BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

A DECISION PROCEDURE FOR
STRONG-SEPARATION LOGIC

ROZHODOVACi PROCEDURA PRO SILNE-SEPARACNI LOGIKU

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. TOMAS DACIK
AUTOR PRACE
SUPERVISOR prof. Ing. TOMAS VOJNAR, Ph.D.

VEDOUCI PRACE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022
Master's Thesis Specification |||[IIII]I
25151

Student: Dacik Tomas, Bc.

Programme: Information Technology and Artificial Intelligence
Specialization: Mathematical Methods

Title: A Decision Procedure for Strong-Separation Logic
Category: Formal Verification

Assignment:

1. Study separation logic (SL), strong-separation logic (SSL), and possibilities of deciding
formulae of SL and SSL.

2. Propose a decision procedure for SSL having at least some potential advantages compared
with the existing decision procedures (e.g., in terms of their generality, ease of
implementation, and/or scalability).

3. Describe the proposed decision procedure and show its correctness.

4. Implement the proposed decision procedure in a prototype tool and experimentally evaluate
it.

5. Summarise the obtained results and discuss their possible future improvements.

Recommended literature:
¢ Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of
LICS'02, IEEE CS, 2002.
* O'Hearn, P.W.: Separation Logic. Communications of the ACM, 62(2), ACM, 2019.
e Katelaan, J., Jovanovic, D., Weissenbacher, G.: A Separation Logic with Data: Small Models
and Automation. In: Proc. of IJCAR'18, LNAI 10900, Springer, 2018.
e Pagel, J., Zuleger, F.: Strong-Separation Logic. In: Proc. of ESOP'21, LNCS 12648,
Springer 2021.
¢ Pagel, J.: Decision Procedures for Separation Logic: Beyond Symbolic Heaps. Ph.D. thesis,
Vienna University of Technology, 2020.
Requirements for the semestral defence:
¢ Point 1 and Point 2 at least for some suitable logical fragment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Vojnar Tomas, prof. Ing., Ph.D.
Head of Department: ~ Han&cek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021

Submission deadline: July 29, 2022

Approval date: November 3, 2021

Master's Thesis Specification/25151/2021/xdacik00 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract

Separation logic (SL) is one of the most successful tools for verification of programs that
manipulate dynamically allocated memory. Its expressive power, however, comes at a cost of
undecidability when several of its features are combined, especially separating implications.
To circumvent this problem, the recently introduced strong-separation logic (SSL) uses
a stricter definition of the semantics, making it decidable, while remaining suitable for
verification. However, there is currently no implementation of a decision procedure for
SSL. In this work, we propose a decision procedure for SSL based on a translation to first-
order formulae that can be later solved by a specialised solver. Our experimental results
on restricted fragments where SL and SSL coincide show that our approach can effectively
solve formulae obtained from verification tools based on SL and also outperform all other
existing translation-based decision procedures. Moreover, during our experiments, we found
cases of unsoundness of the heuristics implemented in the decision procedure for SL that
is a part of the well-known cvch SMT solver. Based on our reports, those heuristics has
been fixed.

Abstrakt

Separacni logika (SL) patii mezi nejuspésnéjsi nastroje pro verifikaci programu pracujicich
s dynamicky alokovanou paméti. Jeji vysokad expresivita ovSem piinasi nerozhodnutel-
nost pokud formule kombinuji vice jejich spojek, predevsim separacni implikace. Jako
feSeni byla navrhnuta takzvand silné-separacni logika (SSL), kterd diky striktnéjsi definici
sémantiky rozsifuje rozhodnutelny fragment a pritom zustava vhodnd pro verifikaci pro-
gramu. V soucasnosti ale neexistuje zddna implementace rozhodovaci procedury pro tuto
logiku. Tato préace se zaméruje na navrh a implementaci rozhodovaci procedury pro SSL za-
lozené na prekladu vstupni formule na formuli v prvoradové logice, jejiz splnitelnost je poté
mozné ovérit pomoci specializovanych nastroji. Experimentalni vysledky na omezeném
fragmentu, kde SL a SSL splyvaji, ukazuji, ze navrzeny nastroj je schopen efektivné fesit
formule pochazejici z verifika¢nich nastrojui a vyrazné prekonava vSechny ostatni existujici
rozhodovaci procedury, které jsou také zalozené na prekladu. Béhem experimentt jsme také
odhalili nékolik pripadi nekorektnosti heuristik pouzitych v rozhodovaci procedure pro SL
implementované v nastroji ¢vch. Na zakladé nasich hlaseni byly tyto heuristiky opraveny.

Keywords

Separation logic, strong-separation logic, decision procedure, SMT

Klicova slova
Separac¢ni logika, silné-separacni logika, rozhodovaci procedura, SMT

Reference

DACIK, Tom4s. A Decision Procedure for Strong-Separation Logic. Brno, 2022. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor prof.
Ing. Tomas Vojnar, Ph.D.

Rozsireny abstrakt

Logika se v poslednich letech stala velmi uziteénym néastrojem v mnoha oblastech in-
formatiky, predevsim v oblasti automatizované verifikace softwaru a hardwaru. Formule
v riznych logikach 1ze pouzit nejen jako formalni jazyk pro specifikaci korektniho chovani
analyzovaného systému, ale také jako pomocnou technologii v programech, které korektnost
ovéruji — naptiklad pro reprezentaci nekoneénych mnozin konfiguraci programu nebo pro
redukci vypocetné tézkych problém, které se pii verifikaci objevuji, na problémy v logice.

Typickym problémem v logice je spinitelnost formule, kterd se pté, zda pro danou
formuli ¢ existuje objekt (zvany model), ktery ji spliiuje. V poslednich letech bylo vénovéno
znacné usili do vyvoje nastroju pro ovérovani splnitelnosti ve vyrokové logice (takzvané SAT
solvery) a v teoriich prvoradové logiky (implementované v takzvanych SMT solverech).
Prestoze oba problémy jsou NP-tézké a jejich obecné efektivni feseni je tedy povazovano za
nedosazitelné, moderni nastroje dokazi efektivné resit velké mnozstvi formuli pochazejicich
z praktickych aplikaci. Tyto aplikace zahrnuji naptiklad ovérovani verifika¢nich podminek
vygenerovanych pii deduktivni verifikaci nebo automatické generovani testovacich vstupu
pro realné programy.

Mimo klasické logiky existuji dalsi logiky specializované pro usuzovani o riznych as-
pektech poéitacovych programu. Prikladem je separacni logika (SL) [31], kterd je hlavnim
predmétem této prace. Separacni logika poskytuje obecny ramec pro modularni usuzovani
o sdilenych zdrojich a jejich disjunktnosti. V nejcastéjsim piipadé je timto sdilenym zdro-
jem dynamicky alokovana pamét. Modularni usuzovani je zajisSténo novou logickou spojkou
zvanou separacni konjunkce — formule 11 x 19 vyjadiuje, ze paméfovou haldu lze rozdélit na
dvé ¢asti tak, Ze prvni spliuje 1 a druha 5. Dalsi novou spojkou je separacni implikace
(asto nazyvand pro svuj vzhled magic wand — kouzelnd hilka). Formule ¢ — 9 je splnéna
haldou, pro kterou plati, ze pokud je rozsifena o model formule ¢, vysledna halda splnuje .
Dalsi ingredienci separacni logiky jsou induktivni predikdty, které popisuji datové struk-
tury neomezené délky, jako jsou seznamy nebo stromy, jejich varianty (napf. dvousmérné
vazané seznamy) a kombinace (napf. stromy se zietézenymi listy). Typickym piikladem
je predikat Is(x,y) reprezentujici acyklicky jednosmérné vizany seznam. Konkrétnim pii-
padem formule je Is(z,y) * y — = vyjadiujici, Ze haldu lze rozdélit na acyklicky seznam
z lokace = do lokace y, a ukazatel z lokace y do lokace x — formule tedy vyjadiuje cyklicky
seznam.

Vysoké expresivita separac¢ni logiky sebou ovSem prinasi vysokou slozitost, v piipadé
nékterych fragmentt dokonce nerozhodnutelnost. S. Demri neddvno ukazal, Ze kombinace
vSech vyse zminénych ingredienci (induktivnich predikati, separacni konjunkce a separacéni
implikace) a booleovskych spojek je nerozhodnutelnd [12]. Rada verifika¢nich néstroji
tak pracuje s jednodussimi fragmenty logiky, které typicky neobsahuji separacni implikaci.
Separac¢ni implikace se ovsem prirozené objevuje naptiklad ve verifika¢nich podminkach
generovanych symbolickou exekuci [1] nebo v tzv. bi-abduktivni analyze [10].

Motivovani vyse zminénou nerozhodnutelnosti, J. Pagel a F. Zuleger nedavno predstavili
tzv. silné-separacni sémantiku, pri které se vyse zminény fragment stdva rozhodnutelnym
v polynomidlnim prostoru [25]. Vznikla silné-separacni logika (SSL) koresponduje s kla-
sickou separacni logikou na tzv. pozitivnim fragmentu neobsahujicim negaci a separacni
implikaci, a lze se na ni tedy divat jako na ,zpétné kompatibilni* rozsifeni klasické SL.
V préci [25] je predstaven koncept abstraktnich pamétovych stavi (koneéné abstrakce nad
potencidlné nekoneénymi mnozinami modeltl) a navrzena rozhodovaci procedura zaloZena
na jejich enumeraci. Tato procedura ovSem slouzi predevsim pro dikaz rozhodnutelnosti
a nebyla nikdy implementovana.

Cilem této prace je navrhnout a implementovat rozhodovaci proceduru pro SSL. Nové
navrzena rozhodovaci procedura pracuje na jiném principu — prevadi vstupni formuli v sep-
arac¢ni logice na ekvisplnitelnou formuli v prvoradové logice. Motivaci tohoto pristupu
je snaha efektivné vyuzit modernich nastroju pro feseni SMT problému. Nékolik podob-
nych preklada jiz bylo navrzeno pro klasickou separacni logiku, tato prace ovsem vyrazné
rozsifuje fragment, ktery lze prelozit, o omezené pouziti separac¢ni implikace a libovolnou
kombinaci booleovskych a prostorovych spojek. Navic je v praci navrzeno nékolik metod
snizujicich velikost prelozené formule, napiiklad diky vypoc¢tim dolnich a hornich omezeni
na délky seznam.

Navrzena rozhodovaci procedura je implementovana v novém néastroji ASTRAL a diky
korespondenci klasické SL a SSL umoznuje fesit i fadu formuli v klasické separacni logice.
Mimo jiné naptiklad formule obsahujici seznamy a libovolné kombinované disjunkce a sep-
aracni konjunkce, coz je podle autoru [5] fragment, ktery neni zddnymi dal$imi nastroji
podporovan.

Experimenty na fragmentu, kde SL a SSL splyvaji, ukazuji, Ze ASTRAL je schopen efek-
tivneé resit formule pochéazejici z verifikacni nastroju a prekonat ostatni existujici rozhodovaci
procedury zalozené na prekladu do SMT. Béhem experimentdlniho srovnani s rozhodovaci
procedurou pro fragment se separa¢ni implikaci, ale bez induktivnach predikattu, implemen-
tovanou v nastroji cvch, jsme také odhalili chybné vyresené formule obsahujici separacni
implikace. Ukéazalo se, ze se jedna o dusledek nékolika nekorektnich heuristik a tyto heuris-
tiky byly posléze na zdkladé nasich hlaseni opraveny.

A Decision Procedure for Strong-Separation Logic

Declaration

Hereby I declare that this master thesis was prepared as an original author’s work under the
supervision of prof. Ing. Tom&s Vojnar, Ph.D. The supplementary information was provided
by doc. Mgr. Adam Rogalewicz, Ph.D. and Associate Prof. Dipl.-Math. Dr.techn. Florian
Zuleger. All the relevant information sources, which were used during preparation of this
thesis, are properly cited and included in the list of references.

Tomas Dacik
July 29, 2022

Acknowledgements

I would like to thank my supervisor Tomas Vojnar for numerous pieces of advice to this
thesis and for a great opportunity to work on such an interesting research topic. I also wish
to express my thanks to Florian Zuleger and Adam Rogalewicz for consultations, and to all
members of the VeriFIT research group for an inspiring working environment. Furthermore,
I would like to thank my family for their support during my studies.

I acknowledge the support received from the project Snappy of the Czech Science Foun-
dation.

Contents

1 Introduction

2 Preliminaries
2.1 Mathematical Notation
2.2 First-Order Logic and Satisfiability Modulo Theory
2.2.1 Syntax and Semantics
2.2.2 Satisfiability Modulo Theory

2.2.3 Generalised Theory of Arrays
2.3 Separation Logic
2.3. 1 Syntaxo e e

2.3.2 Memory Model oo
2.3.3 Semanticso e
2.3.4 Decision Procedures for Separation Logic

3 Strong-Separation Logic
3.1 Syntax e e e
3.2 Weak- and Strong-Separation Semantics
3.3 Comparison of Weak- and Strong-Separation Semantics
3.4 Abstract Memory States Lo
3.5 Small-Model Property

4 Decision Procedure for SSL

4.1 OVEIVIEW . . . o o o e e e
4.2 Translation of List-Segment Predicates
4.3 Translation of Separating Conjunctions
4.4 Translation of Septractions oL
4.5 Translation to SMT e
4.6 Proof of the Correctness e

4.6.1 SMT Models e

4.6.2 Composition of SMT Models

4.6.3 Translation Invariantso

5 Optimisations
5.1 Tighter Bounds for Symbolic Heaps
5.2 Tighter Bounds for General Formulae

6 Implementation
6.1 Architecture e

© 00w~ O ot w

— =
= O

13
13
14
17
18
22

25
26
27
30
33
35
40
40
42
44

49
49
51

54

6.2 Front-end
6.3 SMT Back-end e e

7 Experimental Evaluation
7.1 Comparison with Translation-Based Decision Procedures
7.2 Evaluation of List-Length Bounds Computation
7.3 Comparison with CvCHo
7.3.1 Parametric Formulae 0oL
7.3.2 Randomly Generated Formulae
7.4 Summary and Future Work 00

8 Conclusion
Bibliography
A Contents of the Attached Medium

B Installation and Usage

57
o7
60
61
61
63
64

66

67

70

71

Chapter 1

Introduction

In recent years, logic proved to be a very useful tool in many fields of computer science,
including in the area of automated software and hardware verification. Formulae in various
logics can be used not only as formal languages for specification of the correct behaviour
of the analysed system, but they can also serve as a backend technology in tools that
attempt to verify the specification — e.g., to succinctly represent infinite sets of program
configurations, or to reduce computationally hard problems that appear during verification
to problems in logics, which can be solved by specialised solvers.

One of the most common problems in logic is satisfiability of a formula ¢ which asks
whether there exists an object (called model) that satisfies . In recent years, a significant
research effort has been invested into development of satisfiability solvers for propositional
logic (so-called SAT solvers) and various theories in first-order logic (implemented in so-
called SMT solvers). While both problems are NP-hard (and some SMT problems even
harder) and therefore considered as intractable in general, existing solvers can effectively
handle large classes of formulae originating from practical applications. Those applications
are, e.g., discharging preconditions generated by deductive verification tools, checking en-
tailment or emptiness in abstract interpretation based on logic, automatic generation of
test cases for real-life programs, and many others.

Besides the classical logics, there are also logics developed to reason about specific as-
pects of computer programs, such as separation logic (SL) [31], which is the main subject of
this thesis. It is a logical framework for modular reasoning about shared resources and their
disjointness. In the most common setting, the shared resource is a heap-allocated memory.
The modular reasoning is due to a new connective called the separating conjunction — a for-
mula 1)1 x 1)y states that a heap can be split into two disjoint parts such that the formula ¢
is satisfied in the first part and), is satisfied in the second. Another new connective is the
separating implication (often called as the “magic wand”). A formula ¢ — 1 is satisfied
by a heap such that for each its extension satisfying ¢, their composition satisfies ©. The
last ingredient are inductive predicates describing data structures of unbounded size such
as lists or trees. For example, the predicate Is(x,y) is used to express an acyclic singly-
linked list, i.e., a sequence of pointers from x to y. A concrete example of an SL formula
is Is(z,y) * y — x which states that a heap can be decomposed into an acyclic list from x
to y, and a pointer from y to x. In other words, it expresses a cyclic list.

However, the high expressive power of separation logic comes with the price of high
complexity and even undecidability when several of the aforementioned features are com-
bined together. In particular, as recently shown by Demri [12], a quantifier-free fragment of
SL combining separating conjunctions, magic wands, and list-segment predicates is unde-

cidable under the classical semantics. Most verification tools therefore sacrifice the magic
wand. Magic wands do, however, naturally appear in verification conditions generated by
symbolic execution [1] and in the so-called bi-abductive analysis [10].

To tackle the undecidability and allow verification tools to automate magic wands, Pagel
and Zuleger proposed a so-called strong-separating semantics under which the mentioned
fragment becomes decidable in PSPACE [25]. The resulting strong-separation logic (SSL)
coincides with the classical SL on the so-called positive fragment that does not contain
negations and magic wands. SSL therefore can be seen as a backward compatible extension
of the classical SL. In [25], they propose a concept of abstract memory states (AMS is a
finite abstraction over possibly infinite sets of models) and a decision procedure based on
their enumeration. However, the algorithm serves as a proof of decidability and was never
implemented.

This thesis presents a first implementation of a decision procedure for a fragment of
SSL. Rather than performing a custom enumeration of AMSs, we perform a translation to
an equisatisfiable first-order formula to leverage capabilities of existing SMT solvers. Such
translations already exist for classical SL, but we significantly extend the fragment being
translated. The extensions cover limited usage of magic wands and arbitrary mixing of
boolean and spatial connectives. We also propose several new heuristics to decrease the
size of translated formulae, e.g., by computing bounds on lengths of list-segment predicates.

The proposed decision procedure was implemented in a new solver called ASTRAL. Due
to coincidence of the classical SL and SSL, ASTRAL can be also used to solve a wide class of
SL formulae. Those include, e.g., formulae with list-segment predicates which are mixing
disjunctions and separating conjunctions that are according to authors of [5] currently not
supported by any existing tool.

Experimental results on simpler fragments show that our approach can effectively solve
formulae obtained from verification tools based on SL and also outperform other existing
translation-based decision procedure implemented in tools SLOTH [17] and GRASSHOP-
PER [28]. We have also compared our tool with the cvc5 SMT solver which implements
a decision procedure for SL with magic wands but without inductive predicates. During
those experiments, we found and reported several incorrect results for formulae containing
magic wands. Those turned to be results of unsound heuristics and were later fixed based
on our reports.

Structure of the thesis. The rest of the thesis is structured as follows. Chapter 2
introduces a notation used throughout the thesis and give an overview of the classical
separation logic and existing decision procedures. Strong separation logic is then presented
in Chapter 3. Chapter 4 proposes a new translation-based decision procedure for a fragment
of SSL and proves its correctness. In Chapter 5, we propose several optimisations of the
translation and in Chapter 6 we discuss its implementation in the tool called ASTRAL.
Chapter 7 is devoted to an experimental evaluation. Finally, Chapter 8 concludes the

thesis and suggests several directions of the future research.

Chapter 2

Preliminaries

This chapter presents the theoretical background of the thesis. First, we introduce basic
mathematical notation used throughout the thesis. Further, we briefly recall syntax and
semantics of first-order logic and the problem of satisfiability modulo theory. Then we
introduce separation logic and give an overview of existing decision procedures for it.

2.1 Mathematical Notation

Partial functions. We write f : X — Y to denote a partial function from X to Y. Let f
be a partial function, we use f(z) = L to denote the fact that f is undefined for x, and
we write dom(f) and img(f) to denote the domain and the image of f, respectively. The
function is total if dom(f) = X. A restriction of f to a set A C X is a partial function f|4
defined as f(x) if x € A and undefined otherwise. The size of a function f is defined as the

size of its domain, i.e., | f| = [dom(f)].
We sometimes use a set notation to define partial functions. For example, the set
{x1 = y1,..., Ty — yn} represents a partial function that maps each z; to y; and is unde-

fined for other values.

Graphs and paths. Let G = (V,—) be a directed graph. A path 7 € V1 is a sequence
of vertices (vg,v1,...,v,) such that for all 0 < ¢ < n it holds that v; — v; 1. The domain
of the path 7 is the set dom(7) = {vg,v1,...,v,—1} and the length of the path is defined as
|| = |dom(7)| = n. In particular, for every vertex v € V there is the empty path © = (v)
with dom(7) = () and |w| = 0. A path is simple if it does not contain any vertex more than
once. All simple paths are therefore acyclic. We write z < y to denote the fact that 7 is a
simple path from z to y.

Formulae. We use several notations related to formulae, no matter whether they are from
separation or first-order logic. Let ¢ be a formula. We write ¢[t/z] to denote the formula
obtained from ¢ by simultaneously replacing all free occurrences of the variable x with the
term t. We write vars(p) to denote the set of all free variables in ¢ and call ¢ closed if
vars(¢) = (. Further, we write subformulae(p) to denote all sub-formulae of ¢. Moreover,
we use the predicate distinct(z1, . .., z,) to denote that all variables x; are pairwise different,
i.e., as syntactic sugar for /\i# T; # Ty

2.2 First-Order Logic and Satisfiability Modulo Theory

This section briefly recalls the syntax and the semantics of single-sorted first-order logic
with equality (FOL) and the problem of satisfiability modulo theory (SMT). The section is
based on [8].

