. A stack-heap model is a pair (𝑠, ℎ) where stack is
a finite partial function 𝑠 : Var ⇀ Loc such that 𝑠(nil) ̸= ⊥, and heap is a finite partial
function ℎ : Loc ⇀ Loc such that ℎ(𝑠(nil)) = ⊥. For a heap ℎ, we define the set of its
locations as locs(ℎ) = dom(ℎ) ∪ img(ℎ).

As demonstrated in Figure 2.1, a stack-heap model (𝑠, ℎ) can be represented as a directed
graph where vertices are heap locations and edges represent heap pointers. To capture also
the stack, each vertex is labelled by variables that are mapped to it. This correspondence
is formalised by the following definition of an induced graph of a model.

Definition 2.1 (Induced graph). Let (𝑠, ℎ) be a stack-heap model. Its induced graph
𝐺[(𝑠, ℎ)] = (𝑉,→, 𝑠−1) is defined as follows:

• 𝑉 = locs(ℎ) ∪ img(𝑠)

• 𝑢→ 𝑣 ⇔ ℎ(𝑢) = 𝑣

• 𝑠−1(𝑣) = {𝑥 ∈ Var | 𝑠(𝑥) = 𝑣}

In the rest of this thesis, we identify the model and its graph representation. While, in the
definition, we strictly require that each stack-heap model contains the nil location, we omit
it in examples where it is not relevant.

We introduce several notations related to stack-heap models. Let (𝑠, ℎ) be a model and
let ℓ be a location. We say that variables 𝑥 and 𝑦 alias if 𝑠(𝑥) = 𝑠(𝑦). We call ℓ anonymous
if 𝑠−1(ℓ) = ∅ (it is not referred from the stack) and named otherwise. We say that the
heap ℎ contains a pointer from 𝑥 to 𝑦 if ℎ(𝑥) = 𝑦. We call ℓ allocated if ℓ ∈ 𝑑𝑜𝑚(ℎ) (it has
some successor) and dangling if it holds that ℓ ∈ img(ℎ) ∖ dom(ℎ) (the predecessor of ℓ is
allocated, but ℓ itself is not). A pointer 𝑥 ↦→ 𝑦 is dangling if its target location 𝑦 is dangling.

Example 2.1. Let us consider the stack-heap model (𝑠, ℎ) from Figure 2.1. Throughout
this thesis, we will usually consider locations to be natural numbers, i.e., Loc := N. In the
model, the variables 𝑦 and 𝑧 alias. Locations 2 and 3 are the only anonymous locations
here, and locations 0 and 6 are the only locations that are not allocated. The only dangling
location is the location 6 because it is in the image of ℎ, but not in its domain. The pointer
5 ↦→ 6 is therefore dangling. The location 0 is not part of locs(ℎ) but it is included among
vertices of 𝐺[(𝑠, ℎ)].

9

(𝑠, ℎ) |= 𝑥 = 𝑦 iff 𝑠(𝑥) = 𝑠(𝑦)

(𝑠, ℎ) |= 𝑥 ̸= 𝑦 iff 𝑠(𝑥) ̸= 𝑠(𝑦)

(𝑠, ℎ) |= emp iff ℎ = ∅
(𝑠, ℎ) |= 𝑥 ↦→ 𝑦 iff ℎ = {𝑠(𝑥) ↦→ 𝑠(𝑦)}

(𝑠, ℎ) |= 𝜙1 ∧ 𝜙2 iff (𝑠, ℎ) |= 𝜙1 and (𝑠, ℎ) |= 𝜙2

(𝑠, ℎ) |= ¬𝜙 iff (𝑠, ℎ) ̸|= 𝜙

(𝑠, ℎ) |= ∃𝑥. 𝜙 iff there exists ℓ ∈ Loc such that (𝑠 ∪ {𝑥 ↦→ ℓ}, ℎ) |= 𝜙

(𝑠, ℎ) |= 𝜙1 * 𝜙2 iff ∃ℎ1, ℎ2. (𝑠, ℎ1) |= 𝜙1, (𝑠, ℎ2) |= 𝜙2, ℎ1 + ℎ2 ̸= ⊥ and ℎ = ℎ1 + ℎ2

(𝑠, ℎ) |= 𝜙−* 𝜓 iff ∀ℎ1. if (𝑠, ℎ1) |= 𝜙 and ℎ+ ℎ1 ̸= ⊥, then (𝑠, ℎ+ ℎ1) |= 𝜓

Figure 2.2: The classical semantics of separation logic.

2.3.3 Semantics

The semantics of separation logic over stack-heap models is given in Figure 2.2. An equal-
ity 𝑥 = 𝑦 is satisfied by a stack-heap model interpreting both variables in the same way.
The semantics of disequality is analogical. A points-to assertion 𝑥 ↦→ 𝑦 is satisfied in a
heap consisting of a single pointer which, moreover leads from 𝑥 to 𝑦. The semantics of
boolean connectives and the existential quantifier is defined in the usual way. The semantics
of spatial connectives is based on a notion of disjointness of two heaps (the semantics of
strong-separation logic defined later in Section 3 will differ in its definition of disjointness).
In the classical SL, heaps ℎ1 and ℎ2 are disjoint if their domains are disjoint. A disjoint
union of heaps is defined as follow:

ℎ1 + ℎ2 =

{︃
ℎ1 ∪ ℎ2 if dom(ℎ1) ∩ dom(ℎ2) = ∅
⊥ otherwise

We now give several examples of separation logic formulae to show differences in the
semantics of the classical and separation conjunction, and also to provide some intuition
behind the magic wand.

Example 2.2. Let 𝜙1 ≜ 𝑥 ↦→ 𝑦 * 𝑥 ↦→ 𝑧. The formula 𝜙1 is unsatisfiable because it requires
the location 𝑥 to be allocated in both sub-heaps, which is forbidden by the semantics of the
separating conjunction. On the other hand, the formula 𝜙2 ≜ 𝑥 ↦→ 𝑦 * 𝑧 ↦→ 𝑦 is satisfiable.
Notice that 𝜙2 implicitly asserts that the variables 𝑥 and 𝑧 represent different locations.

Example 2.3. The heap ℎ = {𝑠(𝑥) ↦→ 𝑠(𝑦), 𝑠(𝑦) ↦→ 𝑠(nil)} does not satisfy the formula
𝜙3 ≜ 𝑥 ↦→ 𝑦 (no matter what the stack is). This is because a points-to assertion expresses
the fact that “a heap consist of a pointer”, rather than “a heap contains a pointer”. Of
course, the so-called intuitionistic points-to assertion 𝜙4 ≜ 𝑥 ↦→ 𝑦 * true can be to used to
express that a heap contains the pointer.

10

Example 2.4. A formula 𝜙5 ≜ 𝑥 ↦→ 𝑦∧ 𝑦 ↦→ 𝑧 states that a heap consists a pointer from 𝑥
to 𝑦 and from 𝑦 to 𝑧, simultaneously. The formula is therefore satisfiable only when those
pointers are unified, i.e., it can be satisfied by the only stack-heap model (𝑠, ℎ) such that
𝑠(𝑥) = 𝑠(𝑦) = 𝑠(𝑧) and ℎ = {𝑠(𝑥) ↦→ 𝑠(𝑥)}.

Example 2.5. Let 𝜙6 ≜ (𝑥 ↦→ nil)−* false. The formula is satisfied in a model (𝑠, ℎ) if for
all its extensions satisfying 𝑥 ↦→ nil (there is zero or one such an extension depending on
whether ℎ already allocates 𝑥 or not), it holds that their composition satisfies false. Since
no model satisfies false, this means that ℎ has to allocate 𝑥 to ensure that it has no disjoint
extension satisfying 𝑥 ↦→ nil. The formula therefore states “location 𝑥 is allocated”. This
can be also expressed using quantifiers ∃ℓ. 𝑥 ↦→ ℓ. If neither the magic wands nor quantifiers
are supported, the property cannot be expressed.

Inductive Predicates Separation logic also allows one to specify inductive predicates to
describe data structures of unbounded size (such as lists or trees), their variants (such as
doubly linked lists) and combinations (such as nested lists or trees with linked leaves). In
concrete flavours of SL, those predicates can be either built in the logic, or, in a more
general setting, the logic may allow to define custom inductive predicates.

Inductive predicates can be defined by a system of inductive definitions which consists of
rules of the form 𝑝(𝑥1, 𝑥2, ..., 𝑥𝑛) ::= 𝜙. For example, a possibly empty, acyclic singly-linked
list predicate ls(𝑥, 𝑦) can be defined by the following system of definitions:

ls(𝑥, 𝑦) ::= 𝑥 = 𝑦 ∧ emp

ls(𝑥, 𝑦) ::= ∃𝑧. 𝑥 ̸= 𝑦 ∧
(︁
𝑥 ↦→ 𝑧 * ls(𝑧, 𝑦)

)︁
The definition says that a model (𝑠, ℎ) satisfies a predicate ls(𝑥, 𝑦) either if the heap is
empty and 𝑠(𝑥) = 𝑠(𝑦), or there exists a location 𝑧 such that there is a pointer from 𝑥 to 𝑧
and the rest of the heap is a list segment from 𝑧 to 𝑦. The condition in the second definition
that 𝑥 and 𝑦 are different forbids cyclic lists. Similarly, a tree with a root 𝑟 can be defined
by the following system:

tree(𝑟) ::= 𝑟 = nil ∧ emp

tree(𝑟) ::= ∃𝑙, 𝑟. 𝑥 ↦→ ⟨𝑙, 𝑟⟩ * tree(𝑙) * tree(𝑟)

Example 2.6. The formula (𝑥 ↦→ 𝑦) * (𝑦 ↦→ 𝑧) ∧ ¬
(︀
ls(𝑥, 𝑧)

)︀
is satisfiable. While this does

not have to be obvious at the first sight, let us consider the stack heap model (𝑠, ℎ) with
𝑠(𝑥) = 𝑠(𝑧) and ℎ = {𝑠(𝑥) ↦→ 𝑠(𝑦), 𝑠(𝑦) ↦→ 𝑠(𝑧)}. The formula is satisfied in this model
because list-segments have to be acyclic.

2.3.4 Decision Procedures for Separation Logic

There exist many decision procedures for various fragments and flavours of separation logic.
The first studied fragment were symbolic heaps with lists; in [6], a proof system for satis-
fiability and entailment was proposed. Both satisfiability and entailment for this fragment
were later shown to be solvable in polynomial time [11]. A model-based approach for this
fragment which is partially based on the Z3 solver was proposed in [22] and implemented
in the tool called Asterix.

11

A translation of SL to SMT was first proposed in [28] and [29] for boolean combinations
of symbolic heaps with lists and trees, respectively. Those approaches use intermediate log-
ics that are later translated to SMT. Another translation, closer to our approach proposed
in the following, was described in [17], which establishes a small-model property for sepa-
ration logic with data predicates and performs a direct translation implemented in the tool
Sloth. A similar translation was designed in [24] for SSL with data but not implemented.
The work, however, considers only a fragment on which SL and SSL coincide.

All those translations consider only such fragments of SL where boolean connectives
cannot appear under separating conjunction, and the magic wand cannot appear at all.
A fragment with the magic wand, arbitrary combinations of boolean and spatial connec-
tives, but no inductive predicates is supported by the SMT solver cvc5 that implements
a specialised theory solver for this fragment [30]. The solver is based on a translation to
second-order logic with quantifiers over bounded sets which is then solved by a lazy quanti-
fier instantiation. As shown in [12], adding only the list-segment predicate to this fragment
leads to undecidability.

A separation logic with quantifiers (restricted to the ∃*∀* quantifier-prefix) was studied
in [13]. The majority of solvers, however, work within quantifier-free fragments. An exam-
ple is Songbird which constructs induction proofs using lemma synthesis [33].

Inductive definitions. All methods mentioned so far assumed only inductive predicates
that were built in the logic. A generalisation is to allow user-defined inductive predicates
(usually of some restricted form) that can describe more complex data structures such as
double-linked lists, cyclic lists, or trees and various combinations of the mentioned. Solvers
proposed for those logics are based, e.g., on the cyclic proof systems (Cyclist [9]) or
various kinds of automata – tree automata are used in tools Slide [15] and Spen [14], and
a specialised type of automata, called heap automata, is used in Harrsh [19].

12

Chapter 3

Strong-Separation Logic

Strong-separation logic (SSL) was recently introduced to overcome undecidability results
of separation logic with the classical semantics in the presence of magic wands, negations,
and list-segment predicates. To emphasise the difference, we will further call separation
logic with the classical semantics as weak-separation logic (WSL). This chapter formally
introduces SSL based on [25] where one can also found all omitted proofs. We will first
introduce its syntax and semantics and compare it with the semantics of WSL. Then, we
will describe abstract memory states that can be used as a building block of a decision
procedure for SSL, and also to prove several properties of SSL. Namely, we will prove that
it has a small-model property, i.e., that each satisfiable formula has a model of a linear size.
This property is essential for an effective translation of SSL to SMT.

3.1 Syntax
We will concentrate on a quantifier-free fragment of SL where the list segment is the only
built-in inductive predicate1. The syntax of this fragment is given by the following grammar:

𝜙𝑎𝑡𝑜𝑚 ::= 𝑥 = 𝑦 | 𝑥 ̸= 𝑦 (pure atoms)
| 𝑥 ↦→ 𝑦 | ls(𝑥, 𝑦) (spatial atoms)

𝜙 ::= 𝜙𝑎𝑡𝑜𝑚

| 𝜙 * 𝜙 | 𝜙−⊛ 𝜙 (spatial connectives)
| 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 ∧¬ 𝜙 | ¬𝜙 (boolean connectives)

There are several differences from the syntax given in the introduction and non-standard
choices. Instead of the magic wand, we use its existential variant called septraction. The
reason is that its existential character is more natural when working with satisfiability. The
syntax does also not contain the empty predicate emp as it can be expressed using other
atoms.

An important subset of SSL is its so-called positive fragment denoted as SSL+. A for-
mula 𝜙 is positive if it does not contain a negation. In the positive fragment, however, a
so-called guarded negation ∧¬ can be used. A formula 𝜙 ∧¬ 𝜓 is semantically equivalent
to the formula 𝜙 ∧ ¬𝜓, but we rather treat the guarded negation as a standalone binary

1This is, however, not a limitation of the strong-separation semantics – an extension of SSL including
trees can be found in [24].

13

(𝑠, ℎ) |= 𝑥 = 𝑦 iff 𝑠(𝑥) = 𝑠(𝑦) and dom(ℎ) = ∅
(𝑠, ℎ) |= 𝑥 ̸= 𝑦 iff 𝑠(𝑥) ̸= 𝑠(𝑦) and dom(ℎ) = ∅
(𝑠, ℎ) |= 𝑥 ↦→ 𝑦 iff ℎ = {𝑠(𝑥) ↦→ 𝑠(𝑦)}
(𝑠, ℎ) |= ls(𝑥, 𝑦) iff dom(ℎ) = ∅ and 𝑠(𝑥) = 𝑠(𝑦) or there exist 𝑛 ≥ 1, ℓ0, ..., ℓ𝑛 such that

distinct(ℓ0, ..., ℓ𝑛), ℎ = {ℓ0 ↦→ ℓ1, ..., ℓ𝑛−1 ↦→ ℓ𝑛}, 𝑠(𝑥) = ℓ0,

and 𝑠(𝑦) = ℓ𝑛

(𝑠, ℎ) |= 𝜙1 ∧ 𝜙2 iff (𝑠, ℎ) |= 𝜙1 and (𝑠, ℎ) |= 𝜙2

(𝑠, ℎ) |= 𝜙1 ∧¬ 𝜙2 iff (𝑠, ℎ) |= 𝜙1 and (𝑠, ℎ) ̸|= 𝜙2

(𝑠, ℎ) |= 𝜙1 ∨ 𝜙2 iff (𝑠, ℎ) |= 𝜙1 or (𝑠, ℎ) |= 𝜙2

(𝑠, ℎ) |= ¬𝜙 iff (𝑠, ℎ) ̸|= 𝜙

Figure 3.1: The semantics of atomic formulae and boolean connectives. On this fragment
it holds that (𝑠, ℎ)

st|= 𝜙 iff (𝑠, ℎ)
wk|= 𝜙, and we therefore write simply |=.

(𝑠, ℎ)
wk|= 𝜙1 * 𝜙2 iff ∃ℎ1, ℎ2. (𝑠, ℎ1) wk|= 𝜙1, (𝑠, ℎ2)

wk|= 𝜙2, ℎ1 + ℎ2 ̸= ⊥, and ℎ = ℎ1 + ℎ2

(𝑠, ℎ)
st|= 𝜙1 * 𝜙2 iff ∃ℎ1, ℎ2. (𝑠, ℎ1) st|= 𝜙1, (𝑠, ℎ2)

st|= 𝜙2, ℎ1 ⊎𝑠 ℎ2 ̸= ⊥, and ℎ = ℎ1 ⊎𝑠 ℎ2
(𝑠, ℎ)

wk|= 𝜙1 −⊛ 𝜙2 iff ∃ℎ1. (𝑠, ℎ1) wk|= 𝜙1, ℎ+ ℎ1 ̸= ⊥, and (𝑠, ℎ+ ℎ1)
wk|= 𝜙2

(𝑠, ℎ)
st|= 𝜙1 −⊛ 𝜙2 iff ∃ℎ1. (𝑠, ℎ1) st|= 𝜙1, ℎ ⊎𝑠 ℎ1 ̸= ⊥, and (𝑠, ℎ ⊎𝑠 ℎ1)

st|= 𝜙2

Figure 3.2: The weak-separation (wk|=) and strong-separation (st|=) semantics of spatial con-
nectives.

connective. In full SSL, the disjunction is redundant, but we add it to the syntax to increase
expressivity of the positive fragment.

The idea of the guarded negation comes from [24] and is not considered in [25]. All proofs
related to the full SSL, however, remain sound because the guarded negation can be easily
expressed in SSL. Proofs about positive formulae require to consider an additional case of
the guarded negation. This case is usually straightforward since all properties of models
of a positive guard 𝜙 also hold for all models of a formula 𝜙 ∧¬ 𝜓. The guarded negation
is, in particular, useful to express validity of an entailment 𝜙 |= 𝜓 as unsatisfiability of the
formula 𝜙 ∧¬ 𝜓:

𝜙 |= 𝜓 is valid ⇔ ¬𝜙 ∨ 𝜓 is valid ⇔ 𝜙 ∧ ¬𝜓 is unsatisfiable.

We write vars(𝜙) to denote the set of all variables in 𝜙 and define the set vars+(𝜙) of
variables that can be allocated as vars+(𝜙) = vars(𝜙) ∖ {nil}.

3.2 Weak- and Strong-Separation Semantics
We will define two logics – weak-separation logic (WSL) using the satisfaction relation wk|=
and strong-separation logic (SSL) using the satisfaction relation st|=. The semantics of atomic
formulae and boolean connectives is given in Figure 3.1, and it is identical for both logics.

14

1 : 𝑥

3 4 5 : nil

2 : 𝑦

1 : 𝑥

3 : 𝑧 4 5 : nil

2 : 𝑦

Figure 3.3: An example of two models of the formula 𝜙 ≜ (ls(𝑥, nil)* true)∧ (ls(𝑦, nil)* true)
under the classical semantics. Under the strong-separation semantics, 𝜙 is satisfied only
in the right model that can be split at the named location 3 to separate overlaid list-
segments. The left model cannot be split using the operator ⊎𝑠 to satisfy the formula since
its location 3 is not named.

Notice that, in the semantics of pure atoms, we additionally require that they can be
satisfied on the empty heap only. This is the so-called precise semantics of pure atoms,
and it is orthogonal to the strong-separation semantics. The semantics defined in this a
way is common for translation-based decisions procedures [17, 28]. It does not change the
expressivity, merely the way how formulae are written – instead of writing 𝑥 = 𝑦 ∧ 𝜙, one
can write 𝑥 = 𝑦 * 𝜙 to express that the equality can be satisfied on the empty heap, which
can always be split off from any heap. A symbolic heap formula now has the form *𝜓𝑖

where all 𝜓𝑖 are atomic formulae.
As will become clear later, the strong-separating conjunction cannot be used to define

the list-segment predicate inductively because it would require all of its locations to be
named. One can therefore either use a weak-separation conjunction or define list non-
inductively. We chose the latter approach according to [25]. The list-segment predicate is
defined to hold on a heap consisting of a possibly empty sequence of pointers starting with
𝑥 and ending with 𝑦 such that all locations in this sequence are distinct. Consequently,
a list-segment cannot be cyclic or lasso-shaped. We may define the empty heap predicate
and boolean constants as syntactic sugar2:

emp ≜ nil = nil false ≜ emp ∧¬ emp true ≜ ¬false

The semantics of spatial connectives is defined in Figure 3.2, and, for both of them, it
differs in the used notions of disjointness and disjoint union of heaps. Recall that, in the
classical semantics, the disjoint union of two heaps is defined as the union of those heaps
under the condition that their domains are disjoint:

ℎ1 + ℎ2 =

{︃
ℎ1 ∪ ℎ2 if dom(ℎ1) ∩ dom(ℎ2) = ∅
⊥ otherwise

Strongly-disjoint union ⊎𝑠, parametrised by a stack 𝑠, also restricts images of heaps – it
requires that each location shared by both heaps is named (i.e., at least one variable is
mapped to it), formally, the strongly-disjoint union is defined as:

ℎ1 ⊎𝑠 ℎ2 =

{︃
ℎ1 + ℎ2 if locs(ℎ1) ∩ locs(ℎ2) ⊆ img(𝑠)

⊥ otherwise
2While the constant false is expressible in the positive fragment, the constant true is not. Otherwise, it

would be easy to introduce the negation even in the positive fragment using the guarded negation.

15

1 : 𝑥 2 : 𝑦 3 : 𝑧 ∼= 1 : 𝑥 3 : 𝑦 2 : 𝑧

Figure 3.4: An example of two isomorphic stack-heap models. The isomorphism is given
by the bijection 𝜎 such that 𝜎(2) = 3, 𝜎(3) = 2, and 𝜎(𝑥) = 𝑥 otherwise.

Notice that if ℎ1⊎𝑠 ℎ2 is defined, then ℎ1+ℎ2 is also defined, but not vice versa. This is
demonstrated in Figure 3.3. It can be shown that the operator ⊎𝑠 gives rise to a separation
algebra and it is therefore suitable for definition of semantics of separation logic [25].

We can define the magic wand using septraction and negation. Unlike the septraction,
the magic wand is not expressible in the positive fragment.

𝜙−* 𝜓 ≜ ¬(𝜙−⊛ ¬𝜓)

We can also define a list segment of length at least one and a proper list segment of length
at least two. Notice that both of them lie in the positive fragment.

ls≥1(𝑥, 𝑦) ≜ ls(𝑥, 𝑦) * 𝑥 ̸= 𝑦

ls≥2(𝑥, 𝑦) ≜ ls≥1(𝑥, 𝑦) ∧¬ 𝑥 ↦→ 𝑦

Example 3.1. The formula 𝑥 ↦→ 𝑦 ∧ 𝑥 = 𝑦 is unsatisfiable as the left-hand side requires
a heap to be of size one and the right-hand size requires it to be empty. A correct way to
express a self-loop pointer at 𝑥 under the precise semantics is to write 𝑥 ↦→ 𝑦 * 𝑥 = 𝑦.

Example 3.2. The formulae 𝑥 ̸= 𝑦 and ¬(𝑥 = 𝑦) are not equivalent. The second can be
satisfied by an arbitrary non-empty heap even if 𝑠(𝑥) = 𝑠(𝑦).

Example 3.3. The formula 𝜙 ≜ (𝑥 ↦→ nil) −⊛ true is satisfied by models that can be
extended by a pointer from 𝑥 to nil, i.e., by models that do not allocate 𝑥. This formula
can also be expressed using the magic wand as ¬((𝑥 ↦→ nil)−* false).

