
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A DECISION PROCEDURE FOR
STRONG-SEPARATION LOGIC
ROZHODOVACÍ PROCEDURA PRO SILNÉ-SEPARAČNÍ LOGIKU

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. TOMÁŠ D AC í K
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Master's Thesis Specification |||||||||||||||||||||||||
2 5 1 5 1

Student: Dacík Tomáš, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Mathematical Methods
Title: A Dec is ion Procedure for S t rong-Separa t ion Log ic
Category: Formal Verification
Assignment:

1. Study separation logic (SL), strong-separation logic (SSL), and possibilities of deciding
formulae of SL and SSL.

2. Propose a decision procedure for SSL having at least some potential advantages compared
with the existing decision procedures (e.g., in terms of their generality, ease of
implementation, and/or scalability).

3. Describe the proposed decision procedure and show its correctness.
4. Implement the proposed decision procedure in a prototype tool and experimentally evaluate

it.
5. Summarise the obtained results and discuss their possible future improvements.

Recommended literature:
• Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of

LICS'02, IEEE CS, 2002.
• O'Hearn, P.W.: Separation Logic. Communications of the ACM, 62(2), ACM, 2019.
• Katelaan, J., Jovanovic, D., Weissenbacher, G.: A Separation Logic with Data: Small Models

and Automation. In: Proc. of IJCAR'18, LNAI 10900, Springer, 2018.
• Pagel, J., Zuleger, F.: Strong-Separation Logic. In: Proc. of ESOP'21, LNCS 12648,

Springer 2021.
• Pagel, J.: Decision Procedures for Separation Logic: Beyond Symbolic Heaps. Ph.D. thesis,

Vienna University of Technology, 2020.
Requirements for the semestral defence:

• Point 1 and Point 2 at least for some suitable logical fragment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Vojnar Tomáš, prof. Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: July 29, 2022
Approval date: November 3, 2021

Master's Thesis Specification/25151/2021/xdacikOO Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
Separation logic (SL) is one of the most successful tools for verification of programs that
manipulate dynamical ly allocated memory. Its expressive power, however, comes at a cost of
undecidabil i ty when several of its features are combined, especially separating implications.
To circumvent this problem, the recently introduced strong-separation logic (SSL) uses
a stricter definition of the semantics, making it decidable, while remaining suitable for
verification. However, there is currently no implementat ion of a decision procedure for
S S L . In this work, we propose a decision procedure for S S L based on a translat ion to first-
order formulae that can be later solved by a specialised solver. O u r experimental results
on restricted fragments where S L and S S L coincide show that our approach can effectively
solve formulae obtained from verification tools based on S L and also outperform a l l other
existing translation-based decision procedures. Moreover, dur ing our experiments, we found
cases of unsoundness of the heuristics implemented in the decision procedure for S L that
is a part of the well-known c v c 5 S M T solver. Based on our reports, those heuristics has
been fixed.

Abstrakt
Sepa račn í logika (SL) p a t ř í mezi ne júspěšnějš í n á s t r o j e pro verifikaci p r o g r a m ů pracuj íc ích
s dynamicky alokovanou p a m ě t í . Jej í vysoká expresivita ovšem p ř ináš í nerozhodnutel-
nost pokud formule kombinuj í více jej ích spojek, p ř e d e v š í m sepa račn í implikace. Jako
řešení byla navrhnuta t a k z v a n á s i lně-separačn í logika (SSL) , k t e r á d íky s t r ik tně j š í definici
s é m a n t i k y rozšiřuje r o z h o d n u t e l n ý fragment a p ř i t o m zůs t ává v h o d n á pro verifikaci pro
g r a m ů . V současnos t i ale neexistuje ž á d n á implementace rozhodovac í procedury pro tuto
logiku. Tato p r á c e se zaměřu je na n á v r h a implementaci rozhodovac í procedury pro S S L za
ložené na p ř e k l a d u v s t u p n í formule na formuli v p rvo řádové logice, jejíž splnitelnost je p o t é
m o ž n é ověři t p o m o c í specia l izovaných n á s t r o j ů . E x p e r i m e n t á l n í výs ledky na o m e z e n é m
fragmentu, kde S L a S S L splývají , ukazuj í , že n a v r ž e n ý n á s t r o j je schopen efekt ivně řeši t
formule pocházej íc í z verif ikačních n á s t r o j ů a v ý r a z n ě p řekonává všechny o s t a t n í existuj ící
rozhodovac í procedury, k t e r é jsou t a k é za ložené na p ř e k l a d u . B ě h e m e x p e r i m e n t ů jsme t aké
odhal i l i několik p ř í p a d ů nekorektnosti heuristik použ i tých v rozhodovac í p r o c e d u ř e pro S L
i m p l e m e n t o v a n é v nás t ro j i CVC5. N a zák l adě naš ich h lášen í byly tyto heurist iky opraveny.

Keywords
Separation logic, strong-separation logic, decision procedure, S M T

Klíčová slova
Sepa račn í logika, s i lně-separačn í logika, rozhodovac í procedura, S M T

Reference
D A C Í K , T o m á š . A Decision Procedure for Strong-Separation Logic. Brno , 2022. Master 's
thesis. Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor prof.
Ing. T o m á š Vojnar, P h . D .

Rozšířený abstrakt
Logika se v pos ledn ích letech stala velmi u ž i t e č n ý m n á s t r o j e m v mnoha oblastech in
formatiky, p ř e d e v š í m v oblasti a u t o m a t i z o v a n é verifikace softwaru a hardwaru. Formule
v různých logikách lze použ í t nejen jako formáln í jazyk pro specifikaci ko rek tn ího chování
ana lyzovaného sys t ému , ale t a k é jako pomocnou technologii v programech, k t e r é korektnost
ověřují - n a p ř í k l a d pro reprezentaci nekonečných m n o ž i n konfigurací programu nebo pro
redukci v ý p o č e t n ě t ěžkých p r o b l é m ů , k t e r é se př i verifikaci objevují , na p r o b l é m y v logice.

T y p i c k ý m p r o b l é m e m v logice je splnitelnost formule, k t e r á se p t á , zda pro danou
formuli (p existuje objekt (zvaný model), k t e r ý j i splňuje . V pos ledn ích letech bylo věnováno
značné úsilí do vývoje n á s t r o j ů pro ověřování splnitelnosti ve výrokové logice (t akzvané S A T
solvery) a v teor i ích p rvo řádové logiky (imp lemen tované v t a k z v a n ý c h S M T solverech).
P ř e s t o ž e oba p r o b l é m y jsou NP- těžké a jejich obecné efekt ivní řešení je tedy považováno za
nedosaž i te lné , m o d e r n í n á s t r o j e dokáž í efekt ivně řeši t velké m n o ž s t v í formulí pocházej íc ích
z p r ak t i ckých apl ikac í . T y t o aplikace zahrnu j í n a p ř í k l a d ověřování verif ikačních p o d m í n e k
vygenerovaných př i d e d u k t i v n í verifikaci nebo a u t o m a t i c k é generování tes tovacích v s t u p ů
pro r eá lné programy.

M i m o klasické logiky existuj í dalš í logiky specia l izované pro usuzován í o různých as
pektech poč í t ačových p r o g r a m ů . P ř í k l a d e m je separační logika (SL) [31], k t e r á je h l a v n í m
p ř e d m ě t e m t é t o p ráce . Sepa račn í logika poskytuje obecný r á m e c pro m o d u l á r n í usuzován í
o sdí lených zdroj ích a jejich disjunktnosti . V ne jčas tě j š ím p ř í p a d ě je t í m t o sd í l eným zdro
jem dynamicky a lokovaná paměť . M o d u l á r n í usuzován í je za j i š těno novou logickou spojkou
zvanou separační konjunkce - formule ipi *ip2 vy jadřu je , že paměťovou haldu lze rozděl i t na
dvě čás t i tak, že p r v n í splňuje ipi a d r u h á ip2- Dalš í novou spojkou je separační implikace
(čas to n a z ý v a n á pro svůj vzhled magie wand - kouze lná h ů l k a) . Formule tp -<* tp je sp lněna
haldou, pro kterou p la t í , že pokud je rozš í řena o model formule ip, výs l edná halda splňuje ip.
Dalš í ingredienc í s epa račn í logiky jsou induktivní predikáty, k t e r é popisu j í d a t o v é struk
tury n e o m e z e n é délky, jako jsou seznamy nebo stromy, jejich varianty (nap ř . d v o u s m ě r n ě
vázané seznamy) a kombinace (nap ř . stromy se z ře t ězenými l is ty) . T y p i c k ý m p ř í k l a d e m
je p r e d i k á t \s(x,y) reprezentu j íc í acykl ický j e d n o s m ě r n ě vázaný seznam. K o n k r é t n í m pří
padem formule je \s(x, y) * y i-> x vyjadřuj íc í , že haldu lze rozděl i t na acykl ický seznam
z lokace x do lokace y, a ukazatel z lokace y do lokace x - formule tedy vyjadřu je cyklický
seznam.

Vysoká expresivita s epa račn í logiky sebou ovšem p ř ináš í vysokou složi tost , v p ř í p a d ě
n ě k t e r ý c h f r a g m e n t ů dokonce nerozhodnutelnost. S. Demr i n e d á v n o ukáza l , že kombinace
všech výše zmíněných ingredienc í (i nduk t ivn ích p r e d i k á t ů , s epa račn í konjunkce a s epa račn í
implikace) a boo leovských spojek je n e r o z h o d n u t e l n á [12]. R a d a verif ikačních n á s t r o j ů
tak pracuje s j e d n o d u š š í m i fragmenty logiky, k t e r é typicky neobsahu j í s epa račn í impl ikac i .
Sepa račn í implikace se ovšem př i rozeně objevuje n a p ř í k l a d ve verif ikačních p o d m í n k á c h
generovaných symbolickou exekucí [1] nebo v tzv. b i - a b d u k t i v n í ana lýze [10].

Mot ivován i výše z m í n ě n o u n e r o z h o d n u t e l n o s t í , J . Pagel a F . Zuleger n e d á v n o p ředs tav i l i
tzv. s i lně-separačn í s é m a n t i k u , př i k t e r é se výše z m í n ě n ý fragment s t ává r o z h o d n u t e l n ý m
v p o l y n o m i á l n í m prostoru [25]. Vzniklá silně-separační logika (SSL) koresponduje s kla
sickou s epa račn í logikou na tzv. pozitivním fragmentu neobsahu j í c ím negaci a s epa račn í
impl ikac i , a lze se na n i tedy d íva t jako na „zpě tně k o m p a t i b i l n í " rozší ření klasické S L .
V p rác i [25] je p ř e d s t a v e n koncept abstraktních pamětových stavů (konečné abstrakce nad
po t enc i á lně nekonečnými m n o ž i n a m i m o d e l ů) a n a v r ž e n a rozhodovac í procedura za ložená
na jejich enumeraci. Tato procedura ovšem slouží p ř e d e v š í m pro d ů k a z rozhodnutelnosti
a nebyla n ikdy i m p l e m e n t o v á n a .

Cílem t é t o p r á c e je navrhnout a implementovat rozhodovac í proceduru pro S S L . Nově
n a v r ž e n á rozhodovac í procedura pracuje na j i n é m pr inc ipu - p ř evád í v s t u p n í formuli v sep-
a r ačn í logice na ekvisplnitelnou formuli v p rvo řádové logice. Mot ivac í tohoto p ř í s t u p u
je snaha efekt ivně využ í t m o d e r n í c h n á s t r o j ů pro řešení S M T p r o b l é m u . Několik podob
ných p ř e k l a d ů již bylo n a v r ž e n o pro klasickou s epa račn í logiku, tato p r á c e ovšem v ý r a z n ě
rozšiřuje fragment, k t e r ý lze pře loži t , o omezené použ i t í s epa račn í implikace a l ibovolnou
kombinaci boo leovských a p ros to rových spojek. Nav íc je v p rác i n a v r ž e n o několik metod
snižujících velikost pře ložené formule, n a p ř í k l a d d íky v ý p o č t ů m dolních a horn ích omezen í
na dé lky s eznamů .

N a v r ž e n á rozhodovac í procedura je i m p l e m e n t o v á n a v n o v é m nás t ro j i A S T R A L a d íky
korespondenci klasické S L a S S L umožňu je řeši t i ř a d u formulí v klasické s epa račn í logice.
M i m o j iné n a p ř í k l a d formule obsahuj íc í seznamy a l ibovolně kombinované disjunkce a sep
a r ačn í konjunkce, což je podle a u t o r ů [5] fragment, k t e r ý nen í ž á d n ý m i da l š ími nás t ro j i
p o d p o r o v á n .

Exper imenty na fragmentu, kde S L a S S L splývají , ukazuj í , že A S T R A L je schopen efek
t i v n ě řeši t formule pocházej íc í z verifikační n á s t r o j ů a p ř e k o n a t o s t a t n í existuj ící rozhodovací
procedury za ložené na p ř e k l a d u do S M T . B ě h e m e x p e r i m e n t á l n í h o s r o v n á n í s rozhodovac í
procedurou pro fragment se s epa račn í impl ikací , ale bez i n d u k t i v n á c h p r e d i k á t ů , implemen
tovanou v nás t ro j i CVC5, jsme t a k é odhal i l i c h y b n ě vyřešené formule obsahuj íc í s epa račn í
implikace. Ukáza lo se, že se j e d n á o důs ledek někol ika nekorek tn í ch heuristik a tyto heuris
t iky byly posléze na zák ladě naš ich h lášen í opraveny.

A Decision Procedure for Strong-Separation Logic

Declaration
Hereby I declare that this master thesis was prepared as an original author's work under the
supervision of prof. Ing. Tomas Vojnar, P h . D . The supplementary information was provided
by doc. M g r . A d a m Rogalewicz, P h . D . and Associate Prof. D i p l . - M a t h . Dr . techn. F lo r i an
Zuleger. A l l the relevant information sources, which were used during preparation of this
thesis, are properly cited and included i n the list of references.

Tomas Dac ik
Ju ly 29, 2022

Acknowledgements
I would like to thank my supervisor Tomas Vojnar for numerous pieces of advice to this
thesis and for a great opportuni ty to work on such an interesting research topic. I also wish
to express my thanks to F lo r i an Zuleger and A d a m Rogalewicz for consultations, and to a l l
members of the V e r i F I T research group for an inspir ing working environment. Furthermore,
I would like to thank my family for their support dur ing my studies.

I acknowledge the support received from the project Snappy of the Czech Science Foun
dation.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Mathemat ica l Nota t ion 5
2.2 Fi rs t -Order Logic and Satisfiability M o d u l o Theory 6

2.2.1 Syntax and Semantics 6
2.2.2 Satisfiability M o d u l o Theory 6
2.2.3 Generalised Theory of Arrays 7

2.3 Separation Logic 8
2.3.1 Syntax 8
2.3.2 Memory M o d e l 9
2.3.3 Semantics 10
2.3.4 Decision Procedures for Separation Logic 11

3 Strong-Separation Logic 13
3.1 Syntax 13
3.2 Weak- and Strong-Separation Semantics 14
3.3 Compar ison of Weak- and Strong-Separation Semantics 17
3.4 Abst rac t M e m o r y States 18
3.5 Smal l -Mode l Proper ty 22

4 Decision Procedure for S S L 25
4.1 Overview 26
4.2 Translat ion of List-Segment Predicates 27
4.3 Translat ion of Separating Conjunctions 30
4.4 Translat ion of Septractions 33
4.5 Translat ion to S M T 35
4.6 Proof of the Correctness 40

4.6.1 S M T Models 40
4.6.2 Composi t ion of S M T Models 42
4.6.3 Translat ion Invariants 44

5 Optimisations 49
5.1 Tighter Bounds for Symbolic Heaps 49
5.2 Tighter Bounds for General Formulae 51

6 Implementation 54
6.1 Architecture 54

1

6.2 Front-end 54
6.3 S M T Back-end 55

7 Experimental Evaluat ion 57
7.1 Compar ison w i t h Translat ion-Based Decision Procedures 57
7.2 Evalua t ion of L i s t -Leng th Bounds Computa t ion 60
7.3 Compar ison wi th CVC5 61

7.3.1 Parametr ic Formulae 61
7.3.2 Randomly Generated Formulae 63

7.4 Summary and Future Work 64

8 Conclusion 66

Bibl iography 67

A Contents of the Attached M e d i u m 70

B Installation and Usage 71

2

Chapter 1

Introduction

In recent years, logic proved to be a very useful tool i n many fields of computer science,
including i n the area of automated software and hardware verification. Formulae in various
logics can be used not only as formal languages for specification of the correct behaviour
of the analysed system, but they can also serve as a backend technology i n tools that
attempt to verify the specification - e.g., to succinctly represent infinite sets of program
configurations, or to reduce computat ional ly hard problems that appear dur ing verification
to problems i n logics, which can be solved by specialised solvers.

One of the most common problems i n logic is satisfiability of a formula <p which asks
whether there exists an object (called model) that satisfies ip. In recent years, a significant
research effort has been invested into development of satisfiability solvers for proposit ional
logic (so-called S A T solvers) and various theories in first-order logic (implemented i n so-
called S M T solvers). W h i l e both problems are N P -hard (and some S M T problems even
harder) and therefore considered as intractable i n general, existing solvers can effectively
handle large classes of formulae originating from pract ical applications. Those applications
are, e.g., discharging preconditions generated by deductive verification tools, checking en
tailment or emptiness in abstract interpretation based on logic, automatic generation of
test cases for real-life programs, and many others.

Besides the classical logics, there are also logics developed to reason about specific as
pects of computer programs, such as separation logic (SL) [31], which is the main subject of
this thesis. It is a logical framework for modular reasoning about shared resources and their
disjointness. In the most common setting, the shared resource is a heap-allocated memory.
The modular reasoning is due to a new connective called the separating conjunction - a for
mula tpi * tp2 states that a heap can be split into two disjoint parts such that the formula ipi
is satisfied i n the first part and ip2 is satisfied in the second. Another new connective is the
separating implication (often called as the "magic wand"). A formula ip — * ip is satisfied
by a heap such that for each its extension satisfying ip, their composit ion satisfies ip. The
last ingredient are inductive predicates describing data structures of unbounded size such
as lists or trees. For example, the predicate \s(x, y) is used to express an acyclic singly-
linked list, i.e., a sequence of pointers from x to y. A concrete example of an S L formula
is \s(x, y) * y^rx which states that a heap can be decomposed into an acyclic list from x
to y, and a pointer from y to x. In other words, it expresses a cyclic list.

However, the high expressive power of separation logic comes w i t h the price of high
complexity and even undecidabil i ty when several of the aforementioned features are com
bined together. In particular, as recently shown by D e m r i [12], a quantifier-free fragment of
SL combining separating conjunctions, magic wands, and list-segment predicates is unde-

3

cidable under the classical semantics. Most verification tools therefore sacrifice the magic
wand. Mag ic wands do, however, natural ly appear in verification conditions generated by
symbolic execution [1] and i n the so-called bi-abductive analysis [10].

To tackle the undecidabil i ty and allow verification tools to automate magic wands, Pagel
and Zuleger proposed a so-called strong-separating semantics under which the mentioned
fragment becomes decidable i n P S P A C E [25]. The resulting strong-separation logic (SSL)
coincides wi th the classical S L on the so-called positive fragment that does not contain
negations and magic wands. S S L therefore can be seen as a backward compatible extension
of the classical S L . In [25], they propose a concept of abstract memory states (A M S is a
finite abstraction over possibly infinite sets of models) and a decision procedure based on
their enumeration. However, the a lgori thm serves as a proof of decidabil i ty and was never
implemented.

This thesis presents a first implementat ion of a decision procedure for a fragment of
S S L . Rather than performing a custom enumeration of A M S s , we perform a translat ion to
an equisatisfiable first-order formula to leverage capabilities of existing S M T solvers. Such
translations already exist for classical S L , but we significantly extend the fragment being
translated. The extensions cover l imi ted usage of magic wands and arbi trary mix ing of
boolean and spatial connectives. We also propose several new heuristics to decrease the
size of translated formulae, e.g., by computing bounds on lengths of list-segment predicates.

The proposed decision procedure was implemented i n a new solver called A S T R A L . Due
to coincidence of the classical S L and S S L , A S T R A L can be also used to solve a wide class of
SL formulae. Those include, e.g., formulae wi th list-segment predicates which are mix ing
disjunctions and separating conjunctions that are according to authors of [5] currently not
supported by any existing tool .

Exper imenta l results on simpler fragments show that our approach can effectively solve
formulae obtained from verification tools based on S L and also outperform other existing
translation-based decision procedure implemented in tools S L O T H [17] and G R A S S H O P
P E R [28]. We have also compared our too l w i t h the C V C 5 S M T solver which implements
a decision procedure for S L wi th magic wands but without inductive predicates. Dur ing
those experiments, we found and reported several incorrect results for formulae containing
magic wands. Those turned to be results of unsound heuristics and were later fixed based
on our reports.

Structure of the thesis. The rest of the thesis is structured as follows. Chapter 2
introduces a notat ion used throughout the thesis and give an overview of the classical
separation logic and existing decision procedures. Strong separation logic is then presented
in Chapter 3. Chapter 4 proposes a new translation-based decision procedure for a fragment
of S S L and proves its correctness. In Chapter 5, we propose several optimisations of the
translat ion and i n Chapter 6 we discuss its implementat ion i n the tool called A S T R A L .
Chapter 7 is devoted to an experimental evaluation. Final ly , Chapter 8 concludes the
thesis and suggests several directions of the future research.

4

Chapter 2

Preliminaries

This chapter presents the theoretical background of the thesis. F i rs t , we introduce basic
mathematical notat ion used throughout the thesis. Further, we briefly recall syntax and
semantics of first-order logic and the problem of satisfiability modulo theory. Then we
introduce separation logic and give an overview of existing decision procedures for it.

2.1 Mathematical Notation

Part ial functions. We write / : X —Y to denote a partial function from X to Y. Let /
be a par t ia l function, we use f(x) = _L to denote the fact that / is undefined for x, and
we write d o m (/) and i m g (/) to denote the domain and the image of / , respectively. The
function is total i f d o m (/) = X. A restriction of / to a set A C X is a par t ia l function /\A
defined as f(x) i f x £ A and undefined otherwise. The size of a function / is defined as the
size of its domain, i.e., | / | = |dom(/) | .

We sometimes use a set notat ion to define par t ia l functions. For example, the set
{x\ i->- yi,..., xn i->- yn} represents a par t ia l function that maps each Xi to y$ and is unde
fined for other values.

Graphs and paths. Let G = (V, —>) be a directed graph. A path ir G V+ is a sequence
of vertices (vo, v\,..., vn) such that for a l l 0 < i < n it holds that Vi —>• Uj+i. The domain
of the path ir is the set dom(7r) = {vo,vi,un-i} and the length of the path is defined as
|vi"| = |dom(7r)| = n . In particular, for every vertex v £ V there is the empty path TT = (v)
wi th dom(-7r) = 0 and \ir\ = 0. A path is simple i f it does not contain any vertex more than
once. A l l simple paths are therefore acyclic. We write x y to denote the fact that TT is a
simple path from x to y.