2.2.1 Syntax and Semantics

Syntax. A signature X is a set of function and predicate symbols with associated arities.
We assume that each signature contains the binary equality symbol =. A function symbol
with arity O is called a constant. Let X be a set of variables disjoint from . A X-term t is
either a variable or an application of an n-ary function symbol f to an n-tuple of terms. A X-
atom (atomic formula) is either a boolean constant (T, L), an equality of two terms, or an
application of an n-ary predicate p to an n-tuple of terms. A Y -formula is constructed from
atomic formulae using classical boolean connectives (A, V, =, —, <=) and quantifiers (V, 3).
Semantics. Let ¥ be a signature. A Y-interpretation M is a pair (D, (-)™) where D is a
non-empty set called the domain of M and (-)™ is a total function called the assignment
that maps each n-ary function symbol f to an n-ary total function fM : D" — D, each
n-ary predicate symbol p to an n-ary predicate p™ C D", and also each variable z € X to
an element 2™ € D. The symbol = is always interpreted as the equality on D.

The evaluation of a term t in an interpretation M is denoted as t™ and is defined
inductively over the structure of the term ¢ in the usual way. Similarly, the evaluation of
a formula ¢ in an interpretation M is defined. We say that a formula ¢ is satisfied in
an interpretation M (or equivalently that M is a model of ¢), denoted as M = ¢, if ¢
evaluates to true in M.

Satisfiability and validity. A >-formula ¢ is satisfiable if there is a Y-interpretation M
such that M | ¢, ¢ is called wvalid if for all Y-interpretations M it holds that M = ¢.
Satisfiability and validity are dual, a closed formula ¢ is valid iff -y is unsatisfiable.

2.2.2 Satisfiability Modulo Theory

Theories and the SMT problem. A Y-theory T is a set of closed Y-formulae called az-
ioms. A Y-interpretation M is called a T-interpretation if M = A for all axioms A € T. A
theory T is consistent if there exists a T-interpretation. A formula ¢ is called T-satisfiable,
if there exists a T-interpretation M in which ¢ is satisfied, denoted as M =7 ¢. The
problem of satisfiability modulo theory (SMT) asks to determine whether ¢ is T-satisfiable
or not, given a fixed theory 7.

SMT solvers. Commonly used theories are, e.g, linear integer arithmetic (LIA), real
arithmetic or the theory of fixed-size bit vectors. Algorithms for deciding those theories are
implemented in so-called SMT solvers. Usually, they implement a dedicated sub-solver for
each theory. For some theories, those sub-solvers may be modularly combined using, e.g.,
the Nelson-Oppen combination method. Prominent examples of SMT solvers are Z3 [21]
and cvch [3].

Definitions of common theories as well as an input language of SMT solvers are stan-
dardised in the SMT-LIB format [4]. The input format is formalised in many-sorted FOL
in which domains of interpretations are split into multiple sub-domains called sorts (they

roughly correspond to basic types in programming languages). In this thesis, we, for sim-
plicity, present our translation of separation logic in single-sorted FOL. Its actual imple-
mentation in many-sorted setting is, however, a very straightforward modification.

2.2.3 Generalised Theory of Arrays

As an example of a first-order theory, we will describe the generalised theory of arrays [20]
that we will also use as the “target language” of our translation of separation logic.

The basic theory of arrays T4 has the signature ¥4 = {-[],-(- <)} where a term ali]
represents a read from the array a at the position ¢ and a term a(i < v) represents a modi-
fication of the array a by writing the value v at the position . This intuitive behaviour of
reading and writing to an array is captured by the following axioms.

o Va,i,j.i=j — ali] = alj] (array congruence)
e Ya,v,i,j.i=7 — ali<dv)[j]=v (read-over-write 1)
o Ya,v,i,j.1# j — al{i<v)[j] = alj] (read-over-write 2)

The theory of arrays is undecidable, but its quantifier-free fragment is decidable in NP.

The generalised theory of arrays ﬁ [20] adds combinators which allow one to ex-
press certain universal properties without relying on quantifiers. A combinator K(z) rep-
resents a constant array whose all elements are x. For an n-ary function f, a combinator
mapf(al, ...,ap) represents an array obtained by applying the function f point-wise to
arrays ai,...,an. It can therefore express operations such as point-wise addition of two
integer arrays. Those combinators are axiomatised by the following axioms (the second is,
in fact, an axiom scheme).

o Vr,i. K(z)li] =z
o Vai,...,ap,i. maps(ai,...,an)li| = f(aili],...,an[i]) for each n-ary function f

As for the basic theory of arrays, the generalised version is decidable in NP. A decision
procedure for 7, is implemented in the SMT solver Z3 [20].

Encoding finite sets as arrays. The generalised theory of arrays can be used to encode
basic operations over finite sets. This will be useful when translating separation logic to
express properties such as the requirement that the domains of two heaps are disjoint. Given
a finite universe U, a set X C U can be encoded as an array representing its characteristic
function, i.e., mapping each element x € U to a boolean value representing its membership
in X. In this encoding, a constant set can be represented as:

{21,202,y zn} 2 KAL)z <« Tz T) .. (2, aT)
Basic set operations and predicates can be expressed as follows.

X = map_(X) X=02 X=K(L)
XUY £ map,(X,Y) reX £ Xl
XNY £ map,(X,Y) XCY £ map_(X,Y)=K(T)

The theory of finite sets with cardinality constraints is also supported natively by the
cved SMT solver [2], but it is not standardised in the SMT-LIB standard.

2.3 Separation Logic

Separation logic (SL) was developed to reason about imperative programs manipulating
dynamically allocated memory [31], including the so-called shape analysis capturing the
shapes of memory-allocated structures, and it quickly becomes probably the most successful
approach in this area. Meanwhile, many various flavours of SL were introduced [26], some of
them for reasoning about shared resources other than the memory such as concurrency [23],
but heap-manipulating programs are still the most common domain.

This section presents an introduction into the classical semantics of separation logic
and discusses its existing decision procedures. A flavour of SL called strong-separation
logic which is studied in this thesis is introduced later in Section 3.

2.3.1 Syntax

Let Var be an infinite set of variables with a distinguished variable nil € Var. The syntax
of first-order separation logic is given by the following grammar where z,y € Var:

Catom "= T =Y | T # Yy (pure atoms)
|emp | x>y (spatial atoms)
¥ == Patom
loxp|o—=¢ (spatial connectives)
e ne |- (boolean connectives)
| Jz. ¢ (quantifiers)

A pure atomic formula is either an equality = = y or a disequality = # y. A spatial atomic
formula is either the empty heap predicate emp, which intuitively expresses that the heap
does not contain any pointers, or a points-to assertion x +— ¥y intuitively expressing that a
heap consists of exactly one pointer from the location z to the location y'. The formulae
are obtained using quantifiers, boolean connectives and spatial connectives x (separating
conjunction) and — (separating implication also called the magic wand). Intuitively, a
formula 91 * 12 states that a heap can be split into two (disjoint) parts such that 1; is
satisfied in the first of them and v is satisfied in the second. Similarly, a formula ¢ — 1
intuitively states that each (disjoint) extension of a heap by another heap satisfying ¢ yields
a heap satisfying ¥. Concrete flavours of SL may differ in the way how disjointness of two
heaps is defined.

For a set of formulae ® = {p1, ¥, ..., o }, we define an n-ary version of the separating
conjunction:

P — emp ifn=20
1k po k.., ifn>0

A frequently used fragment of SL is the so-called symbolic heap fragment. A formula ¢
is a symbolic heap if it is of the form IT A ¥ where II £ A #; is a conjunction of pure atoms
called the pure part and ¥ £ k1 is a separating conjunction of spatial atoms called the
spatial part. Although the fragment is significantly restricted, it is still expressive enough to
be useful for program verification, e.g., for symbolic execution in the SMALLFOOT analyser
[7] and many other similar analysers.

n a more general setting, points-to assertions can be of the form z — (y1,...,yn) intuitively expressing
that a heap consists of a pointer from z to an object consisting of fields yi1, ..., yn.

()]
S
(=)
S]

(0: nil)

—
8
8
8
S
=
N
—

Figure 2.1: An example of a graph representation of a stack-heap model (s, k). It holds
that (s, h) = Is(z,y) * Is(u,v) * z — y. The corresponding decomposition of the heap h is
depicted using green boxes.

2.3.2 Memory Model

We will interpret SL over stack-heap models. Let Loc be a countably infinite set of memory
locations with some fixed linear order. A stack-heap model is a pair (s, h) where stack is
a finite partial function s : Var — Loc such that s(nil) # L, and heap is a finite partial
function h : Loc — Loc such that A(s(nil)) = L. For a heap h, we define the set of its
locations as locs(h) = dom(h) Uimg(h).

As demonstrated in Figure 2.1, a stack-heap model (s, k) can be represented as a directed
graph where vertices are heap locations and edges represent heap pointers. To capture also
the stack, each vertex is labelled by variables that are mapped to it. This correspondence
is formalised by the following definition of an induced graph of a model.

Definition 2.1 (Induced graph). Let (s,h) be a stack-heap model. Its induced graph
G|(s,h)] = (V,—,s71) is defined as follows:

e V =locs(h) Uimg(s)
e u—v < h(u)=wv
e s7(v) ={z € Var | s(z) = v}

In the rest of this thesis, we identify the model and its graph representation. While, in the
definition, we strictly require that each stack-heap model contains the nil location, we omit
it in examples where it is not relevant.

We introduce several notations related to stack-heap models. Let (s, h) be a model and
let ¢ be a location. We say that variables x and y alias if s(x) = s(y). We call £ anonymous
if s71(¢) = () (it is not referred from the stack) and named otherwise. We say that the
heap h contains a pointer from x to y if h(z) = y. We call £ allocated if ¢ € dom(h) (it has
some successor) and dangling if it holds that ¢ € img(h) \ dom(h) (the predecessor of ¢ is
allocated, but ¢ itself is not). A pointer z — y is dangling if its target location y is dangling.

Example 2.1. Let us consider the stack-heap model (s, h) from Figure 2.1. Throughout
this thesis, we will usually consider locations to be natural numbers, i.e., Loc := N. In the
model, the variables y and z alias. Locations 2 and 3 are the only anonymous locations
here, and locations 0 and 6 are the only locations that are not allocated. The only dangling
location is the location 6 because it is in the image of h, but not in its domain. The pointer
5+ 6 is therefore dangling. The location 0 is not part of locs(h) but it is included among
vertices of G[(s, h)].

(s,h) Ex= iff s(x) = s(y)
(ssh)Ez#y i s(z) #s(y)

(s,h) = emp iff h=10

(s,h) Fx—y iff h={s(z)— s(y)}

(s;h) EpiApa i (s,h) |= @1 and (s, h) = p2
(57 h) ’: - iff (57 h) l7é ¥
(s,h) E3Jz. ¢ iff there exists ¢ € Loc such that (sU{xz+— (},h) E ¢

(S,h) ’: 1 * Y2 iff 3hq, ho. (S,hl) ’: ©1, (S,hg) ’: w2,h1 +ha # L and h = hy + ho
(s,h) =@ —x1 iff Vhy.if (s,h1) Epand h+ hy # L, then (s,h+ h1) E ¢

Figure 2.2: The classical semantics of separation logic.

2.3.3 Semantics

The semantics of separation logic over stack-heap models is given in Figure 2.2. An equal-
ity x = y is satisfied by a stack-heap model interpreting both variables in the same way.
The semantics of disequality is analogical. A points-to assertion x + y is satisfied in a
heap consisting of a single pointer which, moreover leads from z to y. The semantics of
boolean connectives and the existential quantifier is defined in the usual way. The semantics
of spatial connectives is based on a notion of disjointness of two heaps (the semantics of
strong-separation logic defined later in Section 3 will differ in its definition of disjointness).
In the classical SL, heaps hi and hg are disjoint if their domains are disjoint. A disjoint
union of heaps is defined as follow:

hiUhgy ifd hi1)Nd hy) =
h1+h2: 1 2 1 om(' 1) om(2) @
1 otherwise

We now give several examples of separation logic formulae to show differences in the
semantics of the classical and separation conjunction, and also to provide some intuition
behind the magic wand.

Example 2.2. Let ¢ £ 2+ y * x — 2. The formula ¢, is unsatisfiable because it requires
the location z to be allocated in both sub-heaps, which is forbidden by the semantics of the
separating conjunction. On the other hand, the formula ¢y £ z + y * z > y is satisfiable.
Notice that (o implicitly asserts that the variables x and z represent different locations.

Example 2.3. The heap h = {s(z) — s(y), s(y) — s(nil)} does not satisfy the formula
03 £ x— y (no matter what the stack is). This is because a points-to assertion expresses
the fact that “a heap consist of a pointer”, rather than “a heap contains a pointer”. Of
course, the so-called intuitionistic points-to assertion 4 = & — y * true can be to used to
express that a heap contains the pointer.

10

Example 2.4. A formula p5 £ 2 — y Ay — 2 states that a heap consists a pointer from x
to y and from y to z, simultaneously. The formula is therefore satisfiable only when those
pointers are unified, i.e., it can be satisfied by the only stack-heap model (s, h) such that
s(z) = s(y) = s(z) and h = {s(z) — s(x)}.

Example 2.5. Let g 2 (z + nil) — false. The formula is satisfied in a model (s, h) if for
all its extensions satisfying z ~ nil (there is zero or one such an extension depending on
whether h already allocates x or not), it holds that their composition satisfies false. Since
no model satisfies false, this means that h has to allocate x to ensure that it has no disjoint
extension satisfying x + nil. The formula therefore states “location z is allocated”. This
can be also expressed using quantifiers 3¢. x — £. If neither the magic wands nor quantifiers
are supported, the property cannot be expressed.

Inductive Predicates Separation logic also allows one to specify inductive predicates to
describe data structures of unbounded size (such as lists or trees), their variants (such as
doubly linked lists) and combinations (such as nested lists or trees with linked leaves). In
concrete flavours of SL, those predicates can be either built in the logic, or, in a more
general setting, the logic may allow to define custom inductive predicates.

Inductive predicates can be defined by a system of inductive definitions which consists of
rules of the form p(z1, z9, ..., z,) 1= . For example, a possibly empty, acyclic singly-linked
list predicate Is(x,y) can be defined by the following system of definitions:

Is(z,y) ==x =y A emp
Is(z,y) ==3z. x £y A <$ 2% Is(z,y))

The definition says that a model (s, h) satisfies a predicate Is(z,y) either if the heap is
empty and s(x) = s(y), or there exists a location z such that there is a pointer from z to z
and the rest of the heap is a list segment from z to y. The condition in the second definition
that and y are different forbids cyclic lists. Similarly, a tree with a root r can be defined
by the following system:

tree(r) :==r =nil A emp
tree(r) == 3l,r.x — (I,r) * tree(l) * tree(r)

Example 2.6. The formula (z — y) * (y — 2) A =(Is(z, 2)) is satisfiable. While this does
not have to be obvious at the first sight, let us consider the stack heap model (s,h) with
s(z) = s(z) and h = {s(z) — s(y),s(y) — s(z)}. The formula is satisfied in this model
because list-segments have to be acyclic.

2.3.4 Decision Procedures for Separation Logic

There exist many decision procedures for various fragments and flavours of separation logic.
The first studied fragment were symbolic heaps with lists; in [6], a proof system for satis-
fiability and entailment was proposed. Both satisfiability and entailment for this fragment
were later shown to be solvable in polynomial time [11]. A model-based approach for this
fragment which is partially based on the Z3 solver was proposed in [22] and implemented
in the tool called ASTERIX.

11

A translation of SL to SMT was first proposed in [28] and [29] for boolean combinations
of symbolic heaps with lists and trees, respectively. Those approaches use intermediate log-
ics that are later translated to SMT. Another translation, closer to our approach proposed
in the following, was described in [17], which establishes a small-model property for sepa-
ration logic with data predicates and performs a direct translation implemented in the tool
SLOTH. A similar translation was designed in [24] for SSL with data but not implemented.
The work, however, considers only a fragment on which SL and SSL coincide.

All those translations consider only such fragments of SL where boolean connectives
cannot appear under separating conjunction, and the magic wand cannot appear at all.
A fragment with the magic wand, arbitrary combinations of boolean and spatial connec-
tives, but no inductive predicates is supported by the SMT solver ¢vch that implements
a specialised theory solver for this fragment [30]. The solver is based on a translation to
second-order logic with quantifiers over bounded sets which is then solved by a lazy quanti-
fier instantiation. As shown in [12], adding only the list-segment predicate to this fragment
leads to undecidability.

A separation logic with quantifiers (restricted to the F*V* quantifier-prefix) was studied
in [13]. The majority of solvers, however, work within quantifier-free fragments. An exam-
ple is SONGBIRD which constructs induction proofs using lemma synthesis [33].

Inductive definitions. All methods mentioned so far assumed only inductive predicates
that were built in the logic. A generalisation is to allow wser-defined inductive predicates
(usually of some restricted form) that can describe more complex data structures such as
double-linked lists, cyclic lists, or trees and various combinations of the mentioned. Solvers
proposed for those logics are based, e.g., on the cyclic proof systems (CycLisT [9]) or
various kinds of automata — tree automata are used in tools SLIDE [15] and SPEN [14], and
a specialised type of automata, called heap automata, is used in HARRSH [19].

12

Chapter 3

Strong-Separation Logic

Strong-separation logic (SSL) was recently introduced to overcome undecidability results
of separation logic with the classical semantics in the presence of magic wands, negations,
and list-segment predicates. To emphasise the difference, we will further call separation
logic with the classical semantics as weak-separation logic (WSL). This chapter formally
introduces SSL based on [25] where one can also found all omitted proofs. We will first
introduce its syntax and semantics and compare it with the semantics of WSL. Then, we
will describe abstract memory states that can be used as a building block of a decision
procedure for SSL, and also to prove several properties of SSL. Namely, we will prove that
it has a small-model property, i.e., that each satisfiable formula has a model of a linear size.
This property is essential for an effective translation of SSL to SMT.

3.1 Syntax

We will concentrate on a quantifier-free fragment of SL where the list segment is the only
built-in inductive predicate'. The syntax of this fragment is given by the following grammar:

Patom =T =Y | T Fy (pure atoms)
|z =y |ls(z,y) (spatial atoms)
¥ = Patom
loxp|o—® ¢ (spatial connectives)
leAploVolpAip|-p (boolean connectives)

There are several differences from the syntax given in the introduction and non-standard
choices. Instead of the magic wand, we use its existential variant called septraction. The
reason is that its existential character is more natural when working with satisfiability. The
syntax does also not contain the empty predicate emp as it can be expressed using other
atoms.

An important subset of SSL is its so-called positive fragment denoted as SSLT. A for-
mula ¢ is positive if it does not contain a negation. In the positive fragment, however, a
so-called guarded negation A- can be used. A formula ¢ A_ ¢ is semantically equivalent
to the formula ¢ A =), but we rather treat the guarded negation as a standalone binary

IThis is, however, not a limitation of the strong-separation semantics — an extension of SSL including
trees can be found in [24].

13

Ex= iff s(z) = s(y) and dom(h) =
Ex#y iff s(x) # s(y) and dom(h) =
Fao—y A ={s(z) = s(y)}
Els(z,y) iff dom(h) =0 and s(x) = s(y) or there exist n > 1,4, ..., £, such that
distinct(g, ..., bn), h = {lo — l1, ..., b1 — p }, s(x) = Lo,
and s(y) = ¢,
Fe1Ape iff (s,h) = @1 and (s, h) = p2
iff (s,h) = ¢1 and (s, h) = @2
Fe1Ver i (s,h) = ior (s h) = e
iff (s, h) = ¢

0
0

5,

Figure 3.1: The semantics of atomic formulae and boolean connectives. On this fragment
it holds that (s, h) E ¢ iff (s,h) = ¢, and we therefore write simply |=.

h) B 1% pg iff Fhy, ha. (s,h1) = 01, (5, ha) = po,hy +ha # L, and b = hy + ho

h) E o1 * @0 iff 3hy, ho. (s,h1) = @1, (s, he) E o, h1 W hg # L, and h = hy W° hy
s,h) = o1 —® o iff 3hy. (s,h1) B 1, h+hy # L, and (s,h + hy) = oy

h) E o1 —® @9 iff 3hy. (s,h1) B @1, h W hy # L, and (s, h® hy) = @9

Figure 3.2: The weak-separation (=) and strong-separation (F£) semantics of spatial con-
nectives.

connective. In full SSL, the disjunction is redundant, but we add it to the syntax to increase
expressivity of the positive fragment.

The idea of the guarded negation comes from [24] and is not considered in [25]. All proofs
related to the full SSL, however, remain sound because the guarded negation can be easily
expressed in SSL. Proofs about positive formulae require to consider an additional case of
the guarded negation. This case is usually straightforward since all properties of models
of a positive guard ¢ also hold for all models of a formula ¢ A 7). The guarded negation
is, in particular, useful to express validity of an entailment ¢ = 1) as unsatisfiability of the
formula ¢ A~ ¢:

e Evisvalid & —p Vi isvalid & ¢ A) is unsatisfiable.
We write vars(p) to denote the set of all variables in ¢ and define the set vars'(¢) of
variables that can be allocated as vars™ () = vars(¢) \ {nil}.
3.2 Weak- and Strong-Separation Semantics

We will define two logics — weak-separation logic (WSL) using the satisfaction relation ’W:k
and strong-separation logic (SSL) using the satisfaction relation =. The semantics of atomic
formulae and boolean connectives is given in Figure 3.1, and it is identical for both logics.