Satisfiability and entailment. As can be seen in Figure 3.3, satisfiability of an SSL
formula may depend on how many variables are available to label splitting points of a heap.
Satisfiability and entailment are therefore parametrised by a set of variables x ⊆ Var. Let
[[𝜙]]x be the set of all models of 𝜙 over x, i.e., [[𝜙]]x = {(𝑠, ℎ) | dom(𝑠) = x ∧ (𝑠, ℎ)

st|= 𝜙}.
The formula 𝜙 with vars(𝜙) ⊆ x is satisfiable over variables x if [[𝜙]]x ̸= ∅. An entailment
𝜙

st|=x 𝜓 is valid w.r.t. x if [[𝜙]]x ⊆ [[𝜓]]x.

Two stack-heap models are isomorphic if they are identical up to renaming of locations.

Definition 3.1. Two models (𝑠1, ℎ1) and (𝑠2, ℎ2) are isomorphic, (𝑠1, ℎ1) ∼= (𝑠2, ℎ2), if
there exists a bijection on locations 𝜎 : Loc←→ Loc such that:

1. For all 𝑥 ∈ Var, it holds that 𝑠1(𝑥) = 𝜎(𝑠2(𝑥)).

2. For all ℓ ∈ Loc, it holds that ℎ1(𝑥) = 𝜎(ℎ2(𝑥)).

An example of two isomorphic models is given in Figure 3.4. It holds that SSL formulae
cannot distinguish isomorphic models. This is not a consequence of the strong-separation
semantics, but it follows from the fact that SSL cannot speak about concrete memory
locations – it cannot express formulae such as 1 ↦→ 2.

Lemma 3.1 (Isomorphic models [25]). Let 𝜙 be a formula. Further, let (𝑠1, ℎ1) and (𝑠2, ℎ2)
be two models such that (𝑠1, ℎ1) ∼= (𝑠2, ℎ2). Then (𝑠1, ℎ1)

st|= 𝜙 iff (𝑠2, ℎ2)
st|= 𝜙.

16

1 : 𝑥 2 : 𝑦 ⊎𝑠 2 : 𝑦 3 4 + 4 5 : 𝑧

Figure 3.5: An example of a model (𝑠, ℎ) decomposed at locations 2 and 4. It holds that
(𝑠, ℎ)

wk|= ls𝑤𝑘
≥3(𝑥, 𝑧), but not (𝑠, ℎ)

st|= ls𝑤𝑘
≥3(𝑥, 𝑧) because the location 4 is not named and the

depicted decomposition is therefore not possible in SSL.

3.3 Comparison of Weak- and Strong-Separation Semantics
In this section, we compare the semantics of WSL and SSL. We will show that they coincide
on the positive fragment. As the positive fragment subsumes frequently used fragments such
as the symbolic heap fragment, this demonstrates a certain kind of backward compatibility
of SSL. The second part of this section is devoted to examples where the strong-separation
semantics actually makes a difference.

Recall that a location is dangling in a heap if it is in its image but not in its domain.
If we have a model of a positive formula, it holds that all its dangling locations are named
by stack variables.

Lemma 3.2 ([25]). Let 𝜙 be a positive formula and let (𝑠, ℎ)
wk|= 𝜙 be its model. Then all

dangling locations of the heap ℎ are named, i.e., dangling(ℎ) ⊆ 𝑠(vars(𝜙)).

Proof idea. By structural induction on 𝜙, which actually proves a stronger statement that
all dangling, joint (having multiple predecessors), and source (having no predecessors) lo-
cations are named. The case of the guarded negation 𝜓1 ∧¬ 𝜓2 uncovered in [25] follows
directly from the inductive hypothesis for 𝜓1.

If we have two weakly-disjoint heaps, they can overlap only on locations that are dan-
gling in at least one of them. Together with the previous lemma, this ensures that weakly-
disjoint models of positive formulae can overlap only on named locations and they are
therefore also strongly-disjoint. Therefore, there is no difference between the weak- and the
strong-separation semantics for positive formulae.

Lemma 3.3 ([25]). Let 𝜙1 and 𝜙2 be positive formulae and let (𝑠, ℎ1) wk|= 𝜙1, (𝑠, ℎ2) wk|= 𝜙2

be their models. Then ℎ1 + ℎ2 ̸= ⊥ iff ℎ1 ⊎𝑠 ℎ2 ̸= ⊥.

Proof.

(⇒) We want to prove that all shared locations of ℎ1 and ℎ2 are named. Let ℓ be a
location shared by both heaps, i.e., ℓ ∈ locs(ℎ1) ∩ locs(ℎ2). Then ℓ is dangling either
in ℎ1 or ℎ2 as it cannot be in the domains of both of them. By Lemma 3.2, it holds
that ℓ ∈ img(𝑠) and consequently ℎ1 ⊎𝑠 ℎ2 ̸= ⊥.

(⇐) Follows directly from the definition of ⊎𝑠.

Theorem 3.1 (WSL and SSL coincide on the positive fragment [25]). Let 𝜙 be a positive
formula an let (𝑠, ℎ) be a model. Then (𝑠, ℎ)

wk|= 𝜙 iff (𝑠, ℎ)
st|= 𝜙.

Proof idea. By structural induction on 𝜙 using Lemma 3.3 to prove cases of spatial con-
nectives.

17

The only formulae where the strong-separation semantics makes a difference are there-
fore those containing an (unguarded) negation.

It turns out that SSL cannot speak about concrete sizes of heaps without using addi-
tional variables. As an example, let us consider the following family of formulae for 𝑛 ≥ 3:

ls𝑤𝑘
≥𝑛(𝑥, 𝑦) ≜ ls(𝑥, 𝑦) ∧ (¬emp * · · · * ¬emp⏟ ⏞

𝑛 times

)

Under the weak-separation semantics, a formula ls𝑤𝑘
≥𝑛(𝑥, 𝑦) expresses that the heap is

a list segment that can be split into 𝑛 non-empty parts, i.e., a list segment of length at
least 𝑛. In SSL, this is not necessarily true as can be seen in Figure 3.5 for 𝑛 = 3. The
list-segment in the figure has length greater than three, but cannot be split to three non-
empty sub-heaps using the operator ⊎𝑠 since it does not contain enough named locations.
In fact, a list segment of a length greater than three is not expressible in SSL. This is used
in the AMS abstraction described in the next section. Regarding satisfiability, a formula
ls𝑤𝑘
≥𝑛(𝑥, 𝑦) is satisfiable only if the considered set of variables provides enough variables to

name all 𝑛− 1 locations needed to split the list segment.

Convention. In the rest of the thesis, we will be interested in SSL only and we will therefore
write just |= instead of st|=. Because of the correspondence on the positive fragment, we will
assume an input set of variables x to be implicitly equal to vars(𝜙) when dealing with
positive formulae.

3.4 Abstract Memory States
An Abstract memory state (AMS) is an abstraction over a stack-heap model which keeps
just enough information to decide whether the model satisfies a formula or not. In [25],
AMSs are used to prove essential theoretical results such as a small-model property of SSL
and also as a building block of a decision procedure for it. The main idea of the decision
procedure is to represent the possibly infinite set of stack-heap models [[𝜙]]x by a finite set
of abstract memory states 𝛼(𝜙) whose emptiness can be decided in polynomial space.

In this section, we will gradually show how a model (𝑠, ℎ) can be abstracted to its
induced abstract memory state ams(𝑠, ℎ). The cornerstone of this abstraction is a memory
chunk – a minimal non-empty sub-heap ℎ′ ⊆ ℎ such that ℎ′ can be cut off ℎ according to
the strong-separation semantics.

Definition 3.2 (Memory chunk). Let (𝑠, ℎ) be a model and let ℎ1 be a heap. We say that
the heap ℎ1 is a sub-heap of ℎ, denoted as ℎ1 ⊑ ℎ, if there exists a heap ℎ2 such that
ℎ1 ⊎𝑠 ℎ2 = ℎ. We call ℎ1 a memory chunk of ℎ if it is non-empty, minimal sub-heap of ℎ,
i.e., there is no non-empty ℎ′1 ̸= ℎ1 such that ℎ′1 ⊑ ℎ1.

We classify chunks into two categories – a chunk ℎ𝑐 is positive if there exists an atomic
formula 𝜙 such that (𝑠, ℎ𝑐) |= 𝜙. Otherwise, the chunk is negative. Notice that all positive
chunks are either cyclic pointers or non-empty list segments. The decomposition of a model
to its chunks always exists and is uniquely determined.

18

ℎ1

ℎ4 ℎ5

ℎ2

ℎ6

ℎ3

ℎ7

8 : 𝑥 9 10 11 : 𝑦

432 : 𝑢 5 : 𝑣

12 13 : 𝑡

61 : 𝑧 7

14 : 𝑠

Figure 3.6: An example of a model and its decomposition into chunks.The positive chunks
ℎ1, ℎ4, and ℎ5 are marked by the green colour, and the negative chunks by the orange
colour.

Lemma 3.4 (Decomposition to chunks [25]). Let (𝑠, ℎ) be a model and let ℎ1, . . . , ℎ𝑛 be its
chunks. Then ℎ = ℎ1 ⊎𝑠 · · · ⊎𝑠 ℎ𝑛.

Proof idea. The claim follows from the fact that all sub-heaps form a boolean algebra with
chunks being atoms of this algebra.

Example 3.4. An example of a decomposition of a model into its chunks and their classifi-
cation is shown in Figure 3.6. The chunk ℎ1 is positive since it is a model of a formula 𝑧 ↦→ 𝑧.
The negative chunk ℎ2 consists of two overlaid list-segments that cannot be further split
according to the strong-separation semantics. The negative chunk ℎ3 is a so-called garbage
chunk because it consists of the memory location 6 that cannot be reached using stack
variables. The chunks ℎ4 and ℎ5 are positive as they are models of the formulae ls(𝑥, 𝑦)
and 𝑦 ↦→ 𝑥, respectively. The chunk ℎ6 is negative because list segments cannot be cyclic.
Finally, the chunk ℎ7 is negative since its sink location 7 is anonymous.

We can use decomposition into chunks to abstract a model to an abstract memory state.

Definition 3.3. An abstract memory state is a quadruple 𝒜 = (𝑉,𝐸, 𝜌, 𝛾) where

• 𝑉 = {v1, . . . ,v𝑛} is a partition of some finite set of variables,

• 𝐸 : 𝑉 ⇀ 𝑉 × {= 1,≥ 2} is a partial function such that, for all v ∈ dom(𝐸), it holds
that nil /∈ v,

• 𝜌 is a set of disjoint subsets of 𝑉 such that, for all 𝑅 ∈ 𝜌, it holds that (1) 𝑅 is
disjoint from dom(𝑉) and (2) nil /∈ 𝑅,

• 𝛾 ∈ N is a natural number.

The components have the following interpretation. The elements of the partition 𝑉 are
called vertices. The partition abstracts some stack 𝑠. Instead of storing the mapping of 𝑠, it
only keeps information about which variables alias – two variables 𝑥 and 𝑦 are in the same
equivalence class of 𝑉 iff 𝑠(𝑥) = 𝑠(𝑦). The function 𝐸 represents edges of AMS induced by
positive chunks. An edge (𝑥, 𝑦, =1) represents a chunk consisting of a single pointer from
𝑥 to 𝑦, and, similarly, an edge (𝑥, 𝑦, ≥ 2) abstracts a chunk which is a list segment of a

19

length at least two (this abstraction follows from the fact that SSL cannot speak about list
segments of length greater than two without using additional variables).

The last two components are related to negative chunks. The component 𝜌 represents
negative-allocation constraints. It is a set of disjoint sets 𝑅 where each 𝑅 is a set of vertices
that are allocated within the same negative chunk. Finally, the number 𝛾 is called the
garbage-chunk count, and it corresponds to the number of negative chunks that do not
allocate any variables.

To define an induced AMS of a model (𝑠, ℎ) formally, we need several auxiliary defini-
tions. Let 𝑠 be a stack. We define an alias-equivalence =𝑠 w.r.t. 𝑠 as 𝑥 =𝑠 𝑦 ⇔ 𝑠(𝑥) = 𝑠(𝑦).
We write [𝑥]𝑠 to denote the equivalence class of =𝑠 containing 𝑥. We also define the set of
equivalence classes of =𝑠 allocated in a chunk ℎ𝑐 as alloc=𝑠 (ℎ𝑐) = {[𝑥]𝑠 | 𝑠(𝑥) ∈ dom(ℎ𝑐)}.

Definition 3.4 (Induced AMS of a model). Let (𝑠, ℎ) be a model. Let chunks+(𝑠, ℎ) and
chunks−(𝑠, ℎ) be its positive and negative chunks, respectively. We define the induced AMS
of the model (𝑠, ℎ), ams(𝑠, ℎ) = (𝑉,𝐸, 𝜌, 𝛾), as:

• 𝑉 = {[𝑥]𝑠 | 𝑥 ∈ dom(𝑠)}

• 𝐸([𝑥]𝑠) =

⎧⎪⎨⎪⎩
([𝑦]𝑠,= 1) if (𝑠, ℎ𝑐) |= 𝑥 ↦→ 𝑦 for some ℎ𝑐 ∈ chunks+(𝑠, ℎ)

([𝑦]𝑠,≥ 2) if (𝑠, ℎ𝑐) |= ls≥2(𝑥, 𝑦) for some ℎ𝑐 ∈ chunks+(𝑠, ℎ)

⊥ othwerwise

• 𝜌 = {alloc=𝑠 (ℎ𝑐) | ℎ𝑐 ∈ chunks−(𝑠, ℎ)}

• 𝛾 = |chunks−(𝑠, ℎ)| − |𝜌|

Lemma 3.5 ([25]). Let (𝑠, ℎ) be a stack-heap model. Then ams(𝑠, ℎ) is an AMS.

Example 3.5. An example of a model (𝑠, ℎ) and its AMS 𝒜 = ams(𝑠, ℎ) = (𝑉,𝐸, 𝜌, 𝛾) is
depicted in Figure 3.7. There are three positive chunks in the model: ℎ1, ℎ2, and ℎ6. The
chunks ℎ1 and ℎ2 are list segments of length greater or equal than two and are therefore
abstracted using edges with label ≥ 2. The chunk ℎ6 consists of a single pointer and is
therefore represented using an edge with label = 1. The negative chunk ℎ4 is the only
chunk which does not allocate any variables, and therefore we have that garbage-chunk
count 𝛾 = 1. Finally, there are two negative chunks allocating some variables. The chunk ℎ3
allocates 𝑅1 = {{𝑢, 𝑣}, {𝑠}, {𝑡}}, and the chunk ℎ5 allocates 𝑅2 = {{𝑤}}. The negative-
allocation constraints are 𝜌 = {𝑅1, 𝑅2}.

Deciding SSL using AMSs. We conclude this section by sketching a decision procedure
based on AMSs. The decision procedure is based on the following theorem.

Theorem 3.2 (Refinement theorem [25]). Let 𝜙 be a formula and let (𝑠, ℎ1) and (𝑠, ℎ2) be
models such that ams(𝑠, ℎ1) = ams(𝑠, ℎ2). Then (𝑠, ℎ1) |= 𝜙 iff (𝑠, ℎ2) |= 𝜙.

Given an input 𝜙 and x, the decision procedure first guesses a stack 𝑠 (there are only
finitely many stacks with the domain x) and then computes the set of abstract memory
states 𝛼𝑠(𝜙) = {ams(𝑠, ℎ) | ℎ is a heap such that (𝑠, ℎ) |= 𝜙} inductively on the structure
of the formula 𝜙. Observe that given the stack 𝑠, the set of vertices of an AMS ams(𝑠, ℎ) is
finite for an arbitrary heap ℎ. Consequently, there is also finitely many edges and finitely
many allocation constraints. To finish the construction, we need to provide an upper bound

20

ℎ1

ℎ2

ℎ6

ℎ5

ℎ3

ℎ4

1 : 𝑥, 𝑦 2 3 4 : 𝑠

5 6 : 𝑧 7

11 : 𝑤8 : 𝑢, 𝑣 9 10

12 : 𝑠 13 : 𝑡 14 15

ℎ′1

ℎ′2

ℎ′6

ℎ′5

ℎ′3

ℎ′4

1 : 𝑥, 𝑦 2 4 : 𝑠

5 6 : 𝑧 7

8 : 𝑢, 𝑣 9

12 : 𝑠 13 : 𝑡

11 : 𝑤

14

{𝑥, 𝑦} {𝑧} {𝑠}

𝜌 = {{{𝑢, 𝑣}, {𝑠}, {𝑡}}, {{𝑤}}}
𝛾 = 1

≥ 2

≥ 2

= 1

Figure 3.7: An example of a stack-heap model (𝑠, ℎ) (top left) and its reduction reduce(𝑠, ℎ)
(top right). It holds that both models induce the same AMS (bottom) and therefore cannot
be distinguished by SSL formulae.

on the number of garbage chunks. This is given by the chunk size ⌈𝜙⌉ which gives an upper
bound on the number of chunks needed to satisfy and/or falsify the formula 𝜙:

⌈𝑥 = 𝑦⌉ = ⌈𝑥 ̸= 𝑦⌉ = ⌈𝑥 ↦→ 𝑦⌉ = ⌈ls(𝑥, 𝑦)⌉ = 1

⌈𝜓1 * 𝜓2⌉ = ⌈𝜓1⌉+ ⌈𝜓2⌉
⌈𝜓1 −⊛ 𝜓2⌉ = ⌈𝜓2⌉
⌈𝜓1 ∧ 𝜓2⌉ = ⌈𝜓1 ∧¬ 𝜓2⌉ = ⌈𝜓1 ∨ 𝜓2⌉ = max(⌈𝜓1⌉, ⌈𝜓2⌉)
⌈¬𝜓⌉ = ⌈𝜓⌉

Now, a refined version of Theorem 3.2 can be proved.

Theorem 3.3 (Refined refinement theorem [25]). Let 𝜙 be a formula with ⌈𝜙⌉ = 𝑘. Let
𝑚 ≥ 𝑘 and 𝑛 ≥ 𝑘 and let (𝑠, ℎ1), (𝑠, ℎ2) be models with ams(𝑠, ℎ1) = (𝑉,𝐸, 𝜌,𝑚) and
ams(𝑠, ℎ2) = (𝑉,𝐸, 𝜌, 𝑛). Then (𝑠, ℎ1) |= 𝜙 iff (𝑠, ℎ2) |= 𝜙.

Based on this theorem, a finite abstraction of the set 𝛼𝑠(𝜙) can be defined and its non-
emptiness (corresponding to satisfiability of 𝜙) can be checked in polynomial space. Since
the construction is rather technical, we refer to [25] for more details.

21

3.5 Small-Model Property
Using Theorem 3.3, we can prove a small-model property for SSL and its variant for SSL+.
The small-model property states that each satisfiable formula has a model of linear size.
Since the property is crucial for our later proposed translation to SMT, we will modify the
proofs from [25] to show more precise bounds.

We will first define a reduction of a model (𝑠, ℎ) which is obtained by reducing each
chunk ℎ𝑐 of (𝑠, ℎ) to a chunk ℎ′𝑐 such that the composition of reduced chunks will yield
the same induced AMS as the original model. By Theorem 3.2, those models will satisfy
exactly the same formulae.

Definition 3.5. Let (𝑠, ℎ) be a model and let ℎ1, . . . , ℎ𝑛 be its chunks. We define its
reduction, reduce(𝑠, ℎ) = (𝑠, ℎ′) where ℎ′ = ℎ′1 ⊎𝑠 · · · ⊎𝑠 ℎ′𝑛 and where each ℎ′𝑖 is obtained
from ℎ𝑖 by the chunk reduction defined below. Let alloc𝑠(ℎ𝑐) = {𝑠(𝑥) | 𝑠(𝑥) ∈ dom(ℎ𝑐)}. If
a chunk is positive, then its reduction is defined as:

reducec(ℎ𝑖) =

{︃
ℎ𝑖 if (𝑠, ℎ𝑖) |= 𝑥 ↦→ 𝑦 for some 𝑥, 𝑦 ∈ Var

{𝑠(𝑥) ↦→ ℎ(𝑠(𝑥)), ℎ(𝑠(𝑥)) ↦→ 𝑠(𝑦)} if (𝑠, ℎ𝑖) |= ls≥2(𝑥, 𝑦) for some 𝑥, 𝑦 ∈ Var

If a chunk is negative, then the reduction is defined as:

reducec(ℎ𝑖) =

⎧⎪⎨⎪⎩
{𝑠(𝑥1) ↦→ ℓ, . . . , 𝑠(𝑥𝑛) ↦→ ℓ} if alloc𝑠(ℎ𝑖) = {𝑠(𝑥1), . . . , 𝑠(𝑥𝑛)} for 𝑛 > 0

and ℓ = ℎ(min{𝑠(𝑥1), . . . , 𝑠(𝑥𝑛)})
{ℓ ↦→ ℓ} if alloc𝑠(ℎ𝑖) = ∅ and ℓ = min(dom(ℎ𝑖))

Example 3.6. The reduction of a model is demonstrated in Figure 3.7 where each chunk ℎ𝑖
of the left model is reduced to a chunk ℎ′𝑖 of the right model. First, observe that the stack of
both models is the same. Now, we will describe the reduction of the individual chunks. The
chunk ℎ1 is a list segment of length three. and its reduction therefore removes the location 3.
The chunk ℎ2 is a list segment of length two, and therefore it remains unchanged. Similarly,
also the pointer chunk ℎ6 remains unchanged.

The negative chunks ℎ3 and ℎ5 that allocate some variables are replaced by minimal
negative chunks that allocate those variables without changing the stack. Finally, the
garbage chunk ℎ4 is replaced by the minimal garbage chunk – an anonymous self-loop
pointer. It can be easily verified that both models induce the same AMS in the bottom
part of the figure.

Now, we have to show that the reduction is well-defined and preserves the induced AMS.
Since we use our own definition of the reduction, we will prove those properties thoroughly.

Lemma 3.6. Let (𝑠, ℎ) be a model. Then reduce(𝑠, ℎ) is well-defined.

Proof. We will first show that all reduced chunks are well-defined. If a chunk is a single
pointer, then its reduction is well-defined because it does not change the chunk. If a chunk
is a list segment of length at least two, we need to show that ℎ(𝑠(𝑥)) is defined. This follows
from the fact that the chunk has length at least two. There are no other types of positive
chunks.

If a negative chunk ℎ𝑖 allocates some variables, then reduce𝑐(ℎ𝑖) maps all allocated
variables to the location ℓ where ℓ = ℎ(min{𝑠(𝑥1), . . . , 𝑠(𝑥𝑛)}). The set {𝑠(𝑥1), . . . , 𝑠(𝑥𝑛)}
is non-empty, and its minimum is defined because of our assumption that there exists

22

some fixed linear order on the location domain Loc. Since all 𝑠(𝑥𝑖) are allocated in the
chunk, it holds that ℎ(min{𝑠(𝑥1), . . . , 𝑠(𝑥𝑛)}) is defined. Finally, if a chunk ℎ𝑖 is garbage (it
does not allocate any variables), then we replace it by a single self-pointer on the minimal
location from dom(ℎ1). The set dom(ℎ1) is non-empty because the chunk is defined to be
a non-empty heap.

It remains to show that reduce𝑐(ℎ1)⊎𝑠 · · ·⊎𝑠 reduce𝑐(ℎ𝑛) is defined. It is enough to show
that dom(reduce𝑐(ℎ𝑖)) ⊆ dom(ℎ𝑖) and that locs(reduce𝑐(ℎ𝑖)) ⊆ locs(ℎ𝑖). This holds because
all cases of the reduction can only remove locations from domains and images.

Lemma 3.7. Let 𝜙 be a formula. Further, let (𝑠, ℎ) be a model and let reduce(𝑠, ℎ) be its
reduction. Then (𝑠, ℎ) |= 𝜙 iff reduce(𝑠, ℎ) |= 𝜙.