Formulae. We use several notations related to formulae, no matter whether they are from
separation or first-order logic. Let ip be a formula. We write <p[t/x] to denote the formula
obtained from ip by simultaneously replacing a l l free occurrences of the variable x w i t h the
term t. We write vars(</?) to denote the set of a l l free variables i n ip and ca l l ip closed i f
vars(</?) = 0. Further, we write subformulae(</?) to denote a l l sub-formulae of ip. Moreover,
we use the predicate d i s t i n c t (x i , . . . , xn) to denote that a l l variables Xi are pairwise different,
i.e., as syntactic sugar for A i ^ j x% xj-

5

2.2 First-Order Logic and Satisfiability Modulo Theory

This section briefly recalls the syntax and the semantics of single-sorted first-order logic
with equality (F O L) and the problem of satisfiability modulo theory (S M T) . The section is
based on [8].

2.2.1 Syntax and Semantics

Syntax. A signature E is a set of function and predicate symbols w i th associated arities.
We assume that each signature contains the binary equality symbol = . A function symbol
wi th ari ty 0 is called a constant. Let X be a set of variables disjoint from E . A E - i e r m t is
either a variable or an applicat ion of an n-ary function symbol / to an n-tuple of terms. A E -
atom (atomic formula) is either a boolean constant (T , _L), an equality of two terms, or an
application of an n-ary predicate p to an n-tuple of terms. A E-formula is constructed from
atomic formulae using classical boolean connectives (A, V , —>, and quantifiers (V, 3).

Semantics. Let E be a signature. A E-interpretation M. is a pair (T>, where T> is a
non-empty set called the domain of M. and (•) is a to ta l function called the assignment
that maps each n-ary function symbol / to an n-ary to ta l function fM : T>n —> T>, each
n-ary predicate symbol p to an n-ary predicate p C Vn, and also each variable x £ X to
an element x M £ T>. The symbol = is always interpreted as the equality on T>.

The evaluation of a term t i n an interpretation M. is denoted as t and is defined
inductively over the structure of the term t in the usual way. Similarly, the evaluation of
a formula ip i n an interpretation A4 is defined. We say that a formula ip is satisfied in
an interpretation M. (or equivalently that M. is a model of (p), denoted as M. \= ip, i f (p
evaluates to true i n M..

Satisfiability and validity. A E-formula ip is satisfiable i f there is a E-interpretat ion M
such that M. \= <p, <p is called valid if for a l l E-interpretations M. it holds that M. \= (p.
Satisfiability and val idi ty are dual , a closed formula ip is val id iff —><p is unsatisfiable.

2.2.2 Satisfiability Modulo Theory

Theories and the S M T problem. A T,-theory T is a set of closed E-formulae called ax
ioms. A E-interpretat ion M. is called a T-interpretation i f M. \= A for a l l axioms A £ T. A
theory T is consistent if there exists a T-interpretat ion. A formula ip is called T-satisfiable,
if there exists a ^- in terpre ta t ion . M i n which ip is satisfied, denoted as M \=-j ip. The
problem of satisfiability modulo theory (S M T) asks to determine whether ip is T-satisfiable
or not, given a fixed theory T.

S M T solvers. Commonly used theories are, e.g, linear integer ari thmetic (L I A) , real
ari thmetic or the theory of fixed-size bit vectors. Algor i thms for deciding those theories are
implemented i n so-called S M T solvers. Usually, they implement a dedicated sub-solver for
each theory. For some theories, those sub-solvers may be modular ly combined using, e.g.,
the Nelson-Oppen combinat ion method. Prominent examples of S M T solvers are Z 3 [21]
and CVC5 [3].

Definitions of common theories as well as an input language of S M T solvers are stan
dardised i n the S M T - L I B format [4]. The input format is formalised i n many-sorted F O L
in which domains of interpretations are split into mult iple sub-domains called sorts (they

G

roughly correspond to basic types i n programming languages). In this thesis, we, for sim
plicity, present our translation of separation logic i n single-sorted F O L . Its actual imple
mentation i n many-sorted setting is, however, a very straightforward modification.

2.2.3 G e n e r a l i s e d T h e o r y of A r r a y s

A s an example of a first-order theory, we w i l l describe the generalised theory of arrays [20]
that we w i l l also use as the "target language" of our translation of separation logic.

The basic theory of arrays TA has the signature Y*A = {•[•], •(• <i •)} where a term a[i]
represents a read from the array o at the posit ion i and a term a{i<v) represents a modi
fication of the array o by writing the value v at the posit ion i. Th is intuit ive behaviour of
reading and writing to an array is captured by the following axioms.

• Va,i,j.i = j —> a[i] = a[j] (array congruence)

• Va,v,i,j.i = j —> a(i<v)\j]=v (read-over-write 1)

• Va,v,i,j.i^j —> a(i <v)\j] = a[j] (read-over-write 2)

The theory of arrays is undecidable, but its quantifier-free fragment is decidable i n N P .

The generalised theory of arrays T4" [20] adds combinators which allow one to ex
press certain universal properties without relying on quantifiers. A combinator K(x) rep
resents a constant array whose a l l elements are x. For an n-ary function / , a combinator
m a p j (a i , . . . , an) represents an array obtained by applying the function / point-wise to
arrays a\,..., an. It can therefore express operations such as point-wise addi t ion of two
integer arrays. Those combinators are axiomatised by the following axioms (the second is,
in fact, an ax iom scheme).

• Vx, i . K(x)[i] = x

• V a i , . . . , an,i. m a p j (a i , . . . , an)[i] = f(ai[i],..., an[i\) for each n-ary function /

A s for the basic theory of arrays, the generalised version is decidable i n N P . A decision
procedure for T4" is implemented i n the S M T solver Z 3 [20].

Encoding finite sets as arrays. The generalised theory of arrays can be used to encode
basic operations over finite sets. T h i s w i l l be useful when translat ing separation logic to
express properties such as the requirement that the domains of two heaps are disjoint. G iven
a finite universe U, a set X C U can be encoded as an array representing its characteristic
function, i.e., mapping each element x £ U to a boolean value representing its membership
in X. In this encoding, a constant set can be represented as:

{xi,x2, ...,xn} = K (_L) (x i < i T) (x 2 < iT) ... (xn<T)

Basic set operations and predicates can be expressed as follows.

X = m a p ^ (A) X = 0 = X = K (i _)

XUY = m a p v (A , y) xeX = X[x]

XHY = m a p A (A , F) XCY = m a p ^ (A , Y) = K (T)

The theory of finite sets w i th cardinali ty constraints is also supported natively by the
CVC5 S M T solver [2], but it is not standardised i n the S M T - L I B standard.

7

2.3 Separation Logic

Separation logic (SL) was developed to reason about imperative programs manipulat ing
dynamical ly allocated memory [31], including the so-called shape analysis capturing the
shapes of memory-allocated structures, and it quickly becomes probably the most successful
approach i n this area. Meanwhile, many various flavours of S L were introduced [26], some of
them for reasoning about shared resources other than the memory such as concurrency [23],
but heap-manipulating programs are s t i l l the most common domain.

This section presents an introduct ion into the classical semantics of separation logic
and discusses its existing decision procedures. A flavour of S L called strong-separation
logic which is studied i n this thesis is introduced later i n Section 3.

2.3.1 S y n t a x

Let V a r be an infinite set of variables w i th a distinguished variable nil £ Var . The syntax
of first-order separation logic is given by the following grammar where x, y £ Var:

tpatom ••= x = y | x / y (pure atoms)

emp | x i->- y (spatial atoms)

\ <p * <p \ <p —* <p (spatial connectives)

| (p A (p | -up (boolean connectives)

3x. (p (quantifiers)

A pure atomic formula is either an equality x = y or a disequality i / y . A spatial atomic
formula is either the empty heap predicate emp, which intui t ively expresses that the heap
does not contain any pointers, or a points-to assertion x i-> y intui t ively expressing that a
heap consists of exactly one pointer from the locat ion x to the locat ion y1. The formulae
are obtained using quantifiers, boolean connectives and spatial connectives * (separating
conjunction) and -* (separating implication also called the magic wand). Intuitively, a
formula tpi * tp2 states that a heap can be split into two (disjoint) parts such that tpi is
satisfied i n the first of them and tp2 is satisfied i n the second. Similarly, a formula ip —* tp
intui t ively states that each (disjoint) extension of a heap by another heap satisfying ip yields
a heap satisfying tp. Concrete flavours of S L may differ in the way how disjointness of two
heaps is defined.

For a set of formulae $ = {ipi, (p2, <pn}, we define an n-ary version of the separating
conjunction:

emp i f n = 0

ipi * ip2 * ... * <pn i f n > 0

A frequently used fragment of S L is the so-called symbolic heap fragment. A formula <p
is a symbolic heap i f it is of the form LT A E where II = / \ tpi is a conjunction of pure atoms
called the pure part and E = * tpi is a separating conjunction of spatial atoms called the
spatial part. A l though the fragment is significantly restricted, it is s t i l l expressive enough to
be useful for program verification, e.g., for symbolic execution in the S M A L L F O O T analyser
[7] and many other similar analysers.

1 In a more general setting, points-to assertions can be of the form x H-> (J/I, . . . , yn) intuitively expressing
that a heap consists of a pointer from x to an object consisting of fields yi,..., yn.

8

5 : u 6 : v

1 : x < 3 — © -

a
<±:y,z j E 3

Figure 2.1: A n example of a graph representation of a stack-heap model (s,h). It holds
that (s, /i) |= ls(x, y) * \s(u, v) * z i-> y. The corresponding decomposition of the heap / i is
depicted using green boxes.

2.3.2 Memory Mode l

We w i l l interpret S L over stack-heap models. Let L o c be a countably infinite set of memory
locations wi th some fixed linear order. A stack-heap model is a pair (s, h) where stack is
a finite par t ia l function s : V a r — L o c such that s(nil) ^ _L, and heap is a finite par t ia l
function h : L o c — L o c such that h(s(r\\\)) = _L. For a heap h, we define the set of its
locations as locs(/i) = dom(/i) U img(/ i) .

A s demonstrated in Figure 2.1, a stack-heap model (s, /i) can be represented as a directed
graph where vertices are heap locations and edges represent heap pointers. To capture also
the stack, each vertex is labelled by variables that are mapped to i t . Th is correspondence
is formalised by the following definition of an induced graph of a model.

Definition 2.1 (Induced graph). Let (s,h) be a stack-heap model. Its induced graph
G[(s, h)] = (V, —>•, s _ 1) is defined as follows:

• V = Iocs(/j) U img(s)

• u —>• v 44> h(u) = v

• s _ 1 (w) = {x G V a r | s(x) = u }

In the rest of this thesis, we identify the model and its graph representation. Whi l e , i n the
definition, we s tr ic t ly require that each stack-heap model contains the nil location, we omit
it in examples where it is not relevant.

We introduce several notations related to stack-heap models. Let (s, h) be a model and
let £ be a location. We say that variables x and y alias i f s(x) = s(y). We cal l £ anonymous
if s _ 1 (^) = 0 (it is not referred from the stack) and named otherwise. We say that the
heap h contains a pointer from x to y i f h(x) = y. We cal l £ allocated if £ G dom(h) (it has
some successor) and dangling i f it holds that £ G \mg(h) \ dom(/j) (the predecessor of £ is
allocated, but £ itself is not). A pointer x i-> y is dangling i f its target locat ion y is dangling.

Example 2.1. Let us consider the stack-heap model (s,h) from Figure 2.1. Throughout
this thesis, we w i l l usually consider locations to be natural numbers, i.e., L o c := N . In the
model, the variables y and z alias. Locat ions 2 and 3 are the only anonymous locations
here, and locations 0 and 6 are the only locations that are not allocated. The only dangling
location is the locat ion 6 because it is i n the image of h, but not in its domain. The pointer
5 i—̂ 6 is therefore dangling. The location 0 is not part of locs(/i) but it is included among
vertices of G[(s, h)].

9

s,h)

s,h)

s,h)

s,h)

\= x = y

\= emp
|= x i->- y

iff s(x) = s(y)

iff s(x) / s(y)

iff /» = 0

iff / i = {s(x) i ^

s,h)

s,h)

s,h) \= 3x. ip

iff (s, h) \= f i and (s, h) \= ip%

iff (s,h)V=<p

iff there exists £ G L o c such that (s U {x ^ £}, h) \= tp

s, h) \= ipi * </?2 iff 3 / i i , /i2- (s, / i i) |= ipi, (s, /12) |= ^ 2 , hi + /12 / -L and / i = / i i + hi

s, h) \= (p —* ip iff V / i i . if (s, hi) \= p and h + /&i 7̂ _L, then (s, / i + / i i) |= i/>

2.3.3 Semantics

The semantics of separation logic over stack-heap models is given in Figure 2.2. A n equal
i ty x = y is satisfied by a stack-heap model interpreting both variables i n the same way.
The semantics of disequality is analogical. A points-to assertion x 1—>• y is satisfied in a
heap consisting of a single pointer which, moreover leads from x to y. The semantics of
boolean connectives and the existential quantifier is defined i n the usual way. The semantics
of spatial connectives is based on a notion of disjointness of two heaps (the semantics of
strong-separation logic defined later i n Section 3 w i l l differ in its definition of disjointness).
In the classical S L , heaps hi and /12 are disjoint if their domains are disjoint. A disjoint
union of heaps is defined as follow:

We now give several examples of separation logic formulae to show differences i n the
semantics of the classical and separation conjunction, and also to provide some intui t ion
behind the magic wand.

Example 2.2. Let <pi = x 1—> y * x 1—> z. The formula <pi is unsatisfiable because it requires
the locat ion x to be allocated i n both sub-heaps, which is forbidden by the semantics of the
separating conjunction. O n the other hand, the formula if2 — x ^ y * z ^ y is satisfiable.
Notice that <p2 impl ic i t ly asserts that the variables x and z represent different locations.

Example 2.3. The heap h = {s(x) i-> s(y),s(y) i-> s(nil)} does not satisfy the formula
if3 = x i->- y (no matter what the stack is). This is because a points-to assertion expresses
the fact that "a heap consist of a pointer", rather than "a heap contains a pointer". O f
course, the so-called intuitionistic points-to assertion ip± = x i-> y * true can be to used to
express that a heap contains the pointer.

Figure 2.2: The classical semantics of separation logic.

1 0

Example 2.4. A formula (p§ = x t-^- y Ay t-^- z states that a heap consists a pointer from x
to y and from y to z, simultaneously. The formula is therefore satisfiable only when those
pointers are unified, i.e., it can be satisfied by the only stack-heap model (s,h) such that
s(x) = s(y) = s(z) and h = {s(x) i-> s(x)}.

Example 2.5. Let ip$ = (x i-> nil) —* false. The formula is satisfied in a model (s, /i) if for
al l its extensions satisfying a; i—>• nil (there is zero or one such an extension depending on
whether h already allocates x or not), it holds that their composit ion satisfies false. Since
no model satisfies false, this means that h has to allocate x to ensure that it has no disjoint
extension satisfying x i—>• nil. The formula therefore states "location x is allocated". Th is
can be also expressed using quantifiers 31. x i—>• £. If neither the magic wands nor quantifiers
are supported, the property cannot be expressed.

Inductive Predicates Separation logic also allows one to specify inductive predicates to
describe data structures of unbounded size (such as lists or trees), their variants (such as
doubly l inked lists) and combinations (such as nested lists or trees w i t h l inked leaves). In
concrete flavours of S L , those predicates can be either buil t i n the logic, or, i n a more
general setting, the logic may allow to define custom inductive predicates.

Inductive predicates can be defined by a system of inductive definitions which consists of
rules of the form p(xi, X2, •••,xn) ::= (p. For example, a possibly empty, acyclic singly-linked
list predicate \s(x, y) can be defined by the following system of definitions:

The definition says that a model (s, h) satisfies a predicate \s(x, y) either if the heap is
empty and s(x) = s(y), or there exists a locat ion z such that there is a pointer from x to z
and the rest of the heap is a list segment from z to y. The condit ion i n the second definition
that x and y are different forbids cyclic lists. Similar ly, a tree wi th a root r can be defined
by the following system:

Example 2.6. The formula (a; i-> y) * (y i-> z) A —• (ls(cc, z)) is satisfiable. W h i l e this does
not have to be obvious at the first sight, let us consider the stack heap model (s, h) w i th
s(x) = s(z) and h = {s(x) i-> s(y),s(y) i-> s(z)}. The formula is satisfied i n this model
because list-segments have to be acyclic.

2.3.4 Decision Procedures for Separation Logic

There exist many decision procedures for various fragments and flavours of separation logic.
The first studied fragment were symbolic heaps wi th lists; i n [6], a proof system for satis
fiability and entailment was proposed. B o t h satisfiability and entailment for this fragment
were later shown to be solvable i n polynomia l t ime [11]. A model-based approach for this
fragment which is par t ia l ly based on the Z 3 solver was proposed in [22] and implemented
in the tool called A S T E R I X .

tree(r) ::= r = nil A emp

tree(r) ::= 31, r. x i-> (l,r) * tree(/) * tree(r)

11

A translat ion of S L to S M T was first proposed i n [28] and [29] for boolean combinations
of symbolic heaps wi th lists and trees, respectively. Those approaches use intermediate log
ics that are later translated to S M T . Another translation, closer to our approach proposed
in the following, was described i n [17], which establishes a small-model property for sepa
rat ion logic w i th data predicates and performs a direct translat ion implemented i n the tool
S L O T H . A similar translation was designed in [24] for S S L wi th data but not implemented.
The work, however, considers only a fragment on which S L and S S L coincide.

A l l those translations consider only such fragments of S L where boolean connectives
cannot appear under separating conjunction, and the magic wand cannot appear at a l l .
A fragment w i th the magic wand, arbi trary combinations of boolean and spatial connec
tives, but no inductive predicates is supported by the S M T solver CVC5 that implements
a specialised theory solver for this fragment [30]. The solver is based on a translat ion to
second-order logic w i th quantifiers over bounded sets which is then solved by a lazy quanti
fier instantiation. A s shown in [12], adding only the list-segment predicate to this fragment
leads to undecidability.

A separation logic w i th quantifiers (restricted to the 3*V* quantifier-prefix) was studied
i n [13]. The majority of solvers, however, work wi th in quantifier-free fragments. A n exam
ple is S O N G B I R D which constructs induct ion proofs using lemma synthesis [33].

Inductive definitions. A l l methods mentioned so far assumed only inductive predicates
that were buil t i n the logic. A generalisation is to allow user-defined inductive predicates
(usually of some restricted form) that can describe more complex data structures such as
double-linked lists, cyclic lists, or trees and various combinations of the mentioned. Solvers
proposed for those logics are based, e.g., on the cyclic proof systems (C Y C L I S T [9]) or
various kinds of automata - tree automata are used in tools S L I D E [15] and S P E N [14], and
a specialised type of automata, called heap automata, is used i n H A R R S H [19].

1 2

Chapter 3

Strong-Separation Logic

Strong-separation logic (SSL) was recently introduced to overcome undecidabil i ty results
of separation logic w i th the classical semantics i n the presence of magic wands, negations,
and list-segment predicates. To emphasise the difference, we w i l l further ca l l separation
logic w i th the classical semantics as weak-separation logic (W S L) . This chapter formally
introduces S S L based on [25] where one can also found a l l omit ted proofs. We w i l l first
introduce its syntax and semantics and compare it w i th the semantics of W S L . Then , we
w i l l describe abstract memory states that can be used as a bui ld ing block of a decision
procedure for S S L , and also to prove several properties of S S L . Namely, we w i l l prove that
it has a small-model property, i.e., that each satisfiable formula has a model of a linear size.
This property is essential for an effective translat ion of S S L to S M T .

3.1 Syntax

We w i l l concentrate on a quantifier-free fragment of S L where the list segment is the only
bui l t - in inductive predicate 1 . The syntax of this fragment is given by the following grammar:

<Patom ••= x = y | x / y (pure atoms)

| x i->- y I ls(x, y) (spatial atoms)

<P '•'•= <Patom

\ (p * ip | (p —© (p (spatial connectives)

\tpAtp\<pV<p\<pA-,<p\ -up (boolean connectives)

There are several differences from the syntax given in the introduct ion and non-standard
choices. Instead of the magic wand, we use its existential variant called septraction. The
reason is that its existential character is more natural when working wi th satisfiability. The
syntax does also not contain the empty predicate emp as it can be expressed using other
atoms.

A n important subset of S S L is its so-called positive fragment denoted as S S L + . A for
mula ip is positive if it does not contain a negation. In the positive fragment, however, a
so-called guarded negation A-, can be used. A formula ip A- , ip is semantically equivalent
to the formula <p A ->ip, but we rather treat the guarded negation as a standalone binary

l rThis is, however, not a limitation of the strong-separation semantics - an extension of SSL including
trees can be found in [24].

1 3

(s, h) \= x = y iff s(x) = s(y) and dom(/i) = 0

(s, h) \= x / y iff s(x) / s(y) and dom(h) = 0

(s, h) \= x i->- y iff h = {s(x) i->- s(y)}

|= ls(x,y) iff dom(/i) = 0 and = s(y) or there exist n > l,£o, ...,£n such that

d i s t i n c t (£ 0 , - , £ n) , h = {t0 >-> £i,...,£n-i ^ln},s(x) = £0,

and s(y) = £n

(s, h) \= (pi A <£>2 if? (s, /i) |= <Pi and (s, /i) |= <p2

(s, h) \= <f i <f 2 if? (s, h) \= <f i and (s, h) p (p2

(s, h)\=(piV (p2 iff (s, h) \= ipi or (s, h) \= <p2

(s,h) \= -xp iff (s,h) y= ip

Figure 3.1: The semantics of atomic formulae and boolean connectives. O n this fragment
it holds that (s, h) p <p iff (s, h) p ip, and we therefore write s imply |=.

(s, h) p tpi * <p2 iff 3hi,h2. (s, hi) p <pi, (s, h2) P p>2, hi + h 2 ^ -L, and h = hi + h2

(s, h) p tpi * <p2 iff 3hi,h2. (s, hi) p <pi, (s, h2) p p>2, hi ö s h2 / -L, and h = hi tt)s h2

(s, h) p (pi - © <p2 iff 3 / i i . (s, hi) p tpi, h + hi / _L, and (s, / i + hi) p (p2

(s, h) p ipi - © </?2 iff 3 / i i . (s, / i i) fa / i l±)s / i i / _L, and (s, h tt)s / i i) p ip2

Figure 3.2: The weak-separation (p) and strong-separation (p) semantics of spatial con
nectives.

connective. In full S S L , the disjunction is redundant, but we add it to the syntax to increase
expressivity of the positive fragment.

The idea of the guarded negation comes from [24] and is not considered in [25]. A l l proofs
related to the full S S L , however, remain sound because the guarded negation can be easily
expressed i n S S L . Proofs about positive formulae require to consider an addi t ional case of
the guarded negation. Th is case is usually straightforward since a l l properties of models
of a positive guard <p also hold for a l l models of a formula ip A- , ip. The guarded negation
is, i n particular, useful to express val idi ty of an entailment ip |= ip as unsatisfiability of the
formula ip ip:

p P ip is val id 44> -up V ip is val id 44> ip A ->ip is unsatisfiable.