14

Figure 3.3: An example of two models of the formula ¢ £ (Is(z, nil) * true) A (Is(y, nil) * true)
under the classical semantics. Under the strong-separation semantics, ¢ is satisfied only
in the right model that can be split at the named location 3 to separate overlaid list-
segments. The left model cannot be split using the operator W* to satisfy the formula since
its location 3 is not named.

Notice that, in the semantics of pure atoms, we additionally require that they can be
satisfied on the empty heap only. This is the so-called precise semantics of pure atoms,
and it is orthogonal to the strong-separation semantics. The semantics defined in this a
way is common for translation-based decisions procedures [17, 28]. It does not change the
expressivity, merely the way how formulae are written — instead of writing x =y A ¢, one
can write = y * @ to express that the equality can be satisfied on the empty heap, which
can always be split off from any heap. A symbolic heap formula now has the form s 1;
where all 1); are atomic formulae.

As will become clear later, the strong-separating conjunction cannot be used to define
the list-segment predicate inductively because it would require all of its locations to be
named. One can therefore either use a weak-separation conjunction or define list non-
inductively. We chose the latter approach according to [25]. The list-segment predicate is
defined to hold on a heap consisting of a possibly empty sequence of pointers starting with
z and ending with y such that all locations in this sequence are distinct. Consequently,
a list-segment cannot be cyclic or lasso-shaped. We may define the empty heap predicate
and boolean constants as syntactic sugar’:

A . . A A
emp = nil = nil false = emp A— emp true = —false

The semantics of spatial connectives is defined in Figure 3.2, and, for both of them, it
differs in the used notions of disjointness and disjoint union of heaps. Recall that, in the
classical semantics, the disjoint union of two heaps is defined as the union of those heaps
under the condition that their domains are disjoint:

hiUhgy ifd hi1)Nd hy) =
h1+h2: 1 2 1 om(' 1) om(2) @
1 otherwise

Strongly-disjoint union W*, parametrised by a stack s, also restricts images of heaps — it
requires that each location shared by both heaps is named (i.e., at least one variable is
mapped to it), formally, the strongly-disjoint union is defined as:

hi+ he if locs(h1) Nlocs(ha) C img(s)

h1W® hy = .
1 otherwise

ZWhile the constant false is expressible in the positive fragment, the constant true is not. Otherwise, it
would be easy to introduce the negation even in the positive fragment using the guarded negation.

15

(1:a}—{2:y) (3:2) o (1:aF—{3:y)] [(2:2)

Figure 3.4: An example of two isomorphic stack-heap models. The isomorphism is given
by the bijection o such that o(2) = 3, 0(3) = 2, and o(z) = x otherwise.

Notice that if hq W* ho is defined, then hq + ho is also defined, but not vice versa. This is
demonstrated in Figure 3.3. It can be shown that the operator W® gives rise to a separation
algebra and it is therefore suitable for definition of semantics of separation logic [25].

We can define the magic wand using septraction and negation. Unlike the septraction,
the magic wand is not expressible in the positive fragment.

o~ P £ (0 —®)

We can also define a list segment of length at least one and a proper list segment of length
at least two. Notice that both of them lie in the positive fragment.

ls>1(z,y) £ ls(z,y) xx #y
|522($7y) £ |521($7y) A)

Example 3.1. The formula = — y A x = y is unsatisfiable as the left-hand side requires
a heap to be of size one and the right-hand size requires it to be empty. A correct way to
express a self-loop pointer at x under the precise semantics is to write z — yxxz = y.

Example 3.2. The formulae z # y and —(z = y) are not equivalent. The second can be
satisfied by an arbitrary non-empty heap even if s(z) = s(y).

Example 3.3. The formula ¢ £ (z + nil) —® true is satisfied by models that can be
extended by a pointer from z to nil, i.e., by models that do not allocate x. This formula
can also be expressed using the magic wand as —((z — nil) — false).

Satisfiability and entailment. As can be seen in Figure 3.3, satisfiability of an SSL
formula may depend on how many variables are available to label splitting points of a heap.
Satisfiability and entailment are therefore parametrised by a set of variables x C Var. Let
[¢]x be the set of all models of ¢ over x, i.e., [¢]x = {(5,h) | dom(s) =x A (s,h) [©}.
The formula ¢ with vars(p) C x is satisfiable over variables x if [¢]x # 0. An entailment

¢ B, v is valid w.r.t. x if [o]x € [¥]x-
Two stack-heap models are isomorphic if they are identical up to renaming of locations.

Definition 3.1. Two models (s1,h1) and (s2,h2) are isomorphic, (s1,h1) = (s2,hs), if
there exists a bijection on locations o : Loc <= Loc such that:

1. For all x € Var, it holds that s1(z) = o(s2(x)).
2. For all ¢ € Loc, it holds that hi(z) = o(ha(z)).

An example of two isomorphic models is given in Figure 3.4. It holds that SSL formulae
cannot distinguish isomorphic models. This is not a consequence of the strong-separation
semantics, but it follows from the fact that SSL cannot speak about concrete memory
locations — it cannot express formulae such as 1 — 2.

Lemma 3.1 (Isomorphic models [25]). Let ¢ be a formula. Further, let (s1,h1) and (s2, h2)
be two models such that (s1,h1) = (s2,h2). Then (s1,h1) B ¢ iff (s2,h2) E .

16

ED—FD o +

Figure 3.5: An example of a model (s, h) decomposed at locations 2 and 4. It holds that
(s,h) |sg’§($, z), but not (s,h) & |sg’§($, z) because the location 4 is not named and the

depicted decomposition is therefore not possible in SSL.

3.3 Comparison of Weak- and Strong-Separation Semantics

In this section, we compare the semantics of WSL and SSL. We will show that they coincide
on the positive fragment. As the positive fragment subsumes frequently used fragments such
as the symbolic heap fragment, this demonstrates a certain kind of backward compatibility
of SSL. The second part of this section is devoted to examples where the strong-separation
semantics actually makes a difference.

Recall that a location is dangling in a heap if it is in its image but not in its domain.
If we have a model of a positive formula, it holds that all its dangling locations are named
by stack variables.

Lemma 3.2 ([25]). Let ¢ be a positive formula and let (s,h) = ¢ be its model. Then all
dangling locations of the heap h are named, i.e., dangling(h) C s(vars(p)).

Proof idea. By structural induction on ¢, which actually proves a stronger statement that
all dangling, joint (having multiple predecessors), and source (having no predecessors) lo-
cations are named. The case of the guarded negation 1; A~ 92 uncovered in [25] follows
directly from the inductive hypothesis for /1. O

If we have two weakly-disjoint heaps, they can overlap only on locations that are dan-
gling in at least one of them. Together with the previous lemma, this ensures that weakly-
disjoint models of positive formulae can overlap only on named locations and they are
therefore also strongly-disjoint. Therefore, there is no difference between the weak- and the
strong-separation semantics for positive formulae.

Lemma 3.3 ([25]). Let 1 and o be positive formulae and let (s, hy) = o1, (s,ha) E o
be their models. Then hy + hao # L iff hy W® ho # L.

Proof.

(=) We want to prove that all shared locations of hy and hs are named. Let ¢ be a
location shared by both heaps, i.e., £ € locs(h1) N locs(hg). Then ¢ is dangling either
in hy or hg as it cannot be in the domains of both of them. By Lemma 3.2, it holds
that ¢ € img(s) and consequently hy W hg # L.

(<) Follows directly from the definition of W°.
U

Theorem 3.1 (WSL and SSL coincide on the positive fragment [25]). Let ¢ be a positive
formula an let (s,h) be a model. Then (s, h) E= ¢ iff (s, h) = .

Proof idea. By structural induction on ¢ using Lemma 3.3 to prove cases of spatial con-
nectives. O

17

The only formulae where the strong-separation semantics makes a difference are there-
fore those containing an (unguarded) negation.

It turns out that SSL cannot speak about concrete sizes of heaps without using addi-
tional variables. As an example, let us consider the following family of formulae for n > 3:

Isgﬁ(:r,y) 2 Is(z,y) A (memp * - - - % —emp)

n times

Under the weak-separation semantics, a formula |s§’fl($,y) expresses that the heap is
a list segment that can be split into n non-empty parts, i.e., a list segment of length at
least n. In SSL, this is not necessarily true as can be seen in Figure 3.5 for n = 3. The
list-segment in the figure has length greater than three, but cannot be split to three non-
empty sub-heaps using the operator W® since it does not contain enough named locations.
In fact, a list segment of a length greater than three is not expressible in SSL. This is used
in the AMS abstraction described in the next section. Regarding satisfiability, a formula
s¥k (x,y) is satisfiable only if the considered set of variables provides enough variables to

name all n — 1 locations needed to split the list segment.

Convention. In the rest of the thesis, we will be interested in SSL only and we will therefore
write just |= instead of =. Because of the correspondence on the positive fragment, we will
assume an input set of variables x to be implicitly equal to vars(¢) when dealing with
positive formulae.

3.4 Abstract Memory States

An Abstract memory state (AMS) is an abstraction over a stack-heap model which keeps
just enough information to decide whether the model satisfies a formula or not. In [25],
AMSs are used to prove essential theoretical results such as a small-model property of SSL
and also as a building block of a decision procedure for it. The main idea of the decision
procedure is to represent the possibly infinite set of stack-heap models [¢]x by a finite set
of abstract memory states a(¢) whose emptiness can be decided in polynomial space.

In this section, we will gradually show how a model (s,h) can be abstracted to its
induced abstract memory state ams(s,h). The cornerstone of this abstraction is a memory
chunk — a minimal non-empty sub-heap h’ C h such that i’ can be cut off h according to
the strong-separation semantics.

Definition 3.2 (Memory chunk). Let (s,h) be a model and let hy be a heap. We say that
the heap hi is a sub-heap of h, denoted as hi T h, if there exists a heap ho such that
h1 W hg = h. We call hy a memory chunk of h if it is non-empty, minimal sub-heap of h,
i.e., there is no non-empty h} # hy such that b, C h;.

We classify chunks into two categories — a chunk h, is positive if there exists an atomic
formula ¢ such that (s, h.) = ¢. Otherwise, the chunk is negative. Notice that all positive
chunks are either cyclic pointers or non-empty list segments. The decomposition of a model
to its chunks always exists and is uniquely determined.

18

hy ha hs

P
O
(1:,2) (Q:uJ > 3 >@< 5:v @
\

p
—
8:x > 9

-

h4 h5 h6 h?

Figure 3.6: An example of a model and its decomposition into chunks.The positive chunks
h1i,hy, and hs are marked by the green colour, and the negative chunks by the orange
colour.

Lemma 3.4 (Decomposition to chunks [25]). Let (s, h) be a model and let hy,. .., h, be its
chunks. Then h = hy W --- W% h,,.

Proof idea. The claim follows from the fact that all sub-heaps form a boolean algebra with
chunks being atoms of this algebra.]

Example 3.4. An example of a decomposition of a model into its chunks and their classifi-
cation is shown in Figure 3.6. The chunk h; is positive since it is a model of a formula z — z.
The negative chunk ho consists of two overlaid list-segments that cannot be further split
according to the strong-separation semantics. The negative chunk hg is a so-called garbage
chunk because it consists of the memory location 6 that cannot be reached using stack
variables. The chunks hy and hs are positive as they are models of the formulae Is(z,y)
and y — x, respectively. The chunk hg is negative because list segments cannot be cyclic.
Finally, the chunk h7 is negative since its sink location 7 is anonymous.

We can use decomposition into chunks to abstract a model to an abstract memory state.
Definition 3.3. An abstract memory state is a quadruple A= (V, E, p,~) where
o V={vy,...,vn} is a partition of some finite set of variables,

o E:V =V x{=1,>2} is a partial function such that, for all v € dom(E), it holds
that nil ¢ v,

o p is a set of disjoint subsets of V' such that, for all R € p, it holds that (1) R is
disjoint from dom(V') and (2) nil ¢ R,

e v € N is a natural number.

The components have the following interpretation. The elements of the partition V are
called vertices. The partition abstracts some stack s. Instead of storing the mapping of s, it
only keeps information about which variables alias — two variables x and y are in the same
equivalence class of V iff s(z) = s(y). The function E represents edges of AMS induced by
positive chunks. An edge (x, y, =1) represents a chunk consisting of a single pointer from
x to y, and, similarly, an edge (z, y, > 2) abstracts a chunk which is a list segment of a

19

length at least two (this abstraction follows from the fact that SSL cannot speak about list
segments of length greater than two without using additional variables).

The last two components are related to negative chunks. The component p represents
negative-allocation constraints. It is a set of disjoint sets R where each R is a set of vertices
that are allocated within the same negative chunk. Finally, the number v is called the
garbage-chunk count, and it corresponds to the number of negative chunks that do not
allocate any variables.

To define an induced AMS of a model (s, h) formally, we need several auxiliary defini-
tions. Let s be a stack. We define an alias-equivalence =s w.r.t. sasz =5y < s(x) = s(y).
We write [z]s to denote the equivalence class of =4 containing x. We also define the set of
equivalence classes of =4 allocated in a chunk h. as alloc; (he) = {[z]s | s(x) € dom(h.)}.

Definition 3.4 (Induced AMS of a model). Let (s,h) be a model. Let chunks® (s, h) and
chunks™ (s, h) be its positive and negative chunks, respectively. We define the induced AMS
of the model (s,h), ams(s,h) = (V, E,p,7), as:

o V={[z]s | x € dom(s)}

(lyls,=1) if (s,he) =z y for some h. € chunks™ (s, h)
([Yls,>2) if (s,he) E lssa(x,y) for some h. € chunks™ (s, h)

1 othwerwise

« B(lx]s) =

o p={alloc (h¢) | he € chunks™ (s, h)}
* 7 = |chunks™(s, h)| — |p|
Lemma 3.5 ([25]). Let (s, h) be a stack-heap model. Then ams(s,h) is an AMS.

Example 3.5. An example of a model (s, h) and its AMS A = ams(s,h) = (V, E, p,7) is
depicted in Figure 3.7. There are three positive chunks in the model: hi, ho, and hg. The
chunks hq and hg are list segments of length greater or equal than two and are therefore
abstracted using edges with label > 2. The chunk hg consists of a single pointer and is
therefore represented using an edge with label = 1. The negative chunk h4 is the only
chunk which does not allocate any variables, and therefore we have that garbage-chunk
count v = 1. Finally, there are two negative chunks allocating some variables. The chunk hs
allocates Ry = {{u,v},{s},{t}}, and the chunk hs allocates Ry = {{w}}. The negative-
allocation constraints are p = {Ry, Ra}.

Deciding SSL using AMSs. We conclude this section by sketching a decision procedure
based on AMSs. The decision procedure is based on the following theorem.

Theorem 3.2 (Refinement theorem [25]). Let ¢ be a formula and let (s,hy) and (s, ha) be
models such that ams(s, h1) = ams(s, he). Then (s,h1) = ¢ iff (s,ha) = .

Given an input ¢ and x, the decision procedure first guesses a stack s (there are only
finitely many stacks with the domain x) and then computes the set of abstract memory
states as(¢) = {ams(s,h) | h is a heap such that (s,h) = ¢} inductively on the structure
of the formula ¢. Observe that given the stack s, the set of vertices of an AMS ams(s, h) is
finite for an arbitrary heap h. Consequently, there is also finitely many edges and finitely
many allocation constraints. To finish the construction, we need to provide an upper bound

20

s N O
Y12,y 2
\ 1 _J
e IR
. :
ol (s 6:2 @
\ Y,
M T
8:u,v—>@ 11:w||h
Bl —
3 e N N
[12:.9] [13:75] h
S J J \ N J
>2 =1
()
@

>2

p = {{{u, v}, {s}, {t}}, {{w}}}
vy=1

Figure 3.7: An example of a stack-heap model (s, h) (top left) and its reduction reduce(s, h)
(top right). It holds that both models induce the same AMS (bottom) and therefore cannot
be distinguished by SSL formulae.

on the number of garbage chunks. This is given by the chunk size [¢] which gives an upper
bound on the number of chunks needed to satisfy and/or falsify the formula ¢:

[z =yl =[z#yl=[z—y]=Tlsz,y)] =1
[1h1 % o] = [¢h1] + [1h2]
[P1 —® o] = [12]
(11 Aha] = [1 Axaba] = [1 Vb = max([41], [¢2])
[~y = [¢]

Now, a refined version of Theorem 3.2 can be proved.

Theorem 3.3 (Refined refinement theorem [25]). Let ¢ be a formula with [¢| = k. Let
m >k and n > k and let (s,h1), (s,ha) be models with ams(s,h1) = (V, E,p,m) and
amS(S,hg) = (‘/7 E, p, ’I’L) Then (Svhl) ’: o iff (Sth) ’: p-

Based on this theorem, a finite abstraction of the set as(¢) can be defined and its non-
emptiness (corresponding to satisfiability of ¢) can be checked in polynomial space. Since
the construction is rather technical, we refer to [25] for more details.

21

3.5 Small-Model Property

Using Theorem 3.3, we can prove a small-model property for SSL and its variant for SSLT.
The small-model property states that each satisfiable formula has a model of linear size.
Since the property is crucial for our later proposed translation to SMT, we will modify the
proofs from [25] to show more precise bounds.

We will first define a reduction of a model (s,h) which is obtained by reducing each
chunk h. of (s,h) to a chunk h. such that the composition of reduced chunks will yield
the same induced AMS as the original model. By Theorem 3.2, those models will satisfy
exactly the same formulae.

Definition 3.5. Let (s,h) be a model and let hy,..., h, be its chunks. We define its
reduction, reduce(s,h) = (s,h’) where h' = h} W® ---W* h!, and where each h} is obtained
from h; by the chunk reduction defined below. Let allocs(he) = {s(z) | s(z) € dom(h.)}. If
a chunk is positive, then its reduction is defined as:

h; if (s,h;) E x>y for some z,y € Var

reducec(h;) = ¢
educec(hi) {{s(:r)Hh(s(x)),h(s(:r))r—)S(y)} if (s, hi) | Isx2(x,y) for some z,y € Var

If a chunk is negative, then the reduction is defined as:

{s(z1) = £,...,s(xn) — £} if allocs(h;) = {s(x1),...,8(xn)} forn >0
reducec(h;) = and ¢ = h(min{s(x1),...,s(xn)})
{l— 1} if allocs(h;) = 0 and £ = min(dom(h;))

Example 3.6. The reduction of a model is demonstrated in Figure 3.7 where each chunk h;
of the left model is reduced to a chunk A/ of the right model. First, observe that the stack of
both models is the same. Now, we will describe the reduction of the individual chunks. The
chunk h1 is a list segment of length three. and its reduction therefore removes the location 3.
The chunk hs is a list segment of length two, and therefore it remains unchanged. Similarly,
also the pointer chunk hg remains unchanged.

The negative chunks hs and hs that allocate some variables are replaced by minimal
negative chunks that allocate those variables without changing the stack. Finally, the
garbage chunk h, is replaced by the minimal garbage chunk — an anonymous self-loop
pointer. It can be easily verified that both models induce the same AMS in the bottom
part of the figure.

Now, we have to show that the reduction is well-defined and preserves the induced AMS.
Since we use our own definition of the reduction, we will prove those properties thoroughly.

Lemma 3.6. Let (s,h) be a model. Then reduce(s, h) is well-defined.

Proof. We will first show that all reduced chunks are well-defined. If a chunk is a single
pointer, then its reduction is well-defined because it does not change the chunk. If a chunk
is a list segment of length at least two, we need to show that h(s(z)) is defined. This follows
from the fact that the chunk has length at least two. There are no other types of positive
chunks.

If a negative chunk h; allocates some variables, then reduce.(h;) maps all allocated
variables to the location ¢ where £ = h(min{s(z1),...,s(xn)}). The set {s(x1),...,s(xn)}
is non-empty, and its minimum is defined because of our assumption that there exists

22

some fixed linear order on the location domain Loc. Since all s(z;) are allocated in the
chunk, it holds that h(min{s(z1),...,s(x,)}) is defined. Finally, if a chunk h; is garbage (it
does not allocate any variables), then we replace it by a single self-pointer on the minimal
location from dom(hi). The set dom(h) is non-empty because the chunk is defined to be
a non-empty heap.

It remains to show that reduce.(hy) W*- - - W*reduce.(h,) is defined. It is enough to show
that dom(reduce.(h;)) C dom(h;) and that locs(reduce.(h;)) C locs(h;). This holds because
all cases of the reduction can only remove locations from domains and images. O

Lemma 3.7. Let ¢ be a formula. Further, let (s,h) be a model and let reduce(s, h) be its
reduction. Then (s, h) = ¢ iff reduce(s,h) E ¢.

Proof. Let Ay = ams(s, h) and let Ay = ams(reduce(s, h)). We will show that A; = As.
The rest follows from Theorem 3.2. First, observe that the reduction does not change the
stack, and both models therefore induce AMSs with the same set of vertices. Then, observe
that the reduction preserves the number of chunks. Further, it holds that each positive
chunk of some model defines exactly one edge of its induced AMS. Let h; be a positive
chunk, then reduce.(h;) is also a positive chunk and moreover defines exactly the same edge
as h;.

Let h; be a negative chunk such that it allocates some variables. First observe that
reduce.(h;) is also a negative chunk as its sink location ¢ is anonymous — if it would not, h;
would not be a chunk since it could be further decomposed by cutting off {s(x1) — ¢}.
The reduction also allocates exactly the same variables and therefore produces the same
negative-allocation constraint.