Proof. Let 𝒜1 = ams(𝑠, ℎ) and let 𝒜2 = ams(reduce(𝑠, ℎ)). We will show that 𝒜1 = 𝒜2.
The rest follows from Theorem 3.2. First, observe that the reduction does not change the
stack, and both models therefore induce AMSs with the same set of vertices. Then, observe
that the reduction preserves the number of chunks. Further, it holds that each positive
chunk of some model defines exactly one edge of its induced AMS. Let ℎ𝑖 be a positive
chunk, then reduce𝑐(ℎ𝑖) is also a positive chunk and moreover defines exactly the same edge
as ℎ𝑖.

Let ℎ𝑖 be a negative chunk such that it allocates some variables. First observe that
reduce𝑐(ℎ𝑖) is also a negative chunk as its sink location ℓ is anonymous – if it would not, ℎ𝑖
would not be a chunk since it could be further decomposed by cutting off {𝑠(𝑥1) ↦→ ℓ}.
The reduction also allocates exactly the same variables and therefore produces the same
negative-allocation constraint.

Finally, let ℎ𝑖 be a garbage chunk. Then, reduce𝑐(ℎ𝑖) is also a garbage chunk. Therefore,
the garbage-chunk count of 𝒜1 is equal to the garbage-chunk count of 𝒜2. Thus, 𝒜1 = 𝒜2.

Now, we are ready to prove the small-model property. We will start with the case of a
positive formula. The bound is based on the fact that a model of a positive formula consists
of positive chunks only and that the size of a reduced chunk is at most two.

Lemma 3.8 ([25]). Let 𝜙 be a positive formula and let (𝑠, ℎ) |= 𝜙 be its model. Further,
let ℎ = ℎ1 ⊎𝑠 · · · ⊎𝑠 ℎ𝑛 be the decomposition of the model into its chunks. Then all chunks
ℎ𝑖 are positive.

Theorem 3.4 (Small-model property for SSL+). Let 𝜙 be a satisfiable positive formula.
Then there exists a model (𝑠, ℎ) s.t. (𝑠, ℎ) |= 𝜙 and |locs(ℎ)| ≤ 2𝑛+1 where 𝑛 = |vars+(𝜙)|.

Proof. Since 𝜙 is satisfiable, there exists some model (𝑠, ℎ) |= 𝜙 with dom(𝑠) = vars(𝜙).
Let (𝑠, ℎ′) = reduce(𝑠, ℎ) be its reduction. By Lemma 3.7, we have that (𝑠, ℎ′) |= 𝜙. By
Lemma 3.8, both ℎ and ℎ′ consist of positive chunks only. There is at most |vars+(𝜙)|
chunks of heap ℎ′ because each positive chunk has to allocate at least one variable and nil
cannot be allocated. Finally, each reduced chunk consists of at most two unique locations
(since we consider the worst case when all variables are allocated, its named sink does not
count as it is already allocated and counted in some other chunk). One additional location
is needed for nil. Therefore we have that |locs(ℎ′)| ≤ 2 · |vars+(𝜙)|+ 1.

Example 3.7. To demonstrate that the bound is tight for positive formulae, let us consider
the family of formulae defined as for 𝑛 ≥ 2:

𝜙𝑛 ≜ ls≥2(𝑥1, 𝑥2) * ls≥2(𝑥2, 𝑥3) * · · · * ls≥2(𝑥𝑛−1, 𝑥𝑛) * ls≥2(𝑥𝑛, 𝑥1)

23

A formula 𝜙𝑛 is satisfiable only by a cycle consisting of 𝑛 list-segments, each of them having
length at least two.

1 : 𝑥1 2 3 : 𝑥2 · · · 2𝑛− 1 : 𝑥𝑛 2𝑛 2𝑛+ 1 : nil

Outside the positive fragment, we have to consider also the input set of variables x and
the number of garbage chunks ⌈𝜙⌉ needed to satisfy the formula.

Theorem 3.5 (Small-model property for SSL). Let 𝜙 be a satisfiable formula. Then there
exists a model (𝑠, ℎ) such that (𝑠, ℎ) |= 𝜙 and |locs(ℎ)| ≤ 2𝑛+ ⌈𝜙⌉+1 where 𝑛 = |x ∖ {nil}|.

Proof. We proceed similarly as for the positive fragment. Since 𝜙 is satisfiable, there
exists some model (𝑠, ℎ) with dom(𝑠) = x. Let (𝑠, ℎ′) = reduce(𝑠, ℎ) be its reduction. By
Lemma 3.7, we have that (𝑠, ℎ′) |= 𝜙. In the worst case, we have that there is at most
𝑘 = |x∖{nil}| allocated variables and consequently at most 𝑘 non-garbage chunks. Observe
that, in such a case, each chunk allocates exactly one variable. Therefore there are at
most two locations in each non-garbage negative chunk. From Theorem 3.4 and the fact
that a variable cannot be allocated in two chunks, we have that each non-garbage chunk of
the reduced model have at most two unique locations (no matter whether it is positive or
negative). All non-garbage chunks therefore have at most 2𝑘 locations. By Theorem 3.3,
there is at most ⌈𝜙⌉ garbage chunks needed to satisfy 𝜙. Finally, one additional location is
needed for nil. Therefore |locs(ℎ′)| ≤ 2 · |x ∖ {nil}|+ ⌈𝜙⌉+ 1.

Example 3.8. To demonstrate that the bound is tight, let us consider the set of variables
x = {nil} and the family of formulae defined as:

𝜙𝑛 ≜ ¬emp * · · · * ¬emp⏟ ⏞
𝑛 times

For a formula 𝜙𝑛, it holds that x∖{nil} = ∅ and ⌈𝜙𝑛⌉ = 𝑛. The minimal model satisfying 𝜙𝑛

is the following:

1 2 · · · 𝑛 𝑛+ 1 : nil

Based on small-model properties, we define a location bound of a formula 𝜙 w.r.t. the
set of variables x:

bound(𝜙,x) =

{︃
2 · |vars+(𝜙)|+ 1 if 𝜙 is positive
2 · |x ∖ {nil}|+ ⌈𝜙⌉+ 1 otherwise

Usually, a tighter location bound can be computed based on the structure of the formula 𝜙.
This computation is discussed in Section 5.

24

Chapter 4

Decision Procedure for SSL

This chapter presents the main contribution of this thesis – a new decision procedure
for a fragment of strong-separation logic. As was already sketched in the introduction,
we will not follow the enumeration-based approach presented in [25], but we will rather
propose a translation of SSL to SMT to leverage capabilities of modern SMT solvers. Our
translation is inspired by previous works targeting boolean combinations of symbolic heaps
of WSL [17, 28] and the same fragment of SSL [24]. We extend this fragment in several
non-trivial ways:

1. We add support for the septraction connective. In the original translations, it was
always enough to consider a single heap to find a model of a formula. In the presence
of septractions, additional heaps are needed to find witnesses of their satisfaction. We
limit ourselves to a fragment where septractions do not appear under negations (both
guarded and classical). It is therefore not possible to express arbitrary magic wands,
but one can, for example, check validity of entailments such as 𝜙 |= 𝜓 −* 𝜒 after
applying boolean transformations to represent its counterexample as 𝜙 ∧ (𝜓 −⊛ ¬𝜒).

2. We allow arbitrary mixing and nesting of spatial and boolean connectives except
unguarded negation. In the original translations, boolean operators cannot appear
under separating conjunctions. The main complication is the disjunction which breaks
a so-called unique footprint property used in the original translations to effectively
translate separating conjunctions. When allowing disjunctions to appear under sepa-
rating conjunctions, we need to overwork the original approach to work with multiple
footprints. This may lead to an exponential size of the translated formula.

3. We allow arbitrary appearance of negations (except the limitation related to septrac-
tions). Unlike [24], which translates a fragment of SSL on which it coincides with
WSL, we need to also consider the strong-separation semantics of spatial connectives.
A negation appearing under spatial connectives was mentioned as a hard challenge
in [28]. Our changes from Point 2 make its support easier – but for a price of even
more significant exponential blow-up caused by an extensive enumeration of possible
footprints. We present some heuristics to tackle this, but there remains a lot of space
for future work, e.g., to perform enumeration lazily as in [30].

Further, we propose a more effective translation of list-segment predicates than in [17, 24]
– we improve its size from 𝒪(𝑛4) to 𝒪(𝑛3). On the other hand, we do not consider trees
and data predicates. However, we plan to focus on those extensions in our future work.

25

𝜑, x

Bound
computation

Translation SMT solver Z3

Model
translation

unsat

sat

T(𝜑, x)

𝓜

T-1(𝓜, x)

Figure 4.1: A schematic illustration of the proposed decision procedure.

Chapter outline. In the subsequent sections we describe how we translate particular
ingredients of SSL – list-segment predicates, separating conjunctions, and septractions. We
put those ingredients together in Section 4.5. The section also briefly discusses complexity
issues related with the translation and defines a fragment of SSL that can be effectively
translated using our approach. Finally, we prove the correctness of the translation in
Section 4.6.

4.1 Overview
A high-level overview of our decision procedure is given in Figure 4.1. The input is a for-
mula 𝜙 and a set of variables x. The decision procedure first computes its location bound
and bounds on lengths of list-segment predicates. Throughout this chapter, we consider
the most general bounds. An improved bound computation is discussed in Section 5. Using
those bounds, the input formula 𝜙 is translated to a first-order formula T(𝜙,x) in a com-
bined theory of sets and arrays. The formula is then solved by an SMT solver. If the solver
returns unsat, we are done. If the solver finds a first-order model ℳ, we will perform an
inverse translation of this model to obtain an equivalent stack-heap model T−1(ℳ,x).

Idea of the encoding. SSL naturally speaks about partial functions, but those are not
supported in SMT. We will therefore use a pair of an array h an a set 𝐷 to encode a partial
heap function – the array h encodes the mapping of the heap, and the set 𝐷 encodes its
domain. A stack image of a variable 𝑥 ∈ x is encoded simply by a constant symbol 𝑥 of
the same name. If the translated formula is satisfiable, its model ℳ can be converted to a
stack-heap model T−1(ℳ,x) using an inverse translation.

Definition 4.1 (Inverse translation). Let ℳ be a first-order model. We define its inverse
translation T−1(ℳ,x) = (𝑠, ℎ) as:

𝑠(𝑥) =

{︃
𝑥ℳ if 𝑥 ∈ x ∪ {nil}
⊥ otherwise

ℎ(ℓ) =

{︃
h[ℓ]ℳ if ℓ ∈ 𝐷ℳ

⊥ otherwise

In our translation, we utilise the small model property of SSL to restrict the infinite
domain of locations Loc to its finite subset L = {ℓ1, ℓ2, . . . , ℓ𝑛} consisting of 𝑛 distinct
location constants. Because SSL formulae cannot distinguish isomorphic models, it does
not matter which particular subset we choose.

26

The definition of the location domain is ensured by the following formula1:

∆L
𝑛 ≜ ∃ℓ1, ..., ℓ𝑛. distinct(ℓ1, ..., ℓ𝑛) ∧ ∀ℓ.

⋁︁
1≤𝑖≤𝑛

ℓ = ℓ𝑖

In order for T−1(ℳ,x) be a correctly-defined stack heap model, we need to ensure that it
does not allocate nil. Together with the definition of L, we call this as the well-formedness
constraint:

∆WF
𝑛 ≜ ∆L

𝑛 ∧ nil /∈ 𝐷

Before we will continue with the definition of the translation in Section 4.5, we will
describe ideas used to translate individual ingredients of SSL.

4.2 Translation of List-Segment Predicates
The translation of list-segment predicates is complicated by the fact that they essentially
speak about reachability which is not expressible in first-order logic. Fortunately, we can
leverage the small-model property and use a form of bounded reachability parametrised by
the number of locations. We first define an alternative semantics of list-segment predicates
in terms of paths in induced graphs.

Lemma 4.1. Let (𝑠, ℎ) be a model and let 𝐺[(𝑠, ℎ)] be its induced graph. It holds that
(𝑠, ℎ) |= ls(𝑥, 𝑦) iff there exists a simple path 𝜋 such that 𝑥 𝜋

⇝ 𝑦 and dom(𝜋) = dom(ℎ).

Proof.

(⇒) By a case distinction on the semantics of ls(𝑥, 𝑦). If the list segment is empty,
then 𝑠(𝑥) = 𝑠(𝑦) and dom(ℎ) = ∅. Then there exists the path 𝜋 = ⟨𝑥⟩ with
dom(𝜋) = ∅. Otherwise, there are distinct locations ℓ0, . . . , ℓ𝑛 such that ℎ = {ℓ0 ↦→
ℓ1, ..., ℓ𝑛−1 ↦→ ℓ𝑛} and 𝑠(𝑥) = ℓ0, 𝑠(𝑦) = ℓ𝑛. Thus, there is a simple path 𝜋 =
⟨ℓ0, . . . ℓ𝑛⟩ with the domain dom(𝜋) = {ℓ0, . . . , ℓ𝑛−1} = dom(ℎ), which concludes this
direction of the proof.

(⇐) Analogically, by considering the case of the empty path and the case of a non-empty
simple path.

Now we will define two predicates expressing the existence of a simple path from 𝑥 to 𝑦
and a fact that some set 𝐷 equals to the domain of this path. Both predicates will be
parametrised by an interval [𝑚,𝑛] limiting possible lengths of the considered paths. In this
chapter, we will always use the most general intervals, i.e., [0, 𝑛] where 𝑛 is the location
bound of an input formula. The intuitive meaning of predicates is the following:

reach[𝑚,𝑛](h, 𝑥, 𝑦) There exists a simple path 𝑥
𝜋
⇝ 𝑦 with 𝑚 ≤ |𝜋| ≤ 𝑛.

path[𝑚,𝑛](h, 𝐷, 𝑥, 𝑦)

{︃
𝐷 = dom(𝜋) if there is a simple path 𝑥

𝜋
⇝ 𝑦 with 𝑚 ≤ |𝜋| ≤ 𝑛,

𝐷 = ∅ if there is no such path.
1In the actual implementation of our translation in many-sorted logic used by SMT solvers, we can

equivalently declare L to be a datatype with 𝑛 constant constructors ℓ1, . . . , ℓ𝑛.

27

In the case when there is no path, the predicate asserts 𝐷 be the empty set. This is for the
consistency with later defined footprints (Definition 4.3).

Definition of reachability predicates. The definition of reachability predicates will be
based on the following lemma characterising paths in induced graphs. Because the successor
of a vertex is given by a partial function, it is uniquely determined. Consequently, if there
exists a simple path, it is uniquely determined.

Lemma 4.2. Let (𝑠, ℎ) be a model and let 𝐺[(𝑠, ℎ)] be its induced graph. Let 𝜋 be a path
from 𝑥 to 𝑦 in 𝐺[(𝑠, ℎ)]. Then this path is uniquely determined as 𝜋 = ⟨𝑥, ℎ(𝑥), . . . , ℎ|𝜋|(𝑥)⟩.

Proof. By induction on the length of the path 𝜋. If 𝜋 is empty, i.e., 𝜋 = ⟨𝑥⟩, then 𝜋 is
clearly uniquely determined. If 𝜋 has length 𝑛+ 1, then its prefix 𝜋′ = ⟨𝑥, ℎ(𝑥), . . . , ℎ𝑛(𝑥)⟩
is, by the inductive hypothesis, uniquely determined. Since there is at most one successor
of each vertex, the only way to obtain a path of length 𝑛 + 1 is to extend 𝜋′ by an edge
ℎ𝑛(𝑥) −→ ℎ𝑛+1(𝑥) which yields a uniquely determined path 𝜋 = ⟨𝑥, ℎ(𝑥), . . . , ℎ𝑛+1(𝑥)⟩.

Notice that in stack-heap models, each vertex has at most one successor, but in our SMT
encoding, each vertex has exactly one successor since arrays are total. As a consequence of
the previous lemma, there is a path from 𝑥 to 𝑦 of length 𝑖 iff h𝑖[𝑥] = 𝑦2. The reachability
in a number of steps given by some interval can be then defined using enumeration over all
lengths in the interval:

reach𝑖(h, 𝑥, 𝑦) ≜ h𝑖[𝑥] = 𝑦

reach[𝑚,𝑛](h, 𝑥, 𝑦) ≜
⋁︁

𝑚≤𝑖≤𝑛

reach𝑖(h, 𝑥, 𝑦)

To define the predicate path, we first define a predicate reachable<𝑖(h, 𝐷, 𝑥) which asserts
that 𝐷 is the set of all locations reachable from 𝑥 in less than 𝑖 steps. The predicate again
uses the fact that the successor of a vertex is uniquely determined.

reachable<𝑖(h, 𝐷, 𝑥) ≜

{︃
𝐷 = ∅ if 𝑖 = 0

𝐷 = {𝑥,h[𝑥],h2[𝑥], ...,h𝑖−1[𝑥]} if 𝑖 > 0

Now we will define the predicate path. The most tricky part is to ensure that it will indeed
always assert that 𝐷 is the domain of the simple path – although each vertex has exactly
one successor, there could still be multiple 𝑖 such that h𝑖[𝑥] = 𝑦. Only the smallest such 𝑖
defines a simple path. This is not a problem for reachability, but we need to select the
correct 𝑖 to compute the correct domain of the list segment. Instead of postulating the
shortest path from 𝑥 to 𝑦, we use the fact that the unique simple path is a prefix of all
other paths from 𝑥 to 𝑦. Therefore, the simple path is the only path from 𝑥 to 𝑦 that does
not go through the location 𝑦:

path[𝑚,𝑛](h, 𝐷, 𝑥, 𝑦) ≜
⋁︁

𝑚≤𝑖≤𝑛

(︁
reach𝑖(h, 𝑥, 𝑦) ∧ reachable<𝑖(h, 𝐷, 𝑥) ∧ 𝑦 /∈ 𝐷

)︁
∨

(︁
¬reach𝑖(h, 𝑥, 𝑦) ∧ 𝐷 = ∅

)︁
2The term h𝑖[𝑥] denotes 𝑖-timed iterated reading from the array h. This can be formally defined using

recursion as h𝑖[𝑥] = 𝑥 if 𝑖 = 0, and h[h𝑖−1[𝑥]] otherwise.

28

The predicate performs an enumeration over all paths from 𝑥 to 𝑦 and forces 𝐷 to be the
domain of a path that does not contain 𝑦. If there is no path from 𝑥 to 𝑦, it sets 𝐷 to
be empty. It remains to formally show that the introduced predicates have their intended
meanings.
Lemma 4.3. Let ℳ be a first-order model and let (𝑠, ℎ) = T−1(ℳ,x) be a stack-heap
model obtained by its inverse translation. Let 𝐺 be the induced graph of (𝑠, ℎ). Then the
following conditions hold:

1. ℳ |= ∆WF
𝑛 ∧ reach𝑖(h, 𝑥, 𝑦) ⇔ ∃𝜋. 𝑥 𝜋

⇝ 𝑦 ∧ |𝜋| = 𝑖

2. ℳ |= ∆WF
𝑛 ∧ reach[𝑚,𝑛](h, 𝑥, 𝑦) ⇔ ∃𝜋. 𝑥 𝜋

⇝ 𝑦 ∧ 𝑚 ≤ |𝜋| ≤ 𝑛

3. ℳ |= ∆WF
𝑛 ∧ reachable<𝑖(h, 𝐷, 𝑥) ⇔ 𝐷ℳ = {ℓ | ∃𝜋. 𝑥 𝜋

⇝ ℓ ∧ |𝜋| < 𝑖}

4. ℳ |= ∆WF
𝑛 ∧ path[𝑚,𝑛](h, 𝐷, 𝑥, 𝑦) ⇔ 𝐷ℳ = {ℓ ∈ dom(𝜋) | 𝑥 𝜋

⇝ 𝑦 ∧𝑚 ≤ |𝜋| ≤ 𝑛}

Proof. Observe that in all cases, the model ℳ has exactly 𝑛 locations which is ensured by
the formula ∆L

𝑛 .
1. Directly follows from Lemma 4.2.

2. Directly follows from (1) and the fact that the predicate reach enumerates over all
possible lengths of paths in the interval [𝑚,𝑛].

3. Directly follows from Lemma 4.2.

4. If there is no path, the claim holds because only the last clause of the predicate path
can be satisfied and it guarantees that 𝐷 = ∅. If there is a simple path of length 𝑖,
the path is given as 𝜋 = ⟨𝑥,h[𝑥], . . . ,h𝑖[𝑥]⟩. This path satisfies 𝑖-th clause. A 𝑗-th
clause with 𝑗 < 𝑖 will not satisfy reachability condition because there is no shorter
path. A 𝑗-th clause with 𝑗 > 𝑖 will not satisfy 𝑦 /∈ 𝐷. Consequently, only the 𝑖-th
clause is satisfied which sets 𝐷 to be set of all locations reachable in less than 𝑖 steps
– i.e., exactly the set dom(𝜋), which concludes the proof.

Complexity. Let 𝑛 be the number of locations. The reachability predicates have the
following asymptotic sizes:

• |reach𝑖(h, 𝑥, 𝑦)| = 𝒪(𝑛) because the size of the term h𝑖[𝑥] can be up to 𝑛.

• |reach[0,𝑛](h, 𝑥, 𝑦)| = 𝒪(𝑛2) because it consists of 𝒪(𝑛) appearances of reach𝑖(h, 𝑥, 𝑦).

• |reachable<𝑖(h, 𝐷, 𝑥)| = 𝒪(𝑛2) because the set expression can contain up to 𝑛 terms
of the form h𝑗 [𝑥], each of size up to 𝑛.

• |path[0,𝑛](h, 𝐷, 𝑥, 𝑦)| = 𝒪(𝑛3) because it contains 𝒪(𝑛) occurrences of the predicate
reachable≤𝑖(h, 𝐷, 𝑥).

In the definition of the translation, we need exactly one reach and one path predicate for each
list-segment predicate. The complexity of list-segment translation is therefore 𝒪(𝑛3) which
is asymptotically better than in [17] that needs 𝒪(𝑛4) space to encode list segments. On the
other hand, the encoding of [17] is an instance of a more general encoding, which also works
for trees. Our encoding cannot be efficiently generalised for trees because enumeration over
all possible paths in branching graphs requires exponential space.

29

𝐹2

𝐹1

𝐹 ′
2

𝑥 𝑦 𝑧

Figure 4.2: An example of a stack-heap model and footprints of sub-formulae of the formula
𝜙 ≜ ls(𝑥, 𝑧)*

(︀
ls(𝑥, 𝑦)∨ 𝑧 ↦→ 𝑦

)︀
in this model. In particular, the sub-formula ls(𝑥, 𝑦)∨ 𝑧 ↦→ 𝑦

has two footprints in the model – 𝐹2 and 𝐹 ′
2.

4.3 Translation of Separating Conjunctions
The translation of the separating conjunction is complicated because its semantics involves
a quantification over possible splits of a heap – a second order quantification over disjoint
sub-heaps. If the separating conjunction does not lie under a negation, the second-order
quantification can be efficiently avoided using Skolemization. Otherwise, one needs to either
quantify over arrays or replace the quantification by a finite, but exponential enumeration.
The former is possible because there are only finitely many arrays over the finite domain,
but according to our experiments, both Z3 and cvc5 give-up on such formulae.

