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Abstract 
This thesis aims to determine which hardware parameters of graphic cards are the most 
important for password-cracking purposes. It includes a theoretical study of password 
cracking and an examinat ion of the different attack methodologies. The thesis also contains 
a survey of currently available G P U s and their hardware parameters. Further, we look at 
the hashcat tool , which we w i l l use for testing G P U s . Then the thesis explains the design 
of a tool for measuring password-cracking performance, which uses hashcat as its core and 
explains the implementat ion. In the analysis part, we look at the collected data, analyse 
them, study their similarities and opposites and determine which hardware characteristics 
of G P U s are the most important for good password-cracking performance. 

Abstrakt 
T á t o p r á c a sa zameriava na určen ie najdôleži te jš ích h a r d v é r o v ý c h parametrov grafických 
kariet pre účely l á m a n i a hesiel. Z a h ŕ ň a t eo re t i ckú š t ú d i u ohľadom l á m a n i a hesiel a p reskú
manie rôznych m e t o d í k ú tokov . P r á c a obsahuje aj prehľad a k t u á l n e d o s t u p n ý c h G P U a ich 
ha rdvé rových parametrov. Ďale j sa z a o b e r á m e n á s t r o j o m hashcat, k t o r ý budeme používať 
na testovanie G P U . Ďalej p r á c a vysvetľuje n á v r h n á s t r o j a na meranie výkonu pr i l á m a n í 
hesiel, k t o r é h o j adrom je hashcat a vysvetľuje jeho i m p l e m e n t á c i u . V analytickej čas t i sa 
z a o b e r á m e zozb ie ranými ú d a j m i , analyzujeme ich, s k ú m a m e ich podobnosti a prot iklady a 
u rču jeme , k t o r é ha rdvé rové vlastnosti G P U sú najdôleži te jš ie pre d o b r ý v ý k o n pr i l á m a n í 
hesiel. 
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Chapter 1 

Introduction 

W i t h the increasing reliance on technology and the internet in our dai ly lives, password 
cracking has become one of the pr imary concerns for individuals and organisations. The 
abil i ty to gain unauthorised access to a system or appl icat ion by guessing or determining 
the password that is used to protect it can have serious consequences, including the theft of 
sensitive information, the disruption of cr i t ica l services, and the compromise of the integrity 
of data. 

A s a result, many companies t ry to fight this cyber warfare wi th stronger cyber security, 
using hashes wi th cryptographic salt and cryptographic pepper and using more robust 
passwords. Nevertheless, every password can be cracked wi th enough time and enough 
resources. For this very reason, new technologies are being developed even right now. 

Password cracking does not always have to be used i n a malicious way. For example, 
many criminals use computer technology just like regular businesses. They may have their 
own databases, encrypted messages, etc. Suppose law enforcement officers compromise 
devices w i t h such content and want to use these devices for digi ta l forensics (tracing traces 
of c r imina l ac t iv i ty) . In that case, they might need to use password cracking to access 
valuable information. 

Another side to password cracking is password recovery, which allows users to regain 
access to their accounts and systems i n the event that they forget or lose their passwords. 
However, we do not always need to perform a password cracking attack in such cases. 

To grasp what the password cracking performance might be like, we need to test i t . 
A n d that is what this thesis is about. Th is thesis aims to analyse the performance of 
password cracking on graphic processing units ( G P U s ) and explore various factors that 
might influence the speed and effectiveness of these attacks. We w i l l examine how G P U s 
from different manufacturers w i t h different specifications compare to each other in terms 
of their sui tabi l i ty for password cracking. We w i l l also compare the cr i t ica l differences 
between G P U s and central processing units ( C P U s ) . F ina l ly , we w i l l also examine different 
algorithms and cracking techniques and their impact on password cracking performance on 
different G P U s . 

Overal l , this thesis aims to provide a comprehensive overview of the performance of 
password cracking on G P U s , the key differences between the use of G P U and C P U and the 
difference i n performance wi th the use of different password cracking techniques. 

This thesis is d ivided into four main parts. Chapter 2 explains the essentials of password 
cracking, candidate password generation and verification. Chapter 3 describes G P U s , their 
use for general computing, why they are better than C P U s for password cracking purposes, 
acceleration of cracking attacks and the analysis of current available G P U s . Chapter 4 tells 
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us about hashcat, the attack modes it supports, and the hash families it can crack. Chapter 
5 shows us the design of a tool for password cracking analysis on G P U s , what k ind of input 
and output files it w i l l use, what parameters w i l l be measured, what information w i l l be 
collected and the design of tests. We look at how the tool was implemented i n Chapter 
6. Chapter 7 explains the realisation of tests and the hashcat configurations that were 
used. Chapter 8 shows us how we analysed collected data from tests, what approach we 
used during analysis and why we used them, and the analysis results. F ina l ly , everything 
is summed up in the Chapter 9. 

G 



Chapter 2 

Password Cracking 

This Chapter describes password cracking, the types of attacks, and how each attack works. 

2.1 Password cracking essentials 
Password cracking is a process of a t tempting to obtain unauthorised access to protected 
content by force. There are two types of password cracking attacks: offline and online 
attacks. 

• Online attack[l l ] : W h e n the attacker attacks a live system, we cal l it an online 
attack. The attacker creates the candidate passwords, and the live system verifies 
them. A n online attack could include at tacking a website or email account or breaking 
electronic locks. Shortcomings of such attacks can be a l imi ted number of login 
attempts. 

• Offline attack[4]: W h e n the attacker has access to the password hash, we cal l it 
an offline attack. The attacker creates passwords and also verifies them on their own 
machines. A n offline attack could include breaking into a stolen hard disk drive, word 
document, or P D F file. 

Password cracking consists of two phases: password generation and password verification. 
We w i l l look at these phases in the following sections [9]. 

2.2 Password Generation 
The first step of password cracking is generating the candidate passwords. The password 
generation may use existing string fragments or entirely new ones from a pre-defined set 
of characters or their combination. More innovative methods also use mathematical prob
abil i ty and statistics. A n attack mode or attack type defines the creation of candidate 
passwords. The attack configuration further specifies the creation of candidate passwords. 
For example, it can l imi t the length of strings, use of numbers, capi tal letters and other 
details [9]. 

2.2.1 B r u t e - f o r c e A t t a c k 

The main principle of brute-force attacks is the exhaustive search. This type of attack uses 
one or more alphabets and a series of rules which define how to bu i ld strings from them. A n 
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alphabet is an ordered set of characters used for creating passwords. The classic incremental 
brute-force attack creates every possible sequence of characters of a given length from a 
single alphabet. More advanced brute-force attacks may use addi t ional rules that can, for 
example, specify what characters are used i n which posit ion. The main advantage of a 
brute-force attack is that it eventually finds the correct password. The ma in disadvantage 
is that finding the correct password can take a long time, depending on the number of 
candidate passwords [8]. 

2.2.2 Dictionary-based Attack 

Dictionary-based attacks use one or more wordlists of strings i n which each line represents 
a candidate password, which means that generating password guesses is just reading a text 
file line by line. Password candidates can be further modified, for example, by substi tuting 
some characters for others or making some characters capital . Password-mangling rules 
define such modifications [17]. 

2.2.3 Probabilistic Methods 

Nowadays, advanced password guessing techniques often employ the use of statistics and 
mathematical probabili ty. In addit ion, these methods can utilise information about the 
password creator, like the country of origin, language and other personal details. That is 
why these methods are highly efficient against human-created pass words [18]. 

2.3 Password verification 
The second step of password cracking is password verification. In this step, we verify 
whether the candidate password is correct. The method of password verification depends 
entirely on what k ind of password we t ry to crack. A s defined by Radek Hranicky, pass
word verification can be classified into three password verification schemes: hash-based, 
decryption-based and checksum-based password verification. 

2.3.1 Hash-based Password Verification 

The hash-based password verification is the simplest of a l l scenarios, where we have access 
to the hash of the correct password. Web applications and operating systems usually store 
passwords i n a hashed form. W h e n logging into the system, the applicat ion calculates the 
cryptographic hash of the input ted password and compares it to the stored one. If these 
hashes match, the user is allowed access to protected resources [9]. 

The verification process for password cracking is the same. Fi rs t , we take the candidate 
password and create its cryptographic hash. After that, we compare this hash to the correct 
one. If these hashes match, we found the correct password. 

2.3.2 Decryption-based Password Verification 

W h e n no verification value is stored w i t h the password hash, we can perform a known-
plaintext attack. To do this, we first need to get an encryption key. The process to get 
the key is defined by the protected media format's manufacturer. Once we get the key, we 
can decrypt the encrypted content. After the decryption, we can check for the expected 
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string, and i f it is there, we have found the correct password. To automate the process of 
decryption-based password verification, we need to know a part of plaintext [9]. 

2.3.3 C h e c k s u m - b a s e d P a s s w o r d Ver i f i ca t ion 

In cases where there is no verification value nor a known part of the plaintext, we can 
use checksum-based password verification. The protected media can include a checksum 
of its content, which we can compare to our own generated checksum. F i rs t , we need to 
generate an encryption key, just like in decryption-based password verification. After that, 
we decrypt the content or its part and calculate the checksum from the plaintext. We found 
the correct password i f the result is identical to the known checksum [9]. 

2.4 Hash Functions 
A s we already discussed, hashes are a big part of cyber security and password cracking. 
Different hashes provide different attributes, some being more easily cracked than others. 
Generally speaking, we can divide hash functions into two categories, cryptographic and 
non-cryptographic [7] hash functions. However, for the sake of this thesis, we w i l l only 
talk about cryptographic hash functions [2]. A good hash function should mainta in a few 
properties, them being: 

• Uni formly distributed - A perfect hash function produces unique output for every 
unique input. 

• Deterministic - The hash function produces the same output for any specific input. 

• Low complexity - It is easy to compute the hash value for any given input. 

A good cryptographic hash function needs to have a few more attributes. Wi thou t these 
attributes, we could easily crack the hash and access the protected content. These attributes 
are: 

• Pre-image resistance: It should be hard to find a message from which the hash 
has been created using the hash function. It should also be hard to find two different 
inputs from which the output hash is the same. 

• Coll ision resistance: There should not be two identical hashes after using the hash 
function on two different inputs. „Such a pair is called a cryptographic hash collision 
[16]." 

2.5 Password Cracking Tools 
There are many password cracking tools, some better than others. A few of the most 
popular are John the R i p p e r 1 , Hashca t 2 , LOphtc rack \ C a i n and A b e l , RainbowCrack ' 1 and 
H y d r a 0 . There are commercial password cracking tools, like LOphtcrack, but there are 

x h t t p s : //www.openwall.com/John/ 
2 h t t p s : //hashcat.net/hashcat/ 
3 h t t p s : //gitlab.com/lOphtcrack 
4http://project-rainbowcrack.com/ 
5 h t t p s : //github.com/vanhauser-thc/thc-hydra 
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also free, open-source solutions, like hashcat. These password cracking tools differ in their 
cracking performance and features; some use a graphical user interface, and some do not. It 
would be tough to compare every single password cracking tool , but because of its features 
and cracking performance, in this thesis, we talk about and use hashcat. 
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Chapter 3 

Graphic Processing Unit 

The graphic processing units, also known as G P U s , were first designed to accelerate the 
rendering of 3D graphics. However, in recent years G P U s are also uti l ised to parallelize 
processing of general purpose and not only image computing. Improvement of performance 
by effective use of G P U leads to the use of G P U s i n fields other than just computer graphics. 
One of these fields is password cracking. In this Chapter, we w i l l look at the use of G P U s 
in password cracking, the feats of using G P U s over C P U s and currently available G P U s 
and their main differences [14]. 

3.1 Difference Between Integrated and Discrete GPUs 
There are two types of G P U s , integrated and discrete ones. The main difference between 
these two is that while an integrated G P U is just a chip buil t into the processor, a discrete 
G P U is its own card and is separated from the C P U . A n integrated G P U shares resources 
wi th the C P U , and memory, for example, and a discrete G P U does not. 

Because a discrete G P U is its own board and is separate from the C P U , it provides 
much more performance but also draws more power and generates more heat. In password 
cracking, where we mostly care about performance, we prefer discrete G P U s over integrated 
ones, which is why I do not take integrated G P U s into account i n this thesis. 

3.2 General-purpose Computing on GPUs 
Offloading general processing from C P U to G P U is called General-Purpose computing on 
Graphics Processing Uni t s ( G P G P U ) . A s the computer graphic processing technology grows 
and new different applications are created, programmable G P U was developed to meet 
the demand for various graphic applications, which enables us to apply G P U for general 
processing. A chip of a G P U has many cores, which can perform to compute independently. 
This is why G P U s are very suitable for processing parallel tasks. [14, 16]. 

O p e n C L was developed for the purpose of general-purpose computing. It allowed pro
grammers to write code that would be directly run on top of the G P U without any issues. 
N V I D I A developed their own software for developing a program on their G P U s called 
C U D A . C U D A provides an environment for implementing G P U program code. The C U D A 
driver operates directly on top of G P U hardware. In addit ion, the C U D A ' s runtime l ibrary 
supports the usage of G P U [14]. 
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3.3 GPU vs CPU 
We can perform password cracking on both C P U and G P U . However, while the C P U can 
process many tasks fast sequentially, the G P U is much better suited for parallel computing 
[12]. Th is is because the main difference between G P U and C P U is the number of cores. 
W h i l e a C P U usually does not exceed 64 cores, the G P U has a much larger number of 
cores, ranging from hundreds to thousands. In addi t ion, each processing unit also differs 
in what k ind of memory it uses. W h i l e a C P U uses random-access memory ( R A M ) , G P U 
uses video random-access memory ( V R A M ) , which is located right on the G P U card. 

We can see the G P U and C P U architecture comparison in the Figure 3.1. The typical 
G P U and C P U consist of the same components [16]: 

• Ar i thmet ic logic unit ( A L U ) , which performs a l l the logical, ari thmetic and shift 
operations. In a G P U , this unit can also be called a „ th r ead processor" or a „ s t r eam 
processor." 

• Contro l Un i t ( C U ) , which controls the operations of the processor. For example, 
it controls the order of operations. 

• M e m o r y - E i the r R A M or V R A M , depending on the type of processing unit . 

• Cache memory is a very fast but small-capacity memory that functions as a buffer 
between the processing unit and ( V ) R A M . 

Cont ro l Un i t 

A L U A L U 

A L U A L U 

Cache 

R A M 

C P U 

I I 

I I 

E 

= 

I I 

E 

= 

I I E 

= I I 

B I I 

V R A M 

G P U 

Figure 3.1: A comparison of C P U and G P U architecture. 

3.4 Acceleration of Cracking Attacks 
A s the passwords get more robust and their encryption gets more complicated, it takes much 
more performance to crack them. To overcome this issue, we can use GPU-accelera ted com
puting. GPU-accelera ted computing uses a G P U alongside a C P U for better performance. 
Nowadays, this has been uti l ised in many computing areas that need high-intense computing 
performance. 
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3.4.1 O p e n C L 

O p e n C L , also known as Open Compu t ing Language, is a framework for parallel program
ming that includes A P I , libraries, a programming language and a runtime system to support 
software development. W i t h the use of O p e n C L , a programmer can write general-purpose 
programs that execute on G P U without the need to map their algorithms onto a 3D graphics 
A P I [13]. 