Finally, let h; be a garbage chunk. Then, reduce.(h;) is also a garbage chunk. Therefore,
the garbage-chunk count of A; is equal to the garbage-chunk count of As. Thus, A1 = Aos.

O

Now, we are ready to prove the small-model property. We will start with the case of a
positive formula. The bound is based on the fact that a model of a positive formula consists
of positive chunks only and that the size of a reduced chunk is at most two.

Lemma 3.8 ([25]). Let ¢ be a positive formula and let (s,h) = ¢ be its model. Further,
let h = hqi W® ---W® h,, be the decomposition of the model into its chunks. Then all chunks
h; are positive.

Theorem 3.4 (Small-model property for SSL™). Let ¢ be a satisfiable positive formula.
Then there exists a model (s, h) s.t. (s,h) = ¢ and |locs(h)| < 2n+1 wheren = |varst(p)].

Proof. Since ¢ is satisfiable, there exists some model (s,h) = ¢ with dom(s) = vars(yp).
Let (s,h’) = reduce(s,h) be its reduction. By Lemma 3.7, we have that (s,h’) & ¢. By
Lemma 3.8, both h and h’ consist of positive chunks only. There is at most |vars™ ()]
chunks of heap h' because each positive chunk has to allocate at least one variable and nil
cannot be allocated. Finally, each reduced chunk consists of at most two unique locations
(since we consider the worst case when all variables are allocated, its named sink does not
count as it is already allocated and counted in some other chunk). One additional location
is needed for nil. Therefore we have that |locs(h/)| < 2 - |[vars™(p)| + 1. O

Example 3.7. To demonstrate that the bound is tight for positive formulae, let us consider
the family of formulae defined as for n > 2:

o Is>o (@1, x2) * Is>o(wa, 23) % - - * Is>2(Tp_1, Tp) * Is>2(2p, 1)

23

A formula ¢, is satisfiable only by a cycle consisting of n list-segments, each of them having
length at least two.

Outside the positive fragment, we have to consider also the input set of variables x and
the number of garbage chunks [¢] needed to satisfy the formula.

Theorem 3.5 (Small-model property for SSL). Let ¢ be a satisfiable formula. Then there
exists a model (s, h) such that (s,h) E ¢ and |locs(h)| < 2n+ [p|+1 where n = |x \ {nil}|.

Proof. We proceed similarly as for the positive fragment. Since ¢ is satisfiable, there
exists some model (s, h) with dom(s) = x. Let (s,h’) = reduce(s, h) be its reduction. By
Lemma 3.7, we have that (s,h') = ¢. In the worst case, we have that there is at most
k = |x\ {nil}| allocated variables and consequently at most k£ non-garbage chunks. Observe
that, in such a case, each chunk allocates exactly one variable. Therefore there are at
most two locations in each non-garbage negative chunk. From Theorem 3.4 and the fact
that a variable cannot be allocated in two chunks, we have that each non-garbage chunk of
the reduced model have at most two unique locations (no matter whether it is positive or
negative). All non-garbage chunks therefore have at most 2k locations. By Theorem 3.3,
there is at most [¢] garbage chunks needed to satisfy ¢. Finally, one additional location is
needed for nil. Therefore [locs(h')| < 2-|x\ {nil}| + [¢] + 1. O

Example 3.8. To demonstrate that the bound is tight, let us consider the set of variables
x = {nil} and the family of formulae defined as:

O & —emp - - - x memp

n times

For a formula ¢,,, it holds that x\ {nil} = 0 and [y,] = n. The minimal model satisfying ¢,
is the following:

H 0 ()

Based on small-model properties, we define a location bound of a formula ¢ w.r.t. the
set of variables x:

bound(p, x) = {2 |varsT (@) + 1 if ¢ is positive

2. |x\ {nil}| + [¢] +1 otherwise

Usually, a tighter location bound can be computed based on the structure of the formula ¢.
This computation is discussed in Section 5.

24

Chapter 4

Decision Procedure for SSL

This chapter presents the main contribution of this thesis — a new decision procedure
for a fragment of strong-separation logic. As was already sketched in the introduction,
we will not follow the enumeration-based approach presented in [25], but we will rather
propose a translation of SSL to SMT to leverage capabilities of modern SMT solvers. Our
translation is inspired by previous works targeting boolean combinations of symbolic heaps
of WSL [17, 28] and the same fragment of SSL [24]. We extend this fragment in several
non-trivial ways:

1. We add support for the septraction connective. In the original translations, it was
always enough to consider a single heap to find a model of a formula. In the presence
of septractions, additional heaps are needed to find witnesses of their satisfaction. We
limit ourselves to a fragment where septractions do not appear under negations (both
guarded and classical). It is therefore not possible to express arbitrary magic wands,
but one can, for example, check validity of entailments such as ¢ = 1) — x after
applying boolean transformations to represent its counterexample as ¢ A (¢ —® —y).

2. We allow arbitrary mixing and nesting of spatial and boolean connectives except
unguarded negation. In the original translations, boolean operators cannot appear
under separating conjunctions. The main complication is the disjunction which breaks
a so-called unique footprint property used in the original translations to effectively
translate separating conjunctions. When allowing disjunctions to appear under sepa-
rating conjunctions, we need to overwork the original approach to work with multiple
footprints. This may lead to an exponential size of the translated formula.

3. We allow arbitrary appearance of negations (except the limitation related to septrac-

tions). Unlike [24], which translates a fragment of SSL on which it coincides with
WSL, we need to also consider the strong-separation semantics of spatial connectives.
A negation appearing under spatial connectives was mentioned as a hard challenge
n [28]. Our changes from Point 2 make its support easier — but for a price of even
more significant exponential blow-up caused by an extensive enumeration of possible
footprints. We present some heuristics to tackle this, but there remains a lot of space
for future work, e.g., to perform enumeration lazily as in [30].

Further, we propose a more effective translation of list-segment predicates than in [17, 24]
— we improve its size from O(n?) to O(n3). On the other hand, we do not consider trees
and data predicates. However, we plan to focus on those extensions in our future work.

25

Bound Model T %) t
computation translation ——> 5@

M

X _ T(p. %)
Q, —> Translaton —— > SMT solver Z3 ——> ynsat

Figure 4.1: A schematic illustration of the proposed decision procedure.

Chapter outline. In the subsequent sections we describe how we translate particular
ingredients of SSL — list-segment predicates, separating conjunctions, and septractions. We
put those ingredients together in Section 4.5. The section also briefly discusses complexity
issues related with the translation and defines a fragment of SSL that can be effectively
translated using our approach. Finally, we prove the correctness of the translation in
Section 4.6.

4.1 Overview

A high-level overview of our decision procedure is given in Figure 4.1. The input is a for-
mula ¢ and a set of variables x. The decision procedure first computes its location bound
and bounds on lengths of list-segment predicates. Throughout this chapter, we consider
the most general bounds. An improved bound computation is discussed in Section 5. Using
those bounds, the input formula ¢ is translated to a first-order formula T(p,x) in a com-
bined theory of sets and arrays. The formula is then solved by an SMT solver. If the solver
returns unsat, we are done. If the solver finds a first-order model M, we will perform an
inverse translation of this model to obtain an equivalent stack-heap model T~1(M,x).

Idea of the encoding. SSL naturally speaks about partial functions, but those are not
supported in SMT. We will therefore use a pair of an array h an a set D to encode a partial
heap function — the array h encodes the mapping of the heap, and the set D encodes its
domain. A stack image of a variable z € x is encoded simply by a constant symbol x of
the same name. If the translated formula is satisfiable, its model M can be converted to a
stack-heap model T~!(M, x) using an inverse translation.

Definition 4.1 (Inverse translation). Let M be a first-order model. We define its inverse
translation T~ M,x) = (s, h) as:

aM ifrex ni Moy M
S($):{ f 2 €x U {nil} W):{h[z] fleD

1 otherwise 1 otherwise

In our translation, we utilise the small model property of SSL to restrict the infinite
domain of locations Loc to its finite subset L = {1, ¢s,...,¢,} consisting of n distinct
location constants. Because SSL formulae cannot distinguish isomorphic models, it does
not matter which particular subset we choose.

26

The definition of the location domain is ensured by the following formula':

AL & 3y, b, distinet(fy, .,) AVE [L=

1<i<n

In order for T~}(M, x) be a correctly-defined stack heap model, we need to ensure that it
does not allocate nil. Together with the definition of L, we call this as the well-formedness
constraint:

AWVE 2 AL A nil¢ D

Before we will continue with the definition of the translation in Section 4.5, we will
describe ideas used to translate individual ingredients of SSL.

4.2 Translation of List-Segment Predicates

The translation of list-segment predicates is complicated by the fact that they essentially
speak about reachability which is not expressible in first-order logic. Fortunately, we can
leverage the small-model property and use a form of bounded reachability parametrised by
the number of locations. We first define an alternative semantics of list-segment predicates
in terms of paths in induced graphs.

Lemma 4.1. Let (s,h) be a model and let G[(s,h)] be its induced graph. It holds that
(s,h) |=Is(x,y) iff there exists a simple path © such that x ~> y and dom(w) = dom(h).

Proof.

(=) By a case distinction on the semantics of Is(x,y). If the list segment is empty,
then s(z) = s(y) and dom(h) = (). Then there exists the path 7 = (x) with
dom(w) = (). Otherwise, there are distinct locations £y, ..., £, such that h = {{y —
Oy ey lbp—1 — Lp} and s(x) = lo,s(y) = ln. Thus, there is a simple path 7 =
(g, ...L,) with the domain dom(7) = {{y,...,¢,—1} = dom(h), which concludes this
direction of the proof.

(<) Analogically, by considering the case of the empty path and the case of a non-empty
simple path.

O

Now we will define two predicates expressing the existence of a simple path from z to y
and a fact that some set D equals to the domain of this path. Both predicates will be
parametrised by an interval [m, n| limiting possible lengths of the considered paths. In this
chapter, we will always use the most general intervals, i.e., [0,n] where n is the location
bound of an input formula. The intuitive meaning of predicates is the following:

reachy,,) (h, z,y) There exists a simple path z ~» y with m < |7| < n.

D = dom(w) if there is a simple path < y with m < |r| < n,

ath h7 D7 €,
Path) (y) { D=9 if there is no such path.

In the actual implementation of our translation in many-sorted logic used by SMT solvers, we can
equivalently declare L to be a datatype with n constant constructors 41, ..., £y.

27

In the case when there is no path, the predicate asserts D be the empty set. This is for the
consistency with later defined footprints (Definition 4.3).

Definition of reachability predicates. The definition of reachability predicates will be
based on the following lemma characterising paths in induced graphs. Because the successor
of a vertex is given by a partial function, it is uniquely determined. Consequently, if there
exists a simple path, it is uniquely determined.

Lemma 4.2. Let (s, h) be a model and let G[(s,h)] be its induced graph. Let w be a path
from x toy in G[(s,h)]. Then this path is uniquely determined as ™ = (x, h(z), ..., hI"l(x)).

Proof. By induction on the length of the path 7. If 7 is empty, i.e., 7 = (x), then 7 is
clearly uniquely determined. If 7 has length n + 1, then its prefix ' = (x, h(x),...,h"(x))
is, by the inductive hypothesis, uniquely determined. Since there is at most one successor
of each vertex, the only way to obtain a path of length n + 1 is to extend 7’ by an edge
h"™(z) — h"F1(z) which yields a uniquely determined path © = (x, h(z),..., A" (z)). O

Notice that in stack-heap models, each vertex has at most one successor, but in our SMT
encoding, each vertex has exactly one successor since arrays are total. As a consequence of
the previous lemma, there is a path from z to y of length 4 iff h’[z] = y?. The reachability
in a number of steps given by some interval can be then defined using enumeration over all
lengths in the interval:

reach’(h, z,y) £ h'[z] = y
reach,,, ,j(h, z,9) = \/ reach’(h, z, %)

m<i<n

To define the predicate path, we first define a predicate reachable<!(h, D, z-) which asserts
that D is the set of all locations reachable from x in less than ¢ steps. The predicate again
uses the fact that the successor of a vertex is uniquely determined.

reachable<!(h, D, z) £ {D =0 . le. =0

D = {x,h[z],h?[x],....hi~Lz]} ifi>0
Now we will define the predicate path. The most tricky part is to ensure that it will indeed
always assert that D is the domain of the simple path — although each vertex has exactly
one successor, there could still be multiple i such that hi[z] = y. Only the smallest such i
defines a simple path. This is not a problem for reachability, but we need to select the
correct ¢ to compute the correct domain of the list segment. Instead of postulating the
shortest path from x to y, we use the fact that the unique simple path is a prefix of all
other paths from z to y. Therefore, the simple path is the only path from z to y that does
not go through the location y:

pathy, ,i(h, D, z,y) = \/ <reachi(h,:r,y) A reachable<!(h,D,z) A y ¢ D)

m<i<n

v <—|reachi(h,:r,y) AN D= (7))

2The term hZ [z] denotes i-timed iterated reading from the array h. This can be formally defined using
recursion as h'[r] = z if i = 0, and h[h’~'[z]] otherwise.

28

The predicate performs an enumeration over all paths from x to y and forces D to be the
domain of a path that does not contain y. If there is no path from x to y, it sets D to
be empty. It remains to formally show that the introduced predicates have their intended
meanings.

Lemma 4.3. Let M be a first-order model and let (s,h) = T~Y(M,x) be a stack-heap
model obtained by its inverse translation. Let G be the induced graph of (s,h). Then the
following conditions hold:

1. M= AWVF A reachi(h,z,y) & Im. x5 yAlr| =i
2. M EAVE A reachp,, ,j(h,z,y) & Ir. Sy Am<|n|<n
3. M= AVF A reachable<!(h,D,z) & DM ={¢|3n.2 50 An| < i}

4. M EAWVF A pathp, (b, D, z,y) < DM ={¢edom(r) |z S yAm < |n| <n}

Proof. Observe that in all cases, the model M has exactly n locations which is ensured by
the formula AL,

1. Directly follows from Lemma 4.2.

2. Directly follows from (1) and the fact that the predicate reach enumerates over all
possible lengths of paths in the interval [m, n].

3. Directly follows from Lemma 4.2.

4. If there is no path, the claim holds because only the last clause of the predicate path
can be satisfied and it guarantees that D = (). If there is a simple path of length i,
the path is given as 7 = (x,h[z],...,h’[z]). This path satisfies i-th clause. A j-th
clause with j < ¢ will not satisfy reachability condition because there is no shorter
path. A j-th clause with j > ¢ will not satisfy y ¢ D. Consequently, only the i-th
clause is satisfied which sets D to be set of all locations reachable in less than i steps
— i.e., exactly the set dom(7), which concludes the proof.

O

Complexity. Let n be the number of locations. The reachability predicates have the
following asymptotic sizes:

o |reach’(h, z,7)| = O(n) because the size of the term h’[z] can be up to n.
e |reachyy ,(h, z,y)| = O(n?) because it consists of O(n) appearances of reach’(h, z,).

+ |reachable<‘(h, D,)| = O(n?) because the set expression can contain up to n terms
of the form h?[z], each of size up to n.

o |pathy (b, D, z,y)| = O(n?) because it contains O(n) occurrences of the predicate
reachable=!(h, D, z).

In the definition of the translation, we need exactly one reach and one path predicate for each
list-segment predicate. The complexity of list-segment translation is therefore O(n?3) which
is asymptotically better than in [17] that needs O(n*) space to encode list segments. On the
other hand, the encoding of [17] is an instance of a more general encoding, which also works
for trees. Our encoding cannot be efficiently generalised for trees because enumeration over
all possible paths in branching graphs requires exponential space.

29

Figure 4.2: An example of a stack-heap model and footprints of sub-formulae of the formula
0 = ls(z, 2) * (ls(:r, y)Vzi— y) in this model. In particular, the sub-formula Is(z,y)V z — y
has two footprints in the model — F5 and Fj.

4.3 Translation of Separating Conjunctions

The translation of the separating conjunction is complicated because its semantics involves
a quantification over possible splits of a heap — a second order quantification over disjoint
sub-heaps. If the separating conjunction does not lie under a negation, the second-order
quantification can be efficiently avoided using Skolemization. Otherwise, one needs to either
quantify over arrays or replace the quantification by a finite, but exponential enumeration.
The former is possible because there are only finitely many arrays over the finite domain,
but according to our experiments, both Z3 and cvch give-up on such formulae.

In [28], it was shown that for a formula ¢ from the fragment of boolean combinations of
symbolic heaps and for a fixed model (s, h), there exists for each separating conjunction in
 only one relevant way how it can split the heap h. This allows the translation to remove
quantifiers even when the separating conjunction lies under a negation — existential and
universal quantification over one element domain are the same thing. This unique way to
split the heap h in a model (s, h) for a formula 1 * 19 is induced by so-called footprints of
sub-formulae 17 and 19 in the model (s, h). The footprint of pure atoms is the empty set,
no matter what the heap is. Similarly, the footprint of a points-to assertion x — y is always
the singleton set {z}. In the case of a list segment Is(x,y), its footprint is still unique w.r.t.
fixed model (s,h) — it is the domain of the simple path from x to y in G|[(s, h)] if such a
path exists. Otherwise, we may take as the unique footprint the empty set. Intuitively, if
there is no list segment, we can look at any subset of the model to conclude that there is
indeed no list segment. Finally, the footprint of a separating conjunction is the union of
the footprints of its operands.

The unique footprint property can be extended for conjunctions and even guarded nega-
tions, but it stops working when disjunctions appear under separating conjunctions. To
demonstrate this, let us first formally define footprints.

Definition 4.2 (Footprint). Let ¢ be a formula and let (s,h) be a stack-heap model. A set
F C dom(h) is called a footprint of ¢ in a model (s,h) if (s,h|r) E ¢. We collect all such
sets in footprints, »)(¢).

In other words, a footprint defines a subset of a model in which the given formula ¢ can be
satisfied. An example is given in Figure 4.2 for the formula ¢ £ Is(z, 2) * (Is(:r, y)Vz— y)
The footprint of its sub-formula Is(x, z) is denoted by Fj. As can be seen, the footprint
of the disjunction Is(z,y) V z + y is not uniquely determined as it can be satisfied in the
sub-heaps induced by both Fy and Fj. In the case of a negation, the situation is even more

30

complicated as the formula —emp could be satisfied on a sub-heap induced by an arbitrary
non-empty footprint F' C dom(h).

In [28], the unique footprint of each sub-formula is axiomatized during its translation
and used for translation of separating conjunctions. Although footprints are not unique in
our logic, we can still use them to efficiently translate separating conjunctions by limiting
their quantification to the computed footprints only. If the set of footprints is small, then
the formula can be translated with only a small enumeration. Of course, in the presence of
negations under separating conjunctions, the translated formula will grow exponentially.

Instead of axiomatizing footprints, we will compute them syntactically — for each sub-
formula, we will compute a set of terms representing its possible footprints. Because this
set is parametrised by some model (s, h), it cannot be precisely computed during the trans-
lation. Therefore, we will compute its over-approximation.

Definition 4.3. Let ¢ be a formula and let (s,h) be a model. An over-approzimation of
the set of all possible footprints of ¢ in the model (s,h), denoted as footprints?; h)(go), is

inductively defined as follow:

. footprintséh)(:r =y) = footprmts (@ #y) = {0}

. footprints?;h)(:r —y) = {{s(x)}}

. . | {dom(m)} if s(x) > s(y)
fOOtP"'nts(s,h)(ls(:E’y)) - {{(])} if such m does not exist

. footprintséh)(—'go) =2l
L # . L L #
. footprmts (?#1/\1#2) footpr!nts;?h) (1) if |foot;‘)r|nts(s7h)(w1)| < |footpr|nts(s7h) (12)]
footprints (12) otherwise

. footprmts (¢1 Vapg) = footprlnts (wl) U footprlnts(S B (12)
. footprmts (¢1 Ao hg) = footprlnts (wl)
. footprlnts(S n) (1x12) ={F1UFy | F1 € footprmts (wl) N Fy e footprlnts (wg)}

. footprints?;h)(wl —® 1hg) = 2%

Notice that, in the case of a formula that does not contain disjunctions, negations,
and septractions, there will be no over-approximation, and the result will be a singleton
set — this is an analogy of the unique footprint property from [28]. Observe that, in the
case of the conjunction, the precise footprint would be the intersection of the footprints of
its operands. Since we cannot evaluate needed equivalence of elements of those sets purely
syntactically, we over-approximate intersection by taking its operand with lesser cardinality.
In the case of the negation, we cannot compute anything more precise than all subsets of the
location domain. In the case of the septraction, we could compute more precise footprints.
However, because of our syntactic restriction on the fragment (septractions cannot lie under
negations), we, in fact, do not need to compute footprints of septractions. The reason is the
following. We need footprints only for translating separating conjunctions that lie under
a negation (otherwise we can use Skolemization). Because of the mentioned restrictions,

31

no septraction can lie under a negated separating conjunction. We will now show that the
definition indeed correctly over-approximates all possible footprints.