We write vars(^) to denote the set of a l l variables in ip and define the set vars+(</?) of
variables that can be allocated as vars+(</?) = vars(^) \ {n i l } .

3.2 Weak- and Strong-Separation Semantics

We w i l l define two logics - weak-separation logic (W S L) using the satisfaction relation p
and strong-separation logic (SSL) using the satisfaction relation p. The semantics of atomic
formulae and boolean connectives is given in Figure 3.1, and it is identical for both logics.

14

1 : x 1 : x

• Q »(5 : ni 3:z-
(— (>

• 4 Ah : nil
\ J \ J

2:y 2:y

Figure 3.3: A n example of two models of the formula <p = (\s(x, nil) * t rue) A (ls(y, nil) * t rue)
under the classical semantics. Under the strong-separation semantics, ip is satisfied only
in the right model that can be split at the named location 3 to separate overlaid list-
segments. The left model cannot be split using the operator l±)s to satisfy the formula since
its locat ion 3 is not named.

Notice that, i n the semantics of pure atoms, we addi t ional ly require that they can be
satisfied on the empty heap only. Th i s is the so-called precise semantics of pure atoms,
and it is orthogonal to the strong-separation semantics. The semantics defined i n this a
way is common for translation-based decisions procedures [17, 28]. It does not change the
expressivity, merely the way how formulae are wri t ten - instead of wr i t ing x = y A ip, one
can write x = y * p to express that the equality can be satisfied on the empty heap, which
can always be split off from any heap. A symbolic heap formula now has the form * tpi
where a l l ipi are atomic formulae.

A s w i l l become clear later, the strong-separating conjunction cannot be used to define
the list-segment predicate inductively because it would require a l l of its locations to be
named. One can therefore either use a weak-separation conjunction or define list non-
inductively. We chose the latter approach according to [25]. The list-segment predicate is
defined to hold on a heap consisting of a possibly empty sequence of pointers starting wi th
x and ending wi th y such that a l l locations i n this sequence are distinct. Consequently,
a list-segment cannot be cyclic or lasso-shaped. We may define the empty heap predicate
and boolean constants as syntactic sugar 2 :

emp = nil = nil false = emp A ^ emp true = —ifalse

The semantics of spatial connectives is defined in Figure 3.2, and, for both of them, it
differs i n the used notions of disjointness and disjoint union of heaps. Reca l l that, i n the
classical semantics, the disjoint union of two heaps is defined as the union of those heaps
under the condit ion that their domains are disjoint:

fhiUh2 if dom(/ i i) n d o m (/ i 2) = 0
hi + h2 = <

I _L otherwise

Strongly-disjoint union ttl s, parametrised by a stack s, also restricts images of heaps - it
requires that each location shared by both heaps is named (i.e., at least one variable is
mapped to i t) , formally, the strongly-disjoint union is defined as:

\hi + h2 if locs(/ i i) n locs(/ i 2) C img(s)
tii& n2 = <

_L otherwise

2While the constant false is expressible in the positive fragment, the constant true is not. Otherwise, it
would be easy to introduce the negation even in the positive fragment using the guarded negation.

15

Figure 3.4: A n example of two isomorphic stack-heap models. The isomorphism is given
by the bijection a such that cr(2) = 3, cr(3) = 2, and a(x) = x otherwise.

Notice that if hi ttl s hi is defined, then h\ + hi is also defined, but not vice versa. Th is is
demonstrated in Figure 3.3. It can be shown that the operator l±)s gives rise to a separation
algebra and it is therefore suitable for definition of semantics of separation logic [25].

We can define the magic wand using septraction and negation. Unl ike the septraction,
the magic wand is not expressible i n the positive fragment.

p —* ip = —'(ip —© —itp)

We can also define a list segment of length at least one and a proper list segment of length
at least two. Notice that both of them lie i n the positive fragment.

I s> i (z ,y) = \s(x,y) *x^y

\s>2(x, y) = ls>i(x, y) A^x^y

Example 3.1. The formula x>-^yAx = yis unsatisfiable as the left-hand side requires
a heap to be of size one and the right-hand size requires it to be empty. A correct way to
express a self-loop pointer at x under the precise semantics is to write x i-> y * x = y.

Example 3.2. The formulae I / J / and —>(x = y) are not equivalent. The second can be
satisfied by an arbi trary non-empty heap even if s(x) = s(y).

Example 3.3. The formula <p = (x i—>• nil) —© true is satisfied by models that can be
extended by a pointer from x to nil, i.e., by models that do not allocate x. Th is formula
can also be expressed using the magic wand as _ , ((a; i-> nil) —* false).

Satisfiability and entailment. A s can be seen in Figure 3.3, satisfiability of an S S L
formula may depend on how many variables are available to label spl i t t ing points of a heap.
Satisfiability and entailment are therefore parametrised by a set of variables x C Var . Let
[<£>]]x be the set of a l l models of ip over x, i.e., [<p]x = {(s, h) | dom(s) = x A (s, h) ^= p}.
The formula p w i th vars(</?) C x is satisfiable over variables x i f [</?]x 7̂ 0- A n entailment
p f^ x ip is val id w.r.t. x if {pjx C [V>]x-

Two stack-heap models are isomorphic if they are identical up to renaming of locations.

Definition 3.1. Two models (s i , / t i) and («2,^2) are isomorphic, (s i , / i i) = («2,^2); if
there exists a bijection on locations a : Loc «-> L o c such that:

1. For all x G V a r ; it holds that si(x) = a(si(x)).

2. For all £ G L o c ; it holds that h\{x) = a(hi(x)).

A n example of two isomorphic models is given i n Figure 3.4. It holds that S S L formulae
cannot dist inguish isomorphic models. Th is is not a consequence of the strong-separation
semantics, but it follows from the fact that S S L cannot speak about concrete memory
locations - it cannot express formulae such as 1 1—> 2.

L e m m a 3.1 (Isomorphic models [25]). Let p be a formula. Further, let (si, hi) and (s2,h2)
be two models such that (s i , / t i) = («2,^2)- Then (s i , / t i) f= p iff(si,hi) Ĵ= p.

16

/ *\ f \ f \ / \ f \ / \ / \
l:x)—*\2:y) y s 2--y) 4 3 H 4 + 4 Ah : z]

\ J V / \ / V / \ I \ J \ '

Figure 3.5: A n example of a model (s,h) decomposed at locations 2 and 4. It holds that
(s,h) |= ls>3(x,z), but not (s,h) ^ \s^(x,z) because the location 4 is not named and the
depicted decomposition is therefore not possible i n S S L .

3.3 Comparison of Weak- and Strong-Separation Semantics

In this section, we compare the semantics of W S L and S S L . We w i l l show that they coincide
on the positive fragment. A s the positive fragment subsumes frequently used fragments such
as the symbolic heap fragment, this demonstrates a certain k ind of backward compatibility
of S S L . The second part of this section is devoted to examples where the strong-separation
semantics actually makes a difference.

Recal l that a locat ion is dangling in a heap if it is i n its image but not i n its domain.
If we have a model of a positive formula, it holds that a l l its dangling locations are named
by stack variables.

L e m m a 3.2 ([25]). Let p be a positive formula and let (s,h) p= (p be its model. Then all
dangling locations of the heap h are named, i.e., dangling(Zi) C s(vars(<^)).

Proof idea. B y structural induct ion on tp, which actually proves a stronger statement that
al l dangling, joint (having mult iple predecessors), and source (having no predecessors) lo
cations are named. The case of the guarded negation ipi A-, tp2 uncovered i n [25] follows
directly from the inductive hypothesis for ipi. •

If we have two weakly-disjoint heaps, they can overlap only on locations that are dan
gling i n at least one of them. Together w i th the previous lemma, this ensures that weakly-
disjoint models of positive formulae can overlap only on named locations and they are
therefore also strongly-disjoint. Therefore, there is no difference between the weak- and the
strong-separation semantics for positive formulae.

L e m m a 3.3 ([25]). Let <pi and p>2 be positive formulae and let (s, hi) f= <pi, (s, h2) |= <P2
be their models. Then hi + h2 ^ -L iff hi tt)s h2 ^ -L.

Proof.

(=>) We want to prove that a l l shared locations of hi and h2 are named. Let £ be a
location shared by both heaps, i.e., £ G locs(/i i) n \ocs(h2). T h e n £ is dangling either
in hi or h2 as it cannot be in the domains of both of them. B y L e m m a 3.2, it holds
that £ G img(s) and consequently hi l±ls h2 ^ _L.

(<̂ =) Follows directly from the definition of tt) s.

•
Theorem 3.1 (W S L and S S L coincide on the positive fragment [25]). Let ip be a positive
formula an let (s, h) be a model. Then (s, h) p= <p iff (s, h) ^ <p.

Proof idea. B y structural induct ion on ip using L e m m a 3.3 to prove cases of spatial con
nectives. •

1 7

The only formulae where the strong-separation semantics makes a difference are there
fore those containing an (unguarded) negation.

It turns out that S S L cannot speak about concrete sizes of heaps without using addi
t ional variables. A s an example, let us consider the following family of formulae for n > 3:

\s^!l(x,y) = l s (x , y) A (- i emp * • • • * - i e m p)
— V /

V
n times

Under the weak-separation semantics, a formula l s>J j (x ,y) expresses that the heap is
a list segment that can be split into n non-empty parts, i.e., a list segment of length at
least n. In S S L , this is not necessarily true as can be seen i n Figure 3.5 for n = 3. The
list-segment i n the figure has length greater than three, but cannot be split to three non
empty sub-heaps using the operator l±)s since it does not contain enough named locations.
In fact, a list segment of a length greater than three is not expressible i n S S L . This is used
in the A M S abstraction described i n the next section. Regarding satisfiability, a formula
l s>J j (x ,y) is satisfiable only if the considered set of variables provides enough variables to
name a l l n — 1 locations needed to split the list segment.

Convention. In the rest of the thesis, we w i l l be interested in S S L only and we w i l l therefore
write just |= instead of f̂ =. Because of the correspondence on the positive fragment, we w i l l
assume an input set of variables x to be impl ic i t ly equal to v a r s (^) when dealing wi th
positive formulae.

3.4 Abstract Memory States

A n Abstract memory state (A M S) is an abstraction over a stack-heap model which keeps
just enough information to decide whether the model satisfies a formula or not. In [25],
A M S s are used to prove essential theoretical results such as a small-model property of S S L
and also as a bui ld ing block of a decision procedure for i t . The main idea of the decision
procedure is to represent the possibly infinite set of stack-heap models [<p]x by a finite set
of abstract memory states a((p) whose emptiness can be decided i n polynomia l space.

In this section, we w i l l gradually show how a model (s, h) can be abstracted to its
induced abstract memory state ams(s , h). The cornerstone of this abstraction is a memory
chunk - a m in ima l non-empty sub-heap h! C h such that h! can be cut off h according to
the strong-separation semantics.

Definition 3.2 (Memory chunk). Let (s,h) be a model and let hi be a heap. We say that
the heap hi is a sub-heap of h, denoted as hi C h, if there exists a heap hi such that
hi l±Js hi = h. We call hi a memory chunk of h if it is non-empty, minimal sub-heap of h,
i.e., there is no non-empty h\ ^ hi such that h\ C h\.

We classify chunks into two categories - a chunk hc is positive i f there exists an atomic
formula (p such that (s, hc) \= p. Otherwise, the chunk is negative. Not ice that a l l positive
chunks are either cyclic pointers or non-empty list segments. The decomposition of a model
to its chunks always exists and is uniquely determined.

18

hi

a
1 : z 2 : u

: x

h3

5 : v

11 :y 12 13 : t

he

Figure 3.6: A n example of a model and its decomposition into chunks.The positive chunks
hi, hi, and h& are marked by the green colour, and the negative chunks by the orange
colour.

L e m m a 3.4 (Decomposit ion to chunks [25]). Let (s, h) be a model and let hi,..., hn be its
chunks. Then h = hi tt)s • • • tt)s hn.

Proof idea. The c la im follows from the fact that a l l sub-heaps form a boolean algebra wi th
chunks being atoms of this algebra. •

Example 3.4. A n example of a decomposition of a model into its chunks and their classifi
cation is shown in Figure 3.6. The chunk hi is positive since it is a model of a formula z 1—>• z.
The negative chunk hi consists of two overlaid list-segments that cannot be further split
according to the strong-separation semantics. The negative chunk h% is a so-called garbage
chunk because it consists of the memory location 6 that cannot be reached using stack
variables. The chunks /14 and /15 are positive as they are models of the formulae \s(x,y)
and y i-> x, respectively. The chunk he is negative because list segments cannot be cyclic.
F inal ly , the chunk h-j is negative since its sink location 7 is anonymous.

We can use decomposition into chunks to abstract a model to an abstract memory state.

Definition 3.3. An abstract memory state is a quadruple A = (V, E, p, 7) where

• V = { v i , . . . , v „ } is a partition of some finite set of variables,

• E : V ^ V x {= 1, > 2} is a partial function such that, for all v G dovn(E), it holds
that nil ^ v ;

• p is a set of disjoint subsets of V such that, for all R G p, it holds that (1) R is
disjoint from d o m (F) and (2) nil ^ R,

• 7 G N is a natural number.

The components have the following interpretation. The elements of the par t i t ion V are
called vertices. The par t i t ion abstracts some stack s. Instead of storing the mapping of s, it
only keeps information about which variables alias - two variables x and y are i n the same
equivalence class of V iff s(x) = s(y). The function E represents edges of A M S induced by
positive chunks. A n edge {x, y, =1) represents a chunk consisting of a single pointer from
x to y, and, similarly, an edge (x, y, > 2) abstracts a chunk which is a list segment of a

19

length at least two (this abstraction follows from the fact that S S L cannot speak about list
segments of length greater than two without using addi t ional variables).

The last two components are related to negative chunks. The component p represents
negative-allocation constraints. It is a set of disjoint sets R where each R is a set of vertices
that are allocated wi th in the same negative chunk. F ina l ly , the number 7 is called the
garbage-chunk count, and it corresponds to the number of negative chunks that do not
allocate any variables.

To define an induced A M S of a model (s, h) formally, we need several auxi l iary defini
tions. Let s be a stack. We define an alias-equivalence =s w.r.t. s as x =s y s(x) = s(y).
We write [x]s to denote the equivalence class of = s containing x. We also define the set of
equivalence classes of = s allocated i n a chunk hc as a\\oc~(hc) = {[x]s \ s(x) G d o m (/ i c)} .

Definition 3.4 (Induced A M S of a model) . Let (s,h) be a model. Let c h u n k s + (s , h) and
c h u n k s - (s , h) be its positive and negative chunks, respectively. We define the induced AMS
of the model (s,h), ams(s,/i) = (V, E,p,^y), as:

• V = {[x]s I x G dom(s)}

• p = { a l l o c " (/ i c) I hc G chunks"(s,h)}

• 7 = |chunks~(s, h)\ — \p\

L e m m a 3.5 ([25]). Let (s,h) be a stack-heap model. Then ams(s,/i) is an AMS.

Example 3.5. A n example of a model (s,h) and its A M S A = ams(s,/i) = (V,E,p,^y) is
depicted i n Figure 3.7. There are three positive chunks in the model: hi, hi, and h%. The
chunks hi and hi are list segments of length greater or equal than two and are therefore
abstracted using edges w i t h label > 2. The chunk h% consists of a single pointer and is
therefore represented using an edge wi th label = 1. The negative chunk /14 is the only
chunk which does not allocate any variables, and therefore we have that garbage-chunk
count 7 = 1. F ina l ly , there are two negative chunks al locating some variables. The chunk /13

allocates Ri = {{u,v},{s},{t}}, and the chunk /15 allocates Ri = {{w}}. The negative-
allocation constraints are p = {Ri, Ri}-

Deciding S S L using A M S s . We conclude this section by sketching a decision procedure
based on A M S s . The decision procedure is based on the following theorem.

Theorem 3.2 (Refinement theorem [25]). Let <p be a formula and let (s,hi) and (s,hi) be
models such that ams(s, hi) = ams(s, hi). Then (s, hi) \= <p iff (s, hi) \= (p.

Given an input ip and x, the decision procedure first guesses a stack s (there are only
finitely many stacks wi th the domain x) and then computes the set of abstract memory
states as(ip) = {ams(s,h) | h is a heap such that (s,h) \= ip} inductively on the structure
of the formula ip. Observe that given the stack s, the set of vertices of an A M S ams(s, h) is
finite for an arbi trary heap h. Consequently, there is also finitely many edges and finitely
many al location constraints. To finish the construction, we need to provide an upper bound

([y]s,= i)
([y]s,>2)

if (s, hc) \= x y for some hc G c h u n k s + (s , h)

if(s,hc) \= \s>i(x,y) for some hc G c h u n k s + (s , h)

othwerwise

20

hi (i : x,y}- - 0

a
f— —>
4 : a

he

h-2

f \
5 6 : z

\ y

3̂

8̂ : u,v)

12 : a 13 : t

\ /

14 hi

: u, v i l l : ™)

V)

1 2 : a 13 : t

h>

h'

> 2

> 2

P = { { { u , « } , { - } , {«}},{{«;}}}
7 = 1

Figure 3.7: A n example of a stack-heap model (a, /i) (top left) and its reduction reduce(a, h)
(top right). It holds that both models induce the same A M S (bottom) and therefore cannot
be distinguished by S S L formulae.

on the number of garbage chunks. Th is is given by the chunk size \<p] which gives an upper
bound on the number of chunks needed to satisfy and /or falsify the formula ip:

\x = y] = \x ^ y] = \x H-> y] = \\s(x, y)~] = 1

\fa * fa] = \fa] + \fa]

\fa - © fa] = \fa]

\fa A V 2 I = \fa fa] = \fa Vfa] = m a x ([V i l , \fa])

h V ' l = \fa

Now, a refined version of Theorem 3.2 can be proved.

Theorem 3.3 (Refined refinement theorem [25]). Let ip be a formula with \<p] = k. Let
m > k and n > k and let (s,hi), (s , /^) be models with ams(a , / i i) = (V,E,p,m) and
ams(a , / i 2) = (V,E,p,ri). Then (s,hi) \= p iff(s,h2) \= p.

Based on this theorem, a finite abstraction of the set cns(p) can be defined and its non-
emptiness (corresponding to satisfiability of p) can be checked in polynomia l space. Since
the construction is rather technical, we refer to [25] for more details.

21

3.5 Small-Model Property

Using Theorem 3.3, we can prove a small-model property for S S L and its variant for S S L + .
The small-model property states that each satisfiable formula has a model of linear size.
Since the property is crucial for our later proposed translation to S M T , we w i l l modify the
proofs from [25] to show more precise bounds.

We w i l l first define a reduction of a model (s, h) which is obtained by reducing each
chunk hc of (s, h) to a chunk h'c such that the composit ion of reduced chunks w i l l yield
the same induced A M S as the original model . B y Theorem 3.2, those models w i l l satisfy
exactly the same formulae.

D e f i n i t i o n 3.5. Let (s,h) be a model and let hi,...,hn be its chunks. We define its
reduction, reduce(s , / i) = (s,h') where h! = h'x t t l s • • • t t l s h'n and where each h\ is obtained
from hi by the chunk reduction defined below. Let a l l o c s (/ i c) = {s(x) \ s(x) G d o m (/ i c) } . / /
a chunk is positive, then its reduction is defined as:

Example 3.6. The reduction of a model is demonstrated in Figure 3.7 where each chunk hi
of the left model is reduced to a chunk h\ of the right model . F i rs t , observe that the stack of
both models is the same. Now, we w i l l describe the reduction of the ind iv idua l chunks. The
chunk h\ is a list segment of length three, and its reduction therefore removes the locat ion 3.
The chunk hi is a list segment of length two, and therefore it remains unchanged. Similarly,
also the pointer chunk /ig remains unchanged.

The negative chunks /13 and /15 that allocate some variables are replaced by min ima l
negative chunks that allocate those variables without changing the stack. F ina l ly , the
garbage chunk /14 is replaced by the min ima l garbage chunk - an anonymous self-loop
pointer. It can be easily verified that both models induce the same A M S in the bo t tom
part of the figure.

Now, we have to show that the reduction is well-defined and preserves the induced A M S .
Since we use our own definition of the reduction, we w i l l prove those properties thoroughly.

L e m m a 3.6. Let (s,h) be a model. Then r educe (s , / i) is well-defined.

Proof. We w i l l first show that a l l reduced chunks are well-defined. If a chunk is a single
pointer, then its reduction is well-defined because it does not change the chunk. If a chunk
is a list segment of length at least two, we need to show that h(s(x)) is defined. This follows
from the fact that the chunk has length at least two. There are no other types of positive
chunks.

If a negative chunk hi allocates some variables, then r e d u c e c (/ i j) maps a l l allocated
variables to the locat ion £ where £ = h(vn\n{s(xi),..., s(xn)}). The set {s(x\),..., s(xn)}
is non-empty, and its m i n i m u m is defined because of our assumption that there exists

// a chunk is negative, then the reduction is defined as:

, s(xn)} for n > 0

,s(xn)})

m i n (d o m (/ i j))

22

some fixed linear order on the locat ion domain Loc . Since a l l s(xi) are allocated i n the
chunk, it holds that /i(min{s(xi),..., s(xn)}) is defined. F ina l ly , if a chunk hi is garbage (it
does not allocate any variables), then we replace it by a single self-pointer on the min ima l
location from dom(/ii). The set dom(/ii) is non-empty because the chunk is defined to be
a non-empty heap.

It remains to show that reduce c(/ii) l±)s • • • tt)s reduce c (/ i n) is defined. It is enough to show
that d o m (r e d u c e c (/ i j)) C d o m (/ i j) and that l ocs (reduce c (/ i j)) C locs (/ i j) . This holds because
al l cases of the reduction can only remove locations from domains and images. •

L e m m a 3 .7. Let ip be a formula. Further, let (s,h) be a model and let r educe (s , / i) be its
reduction. Then (s,h) \= p> iff reduce(s, h) \= (p.

Proof. Let Ai = a m s (s , / i) and let A2 = ams(reduce(s , h)). We w i l l show that A\ = A2.
The rest follows from Theorem 3.2. F i r s t , observe that the reduction does not change the
stack, and both models therefore induce A M S s w i t h the same set of vertices. Then , observe
that the reduction preserves the number of chunks. Further, it holds that each positive
chunk of some model defines exactly one edge of its induced A M S . Let hi be a positive
chunk, then reduce c(ft.j) is also a positive chunk and moreover defines exactly the same edge
as hi.

Let hi be a negative chunk such that it allocates some variables. F i r s t observe that
reduce c(ft,j) is also a negative chunk as its sink locat ion I is anonymous - i f it would not, hi
would not be a chunk since it could be further decomposed by cut t ing off {s(x\) i-> £ } .
The reduction also allocates exactly the same variables and therefore produces the same
negative-allocation constraint.

Final ly , let hi be a garbage chunk. Then , r educe c (/ i j) is also a garbage chunk. Therefore,
the garbage-chunk count of A\ is equal to the garbage-chunk count of A2. Thus, Ai = A2.