The O p e n C L C programming language is based on the I S O / I E C 9899:1999 C program
ming language [13]. It can run on every modern G P U . We can compute parallelly on 
G P U s using O p e n C L C and thus use their excellent computing power for general-purpose 
computing. 

3.4.2 C U D A 

C U D A - a parallel computing platform and programming model developed by N V I D I A . Just 
like w i th O p e n C L , w i t h C U D A , we can bu i ld GPU-accelera ted applications. The C U D A 
toolki t includes GPU-accelera ted libraries, debugging and optimisat ion tools, a C / C + + 
compiler, and a runtime l i b ra ry 1 . 

3.4.3 Comparison of C U D A and O p e n C L 

C U D A and O p e n C L have similar functionality, and using N V I D I A ' s development tools, 
por t ing the kernel code from one to the other requires min ima l changes. However, when 
comparing the two, C U D A performs better when transferring data from and to the G P U . 
C U D A ' s kernel execution also performs consistently faster than O p e n C L ' s , even though the 
implementations run nearly identical code. Choosing C U D A over O p e n C L would be wiser 
in password cracking, which is also projected i n modern password cracking applications like 
hashcat [10]. 

3.5 Analysis of available GPUs 
N V I D I A and A M D currently dominate the market. B o t h of them are well-known companies 
in the computer hardware sphere and have been around for years. The i r newest competitor 
is Intel, which recently got back into G P U design and manufacturing, but has also been 
around i n the computer hardware sphere for years. 

3.5.1 N V I D I A 

Jensen Huang, Chr i s Malachowsky and Cur t i s P r i e m founded N V I D I A i n 1993. In 1999 
N V I D I A invented the first graphics processing unit called GeForce 256 2 . Since then, 
N V I D I A has created many graphics cards that people wi th a l l kinds of computer ma
chines use, ranging from low-cost computers to data centre servers. We w i l l look at the 
G P U series ranging from 10 series up to 40 series. 

x h t t p s : //developer.nvidia.com/ cuda-toolkit 
2 h t t p s : //www.nvidia.com/en-us/about-nvidia/corporate-timeline/ 
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10 Series 

The 10 Series was released in 2016, and the G P U s are based on the Pascal architecture. 
The flagship of the 10 series was the Geforce G T X 1080 T i graphics card. It was the most 
powerful card available on the market at the t ime of its release, having as much as twice the 
power of the following most powerful G P U in line, the Geforce G T X 1080. GeForce G T X 
1080 T i even went toe-to-toe wi th the next generation. In the Table 3.1 is the comparison 
of a l l 10 series graphics cards'^. Interestingly, the number of C u d a cores i n the G T X 1 0 8 0 T i 
is five times greater than in the G T X 1 0 5 0 , which is not usually the case. Also , the Memory 
differences between each graphics card vary a lot. 

Geforce G T X Geforce G T X 
Geforce G T X 
1060 
( 6 G B / 3 G B ) 

Geforce G T X 
1080Ti/1080 1070Ti/1070 

Geforce G T X 
1060 
( 6 G B / 3 G B ) 

1050Ti/1050 

Archi tecture Pascal Pascal Pascal Pascal 
C u d a Cores 3584 / 2560 2432 / 1920 1280 / 1152 768 / 640 

Base Clock (GHz) 1.48 / 1.61 1.61 / 1.51 1.51 1.29 / 1.35 
Boost C lock (GHz) 1.58 / 1.73 1.68 1.71 1.39 / 1.46 
Standard Memory 
Config 

1 1 G B 8 G B G D D R 5 6 G B 4 G B 
Standard Memory 
Config 

G D D R 5 X / G D D R 5 / 3 G B G D D R 5 / 2 G B 
8 G B G D D R 5 G D D R 5 
G D D R 5 X 

Memory Interface 
W i d t h 

352-bit / 256-
bit 

256-bit 192-bit 128-bit 

Table 3.1: Compar ison of N V I D I A G T X 10 Series G P U s 

20 Series 

The Tur ing architecture is the core of 20 Series G P U s . Released i n 2018, ranging from 1920 
C U D A Cores to 4352 C U D A cores, the 20 series almost doubled in performance compared 
to the previous generation, except for GeForce G T X 1080 T i . In addi t ion, the 20 Series was 
the first series w i t h ray tracing, al lowing for much better image quality. See the Table 3.2 
for an exact comparison between the 20 Series graphics cards 1 . Compared to the previous 
generation, the number of C u d a cores d id not change much, but every G P U has at least 
8 G B of memory, and the processors are running at a bit faster clock speeds. Because of 
this, the memory interface w id th also increased i n some G P U s . 

3 h t t p s : //www.nvidia.com/en-eu/gef orce/ 10-series/ 
4https://www.nvidia.com/en-eu/geforce/graphics-cards/compare/?section=compare-20 
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Geforce R T X 
2080Ti/2080 

Geforce R T X 
2080 Super 

Geforce R T X Geforce R T X 
Geforce R T X 
2080Ti/2080 

Geforce R T X 
2080 Super 

2070 Super / 
2070 

2060 Super / 
2060 ( 1 2 / 6 G B ) 

Archi tecture Tur ing Tur ing Tur ing Tur ing 
C u d a Cores 4352 / 2944 3072 2560 / 2304 2176 / 2176 / 

1920 
Base Clock (GHz) 1.35 / 1.52 1.65 1.61/1.41 1.47 / 1.47 / 

1.37 
Boost C lock (GHz) 1.64 / 1.8 1.82 1.77 / 1.71 1.65 / 1.65 / 

1.68 
Standard Memory 
Config 

1 1 G B 
G D D R 6 / 
8 G B G D D R 6 

8 G B G D D R 6 8 G B G D D R 6 / 
8 G B G D D R 6 

8 G B G D D R 6 / 
1 2 G B 
G D D R 6 / 
8 G B G D D R 6 

Memory Interface 
W i d t h 

352-bit / 256- 256-bit 256-bit / 256- 256-bit / 256-
Memory Interface 
W i d t h 

bit bit bit / 192-bit 

Table 3.2: Compar ison of N V I D I A R T X 20 Series G P U s [6] 

16 Series 

In 2019 N V I D I A introduced the 16 series, which is based on Tur ing architecture. Manufac
tured at the same t ime as the 20 Series, the 16 Series was supposed to fil l the entry-level to 
the mid-range gap. The Table 3.3 shows us a comparison between each card of this series 5 . 
Even though this should have been an upgrade to 10 series low to midrange G P U s , we can 
see that the number of C u d a cores i n some graphics is smaller. The memory was also not 
upgraded, and neither was the memory interface. Interestingly, the clock speeds are faster. 

https://www.nvidia. com/en-eu/gef or ce/graphics-cards/compare/?section=compare-16 
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Geforce G T X Geforce G T X 
Geforce G T X 
1650 Super / 
1650 ( G 5 / G 6 ) 

Geforce G T X 
1660Ti/1660 1660 Super 

Geforce G T X 
1650 Super / 
1650 ( G 5 / G 6 ) 

1630 

Archi tecture Tur ing Tur ing Tur ing Tur ing 
C u d a Cores 1536 / 1408 1408 1280 / 896 / 

896 
512 

Base Clock (GHz) 1.5 / 1.53 1.53 1.53 / 1.49 / 
1.41 

1.74 

Boost C lock (GHz) 1.77 / 1.79 1.79 1.73 / 1.67 / 
1.59 

1.7 

Standard Memory 
Config 

6 G B G D D R 6 / 
6 G B G D D R 5 

6 G B G D D R 6 4 G B G D D R 6 / 
4 G B G D D R 5 / 
4 G B G D D R 6 

4 G B G D D R 6 

Memory Interface 
W i d t h 

192-bit / 192- 192-bit 128-bit / 128- 64-bit 
Memory Interface 
W i d t h 

bit bit / 128-bit 

Table 3.3: Compar ison of N V I D I A G T X 16 Series G P U s [6] 

30 Series 

30 Series, released i n 2020, was a big j ump i n performance. The 30 Series G P U s had over 
two times more performance than the previous generation. The core of 30 Series G P U s is 
the Ampere architecture. The flagship of the 30 Series, the Geforce R T X 3090 T i , reaches 
incredible 10752 C U D A cores. For more information about each graphic card of the 30 
Series 6 , see the Table 3.4 and Table 3.5. We can see that it is now a standard to have at 
least 8 G B of memory, whereas the R T X 3090Ti and R T X 3090 have an incredible 24 G B . 
Because of this, the memory interface also got larger. Interestingly, the clock speeds d id 
not get faster but stayed the same or got sl ightly slower. One more G P U belongs to this 
series, even though its name is different, the A 4 0 0 0 7 . This G P U uses the same Ampere 
architecture but was designed only to use a single slot and be a smal l G P U for smaller 
computer builds. It is further described in the Table 3.5. 

6https://www.nvidia.com/en-eu/geforce/graphics-cards/compare/?section=compare-specs  
7 h t t p s : //www.nvidia.com/en-us/design-visualization/rtx-a4000/ 
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Geforce R T X 
Geforce R T X 
3080Ti/3080 
(12 /10GB) 

Geforce R T X Geforce R T X 
3090Ti/3090 

Geforce R T X 
3080Ti/3080 
(12 /10GB) 

3070Ti/3070 3060Ti 

Archi tecture Ampere Ampere Ampere Ampere 
C u d a Cores 10752 / 10496 10240 / 8960 / 

8704 
6144 / 5888 4864 

Base Clock (GHz) 1.67 / 1.40 1.37 / 1.26 / 
1.44 

1.58 / 1.50 1.41 

Boost C lock (GHz) 1.86 / 1.70 1.67 / 1.71 / 
1.71 

1.77 / 1.73 1.67 

Standard Memory 
Config 

2 4 G B 1 2 G B 8 G B 8 G B 
Standard Memory 
Config 

G D D R 6 X / 
2 4 G B 
G D D R 6 X 

G D D R 6 X / 
1 2 G B 
G D D R 6 X / 
1 0 G B 
G D D R 6 X 

G D D R 6 X / 
G D D R 6 

G D D R 6 / 8 G B 
G D D R 6 X 

Memory Interface 
W i d t h 

384-bit / 384- 384-bit / 384- 256-bit / 256- 256-bit 
Memory Interface 
W i d t h 

bit bit / 320-bit bit 

Table 3.4: Compar ison of N V I D I A R T X 30 Series G P U s [6] 

Geforce R T X 3060 
(12 / 8 G B ) 

Geforce R T X 3050 
(8 G B / O E M ) 

R T X A4000 

Archi tecture Ampere Ampere Ampere 
C u d a Cores 3584 / 3584 2560 / 2304 6144 

Base Clock (GHz) 1.32 / 1.32 1.55 / 1.51 0.74 
Boost C lock (GHz) 1.78 / 1.78 1.78 / 1.76 1.56 
Standard Memory 
Config 

12 G B G D D R 6 / 
8 G B G D D R 6 

8 G B G D D R 6 / 
8 G B G D D R 6 

1 6 G B G D D R 6 

Memory Interface 
W i d t h 

192-bit / 128-bit 128-bit / 128-bit 256-bit 

Table 3.5: Compar ison of N V I D I A R T X 30 Series G P U s [6] 

40 Series 

The most recent and powerful Series N V I D I A produced is the 40 Series, released in 2022. 
Based on the A d a Lovelace architecture, N V I D I A c la ims 8 that their 40 Series cards have up 
to two times more performance than their predecessor, the 30 Series. In addit ion, N v i d i a 
GeForce R T X 4090 is the most powerful consumer G P U currently available. The Table 3.6 
shows the comparison of 40 Series graphic cards 9 . The R T X 4090 has a more significant 
number of C u d a cores than the previous generation. It is also interesting that we got faster 
clock speeds after a few generations. 

8https://www.nvidia. com/en-eu/geforce/graphics-cards/40-series/rtx-4090/ 
9https://www.nvidia. com/en-eu/gef or ce/graphics-cards/compare/?section=compare-40 
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Geforce R T X 4090 Geforce R T X 4080 
Archi tecture A d a Lovelace A d a Lovelace 
C u d a Cores 16384 9728 

Base Clock (GHz) 2.23 2.21 
Boost C lock (GHz) 2.52 2.51 
Standard Memory 
Config 

24 G B G D D R 6 X 16 G B G D D R 6 X 

Memory Interface 
W i d t h 

384-bit 256-bit 

Table 3.6: Compar ison of N V I D I A R T X 40 Series G P U s [6] 

3.5.2 A M D 

A M D was founded i n 1969 1 0 . Since then, the company has become one of the leaders in 
the computer hardware manufacturing industry. A M D manufactured their first graphics 
programming unit i n 2000, the Radeon R100. Since then, they have evolved alongside 
N V I D I A and have also delivered powerful G P U s throughout the years. We w i l l look at the 
G P U series ranging from the Radeon R 9 300 Series to the A M D Radeon R X 7000 Series. 

Radeon R 9 200, Radeon R 9 300, Radeon R 9 F u r y Series and Radeon R X 400 
Series 

Radeon R 9 300 and Radeon R 9 Fury Series were both released i n 2015. Thei r predecessor 
Radeon R 9 200 Series, was released two years before that. They were the go-to solution for 
budget graphics cards. Released i n 2016, the Radeon R 9 400 Series was a budget option 
compared to N V I D I A ' s G T X 10 Series. The performance was lacking compared to A M D ' s 
previous G P U Series. 

Radeon R X 500 and Vega Series 

W h i l e remaining the budget option on the market, the R X 500 Ser ies 1 1 delivered more 
performance than the previous A M D G P U series. The R X 500 Series was released i n 2017, 
and its core was the 4th Gen G C N Architecture. Released in the same year as the R X 
500 Series, the Vega Series offered more power for more price. The R X Vega-64 1 2 G P U 
could hold its own compared to the N V I D I A G T X 1080, which was N V I D I A ' s 2nd most 
powerful consumer-grade G P U at the t ime, and the R X Vega-56 1 3 was not left i n the dust 
either. For a comparison of each G P U i n these series, see the Table 3.7 and the Table 3.8. 
Interestingly, Vega series G P U s have a 2048-bit memory interface wid th , much larger than 
any other G P U . They also have a large number of stream processors and 8 G B of ram. 