Lemma 4.4. Let ¢ be a formula and let (s, h) be a stack-heap model. It holds that

footprints, () C footprintséh)(go).
Proof. If (s,h) [~ ¢ * true, then there does not exist F' C dom(h) such that (s, hlp) = ¢,
i.e., there are no footprints of ¢ in (s,h) and the claim therefore trivially holds. Assume
that (s, h) = ¢ * true, we prove the claim by the structural induction on .

e Base cases. If ¢ is an equality or a disequality, its only possible footprint is the empty
set. Similarly, if ¢ is a pointer x +— y its only possible footprint is the singleton set
{z}. Finally, if ¢ is a list-segment predicate Is(x,y) its footprint in the model (s, h)
can be only the domain of the simple path from x to y. By Lemma 4.2, the path is
always uniquely determined.

e Induction steps. If ¢ is either a negation or a septraction, then the claim trivially
holds. Let ¢ £ 1)1 >4 12 be a binary connective other than the septraction. Let us
define following short names:

F = footprints 1) () F# = footprintsi h)(SO)
F1 = footprints g (11) FF = footprintsi n (1)
F = footprints g (12) F¥ = footprintsi n) (12)

From the induction hypothesis, we have that F; C .7-"1-# for i =1,2. If ¢ is a conjunc-
tion, then both 11 and 2 need to be satisfied in (s,). By the definition of footprint,
it holds that F = F; N F». From induction hypothesis we have that F13 N Fo C .7:@-#
for i = 1,2. Similarly, if ¢ £ 11 A- b9, then only 11 is satisfied in (s, h) and therefore
F = F1. Thus, F C .7-"# by induction hypothesis. If ¢ is a disjunction, it holds that
FCFHUFC .7-"# U ff = F#. Finally, if ¢ is a separating conjunction, it can be
satisfied only in a heap which is a disjoint union of sub-heaps induced by footprints
Fy € Fy and Fy € Fo. The set F# over-approximate this set by taking unions of all
footprints even if they are not disjoint.

O

Finally, we can provide a simplified semantics of the separating conjunction in the way
we have already sketched — instead of quantifying over all possible splits of a heap, we will
quantify only over splits induced by over-approximated footprints.

Lemma 4.5. Let ¢ 2)y x ¢y be a formula and let (s,h) be a stack-heap model. Further

let F1 = footprints?; B (1) and let Fo = footprints?; h)(wg). Then (s, h) = ¢ iff

(i) \/ V (shlr) E 1 A (s,hlR) = s A bl &bl # L A FIUF, = dom(h)
FieFy FreFs

Proof.

(<) If there exist sets F1 and F» satisfying the assumption, then it holds that the heaps

h|p, and h|p, are witnesses of the semantics of the separating conjunction.

32

http://F1e.F1

(=) Assume that (s,h) E ¢. Then there exists hy and hg such that (s,hi) E 1,
(s,he) E 9, hy W* hg # 1L and hy W® hg = h. It clearly holds that dom(hy) is
a footprint of vy since (s,h1) E 11 and analogically, dom(hs) is a footprint of 1.
Therefore, we can apply Lemma 4.4 to conclude that dom(h1) € F; and dom(hs) € Fa.
Thus, the statement we want to show holds for F; = dom(h;) and Fy = dom(hs).

O

Later on, to define strong-disjointness of two heaps, we will also need a predicate
locations(h, D, L) which intuitively states that the set L contains locations of the heap
function obtained by translation of the array h restricted to the set D. This predicate is
defined using a predicate image(h, D, I') which states that [is the image of the translated
heap. The predicates are defined as follow:

image(h,D,1) £ A\ h[(| eI+ (€D
el
locations(h, D, L) = image(h, D,][) A\L=DUI

Lemma 4.6. Let M be a first-order model and let (s,h) = T~Y(M,x) be a stack-heap
model obtained by its inverse translation. Then the following conditions hold:

1. M= AVY A image(h,D,I) < I =img(h)
2. M = AVY A locations(h, D,L) < L = locs(h)

Proof. By the definition of the model translation, the set D is always interpreted as dom(h').
Then, both claims follows directly from the definition of img(h’) and locs(h'), respectively.
O

4.4 Translation of Septractions

A septraction 11 —® 19 is satisfied by a model (s, h) if there exists a disjoint extension hy of
the heap h such that the extension satisfies the left-hand side (i.e., (s, h1) = 1) and their
composition satisfies the right-hand side (i.e., (s,h W hy) |= 19). Its translation is even
more complicated than in the case of the separating conjunction. This is because it does
not quantify over sets only but over whole heaps. We avoid this problem by restricting our
fragment and forbid septractions to appear under negations (both under classical negations
and in the negated branches of guarded negations). Then we can avoid the quantification
using Skolemization.

There is still another complication even in this simplified fragment. It is not sufficient to
use a single heap symbol when searching for a model of a septraction. As an example, let us
consider the formula ¢ £ + z * (x — nil =® = > nil). The septraction inside the formula
can be clearly satisfied at the empty heap only using the extension h; = {s(x) — s(nil)}.
The whole formula can then be satisfied by a self-pointer h = {s(z) — s(z)}. Observe
that h(z) and h;(z) differs because x cannot be equal to nil. Therefore, we need to introduce
a fresh heap for each septraction to find its model.

For the needs of our translation, we will look at the septraction from a different point
of view. Instead of using a top-down approach saying that the heap is a model if it can
be extended, we will use a bottom-up approach which says that the heap which is a model
can be obtained as a difference of a model of the right- and of a model of the left-hand

33

)
.

e ————————

Figure 4.3: An example of a witness heap of the formula ¢ £ 2 +— y —® Is(z, 2). The dashed
boxes denote its sub-heaps induced by Dy and Ds satisfying the left- and right-hand sides
of ¢, respectively. The green solid box denotes their difference induced by Dy \ Dy which
is a model of ¢.

side. More precisely, let ¢ £ 1)1 —® 1y be a formula. If there exist a heap A’ and sets Dy
and Dy such that (s,1/|p,) E ¥1, (s,h|p,) E ¥ and D1 C Dy we can construct a model
of the formula ¢ as (s, h'[p,\p,). We will call the heap i’ that meets the aforementioned
conditions a witness heap of .

Definition 4.4 (Witness heap). Let ¢ = ¢y —® 5 and let s be a stack. Further, let b
be a heap and let Dy, Dy C dom(h). We say that the heap h' is a witness heap of the
septraction ¢ w.r.t. the stack s and sets D1, Do if the following conditions hold:

1. Dy C Dy

2. (s,/|p,) E 1

3. (s,1|p,) | 2

4- W|p, & W|pap, # L

An example of a formula and its witness heap is given in Figure 4.3. We will now show
that the existence of a witness heap is equivalent to the semantics of the septraction.

Lemma 4.7. Let ¢ 2 o) —® vy be a formula and let (s,h) be a model. Then (s, h) = ¢ iff
there exists a heap h' and sets Dy, Do such that h' is a witness heap of ¢ w.r.t. the stack s
and sets Dy, Do; it holds that dom(h) = Dy \ Dy, and ¥V € Dy \ D1. h/(¢) = h(¥).

Proof.

(=) Assume that (s,h) = ¢. By the semantics of the septraction, there exists a heap hy
such that h W hy # L, (s,hy) E 1 and (s,h W hy) E 1. Let K’ = h W hy. Then K’
is a witness heap of ¢ w.r.t. the stack s and sets D1 = dom(hy), Dy = dom(h W® hy).
Moreover, it holds that dom(h) = Dy \ Dy and for all £ € Dy \ Dy, it holds that
I (€) = h(f) because h' is defined using h on D3 \ Dj.

(<) Assume that h’ is a witness heap of ¢ w.r.t. the stack s and sets Dy, Dy. Let
hi = I'|p,. Then, D1 C Ds, (s,h1) | 1, (s,h'|p,) F 2 and hy &° K'|p,\p, # L.
From the assumptions that dom(h) = Do\ Dy and V € Dy \ Dy. h'(€) = h(¢), we have
that (s,h'|p,) = (s, h1 W* B/ |p,\p,) = (s5,h1 &° h). Thus, (s,h) = .

O

34

4.5 Translation to SMT

Now, we can put all the ingredients together and define the translation function T(p,x)
using fresh symbols:

T(p,x) = let n = bound (i, x) in
let (¢, A, F) =T, (p, h, D) for fresh symbols h and D in
AVE ANANG

The definition relies on an auxiliary function TX(p, h, D) that performs the actual recursive
translation. This function is called with two fixed parameters — the set of variables x and
the location bound n; and three another parameters — a formula ¢ to be translated and
symbols h and D which will be used for the encoding of its heap. Those symbols may
change during the translation. For example, a translation of a septraction will use a fresh
heap to translate its operands (i.e., to find its witness heap).

The function TX(p, h, D) produces a triple (@, A, F). The first component is called the
semantics and it represents constraints on the stack and heap imposed by the formula ¢
expressed in FOL over arrays and sets. Those constraints may use auxiliary symbols intro-
duced during the translation. The second component A called axioms defines the intended
meaning of those auxiliary symbols. The reason why those components are kept separate
is that while the semantics can be modified based on the boolean structure of the input
formula (e.g., negated), the axioms are always collected in their positive form using con-
junctions. The last component F is called footprints and it is a set of location set terms.
The meaning of this component is to represent the set footprints?; h)(go). Observe that, in
the top-level definition of the translation T(p,x), F is not used, it is only necessary to
translate separating conjunctions. In the final formula, the semantics ¢ and axioms A are
joined in a conjunction together with the well-formedness constraint AWF.

Translation of atomic formulae. Let ¢ be an atomic formula and let F' be a fresh set
symbol. The translation of ¢ is defined as TX(¢,h, D) = (¢, A, F) where the individual
components are defined as:

T=1: pEx=y AND=0 A £ true F 2 {0}
TEY: x4y AND=1 A £ true F 2 {0}
r—y: @2hlzl=y A D={z} A £ true F 2 {{z}}

|S($7y) : 6 £ reaCh[O,n](h7$7y) ND=F A £ path[O,n](ha F7$7y) F = {F}

The translation of atomic formulae is quite straightforward. The only interesting case is the
list-segment predicate. Here, we use an axiom to ensure that the fresh symbol F' is always
interpreted as the domain of a simple path from z to y. This symbol is then used as the
only footprint term and also as the expected domain of the list segment in the translation
of semantics.

35

Translation of boolean connectives. Let ¢ be a boolean connective — either ¢ = =)y

or ¢ = 11 > 19 where 1 € {A, Ao, V}. We introduce short names for the translations of
its operands

(¥1, A1, F1) £ T%(¢1,h, D) (Y2, A2, F2) 2 Ti(¢2,h, D)
and define the translation of ¢ as TX(p,h, D) = (¢, A, F):

i 52 an 4 Foa
52 0 A Froif |A| <R
Ao = P1A A2 Mndy F2
1 Ao © = P1 Ao 1A A {}_2 R < 1P
Y1 AP G2 1 A AL A N Ay F& AR
Y1 Vaby ¢ = Jl\ﬂzz A2 AN A F2 FUF

The translation of boolean connectives is again straightforward. The translation of the
semantics directly captures the original semantics of the input formula. The axioms are
always collected using conjunction and no new ones are introduced. The fooptrints directly
reflect the inductive definition of the set footprints?; h)(go).

Observe that the operands of each boolean connective are always translated using the
same array h and the same set D, which will be no longer true for spatial connectives
discussed below.

Translation of the separating conjunction. Let ¢ £ ¢, % 105 and let Dy, Dy be fresh
location set symbols. We introduce short names for the translations of its operands

(Y1, A1, F1) 2 T%(y1,h, Dy) (Y2, A2, F2) 2 T} (12, h, Do)
and define the translation of ¢ as TX(¢,h, D) = (¢, A, F):

~ A

g2 \/ '\ WlF/Di] A slRa/Do) A FINF=0 A L"NL® Cx A D=FUR
FreF FreFs
AZE A A Ay A /\ locations(L%", Fy,h) A /\ locations(L%2, Fy, h)
FeF ek
FE2 {RUR|FLeF, e}

Here, we use fresh symbols D and D5 to represent a split of the heap h. We enumerate over
all possible splits using a disjunction over pairs of fooptrints from the set /7 x F». Each
clause of this enumeration is created by substituting D; in the translation of the semantics
by the footprint F;, and adding additional requirements that footprints F; and Fy are
strongly-disjoint and their union yields D. To express strong-disjointness, we introduce a
fresh symbol L for each footprint F; and add an axiom that ensures that L™ will be
interpreted as the set of locations of the heap represented by h and F;.

If ¢ does not lie under a negation, we can use Skolemization to translate its semantics
without any enumeration using fresh symbols L1 and Lo to represent heap locations:

gEé 1;1 AN 1;2 ANADiNDy=0 AN LiNLy Cx AN D= D;UDsy
A2 A A Ay A locations(Ly, Dy, h) A locations(Lg, Dy, h)

36

http://FiG.Fi

Translation of the septraction. For septractions, we can always use Skolemization
because they never lie under negations. This is ensured by the definition of our fragment.
Let ¢ £ 91 —® 109, let D1 and Dy be fresh set symbol, and let h’ be a fresh array symbol.
Further, let L; and L2 be fresh set symbols used to represent heap locations. We introduce
short names for the translations of its operands

(leAlv‘Fl) £ Tz(wlahlaDl) (J%AQ?‘FQ) £ Té(w%h/aDQ)

and define the translation of ¢ as TX(¢, h, D) = (¢, A, F):

FE 1 ANy ADICDy A LiNLyCx A A\ hlf] =h'[(] A D=Dy\ Dy
teD
A2 A A Ay A locations(Ly, Dy, h') A locations(Lo, D, h')

F 4 ot
Observe that the definition of ¢ is based on the definition of a witness heap (Definition 4.4).

Complexity. The time complexity of the translation is dominated by computing the sets
of fooptrints of possibly exponential size w.r.t. the number of locations and therefore also
w.r.t. the number of variables. The size of the translated formula can also be up to
exponential because of the enumeration caused by translation of separating conjunctions.
In the worst case, our decision procedure runs in NEXP because the decision procedure for
the used theory runs in NP.

We will now define a fragment SSL¥ that we can translate more effectively, i.e., without
footprint enumeration and obtain a translated formula of at most polynomial size. Let us
first consider some straight-forward optimisations. Observe that the footprints are needed
only for translating separating conjunctions. Therefore, we do not need to compute them
if we are not under separating conjunction, or if we are just under separating conjunctions
that can be translated using Skolemization. In order to do this, the translation function
simply has additional flags used to determine whether it can perform Skolemization and
whether it should compute footprints or not. We will now define the SSL¥ fragment.

Definition 4.5 (SSL” fragment). An SSL formula ¢ is in SSL¥ iff at least one of the
following conditions holds.

e does not contain negations, disjunctions, and septraction under separating conjunc-
tions.

e does not contain spatial connectives under negations.

Lemma 4.8. Let ¢ € SSL¥. Then T(p,x) has a polynomial size w.r.t. |¢| + |x|. The
decision procedure runs in NP for SSL¥ .

Proof. We will show that we do not need to enumerate over footprints when translating (.
By case distinction over definition of the SSL¥ fragment:

e If ¢ does not contain negations, disjunctions, and septractions under separating con-
junctions, then the set footprints?; n (1) always has at most one element for each

subformula 1 of ¢, or ¢ lies in the part of formula where footprints?; n (v0) will not be
needed and the translation will therefore not compute it.

37

e If ¢ does not contain any spatial connectives under a negation, we can translate all
of them using Skolemization.

To finish the proof, observe that the size of the translated formula is now dominated
by the translation of list-segment predicates which is polynomial w.r.t. the number of
locations. Since the number of locations is linear w.r.t. the size of the formula ¢, we
have that the translated formula T(p,x) has at most polynomial size. The whole decision
procedure then runs in NP. O

Observe that SSL¥ subsumes the positive fragment as defined in [25] but not the positive
fragment as defined in [24] (and also in this work) where one can also use guarded negations
in positive formulae. Whether formulae with arbitrary appearance of guarded negations
can be effectively translated or not remains an open question for the future work.

Example 4.1. To demonstrate the translation on a simple formula, let us consider the
entailment x — y *y — z = Is(z, z) that can be reduced to unsatisfiability of the formula
@ 2 (x+— y*yr— 2z) A.ls(z,2). Notice that the entailment does not hold because its
left-hand side can be satisfied by a cycle that is not a list segment. All components of
the translation are shown in Figure 4.4. While the location bound is bound(p, {z,y,2}) =
2-{z,y,z}| +1 =7, the translation uses the optimal bound 3. This optimal bound can be
computed based on the structure of ¢ as shown in Section 5.2.

In the top-left corner, the figure shows the AST of ¢ and assigns a unique identifier to
each of its sub-formulae. Those identifiers are used to index components of the translation.
The most interesting case among the translations of the semantics is the separating con-
junction @). Because the separating conjunction does not lie under a negation, it can be
translated using Skolemization. The translation creates two fresh set symbols D and Dy
which are used to translate operands @ and @), respectively. Moreover, we do not have
to add the constraint that locations shared by sub-heaps induced by D; and Dy are cov-
ered by x because ¢ is positive. The only interesting axiom is created for the list-segment
predicate @ and it defines F' to be the path from z to z on the heap represented by h.

The definition of the reachability predicates uses another optimisation. While the loca-
tion bound is 3, it also counts with nil that cannot be allocated. Therefore, the maximum
bound for reachability can be set to 2. Observe that only the second clause of the path
predicate representing the empty simple path is satisfied in the model in the top-right cor-
ner. Therefore it holds that ' = (). Because D has to be equal to {z,y}, it holds that
D # F| and, consequently, ¢4 is not satisfied. Then, @5 is satisfied.

The figure also shows how footprints would be computed. However, they are not needed
in this case because the only separating conjunction is translated using Skolemization.

The translated formula can be satisfied by the following first-order model M over the
domain L = {0,1,2}:

M=1,yM=2_M=11iM=0
h™ = K(0)(142)(241)
DM = {1,2}

The model will also interpret other components (D1, D2, F') but those are not needed to
construct a stack-heap (s,h) = T~YM, {z,y, z,nil}) of the input SSL formula:

s={z—1,y— 2,z 1,nil— 0}
h={1—22—1}

38

Input formula: Possible stack-heap model:

e
/ —
o - 0 Is(z,2) (1:22) (2:9) (0:nil)
/ \
(1] O v—=
Semantics: Axioms:
1 = hlg]=yA Dy = {z} A £ true
$2 £ hly =2 A Dy = {y} Ay £ true
gzgégzl/\gzg/\DlﬂDgz@/\D:DlUDg Agéfh/\flg
P4 = reachjgoj(h,z,2) AD = F Ay = pathyg o) (h, F, z, 2)
955é953/_‘954 A5éu43/\ Ay
Auxiliary predicates:
reachjg o) (h, ,2) £ 2 =2 V hlz] =z V h?[z] = 2
pathyg o (h, F, 7, 2) £ (—reach o(h,z,2) A F =0) (no path)
Vz=2AF=0Az2¢F) (simple path of length 0)
V (hjz]=2 A F={z} A 2¢F) (simple path of length 1)
V (b?[z] =2 A F={z,hfz])} A 2¢ F) (simple path of length 2)

Translated formula:

T(QO,{$,y,Z}) £ AZ\’:VF A -A5 A 955

Footprints (only for illustration):

lI>

Fi & {{z}} Fo
Fi & {F} F5

{{v}} Fs = {{z,y}}
{z,y}}

lI>

Figure 4.4: An example of the translation for the formula ¢ £ (x — y* y > 2) A- Is(z, 2).
The translation uses the optimal location bound n = 3. Each component is indexed by
the id of its corresponding sub-formula. Those ids are assigned in the AST of ¢ in the
top-left corner. The bottom part shows how footprints would be computed. This is just
for illustration because the only separating conjunction is translated using Skolemization —
by introducing fresh symbols D; and Do, which are implicitly existentially quantified.

39

4.6 Proof of the Correctness

This section is devoted to the proof of the correctness of the proposed translation. Its
correctness is summarised by the following theorem.

Theorem 4.1 (Translation correctness). An SSL formula ¢ is satisfiable over variables x
iff its translation T(p,X) is satisfiable. Moreover, if M |= T(p,x), then T"Y(M,x) | .

In other words, the theorem states that the input and its translation are equisatisfiable.
Moreover, the inverse translation of a first-order model always yields a stack-heap model of
the original formula. The high-level idea of the proof is the following. We first establish a
correspondence between stack-heap models and first-order models, and then show that an
input formula is satisfied by some stack-heap model (s, h) iff its translation is satisfied by
a first-order model M that corresponds to (s, h). To prove this for spatial connectives, we
will have to define an operation of composition of two models and prove that it mimics the
strongly-disjoint union of two heaps. To finish the proof, we will also show that T—!(M, x)
corresponds to M.

In the remainder of this chapter, we fix an SSL formula ¢, a set of variables x, and their
location bound n = bound(p, x).

4.6.1 SMT Models

In this section, we introduce several notations related to first-order models. We first define
a model of SMT encoding (SMT model for short) — a model that satisfies the top-level
constraints given by the formula AnWF .

Definition 4.6 (SMT model). Let M be a first-order model. We say that M is a model
of SMT encoding (SMT model for short) w.r.t. ¢ and x if M = AWVF,

In particular, all SMT models w.r.t. fixed ¢ and x have the same domain L of cardinal-
ity n defined by the formula AVF. We will now formalise the correspondence of stack-heap
and SMT models.

Definition 4.7 (Corresponding models). Let (s, h) be a stack-heap model and let M be an
SMT model. The model M corresponds to (s,h), written as M ~ (s, h), if the following
conditions hold:

1. dom(s) = x,

2. Vr € x. s(z) = 2™,

3. dom(h) = DM,

4. ¥¢ € DM, h(¢) = h[(M.

Lemma 4.9. Let M be an SMT model. There exists the unique stack-heap model such that
M ~ (s,h). Moreover, it holds that (s,h) = T~1(M,x).