•
Now, we are ready to prove the small-model property. We w i l l start w i th the case of a

positive formula. The bound is based on the fact that a model of a positive formula consists
of positive chunks only and that the size of a reduced chunk is at most two.

L e m m a 3.8 ([25]). Let ip be a positive formula and let (s,h) \= p> be its model. Further,
let h = /ii l±Js • • • l±Js hn be the decomposition of the model into its chunks. Then all chunks
hi are positive.

Theorem 3.4 (Small-model property for S S L +) . Let ip be a satisfiable positive formula.
Then there exists a model (s, h) s.t. (s, h) \= ip and | locs(/ i) | < 2 n + l where n = |vars +(</?)|.

Proof. Since ip is satisfiable, there exists some model (s,h) \= ip w i th d o m (s) = vars(p).
Let (s,h') = reduce(s , / i) be its reduction. B y L e m m a 3.7, we have that (s,h') \= ip. B y
L e m m a 3.8, bo th h and h! consist of positive chunks only. There is at most | va rs + (<^) |
chunks of heap h' because each positive chunk has to allocate at least one variable and nil
cannot be allocated. F ina l ly , each reduced chunk consists of at most two unique locations
(since we consider the worst case when a l l variables are allocated, its named sink does not
count as it is already allocated and counted i n some other chunk). One addi t ional location
is needed for ni l . Therefore we have that | locs(/ i ') | < 2 • |vars +(</?)| + 1. •

Example 3 .7. To demonstrate that the bound is tight for positive formulae, let us consider
the family of formulae defined as for n > 2:

Pn = \S>2(X1,X2) * IS>2(X2, £3) * • • • * l s > 2 (x „ _ i , Xn) * ls> 2 (x „ , Xi)

23

A formula (pn is satisfiable only by a cycle consisting of n list-segments, each of them having
length at least two.

2n + 1 : nil

Outside the positive fragment, we have to consider also the input set of variables x and
the number of garbage chunks \ip] needed to satisfy the formula.

Theorem 3.5 (Small-model property for S S L) . Let if be a satisfiable formula. Then there
exists a model (s,h) such that (s,h) \= ip and | locs(/i)| < 2 n + \(p~\ + 1 where n = |x \ { n i l } | .

Proof. We proceed similar ly as for the positive fragment. Since ip is satisfiable, there
exists some model (s,h) w i th dom(s) = x. Let (s,h') = reduce(s,/i) be its reduction. B y
L e m m a 3.7, we have that (s, h!) \= ip. In the worst case, we have that there is at most
k = |x \ {nil}| allocated variables and consequently at most k non-garbage chunks. Observe
that, i n such a case, each chunk allocates exactly one variable. Therefore there are at
most two locations in each non-garbage negative chunk. F r o m Theorem 3.4 and the fact
that a variable cannot be allocated in two chunks, we have that each non-garbage chunk of
the reduced model have at most two unique locations (no matter whether it is positive or
negative). A l l non-garbage chunks therefore have at most 2k locations. B y Theorem 3.3,
there is at most \pP\ garbage chunks needed to satisfy ip. F ina l ly , one addi t ional locat ion is
needed for nil. Therefore | locs(/i ')| < 2 • | x \ {nil}| + \<p~\ + 1 . •

Example 3.8. To demonstrate that the bound is tight, let us consider the set of variables
x = {nil} and the family of formulae defined as:

Pr, -iemp : -iemp

n times

For a formula (pn, it holds that x \ { n i l }

is the following:

&
and \pn \ = n. The min ima l model satisfying (pTi

n n + 1 : nil

Based on small-model properties, we define a location bound of a formula p> w.r.t. the
set of variables x:

bound(<£, x)
2 • |vars+(</?)! + 1 if (p is positive

2 • |x \ {nil}| + \p] + 1 otherwise

Usually, a tighter location bound can be computed based on the structure of the formula (p.
This computat ion is discussed i n Section 5.

24

Chapter 4

Decision Procedure for SSL

This chapter presents the main contr ibution of this thesis - a new decision procedure
for a fragment of strong-separation logic. A s was already sketched i n the introduction,
we w i l l not follow the enumeration-based approach presented in [25], but we w i l l rather
propose a translat ion of S S L to S M T to leverage capabilities of modern S M T solvers. Our
translat ion is inspired by previous works targeting boolean combinations of symbolic heaps
of W S L [17, 28] and the same fragment of S S L [24]. We extend this fragment i n several
non-t r ivia l ways:

1. We add support for the septraction connective. In the original translations, it was
always enough to consider a single heap to find a model of a formula. In the presence
of septractions, addi t ional heaps are needed to find witnesses of their satisfaction. We
l imit ourselves to a fragment where septractions do not appear under negations (both
guarded and classical). It is therefore not possible to express arbi trary magic wands,
but one can, for example, check val idi ty of entailments such as ip |= tp — * x after
applying boolean transformations to represent its counterexample as ip A (ip -© ->x) •

2. We allow arbi trary mix ing and nesting of spatial and boolean connectives except
unguarded negation. In the original translations, boolean operators cannot appear
under separating conjunctions. The ma in complicat ion is the disjunction which breaks
a so-called unique footprint property used in the original translations to effectively
translate separating conjunctions. W h e n allowing disjunctions to appear under sepa
rating conjunctions, we need to overwork the original approach to work wi th multiple
footprints. Th is may lead to an exponential size of the translated formula.

3. We allow arbi trary appearance of negations (except the l imi ta t ion related to septrac
tions). Unl ike [24], which translates a fragment of S S L on which it coincides wi th
W S L , we need to also consider the strong-separation semantics of spatial connectives.
A negation appearing under spatial connectives was mentioned as a hard challenge
in [28]. O u r changes from Point 2 make its support easier - but for a price of even
more significant exponential blow-up caused by an extensive enumeration of possible
footprints. We present some heuristics to tackle this, but there remains a lot of space
for future work, e.g., to perform enumeration lazi ly as i n [30].

Further, we propose a more effective translat ion of list-segment predicates than i n [17, 24]
- we improve its size from C (n 4) to C (n 3) . O n the other hand, we do not consider trees
and data predicates. However, we p lan to focus on those extensions i n our future work.

25

Model
translation

T- 1 (3 f , x)

• sat

M

-> unsat w SMT solver Z3

Figure 4.1: A schematic i l lustrat ion of the proposed decision procedure.

Chapter outline. In the subsequent sections we describe how we translate part icular
ingredients of S S L - list-segment predicates, separating conjunctions, and septractions. We
put those ingredients together in Section 4.5. The section also briefly discusses complexity
issues related w i t h the translat ion and defines a fragment of S S L that can be effectively
translated using our approach. F ina l ly , we prove the correctness of the translat ion in
Section 4.6.

4.1 Overview

A high-level overview of our decision procedure is given i n Figure 4.1. The input is a for
mula (p and a set of variables x . The decision procedure first computes its locat ion bound
and bounds on lengths of list-segment predicates. Throughout this chapter, we consider
the most general bounds. A n improved bound computat ion is discussed i n Section 5. Using
those bounds, the input formula ip is translated to a first-order formula T((p, x) in a com
bined theory of sets and arrays. The formula is then solved by an S M T solver. If the solver
returns unsat, we are done. If the solver finds a first-order model M, we w i l l perform an
inverse translation of this model to obtain an equivalent stack-heap model T _ 1 (. M , x) .

Idea of the encoding. S S L natural ly speaks about par t ia l functions, but those are not
supported in S M T . We w i l l therefore use a pair of an array h an a set D to encode a par t ia l
heap function - the array h encodes the mapping of the heap, and the set D encodes its
domain. A stack image of a variable x £ x is encoded s imply by a constant symbol x of
the same name. If the translated formula is satisfiable, its model Ai can be converted to a
stack-heap model T - 1 (. M , x) using an inverse translation.

Definition 4.1 (Inverse translat ion). Let M be a first-order model. We define its inverse
translation T _ 1 (. M , x) = (s,h) as:

s(x)
f i G x U {nil}

otherwise
h(£)

h[£] M if I e DM

otherwise

In our translation, we utilise the smal l model property of S S L to restrict the infinite
domain of locations L o c to its finite subset L = {£i,£2, • • • ,£n} consisting of n distinct
location constants. Because S S L formulae cannot dist inguish isomorphic models, it does
not matter which part icular subset we choose.

26

The definition of the locat ion domain is ensured by the following formula :

A ^ A ...,£n. d i s t i n c t (^ i , ...,£n) A V I \f £ = h
l<i<n

In order for T _ 1 (. A 4 , x) be a correctly-defined stack heap model , we need to ensure that it
does not allocate nil. Together w i th the definition of L , we ca l l this as the well-formedness
constraint:

A r = A nil i D

Before we w i l l continue w i t h the definition of the translat ion in Section 4.5, we w i l l
describe ideas used to translate ind iv idua l ingredients of S S L .

4.2 Translation of List-Segment Predicates

The translat ion of list-segment predicates is complicated by the fact that they essentially
speak about reachability which is not expressible i n first-order logic. Fortunately, we can
leverage the small-model property and use a form of bounded reachability parametrised by
the number of locations. We first define an alternative semantics of list-segment predicates
in terms of paths i n induced graphs.

L e m m a 4 .1 . Let (s,h) be a model and let G[(s,h)] be its induced graph. Lt holds that

(s,h) \= \s(x,y) iff there exists a simple path ir such that x y and dom(7r) = d o m (/ j) .

Proof.

(=>) B y a case dist inct ion on the semantics of \s(x,y). If the list segment is empty,
then s(x) = s(y) and d o m (/ j) = 0. T h e n there exists the path TT = (x) w i th
dom(7r) = 0. Otherwise, there are distinct locations £Q, ... ,£N such that h = {£o \->
£i,...,£n-i i-> £n} and s(x) = £o,s(y) = £n. Thus, there is a simple path TT =
{£o, • • • £n) w i t h the domain dom(7r) = {£o,..., £n-i} = d o m (/ i) , which concludes this
direction of the proof.

(-4=) Analogical ly, by considering the case of the empty path and the case of a non-empty
simple path.

•
Now we w i l l define two predicates expressing the existence of a simple path from x to y

and a fact that some set D equals to the domain of this path. B o t h predicates w i l l be
parametrised by an interval [m, n] l imi t ing possible lengths of the considered paths. In this
chapter, we w i l l always use the most general intervals, i.e., [0,n] where n is the location
bound of an input formula. The intuit ive meaning of predicates is the following:

reachr m r j](h,x,y) There exists a simple pa th x y w i th m < \TT\ < n.

D = dom(7r) i f there is a simple path x y w i th m < \TT\ < n,

D = 0 i f there is no such path.
P a t h [m i „] (h , D,x,y)

1 In the actual implementation of our translation in many-sorted logic used by SMT solvers, we can
equivalently declare L to be a datatype with n constant constructors £i, . . . , £ „ .

27

In the case when there is no path, the predicate asserts D be the empty set. This is for the
consistency wi th later defined footprints (Definition 4.3).

Definition of reachability predicates. The definition of reachability predicates w i l l be
based on the following lemma characterising paths in induced graphs. Because the successor
of a vertex is given by a par t ia l function, it is uniquely determined. Consequently, if there
exists a simple path, it is uniquely determined.

L e m m a 4 . 2 . Let (s,h) be a model and let G[(s,h)] be its induced graph. Let TT be a path
from x to y in G[(s, h)]. Then this path is uniquely determined as TT = (x,h(x),...,h\n\(x)).

Proof. B y induct ion on the length of the pa th TT. If TT is empty, i.e., TT = (x), then TT is
clearly uniquely determined. If TT has length n + 1, then its prefix TT' = (x, h(x),..., hn{x))
is, by the inductive hypothesis, uniquely determined. Since there is at most one successor
of each vertex, the only way to obtain a path of length n + 1 is to extend TT' by an edge
hn(x) —> hn+1(x) which yields a uniquely determined path TT = (x, h(x),..., hn+1(x)}. •

Notice that in stack-heap models, each vertex has at most one successor, but in our S M T
encoding, each vertex has exactly one successor since arrays are total . A s a consequence of
the previous lemma, there is a path from x to y of length i iff hl[x] = y2. The reachability
in a number of steps given by some interval can be then defined using enumeration over a l l
lengths in the interval:

reach*(h, x, y) = hl[x] = y

r e a c h [m j n] (h , x , y) = \J reach*(h, x, y)
m<i<n

To define the predicate pa th , we first define a predicate r eachab le < l (h , D, x) which asserts
that D is the set of a l l locations reachable from x i n less than i steps. The predicate again
uses the fact that the successor of a vertex is uniquely determined.

r e a c h a b l e < ^ (h , J D , x) ^ { Z 3 = 0 , . , * ' = °
yD = {x, h[x],h2[x],hl_1[a;]} if i > 0

Now we w i l l define the predicate pa th . The most t r icky part is to ensure that it w i l l indeed
always assert that D is the domain of the simple path - al though each vertex has exactly
one successor, there could s t i l l be mult iple i such that hl[x] = y. O n l y the smallest such i
defines a simple path. This is not a problem for reachability, but we need to select the
correct i to compute the correct domain of the list segment. Instead of postulat ing the
shortest path from x to y, we use the fact that the unique simple path is a prefix of a l l
other paths from x to y. Therefore, the simple path is the only path from x to y that does
not go through the locat ion y:

p a t h [m n] (h , D , x , y) = \J ^reach*(h,x,y) A reachab le < l (h , D,x) A y £ D^j
m<i<n

V (preach1 (h,x,y) A D = l j

2The term h*[a;] denotes z-timed iterated reading from the array h . This can be formally defined using
recursion as h*[a;] = x if i = 0, and h [h l _ 1 [x]] otherwise.

28

The predicate performs an enumeration over a l l paths from x to y and forces D to be the
domain of a path that does not contain y. If there is no path from x to y, it sets D to
be empty. It remains to formally show that the introduced predicates have their intended
meanings.

L e m m a 4 .3 . Let M. be a first-order model and let (s,h) = T _ 1 (. M , x) be a stack-heap
model obtained by its inverse translation. Let G be the induced graph of (s,h). Then the
following conditions hold:

1. M\= A^F A reach*(h, x,y) 3ir. x ^> y A \ir\ = i

2. M\= A^F A reach [m n] (h ,x ,y) 3ir. x ^> y A m < \ir\ < n

3. M\= A j f F A r e a c h a b l e ^ , £>, a;) DM = {£ | 3vr. x ^ I A \ir\ < i}

I M\= A ^ F A p a t h [T n > n] (h , £) , s , y) DM = {£ e dom(vr) | x ^ y A m < |vr| < n}

Proof. Observe that i n a l l cases, the model M. has exactly n locations which is ensured by
the formula A ^ .

1. Direc t ly follows from L e m m a 4.2.

2. Direc t ly follows from (1) and the fact that the predicate reach enumerates over a l l
possible lengths of paths i n the interval [m, n].

3. Direc t ly follows from L e m m a 4.2.

4. If there is no path, the c la im holds because only the last clause of the predicate path
can be satisfied and it guarantees that D = 0. If there is a simple path of length i,
the path is given as ir = (x, h[x],..., h*[x]). This path satisfies i - th clause. A j-th
clause wi th j < i w i l l not satisfy reachability condit ion because there is no shorter
path. A j - t h clause w i t h j > i w i l l not satisfy y ^ D. Consequently, only the i - th
clause is satisfied which sets D to be set of a l l locations reachable i n less than i steps
- i.e., exactly the set dom(-7r), which concludes the proof.

•
Complexity . Let n be the number of locations. The reachability predicates have the
following asymptotic sizes:

• |reach*(h, x, y)\ = 0(n) because the size of the term hl[x] can be up to n.

• |reach[0 j n](h, x, y)\ = 0(n2) because it consists of 0(n) appearances of reach*(h, x, y).

• | reachable < *(h, D, x)\ = 0{n2) because the set expression can contain up to n terms
of the form hJ [x], each of size up to n.

• |path [0 n] (h, D, x, y)\ = C (n 3) because it contains 0{n) occurrences of the predicate

reachable-*(h, D, x).

In the definition of the translation, we need exactly one reach and one path predicate for each
list-segment predicate. The complexity of list-segment translat ion is therefore C (n 3) which
is asymptot ical ly better than i n [17] that needs C (n 4) space to encode list segments. O n the
other hand, the encoding of [17] is an instance of a more general encoding, which also works
for trees. O u r encoding cannot be efficiently generalised for trees because enumeration over
al l possible paths i n branching graphs requires exponential space.

29

Fi

Figure 4.2: A n example of a stack-heap model and footprints of sub-formulae of the formula
if = \s(x, z) * (ls(x, y) V z i->- y) in this model . In particular, the sub-formula \s(x, y) V z i-> y
has two footprints in the model - -F2 and i 7^-

4.3 Translation of Separating Conjunctions

The translat ion of the separating conjunction is complicated because its semantics involves
a quantification over possible splits of a heap - a second order quantification over disjoint
sub-heaps. If the separating conjunction does not lie under a negation, the second-order
quantification can be efficiently avoided using Skolemization. Otherwise, one needs to either
quantify over arrays or replace the quantification by a finite, but exponential enumeration.
The former is possible because there are only finitely many arrays over the finite domain,
but according to our experiments, bo th Z 3 and CVC5 give-up on such formulae.

In [28], it was shown that for a formula ip from the fragment of boolean combinations of
symbolic heaps and for a fixed model (s, h), there exists for each separating conjunction in
p only one relevant way how it can split the heap h. This allows the translat ion to remove
quantifiers even when the separating conjunction lies under a negation - existential and
universal quantification over one element domain are the same thing. Th is unique way to
split the heap h in a model (s, h) for a formula ip\ * tp2 is induced by so-called footprints of
sub-formulae ip\ and tp2 i n the model (s, h). The footprint of pure atoms is the empty set,
no matter what the heap is. Similar ly, the footprint of a points-to assertion x 1—>• y is always
the singleton set {x}. In the case of a list segment \s(x, y), its footprint is s t i l l unique w.r.t.
fixed model (s, h) - it is the domain of the simple path from x to y i n G[(s, h)\ i f such a
path exists. Otherwise, we may take as the unique footprint the empty set. Intuitively, i f
there is no list segment, we can look at any subset of the model to conclude that there is
indeed no list segment. F ina l ly , the footprint of a separating conjunction is the union of
the footprints of its operands.

The unique footprint property can be extended for conjunctions and even guarded nega
tions, but it stops working when disjunctions appear under separating conjunctions. To
demonstrate this, let us first formally define footprints.

Definition 4.2 (Footprint) . Let p be a formula and let (s,h) be a stack-heap model. A set
F C dom(/i) is called a footprint of p in a model (s,h) if (s,h\p) \= p. We collect all such
sets in footprints/,, M (</>)•

In other words, a footprint defines a subset of a model i n which the given formula ip can be
satisfied. A n example is given i n Figure 4.2 for the formula ip = \s(x, z) * (\s(x, y) V z i-> y) .
The footprint of its sub-formula l s(x,z) is denoted by F\. A s can be seen, the footprint
of the disjunction ls(x, y) V z i-> y is not uniquely determined as it can be satisfied i n the
sub-heaps induced by both F2 and F'2. In the case of a negation, the si tuat ion is even more

30

complicated as the formula - i e m p could be satisfied on a sub-heap induced by an arbi t rary
non-empty footprint F C d o m (/ i) .

In [28], the unique footprint of each sub-formula is axiomatized during its translation
and used for translat ion of separating conjunctions. A l though footprints are not unique in
our logic, we can s t i l l use them to efficiently translate separating conjunctions by l imi t ing
their quantification to the computed footprints only. If the set of footprints is small , then
the formula can be translated w i t h only a smal l enumeration. O f course, in the presence of
negations under separating conjunctions, the translated formula w i l l grow exponentially.

Instead of axiomat iz ing footprints, we w i l l compute them syntactically - for each sub-
formula, we w i l l compute a set of terms representing its possible footprints. Because this
set is parametrised by some model (s, h), it cannot be precisely computed during the trans
lat ion. Therefore, we w i l l compute its over-approximation.

Definition 4 .3 . Let if be a formula and let (s,h) be a model. An over-approximation of

the set of all possible footprints of ip in the model (s,h), denoted as f o o t p r i n t s * hs(<p), is
inductively defined as follow:

footprints* h)

f o o t p r i n t s * h)

footpr in ts*^ (S,h)

f o o t p r i n t s * (S,h)

f o o t p r i n t s * ^

f o o t p r i n t s * ^

f o o t p r i n t s * ^

f o o t p r i n t s * ^

footpr in ts*^ (S,h)

x = y) = f o o t p r i n t s ^ h)(x ^ y) = {0}

x >->• y) = {{s(x)}}

\s{x,y))

V>lA?/>2

{ d o m (7 r) } if s(x) s(y)

{0} if such ir does not exist

{ f o o t p r i n t s *

foo tp r in ts

*y | f b a t p r i n t s J i h) (V ' i) | < (f o o t p r i n t s * ^ (^2)

otherwise

ipi V 1P2) = f o o t p r i n t s ^ ^ (V ' I) U f o o t p r i n t s ^ ^(^2)

ipi A ^ ip2) = f o o t p r i n t s ^ ^ (V ' I)

^1*^2) = {Fi U F2 I Fx e f oo tp r i n t s fs h)(ipx) A F2 G foo tp r i n t s J ^(^2)}

ipx - ® V2)

Notice that, in the case of a formula that does not contain disjunctions, negations,
and septractions, there w i l l be no over-approximation, and the result w i l l be a singleton
set - this is an analogy of the unique footprint property from [28]. Observe that, i n the
case of the conjunction, the precise footprint would be the intersection of the footprints of
its operands. Since we cannot evaluate needed equivalence of elements of those sets purely
syntactically, we over-approximate intersection by taking its operand wi th lesser cardinality.
In the case of the negation, we cannot compute anything more precise than a l l subsets of the
location domain. In the case of the septraction, we could compute more precise footprints.
However, because of our syntactic restriction on the fragment (septractions cannot lie under
negations), we, in fact, do not need to compute footprints of septractions. The reason is the
following. We need footprints only for translating separating conjunctions that lie under
a negation (otherwise we can use Skolemization). Because of the mentioned restrictions,

31

no septraction can lie under a negated separating conjunction. We w i l l now show that the
definition indeed correctly over-approximates a l l possible footprints.

L e m m a 4.4. Let ip be a formula and let (s, h) be a stack-heap model. Lt holds that

f o o t p r i n t s ^) C f o o t p r i n t s * h)(p>).

Proof. If (s,h) Y= p * t rue , then there does not exist F C dom (/ i) such that (s,h\F) \= P,
i.e., there are no footprints of ip in (s,h) and the c la im therefore t r iv ia l ly holds. Assume
that (s, h) \= p * t rue , we prove the c la im by the s tructural induct ion on p.

• Base cases. If p is an equality or a disequality, its only possible footprint is the empty
set. Similarly, i f p is a pointer x i—>• y its only possible footprint is the singleton set
{x}. F ina l ly , i f ip is a list-segment predicate \s(x,y) its footprint i n the model (s, h)
can be only the domain of the simple path from x to y. B y L e m m a 4.2, the path is
always uniquely determined.