1 0 h t t p s : //www.amd.com/en/corporate.html  
n h t t p s : //www.amd.com/en/RX-series 
https://www.amd.com/en/products/graphics/radeon-rx-vega-64  

1 3https://www.amd.com/en/products/graphics/radeon-rx-vega-56 
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Radeon R X 
580 

Radeon R X 
570 

Radeon R X 
560 

Radeon R X 
550 

Archi tecture 4th G e n G C N 4th G e n G C N 4th Gen G C N 4th G e n G C N 
Stream Processors 2304 2048 896/1024 512 
Base Clock (GHz) 1.26 1.17 1.18 1.1 

Boost C lock (GHz) 1.34 1.24 1.28 1.18 
Standard Memory 
Config 

8 G B G D D R 5 8 G B G D D R 5 4 G B G D D R 5 4 G B G D D R 5 

Memory Interface 
W i d t h 

256-bit 256-bit 128-bit 128-bit 

Table 3.7: Compar ison of A M D R X 500 Series G P U s [1] 

Radeon R X Radeon R X 
Vega 64 Vega 56 

Archi tecture Vega Vega 
Stream Processors 4096 3584 
Base Clock (GHz) 1.25 1.16 

Boost C lock (GHz) 1.55 1.47 
Standard Memory 
Config 

8 G B H B M 2 8 G B H B M 2 

Memory Interface 
W i d t h 

2048-bit 2048-bit 

Table 3.8: Compar ison of A M D Vega Series G P U s [1] 

Radeon R X 5000 Series 

Released i n 2019, the Radeon R X 5000 Series was the first to use the 7nm R D N A architec
ture. Even though N V I D I A s graphics cards s t i l l outperformed A M D s , it was a huge step. 
The Table 3.9 shows a comparison of each G P U of the series. Here we can see that some 
cards have the same amount of stream processors but different amounts of memory, clock 
speeds, and memory interface wid th . D u r i n g the password cracking performance analysis, 
this can lead to some excit ing finds. 
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Radeon R X Radeon R X Radeon R X Radeon R X 
5700XT/5700 5600XT/5600 5500XT/5500 5300 X T 5300 

Archi tecture A M D R D N A A M D R D N A A M D R D N A A M D R D N A 
Stream Processors 2560 / 2304 2304 / 2048 1408 1408 
Base Clock (GHz) 1.61 / 1.47 1.13 1.61 / 1.5 1.67/1.33 

Boost C lock (GHz) 1.91 / 1.73 1.56 1.85 1.85/1.65 
Standard Memory 
Config 

8 G B G D D R 6 6 G B G D D R 6 8 G B G D D R 6 / 
4 G B G D D R 6 

4 G B G D D R 5 / 
3 G B G D D R 6 

Memory Interface 
W i d t h 

256-bit 192-bit 128 bit 96-bit 

Table 3.9: Compar ison of A M D R X 5000 Series G P U s [1] 

Radeon R X 6000 Series 

The Radeon R X 6000 Ser ies 1 4 was released in 2021 as the successor to the Radeon R X 5000 
Series. It was the first series that could compete wi th the N V I D I A R T X 30 Series, even on 
the top level. The core of the Radeon R X 6000 Series is the A M D R D N A 2 architecture. 
See the Table 3.10 and the Table 3.11 for the compassion of each graphics card of the series. 

According to the tables, we can see that the A M D G P U s also j ump on a standard 
min imum of 8 G B of memory, except for Radeon R X 6400. Interestingly, Radeon R X 
6500XT uses 8 G B of memory, but only a 64-bit interface, while the other cards w i t h the 
same memory use a 128-bit one. In other G P U s wi th a larger amount of memory, the 
interface wid th also gets larger. We can also see that the number of stream processors and 
the clock speeds got faster than in the previous generations. 

Radeon R X 
6 9 5 0 X T / 
6900XT 

Radeon R X 
6800XT/6800 

Radeon R X 
6750XT 

Radeon R X 
6700XT/6700 

Archi tecture A M D R D N A 2 A M D R D N A 2 A M D R D N A 2 A M D R D N A 2 
Stream Processors 5120 4608 / 3840 2560 2560 / 2304 
Base Clock (GHz) 1.89 / 1.83 1.83 / 1.70 2.15 2.32 / 1.94 

Boost C lock (GHz) 2.31 / 2.25 2.25 / 2.11 2.60 2.58 / 2.45 
Standard Memory 
Config 

1 6 G B G D D R 6 1 6 G B G D D R 6 1 2 G B G D D R 6 1 2 G B G D D R 6 

/ 
1 0 G B G D D R 6 

Memory Interface 
W i d t h 

256-bit 256-bit 192-bit 192-bit / 160-
bit 

Table 3.10: Compar ison of A M D R X 6000 Series G P U s [1] 

https://www.amd.com/en/graphics/radeon-rx-graphics-6000-series 
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Radeon R X 
6650XT 

Radeon R X 
6600XT/6600 

Radeon R X 
6500XT 

Radeon R X 
6400 

Archi tecture A M D R D N A 2 A M D R D N A 2 A M D R D N A 2 A M D R D N A 2 
Stream Processors 2048 2048 / 1792 1024 768 
Base Clock (GHz) 2.06 1.97 / 1.63 2.31 1.92 

Boost C lock (GHz) 2.64 2.59 / 2.49 2.82 2.32 
Standard Memory 
Config 

8 G B G D D R 6 8 G B G D D R 6 8 G B G D D R 6 4 G B G D D R 6 

Memory Interface 
W i d t h 

128-bit 128-bit 64-bit 64-bit 

Table 3.11: Compar ison of A M D R X 6000 Series G P U s [1] 

Radeon R X 7000 Series 

The newest G P U series made by A M D is Radeon R X 7000 Ser ies 1 5 . Based on the A M D 
R D N A 3 architecture, the Radeon R X 7000 Series competes wi th the N V I D I A s R T X 40 
Series on every level. The Table 3.12 shows the comparison of each graphics card from the 
Radeon R X 7000 series. The number of stream processors and the memory size got larger 
than i n the previous generation, and the clock speeds also got faster. 

Radeon R X Radeon R X 
7900 X T X 7900 X T 

Architecture A M D R D N A 3 A M D R D N A 3 
Stream Processors 6144 5376 
Base Clock (GHz) 1.86 1.5 

Boost C lock (GHz) 2.5 2.4 
Standard Memory 
Config 

2 4 G B G D D R 6 20 G B G D D R 6 

Memory Interface 
W i d t h 

384-bit 320-bit 

Table 3.12: Compar ison of A M D R X 7000 Series G P U s [1] 

3.5.3 Intel 

Intel got back into Discrete G P U manufacturing only recently. However, w i th their new 
A r c Series, they can compete i n the midrange G P U market. 

Intel A r c Series 

Intel A r c Series G P U s are buil t using the X e H P G architecture. Ranging from low-end A r c 
3 G P U s up to high mid-range A r c 7 G P U s , Intels G P U s bring the competi t ion to the table. 
For more information about each specific graphics card, see the Table 3.13. 

1 5 h t t p s : //www.amd.com/en/graphics/radeon-rx-graphics 
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Intel A r c 
A770 ( 1 6 / 8 G B ) 

Intel A r c 
A750 

Intel A r c 
A380 

Intel A r c 
A310 

Archi tecture X e H P G X e H P G X e H P G X e H P G 
Shading units 4096 3584 1024 768 

Base Clock (GHz) 2.10 2.05 2.00 2.00 
Boost C lock (GHz) 2.40 2.40 2.05 2.00 
Standard Memory 
Config 

1 6 G B G D D R 6 

/ 
8 G B G D D R 6 

8 G B G D D R 6 6 G B G D D R 6 4 G B G D D R 6 

Memory Interface 
W i d t h 

256-bit 256-bit 96-bit 64-bit 

Table 3.13: Compar ison of Intel A r c Series G P U s [5] 
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Chapter 4 

Hashcat 

In this section, I describe the Hashcat tool and the attack modes it provides. 
Hashcat is the self-proclaimed world's fastest and most advanced password recovery-

t o o l 1 . Jens „ a t o m " Steube created Hashcat in 2009 as a freeware cracking solution wi th 
proprietary code. Since then, it has been made publ ic ly available under an M I T licence and 
nowadays is an open-source project. The newest version combines the previous C P U - b a s e d 
hashcat, now called hashcat-legacy 2 , and G P U - b a s e d oclHashcat 3 . 

Hashcat has consequently won the last four years of Crack me i f you can contests 
organised by KoreLogic ' 1 and has placed i n the top 2 positions during previous competitions. 
Based on that, the pure cracking performance of hashcat is its core benefit. Unfortunately, 
unlike many other cracking tools, hashcat has no graphical user interface (GUI) and can 
only be launched wi th a command-line interface, thus requiring a user to be advanced. 

Over 70 users have contributed to the repository, and hashcat is currently being devel
oped on G i t H u b . Hashcat also has a community of people that help others wi th its use and 
answer questions on their forum and other social media. Not only do hashcat developers 
provide the source code, but they also provide pre-compiled binaries for both L i n u x and 
Windows systems [9]. 

4.1 Attack Modes in Hashcat 
A s introduced in the Section, an attack mode represents the process behind creating can
didate passwords. A dict ionary attack and a brute-force attack are the two most knowns 
attack modes. 

Hashcat supports the brute-force attack, the combinator attack, the dict ionary attack, 
the hybr id attack, the mask attack, the rule-based attack, the toggle-case attack and the 
association attack modes. 

Each attack mode is better suited for a different si tuation; to get the correct password, 
we must use the correct one. For example, we might use a brute-force attack on a password 
that is twenty characters long, which might take years to find. However, if the password 
consists of two worlds found i n a dictionary, a dict ionary attack would find it i n no time. 
Tha t is why choosing the correct attack mode is crucial i n password cracking. 

x h t t p s : //hashcat.net/wiki/doku.php?id=hashcat 
2 h t t p s : //hashcat. net/wiki/doku.php?id=hashcat-legacy 
3 h t t p s : //hashcat.net/wiki/doku.php?id=oclhashcat 
4 h t t p s : //contest.korelogic.com/ 
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4.1.1 Brute-Force attack and Mask attack 

The brute-force attack tries every possible combinat ion of characters un t i l it finds the 
correct password. W h i l e the tool w i l l eventually find the correct password, this can be very 
time-consuming, depending on the length and complexity of the password. Because of this, 
it is better to use some optimisat ion, like the use of masks. 

Mask attack is the only k ind of brute-force attack hashcat provides. The reason be
hind this is to reduce the password candidate keyspace (the number of possible candidate 
passwords [15]) to a more efficient one and save the time it takes to crack the password. 
Therefore, there is no downside compared to the t radi t ional brute-force attack. 

„A password mask is a template defining allowed characters for each posit ion i n the 
password [9]." Masks i n hashcat have the form of a string, which configures the keyspace 
for the password candidates using placeholders. A placeholder can be either a bui ld-n 
charset variable, a static letter or a custom charset variable. A letter „?" followed by one 
of the bui l t - in charset (for example, 1, u, s, d, a, b) or one of the custom charset (1, 
2, 3, 4) variable names indicates a variable. The Table 4.1 shows a l l of these charsets. For 
example, a custom charset consisting of the chars „0123456789abcdef" can be defined by 
the command -1 Tdabcdef. The mask is always the same length as the password, meaning 
that i f we have a mask ?1?1?1?1 the password w i l l only be four characters long. Tha t is why 
we must repeat the attack several times to t ry cracking passwords of different sizes. The 
use of the „-increment" flag automates the process and increments candidate passwords 
after each iteration, begging at the length of 1 character and going a l l the way up to the 
length of the whole mask. The m i n i m u m and m a x i m u m length can also be set using the 
M-increment-min" and the M-increment-max" flags. 

Symbol Descr ipt ion Charset 
?d digits 0123456789 
?1 lower-case L a t i n alphabet ab cdefghij k lmnop qrs t u v wxy z 
?u upper-case L a t i n alphabet A B C D E F G H I J K L M N O P Q R S T U V W 

X Y Z 
?h digits and first s ix lower-case charac

ters from L a t i n alphabet 
0123456789abcdef 

? H digits and first six upper-case charac
ters from L a t i n alphabet 

0123456789abcdef 

?s special characters «space» ! „ # $ % & ' ()*+,-
./:;<=>?@[\P_'{|}~ 

?a lower-case and upper-case L a t i n a l 
phabet and special characters 

?l?u?d?s 

?b a l l values from 0x00 to O x F F 
?1 custom charset number one 
?2 custom charset number two 
?3 custom charset number three 
?4 custom charset number four 

Table 4.1: Hashcat mask charset. 
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4.1.2 Dictionary Attack and Combinator Attack 

The dict ionary attack, also known as a "wordlist attack,,, or in the hashcat called "straight 
mode,,, is straightforward. The cracking tool reads a text file, also known as a dict ionary 
or wordlist, line by line and tries each line as a password candidate. 

The combinator attack takes every word of a dict ionary and appends it to each word in 
a dictionary. So, for example, i f we have a dict ionary containing the words "goal , sleight, 
Peter,,, the cracking tool creates the following candidate passwords: goalsleight, goalPeter, 
sleightgoal, sleightPeter, Petergoal, Petersleight. 

In hashcat, we must specify precisely two dictionaries i n the command line. For exam
ple, a command could look like this: . 
hashcat64.exe -m 0 -a 1 hash.txt dictionaryl.txt dictionary2.txt. The -m ar
gument sets the hash mode and the -a argument sets the attack mode, in this case, M D 5 
hash and combinator attack mode. We can also add rules to the dictionaries, which can 
be called rule-based a t tack 5 . It is one of the most complicated attack modes. Rule-based 
attack is like a programming language designed for password candidate generation. For 
example, these rules can be applied on top of wordlists. John the Ripper and Password-
sPro are other tools that use these rule-based attacks. The functions for creating rules are 
identical in these three password cracking tools, w i th the exception of new functions added 
to Hashcat. These new functions have unique names to avoid conflicts. 

W i t h the clever use of these rules, we can make the cracking performance much higher. 
If we know some information about the habits of the password creator, we can easily modify 
what k ind of password candidates the hashcat w i l l try. For example, if we know that the 
system requires the use of a capi ta l letter and a number, we w i l l not create candidate 
passwords without these. 

4.1.3 H y b r i d Attack 

The hybr id attack is very similar to the combinator attack. It combines a dict ionary 
wi th the result of a brute-force attack. In other words, the brute-force keyspace is either 
prepended or appended to every dict ionary word. A n attack like this can be used when we 
know part of the correct password to crack it faster. A n example command for hashcat is: 
hashcat64.exe -m 0 -a 6 dictionary.txt ?1?1?1. To emulate a hybr id attack, we can 
also use so-called brute-force rules. We need to generate a rule and pass it to hashcat v ia 
the "-r bf.rule.,, 

4.1.4 Toggle-Case Attack 

The toggle-case attack is pretty straightforward. It creates a l l possible combinations of 
upper-case and lower-case variants for each candidate password i n the wordlist . This attack 
was separate i n the legacy hashcat, and in the current release of hashcat(6.2.6), we can 
emulate this attack using specialized rules 6 . 

4.1.5 Association Attack 

We use the association attack when a l ikely password or password component is already 
known. It tries every single word in a single wordlist against a single hash. To use this 

5 h t t p s : //hashcat.net/wiki/doku.php?id=rule_based_attack 
6 h t t p s : //hashcat.net/wiki/doku.php?id=toggle_attack_with_rules 
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method, we must meet the requirements: the wordlist must be the same length as the target 
hash list, and i f the target list has work factors, they must a l l be identical; for example, 
a l l bcrypts are cost 10 and cannot be cost l l 7 . In hashcat, we can also use rules w i th this 
attack. 

4.2 Supported Hash Families 
Hashcat supports several different types of hashing algori thm families 8 , which can be 
grouped into the following categories: 

• Message-Digest A l g o r i t h m ( M D ) family: Th is group includes popular algorithms such 
as M D 4 , M D 5 , and H a l f M D 5 . These algorithms create a hash from an input message 
of any size. 