In [28], it was shown that for a formula 𝜙 from the fragment of boolean combinations of
symbolic heaps and for a fixed model (𝑠, ℎ), there exists for each separating conjunction in
𝜙 only one relevant way how it can split the heap ℎ. This allows the translation to remove
quantifiers even when the separating conjunction lies under a negation – existential and
universal quantification over one element domain are the same thing. This unique way to
split the heap ℎ in a model (𝑠, ℎ) for a formula 𝜓1 *𝜓2 is induced by so-called footprints of
sub-formulae 𝜓1 and 𝜓2 in the model (𝑠, ℎ). The footprint of pure atoms is the empty set,
no matter what the heap is. Similarly, the footprint of a points-to assertion 𝑥 ↦→ 𝑦 is always
the singleton set {𝑥}. In the case of a list segment ls(𝑥, 𝑦), its footprint is still unique w.r.t.
fixed model (𝑠, ℎ) – it is the domain of the simple path from 𝑥 to 𝑦 in 𝐺[(𝑠, ℎ)] if such a
path exists. Otherwise, we may take as the unique footprint the empty set. Intuitively, if
there is no list segment, we can look at any subset of the model to conclude that there is
indeed no list segment. Finally, the footprint of a separating conjunction is the union of
the footprints of its operands.

The unique footprint property can be extended for conjunctions and even guarded nega-
tions, but it stops working when disjunctions appear under separating conjunctions. To
demonstrate this, let us first formally define footprints.

Definition 4.2 (Footprint). Let 𝜙 be a formula and let (𝑠, ℎ) be a stack-heap model. A set
𝐹 ⊆ dom(ℎ) is called a footprint of 𝜙 in a model (𝑠, ℎ) if (𝑠, ℎ|𝐹) |= 𝜙. We collect all such
sets in footprints(𝑠,ℎ)(𝜙).

In other words, a footprint defines a subset of a model in which the given formula 𝜙 can be
satisfied. An example is given in Figure 4.2 for the formula 𝜙 ≜ ls(𝑥, 𝑧) *

(︀
ls(𝑥, 𝑦)∨ 𝑧 ↦→ 𝑦

)︀
.

The footprint of its sub-formula ls(𝑥, 𝑧) is denoted by 𝐹1. As can be seen, the footprint
of the disjunction ls(𝑥, 𝑦) ∨ 𝑧 ↦→ 𝑦 is not uniquely determined as it can be satisfied in the
sub-heaps induced by both 𝐹2 and 𝐹 ′

2. In the case of a negation, the situation is even more

30

complicated as the formula ¬emp could be satisfied on a sub-heap induced by an arbitrary
non-empty footprint 𝐹 ⊆ dom(ℎ).

In [28], the unique footprint of each sub-formula is axiomatized during its translation
and used for translation of separating conjunctions. Although footprints are not unique in
our logic, we can still use them to efficiently translate separating conjunctions by limiting
their quantification to the computed footprints only. If the set of footprints is small, then
the formula can be translated with only a small enumeration. Of course, in the presence of
negations under separating conjunctions, the translated formula will grow exponentially.

Instead of axiomatizing footprints, we will compute them syntactically – for each sub-
formula, we will compute a set of terms representing its possible footprints. Because this
set is parametrised by some model (𝑠, ℎ), it cannot be precisely computed during the trans-
lation. Therefore, we will compute its over-approximation.

Definition 4.3. Let 𝜙 be a formula and let (𝑠, ℎ) be a model. An over-approximation of
the set of all possible footprints of 𝜙 in the model (𝑠, ℎ), denoted as footprints#(𝑠,ℎ)(𝜙), is
inductively defined as follow:

• footprints#(𝑠,ℎ)(𝑥 = 𝑦) = footprints#(𝑠,ℎ)(𝑥 ̸= 𝑦) = {∅}

• footprints#(𝑠,ℎ)(𝑥 ↦→ 𝑦) = {{𝑠(𝑥)}}

• footprints#(𝑠,ℎ)(ls(𝑥, 𝑦)) =

{︃
{dom(𝜋)} if 𝑠(𝑥) 𝜋

⇝ 𝑠(𝑦)

{∅} if such 𝜋 does not exist

• footprints#(𝑠,ℎ)(¬𝜙) = 2L

• footprints#(𝑠,ℎ)(𝜓1∧𝜓2) =

{︃
footprints#(𝑠,ℎ)(𝜓1) if |footprints#(𝑠,ℎ)(𝜓1)| ≤ |footprints#(𝑠,ℎ)(𝜓2)|
footprints#(𝑠,ℎ)(𝜓2) otherwise

• footprints#(𝑠,ℎ)(𝜓1 ∨ 𝜓2) = footprints#(𝑠,ℎ)(𝜓1) ∪ footprints#(𝑠,ℎ)(𝜓2)

• footprints#(𝑠,ℎ)(𝜓1 ∧¬ 𝜓2) = footprints#(𝑠,ℎ)(𝜓1)

• footprints#(𝑠,ℎ)(𝜓1 *𝜓2) = {𝐹1∪𝐹2 | 𝐹1 ∈ footprints#(𝑠,ℎ)(𝜓1) ∧ 𝐹2 ∈ footprints#(𝑠,ℎ)(𝜓2)}

• footprints#(𝑠,ℎ)(𝜓1 −⊛ 𝜓2) = 2L

Notice that, in the case of a formula that does not contain disjunctions, negations,
and septractions, there will be no over-approximation, and the result will be a singleton
set – this is an analogy of the unique footprint property from [28]. Observe that, in the
case of the conjunction, the precise footprint would be the intersection of the footprints of
its operands. Since we cannot evaluate needed equivalence of elements of those sets purely
syntactically, we over-approximate intersection by taking its operand with lesser cardinality.
In the case of the negation, we cannot compute anything more precise than all subsets of the
location domain. In the case of the septraction, we could compute more precise footprints.
However, because of our syntactic restriction on the fragment (septractions cannot lie under
negations), we, in fact, do not need to compute footprints of septractions. The reason is the
following. We need footprints only for translating separating conjunctions that lie under
a negation (otherwise we can use Skolemization). Because of the mentioned restrictions,

31

no septraction can lie under a negated separating conjunction. We will now show that the
definition indeed correctly over-approximates all possible footprints.

Lemma 4.4. Let 𝜙 be a formula and let (𝑠, ℎ) be a stack-heap model. It holds that

footprints(𝑠,ℎ)(𝜙) ⊆ footprints#(𝑠,ℎ)(𝜙).

Proof. If (𝑠, ℎ) ̸|= 𝜙 * true, then there does not exist 𝐹 ⊆ dom(ℎ) such that (𝑠, ℎ|𝐹) |= 𝜙,
i.e., there are no footprints of 𝜙 in (𝑠, ℎ) and the claim therefore trivially holds. Assume
that (𝑠, ℎ) |= 𝜙 * true, we prove the claim by the structural induction on 𝜙.

• Base cases. If 𝜙 is an equality or a disequality, its only possible footprint is the empty
set. Similarly, if 𝜙 is a pointer 𝑥 ↦→ 𝑦 its only possible footprint is the singleton set
{𝑥}. Finally, if 𝜙 is a list-segment predicate ls(𝑥, 𝑦) its footprint in the model (𝑠, ℎ)
can be only the domain of the simple path from 𝑥 to 𝑦. By Lemma 4.2, the path is
always uniquely determined.

• Induction steps. If 𝜙 is either a negation or a septraction, then the claim trivially
holds. Let 𝜙 ≜ 𝜓1 ◁▷ 𝜓2 be a binary connective other than the septraction. Let us
define following short names:

ℱ = footprints(𝑠,ℎ)(𝜙) ℱ# = footprints#(𝑠,ℎ)(𝜙)

ℱ1 = footprints(𝑠,ℎ)(𝜓1) ℱ#
1 = footprints#(𝑠,ℎ)(𝜓1)

ℱ2 = footprints(𝑠,ℎ)(𝜓2) ℱ#
2 = footprints#(𝑠,ℎ)(𝜓2)

From the induction hypothesis, we have that ℱ𝑖 ⊆ ℱ#
𝑖 for 𝑖 = 1, 2. If 𝜙 is a conjunc-

tion, then both 𝜓1 and 𝜓2 need to be satisfied in (𝑠, ℎ). By the definition of footprint,
it holds that ℱ = ℱ1 ∩ ℱ2. From induction hypothesis we have that ℱ1 ∩ ℱ2 ⊆ ℱ#

𝑖

for 𝑖 = 1, 2. Similarly, if 𝜙 ≜ 𝜓1 ∧¬ 𝜓2, then only 𝜓1 is satisfied in (𝑠, ℎ) and therefore
ℱ = ℱ1. Thus, ℱ ⊆ ℱ#

1 by induction hypothesis. If 𝜙 is a disjunction, it holds that
ℱ ⊆ ℱ1 ∪ ℱ2 ⊆ ℱ#

1 ∪ ℱ
#
2 = ℱ#. Finally, if 𝜙 is a separating conjunction, it can be

satisfied only in a heap which is a disjoint union of sub-heaps induced by footprints
𝐹1 ∈ ℱ1 and 𝐹2 ∈ ℱ2. The set ℱ# over-approximate this set by taking unions of all
footprints even if they are not disjoint.

Finally, we can provide a simplified semantics of the separating conjunction in the way
we have already sketched – instead of quantifying over all possible splits of a heap, we will
quantify only over splits induced by over-approximated footprints.

Lemma 4.5. Let 𝜙 ≜ 𝜓1 * 𝜓2 be a formula and let (𝑠, ℎ) be a stack-heap model. Further
let ℱ1 = footprints#(𝑠,ℎ)(𝜓1) and let ℱ2 = footprints#(𝑠,ℎ)(𝜓2). Then (𝑠, ℎ) |= 𝜙 iff

(𝑠, ℎ) |=
⋁︁

𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

(𝑠, ℎ|𝐹1) |= 𝜓1 ∧ (𝑠, ℎ|𝐹2) |= 𝜓2 ∧ ℎ|𝐹1 ⊎𝑠 ℎ|𝐹2 ̸= ⊥ ∧ 𝐹1∪𝐹2 = dom(ℎ)

Proof.

(⇐) If there exist sets 𝐹1 and 𝐹2 satisfying the assumption, then it holds that the heaps
ℎ|𝐹1 and ℎ|𝐹2 are witnesses of the semantics of the separating conjunction.

32

(⇒) Assume that (𝑠, ℎ) |= 𝜙. Then there exists ℎ1 and ℎ2 such that (𝑠, ℎ1) |= 𝜓1,
(𝑠, ℎ2) |= 𝜓2, ℎ1 ⊎𝑠 ℎ2 ̸= ⊥ and ℎ1 ⊎𝑠 ℎ2 = ℎ. It clearly holds that dom(ℎ1) is
a footprint of 𝜓1 since (𝑠, ℎ1) |= 𝜓1 and analogically, dom(ℎ2) is a footprint of 𝜓2.
Therefore, we can apply Lemma 4.4 to conclude that dom(ℎ1) ∈ ℱ1 and dom(ℎ2) ∈ ℱ2.
Thus, the statement we want to show holds for 𝐹1 = dom(ℎ1) and 𝐹2 = dom(ℎ2).

Later on, to define strong-disjointness of two heaps, we will also need a predicate
locations(h, 𝐷, 𝐿) which intuitively states that the set 𝐿 contains locations of the heap
function obtained by translation of the array h restricted to the set 𝐷. This predicate is
defined using a predicate image(h, 𝐷, 𝐼) which states that 𝐼 is the image of the translated
heap. The predicates are defined as follow:

image(h, 𝐷, 𝐼) ≜
⋀︁
ℓ∈L

h[ℓ] ∈ 𝐼 ←→ ℓ ∈ 𝐷

locations(h, 𝐷, 𝐿) ≜ image(h, 𝐷, 𝐼) ∧ 𝐿 = 𝐷 ∪ 𝐼

Lemma 4.6. Let ℳ be a first-order model and let (𝑠, ℎ) = T−1(ℳ,x) be a stack-heap
model obtained by its inverse translation. Then the following conditions hold:

1. ℳ |= ∆WF
𝑛 ∧ image(h, 𝐷, 𝐼) ⇔ 𝐼 = img(ℎ)

2. ℳ |= ∆WF
𝑛 ∧ locations(h, 𝐷, 𝐿) ⇔ 𝐿 = locs(ℎ)

Proof. By the definition of the model translation, the set 𝐷 is always interpreted as dom(ℎ′).
Then, both claims follows directly from the definition of img(ℎ′) and locs(ℎ′), respectively.

4.4 Translation of Septractions
A septraction 𝜓1−⊛ 𝜓2 is satisfied by a model (𝑠, ℎ) if there exists a disjoint extension ℎ1 of
the heap ℎ such that the extension satisfies the left-hand side (i.e., (𝑠, ℎ1) |= 𝜓1) and their
composition satisfies the right-hand side (i.e., (𝑠, ℎ ⊎𝑠 ℎ1) |= 𝜓2). Its translation is even
more complicated than in the case of the separating conjunction. This is because it does
not quantify over sets only but over whole heaps. We avoid this problem by restricting our
fragment and forbid septractions to appear under negations (both under classical negations
and in the negated branches of guarded negations). Then we can avoid the quantification
using Skolemization.

There is still another complication even in this simplified fragment. It is not sufficient to
use a single heap symbol when searching for a model of a septraction. As an example, let us
consider the formula 𝜙 ≜ 𝑥 ↦→ 𝑥 * (𝑥 ↦→ nil−⊛ 𝑥 ↦→ nil). The septraction inside the formula
can be clearly satisfied at the empty heap only using the extension ℎ1 = {𝑠(𝑥) ↦→ 𝑠(nil)}.
The whole formula can then be satisfied by a self-pointer ℎ = {𝑠(𝑥) ↦→ 𝑠(𝑥)}. Observe
that ℎ(𝑥) and ℎ1(𝑥) differs because 𝑥 cannot be equal to nil. Therefore, we need to introduce
a fresh heap for each septraction to find its model.

For the needs of our translation, we will look at the septraction from a different point
of view. Instead of using a top-down approach saying that the heap is a model if it can
be extended, we will use a bottom-up approach which says that the heap which is a model
can be obtained as a difference of a model of the right- and of a model of the left-hand

33

𝐷2

𝐷2 ∖𝐷1𝐷1

𝑥 𝑦 𝑧

Figure 4.3: An example of a witness heap of the formula 𝜙 ≜ 𝑥 ↦→ 𝑦−⊛ ls(𝑥, 𝑧). The dashed
boxes denote its sub-heaps induced by 𝐷1 and 𝐷2 satisfying the left- and right-hand sides
of 𝜙, respectively. The green solid box denotes their difference induced by 𝐷2 ∖𝐷1 which
is a model of 𝜙.

side. More precisely, let 𝜙 ≜ 𝜓1 −⊛ 𝜓2 be a formula. If there exist a heap ℎ′ and sets 𝐷1

and 𝐷2 such that (𝑠, ℎ′|𝐷1) |= 𝜓1, (𝑠, ℎ′|𝐷2) |= 𝜓2 and 𝐷1 ⊆ 𝐷2 we can construct a model
of the formula 𝜙 as (𝑠, ℎ′|𝐷2∖𝐷1

). We will call the heap ℎ′ that meets the aforementioned
conditions a witness heap of 𝜙.

Definition 4.4 (Witness heap). Let 𝜙 ≜ 𝜓1 −⊛ 𝜓2 and let 𝑠 be a stack. Further, let ℎ′
be a heap and let 𝐷1, 𝐷2 ⊆ dom(ℎ). We say that the heap ℎ′ is a witness heap of the
septraction 𝜙 w.r.t. the stack 𝑠 and sets 𝐷1, 𝐷2 if the following conditions hold:

1. 𝐷1 ⊆ 𝐷2

2. (𝑠, ℎ′|𝐷1) |= 𝜓1

3. (𝑠, ℎ′|𝐷2) |= 𝜓2

4. ℎ′|𝐷1 ⊎𝑠 ℎ′|𝐷2∖𝐷1
̸= ⊥

An example of a formula and its witness heap is given in Figure 4.3. We will now show
that the existence of a witness heap is equivalent to the semantics of the septraction.

Lemma 4.7. Let 𝜙 ≜ 𝜓1−⊛ 𝜓2 be a formula and let (𝑠, ℎ) be a model. Then (𝑠, ℎ) |= 𝜙 iff
there exists a heap ℎ′ and sets 𝐷1, 𝐷2 such that ℎ′ is a witness heap of 𝜙 w.r.t. the stack 𝑠
and sets 𝐷1, 𝐷2; it holds that dom(ℎ) = 𝐷2 ∖𝐷1, and ∀ ∈ 𝐷2 ∖𝐷1. ℎ

′(ℓ) = ℎ(ℓ).

Proof.

(⇒) Assume that (𝑠, ℎ) |= 𝜙. By the semantics of the septraction, there exists a heap ℎ1
such that ℎ ⊎𝑠 ℎ1 ̸= ⊥, (𝑠, ℎ1) |= 𝜓1 and (𝑠, ℎ ⊎𝑠 ℎ1) |= 𝜓2. Let ℎ′ = ℎ ⊎𝑠 ℎ1. Then ℎ′

is a witness heap of 𝜙 w.r.t. the stack 𝑠 and sets 𝐷1 = dom(ℎ1), 𝐷2 = dom(ℎ ⊎𝑠 ℎ1).
Moreover, it holds that dom(ℎ) = 𝐷2 ∖ 𝐷1 and for all ℓ ∈ 𝐷2 ∖ 𝐷1, it holds that
ℎ′(ℓ) = ℎ(ℓ) because ℎ′ is defined using ℎ on 𝐷2 ∖𝐷1.

(⇐) Assume that ℎ′ is a witness heap of 𝜙 w.r.t. the stack 𝑠 and sets 𝐷1, 𝐷2. Let
ℎ1 = ℎ′|𝐷1 . Then, 𝐷1 ⊆ 𝐷2, (𝑠, ℎ1) |= 𝜓1, (𝑠, ℎ′|𝐷2) |= 𝜓2 and ℎ1 ⊎𝑠 ℎ′|𝐷2∖𝐷1

̸= ⊥.
From the assumptions that dom(ℎ) = 𝐷2 ∖𝐷1 and ∀ ∈ 𝐷2 ∖𝐷1. ℎ

′(ℓ) = ℎ(ℓ), we have
that (𝑠, ℎ′|𝐷2) = (𝑠, ℎ1 ⊎𝑠 ℎ′|𝐷2∖𝐷1

) = (𝑠, ℎ1 ⊎𝑠 ℎ). Thus, (𝑠, ℎ) |= 𝜙.

34

4.5 Translation to SMT
Now, we can put all the ingredients together and define the translation function T(𝜙,x)
using fresh symbols:

T(𝜙,x) ≜ let 𝑛 = bound(𝜙,x) in
let (̃︀𝜙,𝒜,ℱ) = Tx

𝑛(𝜙,h, 𝐷) for fresh symbols h and 𝐷 in
∆WF

𝑛 ∧ 𝒜 ∧ ̃︀𝜙
The definition relies on an auxiliary function Tx

𝑛(𝜙,h, 𝐷) that performs the actual recursive
translation. This function is called with two fixed parameters – the set of variables x and
the location bound 𝑛; and three another parameters – a formula 𝜙 to be translated and
symbols h and 𝐷 which will be used for the encoding of its heap. Those symbols may
change during the translation. For example, a translation of a septraction will use a fresh
heap to translate its operands (i.e., to find its witness heap).

The function Tx
𝑛(𝜙,h, 𝐷) produces a triple (̃︀𝜙,𝒜,ℱ). The first component is called the

semantics and it represents constraints on the stack and heap imposed by the formula 𝜙
expressed in FOL over arrays and sets. Those constraints may use auxiliary symbols intro-
duced during the translation. The second component 𝒜 called axioms defines the intended
meaning of those auxiliary symbols. The reason why those components are kept separate
is that while the semantics can be modified based on the boolean structure of the input
formula (e.g., negated), the axioms are always collected in their positive form using con-
junctions. The last component ℱ is called footprints and it is a set of location set terms.
The meaning of this component is to represent the set footprints#(𝑠,ℎ)(𝜙). Observe that, in
the top-level definition of the translation T(𝜙,x), ℱ is not used, it is only necessary to
translate separating conjunctions. In the final formula, the semantics ̃︀𝜙 and axioms 𝒜 are
joined in a conjunction together with the well-formedness constraint ∆WF

𝑛 .

Translation of atomic formulae. Let 𝜙 be an atomic formula and let 𝐹 be a fresh set
symbol. The translation of 𝜙 is defined as Tx

𝑛(𝜙,h, 𝐷) = (̃︀𝜙,𝒜,ℱ) where the individual
components are defined as:

𝑥 = 𝑦 : ̃︀𝜙 ≜ 𝑥 = 𝑦 ∧ 𝐷 = ∅ 𝒜 ≜ true ℱ ≜ {∅}
𝑥 ̸= 𝑦 : ̃︀𝜙 ≜ 𝑥 ̸= 𝑦 ∧ 𝐷 = ∅ 𝒜 ≜ true ℱ ≜ {∅}
𝑥 ↦→ 𝑦 : ̃︀𝜙 ≜ h[𝑥] = 𝑦 ∧ 𝐷 = {𝑥} 𝒜 ≜ true ℱ ≜ {{𝑥}}
ls(𝑥, 𝑦) : ̃︀𝜙 ≜ reach[0,𝑛](h, 𝑥, 𝑦) ∧ 𝐷 = 𝐹 𝒜 ≜ path[0,𝑛](h, 𝐹, 𝑥, 𝑦) ℱ ≜ {𝐹}

The translation of atomic formulae is quite straightforward. The only interesting case is the
list-segment predicate. Here, we use an axiom to ensure that the fresh symbol 𝐹 is always
interpreted as the domain of a simple path from 𝑥 to 𝑦. This symbol is then used as the
only footprint term and also as the expected domain of the list segment in the translation
of semantics.

35

Translation of boolean connectives. Let 𝜙 be a boolean connective – either 𝜙 ≜ ¬𝜓1

or 𝜙 ≜ 𝜓1 ◁▷ 𝜓2 where ◁▷ ∈ {∧,∧¬,∨}. We introduce short names for the translations of
its operands

(̃︀𝜓1,𝒜1,ℱ1) ≜ Tx
𝑛(𝜓1,h, 𝐷) (̃︀𝜓2,𝒜2,ℱ2) ≜ Tx

𝑛(𝜓2,h, 𝐷)

and define the translation of 𝜙 as Tx
𝑛(𝜙,h, 𝐷) = (̃︀𝜙,𝒜,ℱ):

¬𝜓1 : ̃︀𝜙 ≜ ¬ ̃︀𝜓1 𝒜 ≜ 𝒜1 ℱ ≜ 2L

𝜓1 ∧ 𝜓2 : ̃︀𝜙 ≜ ̃︀𝜓1 ∧ ̃︀𝜓2 𝒜 ≜ 𝒜1 ∧ 𝒜2 ℱ ≜

{︃
ℱ1 if |ℱ1| ≤ |ℱ2|
ℱ2 if |ℱ2| < |ℱ1|

𝜓1 ∧¬ 𝜓2 : ̃︀𝜙 ≜ ̃︀𝜓1 ∧ ¬ ̃︀𝜓2 𝒜 ≜ 𝒜1 ∧ 𝒜2 ℱ ≜ ℱ1

𝜓1 ∨ 𝜓2 : ̃︀𝜙 ≜ ̃︀𝜓1 ∨ ̃︀𝜓2 𝒜 ≜ 𝒜1 ∧ 𝒜2 ℱ ≜ ℱ1 ∪ ℱ2

The translation of boolean connectives is again straightforward. The translation of the
semantics directly captures the original semantics of the input formula. The axioms are
always collected using conjunction and no new ones are introduced. The fooptrints directly
reflect the inductive definition of the set footprints#(𝑠,ℎ)(𝜙).

Observe that the operands of each boolean connective are always translated using the
same array h and the same set 𝐷, which will be no longer true for spatial connectives
discussed below.