• Lnduction steps. If ip is either a negation or a septraction, then the c la im t r iv ia l ly
holds. Let <p = ip\ cxi tp2 be a binary connective other than the septraction. Let us
define following short names:

F = f oo tp r i n t s (a > h) (<p) F* = f oo tp r i n t s J ^ (<p)

Fx = f o o t p r i n t s ^) (V ' I) jf = f o o t p r i n t s * h)(ipi)

F2 = f o o t p r i n t s (S i h) (ifo) j f = f o o t p r i n t s ^ ^ (^ 2)

From the induct ion hypothesis, we have that Fi C Ff for i = 1,2. If ip is a conjunc
t ion, then both ip\ and ^2 need to be satisfied i n (s, / i) . B y the definition of footprint,
it holds that F = F\ n ^2 • F r o m induct ion hypothesis we have that F\ n J-2 C J 7 *
for i = 1,2. Similarly, i£ ip = ipi A-, ^2 , then only is satisfied in (s, /i) and therefore
F = F\. Thus, F C J 7 -* by induct ion hypothesis. If p> is a disjunction, it holds that

C J i U J2 C jf U J " 2

= J ^ # . F inal ly , if p is a separating conjunction, it can be
satisfied only in a heap which is a disjoint union of sub-heaps induced by footprints
F\ G F\ and F2 £ F2. The set J 7 * over-approximate this set by taking unions of a l l
footprints even if they are not disjoint.

•
Final ly , we can provide a simplified semantics of the separating conjunction in the way

we have already sketched - instead of quantifying over a l l possible splits of a heap, we w i l l
quantify only over splits induced by over-approximated footprints.

L e m m a 4.5. Let <p = ip\ * ifo be a formula and let (s,h) be a stack-heap model. Further

let F\ = f o o t p r i n t s * h\(^i) and let F2 = f o o t p r i n t s * ^ (V ^) - Then (s, h) \= p iff

(s,h)\= \/ \/ (s,h\Fl) |= V i A (s,h\F2) NV>2 A h\Fl\Ssh\F2 ^ ± A F x U F 2 = dom (/ i)
F1e.F1 F 2 S F 2

Proof.

(^=) If there exist sets F\ and F2 satisfying the assumption, then it holds that the heaps
h\Fl and h\F2 are witnesses of the semantics of the separating conjunction.

32

http://F1e.F1

(=>) Assume that (s,h) \= (p. Then there exists hi and h2 such that (s,hi) \= tpi,
(s,h2) \= tp2, hi tt)s h2 / _L and hi tt)s h2 = h. It clearly holds that d o m (/ i i) is
a footprint of ipi since (s,hi) \= tpi and analogically, dovn(h2) is a footprint of tp2.
Therefore, we can apply L e m m a 4.4 to conclude that d o m (/ i i) G T i and dovn(h2) £ .7-2.
Thus, the statement we want to show holds for Fi = d o m (/ i i) and F2 = dovn(h2).

•
Later on, to define strong-disjointness of two heaps, we w i l l also need a predicate

locat ions(h, D, L) which intui t ively states that the set L contains locations of the heap
function obtained by translation of the array h restricted to the set D. Th is predicate is
defined using a predicate image(h, D, I) which states that / is the image of the translated
heap. The predicates are defined as follow:

image(h, D,I) = f\h[£] e l ^ £ e D

locat ions(h, D, L) = image(h, D, I) A L = D U /

L e m m a 4 .6 . Let M. be a first-order model and let (s,h) = T _ 1 (.A4 ,x) be a stack-heap
model obtained by its inverse translation. Then the following conditions hold:

1. M ^ A ^ F A image (h , L> , /) ^ I = \mg(h)

2. M ^ A ^ F A l o c a t i o n s (h , D , L) <s> L = locs(fr)

Proof. B y the definition of the model translation, the set D is always interpreted as d o m (/ i ') .
Then, both claims follows direct ly from the definition of i m g (/ i ') and l ocs (/ i ') , respectively.

•

4.4 Translation of Septractions

A septraction tpi -® tp2 is satisfied by a model (s, h) if there exists a disjoint extension hi of
the heap h such that the extension satisfies the left-hand side (i.e., (s, hi) \= tpi) and their
composit ion satisfies the right-hand side (i.e., (s , / i t t) s hi) \= tp2). Its translat ion is even
more complicated than i n the case of the separating conjunction. Th i s is because it does
not quantify over sets only but over whole heaps. We avoid this problem by restricting our
fragment and forbid septractions to appear under negations (both under classical negations
and i n the negated branches of guarded negations). Then we can avoid the quantification
using Skolemization.

There is s t i l l another complicat ion even i n this simplified fragment. It is not sufficient to
use a single heap symbol when searching for a model of a septraction. A s an example, let us
consider the formula <p = x i—> x * (x i—> nil —© x i—>• n i l) . The septraction inside the formula
can be clearly satisfied at the empty heap only using the extension hi = {s(x) i-> s (n i l) } .
The whole formula can then be satisfied by a self-pointer h = {s(x) i-> s(x)}. Observe
that h(x) and hi(x) differs because x cannot be equal to ni l . Therefore, we need to introduce
a fresh heap for each septraction to find its model.

For the needs of our translation, we w i l l look at the septraction from a different point
of view. Instead of using a top-down approach saying that the heap is a model if it can
be extended, we w i l l use a bottom-up approach which says that the heap which is a model
can be obtained as a difference of a model of the right- and of a model of the left-hand

33

Do

D2\D1

Figure 4.3: A n example of a witness heap of the formula ip = x i-> y-® \s(x, z). The dashed
boxes denote its sub-heaps induced by D\ and D2 satisfying the left- and right-hand sides
of ip, respectively. The green solid box denotes their difference induced by D2 \ D\ which
is a model of p.

side. More precisely, let p = ip\ —© tp2 be a formula. If there exist a heap h! and sets D\
and D2 such that |= ipi, (s,h'\D2) \= ip2 and D\ C D2 we can construct a model
of the formula p as (s,h'\D2\Dl). We w i l l cal l the heap h' that meets the aforementioned
conditions a witness heap of p.

Definition 4 .4 (Witness heap). Let p = ip\ —© V2 and let s be a stack. Further, let h!
be a heap and let D\, D2 C dom (/ i) . We say that the heap h! is a witness heap of the
septraction p w.r.t. the stack s and sets Di,D2 if the following conditions hold:

1. D1 C D2

2. (s,h'\Dl) | = V i

3. (s,ti\D2)\=ip2

4. h ' \ D 1 ^ h ' \ D 2 \ D 1 ^ ±

A n example of a formula and its witness heap is given i n Figure 4.3. We w i l l now show
that the existence of a witness heap is equivalent to the semantics of the septraction.

L e m m a 4 .7. Let p = ip\ -© tp2 be a formula and let (s, h) be a model. Then (s, h) \= p iff
there exists a heap h! and sets D\, D2 such that h! is a witness heap of p w.r.t. the stack s
and sets D1,D2; it holds that d o m (/ i) = D 2 \ D l 7 and V e D 2 \ D l . h'(t) = h(t).

Proof.

(=̂ >) Assume that (s, h) \= p. B y the semantics of the septraction, there exists a heap h\
such that h tt)s h\ / _L, (s, hi) \= ipi and (s, h tt)s hi) \= ip2. Let h' = h&s hi. Then h'
is a witness heap of p w.r.t. the stack s and sets Di = d o m (/ i i) , D2 = d o m (/ i l±ls hi).
Moreover, it holds that dom (/ i) = D2 \ Di and for a l l £ G D2 \ D\, it holds that
h'{£) = h(£) because h! is defined using h on D2 \ D\.

(^=) Assume that h! is a witness heap of p w.r.t. the stack s and sets Di,D2. Let
hi = h'\Dl. Then, Di C D2, (s,hi) \= ipi, (s,h'\n2) \= tp2 and hi tt)s h ' \ D 2 \ D l / _L.
F rom the assumptions that d o m (/ i) = D2\Di and V G D2 \ Di. h'{£) = h(£), we have
that (s, h'\D2) = (s, hi tt)s h'\D2\Dl) = (s, hi tt)s h). Thus, (s, h) \= p.

•

34

4.5 Translation to S M T

Now, we can put a l l the ingredients together and define the translat ion function T(p, x)
using fresh symbols:

T((/?,x) = let n = bound(</?,x) in

let (p, A, F) = T (̂<£>, h, D) for fresh symbols h and D in

A ^ F

 A A A (p

The definition relies on an auxi l iary function T*(<£>, h, D) that performs the actual recursive
translation. Th is function is called wi th two fixed parameters - the set of variables x and
the locat ion bound n ; and three another parameters - a formula ip to be translated and
symbols h and D which w i l l be used for the encoding of its heap. Those symbols may
change during the translation. For example, a translat ion of a septraction w i l l use a fresh
heap to translate its operands (i.e., to find its witness heap).

The function T*(<p, h, D) produces a tr iple (ip, A, F). The first component is called the
semantics and it represents constraints on the stack and heap imposed by the formula p
expressed in F O L over arrays and sets. Those constraints may use auxi l iary symbols intro
duced during the translat ion. The second component A called axioms defines the intended
meaning of those auxi l iary symbols. The reason why those components are kept separate
is that while the semantics can be modified based on the boolean structure of the input
formula (e.g., negated), the axioms are always collected in their positive form using con
junctions. The last component F is called footprints and it is a set of locat ion set terms.

jj
The meaning of this component is to represent the set f o o t p r i n t s ^ ^(<p). Observe that, in
the top-level definition of the translat ion T(p,x), F is not used, it is only necessary to
translate separating conjunctions. In the final formula, the semantics p> and axioms A are
joined i n a conjunction together wi th the well-formedness constraint A ^ F .

Translation of atomic formulae. Let p> be an atomic formula and let F be a fresh set
symbol. The translation of p> is defined as T*(<£>, h, D) = {jp, A, F) where the ind iv idua l
components are defined as:

x = y: p ^ x = y A D = $ A = t rue F = {0}

x ^ y : p A x ^ y A D = ® A = t rue F = {0}

x i->- y : p = h[x] = y A D = {x} A = t rue T = { { a ? } }

\s(x,y) : p = r e a c h [0 j n] (h , x , y) A D = F A = p a t h [0 n] (h , F , x , y) F = {F}

The translation of atomic formulae is quite straightforward. The only interesting case is the
list-segment predicate. Here, we use an ax iom to ensure that the fresh symbol F is always
interpreted as the domain of a simple path from x to y. This symbol is then used as the
only footprint term and also as the expected domain of the list segment in the translation
of semantics.

35

Translation of boolean connectives. Let ip be a boolean connective - either ip = —>fa
or ip = fa cxi fa where txi £ { A , A-,, V } . We introduce short names for the translations of
its operands

= T*(fa,h,D) $2,A2,F2) = Tx

n(i>2,h,D)

and define the translat ion of ip as T*((p, h, D) = (ip, A, J7):

->fa :
~ A
V = - . ^1 A± Ai T± 2 L

ipl A fa • ~ A p = ^ 1 A ^ 2 A± Ai /\A2 T± l > i i f | ^ l |
i f | ^ | < | ^ 1

Ipl A-, 4>2 • ~ A
V = fa A -1^2 A± AI AA2 T± J7!

Ipl V fa • ~ A
V = ^ 1 V ^ 2 A± AI /\A2 7 i U 7 2

The translation of boolean connectives is again straightforward. The translat ion of the
semantics directly captures the original semantics of the input formula. The axioms are
always collected using conjunction and no new ones are introduced. The fooptrints directly
reflect the inductive definition of the set f o o t p r i n t s * ^ (<£>)•

Observe that the operands of each boolean connective are always translated using the
same array h and the same set D, which w i l l be no longer true for spatial connectives
discussed below.

Translation of the separating conjunction. Let <p = fa * fa and let D\,D2 be fresh
location set symbols. We introduce short names for the translations of its operands

(^ i M i . ^ i) = TSW>i ,h ,£>i) (V ^ , ^) = T*n(i,2,h,D2)

and define the translat ion of ip as T*(<p, h, D) = (ip, A, J7):

p= \J \J V ' i fFi/Di] A MF2/D2} A Fx n F2 = 0 A L F l n L F j C x A D = F1UF2

F i G . F i F 2 G F 2

A= Ai A A2 A f\ l o c a t i o n s (L F l , F i , h) A f\ l o c a t i o n s (L F 2 , F2, h)
F1GF1 F 2 G F 2

T = {FluF2\FleJ7

l,F2e F2}

Here, we use fresh symbols D\ and D2 to represent a split of the heap h. We enumerate over
al l possible splits using a disjunction over pairs of fooptrints from the set T\ x Ti- Each
clause of this enumeration is created by substi tut ing Di i n the translat ion of the semantics
by the footprint Fj, and adding addi t ional requirements that footprints F\ and F2 are
strongly-disjoint and their union yields D. To express strong-disjointness, we introduce a
fresh symbol LFi for each footprint Fi and add an ax iom that ensures that LFi w i l l be
interpreted as the set of locations of the heap represented by h and Fj.

If ip does not lie under a negation, we can use Skolemization to translate its semantics
without any enumeration using fresh symbols L\ and L2 to represent heap locations:

pA fa A fa A Di n D2 = 0 A L i n L2 C x A D = Dl U D2

A = Ai A A2 A loca t ions (L i , L>i, h) A l o c a t i o n s (L 2 , D2, h)

36

http://FiG.Fi

Translation of the septraction. For septractions, we can always use Skolemization
because they never lie under negations. This is ensured by the definition of our fragment.
Let ip = ipi —© fa, let D\ and D2 be fresh set symbol , and let h' be a fresh array symbol.
Further, let L\ and L2 be fresh set symbols used to represent heap locations. We introduce
short names for the translations of its operands

= T ^ (^ , h ' , £ > i) $2,A2,F2) = Tx

n(ip2,h',D2)

and define the translat ion of p as T*((p, h, D) = (ip, A, J7):

yp 4 ^ A fa A D1 C D2 A Li n L2 C x A / \ h[£] = h'[£] A D = D2\DX

A= Ai A A2 A l o c a t i o n s (L i , L > i , h ') A l o c a t i o n s (L 2 , D, h')

2 L

Observe that the definition of is based on the definition of a witness heap (Definition 4.4).

Complexity. The t ime complexity of the translat ion is dominated by computing the sets
of fooptrints of possibly exponential size w.r.t. the number of locations and therefore also
w.r.t . the number of variables. The size of the translated formula can also be up to
exponential because of the enumeration caused by translation of separating conjunctions.
In the worst case, our decision procedure runs i n NEXP because the decision procedure for
the used theory runs i n NP.

We w i l l now define a fragment S S L S that we can translate more effectively, i.e., without
footprint enumeration and obtain a translated formula of at most po lynomia l size. Let us
first consider some straight-forward optimisations. Observe that the footprints are needed
only for translating separating conjunctions. Therefore, we do not need to compute them
if we are not under separating conjunction, or i f we are just under separating conjunctions
that can be translated using Skolemization. In order to do this, the translat ion function
simply has addi t ional flags used to determine whether it can perform Skolemization and
whether it should compute footprints or not. We w i l l now define the S S L S fragment.

Definition 4.5 (SSL- 5 1 fragment). An SSL formula p is in SSLE iff at least one of the
following conditions holds.

• p> does not contain negations, disjunctions, and septraction under separating conjunc
tions.

• p> does not contain spatial connectives under negations.

L e m m a 4.8. Let ip G SSLE. Then T(<^,x) has a polynomial size w.r.t. \<p\ + |x|. The
decision procedure runs in NP for SSLE.

Proof. We w i l l show that we do not need to enumerate over footprints when translating ip.
B y case dist inct ion over definition of the S S L S fragment:

» If ip does not contain negations, disjunctions, and septractions under separating con
junctions, then the set f o o t p r i n t s * h\{ip) always has at most one element for each

subformula ip of ip, or ip lies i n the part of formula where f o o t p r i n t s ^ ^ (V O w m n ° t be
needed and the translation w i l l therefore not compute i t .

37

• If p does not contain any spatial connectives under a negation, we can translate a l l
of them using Skolemization.

To finish the proof, observe that the size of the translated formula is now dominated
by the translat ion of list-segment predicates which is polynomial w.r.t. the number of
locations. Since the number of locations is linear w.r.t. the size of the formula ip, we
have that the translated formula T(p>, x) has at most po lynomia l size. The whole decision
procedure then runs i n NP. •

Observe that SSLE subsumes the positive fragment as defined i n [25] but not the positive
fragment as defined in [24] (and also i n this work) where one can also use guarded negations
in positive formulae. Whether formulae wi th arbi t rary appearance of guarded negations
can be effectively translated or not remains an open question for the future work.

Example 4 . 1 . To demonstrate the translat ion on a simple formula, let us consider the
entailment x^y*yi-^-z\= \s(x, z) that can be reduced to unsatisfiability of the formula
p = (x i->- y * y i->- z) A - , \s(x,z). Notice that the entailment does not hold because its
left-hand side can be satisfied by a cycle that is not a list segment. A l l components of
the translation are shown in Figure 4.4. W h i l e the locat ion bound is bound(p, {x, y, z}) =
2 • \ {x, y, z} \ + 1 = 7, the translat ion uses the opt imal bound 3. Th is op t imal bound can be
computed based on the structure of ip as shown i n Section 5.2.

In the top-left corner, the figure shows the A S T of p and assigns a unique identifier to
each of its sub-formulae. Those identifiers are used to index components of the translation.
The most interesting case among the translations of the semantics is the separating con
junct ion © . Because the separating conjunction does not lie under a negation, it can be
translated using Skolemization. The translat ion creates two fresh set symbols D\ and Z?2
which are used to translate operands © and © , respectively. Moreover, we do not have
to add the constraint that locations shared by sub-heaps induced by D\ and D<i are cov
ered by x because ip is positive. The only interesting ax iom is created for the list-segment
predicate © and it defines F to be the path from x to z on the heap represented by h .

The definition of the reachability predicates uses another opt imisat ion. W h i l e the loca
t ion bound is 3, it also counts w i t h nil that cannot be allocated. Therefore, the max imum
bound for reachability can be set to 2. Observe that only the second clause of the path
predicate representing the empty simple path is satisfied i n the model i n the top-right cor
ner. Therefore it holds that F = 0. Because D has to be equal to {x,y}, it holds that
D / F, and, consequently, p^ is not satisfied. Then , p>§ is satisfied.

The figure also shows how footprints would be computed. However, they are not needed
in this case because the only separating conjunction is translated using Skolemization.

The translated formula can be satisfied by the following first-order model M over the
domain L = {0 ,1 , 2}:

XM = 1 } y M = 2 ^ M = l n] \ M = Q

hM = K(0) (1<2)(2<1)

DM = {1,2}

The model w i l l also interpret other components (D\, D2, F) but those are not needed to
construct a stack-heap (s, h) = T _ 1 (. A 4 , {x, y, z, n i l }) of the input S S L formula:

s = {x H-> l,y H-> 2, z H-> 1, nil i-> 0}

/ i = { 1 ^ 2 , 2 ^ 1 }

38

Input formula: Possible stack-heap model:

0 A -

e © \s(x,z) 1 : x,z) 2 : y 0 : nil

O x ^ y Q y H> z

Semantics:

{x}

{y}

<P3 — <Pi A <p2 A Di n D2 =

ipi = h[x\ = y A D\

p2 = h[y] = z A D2

A AD = D1UD2

if4 = reach[0 j2](h, x, z) A D = F

tp3 A -1(̂)4

Axioms:

t rue

^,2 — t rue

^3 = Al A ^ 2

A t = p a t h [0 2] (h , F,x,z)

A A3 A A

Auxi l iary predicates:

reach[0 j2](h, x, z) = x = z V h[x] = z V h2[x] = z

p a t h [0 2] (h , F , x , z) = (^ r e a c h [0 i 2] (h , x , z) A F = 0)

v (x = z A F = 0 A z ^ F)

V (h[x] = z A F = {x} A z ^ F)

(no path)

(simple path of length 0)

(simple path of length 1)

V (h 2[x] = z A F = {x, h[x])} A z F) (simple path of length 2)

Translated formula:

T(<p,{x,y,z}) ,WF A As A (p5

Footprints (only for i l lustration):

ft A { { x } } T 2 A T z A { { a . > y } }

J - 4 ^ {F} ft ± {{x,y}}

Figure 4.4: A n example of the translat ion for the formula <p = (x i—>• y * y i—>• z) A- , ls(x, z) .
The translat ion uses the opt imal locat ion bound n = 3. E a c h component is indexed by
the id of its corresponding sub-formula. Those ids are assigned in the A S T of p i n the
top-left corner. The bo t tom part shows how footprints would be computed. Th is is just
for i l lustrat ion because the only separating conjunction is translated using Skolemization -
by introducing fresh symbols D\ and D2, which are impl ic i t ly existentially quantified.

39

4.6 Proof of the Correctness

This section is devoted to the proof of the correctness of the proposed translation. Its
correctness is summarised by the following theorem.

Theorem 4.1 (Translation correctness). An SSL formula ip is satisfiable over variables x
iff its translation T(tp, x) is satisfiable. Moreover, if M \= T(<^,x); then T _ 1 (.A4 ,x) |= ip.

In other words, the theorem states that the input and its translat ion are equisatisfiable.
Moreover, the inverse translat ion of a first-order model always yields a stack-heap model of
the original formula. The high-level idea of the proof is the following. We first establish a
correspondence between stack-heap models and first-order models, and then show that an
input formula is satisfied by some stack-heap model (s, h) iff its translat ion is satisfied by
a first-order model M. that corresponds to (s, h). To prove this for spatial connectives, we
w i l l have to define an operation of composit ion of two models and prove that it mimics the
strongly-disjoint union of two heaps. To finish the proof, we w i l l also show that T _ 1 (. M , x)
corresponds to M..

In the remainder of this chapter, we fix an S S L formula ip, a set of variables x, and their
location bound n = bound(<£>,x).

4.6.1 S M T Models

In this section, we introduce several notations related to first-order models. We first define
a model of SMT encoding (SMT model for short) - a model that satisfies the top-level
constraints given by the formula A ^ F .

Definition 4.6 (S M T model) . Let M. be a first-order model. We say that M. is a model
of SMT encoding (SMT model for short) w.r. t. <p andxifM^ A ^ F .

In particular, a l l S M T models w.r.t . fixed ip and x have the same domain L of cardinal
ity n defined by the formula A ^ F . We w i l l now formalise the correspondence of stack-heap
and S M T models.

Definition 4.7 (Corresponding models). Let (s,h) be a stack-heap model and let M. be an
SMT model. The model M. corresponds to (s,h), written as M. ~ (s,h), if the following
conditions hold:

1. dom(s) = x ;

2. Vx G x. s(x) = x M ,

3. dom(/») = DM,

4. V£eDM. h(l) = h[l]M.

L e m m a 4.9. Let M. be an SMT model. There exists the unique stack-heap model such that
M ~ (s,h). Moreover, it holds that (s,h) = T - 1 (. M , x) .