• Secure Hash A l g o r i t h m ( S H A ) family: Th is group includes algorithms such as S H A - 1 , 
SHA-224, SHA-256 , SHA-384 , and S H A - 5 1 2 . These algorithms create a hash from an 
input message and are considered more secure than the M D family. 

• K e y Derivat ion Funct ion ( K D F ) family: This group includes algorithms such as 
bcrypt, scrypt, and P B K D F 2 - H M A C . These algorithms are used to create a cryp
tographic key from a password. They are considered more secure than the algorithms 
in the previous two groups, as they are designed to be more resistant to brute-force 
attacks. 

• Keyed-Hash Message Authent ica t ion Code ( H M A C ) family: Th is group includes al
gorithms such as P B K D F 2 - H M A C - S H A 1 , P B K D F 2 - H M A C - S H A 2 5 6 , and P B K D F 2 -
H M A C - S H A 5 1 2 . 

• Cryptographic A l g o r i t h m family: This group includes algorithms such as ChaCha20 . 
These algorithms encrypt or decrypt a given input message. 

• Specific Hash Fami ly : Th is group includes several specific hash functions that are 
used in specific systems or applications, such as W P A / W P A 2 , M S - S Q L , M Y S Q L 3 2 3 , 
M Y S Q L 4 . 1 , P O S T G R E S Q L , P D F 1.1 - 1.7, Office 2003-2013, A p p l e Secure Notes or 
M a c O S X . 

7 h t t p s : //hashcat.net/wiki/doku.php?id=association_attack 
8 h t t p s : //hashcat.net/wiki/doku.php?id=hashcat 
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Chapter 5 

Design of a Tool for Password 
Cracking Analysis on G P U s 

This Chapter describes the design of a tool for testing the password cracking performance 
of ind iv idua l G P U s . It explains how the tool w i l l work, what k ind of information it w i l l 
collect, and its input and output. 

5.1 General Concept 
To test G P U s ' processing power and capability, a l l we need is the hashcat tool . However, 
running tests one by one manually would be t ime-consuming and ineffective. Because of 
this, we need a tool that w i l l automate the process. The tool for testing G P U s w i l l use 
the hashcat as its core. The tool w i l l control the hashcat and its input, collect the output 
information, parse i t , and save it into a file. The tool w i l l run mult iple tests on each G P U . 
The tests w i l l be saved i n configuration files, and the tool w i l l parse these files and run the 
tests based on the input parameters saved i n them. The collected information are further 
explained i n the secion 5.8. 

The figure 5.1 illustrates the general concept of the tool . F i r s t , the input files w i l l 
contain the configuration of the hashcat and the hashes that w i l l be cracked, which w i l l 
be parsed and then passed to the hashcat input . This configuration w i l l also contain the 
location for dictionaries and rulesets, which the hashcat w i l l use. Dictionaries are wordlists 
that hashcat uses for password-cracking purposes, and rulesets contain rules that modify 
these wordlists. After that, the hashcat output and hardware info are collected for the 
durat ion of the hashcat running. Hardware info is other information about G P U hardware 
that hashcat does not provide. Parsed and saved into output files. 
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Hardware info 

Input files Analys is tool Output files Input files Analys is tool Output files 

Configuration Output 

Dictionaries Hashcat Ruleset 

Figure 5.1: General concept of analysis tool . 

5.2 Input Files 
There are two kinds of input files, one that contains the hashes and one that contains 
the configuration. The tool w i l l load up these files and then run the tests consecutively. 
The Y A M L language, in which the configuration files w i l l be saved, is a data serialisation 
language that is easily readable by humans and programs. The Y A M L language is a superset 
of J S O N language but is more suited for configuration files than J S O N because humans 
can read it more easily, which is the reason why I have chosen one over the other. 

Figure 5.2 shows the file containing hashes, which includes the hash-mode 1 number used 
in hashcat settings that specifies the type of hash used, for example, M D 5 , A E S C r y p t or 
TrueCryp t . Then there is the name of the hash and the hash that the hashcat w i l l be 
cracking. These hashes are taken from hashcat example hashes i n the hashcat w i k i 2 . 

In the Figure 5.3, we can see an example of a configuration file. The attack-mode pa
rameter specifies which attack mode is used, for example, brute-force or dict ionary attack. 
The charset parameter specifies the charset used in the brute-force (mask) or hybr id at
tack types. The increment parameter specifies i f the hashcat w i l l use increment, and the 
increment-min and increment-max parameters specify the increment range i n a mask. The 
dictionaries parameter specifies the path to the folder where the dictionaries are saved or to 
the actual dictionaries, and the ruleset parameter specifies the path to the file w i th rules. 

x h t t p s : //hashcat.net/wiki/doku.php?id=hashcat#options 
2 h t t p s : //hashcat.net/wiki/doku.php?id=example_hashes 
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24700|Stuffit5|66a75cb059 
2 24S00|UmbracoHMAC-SHA1|GuigXlGHHI7BzwLCJlDbcKR2FP4= 
3 | 24900 | DahuaALitherticationMDB | GRuHbyVp| 

Figure 5.2: A n example hash input file of analysis tool . 

1 attack-mode: "hybrid-a" 
2 charset: "?l?2?2?2?2?2?2?3?3?3?3?d?d?d?d" 
3 custom-charsets: 
4 charse t l : ">l?d?u" 
5 charset2: "?l?d" 
6 charset3: "?l?d*J 
7 increment: true 
8 increment-min: 5 
9 increment-max: 15 

10 d i c t i onar i e s : " . . Wbache lons - thes i s -malrWdict ionar iesWEngl i sh . die" 
11 ruleset : " . .Wbache lors - thes i s -mainWrulesWrulese t l . ru l e" | 

Figure 5.3: A n example config input file of analysis tool . 

5.3 Output Files 
The program w i l l create output files and then save the output information inside them. 
There w i l l be separate output files w i t h the test results for each test. In one output file, 
there w i l l be data collected from hashcats output. This output file w i l l also contain the 
error log and the settings wi th which the hashcat was launched. 

Figure 5.4 shows us an example of an hashcat output file. The most crucial info which 
we w i l l use i n the analysis is the speed [hashes/s], temperature [°C] and ut i l isat ion [%]. We 
w i l l save other hardware information in the second output file, like memory used[MB] and 
bus interface utilisation[%]. A n example of this file is shown i n the Figure 5.5. 

S T A T U S J S P E E D J H I L I S E C O N D S J E X E C R U N T I M E J C U R K U J P R O G R E S S J P R O G R E S S A L L J R E C H A S H J R E C H A S H J R E C S A L T J R E C 5 A L T , T E M P , R E J E C T E D , U T I L 

3 , 1 3 0 9 8 5 4 8 3 0 , 1 0 8 8 , 6 . 7 4 4 3 2 4 , 0 , 3 3 9 1 7 3 2 7 2 6 , 1 8 1 7 4 2 4 9 8 8 4 1 , 0 , 1 , 0 , 1 , 8 3 , 6 3 7 9 4 2 , 9 2 

3 , 1 3 8 8 7 8 8 8 5 3 , 1 0 8 8 , 6 . 7 8 9 1 5 1 , 0 , 4 4 2 6 6 7 7 2 3 8 , 1 8 1 7 4 2 4 9 8 8 4 1 , 3 , 1 , a , 1 , 8 4 , 6 3 7 9 4 2 , 9 3 

3 , 1 3 0 6 2 5 6 2 5 9 , 1 0 8 8 , 6 . 8 5 6 3 5 7 , 3 , 5 4 3 9 6 3 1 6 5 4 , 1 8 1 7 4 2 4 9 8 8 4 1 , 3 , 1 , 3 , 1 , 8 2 , 6 3 7 9 4 2 , 9 2 

3 . 1 3 0 6 8 3 2 3 3 0 . 1 0 8 8 . 6 . 7 6 9 0 2 5 . 8 . 6 4 6 7 2 8 6 1 3 4 . 1 8 1 7 4 2 4 9 8 8 4 1 . 3 . 1 . 3 . 1 . 8 3 . 6 3 7 9 4 2 . 9 2 

3 . 1 3 3 6 3 9 4 9 4 3 . 1 0 8 8 . 6 . 7 6 8 2 4 2 . 3 . 7 4 8 7 4 7 8 5 8 2 . 1 8 1 7 4 2 4 9 8 8 4 1 . 3 . 1 . 3 . 1 . 8 3 . 6 3 7 9 4 2 . 9 3 

3 , 1 3 3 6 3 9 7 9 3 4 , 1 3 8 8 , 6 . 7 7 8 7 5 2 , 3 , 8 5 8 7 7 3 5 3 3 8 , 1 8 1 7 4 2 4 9 8 8 4 1 , 3 , 1 , 3 , 1 , 8 4 , 6 3 7 9 4 2 , 9 2 

1 1 , 1 3 8 5 3 3 9 9 9 9 , 1 8 8 0 , 6 . 7 9 3 1 3 8 , 8 , 9 5 2 7 9 9 9 4 7 8 , 1 8 1 7 4 2 4 9 8 8 4 1 , 3 , 1 , 8 , 1 , 8 3 , 6 3 7 9 4 2 , 9 2 

1 1 , 1 3 8 5 3 3 9 9 9 9 , 1 8 8 3 , 6 . 7 9 3 6 7 4 , 8 , 9 5 2 7 9 9 9 4 7 8 , 1 8 1 7 4 2 4 9 8 3 4 1 , 3 , 1 , 8 , 1 , 8 3 , 6 3 7 9 4 2 , 9 2 

e r r 1 , 

h a s h c a t a r g u m e n t S j h a s h c a t . e x e - a 1 - - r u n t i m e 1 8 - m 1 4 1 8 8 3 7 3 8 7 f f S d Q d a f e l 5 1 8 1 5 2 8 3 1 8 6 1 4 6 3 7 4 3 . . 

\ b a c h e l o r * 5 - t h e s i s - n a i n \ d i c t i o n a r - i e s \ E r i g l i s h . d i e . . \ b a c h e l o r s - t h e s i s - m a i n \ d i c t i o n a r i e s \ E r i g l i s h 2 . d i e - - m a c h i n e - r e a d a b l e 

- - s t a t u s - - s t a t u s - t i m e r = l - - q u i e t 

Figure 5.4: A n example of hashcat data output file from the analysis tool . 
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MEMORYMAX,HEHORY_USED,MEMORY_UTILJ BUS_UTIL 
2 16376.0, 3624. 66796875.,22.134925212290783,60.0 

16376.0, 5770. 66796S75..35.238568446201754,40.0 
16376.0, 5770. 66796875.,35.238563446201754.,97.0 
16376.0, 5770. 66796875.,35.238568446201754.,97.0 
16376.0, 5770. 66796875.,35.238563446201754,97.0 
16376.0, 5770. 66796875.,35.238563446201754.,97.0 
16376.0,5770.66796875^5.238563446291754^7.0 
16376.0, 5770. 66796875.,35.238563446201754,97.0 
16376.0, 5770. 66796S75..35.238563446201754,96.0 
16376.0, 5770. 66796875.,35.238568446291754.,97.0 

12 16376.0, 5770. 66796875.,35.238563446201754.,97.0 
16376.0, 5770. 66796875.,35 .238563446201754.,97.0 
16376.0, 5770. 66796875.,35 .238568446291754.,97.0 
16376.0, 5770. 66796875.,35 .238563446201754.,97.0 
16376.0, 5770. 66796875.,35 .238568446291754.,97.0 
16376.0, 5770. 66796875.,35 .238568446291754.,97.0 
16376.0, 5770. 66796875.,35 .238563446201754.,97.0 
16376.0, 5770. 66796875.,35 .238568446291754.,97.0 

20 16376.0, 5770. 66796S75..35.238563446201754,97.0 
21 16 3 7 6.0, 5 7 74.4179 687 5., 3 5 .26146781112604 , 97. 0J 

Figure 5.5: A n example of other hardware information output file from analysis tool. 

After the testing, the testing tool w i l l be able to run wi th different settings that w i l l 
create min , max, mean and median values of important collected data. These data w i l l be 
stored i n two types of files, one for each test and one for each type of attack mode. We can 
see how the C S V file header of these files w i l l look like in the Table 5.1. The only difference 
is that in the attack mode files, there is one more i tem in the header: the name of the used 
hash. 
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G P U Name of the G P U . 
H A S H Name of the hash, only in the attack mode C S V . 

C O N F I G The attack mode used. 
S P E E D M I N The lowest recorded speed. 

S P E E D M A X The highest recorded speed. 
S P E E D M E A N The mean value counted out of speed values. 

S P E E D M E D I A N The median value counted out of speed values. 
U T I L _ M I N The lowest recorded ut i l isat ion of G P U . 

U T I L _ M A X The highest recorded ut i l isat ion of G P U . 
U T I L M E A N The mean value counted out of ut i l isat ion values. 

U T I L M E D I A N The median value counted out of ut i l isat ion values. 
T E M P M I N The lowest recorded temperature of G P U . 

T E M P M A X The highest recorded temperature of G P U . 
T E M P _ M E A N The mean value counted out of temperature values. 

T E M P M E D I A N The median value counted out of temperature values. 
M E M U S E D M I N The lowest recorded memory usage of G P U . 
M E M U S E D M A X The highest recorded memory usage of G P U . 

M E M U S E D M E A N The mean value counted out of memory usage values. 
M E M U S E D M E D I A N The median value counted out of memory usage values. 

M E M U T I L M I N The lowest recorded memory ut i l isat ion of G P U . 
M E M U T I L M A X The highest recorded memory ut i l isat ion of G P U . 

M E M U T I L M E A N The mean value counted out of memory ut i l isat ion values. 
M E M U T I L M E D I A N The median value counted out of memory ut i l isat ion values. 

B U S _ U T I L _ M I N The lowest recorded memory bus ut i l isat ion of G P U . 
B U S _ U T I L _ M A X The highest recorded memory bus ut i l isat ion of G P U . 

B U S _ U T I L _ M E A N The mean value counted out of memory bus ut i l isat ion val
ues. 

B U S _ U T I L _ M E D I A N The median value counted out of memory bus ut i l isat ion 
values. 

Table 5.1: Exp la ined header of C S V analysis files. 

5.4 Hashcat 
We have chosen hashcat as the core for this tool for mult iple reasons. Reason number 
one is that hashcat is the fastest cracking tool currently available. The second reason is 
that hashcat is an applicat ion controlled through the command-line interface. Thus we can 
easily make a controller tool that w i l l automate the password cracking process. The th i rd 
reason being the hashcat also has a benchmark mode, showing us the theoretical max imum 
password cracking performance. Theoretical , because the actual cracking performance is 
usually lower. Final ly , the hashcat has machine-readable output as well as J S O N format 
output. Because of this, we can parse the results of the tests more efficiently and effectively. 

The analysis tool w i l l make use of both the benchmark mode and of cracking actual 
hashes. F i r s t l y the benchmark mode w i l l be run w i t h the same hash mode as the actual 
test. T h e n we w i l l run the test and compare the characteristics of these two measurements 
and see how the theoretical performance differs from the actual one. Unfortunately, the 
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benchmark output is not the same as the default status output, and it can not run for 
the same durat ion, but we can s t i l l collect cracking performance data and the data from 
hardware and compare what we have. 