Translation of the separating conjunction. Let 𝜙 ≜ 𝜓1 * 𝜓2 and let 𝐷1, 𝐷2 be fresh
location set symbols. We introduce short names for the translations of its operands

(̃︀𝜓1,𝒜1,ℱ1) ≜ Tx
𝑛(𝜓1,h, 𝐷1) (̃︀𝜓2,𝒜2,ℱ2) ≜ Tx

𝑛(𝜓2,h, 𝐷2)

and define the translation of 𝜙 as Tx
𝑛(𝜙,h, 𝐷) = (̃︀𝜙,𝒜,ℱ):

̃︀𝜙 ≜ ⋁︁
𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

̃︀𝜓1[𝐹1/𝐷1] ∧ ̃︀𝜓2[𝐹2/𝐷2] ∧ 𝐹1 ∩ 𝐹2 = ∅ ∧ 𝐿𝐹1 ∩ 𝐿𝐹2 ⊆ x ∧ 𝐷 = 𝐹1 ∪ 𝐹2

𝒜 ≜ 𝒜1 ∧ 𝒜2 ∧
⋀︁

𝐹1∈ℱ1

locations(𝐿𝐹1 , 𝐹1,h) ∧
⋀︁

𝐹2∈ℱ2

locations(𝐿𝐹2 , 𝐹2,h)

ℱ ≜ {𝐹1 ∪ 𝐹2 | 𝐹1 ∈ ℱ1, 𝐹2 ∈ ℱ2}

Here, we use fresh symbols 𝐷1 and 𝐷2 to represent a split of the heap ℎ. We enumerate over
all possible splits using a disjunction over pairs of fooptrints from the set ℱ1 × ℱ2. Each
clause of this enumeration is created by substituting 𝐷𝑖 in the translation of the semantics
by the footprint 𝐹𝑖, and adding additional requirements that footprints 𝐹1 and 𝐹2 are
strongly-disjoint and their union yields 𝐷. To express strong-disjointness, we introduce a
fresh symbol 𝐿𝐹𝑖 for each footprint 𝐹𝑖 and add an axiom that ensures that 𝐿𝐹𝑖 will be
interpreted as the set of locations of the heap represented by h and 𝐹𝑖.

If 𝜙 does not lie under a negation, we can use Skolemization to translate its semantics
without any enumeration using fresh symbols 𝐿1 and 𝐿2 to represent heap locations:̃︀𝜙 ≜ ̃︀𝜓1 ∧ ̃︀𝜓2 ∧ 𝐷1 ∩𝐷2 = ∅ ∧ 𝐿1 ∩ 𝐿2 ⊆ x ∧ 𝐷 = 𝐷1 ∪𝐷2

𝒜 ≜ 𝒜1 ∧ 𝒜2 ∧ locations(𝐿1, 𝐷1,h) ∧ locations(𝐿2, 𝐷2,h)

36

Translation of the septraction. For septractions, we can always use Skolemization
because they never lie under negations. This is ensured by the definition of our fragment.
Let 𝜙 ≜ 𝜓1 −⊛ 𝜓2, let 𝐷1 and 𝐷2 be fresh set symbol, and let h′ be a fresh array symbol.
Further, let 𝐿1 and 𝐿2 be fresh set symbols used to represent heap locations. We introduce
short names for the translations of its operands

(̃︀𝜓1,𝒜1,ℱ1) ≜ Tx
𝑛(𝜓1,h

′, 𝐷1) (̃︀𝜓2,𝒜2,ℱ2) ≜ Tx
𝑛(𝜓2,h

′, 𝐷2)

and define the translation of 𝜙 as Tx
𝑛(𝜙,h, 𝐷) = (̃︀𝜙,𝒜,ℱ):

̃︀𝜙 ≜ ̃︀𝜓1 ∧ ̃︀𝜓2 ∧ 𝐷1 ⊆ 𝐷2 ∧ 𝐿1 ∩ 𝐿2 ⊆ x ∧
⋀︁
ℓ∈𝐷

h[ℓ] = h′[ℓ] ∧ 𝐷 = 𝐷2 ∖𝐷1

𝒜 ≜ 𝒜1 ∧ 𝒜2 ∧ locations(𝐿1, 𝐷1,h
′) ∧ locations(𝐿2, 𝐷,h

′)

ℱ ≜ 2L

Observe that the definition of ̃︀𝜙 is based on the definition of a witness heap (Definition 4.4).

Complexity. The time complexity of the translation is dominated by computing the sets
of fooptrints of possibly exponential size w.r.t. the number of locations and therefore also
w.r.t. the number of variables. The size of the translated formula can also be up to
exponential because of the enumeration caused by translation of separating conjunctions.
In the worst case, our decision procedure runs in NEXP because the decision procedure for
the used theory runs in NP.

We will now define a fragment SSL𝐸 that we can translate more effectively, i.e., without
footprint enumeration and obtain a translated formula of at most polynomial size. Let us
first consider some straight-forward optimisations. Observe that the footprints are needed
only for translating separating conjunctions. Therefore, we do not need to compute them
if we are not under separating conjunction, or if we are just under separating conjunctions
that can be translated using Skolemization. In order to do this, the translation function
simply has additional flags used to determine whether it can perform Skolemization and
whether it should compute footprints or not. We will now define the SSL𝐸 fragment.

Definition 4.5 (SSL𝐸 fragment). An SSL formula 𝜙 is in SSL𝐸 iff at least one of the
following conditions holds.

• 𝜙 does not contain negations, disjunctions, and septraction under separating conjunc-
tions.

• 𝜙 does not contain spatial connectives under negations.

Lemma 4.8. Let 𝜙 ∈ SSL𝐸. Then T(𝜙,x) has a polynomial size w.r.t. |𝜙| + |x|. The
decision procedure runs in NP for SSL𝐸.

Proof. We will show that we do not need to enumerate over footprints when translating 𝜙.
By case distinction over definition of the SSL𝐸 fragment:

• If 𝜙 does not contain negations, disjunctions, and septractions under separating con-
junctions, then the set footprints#(𝑠,ℎ)(𝜓) always has at most one element for each
subformula 𝜓 of 𝜙, or 𝜓 lies in the part of formula where footprints#(𝑠,ℎ)(𝜓) will not be
needed and the translation will therefore not compute it.

37

• If 𝜙 does not contain any spatial connectives under a negation, we can translate all
of them using Skolemization.

To finish the proof, observe that the size of the translated formula is now dominated
by the translation of list-segment predicates which is polynomial w.r.t. the number of
locations. Since the number of locations is linear w.r.t. the size of the formula 𝜙, we
have that the translated formula T(𝜙,x) has at most polynomial size. The whole decision
procedure then runs in NP.

Observe that SSL𝐸 subsumes the positive fragment as defined in [25] but not the positive
fragment as defined in [24] (and also in this work) where one can also use guarded negations
in positive formulae. Whether formulae with arbitrary appearance of guarded negations
can be effectively translated or not remains an open question for the future work.
Example 4.1. To demonstrate the translation on a simple formula, let us consider the
entailment 𝑥 ↦→ 𝑦 * 𝑦 ↦→ 𝑧 |= ls(𝑥, 𝑧) that can be reduced to unsatisfiability of the formula
𝜙 ≜ (𝑥 ↦→ 𝑦 * 𝑦 ↦→ 𝑧) ∧¬ ls(𝑥, 𝑧). Notice that the entailment does not hold because its
left-hand side can be satisfied by a cycle that is not a list segment. All components of
the translation are shown in Figure 4.4. While the location bound is bound(𝜙, {𝑥, 𝑦, 𝑧}) =
2 · |{𝑥, 𝑦, 𝑧}|+1 = 7, the translation uses the optimal bound 3. This optimal bound can be
computed based on the structure of 𝜙 as shown in Section 5.2.

In the top-left corner, the figure shows the AST of 𝜙 and assigns a unique identifier to
each of its sub-formulae. Those identifiers are used to index components of the translation.
The most interesting case among the translations of the semantics is the separating con-
junction 3 . Because the separating conjunction does not lie under a negation, it can be
translated using Skolemization. The translation creates two fresh set symbols 𝐷1 and 𝐷2

which are used to translate operands 1 and 2 , respectively. Moreover, we do not have
to add the constraint that locations shared by sub-heaps induced by 𝐷1 and 𝐷2 are cov-
ered by x because 𝜙 is positive. The only interesting axiom is created for the list-segment
predicate 4 and it defines 𝐹 to be the path from 𝑥 to 𝑧 on the heap represented by h.

The definition of the reachability predicates uses another optimisation. While the loca-
tion bound is 3, it also counts with nil that cannot be allocated. Therefore, the maximum
bound for reachability can be set to 2. Observe that only the second clause of the path
predicate representing the empty simple path is satisfied in the model in the top-right cor-
ner. Therefore it holds that 𝐹 = ∅. Because 𝐷 has to be equal to {𝑥, 𝑦}, it holds that
𝐷 ̸= 𝐹 , and, consequently, ̃︀𝜙4 is not satisfied. Then, ̃︀𝜙5 is satisfied.

The figure also shows how footprints would be computed. However, they are not needed
in this case because the only separating conjunction is translated using Skolemization.

The translated formula can be satisfied by the following first-order model ℳ over the
domain L = {0, 1, 2}:

𝑥ℳ = 1, 𝑦ℳ = 2, 𝑧ℳ = 1, nilℳ = 0

hℳ = K(0)⟨1 ▷ 2⟩⟨2 ▷ 1⟩
𝐷ℳ = {1, 2}

The model will also interpret other components (𝐷1, 𝐷2, 𝐹) but those are not needed to
construct a stack-heap (𝑠, ℎ) = T−1(ℳ, {𝑥, 𝑦, 𝑧, nil}) of the input SSL formula:

𝑠 = {𝑥 ↦→ 1, 𝑦 ↦→ 2, 𝑧 ↦→ 1, nil ↦→ 0}
ℎ = {1 ↦→ 2, 2 ↦→ 1}

38

Input formula: Possible stack-heap model:

∧¬5

*3 ls(𝑥, 𝑧)4

𝑥 ↦→ 𝑦1 𝑦 ↦→ 𝑧2

1 : 𝑥, 𝑧 2 : 𝑦 0 : nil

Semantics: Axioms:

̃︀𝜙1 ≜ h[𝑥] = 𝑦 ∧𝐷1 = {𝑥}̃︀𝜙2 ≜ h[𝑦] = 𝑧 ∧𝐷2 = {𝑦}̃︀𝜙3 ≜ ̃︀𝜙1 ∧ ̃︀𝜙2 ∧𝐷1 ∩𝐷2 = ∅ ∧𝐷 = 𝐷1 ∪𝐷2̃︀𝜙4 ≜ reach[0,2](h, 𝑥, 𝑧) ∧𝐷 = 𝐹̃︀𝜙5 ≜ ̃︀𝜙3 ∧ ¬̃︀𝜙4

𝒜1 ≜ true

𝒜2 ≜ true

𝒜3 ≜ 𝒜1 ∧ 𝒜2

𝒜4 ≜ path[0,2](h, 𝐹, 𝑥, 𝑧)

𝒜5 ≜ 𝒜3 ∧ 𝒜4

Auxiliary predicates:

reach[0,2](h, 𝑥, 𝑧) ≜ 𝑥 = 𝑧 ∨ h[𝑥] = 𝑧 ∨ h2[𝑥] = 𝑧

path[0,2](h, 𝐹, 𝑥, 𝑧) ≜
(︀
¬reach[0,2](h, 𝑥, 𝑧) ∧ 𝐹 = ∅

)︀
(no path)

∨
(︀
𝑥 = 𝑧 ∧ 𝐹 = ∅ ∧ 𝑧 /∈ 𝐹

)︀
(simple path of length 0)

∨
(︀
h[𝑥] = 𝑧 ∧ 𝐹 = {𝑥} ∧ 𝑧 /∈ 𝐹

)︀
(simple path of length 1)

∨
(︀
h2[𝑥] = 𝑧 ∧ 𝐹 = {𝑥,h[𝑥])} ∧ 𝑧 /∈ 𝐹

)︀
(simple path of length 2)

Translated formula:

T(𝜙, {𝑥, 𝑦, 𝑧}) ≜ ∆WF
3 ∧ 𝒜5 ∧ ̃︀𝜙5

Footprints (only for illustration):

ℱ1 ≜ {{𝑥}} ℱ2 ≜ {{𝑦}} ℱ3 ≜ {{𝑥, 𝑦}}
ℱ4 ≜ {𝐹} ℱ5 ≜ {{𝑥, 𝑦}}

Figure 4.4: An example of the translation for the formula 𝜙 ≜ (𝑥 ↦→ 𝑦 * 𝑦 ↦→ 𝑧) ∧¬ ls(𝑥, 𝑧).
The translation uses the optimal location bound 𝑛 = 3. Each component is indexed by
the id of its corresponding sub-formula. Those ids are assigned in the AST of 𝜙 in the
top-left corner. The bottom part shows how footprints would be computed. This is just
for illustration because the only separating conjunction is translated using Skolemization –
by introducing fresh symbols 𝐷1 and 𝐷2, which are implicitly existentially quantified.

39

4.6 Proof of the Correctness
This section is devoted to the proof of the correctness of the proposed translation. Its
correctness is summarised by the following theorem.

Theorem 4.1 (Translation correctness). An SSL formula 𝜙 is satisfiable over variables x
iff its translation T(𝜙,x) is satisfiable. Moreover, if ℳ |= T(𝜙,x), then T−1(ℳ,x) |= 𝜙.

In other words, the theorem states that the input and its translation are equisatisfiable.
Moreover, the inverse translation of a first-order model always yields a stack-heap model of
the original formula. The high-level idea of the proof is the following. We first establish a
correspondence between stack-heap models and first-order models, and then show that an
input formula is satisfied by some stack-heap model (𝑠, ℎ) iff its translation is satisfied by
a first-order model ℳ that corresponds to (𝑠, ℎ). To prove this for spatial connectives, we
will have to define an operation of composition of two models and prove that it mimics the
strongly-disjoint union of two heaps. To finish the proof, we will also show that T−1(ℳ,x)
corresponds to ℳ.

In the remainder of this chapter, we fix an SSL formula 𝜙, a set of variables x, and their
location bound 𝑛 = bound(𝜙,x).

4.6.1 SMT Models

In this section, we introduce several notations related to first-order models. We first define
a model of SMT encoding (SMT model for short) – a model that satisfies the top-level
constraints given by the formula ∆WF

𝑛 .

Definition 4.6 (SMT model). Let ℳ be a first-order model. We say that ℳ is a model
of SMT encoding (SMT model for short) w.r.t. 𝜙 and x if ℳ |= ∆WF

𝑛 .

In particular, all SMT models w.r.t. fixed 𝜙 and x have the same domain L of cardinal-
ity 𝑛 defined by the formula ∆WF

𝑛 . We will now formalise the correspondence of stack-heap
and SMT models.

Definition 4.7 (Corresponding models). Let (𝑠, ℎ) be a stack-heap model and let ℳ be an
SMT model. The model ℳ corresponds to (𝑠, ℎ), written as ℳ ∼ (𝑠, ℎ), if the following
conditions hold:

1. dom(𝑠) = x,

2. ∀𝑥 ∈ x. 𝑠(𝑥) = 𝑥ℳ,

3. dom(ℎ) = 𝐷ℳ,

4. ∀ℓ ∈ 𝐷ℳ. ℎ(ℓ) = h[ℓ]ℳ.

Lemma 4.9. Letℳ be an SMT model. There exists the unique stack-heap model such that
ℳ∼ (𝑠, ℎ). Moreover, it holds that (𝑠, ℎ) = T−1(ℳ,x).

Proof. The uniqueness of (𝑠, ℎ) follows from the fact that each of its components is uniquely
determined in the definition of the correspondence. Directly from Definition 4.1, we have
that ℳ∼ T−1(ℳ,x). Thus, (𝑠, ℎ) = T−1(ℳ,x).

40

𝐷ℳ1 1 : 𝑥 2 3 : 𝑦

0 : nil5 : 𝑧4

4

𝐷ℳ2 1 : 𝑥 2 3 : 𝑦

0 : nil5 : 𝑧 dom(ℎ)1 : 𝑥 2 3 : 𝑦

0 : nil5 : 𝑧

Figure 4.5: An example of SMT models ℳ1 and ℳ2 and a stack-heap model (𝑠, ℎ) that
corresponds to both of them.

The converse of the previous lemma does not hold because for a stack-heap model (𝑠, ℎ),
we have multiple corresponding SMT models – two models may differ in their interpretation
of the array h outside of their common interpretation of the heap domain 𝐷. This situation
is demonstrated in Figure 4.5 that depicts a graphic representation of SMT models ℳ1

andℳ2 (on the left-hand side) that both correspond to the same stack-heap model (on the
right-hand side). Based on this observation, we define an equivalence relation such thatℳ1

will be equivalent with ℳ2.

Definition 4.8 (Equivalent SMT models). Let ℳ1 and ℳ2 be SMT models. Model ℳ1

is equivalent with ℳ2, denoted as ℳ1 ≡ℳ2, if the following conditions hold:

1. ∀𝑥 ∈ x. 𝑥ℳ1 = 𝑥ℳ2,

2. 𝐷ℳ1 = 𝐷ℳ2,

3. ∀ℓ ∈ 𝐷ℳ1 . hℳ1 [ℓ] = hℳ2 [ℓ].

Lemma 4.10. Relation ≡ on SMT models is an equivalence relation. Moreover, it holds
thatℳ1 ≡ℳ2 iff for all stack-heap models (𝑠, ℎ), it holds thatℳ1 ∼ (𝑠, ℎ) ⇔ ℳ2 ∼ (𝑠, ℎ).

Proof. Both claims follow directly from the definition of equivalent models and from the
definition of model correspondence.

We would like to further work with equivalence classes of ≡ on SMT models. In order to
do this, we need to ensure that formulae created during the translation cannot distinguish
equivalent models. In other words, this means that all formulae respect our encoding of
partial functions. For example, the formula ̃︀𝜙 ≜ 𝐷 = ∅ ∧ h[𝑥] = 𝑦 does not respect this
encoding because it constraints value of the partial function represented by h outside of its
domain 𝐷. We will call formulae that respect this property well-defined.

Definition 4.9 (Well-defined formula). Let ̃︀𝜙 be a first-order formula. Let ℳ1 and ℳ2

be SMT models such that ℳ1 ≡ℳ2. Formula ̃︀𝜙 is well-defined if ℳ1 |= ̃︀𝜙 ⇔ ℳ2 |= ̃︀𝜙.

41

4.6.2 Composition of SMT Models

We will now define when two SMT models are compatible w.r.t. the set of variables x.
Further, we will define a composition of compatible SMT models. Intuitively, this operation
will mimic the operator ⊎𝑠 in the domain of SMT models. We will later need lemmas about
properties of composition to prove the correctness for the cases of spatial connectives.

To define compatibility of two models, we define the image of the array h w.r.t. some
set 𝑋 ⊆ dom(h), as arr_img(h, 𝑋) = {𝑦 | ∃𝑥 ∈ 𝑋. h[𝑥] = 𝑦}.

Definition 4.10 (Compatible models). Let ℳ1 and ℳ2 be two SMT models. Further, let
𝐼𝑖 = arr_img(hℳ𝑖 , 𝐷ℳ𝑖) for 𝑖 ∈ {1, 2}. SMT models ℳ1 and ℳ2 are x-compatible if the
following conditions hold:

1. ∀𝑥 ∈ x. 𝑥ℳ1 = 𝑥ℳ2

2. 𝐷ℳ1 ∩𝐷ℳ2 = ∅

3. (𝐷ℳ1 ∪ 𝐼1) ∩ (𝐷ℳ2 ∪ 𝐼2) ⊆ xℳ1

Intuitively, two models are compatible if (1) they interpret the stack in the same way,
(2) their interpretation of heap domains are disjoint, and (3) all locations common in their
interpretations of heaps are among interpretations of variables. The next step is to define
how compatible models can be composed.

Definition 4.11 (Model composition). Letℳ1 andℳ2 be SMT models. Their composition
ℳ1 ⊕xℳ2 is defined as ⟨Lℳ1 , ⟨𝑥ℳ1⟩𝑥∈x,hℳ1 ⊞ hℳ2 , 𝐷ℳ1 ∪ 𝐷ℳ2⟩ if ℳ1 and ℳ2 are
x-compatible and undefined otherwise. The composition of arrays, ⊞, is defined as:

hℳ1 ⊞ hℳ2 =

⎧⎪⎨⎪⎩
h[ℓ]ℳ1 if ℓ ∈ 𝐷ℳ1,
h[ℓ]ℳ2 if ℓ ∈ 𝐷ℳ2,
nilℳ1 otherwise.

The composition has the same domain L as both of its operands (this is ensured by the
fact that both operands are SMT models w.r.t. the same fixed 𝜙 and x). The composition
also interprets all variables in the same way as its operands because the operands are
compatible. The composition of arrays ⊞ mimics disjoint union of two partial functions.
Notice that ⊞ is well-defined because heap domains 𝐷ℳ1 and 𝐷ℳ2 of compatible models
are disjoint. The following lemma shows that the model composition precisely captures the
strongly-disjoint union of two heaps.

Lemma 4.11. Let (𝑠, ℎ1) ∼ ℳ1 and (𝑠, ℎ2) ∼ ℳ2 be two pairs of corresponding models.
Then the following properties hold:

1. ℎ1 ⊎𝑠 ℎ2 = ⊥ ⇔ ℳ1 ⊕xℳ2 = ⊥

2. (𝑠, ℎ1 ⊎𝑠 ℎ2) ∼ℳ1 ⊕xℳ2

Proof.

1. Becauseℳ1 andℳ2 correspond to stack-heap models with the same stack, we know
that each symbol 𝑥 ∈ x is interpreted in the same way in both models. Consequently,
their composition can be undefined iff at least one of conditions (2) or (3) from the
definition of compatibility is not satisfied. If the condition (2) is not satisfied, then
dom(ℎ1) ∩ dom(ℎ2) ̸= ∅ and vice versa. If the condition (3) is not satisfied, then
locs(ℎ1) ∩ locs(ℎ2) ̸⊆ 𝑠(x) and vice versa.

42

2. Directly follows from (1) and the definition of the composition.

We will now prove two key lemmas that we will later need to prove the correctness of
the translation of spatial connectives.

Lemma 4.12 (Extension by a compatible model). Let ℳ1 and ℳ2 be x-compatible SMT
models. Let 𝜓 be a well-defined formula s.t. 𝐷 /∈ vars(𝜓). Thenℳ1 |= 𝜓 iffℳ1⊕xℳ2 |= 𝜓.

Proof. Let ℳ′ = ℳ1 ⊕xℳ2. We will show that the interpretations of all terms in the
formula 𝜓 are the same in both models ℳ1 and ℳ′. Then also all predicates and sub-
formulae of 𝜓 have the same boolean values in both models and consequently 𝜓 is either
satisfied in both models, or falsified in both models. We have to consider two sorts of terms:

(a) Location terms. Each location term 𝑡 is of the form h𝑖[𝑥𝑗] where 𝑖 ∈ N and 𝑥𝑗 ∈ x is
a location variable. We show the statement by the induction over 𝑖. If 𝑖 = 0, then 𝑡
is a location variable 𝑥𝑗 which is, by the definition of the compatibility, interpreted
in the same way in both ℳ1 and ℳ2 and consequently also in their composition.
Let 𝑡 = h𝑖+1[𝑥𝑗], and let 𝑡′ = h𝑖[𝑥𝑗]. By the induction hypothesis, the term 𝑡′ is
interpreted as the same location ℓ in both models. Let us consider following cases
for ℓ:

– If ℓ ∈ 𝐷ℳ1
1 , then the interpretation of h[ℓ] in ℳ1 is the same as in ℳ′ by the

definition of the composition.
– If ℓ /∈ 𝐷ℳ1

1 ∧ ℓ /∈ 𝐷ℳ2 , then h[ℓ] may be interpreted differently in those models,
but there existℳ′

1 ≡ℳ1 that interprets h[ℓ] in the same way as the modelℳ2.
It holds that ℳ1 ⊕xℳ2 ≡ℳ′

1 ⊕xℳ2.
– If ℓ /∈ 𝐷ℳ1 ∧ℓ ∈ 𝐷ℳ2 , then we can replaceℳ1 by its equivalent modelℳ′

1 that
interprets h[ℓ] in the same way asℳ1⊕ℳ2. Again,ℳ1⊕xℳ2 ≡ℳ′

1⊕xℳ2.