Proof. The uniqueness of (s, h) follows from the fact that each of its components is uniquely
determined i n the definition of the correspondence. Di rec t ly from Definit ion 4 . 1 , we have
that M ~ T _ 1 (. M , x) . Thus, (s,h) = T " 1 (M , x) . •

40

D Mi

4 5 : z 0 : nil 4 5 : z 0 : nil

1 : x * 3 : y 5 : z

4 5 : z 0 : nil 4 5 : z 0 : nil

1 : x 2 3 : y 1 : x 2 3 : y

0 : nil

Figure 4.5: A n example of S M T models Mi and and a stack-heap model (s,/ i) that
corresponds to both of them.

The converse of the previous lemma does not hold because for a stack-heap model (s, h),
we have mult iple corresponding S M T models - two models may differ i n their interpretation
of the array h outside of their common interpretation of the heap domain D. Th is si tuation
is demonstrated i n Figure 4.5 that depicts a graphic representation of S M T models Mi
and M2 (on the left-hand side) that both correspond to the same stack-heap model (on the
right-hand side). Based on this observation, we define an equivalence relation such that Mi
w i l l be equivalent w i th M2.

Definition 4.8 (Equivalent S M T models). Let Mi and M2 be SMT models. Model Mi
is equivalent with M2, denoted as Mi = M2, if the following conditions hold:

1. Vx G x . x M l = x M 2 ,

2. D M l = D M 2 ,

3. VI G DMK hMl[£] = hM*[£].

L e m m a 4.10. Relation = on SMT models is an equivalence relation. Moreover, it holds
that Mi = M2 ifffor all stack-heap models (s, h), it holds that Mi ~ (s, h) 44> M2 ~ (s,h).

Proof. B o t h claims follow directly from the definition of equivalent models and from the
definition of model correspondence. •

We would like to further work wi th equivalence classes of = on S M T models. In order to
do this, we need to ensure that formulae created dur ing the translation cannot dist inguish
equivalent models. In other words, this means that a l l formulae respect our encoding of
par t ia l functions. For example, the formula <£> = -D = 0 A h [x] = y does not respect this
encoding because it constraints value of the par t ia l function represented by h outside of its
domain D. We w i l l ca l l formulae that respect this property well-defined.

Definition 4.9 (Well-defined formula). Let ip be a first-order formula. Let Mi and M2

be SMT models such that Mi = M2. Formula p> is well-defined if Mi \= p 44> M2 \= p>.

41

4.6.2 Composition of S M T Models

We w i l l now define when two S M T models are compatible w.r.t . the set of variables x .
Further, we w i l l define a composition of compatible S M T models. Intuitively, this operation
w i l l mimic the operator l±ls i n the domain of S M T models. We w i l l later need lemmas about
properties of composit ion to prove the correctness for the cases of spatial connectives.

To define compat ibi l i ty of two models, we define the image of the array h w.r.t . some
set X C dom(h), as arr_img(h, X) = {y \ 3x G X. h[x] = y}.

Definition 4.10 (Compatible models). Let Mi and M2 be two SMT models. Further, let
Ii = mJ\mg{\iMi,DMi) for i G {1 ,2} . SMT models Mi and M2 are x-compatible if the
following conditions hold:

1. Vx G x . x M l = x M 2

2. D M l n DM2 = 0

3. (DMl U Ii) n (DM* U I2) C x ^ 1

Intuitively, two models are compatible i f (1) they interpret the stack i n the same way,
(2) their interpretation of heap domains are disjoint, and (3) a l l locations common in their
interpretations of heaps are among interpretations of variables. The next step is to define
how compatible models can be composed.

Definition 4.11 (Mode l composit ion). Let Mi and M2 be SMT models. Their composition
Mi ®x M2 is defined as (LM\ (x M l) x e x , h M l ShM^,DM^ U DM*} if Mi and M2 are
x-compatible and undefined otherwise. The composition of arrays, EE, is defined as:

ifle D M \

ifle DM*,

otherwise.

The composit ion has the same domain L as both of its operands (this is ensured by the
fact that both operands are S M T models w.r.t. the same fixed ip and x) . The composit ion
also interprets a l l variables i n the same way as its operands because the operands are
compatible. The composit ion of arrays EB mimics disjoint union of two par t ia l functions.
Notice that EB is well-defined because heap domains D M l and D M i of compatible models
are disjoint. The following lemma shows that the model composit ion precisely captures the
strongly-disjoint union of two heaps.

L e m m a 4 .11. Let (s,hi) ~ Mi and (s,h2) ~ M2 be two pairs of corresponding models.
Then the following properties hold:

1. hi&sh2 = ± ^ Mi®xM2 = ±

2. (s,hiiSsh2) ~Mi®xM2

Proof.

1. Because Mi and M2 correspond to stack-heap models w i th the same stack, we know
that each symbol x G x is interpreted in the same way i n both models. Consequently,
their composit ion can be undefined iff at least one of conditions (2) or (3) from the
definition of compat ibi l i ty is not satisfied. If the condit ion (2) is not satisfied, then
dom(/&i) n dovn(h2) ^ 0 and vice versa. If the condit ion (3) is not satisfied, then
locs(ft-i) n \ocs(h2) ^ s{x) and vice versa.

[h[l]Mi

h M l EB h M 2 = < h[l]M*

I n i l - ^

42

2. Direc t ly follows from (1) and the definition of the composit ion.

•
We w i l l now prove two key lemmas that we w i l l later need to prove the correctness of

the translat ion of spatial connectives.

L e m m a 4.12 (Extension by a compatible model) . Let Mi and M2 be x-compatible SMT
models. Lettp be a well-defined formula s.t. D £ vars(i/>). Then Mi \= ip iff Mi®xM2 \= tp-

Proof. Let M! = Mi ®x M2. We w i l l show that the interpretations of a l l terms i n the
formula ip are the same i n both models Mi and M'. Then also a l l predicates and sub-
formulae of ip have the same boolean values i n both models and consequently tp is either
satisfied in both models, or falsified in both models. We have to consider two sorts of terms:

(a) Location terms. E a c h locat ion term t is of the form h*[xj] where i £ N and Xj £ x is
a locat ion variable. We show the statement by the induct ion over i. If i = 0, then t
is a locat ion variable Xj which is, by the definition of the compatibil i ty, interpreted
in the same way i n both Mi and M2 and consequently also in their composit ion.
Let t = ht+1[xj], and let t' = h.l[xj]. B y the induct ion hypothesis, the term t' is
interpreted as the same location £ in both models. Let us consider following cases
for £:

- If £ £ D1

 1 , then the interpretation of h[£] i n Mi is the same as i n M' by the
definition of the composition.

- If £ $ Df1 Al(£ D M 2 , then h[£] may be interpreted differently in those models,
but there exist M[= Mi that interprets h[£] in the same way as the model M2.
It holds that Mi ®x M2 = M[®x M2.

- If ^ D M l Ai £ D M 2 , then we can replace Mi by its equivalent model M[that
interprets h[£] i n the same way as Mi © M2. A g a i n , Mi ©x M2 = M[©x M2.

(b) Location set terms. Let i be a location term such that t. We know that tp does
not contain the symbol D. The term t is either a constant, i.e., a possibly empty
enumeration of locations, or an applicat ion of a set operation to a tuple of set terms.
We w i l l prove the statement by induct ion over the structure of t. If t is an enumeration
of constants, then the statement holds, because a l l of its elements (location terms)
are interpreted i n the same way by (a). The induct ion step is t r iv i a l because set
operations w i l l yield the same result i n both models.

•
L e m m a 4.13. Let Mi and M2 be x-compatible SMT models. Letipi andip2 be well-defined
formulae such that D ^ ipi and D ^ ip2. Then the following statements are equivalent:

1. Mi \= ipi A M2 \= tp2

2. Mi ffix M2 \=tpiA fa

Proof. B y L e m m a 4.12 we have

Mi\=fa Mi ®x M2\=fa,

M2\=fa M2 ®x Mi \= fa.

The c la im then follows from the commutat iv i ty of the composit ion. •

43

4.6.3 Translation Invariants

To prove Theorem 4.1, we w i l l show that the recursive translation function T*(i/>,h,.D)
satisfies several invariants. Let M be an S M T model and let (s,h) be its corresponding
stack-heap model. Let tp be a sub-formula of tp, for its t ranslat ion (tp, A, F) = T*(i/>, h, D),
the following statements hold:

(11) Well-definedness. Formula tp is well-defined according to Defini t ion 4.9.

(12) Skolemization. If tp does not lie under a negation or i n a branch negated by a
guarded negation in ip, then tp does not lie under a negation or an universal quantifier
in ip.

(13) Consistency of the axioms. The axioms A and the well-formedness constraint
A ^ F are consistent, i.e., there exists a model M1 such that M1 |= A A A ^ F . Th is
invariant ensures that top-level constraints created by the translation of the formula tp
are always satisfiable.

(14) Correctness of the footprints. The set T over-approximates the set of a l l possible

footprints of tp i n (s, h). More precisely, we w i l l show that FM = f o o t p r i n t s * ^ (V O -

(15) Correctness of the translation. The translation of the formula tp is correct. More
precisely, it holds that (s, h) \= tp iff M. \= tp.

The first invariant ensures the well-definedness of a l l formulae that is needed to prove other
invariants. The second invariant guarantees that the translat ion w i l l not introduce any
negation or universal quantifier over an existentially quantified symbol , for which there was
no negation over this symbol i n the original S S L formula. Consequently, we can perform
the Skolemization and replace it by a constant symbol . The th i rd invariant merely requires
that there is no inconsistency i n auxi l iary definitions introduced during the translation.
The fourth invariant makes sure that set J- correctly captures a l l footprints. F ina l ly , the
last invariant states the correctness of the translation. Theorem 4.1 follows almost directly
from the last invariant applied to the whole input formula (p.

L e m m a 4.14 (Invariant I I) . Let tp be an SSL formula and let (tp,A,F) = T*(i/>,h,D) be
its translation. The formula tp is well-defined.

Proof. Let M \= tp and let £ £ D M . Let ftA' be an S M T model that interprets a l l terms
except h[£] as A 4 . In order to show that tp is well-defined, we need to show that M! \= tp.
We w i l l proceed by induct ion on the structure of the original S S L formulae tp.

If tp is a pure atom, than the c la im holds because tp does not restrict the mapping
of h at a l l . If tp = x i—>• y, then tp does not restrict the mapping of h for locations other
than x which is i n D M . If tp = \s(x, y), then set D is interpreted using the predicate path
path(h, D, x, y). A s shown i n the proof of L e m m a 4.3, exactly one clause of this predicate
is satisfied i n A4. If the i - th clause is satisfied, than tp restricts only locations h-?^]-^ such
that j < i. Since a l l such locations are in DM by L e m m a 4.3, tp is well-defined.

The c la im directly follows from the inductive hypothesis for a l l boolean connectives and
also for the separating conjunction because they do not impose any addi t ional restrictions
on the array h. F inal ly , if tp is a septraction, then it restricts h only at locations in DM

by the definition of its translat ion which asserts that f\ieDh[£] = h'[£]. Thus, tp is well-
defined. •

44

L e m m a 4.15 (Invariant 12). Let ip be an SSL formula and let (ip,A,F) = T*(ip,h,D)
be its translation. Lf ip does not lie under a negation or in a branch negated by a guarded
negation in p, then ip does not lie under a negation or an universal quantifier in p.

Proof. It can be easily verified that the translat ion never introduces universal quantifiers
and uses only those negations that were already present i n the formula p. •

L e m m a 4.16 (Invariant 13). Let ip be an SSL formula and let (ip,A,F) = T*(i/>,h, D) be
its translation. The formula A A A ^ F is satisfiable.

Proof. The formula A ^ F is always satisfiable by a model M. w i th domain L = {£i, ...,£„}
and such that nil ^ D . E a c h path ax iom is satisfiable i n isolation by L e m m a 4.3. Similarly,
each location ax iom is satisfiable i n isolation by L e m m a 4.6. A l l those axioms are combined
using conjunctions i n a l l cases of the translation. F r o m the definition of the translation,
it follows that each ax iom speaks about a fresh symbol . Consequently, the conjunction of
satisfiable axioms is also satisfiable. •

L e m m a 4.17 (Invariant 14). Let ip be an SSL formula and let {ip,A,F) = T*(ip,h, D) be

its translation. Then FM = footprints* ^ (V O -

Proof. B y induct ion on the structure of ip. The case of the list-segment predicate is ensured
by L e m m a 4.3. Other cases are t r iv i a l because their definitions of the set J- direct ly copy
the inductive definition of the set footprints^ ^ (V O - ^

L e m m a 4.18 (Invariant 15). Let ip be a formula and let {ip,A,F) = T*(V>,h, D) be its
translation. Then (s,h) \= ip iff M. \= ip.

Proof. B y structural induct ion on ip.

Atomic formulae.

• tp = x = y:

(s,h) \= x = y 44> s(x) = s(y) A dom(h) = 0 (SSL semantics)

44> x M = yM A DM = 0 (model correspondence)

44> M\=x = yAD = $ (F O L semantics)

44> M. \= ip (translation)

ip = x / y:

(s,h) \= x / y 44> s(x) / s(y) A dom(h) = 0 (SSL semantics)

44> x M / yM A DM = 0 (model correspondence)

44> M\= x / y AD = 0 (F O L semantics)

44> M. \= ip (translation)

45

• v — x v-
(s,h) \= x i->- y 44> h(s(x)) = y A d o m (/ j) = (SSL semantics)

44> h [x] = A DM = {xM} (model correspondence)

44> M \= h[x] = y A D = {x} (F O L semantics)

<^ M\= ip (translation)

(s, / i) |= ls(x , y) 44> 3ir. s(x) s(y) A d o m (/ i) = dom(7r) (Lemma 4.1)

44> .A4 |= reach [0 i „] (h ,x ,y) A pa th r 0 r i] (h , D , x , y) (Lemma 4.3)

M. \= tp (translation)

Inductive steps for boolean connectives. Let ip be either a negation ip = - i ^ i o r a b inary
formula tp = tp\ \x] ip2 where cxi G { A , A-,, V } . We introduce short names for the results of
translat ion of an operand ipf

W U i / i) = T^i,h,D) $2,A2,F2) = Tx

n(i>2,h,D)

• ip = —1-01:

(s, h) \= ->ip 44> (s, h) Y= ipi (SSL semantics)

44> M. Y= ipi (induction hypothesis)

44> M. \= ->ip (translation)

ip = ip\ A V ^ :

(s, h) \= ipi /\ ip2 44> (s, /i) |= V ' l A (s, h) \= tp2 (SSL semantics)

44> .A4 |= V ' l A M. \= ip2 (induction hypothesis)

44> M \= ip (translation)

ip = ipi A ^ V2:

(s, /i) |= V ' l A-, tp2 44> (s, /i) |= ipi A (s, /i) =̂ ip2 (SSL semantics)

44> .A/f |= ipi A .A4 ^ ip2 (induction hypothesis)

<^ M\= ip (translation)

ip = ipi V ^2 :

(s, /i) |= V ' l V tp2 44> (s, /i) |= tpi V (s, /i) |= tp2 (SSL semantics)

44> .A/f |= ipi V .A4 |= ip2 (induction hypothesis)

<^ M\= ip (translation)

46

Inductive step for the separating conjunction. Let ip = ipi * ip2 • We introduce short names
for the results of the translat ion of its operands using fresh set symbols D\ and D2:

(^ i M i . ^ i) = T ^ (^ , h , £ > i) (^ 2 , ^ 2 , ^ 2) = Tx

n(i>2,h,D2)

Let (s, h) \= ip, by the definition of S S L semantics this is equivalent to:

3/»i, h2. (s, hi) \= tpi A (s, h2) \= tp2 A hi tt)s h2 / _L A hi tt)s h2 = h.

From the invariant 13, we have that Ti = footprints* ^ (V ' i) f ° r * = 1,2. T h e n we can apply
L e m m a 4.5 to obtain an equivalent statement:

V V (s,h\Fl)\=^iA(s,h\F2)\=^2Ah\Fl^sh\F2^±AFiUF2 = dom(h).
F1e.F1 F 2 S F 2

After applying induct ion hypotheses for ipi and ip2, L e m m a 4.11, and the definition of the
model correspondence, we obtain equivalent c laim:

V V (Ml 1= ^ l) A (M* 1= A M l ®X ^ 1 A F l U F 2 = D -
F i S F i F 2 e F 2

Formulae and ip2 are by invariant II well-defined. They also do not contain the symbol D
because they were translated using fresh symbols Di and D2, respectively. Therefore, we
can apply L e m m a 4.13 to obtain an equivalent formulation:

V V (Ml ® X - ^ 2 | = ^ i A i)2) A Mi ffix M2 / J_ A F i U F2 = D.
F i S F i F 2 e F 2

From L e m m a 1.6 and the definition of model compatibil i ty, this is an equivalent formulation
for:

V V (Mi ®x M2 \= ip! A 4)2 A Di n D2 = 0 A LDl n L°2 C x) A Fi U F2 = D.
F i S F i F 2 e F 2

Final ly , this is equivalent to:

Mi ® x A4 2 |= \J \j Ui [Fi/Di] A 4>2 [F2/D2] A Fi n F2 = 0
F i S F i F 2 e F 2 ^

A L F l n L F 2 C x A F i U F 2 = I) j ,

which is, from the definition of the translation, equivalent to Mi ®x M2 \= ip. The case of
the translat ion using Skolemization is proved analogically using invariant 12 to show that
Skolemization can be indeed used.

47

http://F1e.F1

Inductive step for the septraction. Let ip = ipi —© ip2. We introduce short names for the
results of the translation of its operands using fresh symbols h', D\ and D2:

= T ^ (^ , h ' , £ > i) $2,A2, T2) = JxM2,h',D2)

Let (s, h) \= ip. B y L e m m a 4.7, this is equivalent to the existence of a witness heap h' w.r.t.
the stack s and sets Di,D2 such that dom(/i) = D2\D\ and W € dom(/i) . / i (£) = B y
the definition of the fragment, ip cannot lie under a negation. Using the invariant 12, we
can perform Skolemization to remove existential quantifiers:

(a, N V ' l A (s, / i l l / ? ,) N V>2 A L»i C Z? 2 A dom(/») = D2\DX

/\hl\Dl W s / I ' | D 2 \ D i ^ l A V ^ G dom(/i)./i(f) = /i ' (£).

After applying the induct ion hypotheses and using model correspondence, we obtain:

(Mi \= W\) A (Mi ®x M2 \= fa) A Di C L>2 A D = D2 \ D1

f\Mi®x M2 + ! A V f G D . h [f] = h ' [£] .

From L e m m a 4.6 and the definition of model compatibil i ty, we can rewrite this as:

(Mi \= ipi) A (M i ® z - M 2 |= ^2) A D i C D2 A D = D2\ Di

A L i n L 2 C x A V£ G D.h[<] = h'[£].

Final ly , formulae V i is by invariant II well-defined. It also do not contain the symbol D
because it was translated using fresh symbol D\. Therefore, we can apply L e m m a 4.12 to
obtain an equivalent formulation:

Mi @x M2 \= ip! A^p2 AD! C D2 AD = D2\Di A Li H L2 C x A W G D.h[£] =h'[£],

which is, from the definition of the translation, equivalent to . M i (Bx M2 \= ip- Th is
concludes the proof.

•
Final ly , we can prove Theorem 4.1 as a corollary of invariants and previously proved

lemmas.

Proof of theorem 4-1- F r o m invariants 13 and 15, we have that the S S L formula ip is satis-
fiable over variables x iff T(<p, x) is satisfiable. Moreover, from L e m m a 4.9, we have that
(s,h) = T " 1 (M , x) . •

18

Chapter 5

Optimisations

In this chapter, we describe several original optimisations of the decision procedure proposed
in Section 4. In the first part, we focus on proving general tighter bounds for symbolic heaps.
Besides bounds on the number of locations i n a model, we w i l l also introduce an idea of
list-length bounds that w i l l allow us to decrease the size of the encoding of list-segment
predicates. Then , we w i l l show how tighter bounds can be computed for general formulae
based on their structure. A simple method for computing tighter locations bounds was
sketched already i n [18], but we propose a more detailed and precise approach. Moreover,
[18] does not consider bounds on lengths of list segments at a l l .

5.1 Tighter Bounds for Symbolic Heaps

Recal l that, according to our definition, a formula ip is a symbolic heap if it is of the form
p = * V i where a l l tpi are atomic formulae. W h i l e the symbolic heap fragment is one of
the most simplest forms of separation logic, it is frequently used in verification tools. It
therefore makes sense to propose optimisations for its encoding even though it is just a
small subset of S S L . In previously proposed approaches based on a small-model property,
optimised bounds for symbolic heaps were not considered [17, 18].

Firs t , we w i l l show that each satisfiable symbolic heap has a model where a l l locations
are named - this improves the location bound to |vars(</?)| for this fragment. To prove this,
we w i l l use a reduction of sub-heaps similar to the reduction of chunks from the proofs of
small-model properties in Theorem 3.4 and Theorem 3.5.

L e m m a 5.1. Let p be a symbolic heap and let (s,h) \= p be its model. Then there exists
a heap h! such that (s,h') \= p and h! does not contain any anonymous locations, i.e.,
\ocs(h') C img (s) .

Proof. We w i l l show how a heap h' can be constructed from the heap h. Let p = *i<j<„ tpi.
B y the semantics of S S L and the fact that each symbolic heap is a positive formula, we can
decompose the heap h into disjoint sub-heaps hi,..., hn such that h = hi + • • • + hn and,
for a l l 1 < i < n, it holds that (s, hi) \= tpi. We reduce each sub-heap hi to a sub-heap h\ by
removing a l l anonymous locations. Formally, we set d o m (/ ^) = {£ G dom(ft,j) | £ G img(s)}
and define its mapping as:

h[(£) = h^(£) where k > 0 is the min ima l natural number such that h\{£) G img (s) .

49

The reduced sub-heaps are well-defined because the original heap is either empty or a se
quence of pointers w i t h a named sink. The named sink guarantees that some number k
such that hf(£) G img(s) always exists for each locations £ G d o m (/ ^) . Graphical ly , the
reduction of a non-empty sub-heap can be visualised as follow:

0—O—<3—O—<3 ^ 0—<3—*&
Now, we need to show that the reduction preserves satisfiability, i.e., (s,h'i) \= ipi for

each i. If ipi is a pure a tom or a points-to assertion, this t r iv ia l ly holds since hi = h\. If
Pi = \s(x, y), then the sub-heap is modified but remains a sequence of pointers from x to y.
It also holds that h! = h\ + • • • + h'n 7̂ _L because the reduction can only remove locations.
Thus, (s,ti) \= p.

Further, we have that d o m (/ i ') C i m g (s) because, by the definition of the reduction,
d o m (^) C i m g (s) for each i. F r o m L e m m a 3.2, it follows that a l l dangling locations are
also named, and therefore locs(/ i ') C i m g (s) . •

Our experiments show that decreasing of the location bounds is not always enough to
efficiently solve some formulae. We w i l l therefore also compute a list-length bound for each
predicate ls(x, y) that occurs in the input formula. The list-length bound is an interval [m, n]
such that it is enough to consider paths TT such that m < \TT\ < n only when translating the
list-segment predicate. In the translation, the interval is used to parameterise the predicates
reach and path used to express the semantics of the given list-segment predicate.