5.5 Measurement methodology 
We w i l l measure cracking performance, as well as other hardware information. The measure
ment methodology differs when using the benchmark mode and running the tests. W h e n 
running the benchmark mode, we only collect a l l hashcat output information and save it 
to a file. W h e n running a test, we w i l l also collect a l l information from the hashcat output, 
but we skip the first 2 seconds of collected data because the cracking performance in these 
2 seconds differs from the rest of the test. The test runs for an addi t ional 10 seconds (or 
more, depending on the type of the attack), and the hashcat output data gathered during 
this t ime w i l l be used for analysis. Other G P U parameters are another set of data collected 
alongside the hashcat output. These parameters are the m a x i m u m G P U memory, G P U 
memory uti l isat ion, the used G P U memory, and the bus ut i l isat ion. 

5.6 Design of the Tool 
The tool w i l l be an applicat ion controlled through the command-line interface. There w i l l 
be no graphical user interface because it is not needed for the purpose of this tool . Figure 
5.6 describes the workflow of how the program w i l l work. The applicat ion w i l l have two 
modes, one for running tests and collecting data and the other one for creating comparison 
data from the collected data. In the testing mode, the applicat ion w i l l start reading the 
input files from a specified folder. After it loads i n the first input file, it w i l l parse it and 
load up the C S V file containing hashes. T h e n it sets up the tests based on the settings 
from an input file and hashes from the C S V file. Then the applicat ion w i l l launch hashcat 
w i th these settings. After each test is collected, the to l l w i l l save the collected data. 

The second mode, in which we can run the tool , w i l l load up a l l the data it created 
during testing, and then it creates comparison data used during the analysis. It w i l l create 
mean and median values from collected data and also show their m i n and max values. 
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Yes Load all collected 
C S V data files from 

specified folder 

No 

Load yaml input file 
from specified folder 

Yes 

Parse the input file 

Load C S V file with 
hashes 

Start hashcat with 
hash and input file 

Wait for specified time 
(about 2 seconds) 

Start collecting data 
from hashcat and 

hardware 

No 

No 

Create output file and 
fill it with parsed data 

Wait for specified time 
(about 10 seconds) 

Parse input files 

Create min, max, 
mean, median from 

input files 

Save created values 
into output file 

Exit analysis tool 

Parse data 

Stop collecting data 

Figure 5.6: Workflow diagram of the analysis tool . 

5.7 Tests 
The tests w i l l consist of hashes for every hash mode that we can currently run i n hashcat. 

For each hash mode, there w i l l be one hash that represents this hash mode. There w i l l 
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be mult iple tests for each hash. We w i l l use the example hashes provided by hashcat on 
their website 3 . These tests w i l l differ i n attack mode, dictionaries and rules. We w i l l have 
tests for combinator, dictionary, force (mask) and hybr id attacks. Each attack w i l l have 
one configuration, except for a dict ionary attack, where we w i l l use different dictionaries 
and rules. Furthermore, the tests are described in the Chapter 7 

5.8 Collected Information 
The tool w i l l collect different types of information about a G P U . F i rs t and foremost, the 
output of the hashcat tool's status w i l l be collected. The program w i l l collect this status in 
a machine-readable format 1 , al lowing us to work w i t h it more easily. The figure 5.7 shows 
us what the output of status looks like. The S T A T U S field shows us i f the hashcat too l is 
running (3), exhausted (5), cracked (6), aborted (7) or quit (8). The S P E E D field shows 
us the number of hashes per unit of t ime and the unit of t ime i n milliseconds per device. 
The E X E C _ R U N T I M E field shows us the execution runtime in seconds. The C U R K U 
field shows us the restore point. The P R O G R E S S field shows us two values, the number of 
hashes that hashcat has t r ied so far and the number of hashes that remain. The R E C H A S H 
field shows us the number of recovered hashes. The R E C S A L T field shows us the number 
of recovered salts. The T E M P field shows us temperatures i n Celcius per device. F ina l ly , 
the R E J E C T E D field shows us the number of incorrect passwords. We w i l l not be using 
data from a l l of these fields, only the ones that matter i n the performance comparison: the 
speed, the temp, and the uti l isat ion. 

STATUS 3 SPEED e ieee EXEC_RUNTIME 0,690809 CURKU 0 
PROGRESS RECHASH 1 3 RECSALT 1 
TEMP 4S REJECTED 0 JTIL 0 

Figure 5.7: A n example output of Hashcat status. 

The tool w i l l also collect other information about graphic cards, which are memory and 
bus ut i l isat ion. The tool w i l l collect this information using P y t h o n libraries or nvidia-smi 
and rocm-smi b . Nvid ia -smi , also known as N V I D I A System Management Interface, is a 
command-line ut i l i ty. Th is u t i l i ty allows us to see the information about memory usage 
- its to ta l size and how much is being used, the ut i l isat ion of G P U , the fan speed, the 
temperature, the clock speeds and more. For the A M D G P U s , rocm-smi s imilar ly collects 
information about G P U s . 

The Collected information from hashcat is summarised i n the Table 5.2. The status 
parameter is collected so that the analysis tool can ensure the hashcat is running correctly 
throughout the whole test length. The speed is the main parameter we collect and compare. 
It shows the actual cracking performance. Exec_ run t ime is collected so that we know how 
long the hashcat is running. The collected information from G P U is summarised i n the 
table 5.3. 

3 h t t p s : //hashcat. net/wiki/doku.php?id=example_hashes 
4 h t t p s : //hashcat.net/wiki/doku.php?id=machine_readable 
5https://developer.nvidia.com/nvidia-system-management-interface 
6 h t t p s : / / rocm.docs.amd. com/pro j ects/rocm_smi_lib/en/latest/.doxygen/docBin/html/index.html 
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S T A T U S W h a t is the current status of hashcat. 
S P E E D Shows us the cracking performance. 

T E M P E R A T U R E The temperature of G P U . 

Table 5.2: Collected information from Hashcat. 

Tota l memory To ta l memory size. 
Used memory Used memory size. 

Bus Interface Usage How much % of bus interface is used. 

Table 5.3: Collected information from G P U . 

After a l l the tests are done, and we no longer use hashcat, we calculate the min imum, 
maximum, mean and median values from these data. We save these data into two files, one 
for each hash and one for each config. Figure 5.8 shows an example of a file i n which data 
are distr ibuted based on configuration. Figure 5.9 shows us an example of a file where the 
data are distr ibuted based on a hash. B o t h of these files have almost identical data. They 
are just distr ibuted differently. We use these files later i n the analysis. The headers (the 
first line) of these files are explained in the Table 5.1. 

1 G P U , H A S H , C O N F I G , S P E E D _ H I N J S P E E D _ r W J S P E E D _ M E A N J S P E E D 3 E D I A N , U T I L _ H I N J U T I L _ H A X J U T I L _ M E A N J U T I L _ M E D I A N J T E H P _ M I N J 

T E M P _ ^ , T E M P _ K E A N J T E M P _ M E D I A N , M E M _ U S E D _ M I N , M E M _ U S E D ^ ^ 

M E M J J T I L _ M E A ( J , M E M J J T I L _ M E D I A N , B U S _ U T I L _ M I ( J , B U S J J T I L _ M A X , B U S _ U T I L _ M E A N , B U S _ I I T I L _ M E D I A N 

2 N V I D I A G e F o r c e G T X 1 0 8 0 T i , l P a 5 S W o r d c l o u d k e y c f i a i n , d i c t 2 , 8 . 0 , 1 3 . 0 , 9 . 7 8 , 9 . 0 , 8 7 . 0 , 9 3 . 0 , 9 1 . 3 9 , 9 2 . 0 , 5 2 . 0 , 5 7 . 0 , 5 3 . 3 9 , 

5 3 . 0 , 2 1 1 5 . 8 9 , 8 5 0 1 . 7 9 , 7 6 9 7 . 1 5 , 8 4 3 6 . 5 4 , 1 8 . 7 8 , 7 5 . 4 8 , 6 8 . 3 3 , 7 4 . 9 , 1 . 0 , 8 0 . 0 , 6 3 . 0 4 , 7 4 . 0 , 

3 N V I D I A G e F o r c e G T X 1 0 8 0 T i , 7 - Z i p , d i c t 2 , 2 . 0 , 2 . 0 , 2 . 0 , 2 . 0 , 7 5 . 0 , 7 9 . 0 , 7 6 . 6 7 , 7 7 . 0 , 5 7 . 0 , 5 9 . 0 , 5 7 . 2 8 , 5 7 . 0 , 1 6 7 7 . 5 4 , 6 6 8 1 . 1 5 , 

6 0 5 4 . 0 8 , 6 6 7 7 . 8 4 , 1 4 . 8 9 , 5 9 . 3 1 , 5 3 . 7 5 , 5 9 . 2 8 , 0 . 0 , 8 6 . 0 , 6 2 . 7 1 , 7 6 . 0 , 

4 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A E S C r y p t ( S l * 2 5 6 ) , d i c t 2 , 1 0 5 . 0 , 1 2 7 . 0 , 1 1 5 . 6 2 , 1 1 4 . 5 , 5 7 . 0 , 6 7 . 0 , 6 3 . 6 2 , 6 4 . 5 , 5 8 . 0 , 6 0 . 0 , 5 8 . 6 2 , 5 8 

0 , 1 6 5 7 . 4 9 , 7 6 6 7 . 5 4 , 6 4 6 3 . 6 7 , 7 6 6 4 . 7 9 , 1 4 . 7 1 , 6 8 . 0 7 , 5 7 . 3 8 , 6 8 . 0 5 , 0 . 0 , 9 3 . 0 , 4 8 . 6 , 6 0 . 0 , 

5 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A n d ™ i d B a c k u p , d i c t 2 , 1 1 7 . 0 , 1 2 3 . 0 , 1 2 0 . 4 3 , 1 2 1 . 0 , 2 5 . 0 , 8 7 . 0 , 7 6 . 2 9 , 8 4 . 0 , 5 9 . 0 , 6 1 . 0 , 5 9 . 8 6 , 5 9 . 0 , 

1 6 7 2 . 2 3 , 6 6 0 6 . 2 7 , 5 6 1 9 . 2 2 , 6 6 0 5 . 7 7 , 1 4 . 8 5 , 5 8 . 6 5 , 4 9 . 8 9 , 5 8 . 6 5 , 1 . 0 , 9 8 . 0 , 6 2 . 2 , 8 5 . 0 , 

6 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A n d ™ i d F D E ( S a m 5 u n g D E K ) , d i c t 2 , 1 9 3 . 0 , 1 9 3 . 0 , 1 9 3 . 0 , 1 9 3 . 0 , 6 1 . 0 , 6 4 . 0 , 6 2 . 5 , 6 2 . 5 , 6 0 . 0 , 6 0 . 0 , 6 0 . 0 

6 0 . 0 , 1 6 2 3 . 8 4 , 7 6 1 8 . 3 8 , 5 6 2 0 . 5 3 , 7 6 1 7 . 3 8 , 1 4 . 4 2 , 6 7 . 6 3 , 4 9 . 9 , 6 7 . 6 3 , 0 . 0 , 8 8 . 0 , 4 2 . 7 8 , 6 9 . 0 , 

7 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A n s i b l e V a u l t , d i c t 2 , 7 3 . 0 , 8 0 . 0 , 7 6 . 3 3 , 7 5 . 5 , 3 7 . 0 , 6 8 . 0 , 6 4 . 0 8 , 6 7 . 0 , 5 8 . 0 , 6 0 . 0 , 5 8 . 5 8 , 5 8 . 0 , 1 6 4 6 . 

0 9 , 7 6 5 7 . 2 , 6 7 1 9 . 3 8 , 7 6 3 5 . 9 5 , 1 4 . 6 1 , 6 7 . 9 8 , 5 9 . 6 5 , 6 7 . 7 9 , 2 . 0 , 1 0 0 . 0 , 5 8 . 4 6 , 7 2 . 0 , 

8 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A p p l e F i l e S y s t e m < A P F S ) , d i c t 2 , 3 5 . 0 , 3 9 . 0 , 3 6 . 4 4 , 3 6 . 0 , 6 3 . 0 , 6 8 . 0 , 6 6 . 6 7 , 6 7 . 0 , 5 7 . 0 , 5 9 . 0 , 5 7 . 3 3 , 

5 7 . 0 , 1 6 6 4 . 6 , 6 6 5 1 . 6 5 , 6 1 4 8 . 0 8 , 6 6 4 5 . 3 4 , 1 4 . 7 8 , 5 9 . 0 5 , 5 4 . 5 8 , 5 9 . 0 , 1 . 0 , 8 7 . 0 , 6 8 . 0 , 8 2 . 8 , 

9 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A p p l e i W o r k , d i c t 2 , 4 5 1 . 0 , 4 5 1 . 0 , 4 5 1 . 0 , 4 5 1 . 0 , 6 0 . 0 , 6 0 . 8 , 6 0 . 0 , 6 0 . 0 , 6 1 . 0 , 6 1 . 0 , 6 1 . 0 , 6 1 . 0 , 1 6 5 8 . 

1 4 , 6 3 8 2 . 7 9 , 4 0 2 0 . 8 5 , 4 0 2 1 . 6 1 , 1 4 . 7 2 , 5 6 . 6 7 , 3 5 . 7 , 3 5 . 7 , 0 . 0 , 9 8 . 0 , 2 8 . 8 3 , 0 . 0 , 

.0 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A p p l e S e c L i r e N o t e s , d i c t 2 , 3 5 . 0 , 3 9 . 0 , 3 6 . 5 , 3 6 . 0 , 6 3 . 0 , 7 6 . 0 , 6 7 . 6 1 , 6 7 . 0 , 5 7 . 0 , 5 9 . 0 , 5 8 . 0 , 5 8 . 0 , 

1 6 4 1 . 3 4 , 6 6 2 8 . 3 2 , 6 0 0 0 . 6 5 , 6 6 2 2 . 0 1 , 1 4 . 5 7 , 5 8 . 8 5 , 5 3 . 2 7 , 5 8 . 7 9 , 3 . 0 , 7 2 . 0 , 5 7 . 7 1 , 6 9 . 0 , 

1 N V I D I A G e F o r c e G T X 1 0 8 0 T i , A x O y p t l , d i c t 2 , 1 4 9 . 0 , 1 5 2 . 0 , 1 5 0 . 6 , 1 5 1 . 0 , 2 5 . 0 , 7 1 . 0 , 5 8 . 4 , 6 5 . 0 , 5 9 . 0 , 6 0 . 0 , 5 9 . 6 , 6 0 . 0 , 1 6 2 0 . 6 7 , 

6 1 8 3 . 2 , 4 6 6 0 . 5 3 , 6 1 7 7 . 0 7 , 1 4 . 3 9 , 5 4 . 8 9 , 4 1 . 3 8 , 5 4 . 8 4 , 0 . 0 , 9 8 . 0 , 4 8 . 7 8 , 6 9 . 0 , 

Figure 5.8: A n example m i n / m a x / m e a n / m e d i a n analysis tool output file. 
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1 G P U , C 0 N F I G , S P E E D J 1 I N , S P E E D J W , S P E E D J 1 E A j J , S P E E D J 1 . E D I A j J , U T I L ^ ^ ^ 

T E M P J 1 E A N , T E M P J 1 E D I A N , K E M J J S E D J l I N , M E M J J S E D J t t X , M E M J J S E D 3 E A N , M ^ ^ 

M E M _ U T I L _ K E A N J H E H _ U T I L _ M E D I A N , B U S _ U T I L _ M I N J B U S _ U T I L _ M A X J B U S _ U T I L _ M E A N J B U S _ U T I L _ M E D I A N 
2| N V I D I A G e F o r c e GTX 1088 T i , c o m b i n a t o r , 1 8 6 2 . 6 , 1 9 4 9 . 0 , 1 9 0 1 . 0 , 1 8 9 4 . 0 , 9 8 . 0 , 9 8 . 0 , 9 8 . 0 , 9 3 . 0 , 6 2 . 0 , 6 4 . 0 , 6 2 . 5 , 6 2 . 0 , 2 1 9 3 . 2 5 , 

7 2 5 8 . 5 5 , 6 6 9 5 . 7 7 , 7 2 5 8 . 5 5 , 1 9 . 4 7 , 6 4 . 4 4 , 5 9 . 4 4 , 6 4 . 4 4 , 8 . 0 , 9 8 . 0 , 7 9 . 0 6 , 9 7 . 0 , 
i\ N V I D I A G e F o r c e GTX 1 0 8 0 7 1 , ( ^ 1 0 1 : 1 , 1 7 . 0 , 1 7 . 0 , 1 7 . 9 , 1 7 . 0 , 7 8 . 0 , 8 4 . 0 , 7 9 . 1 1 , 7 9 . 0 , 5 6 . 0 , 5 7 . 0 , 5 6 . 1 1 , 5 6 . 0 , 1 5 9 4 . 5 6 , 6 6 0 9 . 1 1 , 5 9 7 6 . 