Proof. The uniqueness of (s, h) follows from the fact that each of its components is uniquely

determined in the definition of the correspondence. Directly from Definition 4.1, we have
that M ~ T~1(M,x). Thus, (s,h) = T-}(M,x). O

40

| [Leob—{2 —{5:4] G2 @
1 15210 nil [1:a—(2}—3:y ' dom(h)
pr | [Ga—{2—{5:]:

Figure 4.5: An example of SMT models M; and My and a stack-heap model (s, h) that
corresponds to both of them.

The converse of the previous lemma does not hold because for a stack-heap model (s, h),
we have multiple corresponding SMT models — two models may differ in their interpretation
of the array h outside of their common interpretation of the heap domain D. This situation
is demonstrated in Figure 4.5 that depicts a graphic representation of SMT models M
and My (on the left-hand side) that both correspond to the same stack-heap model (on the
right-hand side). Based on this observation, we define an equivalence relation such that My
will be equivalent with M.

Definition 4.8 (Equivalent SMT models). Let My and Mgy be SMT models. Model M,
is equivalent with Ma, denoted as M1 = Ma, if the following conditions hold:

1. Vo € x. 2M1 = g M2,
2. DMv = pMz,
3. vt € DMi WM = hM2[4].

Lemma 4.10. Relation = on SMT models is an equivalence relation. Moreover, it holds
that M1 = Mo iff for all stack-heap models (s, h), it holds that My ~ (s, h) < Ma ~ (s,h).

Proof. Both claims follow directly from the definition of equivalent models and from the
definition of model correspondence. O

We would like to further work with equivalence classes of = on SMT models. In order to
do this, we need to ensure that formulae created during the translation cannot distinguish
equivalent models. In other words, this means that all formulae respect our encoding of
partial functions. For example, the formula @ £ D = () A h[z] = y does not respect this
encoding because it constraints value of the partial function represented by h outside of its
domain D. We will call formulae that respect this property well-defined.

Definition 4.9 (Well-defined formula). Let ¢ be a first-order formula. Let My and May
be SMT models such that My = Ms. Formula ¢ is well-defined if My = ¢ < My = @.

41

4.6.2 Composition of SMT Models

We will now define when two SMT models are compatible w.r.t. the set of variables x.
Further, we will define a composition of compatible SMT models. Intuitively, this operation
will mimic the operator ¥® in the domain of SMT models. We will later need lemmas about
properties of composition to prove the correctness for the cases of spatial connectives.

To define compatibility of two models, we define the image of the array h w.r.t. some
set X C dom(h), as arr_img(h, X) = {y | 3z € X. hlz] = y}.

Definition 4.10 (Compatible models). Let My and My be two SMT models. Further, let
I; = arr_img(h™i, DM) fori € {1,2}. SMT models My and My are x-compatible if the
following conditions hold:

1. Vz € x. gMr = g M2
2. DMinDM2 =
3. (DMruL)n(DM2u) C x™

Intuitively, two models are compatible if (1) they interpret the stack in the same way,
(2) their interpretation of heap domains are disjoint, and (3) all locations common in their
interpretations of heaps are among interpretations of variables. The next step is to define
how compatible models can be composed.

Definition 4.11 (Model composition). Let My and Mg be SMT models. Their composition
My &* My is defined as (LM (zM1) oo, WM B hM2, DMy DM2) if My and Mo are
x-compatible and undefined otherwise. The composition of arrays, B, is defined as:

higMs if ¢ e DM,
WM BEM2 = {njM2 if ¢ € DM2,
nilM otherwise.

The composition has the same domain L as both of its operands (this is ensured by the
fact that both operands are SMT models w.r.t. the same fixed ¢ and x). The composition
also interprets all variables in the same way as its operands because the operands are
compatible. The composition of arrays H mimics disjoint union of two partial functions.
Notice that B is well-defined because heap domains DMt and DM2 of compatible models
are disjoint. The following lemma shows that the model composition precisely captures the
strongly-disjoint union of two heaps.

Lemma 4.11. Let (s,h1) ~ M1 and (s, ha) ~ Ma be two pairs of corresponding models.
Then the following properties hold:

1. hiWhy=1 & M{P*My=_1
2. (s,h1 W hy) ~ My &* My
Proof.

1. Because M; and M correspond to stack-heap models with the same stack, we know
that each symbol x € x is interpreted in the same way in both models. Consequently,
their composition can be undefined iff at least one of conditions (2) or (3) from the
definition of compatibility is not satisfied. If the condition (2) is not satisfied, then
dom(hi) N dom(h2) # 0 and vice versa. If the condition (3) is not satisfied, then
locs(hy1) Nlocs(he) € s(x) and vice versa.

42

2.

Directly follows from (1) and the definition of the composition.

O

We will now prove two key lemmas that we will later need to prove the correctness of
the translation of spatial connectives.

Lemma 4.12 (Extension by a compatible model). Let M1 and Ma be x-compatible SMT
models. Let 1 be a well-defined formula s.t. D ¢ vars(v)). Then My = ¢ iff Mi@®*Mq = 1.

Proof. Let M' = M1 &* Ms. We will show that the interpretations of all terms in the
formula 1 are the same in both models M; and M’. Then also all predicates and sub-
formulae of ¥ have the same boolean values in both models and consequently 1 is either
satisfied in both models, or falsified in both models. We have to consider two sorts of terms:

(a)

Location terms. Each location term ¢ is of the form h'[z;] where i € N and z; € x is
a location variable. We show the statement by the induction over 4. If ¢ = 0, then ¢
is a location variable z; which is, by the definition of the compatibility, interpreted
in the same way in both M; and My and consequently also in their composition.
Let ¢t = h'™[z;], and let ' = h'[z;]. By the induction hypothesis, the term #' is
interpreted as the same location ¢ in both models. Let us consider following cases
for £:

—1Ifl e D{Vll, then the interpretation of h[] in M is the same as in M’ by the
definition of the composition.

— If £ ¢ DM AL ¢ DM2 then h[f] may be interpreted differently in those models,
but there exist M) = M that interprets h[¢] in the same way as the model M.
It holds that M; &* Mgy = M| &* Ma.

—Ifl ¢ DMi A ¢ e DMz then we can replace M; by its equivalent model M/ that
interprets h[/] in the same way as M1 @& Ms. Again, M; &* My = M| &* Ma.

Location set terms. Let t be a location term such that . We know that 1 does
not contain the symbol D. The term t is either a constant, i.e., a possibly empty
enumeration of locations, or an application of a set operation to a tuple of set terms.
We will prove the statement by induction over the structure of ¢. If ¢ is an enumeration
of constants, then the statement holds, because all of its elements (location terms)
are interpreted in the same way by (a). The induction step is trivial because set
operations will yield the same result in both models.

O

Lemma 4.13. Let M1 and Ms be x-compatible SMT models. Let 11 and 1o be well-defined
formulae such that D & 11 and D & 1. Then the following statements are equivalent:

1.
2.

M1 =1 A Mo = 1o
M1 &* Mo ’:wl/\¢2

Proof. By Lemma 4.12 we have

MiE¢r & M@ My =1y,
Mo ’:wg = MQEBXM1 ’:wg

The claim then follows from the commutativity of the composition. O

43

4.6.3 Translation Invariants

To prove Theorem 4.1, we will show that the recursive translation function TX(i,h, D)
satisfies several invariants. Let M be an SMT model and let (s, h) be its corresponding
stack-heap model. Let 1) be a sub-formula of ¢, for its translation (¢, A, F) = TX(¢,h, D),
the following statements hold:

(I1) Well-definedness. Formula ¢ is well-defined according to Definition 4.9.

(I2) Skolemization. If ¢ does not lie under a negation or in a branch negated by a
guarded negation in ¢, then ¥ does not lie under a negation or an universal quantifier

in @.
(I3) Consistency of the axioms. The axioms A and the well-formedness constraint
AWF are consistent, i.e., there exists a model M’ such that M’ = A A AVF. This

invariant ensures that top-level constraints created by the translation of the formula 1
are always satisfiable.

(I4) Correctness of the footprints. The set F over-approximates the set of all possible
footprints of ¢ in (s, h). More precisely, we will show that FM = footprints?; 0 ().

(I5) Correctness of the translation. The translation of the formula v is correct. More
precisely, it holds that (s, h) | ¢ iff M = .

The first invariant ensures the well-definedness of all formulae that is needed to prove other
invariants. The second invariant guarantees that the translation will not introduce any
negation or universal quantifier over an existentially quantified symbol, for which there was
no negation over this symbol in the original SSL formula. Consequently, we can perform
the Skolemization and replace it by a constant symbol. The third invariant merely requires
that there is no inconsistency in auxiliary definitions introduced during the translation.
The fourth invariant makes sure that set F correctly captures all footprints. Finally, the
last invariant states the correctness of the translation. Theorem 4.1 follows almost directly
from the last invariant applied to the whole input formula ¢.

Lemma 4.14 (Invariant I1). Let ¢ be an SSL formula and let (J,A,}") = TX(¢p,h, D) be
its translation. The formula v is well-defined.

Proof. Let M = ¢ and let ¢ ¢ DM. Let M’ be an SMT model that interprets all terms
except h[{] as M. In order to show that w is well-defined, we need to show that M’ |= w
We will proceed by induction on the structure of the original SSL formulae .

If ¢ is a pure atom, than the claim holds because i) does not restrict the mapping
of h at all. If » & 2 — y, then) does not restrict the mapping of h for locations other
than 2™ which is in DM. If 1) £ Is(x, %), then set D is interpreted using the predicate path
path(h, D, z,y). As shown in the proof of Lemma 4.3, exactly one clause of this predicate
is satlsﬁed in M. If the i-th clause is satisfied, than w restricts only locations h7[M such
that j < ¢. Since all such locations are in DM by Lemma 4.3, w is well-defined.

The claim directly follows from the inductive hypothesis for all boolean connectives and
also for the separating conjunction because they do not impose any additional restrictions
on the array h. Finally, if ¢ is a septraction, then it restricts h only at locations in DM
by the definition of its translation which asserts that A,cph[¢] = h'[(]. Thus, ¢ is well-
defined. O

44

Lemma 4.15 (Invariant 12). Let v be an SSL formula and let (J, A, F) = T¥(,h, D)
be its translation. If ¢ does not lie under a negation or in a branch negated by a guarded
negation in @, then 1 does not lie under a negation or an universal quantifier in Q.

Proof. 1t can be easily verified that the translation never introduces universal quantifiers
and uses only those negations that were already present in the formula . O

Lemma 4.16 (Invariant 13). Let ¢ be an SSL formula and let (J,A,}") = TX(¢,h, D) be
its translation. The formula A A AWV is satisfiable.

Proof. The formula AWF is always satisfiable by a model M with domain L = {/1,...,4,}
and such that nil ¢ D . Each path axiom is satisfiable in isolation by Lemma 4.3. Similarly,
each location axiom is satisfiable in isolation by Lemma 4.6. All those axioms are combined
using conjunctions in all cases of the translation. From the definition of the translation,
it follows that each axiom speaks about a fresh symbol. Consequently, the conjunction of
satisfiable axioms is also satisfiable. O

Lemma 4.17 (Invariant 14). Let ¢ be an SSL formula and let (J,A,}") = TX(¢p,h, D) be

its translation. Then FM = footprintséh) (¥).

Proof. By induction on the structure of 1). The case of the list-segment predicate is ensured
by Lemma 4.3. Other cases are trivial because their definitions of the set F directly copy
the inductive definition of the set footprints?; 0 (¥). O

Lemma 4.18 (Invariant 15). Let ¢ be a formula and let (J, A, F) = TX(,h, D) be its
translation. Then (s,h) = ¢ iff M = 1.

Proof. By structural induction on 2.

Atomic formulae.

. w L T =1
(s,h) Ex=y & s(x) =s(y) Adom(h) =0 (SSL semantics)
o M=yMADM =9 (model correspondence)
s MEz=yAD=10 (FOL semantics)
s MEY (translation)
cplaty
(s,h) Exz#y & s(x) # s(y) Adom(h) =0 (SSL semantics)
o ML yMADM =9 (model correspondence)
s MEz#yAnD=10 (FOL semantics)
s MEY (translation)

45

. wéxr—m/:

(s,h) Ez—y < h(s(z)) =y Adom(h) = {s(x)} (SSL semantics)
& hjz]M = yM A DM = (oM (model correspondence)
< M Eh[z]=yAD={z} (FOL semantics)
s MEY (translation)
o ¢ 2 ls(z,y):
(s,h) = lIs(x,y) < I s(x) ~ s(y) A dom(h) = dom(7) (Lemma 4.1)
& M = reachyg) (h, z,y) A pathy (b, D,z,y) (Lemma 4.3)
s MEY (translation)

Inductive steps for boolean connectives. Let 1) be either a negation 1) £ —i); or a binary
formula 1) £ 91 >y where 1 € {A, Ao, V}. We introduce short names for the results of
translation of an operand ;:

(Y1, A1, F1) £ TX(¢1,h, D) (Y2, A2, F2) 2 T%(¢2,h, D)
o Y=
(s,h) = & (s,h) (SSL semantics)
& M (induction hypothesis)
s ME) (translation)
o 21 Ao
(s,h) Ev1 A2 & (s,h) =1 A(s,h) E 2 (SSL semantics)
& MEY AME (induction hypothesis)
s MEY (translation)
o 2P A
(s,h) Ev1 Acbe < (s,h) E 1 A (s, h) [~ e (SSL semantics)
& MEP AM By (induction hypothesis)
s MEY (translation)
o 2PV
(s,h) EY1 Vs & (s,h) =11V (s,h) E e (SSL semantics)
& MEY VM E (induction hypothesis)
s MEY (translation)

46

Inductive step for the separating conjunction. Let 1) = 1y % 5. We introduce short names
for the results of the translation of its operands using fresh set symbols D and D:

(1, A1, Fi) 2 TX(¢1,h, Dy) (2, Az, Fo) 2 TX(¢p2,h, Dy)
Let (s, h) = 1, by the definition of SSL semantics this is equivalent to:
3h1, hs. (S,hl) ’: P1 A (S,hg) ’: P A hq W* ho <1 Ak W he = h.

From the invariant I3, we have that F; = footprintsﬁ B (1;) for i = 1,2. Then we can apply
Lemma 4.5 to obtain an equivalent statement:

V'V hlm) EviA (s, hlg) E e Ablp W hlg # LA FLUF, = dom(h).
FreF FreFs

After applying induction hypotheses for 11 and o, Lemma 4.11, and the definition of the
model correspondence, we obtain equivalent claim:

V V MiEd)A M) AMi@&* M # LAFUF, = D.

FieF FreFs

Formulae 1;1 and Jg are by invariant I1 well-defined. They also do not contain the symbol D
because they were translated using fresh symbols Dy and Ds, respectively. Therefore, we
can apply Lemma 4.13 to obtain an equivalent formulation:

VoV M@ My |y Aho) AMy &5 My # LAFLUF, = D.
FieFy FreFs

From Lemma 4.6 and the definition of model compatibility, this is an equivalent formulation
for:

V V M@ My iAo ADINDy =0ALP NI Cx)AFUF, = D.
FreF FreFs

Finally, this is equivalent to:
Mie* Mo =\ (Jl [F1/D1] Athy [Fo/Da] A Fy N Fy = ()
FreF FreFs

ALFr N L gx/\FlquzD),

which is, from the definition of the translation, equivalent to My &* My J The case of
the translation using Skolemization is proved analogically using invariant I2 to show that
Skolemization can be indeed used.

47

http://F1e.F1

Inductive step for the septraction. Let ¢ £ ¢ —® 1)5. We introduce short names for the
results of the translation of its operands using fresh symbols h’, Dy and Ds:

(1, A1, F1) 2 TX(¢, 0, Dy) (2, Az, Fa) 2 TX(ho, ', Do)

Let (s,h) = 1. By Lemma 4.7, this is equivalent to the existence of a witness heap h’ w.r.t.
the stack s and sets Dy, Do such that dom(h) = D9\ D; and V¢ € dom(h).h(¢) = W' (). By
the definition of the fragment, ¢ cannot lie under a negation. Using the invariant 12, we
can perform Skolemization to remove existential quantifiers:

(s,hlp,) E 1 A (s,hlp,) E 2 A D1 € Da Adom(h) = Do\ Dy
AR | Dy 6 W o, # L AYE € dom(h).h(e) = H(¢).

After applying the induction hypotheses and using model correspondence, we obtain:

(My = 11) A (My & My = s) ADy C Dy AD = Dy\ Dy
A My & My £ L AVE € D[l = W[l

From Lemma 4.6 and the definition of model compatibility, we can rewrite this as:

(My = 11) A (My & My = s) ADy C Dy AD = Dy\ Dy
ANLiNLy CxAVLE D[=h][].

Finally, formulae 1;1 is by invariant I1 well-defined. It also do not contain the symbol D
because it was translated using fresh symbol D;. Therefore, we can apply Lemma 4.12 to
obtain an equivalent formulation:

Mi&" Mo =1 Abg ADL C Dy AD=Dy\ Dy AL N Ly CxAVE € D[] =h'[{],

which is, from the definition of the translation, equivalent to M; ®* My E J This
concludes the proof.
O

Finally, we can prove Theorem 4.1 as a corollary of invariants and previously proved
lemmas.

Proof of theorem /.1. From invariants 13 and 15, we have that the SSL formula ¢ is satis-
fiable over variables x iff T(p,x) is satisfiable. Moreover, from Lemma 4.9, we have that
(s,h) = T1(M, x). O

48

Chapter 5
Optimisations

In this chapter, we describe several original optimisations of the decision procedure proposed
in Section 4. In the first part, we focus on proving general tighter bounds for symbolic heaps.
Besides bounds on the number of locations in a model, we will also introduce an idea of
list-length bounds that will allow us to decrease the size of the encoding of list-segment
predicates. Then, we will show how tighter bounds can be computed for general formulae
based on their structure. A simple method for computing tighter locations bounds was
sketched already in [18], but we propose a more detailed and precise approach. Moreover,
[18] does not consider bounds on lengths of list segments at all.

5.1 Tighter Bounds for Symbolic Heaps

Recall that, according to our definition, a formula ¢ is a symbolic heap if it is of the form
© & %1); where all 1; are atomic formulae. While the symbolic heap fragment is one of
the most simplest forms of separation logic, it is frequently used in verification tools. It
therefore makes sense to propose optimisations for its encoding even though it is just a
small subset of SSL. In previously proposed approaches based on a small-model property,
optimised bounds for symbolic heaps were not considered [17, 18].

First, we will show that each satisfiable symbolic heap has a model where all locations
are named — this improves the location bound to |vars(y)| for this fragment. To prove this,
we will use a reduction of sub-heaps similar to the reduction of chunks from the proofs of
small-model properties in Theorem 3.4 and Theorem 3.5.

Lemma 5.1. Let ¢ be a symbolic heap and let (s,h) = ¢ be its model. Then there exists
a heap h' such that (s,h') = ¢ and h' does not contain any anonymous locations, i.e.,
locs(h') C img(s).

Proof. We will show how a heap h’ can be constructed from the heap h. Let ¢ £ Ki<i<n Vi
By the semantics of SSL and the fact that each symbolic heap is a positive formula, we can
decompose the heap h into disjoint sub-heaps hy,..., h, such that h = hy +---+ h,, and,
for all 1 < ¢ < mn, it holds that (s, h;) = ;. We reduce each sub-heap h; to a sub-heap h} by
removing all anonymous locations. Formally, we set dom(h}) = {¢ € dom(h;) | £ € img(s)}
and define its mapping as:

RL(£) = h¥(¢) where k > 0 is the minimal natural number such that h¥(¢) € img(s).

49

The reduced sub-heaps are well-defined because the original heap is either empty or a se-
quence of pointers with a named sink. The named sink guarantees that some number k
such that h¥(¢) € img(s) always exists for each locations ¢ € dom(h}). Graphically, the
reduction of a non-empty sub-heap can be visualised as follow:

i)~ G

Now, we need to show that the reduction preserves satisfiability, i.e., (s,h}) | ; for
each i. If ¢); is a pure atom or a points-to assertion, this trivially holds since h; = h}. If
©; £ 1s(z,7), then the sub-heap is modified but remains a sequence of pointers from z to .
It also holds that ' = h| + -+ + k!, # L because the reduction can only remove locations.
Thus, (s,h') = ¢.

Further, we have that dom(h’) C img(s) because, by the definition of the reduction,
dom(h}) C img(s) for each i. From Lemma 3.2, it follows that all dangling locations are
also named, and therefore locs(h’) C img(s). O

Our experiments show that decreasing of the location bounds is not always enough to
efficiently solve some formulae. We will therefore also compute a list-length bound for each
predicate Is(x, y) that occurs in the input formula. The list-length bound is an interval [m, n]
such that it is enough to consider paths 7 such that m < |7| < n only when translating the
list-segment predicate. In the translation, the interval is used to parameterise the predicates
reach and path used to express the semantics of the given list-segment predicate.

We will now show, that for a symbolic heap ¢, it is always sufficient to use the list-length
bound [0, 1] for all list-segment predicates in ¢. In other words, if ¢ is satisfiable, we can
find a model where each list segment is either empty or a single pointer.

Lemma 5.2. Let ¢ be a symbolic heap and let (s,h) = ¢ be its model. Then there exists b/
such that (s, h') = @, and, for each predicate ¢ = Is(x,y) € subformulae(y), it holds that the
predicate 1) is satisfied in a sub-heap of size at most one, i.e., it holds that either s(x) = s(y)

or I'(s(z)) = s(y).