We w i l l now show, that for a symbolic heap p, it is always sufficient to use the list-length
bound [0,1] for a l l list-segment predicates in p. In other words, i f p is satisfiable, we can
find a model where each list segment is either empty or a single pointer.

L e m m a 5.2. Let p be a symbolic heap and let (s, h) \= p be its model. Then there exists h'
such that (s, h') \= p, and, for each predicate ip = ls(x, y) G subformulae(</?) ; it holds that the
predicate ip is satisfied in a sub-heap of size at most one, i.e., it holds that either s(x) = s(y)
or h'(s(x)) = s(y).

Proof. A g a i n , we w i l l show how to construct a heap h! from the heap h. Let p = *i<j<„ ipi.
B y the semantics of S S L , the heap h can be decomposed into disjoint sub-heaps hi,..., hn

such that h = hi + • • • + hn, and, for a l l 1 < i < n, it holds that (s,hi) \= ipi. Using
L e m m a 5.1, we can safely assume that a l l hi does not contain any anonymous locations. It
holds that hi is either an empty heap, a single pointer, or an acyclic sequence of pointers
w i th a uniquely determined source x and sink y. In the th i rd case, we reduce it to a heap
h\ = {x i->- y}. Graphical ly, this can be visualised as:

Since the reduction can only decrease domains, we have that h' = h[+ • • • + h'n ^ _L.
We w i l l further show that (s, h'j) \= ipi for each i. The only nontr iv ia l case is ipi = \s(x,y)
because sub-heaps of pure atoms and points-to assertions are not modified. If s(x) =
s(y), then hi = 0 and consequently hi = h^. If s(x) ^ s(y), then h'i(s(x)) = s(y) and
dovn(h') = {x}. Thus, (s,^) \= ipi for a l l i, and consequently (s,h') |= p. Moreover, for
each \s(x,y) G subformulae(</?) it holds that either s(x) = s(y) or h'(s(x)) = s(y) by the
definition of the reduction. •

50

Using the previous lemma, we can encode the list-segment predicate \s(x, y) occurring
in a symbolic heap in constant space as:

Jx

n(\s(x,y),h,D) = (x = yAD = $) V (x + y A h[x] = y A D = {x})

Consequently, i f p is a symbolic heap, its t ranslat ion T(p, x) has a linear size.

5.2 Tighter Bounds for General Formulae

In this section, we w i l l describe our original approach for computing more precise location
and list-length bounds based on SL-graphs. SL-graphs were already used i n [11] to design a
polynomial decision procedure for symbolic heaps, but we w i l l use them i n a slightly different
context. For simplicity, we w i l l focus on formulae which do not contain septractions.

D e f i n i t i o n 5.1 (SL graph). Let x be a set of variables. SL-graph over x is a tuple G =
(x , © , © © , ©) where

• © C x x x defines directed points-to edges,

• @ Q x x x defines directed list-segment edges,

• 0 C {{x,y} | x,y G x } defines undirected equality edges,

• © Q {{x, y} | x, y G x } defines undirected disequality edges.

Individual relations of G are must-equalities (©) , must-disequalities (©) , must-pointers (©),
and must-list segments (©) . Intuitively, they represent atomic relations between variables,
that hold in a l l models of some formula (p. We also define the set of variables that must be
allocated i n some formula p>:

alloc(G) = {x G x | 3y G x . x(Qy V A x © y) }

In other words, variable x is allocated i f it is either a source of some must-pointer, or a
source of some non-empty must-list segment.

To compute SL-graph of a formula p> w.r.t . variables x , denoted as G x[p], we define
several auxi l iary functions:

G i n G 2 = (x , © b l n © ^ , © ^ n © b 2 , (© G l n © G 2) * , @ G l n © G a)
G1uG2 = (x , © G i u © G 2 , © G l u@a2,BGl u © G 2 r , @ G l u © G 2)
d bd G2 = (x , © G i U © G 2 , © G l U © G 2 , (© G l u © G 2) * , @ G l U @ G 2 U(al loc (Gi) x al loc(G 2))

The first two operations perform the intersection and the union of a l l edges, respectively.
The disjoint union of two SL-graphs, G\ UJ G2, addi t ional ly adds pairs of variables allo
cated in both models to must-disequalities. Observe that we always take the reflexive and
transitive closure of muse-equalities to achieve that © is the equivalence relation.

51

Definition 5.2 (SL-graph of a formula). Let p be a formula and let x be a set of variables.
An SL-graph Gx[p] of p over x is defined inductively on the structure of the formula p as
follow:

Gx

Gx

Gx

Gx

Gx

Gx

Gx

Gx

Gx

= y] = (x , 0 , 0 , { x © y } , 0)

x^y] = (x , 0 , 0 , 0 , { x © y })

x^y] = (x , { x 9 y } J , M)

Is(x,y)] = (x , 0 ,{x0y} ,0 ,0)

^] = (x,0,0,0,0)

Pi A ipi] =G[p1]uG[p2]

Pi A ^ p2] = G[p{\

P! v <p2] = G[pi] n G[p2]

Pi * P2] = G[p{\ m G[p2]

L e m m a 5.3. Let p be an SSL formula Then the following correctness conditions for must-
predicates hold:

Ifx&V, thenV(s,h) G {pj,

Ifx®y, thenV(s,h) G {pj,

IfxQy, thenV(s,h) G y ,

IfxQy, then\/(s,h) G [p] ,

(s,h) \= x = y * t rue

(s,h) \= x 7̂ y * t rue

(s,h) \= x y * t rue

(s, h) \= ls(x, y) * t rue

. V(s,h) G {pjx. a l l oc (G) C d o m (/ i)

Proof (sketch). In a l l the cases, the computat ion of Gx[<£>] propagates must-relations from
atoms based on the boolean structure of the formula p. O n l y in the case of the negation, it
sets a l l must-relations to be empty, based on the semantics of negation i n S S L . In the case
of the separating conjunction ip\ * ip2, a l l must-relations of ipi for i = 1,2 must also hold
i n ipi * ip2. If x must be allocated in ip\ and y must be allocated i n ip2, then s / y i n a l l
models of ip\ * ip2. •

Let X / Q be the par t i t ion of variables induced by the must-equality relation. We define
the number of must-pointers p as p = \{x G x / 0 I 3y G x / 0 - x © y } | . N o w we are ready
to define the locat ion bound of a formula more precisely. Reca l l that the proofs of small
model properties (Theorem 3.4, Theorem 3.5) assumed the worst-case when a l l variables
are distinct, and that each variable is allocated and gives rise to a chunk of size two. Based
on must-equalities and must-pointers, we can relax those assumptions - we do not have to
take into account those variables that are surely equivalent to others, and for each must-
pointer, we can decrease the bound by one because we know that it w i l l induce a chunk of
size exactly one:

bound'(</?, x)
2 • | v a r s + (< / ?) / Q | — p + 1 if p is positive

2 • | (x \ { n i l }) / 0 | + \p] — p + 1 otherwise

52

_bound(ls(x, y))

L e m m a 5.4. Let if be a satisfiable formula and let v a r s (^) C x be set of variables. Then
there exists model (s',h') such that (s',h') \= ip and | locs(/ i ') | < bound'(<£>, x) .

Proof. The proof is analogical to the proofs of Theorem 3.4 and 3.5 w i t h two exceptions.
Fi rs t , there are at most |vars +(</?)/0| allocated variables for positive formula, and at most
(x \ { n i l }) / 0 | allocated variables for general formulae. Second, there are at least p chunks

which consist of a single pointer and w i l l therefore need just a single locat ion in the worst-
case. •

The second use case of SL-graphs is to compute more precise list-length bounds. Let
G = (x , 0 0 0 0) be an SL-graph of ip over x and let = (x ,@) . Further, let the
location bound n = bound'(<^, x) .

'[o,o] ifxSy,

[0,1] otherwise i f x Q y ,

[k, I] otherwise if there exists a simple path x ~~> y i n G^ such

that | vr | = I and IT' is the max ima l prefix of IT of length

\TT'\ = k such that for a l l v\,V2 £ TT'. v\ 0 ^ 2 ,

[0, m] otherwise if \s(x, y) has the positive polari ty i n (p

and m = n — | a l l oc (G) | + 1,

[0, n] otherwise.

We w i l l now describe the ind iv idua l cases i n detail:

• If x 0 y, then the list segment clearly must be empty.

• If x Qy, then the list segment is either a single pointer, or it is empty i f x = y.

• The th i rd case is a generalisation of the second case. If there exists a sequence of
must-pointers from x to y of length I, then the max ima l length of the list segment
is I. The min ima l length is determined using the max ima l prefix of this sequence such
that a l l of its elements are guaranteed to be distinct.

• The fourth case uses the fact that the list segment cannot allocate variables that
are allocated by some other sub-formulae. This is, however, applicable only if the
predicate \s(x,y) has a positive polarity, i.e., we know that it must be satisfied. Then
we can subtract the number of the surely allocated variables except one. Th is is
because a one of must-allocated variable may origin from them list segment \s(x, y)
itself.

53

Chapter 6

Implementation

This chapter describes our implementat ion of the proposed decision procedure i n a new
solver called A S T R A L (Automat ion for strong-separation logic). The implementat ion of
the translat ion and bound computat ion straightforwardly follows their mathematical defi
nitions. We therefore focus on the implementat ion of the solver's front-end and the S M T
back-end.

6.1 Architecture

A S T R A L is wri t ten i n the O C a m l programming language and it is publ ic ly available 1 under
the M I T license. The O C a m l language was chosen because it offers a trade-off between
performance and high-level abstraction. We divide the architecture of the solver into three
parts: (1) the front-end deals w i th input parsing and preprocessing, (2) the decision proce
dure implements the translat ion and its optimisations, and (3) the S M T back-end handles
communicat ion wi th S M T solvers.

6.2 Front-end

The solver accepts as an input a formula i n the format specified by the S L - C O M P
competi t ion [16]. The format extends the S M T - L I B v2 format by adding commands for
declaring the type of the heap and for specification of inductive predicates. Currently,
A S T R A L does not support arbi t rary typing of heaps. Instead, it requires locations to be
defined as an uninterpreted sort w i th the fixed name Loc and the heap to be declared wi th
the sort Loc —>• Loc . To parse the input, we use a generic parser for logical languages
implemented in the Dolmen" library.

A n example of the input can be seen i n L i s t i ng 6.1. The example also shows how we
deal w i th the fact that satisfiability is parametrised by a set of variables x i n S S L . Since the
format allows to declare variables that are not used, we set x to be the set of a l l declared
location variables (plus nil) i n the input file.

After parsing, we perform a basic preprocessing of the input . Its main reason is to
introduce guarded negations which are not expl ici t ly specified in the input . T h i s is achieved
by pushing negations bottom-up as far as possible (i.e., un t i l they reach either the top of
the formula or a spatial connective). The process may yield a positive formula even for

xhttps: //github.com/TDacik/Astral
2https: //github.com/Gbury/dolmen

54

http://github.com/TDacik/

;; Declaration of location sort. Currently fixed to this form by Astral,
(declare-sort Loc 0)

;; Declaration of heap sort. Currently fixed to this form by Astral,
(declare-heap (Loc Loc))

;; Declaration of location variables
(declare-const x Loc)
(declare-const y Loc)
(declare-const z Loc)

; ; Input formula
(assert (Is x y))

(assert
(sep

(not emp)
(not emp)
(not emp)

)
)

(check-sat)

Figure 6.1: A n example of the input format for the formula ls (x , y) A (- l emp * - l e m p * - l emp)
over the set of variables x = {x, y, z, n i l } . The variable nil is always added implic i t ly .

inputs where this is not obvious. For example, the formula \s(x, y) A (-*x = y A ->x i-> y)
w i l l be rewritten to the positive formula \s(x, y) A- , (a; = y V x i-> y).

6.3 S M T Back-end

The first version of A S T R A L implemented the translat ion direct ly using an O C a m l binding
for Z 3 . Later , we have found interesting to t ry performance of other S M T solvers. This
would be more easy, if we could use theories standardised i n the S M T - L I B standard - we
would use the Z 3 O C a m l binding to output the translated formula i n the S M T - L I B format
and then ca l l another solver on the file. Neither the theory of sets or the generalised theory
of arrays is, however, not standardised by S M T - L I B .

We have therefore decided to implement a more generic S M T back-end that allows
A S T R A L to use mult iple S M T solvers. Instead of using the Z 3 O C a m l binding for repre
sentation of the translated formula, we implemented our own inner representation of S M T
formulae and models. The inner representation of formulae is then translated to the input
language of the selected solver using a back-end for the given solver. If the solver returns
sa t and a model, then the back-end translates the model back into our inner representation.

O n the one hand, this solution required to re-implement some features already provided
by the Z 3 binding (such as substi tut ion of terms). O n the other hand, it allowed us to
work wi th higher-level concepts during the translation and let the low-level details of their
t ranslat ion to ind iv idua l back-ends. Currently, we have two back-ends for concrete solvers
and one for their parallel combination:

55

• Z 3 back-end - The Z 3 solver is the default one and is therefore always installed
w i t h A S T R A L . The translat ion from our inner representation is done using the O C a m l
binding of Z 3 . O u r experiments show that this backend is faster for formulae including
list-segment predicates.

• cvc5 back-end - The C V C 5 solver is not installed together w i th A S T R A L and i f
one wants to use i t , it has to be installed in the path. Since it currently does not
have an O C a m l binding, we translate our internal representation to the S M T - L I B
format using the CVC5's syntax for sets, store it to a temporary file, and cal l CVC5
in another process. After the solver finishes, we have to parse the model from its
S M T - L I B representation. This of course br ing some addi t ional overhead, but the
c v c 5 back-end s t i l l usually performs better than Z 3 backend for formulae which do
not contain list-segment predicates.

• Parallel back-end - O u r experiments show that none of the previously mentioned
solvers is s tr ict ly better. A n obvious solution is therefore to run them both i n parallel
and wait for the first one which returns a result. We have implemented this approach
using Domainslib'^ which implements high-level mechanisms for running multiple
tasks i n parallel running threads.

Unfortunately, thread-level parallel ism is not available i n O C a m l prior to its ver
sion 5.0 because of its usage of a global runtime lock1. Since O C a m l 5.0 is s t i l l in
its alpha version, some libraries used i n A S T R A L are not compatible w i t h i t . The
parallel back-end therefore could not be merged into the main branch of A S T R A L and
experimentally evaluated.

3https: //github.com/ocaml-multicore/domainslib
4https: //ocamlverse.github.io/content/parallelism.html

56

Chapter 7

Experimental Evaluation

This section is devoted to an experimental evaluation of the proposed decision procedure.
Fi rs t , we focus on a comparison wi th other translation-based decision procedures imple
mented i n the tools S L O T H [18] and G R A S S H O P P E R [28]. We performed experiments on
two categories of the international competi t ion S L - C O M P [32]. Those categories include
manually crafted formulae and also real-life verification conditions generated by verification
tools.

Then, we conducted an experimental comparison w i t h the decision procedure imple
mented in the S M T solver c v c 5 . Since A S T R A L cannot handle benchmarks used to evaluate
CVC5 [30], which frequently contain unguarded negations, we prepared our own benchmarks
focused on guarded negations and septractions. Those benchmarks consist of crafted para
metric formulae w i t h growing complexity and randomly-generated formulae.

Dur ing this chapter, we w i l l use A S T R A L - Z 3 and A S T R A L - C V C 5 to refer to the the
A S T R A L solver running wi th Z 3 and C V C 5 back-end, respectively. A l l experiments were
conducted on a machine wi th 2.5 G H z Intel Core i5-7300HQ processor and 16 G i B R A M ,
running U b u n t u 18.04. The benchmark consisting of preprocessed formulae from S L - C O M P ,
generated parametric formulae, and randomly-generated formulae is available as a github
reposi tory 1 . The repository also contains translations of those formulae to formats used by
S L O T H and G R A S S H O P P E R .

7.1 Comparison with Translation-Based Decision Procedures

Firs t , we w i l l compare A S T R A L w i th other decision procedures based on a translat ion to
S M T . The first of them is S L O T H [17], which implements a translation based on a small-
model property and was the main inspirat ion of our approach. The second is G R A S S H O P

P E R , which translates the input formula to an intermediate logic called G R A S S , which is
later translated to S M T using a par t ia l instantiat ion of G R A S S axioms [28]. Note that
G R A S S H O P P E R is not a solver, rather a verification tool for heap-manipulating programs.
To run it as a solver w i t h min ima l overhead, we encode an entailment formula ip \= ip as the
empty program wi th the precondition ip and postcondit ion ip. Such a program is verified
iff the entailment is val id . Similarly, we encode satisfiability of a formula ip as the empty
program wi th the precondition ip and postcondit ion _ L . Such a program is verified iff the
formula is unsatisfiable.

xhttps: //github.com/TDacik/seplog-bench/

57

Table 7.1: Exper imenta l results for the category Q F S H L S S A T .

Results Times s]
Solver Correct Wrong Timeouts Winner To ta l M e a n M a x i m a l

A S T R A L - C V C 5 110 0 0 100 6.71 0.06 0.13
A S T R A L - Z 3 110 0 0 10 31.47 0.28 3.48
G R A S S H O P P E R 110 0 0 0 161.09 1.46 11.03
S L O T H 0 0 110 0 - - -

Table 7.2: Exper imenta l results for the subset of the category Q F S H L S E N T L containing
verification conditions. The total and mean t ime are computed including T O s , max imum
time excluding T O s .

Results Times s]
Solver Correct Wrong Timeouts Winner To ta l M e a n M a x i m a l

A S T R A L - C V C 5 85 0 1 27 75.11 0.87 0.82
A S T R A L - Z 3 86 0 0 22 4.67 0.05 0.70
G R A S S H O P P E R 86 0 0 37 5.37 0.06 1.99
S L O T H 62 19 5 0 637.26 20.44 7.41

B o t h A S T R A L and G R A S S H O P P E R are implemented i n O C a m l . S L O T H is implemented
in Py thon , and the results can be therefore skewed by different speeds of those languages
(Ocaml is believed to be faster i n general because it is a compiled language). We could
measure just the t ime of calls to an S M T solver, but this would ignore improvements in
translat ion such as the bound computat ion used in A S T R A L . We therefore decided to
measure the overall run t ime for a l l solvers. Another source of distort ion can be usage of
different backend S M T solvers. A s for A S T R A L , we used it in modes running Z 3 and C V C 5 .

G R A S S H O P P E R can use both Z 3 and c v c 4 (an older version of C V C 5) , but its latest version
crashes when Z 3 is used. Therefore, we use it only w i th the C V C 4 back-end. S L O T H can be
run only using Z 3 .

In the comparison, we focused on the categories Q F S H L S S A T and Q F S H L S E N T L

of S L - C O M P , which stand for satisfiability and entailment i n the symbolic heap fragment
w i th lists, respectively. The satisfiability benchmark consists solely of randomly generated
formulae. The complexity of those formulae ranges from 10 to 20 variables w i th an in
creasing number of atoms. The entailment benchmark contains both crafted formulae and
real-life verification conditions. Those verification conditions mostly originate from the tool
S M A L L F O O T [7]. The crafted formulae are either randomly generated, or they are created
by cloning the previously mentioned verification conditions (note that the cloning is used
only to increase the complexity and such formulae do not represent verification problems
anymore). The process of generating and cloning is in details described i n [27]. Because the
difficulty of crafted formulae and verification conditions differ (random formulae contain up
to 20 list-segment predicates while verification conditions not more than 5), we consider
them as two separate categories i n our experiment. We set the timeout of 60 seconds for
al l experiments i n this section.

The results for the category Q F S H L S S A T are given i n Table 7.1. The table shows
that S L O T H is not able to solve any of the formulae, and both configurations of A S T R A L

outperform G R A S S H O P P E R . Moreover, A S T R A L - C V C 5 wins in almost 90 % of a l l cases.

58

Table 7.3: Exper imenta l results for crafted formulae from the category Q F S H L S E N T L .
The to ta l and mean t ime are computed including T O s , m a x i m u m time excluding T O s .

Results Times [s]
Solver Correct Wrong Timeouts Winner To ta l M e a n M a x i m a l

A S T R A L - C V C 5 66 0 144 44 8 651 41.19 7.35
A S T R A L - Z 3 174 0 36 125 3 072 14.63 57.41
G R A S S H O P P E R 140 0 70 25 5 480 26.09 52.03
S L O T H 68 0 142 0 8 744 41.63 29.98

60

10

m i
N 1

i_ +j i/i

< 0.1

0.01

+ Sat

+ Unsat
+

+ +

+ A />
A / +

+ i w +

/

s
*

0.01 0.1 1
Grasshopper

10 60

60

10

m
N

to 1_
+->
I/) < 0.1

0.01

+ Sat

+ Unsat

•
•

/ s * s t-s
/ y

/

/

X
•

+
+ H

d

/ s s
/

+

% +

•
•

•

0.01 0.1 1
Grasshopper

10 60

(a) Q F _ S H L S _ E N T L (random formulae) (b) Q F _ S H L S _ E N T L (verif. conditions)

Figure 7.1: A comparison of running times of A S T R A L - Z 3 and G R A S S H O P P E R on entail
ments in the symbolic heap fragment. Times are i n seconds and timeout was set to the 60
seconds. Axes are logarithmic.

Based on our experiments, the significant difference between A S T R A L and S L O T H is due to
improved bounds proved i n Section 5.1.

The results for verification conditions from the category Q F S H L S E N T L are given
i n Table 7.2. A l l formulae were correctly solved by bo th A S T R A L - Z 3 and G R A S S H O P P E R .

W h i l e G R A S S H O P P E R wins i n more cases, A S T R A L - Z 3 is faster overall. The difference is,
however, negligible. Th is can be also seen i n Figure 7.1b. A S T R A L - C V C 5 times out in one
case, but otherwise solves a l l formulae under one second. This demonstrates that A S T R A L

can effectively solve formulae coming from real-life applications. This is not true for S L O T H

which times out i n five cases even on very simple formulae. Moreover, i n 19 cases, it
returns „invalid" for a val id entailment. Th is seems to be an implementation bug because
it manifests even for simple entailments such as ls (x ,y) |= l s (x ,y) . We have reported the
issue 2 , but it was not confirmed at the t ime of wr i t ing this thesis.