I 0 , 6 5 9 7 . 7 3 , 1 4 . 1 6 , 5 8 . 6 7 , 5 3 . 0 5 , 5 8 . 5 7 , 2 . 0 , 7 2 . 0 , 5 8 . 2 9 , 7 0 . 0 , 
i\ N V I D I A G e F o r c e GTX 1 0 8 0 T i , d i c t 2 , 2 . 8 , 2 . 0 , 2 . 0 , 2 . 0 , 7 5 . 0 , 7 9 . 8 , 7 6 . 6 7 , 7 7 . 0 , 5 7 . 0 , 5 9 . 0 , 5 7 . 2 8 , 5 7 . 0 , 1 6 7 7 . 5 4 , 6 6 8 1 . 1 5 , 6 0 5 4 . 0 8 , 

6 6 7 7 . 8 4 , 1 4 . 8 9 , 5 9 . 3 1 , 5 3 . 7 5 , 5 9 . 2 8 , 0 . 0 , 8 6 . 0 , 6 2 . 7 1 , 7 6 . 0 , 
s\ N V I D I A G e F o r c e GTX 1 0 8 0 T i , d i c t 3 , 2 4 6 5 . 0 , 2 4 6 7 . 0 , 2 4 6 6 . 3 3 , 2 4 6 6 . 0 , 9 7 . 0 , 9 8 . 0 , 9 7 . 5 , 9 7 . 5 , 8 0 . 0 , 8 2 . 0 , 8 1 . 1 1 , 8 1 . 0 , 1 1 5 2 . 2 5 , 6 8 9 0 . 

\ 1 8 , 5 8 8 4 . 7 2 , 6 1 5 0 . 9 8 , 1 0 . 2 3 , 6 1 . 1 7 , 5 2 . 2 4 , 5 4 . 6 1 , 0 . 0 , 9 8 . 0 , 8 4 . 3 , 9 7 . 0 , 
el N V I D I A G e F o r c e GTX 1 0 8 0 T i , d i c t 4 , 2 8 5 5 . 0 , 2 8 7 1 . 0 , 2 8 5 8 . 8 9 , 2 8 5 7 . 5 , 9 7 . 0 , 9 8 . 0 , 9 7 . 1 1 , 9 7 . 0 , 7 5 . 8 , 7 7 . 0 , 7 6 . 4 4 , 7 6 . 5 , 1 1 4 8 . 1 , 6 1 4 4 . 

4 6 , 5 4 9 2 . 9 5 , 6 1 4 4 . 4 6 , 1 0 . 1 9 , 5 4 . 5 5 , 4 8 . 7 7 , 5 4 . 5 5 , 0 . 0 , 9 8 . 0 , 8 1 . 6 5 , 9 7 . 0 , 
7i N V I D I A G e F o r c e GTX 1 0 8 0 T i , f o rce ,© .8 ,0 .0 ,0 .0 ,0 .0 ,59 .0 ,61 .0 ,59 .67 ,60 .0 ,53 .0 ,54 .0 ,53 .44 ,53 .0 ,1144 .35 ,6209 .65 ,4270 .84 , 

6 2 0 9 . 6 5 , 1 0 . 1 6 , 5 5 . 1 3 , 3 7 . 9 2 , 5 5 . 1 3 , 0 . 0 , 6 2 . 0 , 3 1 . 8 9 , 4 1 . 0 , 
s\ N V I D I A G e F o r c e GTX 1 0 8 0 T i , h y b r i d , 1 0 4 2 . 0 , 1 2 2 6 . 0 , 1 0 9 8 . 4 4 , 1 0 7 7 . 0 , 9 8 . 0 , 9 9 . 0 , 9 8 . 6 7 , 9 9 . 0 , 5 5 . 0 , 5 6 . 0 , 5 5 . 1 1 , 5 5 . 0 , 1 1 4 3 . 7 9 , 

I 6 2 1 0 . 8 4 , 4 6 4 0 . 5 4 , 6 2 1 0 . 8 4 , 1 0 . 1 5 , 5 5 . 1 4 , 4 1 . 2 , 5 5 . 1 4 , 0 . 0 , 9 8 . 0 , 5 5 . 8 4 , 8 4 . 0 , 
<}\ N V I D I A G e F o r c e RTX 2 0 8 0 S U P E R , c o m b i n a t o r , 3 0 4 9 . 0 , 3 0 8 8 . 0 , 3 0 6 5 . 5 4 , 3 8 6 4 . 0 , 9 7 . 8 , 9 7 . 0 , 9 7 . 0 , 9 7 . 0 , 8 1 . 0 , 8 5 . 0 , 8 3 . 4 6 , 8 4 . 0 , 3 2 7 . 

I 7 8 , 5 3 7 1 . 6 8 , 3 8 5 7 . 1 6 , 5 3 7 1 . 6 8 , 4 . 0 , 6 5 . 5 7 , 4 7 . 0 8 , 6 5 . 5 7 , 0 . 0 , 8 0 . 0 , 5 2 . 2 2 , 7 7 . 0 , 
Hit N V I D I A G e F o r c e RTX 2 0 8 0 S U P E R , d i c t l , 3 0 . 0 , 3 1 . 0 , 3 0 . 8 4 , 3 1 . 0 , 6 8 . 0 , 7 2 . 0 , 6 9 . 2 1 , 6 9 . 0 , 6 0 . 0 , 6 0 . 8 , 6 0 . 0 , 6 0 . 0 , 3 2 7 . 7 8 , 5 3 0 5 . 6 8 , 

| 4 0 3 2 . 6 5 , 5 3 0 5 . 6 8 , 4 . 0 , 6 4 . 7 7 , 4 9 . 2 3 , 6 4 . 7 7 , 0 . 0 , 7 3 . 0 , 5 1 . 5 6 , 7 2 . 0 , 

Figure 5.9: A n example m i n / m a x / m e a n / m e d i a n analysis tool output file. 

36 



Chapter 6 

Implementation 

In this Chapter, we w i l l look at the implementat ion of the testing/analysis tool , what 
language it is implemented in , what libraries it uses and the reasons for these decisions. 
We also look at the implementat ion of scripts for displaying data in jupyter notebook that 
greatly helped i n analysing the data. 

6.1 Testing Tool 
The testing tool is implemented on Windows in the P y t h o n programming language, and 
its m in ima l version to run the tool needs to be at least 3.10. We chose P y t h o n because it 
offers many modules and libraries that simplify controll ing other applications, like the one 
we used - subprocess. We used this l ibrary to control hashcat and the nvidia-smi (which 
we used to get bus ut i l isat ion data). Other modules we used for collecting data are pynvml 
and psut i l . The tool has two modes, one where it runs a l l the tests and the other one where 
it takes the data it collected from tests and prepares them for analysis. 

6.1.1 Files 

The tool is d ivided into four files: main.py, hashcat.py, output .py and analysis.py. 

M a i n . p y 

M a i n . p y is the main file through which the tool is launched. The tool parses the input 
using the argparse module in the main class. It also prepares a l l the other classes and 
creates a l l folders needed. If the tool is launched i n the testing mode, the main class calls 
the dummy() function from the hashcat class to heat up the G P U . It does this so that the 
G P U is about the same temperature throughout a l l the tests, and the first tests do not have 
the advantage of a cold G P U . The benchmark() function is called from the hashcat class, 
which runs the default benchmark of the hashcat tool . After that , the ma in class parses 
input files and runs the hashcat w i th the run() function from the hashcat class. If the tool 
is run i n the analysis mode, it loads the C S V data files. It creates their min , max, mean 
and median values using the coun tAverageMedianMaxMinQ function of the analysis class. 

Hashcat .py 

The hashcat.py file contains the hashcat class as well as non-class functions. Hashcat class 
is the core of the testing. The hashcat is controlled wi th functions in this class. The tool 
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uses a subprocess module to run the hashcat applicat ion. This module can supply input 
to the application, read its output, set the timeout and more. To get other information 
about G P U s , the tool uses the pynvml module for N V I D I A G P U s and the psut i l module 
for A M D G P U s . The Table 6.1 shows a l l functions the hashcat class contains. The rest of 
functions that the hashcat.py file contains are shown i n the Figure 6.2. 

dummy () Used for heating up the G P U . 
benchmark () Launches the hashcat i n benchmark mode and collects data from it . 

ge tGpuNameQ Returns the name of the G P U inside the Computer . 
getGpuInfoOO Returns the output of hashcat launched wi th the -I argument. 
runHashcat() Launches hashcat w i th input from the test and saves the output. 

Table 6.1: Functions of hashcat class in the Hascat.py file 

ge t_nv id ia_gpu_memory_u t i l i za t ion ( ) Returns memory ut i l isat ion information for 
N V I D I A G P U s . 

ge t_nv id i a_gpu_bus_u t i l i z a t ion () Returns memory bus ut i l isat ion information 
for N V I D I A G P U s . 

ge t_amd_gpu_memory_u t i l i za t ion ( ) Returns memory ut i l isat ion information for 
N V I D I A G P U s . 

set At t r ibutes () Returns set of arguments that is input ted into 
subprocess that runs hashcat. 

getRuntimeQ Returns how long should the hashcat run for 
different type of attack mode. 

getAt tackMode() Returns number of attack mode based on at
tack mode string. 

fixHashName () Returns hash wi th replaced signs that cannot 
be used in windows file names. 

Table 6.2: Collected information from G P U . 

Output .py 

Output .py file contains the functions for saving output from the tests. These functions are 
called in the run function of the hashcat class after the test is done. The saveOutputQ 
function parses the output of the hashcat tool using the re module. Then the output is 
saved into the file, and it is named the same as the name of the hash that was tested. The 
s a v e B M Q function saves the other hardware information which is not collected from the 
output of the hashcat tool . 

Analysis .py 

Analysis .py does not have a specific class. The function in this file is called in the main 
class, and it prepares the data for data analysis. It loads up the collected C S V data from 
a file where the data from testing are collected, calculates median and mean values, and 
finds m i n and max values. Then it saves the output into two files, one based on the hash 
and the other based on the type of attack. These files are further explained i n Chapter 5.3 
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6.1.2 Using the Tool 

Launching the tool is done by using the Windows command line interface. The Figure 6.1 
shows us a l l the arguments we can use when running the script. Table 6.3 shows us an 
explanation of each argument and if it is required. 

main.py [-h] - i INPUT -hs HASHES -hf HASHFILES -hp HASHCATPATH -o OUTPUT 
[-a | --analysis | --no-analysis] [—and | --no-amd] 

Figure 6.1: Too l arguments. 

Argument Exp lana t ion Required 
- inpu t (-i) Input folder w i t h configu

rat ion files. 
True (when -analysis is not present) 

-hashes (-hs) Input file w i th hashes. True (when -analysis is not present) 
-hashfiles (-hf) Input folder locat ion of 

files w i th hashes. 
True (when -analysis is not present) 

-hashcatpath (-hp) Input hashcat path. True (when -analysis is not present) 
-output (-o) Set output folder path. True 
-analysis (-a) Creates C S V file for the 

analysis. 
False 

- a m d R u n w i th this parameter 
if you have A M D graphics 
card. 

False 

Table 6.3: Exp lana t ion of the tool arguments. 

6.2 Data Visualisation Scripts 
For data visualisation, we used Jupyter Notebook 1 , a server-client appl icat ion which allows 
us to edit files i n our web browser and visualise the output. The language we used for 
this was again P y t h o n because it offers many modules for working w i t h data and their 
visualisation, like pandas, numpy or matplot l ib . These scripts are located in the jupyter-
notebook folder. These files are: 

• display-data-from-output-folders.ipynb - Displays the data from C S V Files inside the 
output\results folder or the output\results-together folder. 

• display-data-from-output-folders-config-median-mean.ipynb - Displays the median and 
mean data grouped by configuration from C S V Files inside the output\results folder. 

• correlation-of-all-files.ipynb - Calculates correlation between a l l files from the out-
put\results folder and G P U s hardware information and displays it. 

• correlation-of-results-togethe.ipynbr - Calculates correlation between a l l files from the 
output\results-together folder and G P U s hardware information and displays it. 

x h t t p s : //jupyter.org/ 
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correlation-only-median-values.ipynb - Calculates correlation between median data 
from a l l files from the output\results folder and G P U s hardware information, calculate 
median values of these correlations and displays it and does the same thing for each 
configuration separately. 

correlations-of-single-files-for-configs.ipynb - Calculates correlations grouped by con
figuration for a single file from the output\results folder and G P U s hardware infor
mation and displays it. 

graph-memory-over-time.ipynb - Display the used memory over t ime for a file from 
G P U S \ G P U _ N a m e \ m e m o r y _ d a t a folder. 

individual-file-correlation.ipynb - Calculate correlation between data from a l l files 
from the output\results folder and G P U s hardware information, calculate median 
values of these correlations and display it and does the same thing for just median 
data separately. 

find-memory-hard-hashes.ipynb - F inds the hashes that use the most memory. 

median-correlations-of-single-files-for-configs - Calculate correlation grouped by con
figuration between median data from a l l files from the output\results folder and G P U s 
hardware information, calculate median values of these correlations and display it and 
does the same thing for just median data separately. 

median-from-correlations.ipynb - Calcula ted correlation for a single file. A l so calcu
lates correlation between data from a l l files from the output\results folder and G P U s 
hardware information, calculate median values of these correlations and displays it 
and does the same thing for each configuration separately. 
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Chapter 7 

Experiments Implementation 

We need to have many tests to analyse the data and decide what hardware specs of G P U s 
are the most important . Because of this, there are 478 hashes tested wi th different con
figurations. These hashes come from the hashcat tool's example hashes, and each hash is 
unique. To further understand wi th what configurations which G P U specs work the best, 
we need different configurations. The tests consist of 7 different configurations. 