Proof. Again, we will show how to construct a heap A’ from the heap h. Let ¢ £ *i<i<n Vi
By the semantics of SSL, the heap h can be decomposed into disjoint sub-heaps h1, ..., hy,
such that h = hy + -+ + hyp, and, for all 1 < ¢ < n, it holds that (s,h;) &= 4. Using
Lemma 5.1, we can safely assume that all h; does not contain any anonymous locations. It
holds that h; is either an empty heap, a single pointer, or an acyclic sequence of pointers
with a uniquely determined source x and sink y. In the third case, we reduce it to a heap
h; = {z — y}. Graphically, this can be visualised as:

O——0—F

Since the reduction can only decrease domains, we have that b’ = b} +--- + h], # L.
We will further show that (s,h}) = v; for each i. The only nontrivial case is 1; = Is(x,y)
because sub-heaps of pure atoms and points-to assertions are not modified. If s(x) =
s(y), then h; = 0 and consequently h; = hl. If s(z) # s(y), then h}(s(z)) = s(y) and
dom(h’) = {z}. Thus, (s,hl) = 9; for all i, and consequently (s,h') = ¢. Moreover, for
each Is(x,y) € subformulae(yp) it holds that either s(z) = s(y) or h/(s(z)) = s(y) by the
definition of the reduction. O

50

Using the previous lemma, we can encode the list-segment predicate Is(x, y) occurring
in a symbolic heap in constant space as:

To(s(z,9),h, D) 2 (@=yAD=0) V (z#yAhfa] =yAD = {z})

Consequently, if ¢ is a symbolic heap, its translation T(y,x) has a linear size.

5.2 Tighter Bounds for General Formulae

In this section, we will describe our original approach for computing more precise location
and list-length bounds based on SL-graphs. SL-graphs were already used in [11] to design a
polynomial decision procedure for symbolic heaps, but we will use them in a slightly different
context. For simplicity, we will focus on formulae which do not contain septractions.

Definition 5.1 (SL graph). Let x be a set of variables. SL-graph over x is a tuple G =
(x,0..6,8) where

e ®C x x x defines directed points-to edges,

e ®Cx x x defines directed list-segment edges,

e ©C {{z,y} | x,y € x} defines undirected equality edges,

e AC {{z,y} | z,y € x} defines undirected disequality edges.

Individual relations of G are must-equalities (&), must-disequalities (&), must-pointers (©),
and must-list segments (©). Intuitively, they represent atomic relations between variables,
that hold in all models of some formula ¢. We also define the set of variables that must be
allocated in some formula ¢:

alloc(G)={rzex|exzOyV(@EByrxz@y)}

In other words, variable z is allocated if it is either a source of some must-pointer, or a
source of some non-empty must-list segment.

To compute SL-graph of a formula ¢ w.r.t. variables x, denoted as Gx|p], we define
several auxiliary functions:

Gl r G2 = (Xa%l m@Gga@)Gl m@)@gv (@Gl Q@Gz)*v@(ll m6’9(?2)
G1U G2 = (x,6q, UBk,,Ck, YRk, €, UG, @c, U&s,)
G114 G = (x,80, UG, G, UG, B, UBa,)" @0, U@, Ualloc(Gh) x alloc(Gh))
The first two operations perform the intersection and the union of all edges, respectively.
The disjoint union of two SL-graphs, G; H (G2, additionally adds pairs of variables allo-

cated in both models to must-disequalities. Observe that we always take the reflexive and
transitive closure of muse-equalities to achieve that & is the equivalence relation.

51

Definition 5.2 (SL-graph of a formula). Let ¢ be a formula and let x be a set of variables.
An SL-graph Gx[¢] of ¢ over x is defined inductively on the structure of the formula ¢ as
follow:

s Gxlz=yl=(x,0,0.{z6y}0)

o Gxlz#yl=(x,0,0,0,{zSy})

o Gxlz =yl =(x,{z©y},0,0,0)
o Gx[ls(z,y)] = (x,0,{z©y},0,0)
o Gx[¢] = (x,0,0,0,0)

* Gxlp1 Aiho] = Glp1] U Gleo]

« Gx[p1 A= 2] = Glgi]

« Gx[p1V 2] = Glp1] N Glpa]

« Gx[p1 * 2] = Glp1] 1 Glgo]

Lemma 5.3. Let ¢ be an SSL formula Then the following correctness conditions for must-
predicates hold:

. 2Oy, then V(s,h) € []x. (5,h) |= @ = y * true
. 2@y, thenV(s,h) € [olx. (5, h) |= o # y * true

e 2Oy, then ¥(s,h) € [¢]x. (s, h) =z > y * true
. 2@y, then ¥(s,h) € [¢]x. (s,h) = Is(z, y) * true

o Y(s,h) € [¢]x. alloc(G) C dom(h)

Proof (sketch). In all the cases, the computation of Gx[p] propagates must-relations from
atoms based on the boolean structure of the formula ¢. Only in the case of the negation, it
sets all must-relations to be empty, based on the semantics of negation in SSL. In the case
of the separating conjunction 1 * 1o, all must-relations of 1; for i« = 1,2 must also hold
in 91 x o. If x must be allocated in ¥ and y must be allocated in 19, then x # y in all
models of 7 * 1o. O

Let X/@ be the partition of variables induced by the must-equality relation. We define
the number of must-pointers p as p = |{x € x/@ | Jy € X/@. x ©y}|- Now we are ready
to define the location bound of a formula more precisely. Recall that the proofs of small
model properties (Theorem 3.4, Theorem 3.5) assumed the worst-case when all variables
are distinct, and that each variable is allocated and gives rise to a chunk of size two. Based
on must-equalities and must-pointers, we can relax those assumptions — we do not have to
take into account those variables that are surely equivalent to others, and for each must-
pointer, we can decrease the bound by one because we know that it will induce a chunk of
size exactly one:

2 - |vars™ (go)/@| -p+1 if ¢ is positive

bound’(p,x) = {2 (x\ {nil})/@| +[p] —p+1 otherwise

52

Lemma 5.4. Let ¢ be a satisfiable formula and let vars(yp) C x be set of variables. Then
there exists model (s',h') such that (s',h) = ¢ and |locs(h’)| < bound’(p,x).

Proof. The proof is analogical to the proofs of Theorem 3.4 and 3.5 with two exceptions.
First, there are at most |vars™ () /@| allocated variables for positive formula, and at most
|(x\ {nil}) /@| allocated variables for general formulae. Second, there are at least p chunks
which consist of a single pointer and will therefore need just a single location in the worst-
case. U

The second use case of SL-graphs is to compute more precise list-length bounds. Let
G = (x,6.,6,8) be an SL-graph of ¢ over x and let G = (x,0). Further, let the
location bound n = bound’(¢p, x).

;

[0,0] ifzOy,
[0,1] otherwise if z©@y,
k1] otherwise if there exists a simple path z ~» y in G such

that |w| = [and 7’ is the maximal prefix of m of length

Is_bound(ls(z,y)) = , ,
|7'| = k such that for all vi,ve € 7. v1 @ vo,

[0,m] otherwise if Is(x,y) has the positive polarity in ¢

and m = n — |alloc(G)| + 1,

[0,n] otherwise.

We will now describe the individual cases in detail:
e If &y, then the list segment clearly must be empty.
e If 2 ©vy, then the list segment is either a single pointer, or it is empty if z = .

e The third case is a generalisation of the second case. If there exists a sequence of
must-pointers from x to y of length [, then the maximal length of the list segment
is [. The minimal length is determined using the maximal prefix of this sequence such
that all of its elements are guaranteed to be distinct.

e The fourth case uses the fact that the list segment cannot allocate variables that
are allocated by some other sub-formulae. This is, however, applicable only if the
predicate Is(z, y) has a positive polarity, i.e., we know that it must be satisfied. Then
we can subtract the number of the surely allocated variables except one. This is
because a one of must-allocated variable may origin from them list segment Is(z,y)
itself.

53

Chapter 6

Implementation

This chapter describes our implementation of the proposed decision procedure in a new
solver called ASTRAL (Automation for strong-separation logic). The implementation of
the translation and bound computation straightforwardly follows their mathematical defi-
nitions. We therefore focus on the implementation of the solver’s front-end and the SMT
back-end.

6.1 Architecture

ASTRAL is written in the OCaml programming language and it is publicly available! under
the MIT license. The OCaml language was chosen because it offers a trade-off between
performance and high-level abstraction. We divide the architecture of the solver into three
parts: (1) the front-end deals with input parsing and preprocessing, (2) the decision proce-
dure implements the translation and its optimisations, and (3) the SMT back-end handles
communication with SMT solvers.

6.2 Front-end

The solver accepts as an input a formula in the format specified by the SL-COMP
competition [16]. The format extends the SMT-LIB v2 format by adding commands for
declaring the type of the heap and for specification of inductive predicates. Currently,
ASTRAL does not support arbitrary typing of heaps. Instead, it requires locations to be
defined as an uninterpreted sort with the fixed name Loc and the heap to be declared with
the sort Loc — Loc. To parse the input, we use a generic parser for logical languages
implemented in the Dolmen” library.

An example of the input can be seen in Listing 6.1. The example also shows how we
deal with the fact that satisfiability is parametrised by a set of variables x in SSL. Since the
format allows to declare variables that are not used, we set x to be the set of all declared
location variables (plus nil) in the input file.

After parsing, we perform a basic preprocessing of the input. Its main reason is to
introduce guarded negations which are not explicitly specified in the input. This is achieved
by pushing negations bottom-up as far as possible (i.e., until they reach either the top of
the formula or a spatial connective). The process may yield a positive formula even for

"https://github.com/TDacik/Astral
https://github.com/Gbury/dolmen

54

http://github.com/TDacik/

;3 Declaration of location sort. Currently fixed to this form by Astral.
(declare-sort Loc 0)

;3 Declaration of heap sort. Currently fixed to this form by Astral.
(declare-heap (Loc Loc))

;5 Declaration of location variables
(declare-const x Loc)
(declare-const y Loc)
(declare-const z Loc)

;3 Input formula
(assert (1s x y))

(assert
(sep
(not emp)
(not emp)
(not emp)
)
)

(check-sat)

Figure 6.1: An example of the input format for the formula Is(x, y) A (—emp * —emp x —emp)
over the set of variables x = {z,y, z, nil}. The variable nil is always added implicitly.

inputs where this is not obvious. For example, the formula Is(xz,y) A (—mz = y A —z — y)
will be rewritten to the positive formula Is(z,y) A- (z =y V x — y).

6.3 SMT Back-end

The first version of ASTRAL implemented the translation directly using an OCaml binding
for Z3. Later, we have found interesting to try performance of other SMT solvers. This
would be more easy, if we could use theories standardised in the SMT-LIB standard — we
would use the Z3 OCaml binding to output the translated formula in the SMT-LIB format
and then call another solver on the file. Neither the theory of sets or the generalised theory
of arrays is, however, not standardised by SMT-LIB.

We have therefore decided to implement a more generic SMT back-end that allows
ASTRAL to use multiple SMT solvers. Instead of using the Z3 OCaml binding for repre-
sentation of the translated formula, we implemented our own inner representation of SMT
formulae and models. The inner representation of formulae is then translated to the input
language of the selected solver using a back-end for the given solver. If the solver returns
sat and a model, then the back-end translates the model back into our inner representation.

On the one hand, this solution required to re-implement some features already provided
by the Z3 binding (such as substitution of terms). On the other hand, it allowed us to
work with higher-level concepts during the translation and let the low-level details of their
translation to individual back-ends. Currently, we have two back-ends for concrete solvers
and one for their parallel combination:

55

e 73 back-end — The Z3 solver is the default one and is therefore always installed
with ASTRAL. The translation from our inner representation is done using the OCaml
binding of Z3. Our experiments show that this backend is faster for formulae including
list-segment predicates.

e cvch back-end — The cvch solver is not installed together with ASTRAL and if
one wants to use it, it has to be installed in the path. Since it currently does not
have an OCaml binding, we translate our internal representation to the SMT-LIB
format using the cvch’s syntax for sets, store it to a temporary file, and call cvch
in another process. After the solver finishes, we have to parse the model from its
SMT-LIB representation. This of course bring some additional overhead, but the
cveb back-end still usually performs better than Z3 backend for formulae which do
not contain list-segment predicates.

o Parallel back-end — Our experiments show that none of the previously mentioned
solvers is strictly better. An obvious solution is therefore to run them both in parallel
and wait for the first one which returns a result. We have implemented this approach
using Domainslib® which implements high-level mechanisms for running multiple
tasks in parallel running threads.

Unfortunately, thread-level parallelism is not available in OCaml prior to its ver-
sion 5.0 because of its usage of a global runtime lock®. Since OCaml 5.0 is still in
its alpha version, some libraries used in ASTRAL are not compatible with it. The
parallel back-end therefore could not be merged into the main branch of ASTRAL and
experimentally evaluated.

Shttps://github.com/ocaml-multicore/domainslib
“https://ocamlverse.github.io/content/parallelismhtml

56

Chapter 7

Experimental Evaluation

This section is devoted to an experimental evaluation of the proposed decision procedure.
First, we focus on a comparison with other translation-based decision procedures imple-
mented in the tools SLOTH [18] and GRASSHOPPER [28]. We performed experiments on
two categories of the international competition SL-COMP [32]. Those categories include
manually crafted formulae and also real-life verification conditions generated by verification
tools.

Then, we conducted an experimental comparison with the decision procedure imple-
mented in the SMT solver cvch. Since ASTRAL cannot handle benchmarks used to evaluate
cveb [30], which frequently contain unguarded negations, we prepared our own benchmarks
focused on guarded negations and septractions. Those benchmarks consist of crafted para-
metric formulae with growing complexity and randomly-generated formulae.

During this chapter, we will use ASTRAL-Z3 and ASTRAL-CVC5 to refer to the the
ASTRAL solver running with Z3 and cvcb back-end, respectively. All experiments were
conducted on a machine with 2.5 GHz Intel Core i5-7300HQ processor and 16 GiB RAM,
running Ubuntu 18.04. The benchmark consisting of preprocessed formulae from SL-COMP,
generated parametric formulae, and randomly-generated formulae is available as a github
repository’. The repository also contains translations of those formulae to formats used by
SLOTH and GRASSHOPPER.

7.1 Comparison with Translation-Based Decision Procedures

First, we will compare ASTRAL with other decision procedures based on a translation to
SMT. The first of them is SLOTH [17], which implements a translation based on a small-
model property and was the main inspiration of our approach. The second is GRASSHOP-
PER, which translates the input formula to an intermediate logic called GRASS, which is
later translated to SMT using a partial instantiation of GRASS axioms [28]. Note that
GRASSHOPPER is not a solver, rather a verification tool for heap-manipulating programs.
To run it as a solver with minimal overhead, we encode an entailment formula ¢ |= v as the
empty program with the precondition ¢ and postcondition ¥. Such a program is verified
iff the entailment is valid. Similarly, we encode satisfiability of a formula ¢ as the empty
program with the precondition ¢ and postcondition 1. Such a program is verified iff the
formula is unsatisfiable.

"https://github.com/TDacik/seplog-bench/

57

Table 7.1: Experimental results for the category QF__SHLS_SAT.

Results Times [s]

Solver Correct | Wrong | Timeouts | Winner | Total | Mean | Maximal
ASTRAL-CVCH 110 0 0 100 6.71 | 0.06 0.13
ASTRAL-Z3 110 0 0 10 31.47 0.28 3.48
GRASSHOPPER 110 0 0 0| 161.09 1.46 11.03
SLOTH 0 0 110 0 - - -

Table 7.2: Experimental results for the subset of the category QF_SHLS_ENTL containing
verification conditions. The total and mean time are computed including TOs, maximum

time excluding TOs.

Results Times [s]

Solver Correct | Wrong | Timeouts | Winner | Total | Mean | Maximal
ASTRAL-CVCH 85 0 1 27 | 75.11 0.87 0.82
ASTRAL-Z3 86 0 0 22 4.67 | 0.05 0.70
GRASSHOPPER 86 0 0 37 5.37 0.06 1.99
SLOTH 62 19 5 0| 637.26 | 20.44 7.41

Both ASTRAL and GRASSHOPPER are implemented in OCaml. SLOTH is implemented
in Python, and the results can be therefore skewed by different speeds of those languages
(Ocaml is believed to be faster in general because it is a compiled language). We could
measure just the time of calls to an SMT solver, but this would ignore improvements in
translation such as the bound computation used in ASTRAL. We therefore decided to
measure the overall run time for all solvers. Another source of distortion can be usage of
different backend SMT solvers. As for ASTRAL, we used it in modes running Z3 and cvcC5.
GRASSHOPPER can use both Z3 and cvc4 (an older version of ¢ve5h), but its latest version
crashes when Z3 is used. Therefore, we use it only with the cvc4 back-end. SLOTH can be
run only using Z3.

In the comparison, we focused on the categories QF__SHLS_SAT and QF_SHLS_ ENTL
of SL-COMP, which stand for satisfiability and entailment in the symbolic heap fragment
with lists, respectively. The satisfiability benchmark consists solely of randomly generated
formulae. The complexity of those formulae ranges from 10 to 20 variables with an in-
creasing number of atoms. The entailment benchmark contains both crafted formulae and
real-life verification conditions. Those verification conditions mostly originate from the tool
SMALLFOOT [7]. The crafted formulae are either randomly generated, or they are created
by cloning the previously mentioned verification conditions (note that the cloning is used
only to increase the complexity and such formulae do not represent verification problems
anymore). The process of generating and cloning is in details described in [27]. Because the
difficulty of crafted formulae and verification conditions differ (random formulae contain up
to 20 list-segment predicates while verification conditions not more than 5), we consider
them as two separate categories in our experiment. We set the timeout of 60 seconds for
all experiments in this section.

The results for the category QF_SHLS_SAT are given in Table 7.1. The table shows
that SLOTH is not able to solve any of the formulae, and both configurations of ASTRAL
outperform GRASSHOPPER. Moreover, ASTRAL-CVC5 wins in almost 90 % of all cases.

58

Table 7.3: Experimental results for crafted formulae from the category QF__SHLS ENTL.
The total and mean time are computed including TOs, maximum time excluding TOs.

Results Times [s]

Solver Correct | Wrong | Timeouts | Winner | Total | Mean | Maximal
ASTRAL-CVC)H 66 0 144 44 | 8 651 | 41.19 7.35
ASTRAL-Z3 174 0 36 125 | 3072 | 14.63 57.41
(GRASSHOPPER 140 0 70 25 | 5480 | 26.09 52.03
SLOTH 68 0 142 0| 8744 | 41.63 29.98

60 3 + Sat 60 N Sat I’,,/
101 + Unsat ol + Unsat //
g 1 N ,/'/+
o ® + 7
2 O 14 P z" + +/’,
' + ++#¢ + 0.1; ++§+
+ w‘#“ + o
+
0.017 & 0.014 *ﬁé‘t
001 01 1 10 60 001 01 1 10 60
Grasshopper Grasshopper

(a) QF_SHLS_ENTL (random formulae) (b) QF_SHLS ENTL (verif. conditions)

Figure 7.1: A comparison of running times of ASTRAL-Z3 and GRASSHOPPER on entail-
ments in the symbolic heap fragment. Times are in seconds and timeout was set to the 60
seconds. Axes are logarithmic.

Based on our experiments, the significant difference between ASTRAL and SLOTH is due to
improved bounds proved in Section 5.1.

The results for verification conditions from the category QF_SHLS_ ENTL are given
in Table 7.2. All formulae were correctly solved by both ASTRAL-Z3 and GRASSHOPPER.
While GRASSHOPPER wins in more cases, ASTRAL-Z3 is faster overall. The difference is,
however, negligible. This can be also seen in Figure 7.1b. ASTRAL-CVC5H times out in one
case, but otherwise solves all formulae under one second. This demonstrates that ASTRAL
can effectively solve formulae coming from real-life applications. This is not true for SLOTH
which times out in five cases even on very simple formulae. Moreover, in 19 cases, it
returns ,invalid“ for a valid entailment. This seems to be an implementation bug because
it manifests even for simple entailments such as Is(x,y) = Is(x,y). We have reported the
issue”, but it was not confirmed at the time of writing this thesis.

Results for crafted formulae from the category QF _SHLS_ENTL are given in Table 7.3.
The results suggest that formulae with many list-segment predicates (up to 20) are hard
for all translation-based solvers. The best is ASTRAL-Z3 which, however, still timeouts
in 36 cases. A detailed comparison of ASTRAL and GRASSHOPPER is given in Figure 7.1a.
The figure shows that GRASSHOPPER wins mostly on easy unsatisfiable formulae that are

*https://github.com/katelaan/sloth/issues/1

59

6| ol E
10 + Sat ,/:i::': 60 + Sat + +
0 + Unsat ,:/é_# - + Unsat 'I:y;‘lf
% 105 4 /.’ﬂ,:+ -g 104 z’+ ¢
3 F _§ bz
% e 4 ATy
= ,q;" 2 1 " _#- ﬂ
g 1044 /_,'_ o R _"H'_#I!-I-
= ' E 1’+
2 A 3 Pk
"r'\‘? 1034 . r’:} 0.1 i
5 ' :
7 b +
< 102 < 0.01+ /’4'
> S+
102 10° 104 10° 10° 001 0.1 1 10 60
Astral-Z3 (without list bounds) Astral-Z3 (without list bounds)
(a) Translated formula size (b) Running time

Figure 7.2: A comparison of ASTRAL-Z3 running with the list-length bounds computation
and without it for crated entailments in the symbolic heap fragment. Times are in seconds
and the timeout was set to 60 seconds. Axes are logarithmic.

solved under a tenth of second by both solvers. ASTRAL times out mostly for unsatisfiable
formulae, but it is able to solve many satisfiable formulae that GRASSHOPPER cannot solve.