Results for crafted formulae from the category Q F S H L S E N T L are given in Table 7.3.
The results suggest that formulae wi th many list-segment predicates (up to 20) are hard
for a l l translation-based solvers. The best is A S T R A L - Z 3 which, however, s t i l l timeouts
in 36 cases. A detailed comparison of A S T R A L and G R A S S H O P P E R is given in Figure 7.1a.
The figure shows that G R A S S H O P P E R wins mostly on easy unsatisfiable formulae that are

2https: //github.com/katelaan/sloth/ issues/1

59

1 0 2 1 0 3 1 0 4 1 0 5 1 0 B 0 . 0 1 0 . 1 1 1 0 6 0
As t ra l-Z3 (w i t h o u t l i s t b o u n d s) Ast ra l-Z3 (w i t h o u t l i s t b o u n d s)

(a) Translated formula size (b) Running time

Figure 7 . 2 : A comparison of A S T R A L - Z 3 running wi th the list-length bounds computat ion
and without it for crated entailments in the symbolic heap fragment. Times are i n seconds
and the timeout was set to 6 0 seconds. Axes are logarithmic.

solved under a tenth of second by both solvers. A S T R A L times out mostly for unsatisfiable
formulae, but it is able to solve many satisfiable formulae that G R A S S H O P P E R cannot solve.

We also compared A S T R A L wi th A S T E R I X [22] which won the previous edit ion of S L -
C O M P in the considered categories. A S T E R I X can solve a l l instances almost immediately
(under 0 . 0 0 6 seconds) and beats A S T R A L in a l l the cases. Th is is, however, an expected
result because A S T E R I X implements a specialised algori thm for the symbolic heap fragment
while A S T R A L targets much more complex logic.

7.2 Evaluation of List-Length Bounds Computation

We believe that the ma in improvement of the translat ion implemented i n A S T R A L are
methods for bound computat ion. Especially, methods for computing bounds of lengths of
list-segment predicates. To verify this hypothesis, we run A S T R A L wi th and without the list-
length bound computat ion on crafted formulae from the category Q F S H L S E N T L . Notice
that, for satisfiability i n the symbolic heap fragment, the list-length bound computat ion
does not help because, i n this fragment, we always have the bound [0 , 1] for each list-segment
predicate by L e m m a 5.2.

Firs t , we compare the sizes of translated formulae. We measure the size of a formula as
the number of nodes i n its A S T . The size is measured without any simplification. The results
are shown i n Figure 7.2a. The size of translated formulae ranges from 1 0 0 to 1 mi l l ion .
There are several clusters of formulae which are probably caused by the fact that those
formulae are crafted and randomly-generated. For some formulae, there is no difference in
size, but there are formulae whose size is more than five times lesser when the list bounds
are used.

Figure 7.2b shows that the reduced size has a significant positive impact on the running
time. In 6 5 cases out of 2 1 0 , it allows us to solve problems which would otherwise timeout.
A m o n g of them, there is a lot of unsatisfiable formulae that are now solved under one second.

6 0

There are several satisfiable formulae such that the running t ime is higher although their
size is smaller (one of them even timeouts), but the heuristics performs s t i l l better for a
majority of satisfiable formulae. However, it seems that the list-length bound computat ion
helps more i n the case when formula is unsatisfiable. Th is is natural because it restricts
the state space that an S M T solver has to search to declare a formula as unsatisfiable. O n
the other hand, this could be a consequence of how formulae are generated.

7.3 Comparison with cvc5

In this section, we present an experimental comparison of A S T R A L wi th the decision pro
cedure for S L implemented i n the S M T solver c v c 5 . Th is decision procedure targets a
fragment that is incomparable wi th the fragment supported by A S T R A L . O n the one hand,
CVC5 supports arbi trary magic wands. O n the other hand, it does not support list-segment
predicates at a l l . Moreover, in the presence of unguarded negations, there could be a
difference between the standard semantics of separation logic used by CVC5 and the strong-
separation semantics used by A S T R A L . For the following experiment, we have extended
A S T R A L wi th an option to perform translation i n the classical semantics (the translation
w i l l not generate constraints that locations shared by sub-heaps are named). We w i l l not
prove this c la im, but w i th this modification, A S T R A L should be sound for the considered
fragment under the classical semantics of S L .

We first t r ied A S T R A L on the S L - C O M P category Q F B S L S A T which precisely cor
responds to the fragment supported by CVC5, which was also the only participant i n this
category in the last edit ion of S L - C O M P 3 . Formulae from this benchmark frequently con
ta in a negation under a separating conjunction which itself lies under another negation.
Such formulae are extremely hard for A S T R A L because they trigger an extensive enumer
ation over footprints when separating conjunctions are translated. Consequently, A S T R A L
was able to solve only two simplest formulae of the category. In the rest of the experiments,
we therefore focused on a fragment that contains negations i n a l imi ted form only.

7.3.1 Parametric Formulae

To do a comparison on a fragment that A S T R A L can handle, we prepared several sets of
parametric formulae w i t h growing complexity based on a parameter n. Those formulae
focus on usage of septractions, and negations under separating conjunctions, i.e., features
that are extensions of the previously proposed translation-based procedures. Note that
CVC5 does not support septractions direct ly and we therefore encode them as magic wands.
We used the t ime l imi t of 40 seconds for a l l the experiments.

• Heap size. The first formula states that the heap can be split into n non-empty
sub-heaps, i.e., that the heap has size at least n :

size-™ = -iemp * • • • * -iemp
V v '

n times

The formula contains negations under separating conjunctions, but a l l separating
conjunctions can be translated using Skolemization. The results i n Figure 7.3a show
that A S T R A L can solve such formulae efficiently and even slightly faster than CVC5.

3https: //www.irif.fr/~sighirea/sl-comp/19/qf _bsl_sat.html

61

http://www.irif.fr/~sighirea/sl-comp/19/qf

0 50 100 150 200 0 10 20 30 40 50
Parameter n Parameter n

(c) Septractions (d) Pointers using septractions

Figure 7.3: A comparison of A S T R A L and CVC5 on parametric formulae w i t h complexity
growing based on a parameter n. The timeout was set to 40 seconds.

• Exact heap size. The second formula states that the heap has size exactly n:

s i z e = n = s i z e ^ n A - s i z e ^ n + 1

Unlike in the case of the previous formula, separating conjunctions i n the sub-formula
- i s i z e - n + 1 cannot be translated using Skolemization. Figure 7.3b shows that the
formula is indeed very hard for a l l solvers even for very smal l n. A S T R A L - Z 3 is able
to solve it for n = 1 only (and, for n = 2, in 47 seconds, which is slightly above the
t ime l imit) and c v c 5 for n = 4 only. A S T R A L - C V C 5 is not shown in the figure because
its backend solver always gives-up and returns unknown.

• Septractions. The th i rd formula uses septractions to express that variables x\,..., xn

are not allocated:

n o t _ a l l o c (x i , . . . , xn) = ((x\ i-> ni l) - © t r u e) * • • • * ((i „ i-> ni l) - © t rue)

The formula can be t r iv ia l ly satisfied by the empty heap. We use it to benchmark
how A S T R A L can deal w i th septractions combined wi th negations (the a tom t rue is
syntactic sugar for emp V - i e m p) . Due to its simplicity, the formula can be quickly

62

cvc5

(a) Guarded negations

60

10

m
N

2 1
4-1
<

0.1

0.1 1
cvc5

10 60

(b) Septractions

Figure 7.4: A comparison of A S T R A L - Z 3 and CVC5 on randomly generated formulae. The
timeout was set to 60 seconds. Axes are logarithmic.

solved by a l l solvers even for 200 variables. A S T R A L - C V C 5 performs best, and, for
n = 200, it is two times faster than c v c 5 .

• Pointers using septractions. The last formula expresses that the heap contains a cyclic
sequence of pointers using septractions:

p t r _ s e p t r n = (emp - © x\ i-> x2)* • • • * (emp - © xn-\ x n) * (e m p - ® xn i-> x\)

The results in Figure 7.3c show that both versions of A S T R A L outperform CVC5.
Moreover, A S T R A L - C V C 5 is able to solve formulae for n = 50 quite fast, while CVC5
runs out of the t ime already for n = 25.

7.3.2 Randomly Generated Formulae

To further compare solvers on problems w i t h less regular structure than i n the case of
parametric formulae, we prepared two sets of randomly generated formulae. A l l formulae
were generated as random binary balanced trees of depth six over eight variables. Those
parameters were selected based on experiments to achieve a reasonable complexity of the
generated formulae. Atoms were restricted to points-to assertions only. Pure atoms were
not used because CVC5 uses an imprecise semantics for them (they can be satisfied on an
arbitrary heap) and A S T R A L uses the precise semantics (they can be satisfied on the empty
heap only) . Those semantics may be easily converted to each other, but we rather do not
use them i n this experiment. We use the Q C H E C K tool 1 to generate the formulae. We
have generated two sets of 500 formulae. Those sets differs i n the allowed connectives:

• Guarded negations. This fragment focuses on mix ing separating conjunctions wi th
boolean conjunctions, disjunctions and guarded negations. The top-level connective
is always a guarded negation (the formulae therefore represent entailments). Note

4https: //github.com/c-cube/qcheck

63

that those formulae are not necessary in the fragment S S L ^ , i.e., their translation
can have an exponential size. Th is is because separating conjunctions can be negated
by guarded negations and footprints are not guaranteed to be unique because of
disjunctions. However, the exponential blow-up should not be as significant as i n case
of unguarded negations.

• Septractions. In this set, we added septractions but removed guarded negations. A l l
formulae of the set are therefore i n S S L S because a l l separating conjunctions can be
translated using Skolemization.

We used A S T R A L - Z 3 for the comparison. It would be better to use A S T R A L - C V C 5 to
show that differences are not caused by other back-end technologies, but on many of the
randomly generated formulae, A S T R A L - C V C 5 gives-up wi th the unknown result. It seems
that during the translation, we use some combinations of features that is not supported
by c v c 5 . However, we have not been able to track down what this combination is at
the t ime of wr i t ing this thesis. O n the other hand, a l l previous experiments show that
A S T R A L - C V C 5 is faster than A S T R A L - Z 3 on formulae without list-segment predicates, and
we therefore believe that the comparison is fair.

The results for the first set are shown in Figure 7.4a. Due to the way how the formulae
were generated, there are more unsatisfiable formulae. O n almost a l l satisfiable formulae,
A S T R A L - Z 3 is faster. There are also several satisfiable formulae which CVC5 cannot solve
in the l imi t but A S T R A L - Z 3 solves them under one second. The results for the second set
are shown in Figure 7.4b. Here, almost a l l generated formulae are unsatisfiable. A g a i n
A S T R A L - Z 3 is faster for a l l satisfiable. In our future work, we would like to more precisely
evaluate those experiments. In particular, we would like to run the experiment also wi th
A S T R A L - C V C 5 to see whether results are influenced by back-end S M T solver.

W h e n performing experiments, we have found several formulae for which A S T R A L and
CVC5 produced different results. It turned out that the problem was wi th septractions
and that incorrect results were produced by CVC5 . We prepared a min ima l example of the
incorrect behaviour and reported it . The problem was i n a heuristic that would, e.g., for
the septraction x i-> y - © x i-> y conclude that the pointer x i-> y has to be i n the model.
Th is is of course not true because the formula can be satisfied by the empty heap only. The
problem seems t r iv ia l when a septraction is used but it is much more complicated when
looking from the perspective of magic wands which are used in CVC5. The issue was fixed,
but when we repeated our experiments, we have found that the fix has introduced another
unsoundness . Aga in , the issue was confirmed and fixed.

7.4 Summary and Future Work

Our experiments showed that A S T R A L outperforms existing translation-based decision pro
cedures implemented in the tools S L O T H and G R A S S H O P P E R on the frequently used symbolic
heap fragment. In the case of satisfiability for this fragment, our improvements are due to
improved bounds proved in Section 5.1. In the case of entailment, we have experimentally
evaluated that the improvement is due to the computat ion of bounds on lengths of list seg
ment predicates. Moreover, A S T R A L is able to efficiently solve a l l of considered problems
that originate from verification tools.

5https: //github.com/cvc5/cvc5/issues/8659
6https: //github.com/ cvc5/cvc5/issues/8863

64

The comparison wi th the CVC5 solver shows that A S T R A L has a problem wi th formulae
containing unguarded negations i n such a way that it cannot use Skolemization. However,
we expected this because of our way of translat ing separating conjunctions using an exten
sive enumeration over footprints and the fact, that we currently do not have heuristics to
tackle i t . Future work i n this direction can focus on t ry ing to reduce possible footprints
of negations. Th i s could be done, e.g., based on computat ion of variables that cannot be
allocated by the given negation using SL-graphs. Another possible direction is to develop
a method to perform the enumeration over footprints lazily.

65

Chapter 8

Conclusion

In this thesis, we proposed a decision procedure for strong-separation logic based on a trans
lat ion to S M T and implemented this decision procedure in a new solver called A S T R A L .
The translat ion is inspired by the previous works, but we have significantly extended the
fragment that can be translated. Those extensions include support for negations, l imited
usage of septractions (and therefore also l imi ted usage of magic wands), and support for
mix ing of boolean and spatial connectives. We also proposed several original heuristics to
decrease size of translated formulae. O u r experimental results showed that those heuris
tics help our decision procedure to outperform other translation-based decision procedures
implemented i n the tools S L O T H and G R A S S H O P P E R . The comparison wi th the decision
procedure implemented in the prominent S M T solver c v c 5 on its own benchmark showed
that A S T R A L cannot handle some classes of formulae containing negations yet. O n the
other hand, experiments on parametric and randomly generated formulae suggest that A S
T R A L can efficiently handle formulae containing septractions or negations i n the so-called
guarded form. O n formulae containing guarded negations, it even significantly outperforms
the CVC5 solver. Moreover, based on those experiments, we found and reported several
incorrect results produced by CVC5 for formulae containing magic wands. Those turned to
be results of incorrect heuristics and were fixed based on our reports.

Future work. There are many possible directions for the future work. F i rs t of them is to
design an efficient methods to deal w i th formulae which contain unguarded negations, e.g.,
by using lazy enumeration when translat ing separating conjunctions. Another interesting
research direction is to extend expressivity of S S L . W h i l e trees and data constraints were
already studied i n [24], another extensions such as user-defined inductive predicates or
quantifiers were not yet studied i n the context of S S L . Final ly , we would like to also study
how S S L can be used i n automated program verification. In this direction, we would like
to focus on the so-called bi-abductive analysis [10].

66

Bibliography

[1] A P P E L , A . W . , D O C K I N S , R . , H O B O R , A . , B E R I N G E R , L . , D O D D S , J . et a l . Program

Logics for Certified Compilers. U S A : Cambridge Univers i ty Press, 2014. I S B N
110704801X.

[2] B A N S A L , K . , B A R R E T T , C , R E Y N O L D S , A . and T I N E L L I , C . A New Decision

Procedure for F in i te Sets and Card ina l i ty Constraints i n S M T . In: IJCAR. 2017.

[3] B A R B O S A , H . , B A R R E T T , C . W . , B R A I N , M . , K R E M E R , C , L A C H N I T T , H . et al .

Cvc5 : A Versatile and Industrial-Strength S M T Solver. In: TACAS. 2022.

[4] B A R R E T T , C , F O N T A I N E , P . and T I N E L L I , C . The SMT-LIB Standard: Version 2.6
[www.SMT-LIB.org]. 2021.

[5] B A T Z , K . , F E S E F E L D T , L , J A N S E N , M . , K A T O E N , J . - P , K E S S L E R , F . et a l .

Foundations for Entai lment Checking in Quanti ta t ive Separation Logic . In: S E R G E Y ,
I., ed. Programming Languages and Systems. C h a m : Springer International
Publ ish ing, 2022.

[6] B E R D I N E , J . , C A L C A G N O , C . and O ' H E A R N , P . W . A Decidable Fragment of

Separation Logic . In: FSTTCS. 2004.

[7] B E R D I N E , J . , C A L C A G N O , C . and O ' H E A R N , P . W . Symbolic Execut ion wi th

Separation Logic . In:. Ber l in , Heidelberg: Springer-Verlag, 2005. A P L A S ' 0 5 .

[8] B R A D L E Y , A . R . and M A N N A , Z . The Calculus of Computation: Decision Procedures
with Applications to Verification, l s t t h ed. Springer Publ i sh ing Company,
Incorporated, 2010. I S B N 3642093477.

[9] B R O T H E R S T O N , J . , G O R O G I A N N I S , N . and P E T E R S E N , R . L . A Generic Cyc l i c

Theorem Prover. In: APLAS. 2012.

[10] C A L C A G N O , C , D I S T E F A N O , D . , O ' H E A R N , P . W . and Y A N G , H . Composi t ional

Shape Analys is by Means of B i - A b d u c t i o n . J. ACM. New York , N Y , U S A :
Associat ion for Comput ing Machinery. 2011.

[11] C O O K , B . , H A A S E , C , O U A K N I N E , J . , P A R K I N S O N , M . and W O R R E L L , J . Tractable

Reasoning i n a Fragment of Separation Logic . In: Proceedings of the 22nd
International Conference on Concurrency Theory. Ber l in , Heidelberg:
Springer-Verlag, 2011. C O N C U R ' l l .

[12] D E M R I , S., L O Z E S , E . and M A N S U T T I , A . The Effects of A d d i n g Reachabil i ty
Predicates i n Proposi t ional Separation Logic . In: B A I E R , C . and L A G O , U . D . ,

67

http://www.SMT-LIB.org

ed. Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018. Springer, 2018.

[13] E C H E N I M , M . , I O S I F , R . and P E L T I E R , N . The Bernays-Schonnnkel-Ramsey Class of
Separation Logic w i th Uninterpreted Predicates. ACM Transactions on
Computational Logic. 2019, vol . 21.

[14] E N E A , C , L E N G A L , O . , S I G H I R E A N U , M . and V O J N A R , T . Composi t ional Entai lment
Checking for a Fragment of Separation Logic . U S A : K luwer Academic Publishers,
dec 2017, vol . 51, no. 3, p. 575-607. I S S N 0925-9856.

[15] I O S I F , R . , R O G A L E W I C Z , A . and V O J N A R , T . Deciding Entailments in Inductive
Separation Logic with Tree Automata. 2014.

[16] I O S I F , R . , S E R B A N , C , R E Y N O L D S , A . and S I G H I R E A N U , M . Encod ing Separation
Logic i n S M T - L I B v2.5. In:. 2018.

[17] K A T E L A A N , J . , J O V A N O V I C , D . and W E I S S E N B A C H E R , G . A Separation Logic w i t h
Data : Smal l Models and Automat ion . In: IJCAR. 2018.

[18] K A T E L A A N , J . , J O V A N O V I C , D . and G E O R G , W . Sloth: Separation Logic and
Theories v i a Smal l Models . In: Informal proceedings of the First Workshop on
Automated Deduction for Separation Logics (ADSL). 2018.

[19] K A T E L A A N , J . , M A T H E J A , C , N O L L , T . and Z U L E G E R , F . Harrsh: A Too l for Unied
Reasoning about Symbolic-Heap Separation Logic . In: B A R T H E , G . , K O R O V I N , K . ,
S C H U L Z , S., S U D A , M . , S U T C L I F F E , G . et a l . , ed. LPAR-22 Workshop and Short
Paper Proceedings. 2018, vol . 9. K a l p a Publicat ions i n Comput ing .

[20] M O U R A , L . de and B J O R N E R , N . Generalized, efficient array decision procedures.
In: 2009 Formal Methods in Computer-Aided Design. 2009, p. 45-52.

[21] M O U R A , L . M . de and B J O R N E R , N . S. Z3: A n Efficient S M T Solver. In: TACAS.
2008.

[22] N A V A R R O P E R E Z , J . A . and R Y B A L C H E N K O , A . Separation Logic M o d u l o Theories.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). march 2013, vol . 8301.

[23] O ' H E A R N , P . W . Resources, Concurrency and L o c a l Reasoning. Theor. Comput. Sci.
2004, vol . 375.

[24] P A G E L , J . Decision Procedures for Separation Logic: Beyond Symbolic Heaps.
Dissertation.

[25] P A G E L , J . and Z U L E G E R , F . Strong-Separation Logic . In:. M a r c h 2021, p. 664-692.
I S B N 978-3-030-72018-6.

[26] P A R K I N S O N , M . J . The Next 700 Separation Logics - (Invited Paper) . In: VSTTE.
2010.

[27] P E R E Z , J . A . N . and R Y B A L C H E N K O , A . Separation logic + superposition calculus =
heap theorem prover. In: PLDI '11. 2011.

68

[28] P i S K A C , R . , W I E S , T . and Z U F F E R E Y , D . Au tomat ing Separation Logic Us ing S M T .
In: S H A R Y G I N A , N . and V E I T H , H . , ed. Computer Aided Verification. Ber l in ,
Heidelberg: Springer Be r l i n Heidelberg, 2 0 1 3 , p. 7 7 3 - 7 8 9 .

[29] P i S K A C , R . , W I E S , T . and Z U F F E R E Y , D . Au tomat ing Separation Logic w i th Trees
and Da ta . In: Proceedings of the 16th International Conference on Computer Aided
Verification - Volume 8559. Ber l in , Heidelberg: Springer-Verlag, 2 0 1 4 , p. 7 1 1 - 7 2 8 .
I S B N 9 7 8 3 3 1 9 0 8 8 6 6 2 .

[30] R E Y N O L D S , A . , I O S I F , R . and K I N G , T . A Decision Procedure for Separation Logic in
S M T . In: ATVA. 2 0 1 6 .

[31] R E Y N O L D S , J . Separation logic: A logic for shared mutable data structures. In:.
February 2 0 0 2 , p. 5 5 - 7 4 . I S B N 0 - 7 6 9 5 - 1 4 8 3 - 9 .

[32] S I G H I R E A N U , M . , N A V A R R O P E R E Z , J . A . , R Y B A L C H E N K O , A . , G O R O G I A N N I S , N . ,

I O S I F , R . et a l . S L - C O M P : Compet i t ion of Solvers for Separation Logic . In:. 2 0 1 9 .

[33] T A , Q . -T . , L E , T . C , K H O O , S . -C. and C H I N , W . - N . Automated L e m m a Synthesis in
Symbolic-Heap Separation Logic . Proc. ACM Program. Lang. New York , N Y , U S A :
Associat ion for Comput ing Machinery. 2 0 1 7 , vol . 2 , P O P L .

G9

Appendix A

Contents of the Attached Medium

The attached memory medium contains the following:
/

A s t r a l / ... source code of A S T R A L

tex/ ... source codes of this thesis
xdacikOO.pdf ... this thesis i n PDF
seplog_bench/ ... formulae used for experiments

70

Appendix B

Installation and Usage

Source code of A S T R A L can be found on the attached medium or online at https: //
gi thub.com /TDacik/Astral. The solver can be installed v i a O P A M package manager by
cloning the repository and running:

$ opam i n s t a l l

B y default, A S T R A L is installed w i t h the Z 3 solver. To use A S T R A L wi th c v c 5 backend, it
has to be installed manual ly and present i n the path. After A S T R A L is installed, it can be
run by the following command:

$ a s t r a l [options] formula.smt2

The most common options are:

• —debug . . . Store debug information such as translated formula in .smt2 format or

S M T models in astral_debug directory.

• —backend=<cvc51 z3> . . . Select backend S M T solver.

• —loc-bound=<n> . . . Force location bound to be n (potentially unsound).

• —no-list-bounds . . . Do not use optimised translation of list-segment predicates

• —semantics=<weak | strong> . . . Default is strong. W h e n option weak is used, result
can be unsound for formulae wi th negations.

71

http://github.com/TDacik/Astral