7.1 Configurations 
The tests are divided into four different attack strategies: combinator, dictionary, force and 
hybr id attack. Furthermore, there are mult iple dict ionary tests w i th the use of rules. 

7.1.1 Combinator attack 

The combinator attack is a dict ionary attack that combines two or more wordlists. These 
wordlists can be, for example, leaked password databases, custom wordlists or actual lan
guage dictionaries. Figure 7.1 shows us the settings the tool uses for combinator attack. 
It uses an Engl i sh dict ionary and its copy. This dict ionary was chosen because the gen
eral public tend to choose weak passwords which are easy to remember [3] which contain 
pr imar i ly common words in their passwords. 

a t t a c k : - m o d e : 1 ' c o m b i n a t o r " 

L d i c t i o n a r i e s : • . . W b a c h e l o n s - t h e s i s - m a l r W d i c t i o n a r i e s W * " 

Figure 7.1: Combinator attack settings. 

7.1.2 Dictionary attacks 

A dict ionary attack uses a wordlist and goes through each word and checks i f its hash is the 
same as the password hash. Because we already use wordlists without any modifications in 
the combinator attack, we decided to use rules to edit our wordlists. The first wordlist has 
a hundred passwords, and the second has ten passwords. Similarly, the first ruleset has ten 
rules, and the second ruleset has a hundred rules. W i t h this, we can compare if there is 
any difference in the use of bigger or smaller wordlists w i th different numbers of rules. We 
also use the Rockyou wordlist , on which we w i l l apply both of the rulesets. We decided to 
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use the Rockyou wordlist because it is the largest wordlist of leaked passwords. The figures 
7.2, 7.3 7.4 and 7.5 show us the settings for each dict ionary attack. 

1 attack-mode: "dictionary" 
2 dictionaries: ". .Wbachelors-thesis-malnWdictionarles-dictWtest-dicl .die" 
3 ruleset: ". . Wbachelors-thesIs-mainWrulesWrulesetl. rule" 

Figure 7.2: F i rs t dict ionary attack settings. 

attack:-mode: "dlctlonary" 
dictionaries: "..Wbachelors-thesis-malnWdictionaries-dict\\test-dic2.dic" 
ruleset: "..\\bachelors-thesi5-main\\rules\\ruleset2.rule" 

Figure 7.3: Second dict ionary attack settings. 

attack-mode: "dlctlonary" 
dictioraries: " . . \ \ b a c h e l o r s - t h e 5 i s - m a l n W d i c t i o n a r i e s - d i c t W r o c k y 0 u . t x t " 
ruleset: ". . Wbachelors-thesls-mainWrulesWrulesetl. rule" 

Figure 7.4: T h i r d dict ionary attack settings. 

1 attack-mode: "dictionary" 
dictionaries: ". . \ \bachelors-thesis-maln\\dictionarles-dict\ \rockyoj.txt" 

3 ruleset: ".. \ \bachelors-thesls-main\\rules\\ruleset2.rule"cd 

Figure 7.5: Four th dict ionary attack settings. 

7.1.3 Brute-force (mask) attack 

A force attack, also known as a mask attack, is an attack where the attacker tries every 
possible combinat ion of characters i n a charset. We chose this type of attack because it 
finds the correct password i f given enough time and the right keyspace. In Figure 7.6, we 
can see the settings of the attack. The increment is set to true, meaning that the mask 
w i l l go from single-character passwords and progress to two-character passwords and three-
character passwords and so on, un t i l it finds the correct password or runs out of keyspace. 
The mask we are using for this attack is the hashcat tool's default mask taken from hashcats 
w i k i 1 , which is: -1 ?l?d?u -2 ?l?d -3 ?l?d*!$@_ ?l?2?2?2?2?2?2?3?3?3?3?d?d?d?d. 
We use this mask because most of the hashcat's inexperienced users w i l l probably use the 
default mask and because it is pretty complex and has a large keyspace. 

x h t t p s : //hashcat.net/wiki/doku.php?id=oclhashcat#default_values 
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1 

2 

3 

a t t a c k - m o d e : " b r u t e - f o r c e " 

i n c r e m e n t : t r u e 

h a s h c a t P a t h : / h o m e / r i c h a r d / h a s h c a t - 6 . 2 . 6 / h a s h c a t . b i n 

Figure 7.6: Brute-force (mask) attack settings. 

7.1.4 H y b r i d attack 

A hybr id attack is a combination of a dict ionary and brute-force attack. Combinat ions 
like these are mainly used when looking for a password because they combine the words a 
password might contain and some extra characters. People often put one special character 
like * or % at the end of the password, and this type of attack can easily counter that. The 
Figure 7.7 shows us the settings of this attack. We used the Engl i sh dict ionary as people 
usually put casual words in their passwords, and then we used the Hashcats default mask 
wi th increment since we want to have a big keyspace but want to t ry the short variations 
first. 

1 attack-mode: "hybrid-a" 
2 increment: true 
3[ charset: "?l?2?2?2?2?2?2?3?3?3?3?d?d?d?d" 
4I custom-charsets: 
5 charset l : "?l?d?Li" 
6 1 charset2: "?l?d" 
7 I charset3: "?l?d*J$§_" 

dict ionaries : ". .Wbachelor's-thesis-malnWdictionarlesWEnglish. die" 

Figure 7.7: H y b r i d attack settings. 

7.2 Used Graphics Cards 
The graphics cards that these experiments were tested on are N V I D I A G T X 1080 T i , 
N V I D I A R T X 2080 Super, N V I D I A R T X 3070, N V I D I A R T X 3090, N V I D I A R T X A4000 
and A M D Radeon R X Vega 64. The further comparison of hardware specifications of these 
G P U s is shown i n the Tables 7.1 and 7.2. 
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Geforce G T X Geforce R T X Geforce R T X Geforce R T X 
1080Ti 2080 Super 3070 3090 

Archi tecture Pascal Tur ing Ampere Ampere 
Processors 3584 3072 5888 10496 

Base Clock (GHz) 1.48 1.65 1.50 1.40 
Boost C lock (GHz) 1.58 1.82 1.73 1.70 
Standard Memory 
Config 

1 1 G B 
G D D R 5 X 

8 G B G D D R 6 8 G B G D D R 6 / 2 4 G B 
G D D R 6 X 

Memory Interface 
W i d t h 

352-bit 256-bit 256-bit 384-bit 

Table 7.1: Compar ison of tested G P U s 

Geforce R T X A40000 Radeon R X Vega 64 
Archi tecture Ampere Vega 
Processors 6144 4096 

Base Clock (GHz) 0.74 1.25 
Boost C lock (GHz) 1.56 1.55 
Standard Memory 
Config 

1 6 G B G D D R 6 8 G B H B M 2 

Memory Interface 
W i d t h 

256-bit 2048-bit 

Table 7.2: Compar ison of N V I D I A R T X 30 Series G P U s [6] 
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Chapter 8 

Analysis of Experimental Results 

This Chapter is the core of this thesis, where we look at the collected data from the tests and 
then analyse them. We w i l l use the data files that already have the modified data prepared 
for analysis. In these files, there are min , max, mean and median values calculated from 
the collected test data and then arranged so that it is easy to go through them. To analyse 
these data, we use Jupyter Notebook. Jupyter Notebook uses P y t h o n scripts to better 
visualise collected data, generate correlations from collected data, display the correlation 
matr ix data and the correlation mat r ix as a graph and so forth. The analysis focuses, 
in particular, on how the specific hardware parameters of G P U s affect password cracking 
performance. 

8.1 Correlations 
Correlat ion shows us what is the relation between each column of data. For analysis, where 
we are looking for the most crucial hardware parameters of graphic cards for cracking 
passwords and looking at relationships between data and hardware parameters, the use 
of correlation is ideal. After correlation is calculated from the input ted data, we get a 
number between -1 and 1 on the output. If the output is -1 , that means a perfect negative 
correlation, meaning that as one variable rises, the other decreases. If the output is 1, that 
means a perfect positive correlation, meaning that as one variable rises, the other rises. If 
the correlation output is 0, the variables have no relationship. A n example would be if we 
have a correlation value between speed and the number of processors being 1, then when 
we increase the processor count, the speed also increases. 

8.1.1 Correlations of Individual Files 

Firs t , we calculated a correlation separately for each file. The P y t h o n script for this is 
saved inside the individual-file-correlation.ipynb file. Then we show the correlation matr ix 
on the output. Here we can see a correlation of the data for each hash. Figure 8.1 shows an 
example of such a correlation matr ix . We could use this data for the analysis, but i f we only 
used it and analysed every hash mode separately, it would take months to complete. That 
is why we need to create correlations from more data. In sections 8.1.2 and 8.1.4 we look 
at the correlations from a l l data. Creat ing correlations only for each hash type would also 
not let us see which hardware parameters are more important i n which attack mode, so we 
must create data correlations for each attack mode separately. We look at this procedure 
in sections 8.1.3 and 8.1.5. 

45 



S P E E D _ M I N 

5 P E E D M A X 

S P E E D _ M E A N 

S P E E D _ M E D I A N 

U T I L _ M I N 

U T I L _ M A X 

U T I L M E A N 

U T I L _ M E D I A N 

T E M P _ M IN 

T E M P _ M A X 

T E M P _ M E A N 

T E M P _ M E D I A N 

M E M U S E D M I N 

M E M U S E D M A X 

M E M _ U S E D _ M E A N 

M E M _ U S E D _ M E D I A N 

M E M U T I L M I N 

M E M U T I L M A X 

M E M U T I L M E A N 

M E M U T I L M E D I A N 

B U S _ L T T I L _ M I N 

B U S U T I L M A X 

B U S U T I L M E A N 

B U S _ U T I L _ M E DI A N 

P R O C E S S O R S 

B A S E _ C L O C K 

B O O S T C L O C K 

M E M O R Y _ C O N F I G 

I N T E R F A C E W I D T H 

- 1 . 0 0 

- 0 . 7 5 

- 0 . 5 0 

0 . 2 5 

- 0 . 0 0 

- 0 . 5 0 

- 0 . 7 5 

Figure 8.1: Correla t ion mat r ix of a l l data for single test. 

8.1.2 Correlation of A l l Data 

We calculated the correlation between a l l the collected data. This calculation is done in 
the correlation-of-all-files jupyter notebook file, and to calculate them, we used the Pandas 
P y t h o n module. A s shown in Figure 8.2, the correlation of these data would suggest that 
the speed at which passwords are cracked should be higher if most of the other collected data 
values are and the hardware specifications values are lower. Pure logic already indicated 
that this correlation must be wrong, and it is. We can see the opposite when looking 
at example of randomly picked correlation of file, where the correlation was calculated 
separately. Figure 8.1 shows us correlation of data from this file. There can be multiple 
factors i n the play why the correlation of a l l data is misleading. F i rs t , we w i l l create a 
separate correlation of data from every attack mode. 
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Figure 8.2: Correla t ion mat r ix of a l l data for single test. 

8.1.3 Correlation of Data Grouped by Attack Mode 

Fi le correlation-of-attack-modes shows separate correlations created for each file inside the 
results-together folder. These files each have data divided by the attack mode, and they are 
also named after that attack mode. We can see the correlations of these data in the Figures 
8.3, 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9. L ike the correlation of a l l the data, these correlations 
also seem misleading. These correlations of data that are grouped together are misleading 
because the values of hash mode vary. In a hash mode like S H A , we can easily get up to 
the speed of 533552554 hashes/second, but when using a hash mode like VeraCryp t , we can 
get as low as 30 hashes/second. These speeds vary this much while the ut i l isat ion or the 
memory used values stay the same. Tha t is why we must come up wi th another solution. 
We must calculate the correlation of each file separately, and then we can calculate median 
values from those correlations to get the proper values. This procedure is described in 
sections 8.1.4 and 8.1.5. 
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Figure 8.3: Correla t ion mat r ix of a l l data grouped by combinator configuration. 
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Figure 8.4: Correlat ion mat r ix of a l l data grouped by d i c t l configuration. 
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Figure 8.5: Correlat ion mat r ix of a l l data grouped by dict2 configuration. 

50 



Correlation Matrix 
S P E E D _ M I N 

S P E E D _ M A X 

S P E E D _ M E A N 

S P E E D M E D I A N 

U T I L _ M I N 

U T I L _ M A X 

I T T I L M E A N 

L T T I L M E D I A N -U 

T E M P M I N 

T E M P _ M A X 

T E M P _ M E A N 

T E M P _ M E D I A N 

M E M U S E D M I N 

M E M U S E D M A X 

M E M _ U S E D _ M E A N 

M E M _ U S E D _ M E D I A N 

M E M U T I L M I N 

M E M U T I L M A X 

M E M _ J T I L _ M E A N 

M E M _ U T I L _ M E D I A N 

B I I S _ U T I L _ M I N 

B U S _ L T T I L _ M A X 

B U S U T I L M E A N 

B U S _ U T I L _ M E D I A N 

P R O C E S S O R S 

B A S E _ C L O C K 

B O O S T C L O C K 

M E M O R Y C O N F I G 

I N T E R F A C E W I D T H 

• 1 . 0 0 

- 0 . 7 5 

- 0 . 5 0 

0 . 2 5 

- 0 . 0 0 

- 0 . 2 5 

- 0 . 7 5 

Figure 8.6: Correlat ion mat r ix of a l l data grouped by dict3 configuration. 
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Figure 8.7: Correlat ion mat r ix of a l l data grouped by dict4 configuration. 
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Figure 8.8: Correla t ion mat r ix of a l l grouped by force configuration. 
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Figure 8.9: Correlat ion matr ix of a l l data grouped by hybr id configuration. 

8.1.4 Median Calculated From Correlations of Individual Files 

To calculate the correlation values that are not misleading, we must count them for each 
file separately and then find the median values of these calculations. The code for these 
calculations is saved i n the median-from-correlations.ipynb file. W h e n we look at the cor
relation matr ix , we can see that the data is finally start ing to make sense and that we can 
properly analyse them. We can see this because i f we compare the matr ix shown in Figure 
8.10 to the correlation mat r ix calculated from single hash file shown i n Figure 8.1, we can 
see the similarities. 
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Figure 8.10: M e d i a n from correlation matr ix of a l l data. 

The most important values for the analysis are the median values because they show how 
the cases w i l l look most of the t ime. For example, there can be a m i n i m u m uti l isat ion value 
of 20% when its median is 80%, and that 20% was just some error, which is why we w i l l use 
mostly median values for analysis. Look ing at the correlation matr ix shown i n Figure 8.11, 
we can see that the more processors the G P U has, the higher its speed is. We can also see 
that the speed is higher when memory_config, boost_clock, ut i l isat ion, temperature and 
the bus ut i l isat ion values are higher. The processors are the most cr i t ical G P U hardware 
specification when cracking passwords overall because the number of processors has the 
highest correlation w i t h speed. 