We also compared ASTRAL with ASTERIX [22] which won the previous edition of SL-
COMP in the considered categories. ASTERIX can solve all instances almost immediately
(under 0.006 seconds) and beats ASTRAL in all the cases. This is, however, an expected
result because ASTERIX implements a specialised algorithm for the symbolic heap fragment
while ASTRAL targets much more complex logic.

7.2 Evaluation of List-Length Bounds Computation

We believe that the main improvement of the translation implemented in ASTRAL are
methods for bound computation. Especially, methods for computing bounds of lengths of
list-segment predicates. To verify this hypothesis, we run ASTRAL with and without the list-
length bound computation on crafted formulae from the category QF_SHLS ENTL. Notice
that, for satisfiability in the symbolic heap fragment, the list-length bound computation
does not help because, in this fragment, we always have the bound [0, 1] for each list-segment
predicate by Lemma 5.2.

First, we compare the sizes of translated formulae. We measure the size of a formula as
the number of nodes in its AST. The size is measured without any simplification. The results
are shown in Figure 7.2a. The size of translated formulae ranges from 100 to 1 million.
There are several clusters of formulae which are probably caused by the fact that those
formulae are crafted and randomly-generated. For some formulae, there is no difference in
size, but there are formulae whose size is more than five times lesser when the list bounds
are used.

Figure 7.2b shows that the reduced size has a significant positive impact on the running
time. In 65 cases out of 210, it allows us to solve problems which would otherwise timeout.
Among of them, there is a lot of unsatisfiable formulae that are now solved under one second.

60

There are several satisfiable formulae such that the running time is higher although their
size is smaller (one of them even timeouts), but the heuristics performs still better for a
majority of satisfiable formulae. However, it seems that the list-length bound computation
helps more in the case when formula is unsatisfiable. This is natural because it restricts
the state space that an SMT solver has to search to declare a formula as unsatisfiable. On
the other hand, this could be a consequence of how formulae are generated.

7.3 Comparison with cvch

In this section, we present an experimental comparison of ASTRAL with the decision pro-
cedure for SL implemented in the SMT solver cvch. This decision procedure targets a
fragment that is incomparable with the fragment supported by ASTRAL. On the one hand,
Ccveh supports arbitrary magic wands. On the other hand, it does not support list-segment
predicates at all. Moreover, in the presence of unguarded negations, there could be a
difference between the standard semantics of separation logic used by cvch and the strong-
separation semantics used by ASTRAL. For the following experiment, we have extended
ASTRAL with an option to perform translation in the classical semantics (the translation
will not generate constraints that locations shared by sub-heaps are named). We will not
prove this claim, but with this modification, ASTRAL should be sound for the considered
fragment under the classical semantics of SL.

We first tried ASTRAL on the SL-COMP category QF__BSL_ SAT which precisely cor-
responds to the fragment supported by cvc5, which was also the only participant in this
category in the last edition of SL-COMP?. Formulae from this benchmark frequently con-
tain a negation under a separating conjunction which itself lies under another negation.
Such formulae are extremely hard for ASTRAL because they trigger an extensive enumer-
ation over footprints when separating conjunctions are translated. Consequently, ASTRAL
was able to solve only two simplest formulae of the category. In the rest of the experiments,
we therefore focused on a fragment that contains negations in a limited form only.

7.3.1 Parametric Formulae

To do a comparison on a fragment that ASTRAL can handle, we prepared several sets of
parametric formulae with growing complexity based on a parameter n. Those formulae
focus on usage of septractions, and negations under separating conjunctions, i.e., features
that are extensions of the previously proposed translation-based procedures. Note that
cvceh does not support septractions directly and we therefore encode them as magic wands.
We used the time limit of 40 seconds for all the experiments.

e Heap size. The first formula states that the heap can be split into n non-empty
sub-heaps, i.e., that the heap has size at least n:

. A
size=™ £ —emp * - - - % ~emp

n times

The formula contains negations under separating conjunctions, but all separating
conjunctions can be translated using Skolemization. The results in Figure 7.3a show
that ASTRAL can solve such formulae efficiently and even slightly faster than cvc5.

Shttps://www.irif.fr/~sighirea/sl-comp/19/qf_bsl_sat.html

61

http://www.irif.fr/~sighirea/sl-comp/19/qf

Time [s]
-
w

141

124

10+

Time [s]
()]

—— Astral-cvch
cves 35 1
—— Astral-Z3

5 —— Astral-Z3
0 cveh

0 10 20 30 40 50 5 10 15 20
Parameter n Parameter n

(a) Heap size (b) Exact heap size

cvch 1 —— Astral-cveh
—— Astral-cvch 354 —— Astral-Z3
— Astral-Z3 cveh

P

o<

0 50 100 150 200 0 10 20 30 40 50
Parameter n Parameter n

(c) Septractions (d) Pointers using septractions

Figure 7.3: A comparison of ASTRAL and CvCbh on parametric formulae with complexity
growing based on a parameter n. The timeout was set to 40 seconds.

Ezact heap size. The second formula states that the heap has size ezactly n:

size™" £ size=" A\ —size=" L

Unlike in the case of the previous formula, separating conjunctions in the sub-formula
—size=" ! cannot be translated using Skolemization. Figure 7.3b shows that the
formula is indeed very hard for all solvers even for very small n. ASTRAL-Z3 is able
to solve it for n = 1 only (and, for n = 2, in 47 seconds, which is slightly above the
time limit) and cve5 for n = 4 only. ASTRAL-CVC5 is not shown in the figure because
its backend solver always gives-up and returns unknown.

Septractions. The third formula uses septractions to express that variables z1,..., Ty,
are not allocated:

not_alloc(z1,...,z,) = ((z1 — nil) —=® true)x--- x ((x, — nil) —® true)

The formula can be trivially satisfied by the empty heap. We use it to benchmark
how ASTRAL can deal with septractions combined with negations (the atom true is
syntactic sugar for emp V —emp). Due to its simplicity, the formula can be quickly

62

60 H 7
+ Sat + .
+ Unsat it
7.
AL
] + ‘ +
10 + + ,,/ + +++
+ ¥ + 7 F 7
m + + + . Ty oM
N + w1, e T N
© + A T A s
E 1 ++ +.* £ # /’/ -:ﬂ" * -h-:‘:+ i+ JE
< o+ 4T A + ++:Ef,_4+ + <
+% L+
H++ e -
e %+ il
+ 7 T B *
o RS T T *
//,, +
0.1 1 10 60 0.1 1 10 60
cveh cvch
(a) Guarded negations (b) Septractions

Figure 7.4: A comparison of ASTRAL-Z3 and cvC5 on randomly generated formulae. The
timeout was set to 60 seconds. Axes are logarithmic.

solved by all solvers even for 200 variables. ASTRAL-CVC5H performs best, and, for
n = 200, it is two times faster than cvcb.

o Pointers using septractions. The last formula expresses that the heap contains a cyclic
sequence of pointers using septractions:

ptr_septr” £ (emp —® x1 > T2)* -+ * (emp —® Tp_1 > Ty)* (emp —® xp, — T1)

The results in Figure 7.3c show that both versions of ASTRAL outperform CvCb5.
Moreover, ASTRAL-CVCH is able to solve formulae for n = 50 quite fast, while cvch
runs out of the time already for n = 25.

7.3.2 Randomly Generated Formulae

To further compare solvers on problems with less regular structure than in the case of
parametric formulae, we prepared two sets of randomly generated formulae. All formulae
were generated as random binary balanced trees of depth six over eight variables. Those
parameters were selected based on experiments to achieve a reasonable complexity of the
generated formulae. Atoms were restricted to points-to assertions only. Pure atoms were
not used because CVCH uses an imprecise semantics for them (they can be satisfied on an
arbitrary heap) and ASTRAL uses the precise semantics (they can be satisfied on the empty
heap only). Those semantics may be easily converted to each other, but we rather do not
use them in this experiment. We use the QCHECK tool * to generate the formulae. We
have generated two sets of 500 formulae. Those sets differs in the allowed connectives:

e Guarded negations. This fragment focuses on mixing separating conjunctions with
boolean conjunctions, disjunctions and guarded negations. The top-level connective
is always a guarded negation (the formulae therefore represent entailments). Note

“https://github.com/c-cube/qcheck

63

that those formulae are not necessary in the fragment SSL¥, i.e., their translation
can have an exponential size. This is because separating conjunctions can be negated
by guarded negations and footprints are not guaranteed to be unique because of
disjunctions. However, the exponential blow-up should not be as significant as in case
of unguarded negations.

o Septractions. In this set, we added septractions but removed guarded negations. All
formulae of the set are therefore in SSL¥ because all separating conjunctions can be
translated using Skolemization.

We used ASTRAL-Z3 for the comparison. It would be better to use ASTRAL-CVCH to
show that differences are not caused by other back-end technologies, but on many of the
randomly generated formulae, ASTRAL-CVC5H gives-up with the unknown result. It seems
that during the translation, we use some combinations of features that is not supported
by cvch. However, we have not been able to track down what this combination is at
the time of writing this thesis. On the other hand, all previous experiments show that
ASTRAL-CVC5 is faster than ASTRAL-Z3 on formulae without list-segment predicates, and
we therefore believe that the comparison is fair.

The results for the first set are shown in Figure 7.4a. Due to the way how the formulae
were generated, there are more unsatisfiable formulae. On almost all satisfiable formulae,
ASTRAL-Z3 is faster. There are also several satisfiable formulae which cvch cannot solve
in the limit but ASTRAL-Z3 solves them under one second. The results for the second set
are shown in Figure 7.4b. Here, almost all generated formulae are unsatisfiable. Again
ASTRAL-Z3 is faster for all satisfiable. In our future work, we would like to more precisely
evaluate those experiments. In particular, we would like to run the experiment also with
ASTRAL-CVC5 to see whether results are influenced by back-end SMT solver.

When performing experiments, we have found several formulae for which ASTRAL and
cvceh produced different results. It turned out that the problem was with septractions
and that incorrect results were produced by cvch. We prepared a minimal example of the
incorrect behaviour and reported it”. The problem was in a heuristic that would, e.g., for
the septraction x — y —® x — y conclude that the pointer x — y has to be in the model.
This is of course not true because the formula can be satisfied by the empty heap only. The
problem seems trivial when a septraction is used but it is much more complicated when
looking from the perspective of magic wands which are used in cvch. The issue was fixed,
but when we repeated our experiments, we have found that the fix has introduced another
unsoundness’. Again, the issue was confirmed and fixed.

7.4 Summary and Future Work

Our experiments showed that ASTRAL outperforms existing translation-based decision pro-
cedures implemented in the tools SLOTH and GRASSHOPPER on the frequently used symbolic
heap fragment. In the case of satisfiability for this fragment, our improvements are due to
improved bounds proved in Section 5.1. In the case of entailment, we have experimentally
evaluated that the improvement is due to the computation of bounds on lengths of list seg-
ment predicates. Moreover, ASTRAL is able to efficiently solve all of considered problems
that originate from verification tools.

Shttps://github.com/cvch/cveb/issues/8659
Shttps://github.com/cvch/cvch/issues/8863

64

The comparison with the cvcb solver shows that ASTRAL has a problem with formulae
containing unguarded negations in such a way that it cannot use Skolemization. However,
we expected this because of our way of translating separating conjunctions using an exten-
sive enumeration over footprints and the fact, that we currently do not have heuristics to
tackle it. Future work in this direction can focus on trying to reduce possible footprints
of negations. This could be done, e.g., based on computation of variables that cannot be
allocated by the given negation using SL-graphs. Another possible direction is to develop
a method to perform the enumeration over footprints lazily.

65

Chapter 8

Conclusion

In this thesis, we proposed a decision procedure for strong-separation logic based on a trans-
lation to SMT and implemented this decision procedure in a new solver called ASTRAL.
The translation is inspired by the previous works, but we have significantly extended the
fragment that can be translated. Those extensions include support for negations, limited
usage of septractions (and therefore also limited usage of magic wands), and support for
mixing of boolean and spatial connectives. We also proposed several original heuristics to
decrease size of translated formulae. Our experimental results showed that those heuris-
tics help our decision procedure to outperform other translation-based decision procedures
implemented in the tools SLOTH and GRASSHOPPER. The comparison with the decision
procedure implemented in the prominent SMT solver ¢vC5 on its own benchmark showed
that ASTRAL cannot handle some classes of formulae containing negations yet. On the
other hand, experiments on parametric and randomly generated formulae suggest that As-
TRAL can efficiently handle formulae containing septractions or negations in the so-called
guarded form. On formulae containing guarded negations, it even significantly outperforms
the cvch solver. Moreover, based on those experiments, we found and reported several
incorrect results produced by cvch for formulae containing magic wands. Those turned to
be results of incorrect heuristics and were fixed based on our reports.

Future work. There are many possible directions for the future work. First of them is to
design an efficient methods to deal with formulae which contain unguarded negations, e.g.,
by using lazy enumeration when translating separating conjunctions. Another interesting
research direction is to extend expressivity of SSL. While trees and data constraints were
already studied in [24], another extensions such as user-defined inductive predicates or
quantifiers were not yet studied in the context of SSL. Finally, we would like to also study
how SSL can be used in automated program verification. In this direction, we would like
to focus on the so-called bi-abductive analysis [10].

66

Bibliography

1]

[12]

AppPEL, A. W., Dockins, R., HOBOR, A., BERINGER, L., DODDSs, J. et al. Program
Logics for Certified Compilers. USA: Cambridge University Press, 2014. ISBN
110704801X.

BansaL, K., BARRETT, C., REYNOLDS, A. and TINELLI, C. A New Decision
Procedure for Finite Sets and Cardinality Constraints in SMT. In: IJCAR. 2017.

BARrRBOsA, H., BARRETT, C. W., BRAIN, M., KREMER, G., LACHNITT, H. et al.
Cvch: A Versatile and Industrial-Strength SMT Solver. In: TACAS. 2022.

BARRETT, C., FONTAINE, P. and TINELLI, C. The SMT-LIB Standard: Version 2.6
[www.SMT-LIB.org]. 2021.

BaAtz, K., FESEFELDT, 1., JANSEN, M., KATOEN, J.-P., KESSLER, F. et al.
Foundations for Entailment Checking in Quantitative Separation Logic. In: SERGEY,
1., ed. Programming Languages and Systems. Cham: Springer International
Publishing, 2022.

BERDINE, J., CALCAGNO, C. and O’HEARN, P. W. A Decidable Fragment of
Separation Logic. In: FSTTCS. 2004.

BERDINE, J., CALCAGNO, C. and O’HEARN, P. W. Symbolic Execution with
Separation Logic. In:. Berlin, Heidelberg: Springer-Verlag, 2005. APLAS’05.

BRADLEY, A. R. and MANNA, Z. The Calculus of Computation: Decision Procedures

with Applications to Verification. 1stth ed. Springer Publishing Company,
Incorporated, 2010. ISBN 3642093477.

BROTHERSTON, J., GOROGIANNIS, N. and PETERSEN, R. L. A Generic Cyclic
Theorem Prover. In: APLAS. 2012.

CALCAGNO, C., DISTEFANO, D., O’'HEARN, P. W. and YANG, H. Compositional
Shape Analysis by Means of Bi-Abduction. J. ACM. New York, NY, USA:
Association for Computing Machinery. 2011.

CooK, B., HAASE, C., OUAKNINE, J., PARKINSON, M. and WORRELL, J. Tractable
Reasoning in a Fragment of Separation Logic. In: Proceedings of the 22nd

International Conference on Concurrency Theory. Berlin, Heidelberg:
Springer-Verlag, 2011. CONCUR'11.

DEMRI, S., Lozes, E. and MANSUTTI, A. The Effects of Adding Reachability
Predicates in Propositional Separation Logic. In: BAIER, C. and LAGo, U. D.,

67

http://www.SMT-LIB.org

[15]

[16]

[17]

[18]

[19]

[25]

[26]

[27]

ed. Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018. Springer, 2018.

EcHENIM, M., TosiF, R. and PELTIER, N. The Bernays-Schénfinkel-Ramsey Class of
Separation Logic with Uninterpreted Predicates. ACM Transactions on
Computational Logic. 2019, vol. 21.

ENEA, C., LENGAL, O., SIGHIREANU, M. and VOJNAR, T. Compositional Entailment
Checking for a Fragment of Separation Logic. USA: Kluwer Academic Publishers.
dec 2017, vol. 51, no. 3, p. 575-607. ISSN 0925-9856.

Tosir, R., ROGALEWICZ, A. and VOJINAR, T. Deciding Entailments in Inductive
Separation Logic with Tree Automata. 2014.

Tosir, R., SERBAN, C., REYNOLDS, A. and SIGHIREANU, M. Encoding Separation
Logic in SMT-LIB v2.5. In:. 2018.

KATELAAN, J., JovANOvIC, D. and WEISSENBACHER, G. A Separation Logic with
Data: Small Models and Automation. In: IJCAR. 2018.

KATELAAN, J., JovaNovic, D. and GEORG, W. Sloth: Separation Logic and
Theories via Small Models. In: Informal proceedings of the First Workshop on
Automated Deduction for Separation Logics (ADSL). 2018.

KATELAAN, J., MATHEJA, C., NOLL, T. and ZULEGER, F. Harrsh: A Tool for Unied
Reasoning about Symbolic-Heap Separation Logic. In: BARTHE, G., KOROVIN, K.,
SCHULZ, S., SUDA, M., SUTCLIFFE, G. et al., ed. LPAR-22 Workshop and Short
Paper Proceedings. 2018, vol. 9. Kalpa Publications in Computing.

MOURA, L. de and BJORNER, N. Generalized, efficient array decision procedures.
In: 2009 Formal Methods in Computer-Aided Design. 2009, p. 45-52.

MoURA, L. M. de and BJ@RNER, N. S. Z3: An Efficient SMT Solver. In: TACAS.
2008.

NAVARRO PEREZ, J. A. and RYBALCHENKO, A. Separation Logic Modulo Theories.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). march 2013, vol. 8301.

O’HEARN, P. W. Resources, Concurrency and Local Reasoning. Theor. Comput. Sci.
2004, vol. 375.

PAGEL, J. Decision Procedures for Separation Logic: Beyond Symbolic Heaps.
Dissertation.

PAGEL, J. and ZULEGER, F. Strong-Separation Logic. In:. March 2021, p. 664-692.
ISBN 978-3-030-72018-6.

PARKINSON, M. J. The Next 700 Separation Logics - (Invited Paper). In: VSTTE.
2010.

PEREZ, J. A. N. and RYBALCHENKO, A. Separation logic + superposition calculus =
heap theorem prover. In: PLDI ’11. 2011.

68

[28]

[29]

Piskac, R., WiES, T. and ZUFFEREY, D. Automating Separation Logic Using SMT.
In: SHARYGINA, N. and VEITH, H., ed. Computer Aided Verification. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, p. 773-789.

Piskac, R., WIEs, T. and ZUFFEREY, D. Automating Separation Logic with Trees
and Data. In: Proceedings of the 16th International Conference on Computer Aided
Verification - Volume 8559. Berlin, Heidelberg: Springer-Verlag, 2014, p. 711-728.
ISBN 9783319088662.

REYNOLDS, A., Iosir, R. and KING, T. A Decision Procedure for Separation Logic in
SMT. In: ATVA. 2016.

REYNOLDS, J. Separation logic: A logic for shared mutable data structures. In:.
February 2002, p. 55— 74. ISBN 0-7695-1483-9.

SIGHIREANU, M., NAVARRO PEREZ, J. A., RYBALCHENKO, A., GOROGIANNIS, N.,
Tosir, R. et al. SL-COMP: Competition of Solvers for Separation Logic. In:. 2019.

TaA, Q.-T., Lg, T. C., KHOO, S.-C. and CHIN, W.-N. Automated Lemma Synthesis in
Symbolic-Heap Separation Logic. Proc. ACM Program. Lang. New York, NY, USA:
Association for Computing Machinery. 2017, vol. 2, POPL.

69

Appendix A

Contents of the Attached Medium

The attached memory medium contains the following:
/
Astral/ ... source code of ASTRAL
tex/ ... source codes of this thesis
xdacik00.pdf ... this thesis in PDF
seplog_bench/ ... formulae used for experiments

70

Appendix B

Installation and Usage

Source code of ASTRAL can be found on the attached medium or online at https://
github.com/TDacik/Astral. The solver can be installed via OPAM package manager by
cloning the repository and running:

$ opam install

By default, ASTRAL is installed with the Z3 solver. To use ASTRAL with cvch backend, it
has to be installed manually and present in the path. After ASTRAL is installed, it can be
run by the following command:

$ astral [options] formula.smt2

The most common options are:

--debug ... Store debug information such as translated formula in .smt2 format or
SMT models in astral_debug directory.

--backend=<cvc5|z3> ... Select backend SMT solver.
--loc-bound=<n> ... Force location bound to be n (potentially unsound).
--no-list-bounds ... Do not use optimised translation of list-segment predicates

--semantics=<weak|strong> ... Default is strong. When option weak is used, result
can be unsound for formulae with negations.

71

http://github.com/TDacik/Astral