(b) Location set terms. Let 𝑡 be a location term such that 𝑡. We know that 𝜓 does
not contain the symbol 𝐷. The term 𝑡 is either a constant, i.e., a possibly empty
enumeration of locations, or an application of a set operation to a tuple of set terms.
We will prove the statement by induction over the structure of 𝑡. If 𝑡 is an enumeration
of constants, then the statement holds, because all of its elements (location terms)
are interpreted in the same way by (a). The induction step is trivial because set
operations will yield the same result in both models.

Lemma 4.13. Letℳ1 andℳ2 be x-compatible SMT models. Let 𝜓1 and 𝜓2 be well-defined
formulae such that 𝐷 /∈ 𝜓1 and 𝐷 /∈ 𝜓2. Then the following statements are equivalent:

1. ℳ1 |= 𝜓1 ∧ℳ2 |= 𝜓2

2. ℳ1 ⊕xℳ2 |= 𝜓1 ∧ 𝜓2

Proof. By Lemma 4.12 we have

ℳ1 |= 𝜓1 ⇔ ℳ1 ⊕xℳ2 |= 𝜓1,

ℳ2 |= 𝜓2 ⇔ ℳ2 ⊕xℳ1 |= 𝜓2.

The claim then follows from the commutativity of the composition.

43

4.6.3 Translation Invariants

To prove Theorem 4.1, we will show that the recursive translation function Tx
𝑛(𝜓,h, 𝐷)

satisfies several invariants. Let ℳ be an SMT model and let (𝑠, ℎ) be its corresponding
stack-heap model. Let 𝜓 be a sub-formula of 𝜙, for its translation (̃︀𝜓,𝒜,ℱ) = Tx

𝑛(𝜓,h, 𝐷),
the following statements hold:

(I1) Well-definedness. Formula ̃︀𝜓 is well-defined according to Definition 4.9.

(I2) Skolemization. If 𝜓 does not lie under a negation or in a branch negated by a
guarded negation in 𝜙, then ̃︀𝜓 does not lie under a negation or an universal quantifier
in ̃︀𝜙.

(I3) Consistency of the axioms. The axioms 𝒜 and the well-formedness constraint
∆WF

𝑛 are consistent, i.e., there exists a model ℳ′ such that ℳ′ |= 𝒜 ∧ ∆WF
𝑛 . This

invariant ensures that top-level constraints created by the translation of the formula 𝜓
are always satisfiable.

(I4) Correctness of the footprints. The set ℱ over-approximates the set of all possible
footprints of 𝜓 in (𝑠, ℎ). More precisely, we will show that ℱℳ = footprints#(𝑠,ℎ)(𝜓).

(I5) Correctness of the translation. The translation of the formula 𝜓 is correct. More
precisely, it holds that (𝑠, ℎ) |= 𝜓 iff ℳ |= ̃︀𝜓.

The first invariant ensures the well-definedness of all formulae that is needed to prove other
invariants. The second invariant guarantees that the translation will not introduce any
negation or universal quantifier over an existentially quantified symbol, for which there was
no negation over this symbol in the original SSL formula. Consequently, we can perform
the Skolemization and replace it by a constant symbol. The third invariant merely requires
that there is no inconsistency in auxiliary definitions introduced during the translation.
The fourth invariant makes sure that set ℱ correctly captures all footprints. Finally, the
last invariant states the correctness of the translation. Theorem 4.1 follows almost directly
from the last invariant applied to the whole input formula 𝜙.

Lemma 4.14 (Invariant I1). Let 𝜓 be an SSL formula and let (̃︀𝜓,𝒜,ℱ) = Tx
𝑛(𝜓,h, 𝐷) be

its translation. The formula ̃︀𝜓 is well-defined.

Proof. Let ℳ |= ̃︀𝜓 and let ℓ /∈ 𝐷ℳ. Let ℳ′ be an SMT model that interprets all terms
except h[ℓ] as ℳ. In order to show that ̃︀𝜓 is well-defined, we need to show that ℳ′ |= ̃︀𝜓.
We will proceed by induction on the structure of the original SSL formulae 𝜓.

If 𝜓 is a pure atom, than the claim holds because ̃︀𝜓 does not restrict the mapping
of h at all. If 𝜓 ≜ 𝑥 ↦→ 𝑦, then ̃︀𝜓 does not restrict the mapping of h for locations other
than 𝑥ℳ which is in 𝐷ℳ. If 𝜓 ≜ ls(𝑥, 𝑦), then set 𝐷 is interpreted using the predicate path
path(h, 𝐷, 𝑥, 𝑦). As shown in the proof of Lemma 4.3, exactly one clause of this predicate
is satisfied in ℳ. If the 𝑖-th clause is satisfied, than ̃︀𝜓 restricts only locations h𝑗 [ℓ]ℳ such
that 𝑗 < 𝑖. Since all such locations are in 𝐷ℳ by Lemma 4.3, ̃︀𝜓 is well-defined.

The claim directly follows from the inductive hypothesis for all boolean connectives and
also for the separating conjunction because they do not impose any additional restrictions
on the array h. Finally, if 𝜓 is a septraction, then it restricts h only at locations in 𝐷ℳ

by the definition of its translation which asserts that
⋀︀

ℓ∈𝐷 h[ℓ] = h′[ℓ]. Thus, ̃︀𝜓 is well-
defined.

44

Lemma 4.15 (Invariant I2). Let 𝜓 be an SSL formula and let (̃︀𝜓,𝒜,ℱ) = Tx
𝑛(𝜓,h, 𝐷)

be its translation. If 𝜓 does not lie under a negation or in a branch negated by a guarded
negation in 𝜙, then ̃︀𝜓 does not lie under a negation or an universal quantifier in ̃︀𝜙.

Proof. It can be easily verified that the translation never introduces universal quantifiers
and uses only those negations that were already present in the formula 𝜙.

Lemma 4.16 (Invariant I3). Let 𝜓 be an SSL formula and let (̃︀𝜓,𝒜,ℱ) = Tx
𝑛(𝜓,h, 𝐷) be

its translation. The formula 𝒜 ∧∆WF
𝑛 is satisfiable.

Proof. The formula ∆WF
𝑛 is always satisfiable by a model ℳ with domain L = {ℓ1, ..., ℓ𝑛}

and such that nil /∈ 𝐷 . Each path axiom is satisfiable in isolation by Lemma 4.3. Similarly,
each location axiom is satisfiable in isolation by Lemma 4.6. All those axioms are combined
using conjunctions in all cases of the translation. From the definition of the translation,
it follows that each axiom speaks about a fresh symbol. Consequently, the conjunction of
satisfiable axioms is also satisfiable.

Lemma 4.17 (Invariant I4). Let 𝜓 be an SSL formula and let (̃︀𝜓,𝒜,ℱ) = Tx
𝑛(𝜓,h, 𝐷) be

its translation. Then ℱℳ = footprints#(𝑠,ℎ)(𝜓).

Proof. By induction on the structure of 𝜓. The case of the list-segment predicate is ensured
by Lemma 4.3. Other cases are trivial because their definitions of the set ℱ directly copy
the inductive definition of the set footprints#(𝑠,ℎ)(𝜓).

Lemma 4.18 (Invariant I5). Let 𝜓 be a formula and let (̃︀𝜓,𝒜,ℱ) = Tx
𝑛(𝜓,h, 𝐷) be its

translation. Then (𝑠, ℎ) |= 𝜓 iff ℳ |= ̃︀𝜓.

Proof. By structural induction on 𝜓.

Atomic formulae.

• 𝜓 ≜ 𝑥 = 𝑦:

(𝑠, ℎ) |= 𝑥 = 𝑦 ⇔ 𝑠(𝑥) = 𝑠(𝑦) ∧ dom(ℎ) = ∅ (SSL semantics)
⇔ 𝑥ℳ = 𝑦ℳ ∧𝐷ℳ = ∅ (model correspondence)
⇔ ℳ |= 𝑥 = 𝑦 ∧𝐷 = ∅ (FOL semantics)
⇔ ℳ |= ̃︀𝜓 (translation)

• 𝜓 ≜ 𝑥 ̸= 𝑦:

(𝑠, ℎ) |= 𝑥 ̸= 𝑦 ⇔ 𝑠(𝑥) ̸= 𝑠(𝑦) ∧ dom(ℎ) = ∅ (SSL semantics)
⇔ 𝑥ℳ ̸= 𝑦ℳ ∧𝐷ℳ = ∅ (model correspondence)
⇔ ℳ |= 𝑥 ̸= 𝑦 ∧𝐷 = ∅ (FOL semantics)
⇔ ℳ |= ̃︀𝜓 (translation)

45

• 𝜓 ≜ 𝑥 ↦→ 𝑦:

(𝑠, ℎ) |= 𝑥 ↦→ 𝑦 ⇔ ℎ(𝑠(𝑥)) = 𝑦 ∧ dom(ℎ) = {𝑠(𝑥)} (SSL semantics)
⇔ h[𝑥]ℳ = 𝑦ℳ ∧𝐷ℳ = {𝑥ℳ} (model correspondence)
⇔ ℳ |= h[𝑥] = 𝑦 ∧𝐷 = {𝑥} (FOL semantics)
⇔ ℳ |= ̃︀𝜓 (translation)

• 𝜓 ≜ ls(𝑥, 𝑦):

(𝑠, ℎ) |= ls(𝑥, 𝑦) ⇔ ∃𝜋. 𝑠(𝑥) 𝜋
⇝ 𝑠(𝑦) ∧ dom(ℎ) = dom(𝜋) (Lemma 4.1)

⇔ ℳ |= reach[0,𝑛](h, 𝑥, 𝑦) ∧ path[0,𝑛](h, 𝐷, 𝑥, 𝑦) (Lemma 4.3)

⇔ ℳ |= ̃︀𝜓 (translation)

Inductive steps for boolean connectives. Let 𝜓 be either a negation 𝜓 ≜ ¬𝜓1 or a binary
formula 𝜓 ≜ 𝜓1 ◁▷ 𝜓2 where ◁▷ ∈ {∧,∧¬,∨}. We introduce short names for the results of
translation of an operand 𝜓𝑖:

(̃︀𝜓1,𝒜1,ℱ1) ≜ Tx
𝑛(𝜓1,h, 𝐷) (̃︀𝜓2,𝒜2,ℱ2) ≜ Tx

𝑛(𝜓2,h, 𝐷)

• 𝜓 ≜ ¬𝜓1:

(𝑠, ℎ) |= ¬𝜓 ⇔ (𝑠, ℎ) ̸|= 𝜓1 (SSL semantics)
⇔ ℳ ̸|= ̃︀𝜓1 (induction hypothesis)
⇔ ℳ |= ¬ ̃︀𝜓 (translation)

• 𝜓 ≜ 𝜓1 ∧ 𝜓2:

(𝑠, ℎ) |= 𝜓1 ∧ 𝜓2 ⇔ (𝑠, ℎ) |= 𝜓1 ∧ (𝑠, ℎ) |= 𝜓2 (SSL semantics)
⇔ ℳ |= ̃︀𝜓1 ∧ℳ |= ̃︀𝜓2 (induction hypothesis)
⇔ ℳ |= ̃︀𝜓 (translation)

• 𝜓 ≜ 𝜓1 ∧¬ 𝜓2:

(𝑠, ℎ) |= 𝜓1 ∧¬ 𝜓2 ⇔ (𝑠, ℎ) |= 𝜓1 ∧ (𝑠, ℎ) ̸|= 𝜓2 (SSL semantics)
⇔ ℳ |= ̃︀𝜓1 ∧ℳ ̸|= ̃︀𝜓2 (induction hypothesis)
⇔ ℳ |= ̃︀𝜓 (translation)

• 𝜓 ≜ 𝜓1 ∨ 𝜓2:

(𝑠, ℎ) |= 𝜓1 ∨ 𝜓2 ⇔ (𝑠, ℎ) |= 𝜓1 ∨ (𝑠, ℎ) |= 𝜓2 (SSL semantics)
⇔ ℳ |= ̃︀𝜓1 ∨ℳ |= ̃︀𝜓2 (induction hypothesis)
⇔ ℳ |= ̃︀𝜓 (translation)

46

Inductive step for the separating conjunction. Let 𝜓 ≜ 𝜓1 * 𝜓2. We introduce short names
for the results of the translation of its operands using fresh set symbols 𝐷1 and 𝐷2:

(̃︀𝜓1,𝒜1,ℱ1) ≜ Tx
𝑛(𝜓1,h, 𝐷1) (̃︀𝜓2,𝒜2,ℱ2) ≜ Tx

𝑛(𝜓2,h, 𝐷2)

Let (𝑠, ℎ) |= 𝜓, by the definition of SSL semantics this is equivalent to:

∃ℎ1, ℎ2. (𝑠, ℎ1) |= 𝜓1 ∧ (𝑠, ℎ2) |= 𝜓2 ∧ ℎ1 ⊎𝑠 ℎ2 ̸= ⊥ ∧ ℎ1 ⊎𝑠 ℎ2 = ℎ.

From the invariant I3, we have that ℱ𝑖 = footprints#(𝑠,ℎ)(𝜓𝑖) for 𝑖 = 1, 2. Then we can apply
Lemma 4.5 to obtain an equivalent statement:⋁︁

𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

(𝑠, ℎ|𝐹1) |= 𝜓1 ∧ (𝑠, ℎ|𝐹2) |= 𝜓2 ∧ ℎ|𝐹1 ⊎𝑠 ℎ|𝐹2 ̸= ⊥ ∧ 𝐹1 ∪ 𝐹2 = dom(ℎ).

After applying induction hypotheses for 𝜓1 and 𝜓2, Lemma 4.11, and the definition of the
model correspondence, we obtain equivalent claim:⋁︁

𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

(ℳ1 |= ̃︀𝜓1) ∧ (ℳ2 |= ̃︀𝜓2) ∧ℳ1 ⊕xℳ2 ̸= ⊥ ∧ 𝐹1 ∪ 𝐹2 = 𝐷.

Formulae ̃︀𝜓1 and ̃︀𝜓2 are by invariant I1 well-defined. They also do not contain the symbol 𝐷
because they were translated using fresh symbols 𝐷1 and 𝐷2, respectively. Therefore, we
can apply Lemma 4.13 to obtain an equivalent formulation:⋁︁

𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

(ℳ1 ⊕xℳ2 |= ̃︀𝜓1 ∧ ̃︀𝜓2) ∧ℳ1 ⊕xℳ2 ̸= ⊥ ∧ 𝐹1 ∪ 𝐹2 = 𝐷.

From Lemma 4.6 and the definition of model compatibility, this is an equivalent formulation
for: ⋁︁

𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

(ℳ1 ⊕xℳ2 |= ̃︀𝜓1 ∧ ̃︀𝜓2 ∧𝐷1 ∩𝐷2 = ∅ ∧ 𝐿𝐷1 ∩ 𝐿𝐷2 ⊆ x) ∧ 𝐹1 ∪ 𝐹2 = 𝐷.

Finally, this is equivalent to:

ℳ1 ⊕xℳ2 |=
⋁︁

𝐹1∈ℱ1

⋁︁
𝐹2∈ℱ2

(︂̃︀𝜓1 [𝐹1/𝐷1] ∧ ̃︀𝜓2 [𝐹2/𝐷2] ∧ 𝐹1 ∩ 𝐹2 = ∅

∧ 𝐿𝐹1 ∩ 𝐿𝐹2 ⊆ x ∧ 𝐹1 ∪ 𝐹2 = 𝐷

)︂
,

which is, from the definition of the translation, equivalent to ℳ1 ⊕xℳ2 |= ̃︀𝜓. The case of
the translation using Skolemization is proved analogically using invariant I2 to show that
Skolemization can be indeed used.

47

Inductive step for the septraction. Let 𝜓 ≜ 𝜓1 −⊛ 𝜓2. We introduce short names for the
results of the translation of its operands using fresh symbols h′, 𝐷1 and 𝐷2:

(̃︀𝜓1,𝒜1,ℱ1) ≜ Tx
𝑛(𝜓1,h

′, 𝐷1) (̃︀𝜓2,𝒜2,ℱ2) ≜ Tx
𝑛(𝜓2,h

′, 𝐷2)

Let (𝑠, ℎ) |= 𝜓. By Lemma 4.7, this is equivalent to the existence of a witness heap ℎ′ w.r.t.
the stack 𝑠 and sets 𝐷1, 𝐷2 such that dom(ℎ) = 𝐷2 ∖𝐷1 and ∀ℓ ∈ dom(ℎ).ℎ(ℓ) = ℎ′(ℓ). By
the definition of the fragment, 𝜓 cannot lie under a negation. Using the invariant I2, we
can perform Skolemization to remove existential quantifiers:

(𝑠, ℎ1|𝐷1) |= 𝜓1 ∧ (𝑠, ℎ1|𝐷2) |= 𝜓2 ∧𝐷1 ⊆ 𝐷2 ∧ dom(ℎ) = 𝐷2 ∖𝐷1

∧ ℎ1|𝐷1 ⊎𝑠 ℎ′|𝐷2∖𝐷1
̸= ⊥ ∧ ∀ℓ ∈ dom(ℎ).ℎ(ℓ) = ℎ′(ℓ).

After applying the induction hypotheses and using model correspondence, we obtain:

(ℳ1 |= ̃︁𝜓1) ∧ (ℳ1 ⊕𝑥ℳ2 |= ̃︀𝜓2) ∧𝐷1 ⊆ 𝐷2 ∧𝐷 = 𝐷2 ∖𝐷1

∧ℳ1 ⊕𝑥ℳ2 ̸= ⊥ ∧ ∀ℓ ∈ 𝐷.h[ℓ] = h′[ℓ].

From Lemma 4.6 and the definition of model compatibility, we can rewrite this as:

(ℳ1 |= ̃︁𝜓1) ∧ (ℳ1 ⊕𝑥ℳ2 |= ̃︀𝜓2) ∧𝐷1 ⊆ 𝐷2 ∧𝐷 = 𝐷2 ∖𝐷1

∧ 𝐿1 ∩ 𝐿2 ⊆ x ∧ ∀ℓ ∈ 𝐷.h[ℓ] = h′[ℓ].

Finally, formulae ̃︀𝜓1 is by invariant I1 well-defined. It also do not contain the symbol 𝐷
because it was translated using fresh symbol 𝐷1. Therefore, we can apply Lemma 4.12 to
obtain an equivalent formulation:

ℳ1 ⊕𝑥ℳ2 |= ̃︀𝜓1 ∧ ̃︀𝜓2 ∧𝐷1 ⊆ 𝐷2 ∧𝐷 = 𝐷2 ∖𝐷1 ∧ 𝐿1 ∩ 𝐿2 ⊆ x ∧ ∀ℓ ∈ 𝐷.h[ℓ] = h′[ℓ],

which is, from the definition of the translation, equivalent to ℳ1 ⊕𝑥 ℳ2 |= ̃︀𝜓. This
concludes the proof.

Finally, we can prove Theorem 4.1 as a corollary of invariants and previously proved
lemmas.

Proof of theorem 4.1. From invariants I3 and I5, we have that the SSL formula 𝜙 is satis-
fiable over variables x iff T(𝜙,x) is satisfiable. Moreover, from Lemma 4.9, we have that
(𝑠, ℎ) = T−1(ℳ,x).

48

Chapter 5

Optimisations

In this chapter, we describe several original optimisations of the decision procedure proposed
in Section 4. In the first part, we focus on proving general tighter bounds for symbolic heaps.
Besides bounds on the number of locations in a model, we will also introduce an idea of
list-length bounds that will allow us to decrease the size of the encoding of list-segment
predicates. Then, we will show how tighter bounds can be computed for general formulae
based on their structure. A simple method for computing tighter locations bounds was
sketched already in [18], but we propose a more detailed and precise approach. Moreover,
[18] does not consider bounds on lengths of list segments at all.

5.1 Tighter Bounds for Symbolic Heaps
Recall that, according to our definition, a formula 𝜙 is a symbolic heap if it is of the form
𝜙 ≜ *𝜓𝑖 where all 𝜓𝑖 are atomic formulae. While the symbolic heap fragment is one of
the most simplest forms of separation logic, it is frequently used in verification tools. It
therefore makes sense to propose optimisations for its encoding even though it is just a
small subset of SSL. In previously proposed approaches based on a small-model property,
optimised bounds for symbolic heaps were not considered [17, 18].

First, we will show that each satisfiable symbolic heap has a model where all locations
are named – this improves the location bound to |vars(𝜙)| for this fragment. To prove this,
we will use a reduction of sub-heaps similar to the reduction of chunks from the proofs of
small-model properties in Theorem 3.4 and Theorem 3.5.

Lemma 5.1. Let 𝜙 be a symbolic heap and let (𝑠, ℎ) |= 𝜙 be its model. Then there exists
a heap ℎ′ such that (𝑠, ℎ′) |= 𝜙 and ℎ′ does not contain any anonymous locations, i.e.,
locs(ℎ′) ⊆ img(𝑠).

Proof. We will show how a heap ℎ′ can be constructed from the heap ℎ. Let 𝜙 ≜ *1≤𝑖≤𝑛 𝜓𝑖.
By the semantics of SSL and the fact that each symbolic heap is a positive formula, we can
decompose the heap ℎ into disjoint sub-heaps ℎ1, . . . , ℎ𝑛 such that ℎ = ℎ1 + · · ·+ ℎ𝑛 and,
for all 1 ≤ 𝑖 ≤ 𝑛, it holds that (𝑠, ℎ𝑖) |= 𝜓𝑖. We reduce each sub-heap ℎ𝑖 to a sub-heap ℎ′𝑖 by
removing all anonymous locations. Formally, we set dom(ℎ′𝑖) = {ℓ ∈ dom(ℎ𝑖) | ℓ ∈ img(𝑠)}
and define its mapping as:

ℎ′𝑖(ℓ) = ℎ𝑘𝑖 (ℓ) where 𝑘 > 0 is the minimal natural number such that ℎ𝑘𝑖 (ℓ) ∈ img(𝑠).

49

The reduced sub-heaps are well-defined because the original heap is either empty or a se-
quence of pointers with a named sink. The named sink guarantees that some number 𝑘
such that ℎ𝑘𝑖 (ℓ) ∈ img(𝑠) always exists for each locations ℓ ∈ dom(ℎ′𝑖). Graphically, the
reduction of a non-empty sub-heap can be visualised as follow:

𝑥 𝑢 𝑦 ⇝ 𝑥 𝑢 𝑦

Now, we need to show that the reduction preserves satisfiability, i.e., (𝑠, ℎ′𝑖) |= 𝜓𝑖 for
each 𝑖. If 𝜓𝑖 is a pure atom or a points-to assertion, this trivially holds since ℎ𝑖 = ℎ′𝑖. If
𝜙𝑖 ≜ ls(𝑥, 𝑦), then the sub-heap is modified but remains a sequence of pointers from 𝑥 to 𝑦.
It also holds that ℎ′ = ℎ′1 + · · ·+ ℎ′𝑛 ̸= ⊥ because the reduction can only remove locations.
Thus, (𝑠, ℎ′) |= 𝜙.

Further, we have that dom(ℎ′) ⊆ img(𝑠) because, by the definition of the reduction,
dom(ℎ′𝑖) ⊆ img(𝑠) for each 𝑖. From Lemma 3.2, it follows that all dangling locations are
also named, and therefore locs(ℎ′) ⊆ img(𝑠).

Our experiments show that decreasing of the location bounds is not always enough to
efficiently solve some formulae. We will therefore also compute a list-length bound for each
predicate ls(𝑥, 𝑦) that occurs in the input formula. The list-length bound is an interval [𝑚,𝑛]
such that it is enough to consider paths 𝜋 such that 𝑚 ≤ |𝜋| ≤ 𝑛 only when translating the
list-segment predicate. In the translation, the interval is used to parameterise the predicates
reach and path used to express the semantics of the given list-segment predicate.

We will now show, that for a symbolic heap 𝜙, it is always sufficient to use the list-length
bound [0, 1] for all list-segment predicates in 𝜙. In other words, if 𝜙 is satisfiable, we can
find a model where each list segment is either empty or a single pointer.

Lemma 5.2. Let 𝜙 be a symbolic heap and let (𝑠, ℎ) |= 𝜙 be its model. Then there exists ℎ′
such that (𝑠, ℎ′) |= 𝜙, and, for each predicate 𝜓 ≜ ls(𝑥, 𝑦) ∈ subformulae(𝜙), it holds that the
predicate 𝜓 is satisfied in a sub-heap of size at most one, i.e., it holds that either 𝑠(𝑥) = 𝑠(𝑦)
or ℎ′(𝑠(𝑥)) = 𝑠(𝑦).

Proof. Again, we will show how to construct a heap ℎ′ from the heap ℎ. Let 𝜙 ≜ *1≤𝑖≤𝑛 𝜓𝑖.
By the semantics of SSL, the heap ℎ can be decomposed into disjoint sub-heaps ℎ1, . . . , ℎ𝑛
such that ℎ = ℎ1 + · · · + ℎ𝑛, and, for all 1 ≤ 𝑖 ≤ 𝑛, it holds that (𝑠, ℎ𝑖) |= 𝜓𝑖. Using
Lemma 5.1, we can safely assume that all ℎ𝑖 does not contain any anonymous locations. It
holds that ℎ𝑖 is either an empty heap, a single pointer, or an acyclic sequence of pointers
with a uniquely determined source 𝑥 and sink 𝑦. In the third case, we reduce it to a heap
ℎ′𝑖 = {𝑥 ↦→ 𝑦}. Graphically, this can be visualised as:

𝑥 𝑢 𝑣 𝑦 ⇝ 𝑥 𝑢 𝑣 𝑦

Since the reduction can only decrease domains, we have that ℎ′ = ℎ′1 + · · · + ℎ′𝑛 ̸= ⊥.
We will further show that (𝑠, ℎ′𝑖) |= 𝜓𝑖 for each 𝑖. The only nontrivial case is 𝜓𝑖 ≜ ls(𝑥, 𝑦)
because sub-heaps of pure atoms and points-to assertions are not modified. If 𝑠(𝑥) =
𝑠(𝑦), then ℎ𝑖 = ∅ and consequently ℎ𝑖 = ℎ′𝑖. If 𝑠(𝑥) ̸= 𝑠(𝑦), then ℎ′𝑖(𝑠(𝑥)) = 𝑠(𝑦) and
dom(ℎ′) = {𝑥}. Thus, (𝑠, ℎ′𝑖) |= 𝜓𝑖 for all 𝑖, and consequently (𝑠, ℎ′) |= 𝜙. Moreover, for
each ls(𝑥, 𝑦) ∈ subformulae(𝜙) it holds that either 𝑠(𝑥) = 𝑠(𝑦) or ℎ′(𝑠(𝑥)) = 𝑠(𝑦) by the
definition of the reduction.

50

Using the previous lemma, we can encode the list-segment predicate ls(𝑥, 𝑦) occurring
in a symbolic heap in constant space as:

T𝑥
𝑛(ls(𝑥, 𝑦), ℎ,𝐷) ≜ (𝑥 = 𝑦 ∧𝐷 = ∅) ∨ (𝑥 ̸= 𝑦 ∧ ℎ[𝑥] = 𝑦 ∧𝐷 = {𝑥})

Consequently, if 𝜙 is a symbolic heap, its translation T(𝜙,x) has a linear size.

5.2 Tighter Bounds for General Formulae
In this section, we will describe our original approach for computing more precise location
and list-length bounds based on SL-graphs. SL-graphs were already used in [11] to design a
polynomial decision procedure for symbolic heaps, but we will use them in a slightly different
context. For simplicity, we will focus on formulae which do not contain septractions.

Definition 5.1 (SL graph). Let x be a set of variables. SL-graph over x is a tuple 𝐺 =
(x,○↦→,○⇝,○=,○̸=) where

• ○↦→ ⊆ x× x defines directed points-to edges,

• ○⇝ ⊆ x× x defines directed list-segment edges,

• ○= ⊆ {{𝑥, 𝑦} | 𝑥, 𝑦 ∈ x} defines undirected equality edges,

• ○̸= ⊆ {{𝑥, 𝑦} | 𝑥, 𝑦 ∈ x} defines undirected disequality edges.

Individual relations of 𝐺 are must-equalities (○=), must-disequalities (○̸=), must-pointers (○↦→),
and must-list segments (○⇝). Intuitively, they represent atomic relations between variables,
that hold in all models of some formula 𝜙. We also define the set of variables that must be
allocated in some formula 𝜙:

alloc(𝐺) = {𝑥 ∈ x | ∃𝑦 ∈ x. 𝑥○↦→ 𝑦 ∨ (𝑥 ○̸= 𝑦 ∧ 𝑥○⇝ 𝑦)}

In other words, variable 𝑥 is allocated if it is either a source of some must-pointer, or a
source of some non-empty must-list segment.

To compute SL-graph of a formula 𝜙 w.r.t. variables x, denoted as 𝐺x[𝜙], we define
several auxiliary functions:

𝐺1 ⊓𝐺2 =
(︀
x,○↦→𝐺1

∩○↦→𝐺2
,○⇝𝐺1

∩○⇝𝐺2
, (○=𝐺1

∩○=𝐺2
)*,○̸=𝐺1

∩○̸=𝐺2

)︀
𝐺1 ⊔𝐺2 =

(︀
x,○↦→𝐺1

∪○↦→𝐺2
,○⇝𝐺1

∪○⇝𝐺2
, (○=𝐺1

∪○=𝐺2
)*,○̸=𝐺1

∪○̸=𝐺2

)︀
𝐺1 +⊔ 𝐺2 =

(︀
x,○↦→𝐺1

∪○↦→𝐺2
,○⇝𝐺1

∪○⇝𝐺2
, (○=𝐺1

∪○=𝐺2
)*,○̸=𝐺1

∪○̸=𝐺2
∪(alloc(𝐺1)× alloc(𝐺2)

)︀
The first two operations perform the intersection and the union of all edges, respectively.
The disjoint union of two SL-graphs, 𝐺1 +⊔ 𝐺2, additionally adds pairs of variables allo-
cated in both models to must-disequalities. Observe that we always take the reflexive and
transitive closure of muse-equalities to achieve that○= is the equivalence relation.

51

Definition 5.2 (SL-graph of a formula). Let 𝜙 be a formula and let x be a set of variables.
An SL-graph 𝐺x[𝜙] of 𝜙 over x is defined inductively on the structure of the formula 𝜙 as
follow:

• 𝐺x[𝑥 = 𝑦] = (x, ∅, ∅, {𝑥○= 𝑦}, ∅)

• 𝐺x[𝑥 ̸= 𝑦] = (x, ∅, ∅, ∅, {𝑥 ○̸= 𝑦})

• 𝐺x[𝑥 ↦→ 𝑦] = (x, {𝑥○↦→ 𝑦}, ∅, ∅, ∅)

• 𝐺x[ls(𝑥, 𝑦)] = (x, ∅, {𝑥○⇝ 𝑦}, ∅, ∅)

• 𝐺x[¬𝜙] = (x, ∅, ∅, ∅, ∅)

• 𝐺x[𝜙1 ∧ 𝜓2] = 𝐺[𝜙1] ⊔𝐺[𝜙2]

• 𝐺x[𝜙1 ∧¬ 𝜙2] = 𝐺[𝜙1]

• 𝐺x[𝜙1 ∨ 𝜙2] = 𝐺[𝜙1] ⊓𝐺[𝜙2]

• 𝐺x[𝜙1 * 𝜙2] = 𝐺[𝜙1] +⊔ 𝐺[𝜙2]

Lemma 5.3. Let 𝜙 be an SSL formula Then the following correctness conditions for must-
predicates hold:

• If 𝑥○= 𝑦, then ∀(𝑠, ℎ) ∈ [[𝜙]]x. (𝑠, ℎ) |= 𝑥 = 𝑦 * true

• If 𝑥 ○̸= 𝑦, then ∀(𝑠, ℎ) ∈ [[𝜙]]x. (𝑠, ℎ) |= 𝑥 ̸= 𝑦 * true

• If 𝑥○↦→ 𝑦, then ∀(𝑠, ℎ) ∈ [[𝜙]]x. (𝑠, ℎ) |= 𝑥 ↦→ 𝑦 * true

• If 𝑥○⇝ 𝑦, then ∀(𝑠, ℎ) ∈ [[𝜙]]x. (𝑠, ℎ) |= ls(𝑥, 𝑦) * true

• ∀(𝑠, ℎ) ∈ [[𝜙]]x. alloc(𝐺) ⊆ dom(ℎ)

Proof (sketch). In all the cases, the computation of 𝐺x[𝜙] propagates must-relations from
atoms based on the boolean structure of the formula 𝜙. Only in the case of the negation, it
sets all must-relations to be empty, based on the semantics of negation in SSL. In the case
of the separating conjunction 𝜓1 * 𝜓2, all must-relations of 𝜓𝑖 for 𝑖 = 1, 2 must also hold
in 𝜓1 * 𝜓2. If 𝑥 must be allocated in 𝜓1 and 𝑦 must be allocated in 𝜓2, then 𝑥 ̸= 𝑦 in all
models of 𝜓1 * 𝜓2.

Let x/○= be the partition of variables induced by the must-equality relation. We define
the number of must-pointers 𝑝 as 𝑝 = |{𝑥 ∈ x/○= | ∃𝑦 ∈ x/○=. 𝑥○↦→ 𝑦}|. Now we are ready
to define the location bound of a formula more precisely. Recall that the proofs of small
model properties (Theorem 3.4, Theorem 3.5) assumed the worst-case when all variables
are distinct, and that each variable is allocated and gives rise to a chunk of size two. Based
on must-equalities and must-pointers, we can relax those assumptions – we do not have to
take into account those variables that are surely equivalent to others, and for each must-
pointer, we can decrease the bound by one because we know that it will induce a chunk of
size exactly one:

bound′(𝜙,x) =

{︃
2 · |vars+(𝜙)/○=| − 𝑝+ 1 if 𝜙 is positive
2 · |(x ∖ {nil})/○=|+ ⌈𝜙⌉ − 𝑝+ 1 otherwise

52

Lemma 5.4. Let 𝜙 be a satisfiable formula and let vars(𝜙) ⊆ x be set of variables. Then
there exists model (𝑠′, ℎ′) such that (𝑠′, ℎ′) |= 𝜙 and |locs(ℎ′)| ≤ bound′(𝜙,x).

Proof. The proof is analogical to the proofs of Theorem 3.4 and 3.5 with two exceptions.
First, there are at most |vars+(𝜙)/○=| allocated variables for positive formula, and at most
|(x ∖ {nil})/○=| allocated variables for general formulae. Second, there are at least 𝑝 chunks
which consist of a single pointer and will therefore need just a single location in the worst-
case.

The second use case of SL-graphs is to compute more precise list-length bounds. Let
𝐺 = (x,○↦→,○⇝,○=,○̸=) be an SL-graph of 𝜙 over x and let 𝐺 ↦→ = (x,○↦→). Further, let the
location bound 𝑛 = bound′(𝜙,x).

ls_bound(ls(𝑥, 𝑦)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, 0] if 𝑥○= 𝑦,

[0, 1] otherwise if 𝑥○↦→ 𝑦,
[𝑘, 𝑙] otherwise if there exists a simple path 𝑥

𝜋
⇝ 𝑦 in 𝐺 ↦→ such

that |𝜋| = 𝑙 and 𝜋′ is the maximal prefix of 𝜋 of length
|𝜋′| = 𝑘 such that for all 𝑣1, 𝑣2 ∈ 𝜋′. 𝑣1 ○̸= 𝑣2,

[0,𝑚] otherwise if ls(𝑥, 𝑦) has the positive polarity in 𝜙

and 𝑚 = 𝑛− |alloc(𝐺)| + 1,

[0, 𝑛] otherwise.

We will now describe the individual cases in detail:

• If 𝑥○= 𝑦, then the list segment clearly must be empty.

• If 𝑥○↦→ 𝑦, then the list segment is either a single pointer, or it is empty if 𝑥 = 𝑦.

• The third case is a generalisation of the second case. If there exists a sequence of
must-pointers from 𝑥 to 𝑦 of length 𝑙, then the maximal length of the list segment
is 𝑙. The minimal length is determined using the maximal prefix of this sequence such
that all of its elements are guaranteed to be distinct.

• The fourth case uses the fact that the list segment cannot allocate variables that
are allocated by some other sub-formulae. This is, however, applicable only if the
predicate ls(𝑥, 𝑦) has a positive polarity, i.e., we know that it must be satisfied. Then
we can subtract the number of the surely allocated variables except one. This is
because a one of must-allocated variable may origin from them list segment ls(𝑥, 𝑦)
itself.

53

Chapter 6

Implementation

This chapter describes our implementation of the proposed decision procedure in a new
solver called Astral (Automation for strong-separation logic). The implementation of
the translation and bound computation straightforwardly follows their mathematical defi-
nitions. We therefore focus on the implementation of the solver’s front-end and the SMT
back-end.

6.1 Architecture
Astral is written in the OCaml programming language and it is publicly available1 under
the MIT license. The OCaml language was chosen because it offers a trade-off between
performance and high-level abstraction. We divide the architecture of the solver into three
parts: (1) the front-end deals with input parsing and preprocessing, (2) the decision proce-
dure implements the translation and its optimisations, and (3) the SMT back-end handles
communication with SMT solvers.

6.2 Front-end
The solver accepts as an input a formula in the format specified by the SL-COMP

competition [16]. The format extends the SMT-LIB v2 format by adding commands for
declaring the type of the heap and for specification of inductive predicates. Currently,
Astral does not support arbitrary typing of heaps. Instead, it requires locations to be
defined as an uninterpreted sort with the fixed name Loc and the heap to be declared with
the sort Loc −→ Loc. To parse the input, we use a generic parser for logical languages
implemented in the Dolmen2 library.

An example of the input can be seen in Listing 6.1. The example also shows how we
deal with the fact that satisfiability is parametrised by a set of variables x in SSL. Since the
format allows to declare variables that are not used, we set x to be the set of all declared
location variables (plus nil) in the input file.

After parsing, we perform a basic preprocessing of the input. Its main reason is to
introduce guarded negations which are not explicitly specified in the input. This is achieved
by pushing negations bottom-up as far as possible (i.e., until they reach either the top of
the formula or a spatial connective). The process may yield a positive formula even for

1https://github.com/TDacik/Astral
2https://github.com/Gbury/dolmen

54

https://github.com/TDacik/Astral
https://github.com/Gbury/dolmen

;; Declaration of location sort. Currently fixed to this form by Astral.
(declare-sort Loc 0)

;; Declaration of heap sort. Currently fixed to this form by Astral.
(declare-heap (Loc Loc))

;; Declaration of location variables
(declare-const x Loc)
(declare-const y Loc)
(declare-const z Loc)

;; Input formula
(assert (ls x y))

(assert
(sep

(not emp)
(not emp)
(not emp)

)
)

(check-sat)

Figure 6.1: An example of the input format for the formula ls(𝑥, 𝑦)∧ (¬emp*¬emp*¬emp)
over the set of variables x = {𝑥, 𝑦, 𝑧, nil}. The variable nil is always added implicitly.

inputs where this is not obvious. For example, the formula ls(𝑥, 𝑦) ∧ (¬𝑥 = 𝑦 ∧ ¬𝑥 ↦→ 𝑦)
will be rewritten to the positive formula ls(𝑥, 𝑦) ∧¬ (𝑥 = 𝑦 ∨ 𝑥 ↦→ 𝑦).

6.3 SMT Back-end
The first version of Astral implemented the translation directly using an OCaml binding
for Z3. Later, we have found interesting to try performance of other SMT solvers. This
would be more easy, if we could use theories standardised in the SMT-LIB standard – we
would use the Z3 OCaml binding to output the translated formula in the SMT-LIB format
and then call another solver on the file. Neither the theory of sets or the generalised theory
of arrays is, however, not standardised by SMT-LIB.

We have therefore decided to implement a more generic SMT back-end that allows
Astral to use multiple SMT solvers. Instead of using the Z3 OCaml binding for repre-
sentation of the translated formula, we implemented our own inner representation of SMT
formulae and models. The inner representation of formulae is then translated to the input
language of the selected solver using a back-end for the given solver. If the solver returns
sat and a model, then the back-end translates the model back into our inner representation.

On the one hand, this solution required to re-implement some features already provided
by the Z3 binding (such as substitution of terms). On the other hand, it allowed us to
work with higher-level concepts during the translation and let the low-level details of their
translation to individual back-ends. Currently, we have two back-ends for concrete solvers
and one for their parallel combination:

55

• Z3 back-end – The Z3 solver is the default one and is therefore always installed
with Astral. The translation from our inner representation is done using the OCaml
binding of Z3. Our experiments show that this backend is faster for formulae including
list-segment predicates.

• cvc5 back-end – The cvc5 solver is not installed together with Astral and if
one wants to use it, it has to be installed in the path. Since it currently does not
have an OCaml binding, we translate our internal representation to the SMT-LIB
format using the cvc5’s syntax for sets, store it to a temporary file, and call cvc5
in another process. After the solver finishes, we have to parse the model from its
SMT-LIB representation. This of course bring some additional overhead, but the
cvc5 back-end still usually performs better than Z3 backend for formulae which do
not contain list-segment predicates.

• Parallel back-end – Our experiments show that none of the previously mentioned
solvers is strictly better. An obvious solution is therefore to run them both in parallel
and wait for the first one which returns a result. We have implemented this approach
using Domainslib3 which implements high-level mechanisms for running multiple
tasks in parallel running threads.
Unfortunately, thread-level parallelism is not available in OCaml prior to its ver-
sion 5.0 because of its usage of a global runtime lock4. Since OCaml 5.0 is still in
its alpha version, some libraries used in Astral are not compatible with it. The
parallel back-end therefore could not be merged into the main branch of Astral and
experimentally evaluated.

3https://github.com/ocaml-multicore/domainslib
4https://ocamlverse.github.io/content/parallelism.html

56

https://github.com/ocaml-multicore/domainslib
https://ocamlverse.github.io/content/parallelism.html

Chapter 7

Experimental Evaluation

This section is devoted to an experimental evaluation of the proposed decision procedure.
First, we focus on a comparison with other translation-based decision procedures imple-
mented in the tools Sloth [18] and Grasshopper [28]. We performed experiments on
two categories of the international competition SL-COMP [32]. Those categories include
manually crafted formulae and also real-life verification conditions generated by verification
tools.

Then, we conducted an experimental comparison with the decision procedure imple-
mented in the SMT solver cvc5. Since Astral cannot handle benchmarks used to evaluate
cvc5 [30], which frequently contain unguarded negations, we prepared our own benchmarks
focused on guarded negations and septractions. Those benchmarks consist of crafted para-
metric formulae with growing complexity and randomly-generated formulae.

During this chapter, we will use Astral-Z3 and Astral-cvc5 to refer to the the
Astral solver running with Z3 and cvc5 back-end, respectively. All experiments were
conducted on a machine with 2.5 GHz Intel Core i5-7300HQ processor and 16 GiB RAM,
running Ubuntu 18.04. The benchmark consisting of preprocessed formulae from SL-COMP,
generated parametric formulae, and randomly-generated formulae is available as a github
repository1. The repository also contains translations of those formulae to formats used by
Sloth and Grasshopper.

7.1 Comparison with Translation-Based Decision Procedures
First, we will compare Astral with other decision procedures based on a translation to
SMT. The first of them is Sloth [17], which implements a translation based on a small-
model property and was the main inspiration of our approach. The second is Grasshop-
per, which translates the input formula to an intermediate logic called GRASS, which is
later translated to SMT using a partial instantiation of GRASS axioms [28]. Note that
Grasshopper is not a solver, rather a verification tool for heap-manipulating programs.
To run it as a solver with minimal overhead, we encode an entailment formula 𝜙 |= 𝜓 as the
empty program with the precondition 𝜙 and postcondition 𝜓. Such a program is verified
iff the entailment is valid. Similarly, we encode satisfiability of a formula 𝜙 as the empty
program with the precondition 𝜙 and postcondition ⊥. Such a program is verified iff the
formula is unsatisfiable.

1https://github.com/TDacik/seplog-bench/

57

https://github.com/TDacik/seplog-bench/

Table 7.1: Experimental results for the category QF_SHLS_SAT.

Results Times [s]
Solver Correct Wrong Timeouts Winner Total Mean Maximal

Astral-cvc5 110 0 0 100 6.71 0.06 0.13
Astral-Z3 110 0 0 10 31.47 0.28 3.48
Grasshopper 110 0 0 0 161.09 1.46 11.03
Sloth 0 0 110 0 - - -

Table 7.2: Experimental results for the subset of the category QF_SHLS_ENTL containing
verification conditions. The total and mean time are computed including TOs, maximum
time excluding TOs.

Results Times [s]
Solver Correct Wrong Timeouts Winner Total Mean Maximal

Astral-cvc5 85 0 1 27 75.11 0.87 0.82
Astral-Z3 86 0 0 22 4.67 0.05 0.70
Grasshopper 86 0 0 37 5.37 0.06 1.99
Sloth 62 19 5 0 637.26 20.44 7.41

Both Astral and Grasshopper are implemented in OCaml. Sloth is implemented
in Python, and the results can be therefore skewed by different speeds of those languages
(Ocaml is believed to be faster in general because it is a compiled language). We could
measure just the time of calls to an SMT solver, but this would ignore improvements in
translation such as the bound computation used in Astral. We therefore decided to
measure the overall run time for all solvers. Another source of distortion can be usage of
different backend SMT solvers. As for Astral, we used it in modes running Z3 and cvc5.
Grasshopper can use both Z3 and cvc4 (an older version of cvc5), but its latest version
crashes when Z3 is used. Therefore, we use it only with the cvc4 back-end. Sloth can be
run only using Z3.

In the comparison, we focused on the categories QF_SHLS_SAT and QF_SHLS_ENTL
of SL-COMP, which stand for satisfiability and entailment in the symbolic heap fragment
with lists, respectively. The satisfiability benchmark consists solely of randomly generated
formulae. The complexity of those formulae ranges from 10 to 20 variables with an in-
creasing number of atoms. The entailment benchmark contains both crafted formulae and
real-life verification conditions. Those verification conditions mostly originate from the tool
Smallfoot [7]. The crafted formulae are either randomly generated, or they are created
by cloning the previously mentioned verification conditions (note that the cloning is used
only to increase the complexity and such formulae do not represent verification problems
anymore). The process of generating and cloning is in details described in [27]. Because the
difficulty of crafted formulae and verification conditions differ (random formulae contain up
to 20 list-segment predicates while verification conditions not more than 5), we consider
them as two separate categories in our experiment. We set the timeout of 60 seconds for
all experiments in this section.

The results for the category QF_SHLS_SAT are given in Table 7.1. The table shows
that Sloth is not able to solve any of the formulae, and both configurations of Astral
outperform Grasshopper. Moreover, Astral-cvc5 wins in almost 90 % of all cases.

58

Table 7.3: Experimental results for crafted formulae from the category QF_SHLS_ENTL.
The total and mean time are computed including TOs, maximum time excluding TOs.

Results Times [s]
Solver Correct Wrong Timeouts Winner Total Mean Maximal

Astral-cvc5 66 0 144 44 8 651 41.19 7.35
Astral-Z3 174 0 36 125 3 072 14.63 57.41
Grasshopper 140 0 70 25 5 480 26.09 52.03
Sloth 68 0 142 0 8 744 41.63 29.98

(a) QF_SHLS_ENTL (random formulae) (b) QF_SHLS_ENTL (verif. conditions)

Figure 7.1: A comparison of running times of Astral-Z3 and Grasshopper on entail-
ments in the symbolic heap fragment. Times are in seconds and timeout was set to the 60
seconds. Axes are logarithmic.

Based on our experiments, the significant difference between Astral and Sloth is due to
improved bounds proved in Section 5.1.

The results for verification conditions from the category QF_SHLS_ENTL are given
in Table 7.2. All formulae were correctly solved by both Astral-Z3 and Grasshopper.
While Grasshopper wins in more cases, Astral-Z3 is faster overall. The difference is,
however, negligible. This can be also seen in Figure 7.1b. Astral-cvc5 times out in one
case, but otherwise solves all formulae under one second. This demonstrates that Astral
can effectively solve formulae coming from real-life applications. This is not true for Sloth
which times out in five cases even on very simple formulae. Moreover, in 19 cases, it
returns ”invalid“ for a valid entailment. This seems to be an implementation bug because
it manifests even for simple entailments such as ls(𝑥, 𝑦) |= ls(𝑥, 𝑦). We have reported the
issue2, but it was not confirmed at the time of writing this thesis.

Results for crafted formulae from the category QF_SHLS_ENTL are given in Table 7.3.
The results suggest that formulae with many list-segment predicates (up to 20) are hard
for all translation-based solvers. The best is Astral-Z3 which, however, still timeouts
in 36 cases. A detailed comparison of Astral and Grasshopper is given in Figure 7.1a.
The figure shows that Grasshopper wins mostly on easy unsatisfiable formulae that are

2https://github.com/katelaan/sloth/issues/1

59

https://github.com/katelaan/sloth/issues/1

(a) Translated formula size (b) Running time

Figure 7.2: A comparison of Astral-Z3 running with the list-length bounds computation
and without it for crated entailments in the symbolic heap fragment. Times are in seconds
and the timeout was set to 60 seconds. Axes are logarithmic.

solved under a tenth of second by both solvers. Astral times out mostly for unsatisfiable
formulae, but it is able to solve many satisfiable formulae that Grasshopper cannot solve.

We also compared Astral with Asterix [22] which won the previous edition of SL-
COMP in the considered categories. Asterix can solve all instances almost immediately
(under 0.006 seconds) and beats Astral in all the cases. This is, however, an expected
result because Asterix implements a specialised algorithm for the symbolic heap fragment
while Astral targets much more complex logic.

7.2 Evaluation of List-Length Bounds Computation
We believe that the main improvement of the translation implemented in Astral are
methods for bound computation. Especially, methods for computing bounds of lengths of
list-segment predicates. To verify this hypothesis, we run Astral with and without the list-
length bound computation on crafted formulae from the category QF_SHLS_ENTL. Notice
that, for satisfiability in the symbolic heap fragment, the list-length bound computation
does not help because, in this fragment, we always have the bound [0, 1] for each list-segment
predicate by Lemma 5.2.

First, we compare the sizes of translated formulae. We measure the size of a formula as
the number of nodes in its AST. The size is measured without any simplification. The results
are shown in Figure 7.2a. The size of translated formulae ranges from 100 to 1 million.
There are several clusters of formulae which are probably caused by the fact that those
formulae are crafted and randomly-generated. For some formulae, there is no difference in
size, but there are formulae whose size is more than five times lesser when the list bounds
are used.

Figure 7.2b shows that the reduced size has a significant positive impact on the running
time. In 65 cases out of 210, it allows us to solve problems which would otherwise timeout.
Among of them, there is a lot of unsatisfiable formulae that are now solved under one second.

60

There are several satisfiable formulae such that the running time is higher although their
size is smaller (one of them even timeouts), but the heuristics performs still better for a
majority of satisfiable formulae. However, it seems that the list-length bound computation
helps more in the case when formula is unsatisfiable. This is natural because it restricts
the state space that an SMT solver has to search to declare a formula as unsatisfiable. On
the other hand, this could be a consequence of how formulae are generated.

7.3 Comparison with cvc5
In this section, we present an experimental comparison of Astral with the decision pro-
cedure for SL implemented in the SMT solver cvc5. This decision procedure targets a
fragment that is incomparable with the fragment supported by Astral. On the one hand,
cvc5 supports arbitrary magic wands. On the other hand, it does not support list-segment
predicates at all. Moreover, in the presence of unguarded negations, there could be a
difference between the standard semantics of separation logic used by cvc5 and the strong-
separation semantics used by Astral. For the following experiment, we have extended
Astral with an option to perform translation in the classical semantics (the translation
will not generate constraints that locations shared by sub-heaps are named). We will not
prove this claim, but with this modification, Astral should be sound for the considered
fragment under the classical semantics of SL.

We first tried Astral on the SL-COMP category QF_BSL_SAT which precisely cor-
responds to the fragment supported by cvc5, which was also the only participant in this
category in the last edition of SL-COMP3. Formulae from this benchmark frequently con-
tain a negation under a separating conjunction which itself lies under another negation.
Such formulae are extremely hard for Astral because they trigger an extensive enumer-
ation over footprints when separating conjunctions are translated. Consequently, Astral
was able to solve only two simplest formulae of the category. In the rest of the experiments,
we therefore focused on a fragment that contains negations in a limited form only.

7.3.1 Parametric Formulae

To do a comparison on a fragment that Astral can handle, we prepared several sets of
parametric formulae with growing complexity based on a parameter 𝑛. Those formulae
focus on usage of septractions, and negations under separating conjunctions, i.e., features
that are extensions of the previously proposed translation-based procedures. Note that
cvc5 does not support septractions directly and we therefore encode them as magic wands.
We used the time limit of 40 seconds for all the experiments.

• Heap size. The first formula states that the heap can be split into 𝑛 non-empty
sub-heaps, i.e., that the heap has size at least 𝑛:

size≥𝑛 ≜ ¬emp * · · · * ¬emp⏟ ⏞
𝑛 times

The formula contains negations under separating conjunctions, but all separating
conjunctions can be translated using Skolemization. The results in Figure 7.3a show
that Astral can solve such formulae efficiently and even slightly faster than cvc5.

3https://www.irif.fr/~sighirea/sl-comp/19/qf_bsl_sat.html

61

https://www.irif.fr/~sighirea/sl-comp/19/qf_bsl_sat.html

(a) Heap size (b) Exact heap size

(c) Septractions (d) Pointers using septractions

Figure 7.3: A comparison of Astral and cvc5 on parametric formulae with complexity
growing based on a parameter 𝑛. The timeout was set to 40 seconds.

• Exact heap size. The second formula states that the heap has size exactly 𝑛:

size=𝑛 ≜ size≥𝑛 ∧ ¬size≥𝑛+1

Unlike in the case of the previous formula, separating conjunctions in the sub-formula
¬size≥𝑛+1 cannot be translated using Skolemization. Figure 7.3b shows that the
formula is indeed very hard for all solvers even for very small 𝑛. Astral-Z3 is able
to solve it for 𝑛 = 1 only (and, for 𝑛 = 2, in 47 seconds, which is slightly above the
time limit) and cvc5 for 𝑛 = 4 only. Astral-cvc5 is not shown in the figure because
its backend solver always gives-up and returns unknown.

• Septractions. The third formula uses septractions to express that variables 𝑥1, . . . , 𝑥𝑛
are not allocated:

not_alloc(𝑥1, . . . , 𝑥𝑛) ≜
(︀
(𝑥1 ↦→ nil)−⊛ true

)︀
* · · · *

(︀
(𝑥𝑛 ↦→ nil)−⊛ true

)︀
The formula can be trivially satisfied by the empty heap. We use it to benchmark
how Astral can deal with septractions combined with negations (the atom true is
syntactic sugar for emp ∨ ¬emp). Due to its simplicity, the formula can be quickly

62

(a) Guarded negations (b) Septractions

Figure 7.4: A comparison of Astral-Z3 and cvc5 on randomly generated formulae. The
timeout was set to 60 seconds. Axes are logarithmic.

solved by all solvers even for 200 variables. Astral-cvc5 performs best, and, for
𝑛 = 200, it is two times faster than cvc5.

• Pointers using septractions. The last formula expresses that the heap contains a cyclic
sequence of pointers using septractions:

ptr_septr𝑛 ≜
(︀
emp−⊛ 𝑥1 ↦→ 𝑥2

)︀
* · · · *

(︀
emp−⊛ 𝑥𝑛−1 ↦→ 𝑥𝑛

)︀
*
(︀
emp−⊛ 𝑥𝑛 ↦→ 𝑥1

)︀
The results in Figure 7.3c show that both versions of Astral outperform cvc5.
Moreover, Astral-cvc5 is able to solve formulae for 𝑛 = 50 quite fast, while cvc5
runs out of the time already for 𝑛 = 25.

7.3.2 Randomly Generated Formulae

To further compare solvers on problems with less regular structure than in the case of
parametric formulae, we prepared two sets of randomly generated formulae. All formulae
were generated as random binary balanced trees of depth six over eight variables. Those
parameters were selected based on experiments to achieve a reasonable complexity of the
generated formulae. Atoms were restricted to points-to assertions only. Pure atoms were
not used because cvc5 uses an imprecise semantics for them (they can be satisfied on an
arbitrary heap) and Astral uses the precise semantics (they can be satisfied on the empty
heap only). Those semantics may be easily converted to each other, but we rather do not
use them in this experiment. We use the QCheck tool 4 to generate the formulae. We
have generated two sets of 500 formulae. Those sets differs in the allowed connectives:

• Guarded negations. This fragment focuses on mixing separating conjunctions with
boolean conjunctions, disjunctions and guarded negations. The top-level connective
is always a guarded negation (the formulae therefore represent entailments). Note

4https://github.com/c-cube/qcheck

63

https://github.com/c-cube/qcheck

that those formulae are not necessary in the fragment SSL𝐸 , i.e., their translation
can have an exponential size. This is because separating conjunctions can be negated
by guarded negations and footprints are not guaranteed to be unique because of
disjunctions. However, the exponential blow-up should not be as significant as in case
of unguarded negations.

• Septractions. In this set, we added septractions but removed guarded negations. All
formulae of the set are therefore in SSL𝐸 because all separating conjunctions can be
translated using Skolemization.

We used Astral-Z3 for the comparison. It would be better to use Astral-cvc5 to
show that differences are not caused by other back-end technologies, but on many of the
randomly generated formulae, Astral-cvc5 gives-up with the unknown result. It seems
that during the translation, we use some combinations of features that is not supported
by cvc5. However, we have not been able to track down what this combination is at
the time of writing this thesis. On the other hand, all previous experiments show that
Astral-cvc5 is faster than Astral-z3 on formulae without list-segment predicates, and
we therefore believe that the comparison is fair.

The results for the first set are shown in Figure 7.4a. Due to the way how the formulae
were generated, there are more unsatisfiable formulae. On almost all satisfiable formulae,
Astral-Z3 is faster. There are also several satisfiable formulae which cvc5 cannot solve
in the limit but Astral-Z3 solves them under one second. The results for the second set
are shown in Figure 7.4b. Here, almost all generated formulae are unsatisfiable. Again
Astral-Z3 is faster for all satisfiable. In our future work, we would like to more precisely
evaluate those experiments. In particular, we would like to run the experiment also with
Astral-cvc5 to see whether results are influenced by back-end SMT solver.

When performing experiments, we have found several formulae for which Astral and
cvc5 produced different results. It turned out that the problem was with septractions
and that incorrect results were produced by cvc5. We prepared a minimal example of the
incorrect behaviour and reported it5. The problem was in a heuristic that would, e.g., for
the septraction 𝑥 ↦→ 𝑦 −⊛ 𝑥 ↦→ 𝑦 conclude that the pointer 𝑥 ↦→ 𝑦 has to be in the model.
This is of course not true because the formula can be satisfied by the empty heap only. The
problem seems trivial when a septraction is used but it is much more complicated when
looking from the perspective of magic wands which are used in cvc5. The issue was fixed,
but when we repeated our experiments, we have found that the fix has introduced another
unsoundness6. Again, the issue was confirmed and fixed.

7.4 Summary and Future Work
Our experiments showed that Astral outperforms existing translation-based decision pro-
cedures implemented in the tools Sloth and Grasshopper on the frequently used symbolic
heap fragment. In the case of satisfiability for this fragment, our improvements are due to
improved bounds proved in Section 5.1. In the case of entailment, we have experimentally
evaluated that the improvement is due to the computation of bounds on lengths of list seg-
ment predicates. Moreover, Astral is able to efficiently solve all of considered problems
that originate from verification tools.

5https://github.com/cvc5/cvc5/issues/8659
6https://github.com/cvc5/cvc5/issues/8863

64

https://github.com/cvc5/cvc5/issues/8659
https://github.com/cvc5/cvc5/issues/8863

The comparison with the cvc5 solver shows that Astral has a problem with formulae
containing unguarded negations in such a way that it cannot use Skolemization. However,
we expected this because of our way of translating separating conjunctions using an exten-
sive enumeration over footprints and the fact, that we currently do not have heuristics to
tackle it. Future work in this direction can focus on trying to reduce possible footprints
of negations. This could be done, e.g., based on computation of variables that cannot be
allocated by the given negation using SL-graphs. Another possible direction is to develop
a method to perform the enumeration over footprints lazily.

65

Chapter 8

Conclusion

In this thesis, we proposed a decision procedure for strong-separation logic based on a trans-
lation to SMT and implemented this decision procedure in a new solver called Astral.
The translation is inspired by the previous works, but we have significantly extended the
fragment that can be translated. Those extensions include support for negations, limited
usage of septractions (and therefore also limited usage of magic wands), and support for
mixing of boolean and spatial connectives. We also proposed several original heuristics to
decrease size of translated formulae. Our experimental results showed that those heuris-
tics help our decision procedure to outperform other translation-based decision procedures
implemented in the tools Sloth and Grasshopper. The comparison with the decision
procedure implemented in the prominent SMT solver cvc5 on its own benchmark showed
that Astral cannot handle some classes of formulae containing negations yet. On the
other hand, experiments on parametric and randomly generated formulae suggest that As-
tral can efficiently handle formulae containing septractions or negations in the so-called
guarded form. On formulae containing guarded negations, it even significantly outperforms
the cvc5 solver. Moreover, based on those experiments, we found and reported several
incorrect results produced by cvc5 for formulae containing magic wands. Those turned to
be results of incorrect heuristics and were fixed based on our reports.

Future work. There are many possible directions for the future work. First of them is to
design an efficient methods to deal with formulae which contain unguarded negations, e.g.,
by using lazy enumeration when translating separating conjunctions. Another interesting
research direction is to extend expressivity of SSL. While trees and data constraints were
already studied in [24], another extensions such as user-defined inductive predicates or
quantifiers were not yet studied in the context of SSL. Finally, we would like to also study
how SSL can be used in automated program verification. In this direction, we would like
to focus on the so-called bi-abductive analysis [10].

66

Bibliography

[1] Appel, A. W., Dockins, R., Hobor, A., Beringer, L., Dodds, J. et al. Program
Logics for Certified Compilers. USA: Cambridge University Press, 2014. ISBN
110704801X.

[2] Bansal, K., Barrett, C., Reynolds, A. and Tinelli, C. A New Decision
Procedure for Finite Sets and Cardinality Constraints in SMT. In: IJCAR. 2017.

[3] Barbosa, H., Barrett, C. W., Brain, M., Kremer, G., Lachnitt, H. et al.
Cvc5: A Versatile and Industrial-Strength SMT Solver. In: TACAS. 2022.

[4] Barrett, C., Fontaine, P. and Tinelli, C. The SMT-LIB Standard: Version 2.6
[www.SMT-LIB.org]. 2021.

[5] Batz, K., Fesefeldt, I., Jansen, M., Katoen, J.-P., Keßler, F. et al.
Foundations for Entailment Checking in Quantitative Separation Logic. In: Sergey,
I., ed. Programming Languages and Systems. Cham: Springer International
Publishing, 2022.

[6] Berdine, J., Calcagno, C. and O’Hearn, P. W. A Decidable Fragment of
Separation Logic. In: FSTTCS. 2004.

[7] Berdine, J., Calcagno, C. and O’Hearn, P. W. Symbolic Execution with
Separation Logic. In:. Berlin, Heidelberg: Springer-Verlag, 2005. APLAS’05.

[8] Bradley, A. R. and Manna, Z. The Calculus of Computation: Decision Procedures
with Applications to Verification. 1stth ed. Springer Publishing Company,
Incorporated, 2010. ISBN 3642093477.

[9] Brotherston, J., Gorogiannis, N. and Petersen, R. L. A Generic Cyclic
Theorem Prover. In: APLAS. 2012.

[10] Calcagno, C., Distefano, D., O’Hearn, P. W. and Yang, H. Compositional
Shape Analysis by Means of Bi-Abduction. J. ACM. New York, NY, USA:
Association for Computing Machinery. 2011.

[11] Cook, B., Haase, C., Ouaknine, J., Parkinson, M. and Worrell, J. Tractable
Reasoning in a Fragment of Separation Logic. In: Proceedings of the 22nd
International Conference on Concurrency Theory. Berlin, Heidelberg:
Springer-Verlag, 2011. CONCUR’11.

[12] Demri, S., Lozes, É. and Mansutti, A. The Effects of Adding Reachability
Predicates in Propositional Separation Logic. In: Baier, C. and Lago, U. D.,

67

ed. Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018. Springer, 2018.

[13] Echenim, M., Iosif, R. and Peltier, N. The Bernays-Schönfinkel-Ramsey Class of
Separation Logic with Uninterpreted Predicates. ACM Transactions on
Computational Logic. 2019, vol. 21.

[14] Enea, C., Lengál, O., Sighireanu, M. and Vojnar, T. Compositional Entailment
Checking for a Fragment of Separation Logic. USA: Kluwer Academic Publishers.
dec 2017, vol. 51, no. 3, p. 575–607. ISSN 0925-9856.

[15] Iosif, R., Rogalewicz, A. and Vojnar, T. Deciding Entailments in Inductive
Separation Logic with Tree Automata. 2014.

[16] Iosif, R., Serban, C., Reynolds, A. and Sighireanu, M. Encoding Separation
Logic in SMT-LIB v2.5. In:. 2018.

[17] Katelaan, J., Jovanovic, D. and Weissenbacher, G. A Separation Logic with
Data: Small Models and Automation. In: IJCAR. 2018.

[18] Katelaan, J., Jovanovic, D. and Georg, W. Sloth: Separation Logic and
Theories via Small Models. In: Informal proceedings of the First Workshop on
Automated Deduction for Separation Logics (ADSL). 2018.

[19] Katelaan, J., Matheja, C., Noll, T. and Zuleger, F. Harrsh: A Tool for Unied
Reasoning about Symbolic-Heap Separation Logic. In: Barthe, G., Korovin, K.,
Schulz, S., Suda, M., Sutcliffe, G. et al., ed. LPAR-22 Workshop and Short
Paper Proceedings. 2018, vol. 9. Kalpa Publications in Computing.

[20] Moura, L. de and Bjørner, N. Generalized, efficient array decision procedures.
In: 2009 Formal Methods in Computer-Aided Design. 2009, p. 45–52.

[21] Moura, L. M. de and Bjørner, N. S. Z3: An Efficient SMT Solver. In: TACAS.
2008.

[22] Navarro Pérez, J. A. and Rybalchenko, A. Separation Logic Modulo Theories.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). march 2013, vol. 8301.

[23] O’Hearn, P. W. Resources, Concurrency and Local Reasoning. Theor. Comput. Sci.
2004, vol. 375.

[24] Pagel, J. Decision Procedures for Separation Logic: Beyond Symbolic Heaps.
Dissertation.

[25] Pagel, J. and Zuleger, F. Strong-Separation Logic. In:. March 2021, p. 664–692.
ISBN 978-3-030-72018-6.

[26] Parkinson, M. J. The Next 700 Separation Logics - (Invited Paper). In: VSTTE.
2010.

[27] Pérez, J. A. N. and Rybalchenko, A. Separation logic + superposition calculus =
heap theorem prover. In: PLDI ’11. 2011.

68

[28] Piskac, R., Wies, T. and Zufferey, D. Automating Separation Logic Using SMT.
In: Sharygina, N. and Veith, H., ed. Computer Aided Verification. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, p. 773–789.

[29] Piskac, R., Wies, T. and Zufferey, D. Automating Separation Logic with Trees
and Data. In: Proceedings of the 16th International Conference on Computer Aided
Verification - Volume 8559. Berlin, Heidelberg: Springer-Verlag, 2014, p. 711–728.
ISBN 9783319088662.

[30] Reynolds, A., Iosif, R. and King, T. A Decision Procedure for Separation Logic in
SMT. In: ATVA. 2016.

[31] Reynolds, J. Separation logic: A logic for shared mutable data structures. In:.
February 2002, p. 55– 74. ISBN 0-7695-1483-9.

[32] Sighireanu, M., Navarro Pérez, J. A., Rybalchenko, A., Gorogiannis, N.,
Iosif, R. et al. SL-COMP: Competition of Solvers for Separation Logic. In:. 2019.

[33] Ta, Q.-T., Le, T. C., Khoo, S.-C. and Chin, W.-N. Automated Lemma Synthesis in
Symbolic-Heap Separation Logic. Proc. ACM Program. Lang. New York, NY, USA:
Association for Computing Machinery. 2017, vol. 2, POPL.

69

Appendix A

Contents of the Attached Medium

The attached memory medium contains the following:
/

Astral/ ... source code of Astral
tex/ ... source codes of this thesis
xdacik00.pdf ... this thesis in PDF
seplog_bench/ ... formulae used for experiments

70

Appendix B

Installation and Usage

Source code of Astral can be found on the attached medium or online at https://
github.com/TDacik/Astral. The solver can be installed via opam package manager by
cloning the repository and running:

$ opam install

By default, Astral is installed with the Z3 solver. To use Astral with cvc5 backend, it
has to be installed manually and present in the path. After Astral is installed, it can be
run by the following command:

$ astral [options] formula.smt2

The most common options are:

• --debug . . . Store debug information such as translated formula in .smt2 format or
SMT models in astral_debug directory.

• --backend=<cvc5|z3> . . . Select backend SMT solver.

• --loc-bound=<n> . . . Force location bound to be 𝑛 (potentially unsound).

• --no-list-bounds . . . Do not use optimised translation of list-segment predicates

• --semantics=<weak|strong> . . . Default is strong. When option weak is used, result
can be unsound for formulae with negations.

71

https://github.com/TDacik/Astral
https://github.com/TDacik/Astral

	Introduction
	Preliminaries
	Mathematical Notation
	First-Order Logic and Satisfiability Modulo Theory
	Syntax and Semantics
	Satisfiability Modulo Theory
	Generalised Theory of Arrays

	Separation Logic
	Syntax
	Memory Model
	Semantics
	Decision Procedures for Separation Logic

	Strong-Separation Logic
	Syntax
	Weak- and Strong-Separation Semantics
	Comparison of Weak- and Strong-Separation Semantics
	Abstract Memory States
	Small-Model Property

	Decision Procedure for SSL
	Overview
	Translation of List-Segment Predicates
	Translation of Separating Conjunctions
	Translation of Septractions
	Translation to SMT
	Proof of the Correctness
	SMT Models
	Composition of SMT Models
	Translation Invariants

	Optimisations
	Tighter Bounds for Symbolic Heaps
	Tighter Bounds for General Formulae

	Implementation
	Architecture
	Front-end
	SMT Back-end

	Experimental Evaluation
	Comparison with Translation-Based Decision Procedures
	Evaluation of List-Length Bounds Computation
	Comparison with cvc5
	Parametric Formulae
	Randomly Generated Formulae

	Summary and Future Work

	Conclusion
	Bibliography
	Contents of the Attached Medium
	Installation and Usage