The second most cr i t ica l G P U hardware specification overall is memory. A s we can see in 
the matr ix , memory size has the second-highest correlation value wi th speed. Interestingly, 
when we look at the used memory and the memory ut i l isat ion correlation values wi th speed, 
they are both about -0.20. However, when we look at the memory and G P U uti l isat ion, 
we can see that they are posit ively correlated. This phenomenon happens because faster 
G P U s t ry more candidate passwords in a shorter t ime, which means they can remove them 
from their memory faster and do not clog it up. Table 8.1 shows an example of this. A s we 
can see in the correlation table, this would be mostly the case. However, there are cases 
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and attack modes where more memory is an advantage. For example, we can see this in 
the Table 8.2 . We look at this phenomenon more i n Section 8.1.6. Even i f more memory 
does not always give us the upper hand, it certainly is no downfall and overall, the more 
memory, the better. 

G P U S P E E D 
M E D I A N 

M E M 
U S E D 
M E D I A N 

M E M U T I L 
M E D I A N 

N V I D I A GeForce G T X 1080 T i 1407.50 3989.37 35.42 
N V I D I A GeForce R T X 2080 S U P E R 2587.00 328.73 4.01 

N V I D I A GeForce R T X 3070 2751.00 2278.07 27.81 
N V I D I A GeForce R T X 3090 4617.00 499.66 2.03 

N V I D I A R T X A4000 2427.00 2673.39 16.33 
Radeon R X Vega 1558.00 5915.95 36.30 

Table 8.1: D a t a from combinator VeraCryp t P B K D F 2 - H M A C - R I P E M D 1 6 0 + boot-mode 
+ A E S (legacy) test. 

G P U S P E E D 
M E D I A N 

M E M 
U S E D 
M E D I A N 

M E M U T I L 
M E D I A N 

N V I D I A GeForce G T X 1080 T i 49168.50 10842.38 96.26 
N V I D I A GeForce R T X 2080 S U P E R 80987.00 7115.68 86.86 

N V I D I A GeForce R T X 3070 93567.00 6976.07 85.16 
N V I D I A GeForce R T X 3090 189263.00 23245.83 94.59 

N V I D I A R T X A4000 89304.00 15716.01 95.97 
Radeon R X Vega 59100.00 6525.10 40.00 

Table 8.2: D a t a from combinator S N M P v 3 H M A C - S H A 2 2 4 - 1 2 8 8 test. 

The last hardware aspect positively correlated wi th the speed is the boost_clock. This 
correlation implies that G P U s were running pr imar i ly at the boost clock speeds, which 
means that the boost clock speed is more important than the base clock speed. The boost 
clock speed is more important than the base clock speed because cracking the passwords 
puts a heavy load on the G P U s , which means they go into their boost speeds most of the 
t ime while cracking the passwords. 

The last hardware parameter i n this correlation mat r ix is the interface wid th . The 
correlation between the interface w id th and the speed would suggest that the larger interface 
means less speed, but it could not be further from the t ru th . T h i s value is wrong because 
the Radeon R X Vega 64 does not reach the highest speeds, but it has the largest interface, 
w i th its wid th being five times larger than the interface of the most powerful G P U used 
in this analysis, the R T X 3090. W h e n we remove the Radeon R X Vega from the data 
comparison, we can see that the correlation between interface wid th and speed is positive. 
However, because Radeon R X Vega has such a large interface, it can easily use the system 
R A M alongside its bui l t - in memory, and that is why a large interface is essential when 
dealing wi th attacks that use large amounts of memory. Overal l , the interface wid th is not 
the most crucial aspect of the G P U for password cracking, but larger is better. 
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Figure 8.11: Med ian from correlation mat r ix of a l l median data. 

8.1.5 Median Calculated from Correlations of Individual Files Grouped 
by Attack Mode 

Each of the attack types uses the G P U differently. They may depend more on different 
hardware aspects, so we examine each attack type separately. 

Combinator Attack 

Combinator attack uses the combination of 2 dictionaries. Figure 8.13 shows us the cor
relation of collected data w i t h the hardware characteristics of G P U s . A s shown i n this 
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correlation matr ix , the hardware columns that positively correlate w i t h speed are pro
cessors, base_clock, boost_clock and memory_config. W h e n analysing the data, we w i l l 
main ly use the median data for the same reasons as i n Section 8.1.4. The correlation matr ix 
made only from median data and G P U hardware specifications is shown in Figure 8.13. 
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Figure 8.12: Med ian from correlation matr ix of combinator configuration data. 
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Figure 8.13: M e d i a n from correlation matr ix of combinator configuration median data. 

The processor count is the most important hardware characteristic for cracking pass
words when combining two dictionaries. Its correlation value w i t h speed is 0.8, which is 
close to being a linear growth. Overal l , the higher the processor count is, the higher the 
password-cracking performance becomes. 

The following hardware characteristic we are going to take a look at is memory. The 
correlation coefficient, which is 0.72, would suggest that the higher the memory of the 
G P U is, the higher the password-cracking performance becomes. However, the correlation 
coefficients of used memory wi th speed and memory ut i l isat ion w i t h speed suggest the 
exact opposite. A s explained i n Section 8.1.4, this happens because the graphic cards 
wi th higher memory and higher password-cracking performance crack passwords faster and 
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thus do not need to use their whole memory. In Figure 8.14, we can see that the used 
memory stays around the same value, which means that even w i t h t ime, the memory 
would not get fully used, because total memory of R T X 3090 is 2 4 G B . However, there 
are cases where memory is essential. These cases are hashes like CISCO-IOS$9$(scrypt ) or 
So la rWindsOr ion , where the memory is used much more, and if it were smaller, the cracking 
performance would be worse as well . We can see the correlation matrices of these hashes 
in Figure 8.15 and Figure 8.16, where we can see that the memory and speed correlation 
coefficients are positive. Overa l l for the combinator attack, memory is not that important 
factor. However, there exist hashes that can use the surplus memory, and for these hashes, 
the cracking performance gets impacted by the memory size. 

used memory over Time for combinator-sha384(utfl6le($pass)).csv 

T i m e [s] 

Figure 8.14: Used memory over t ime for combinator attack wi th sha384(utfl61e($pass)) 
hash on R T X 3 0 9 0 
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Figure 8.16: M e d i a n from correlation mat r ix of combinator configuration So la rWindsOr ion 
hash. 

The following hardware specifications that we w i l l look at are the clock speeds. We 
have two clock speeds, the base clock speed and the boost clock speed. C lock speed refers 
to the speed at which the G P U processors operate. The higher, the better. The correlation 
matr ix shows that the correlation coefficient of base clock speed wi th speed is almost 0. 
However, the boost clock speed is 0.47 because when the G P U s are under heavy load, they 
operate at the boost clock speed instead of the base clock speed. Because of this, the boost 
clock speed is much more important than the base clock speed. 
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The last hardware characteristic we w i l l examine is the bus interface wid th . The cor
relation mat r ix would suggest that the smaller the bus interface is, the better. However, 
this is because the Radeon R X Vega 64 has a much larger bus interface than the rest of the 
G P U s , and it is not the most powerful G P U . W h e n we delete the Radeon R X Vega 64 from 
counting the correlation matr ix , we can see that the interface wid th posit ively correlates 
wi th speed. Overa l l having the interface wid th bigger is an advantage, but other hardware 
specifications are more crucial regarding the password-cracking performance. 

D i c t l and Dict3 configurations 

Firs t , we w i l l look at the attack strategies that each use ten rules. The dict ionary used in the 
D i c t l strategy has only got a hundred words, while the dict ionary used i n Dic t3 is Rockyou 
wordlist . Unfortunately, because the d i c t l only creates 1000 possible hash candidates, some 
hashes were calculated so quickly that their data are unusable i n analysis, which means that 
to analyse D i c t l , we can only use more complex hashes. 

In the D i c t l correlation mat r ix shown in Figure 8.17, we can see that the most crucial 
hardware specification is again the number of processors. We can see the same thing in the 
Dic t3 correlation matr ix shown i n Figure 8.18. 

The second most crucial hardware characteristic for d i c t l is the boost clock speed, 
which is almost as crucial as the number of processors. The G P U s operate on the boost 
clock speeds most of the t ime when cracking passwords, so the base clock speed is not that 
important . We can see that for dict3, the boost speed is also essential, but it falls far from 
the number of processors. The keyspace difference between d i c t l and dict3 can explain this 
phenomenon. W h i l e dict3 has enormous keyspace and can utilise the number of cores, d i c t l 
cannot because it can fit into the number of processors, and more than half of processors 
on our G P U s are unused. Thus the speed of each processor becomes more cr i t ica l i n the 
d i c t l configuration. 

Memory is a special case, and like in other cases, it is not that important overall. 
Sections 8.1.4 and 8.1.5 explain why the memory size is not that important i n most cases, 
and section 8.1.6 explains i n which cases the memory size is essential. 
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Figure 8.17: Med ian from correlation mat r ix of d i c t l configuration median data. 
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Figure 8.18: Med ian from correlation mat r ix of dict3 configuration median data. 

Dict2 and Dict4 

In these configurations, we used the same dictionaries as in d i c t l and dict3, where dict4 
has the Rock Y o u wordlist . However, we used a rule file w i th 100 rules, meaning the hashes 
w i l l calculate slower, impact ing the analysis results. Figure 8.19 shows the correlation 
matr ix of dict2 data, and Figure 8.20 shows the correlation mat r ix of dict4 data. A s 
these matrixes show, the clock speed is the more cr i t ica l hardware parameter for the dict2 
configuration, but the number of processors is the most cr i t ical hardware parameter for 
the dict4 configuration. These essential hardware parameters differ because we can fit the 
dict2 namespace into the provided number of processors, and then their speed is more 
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important . The takeaway from this is if we have only a few candidate passwords, the clock 
speed at which the processors are running is more important than their number because 
we cannot utilise the high number of processors i n this case. However, i n most cases of 
password cracking, the number of candidate passwords is enormous, and we can utilise the 
processors, so overall, the number of processors is more important . 

Just like i n other cases, memory is not that important overall, and after reaching a 
certain value of used memory, the tests do not use any more. O f course, some hashes need 
more memory, and having more memory is beneficial i n those cases. Nevertheless, overall, 
it is not that important . Sections 8.1.4, 8.1.5 and 8.1.6 better describe these cases. 
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Figure 8.19: Med ian from correlation mat r ix of dict2 configuration median data. 
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Figure 8.20: Med ian from correlation mat r ix of dict4 configuration median data. 

Force Attack 

Force attack, also known as Mask attack, is an attack that is most reliant on the number of 
processors on the G P U and their clock speeds, and that is because a l l of the calculations of 
the candidate hashes are ongoing on the G P U itself. It does not load any data input from 
the computer. The correlation mat r ix shown in Figure 8.21 shows us that the number of 
processors is the most cr i t ica l hardware parameter for force type of attack. For memory, 
the case is the same as i n the Combinator attack explained i n sections 8.1.4 and 8.1.5 and 
Section 8.1.6. 
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Figure 8.21: Med ian from correlation mat r ix of force configuration median data. 

H y b r i d attack 

The H y b r i d attack combines the dict ionary attack and the force attack into one. It functions 
like a combinator attack, combining each word from an input ted dict ionary wi th each 
password created by force attack. The correlation mat r ix shown i n Figure 8.22 shows that 
the most cr i t ica l hardware characteristic is the processor count, followed by memory and 
then the boost clock speed. O n the other hand, the memory ut i l isat ion and the used memory 
values suggest that memory is not that important . Whether the memory is important 
depends on the hash type and is further explained in the sections 8.1.4, 8.1.5 and 8.1.6. 
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Figure 8.22: Med ian from correlation mat r ix of force configuration median data. 

8.1.6 Memory-hard Hash Functions 

A memory-hard hash function is a function that has to spend a large amount of memory 
when calculat ing the hash, or the password-cracking performance w i l l get slower. In the 
sections 8.1.4 and 8.1.5 we have experienced a disagreement about whether large memory 
is essential or not. In this section, we look at hashes that can use the extra memory and 
benefit from i t . F i r s t , we calculate the correlation mat r ix from median values for every file 
w i th a memory ut i l isat ion value higher than 70%. We w i l l further analyse these hashes 
to see which hardware parameters are most important for these memory-hungry hashes by 
looking at the correlation between hardware parameters and speed. 
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The hashes that we filtered from the rest are: 

. D i s k C r y p t o r S H A 5 1 2 + X T S 1024 bit (Serpent-AES) 

. D i s k C r y p t o r S H A 5 1 2 + X T S 1024 bit (Twofish-Serpent) 

. D i s k C r y p t o r S H A 5 1 2 + X T S 512 bit (Serpent) 

• ExodusDesktopWallet (scrypt) 

• Mul t iBi tClass ic .wal le t (scrypt ) 

. M u l t i B i t H D ( s c r y p t ) 

. S N M P v 3 H M A C - M D 5 - 9 6 - H M A C - S H A l - 9 6 8 

. S N M P v 3 H M A C - M D 5 - 9 6 8 

. S N M P v 3 H M A C - S H A l - 9 6 8 

. S N M P v 3 H M A C - S H A 2 2 4 - 1 2 8 8 

. S N M P v 3 H M A C - S H A 2 5 6 - 1 9 2 8 8 

. S N M P v 3 H M A C - S H A 3 8 4 - 2 5 6 8 

. S N M P v 3 H M A C - S H A 5 1 2 - 3 8 4 8 

• So la rWindsOr ion 

• SolarWindsOrionv2 

. TrueCryp t 5.0+ P B K D F 2 - H M A C - R I P E M D 1 6 0 + Serpent -AES + boot (legacy) 

The correlation matrixes shown in Figures from8.23 to 8.38 show that the two most 
crucial hardware characteristics for these hashes are the processor count and the memory 
size. The correlation mat r ix of D i s k C r y p t o r S H A 5 1 2 + X T S 512 bit (Serpent) even shows 
us that memory is more important than processor count for this hash. The hashes that 
require much memory while being cracked are really complex. These hashes usually belong 
to either disk encryptions, wallet encryption, network management protocol encryptions or 
administrat ion platform encryptions. 

Overal l this means that the bigger size of the memory is, the better. It is not always 
fully used, because not a l l hashes are that complex and need the full use of i t . However, i f 
we t ry to crack complex hash, or we use complex settings w i t h the use of lot of rules, the 
memory can be used up quite quickly. 
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Figure 8.23: Med ian from correlation matr ix of data from D i s k C r y p t o r S H A 5 1 2 + X T S 
1024 bit (Serpent-AES) hash. 

71 



Figure 8.24: Med ian from correlation matr ix of data from D i s k C r y p t o r S H A 5 1 2 + X T S 
1024 bit (Twofish-Serpent) hash. 
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Figure 8.25: Med ian from correlation matr ix of data from D i s k C r y p t o r S H A 5 1 2 + X T S 
512 bit (Serpent) hash. 
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Figure 8.26: Med ian from correlation mat r ix of data from ExodusDesktopWallet (scrypt) 
hash. 
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Figure 8.27: Med ian from correlation mat r ix of data from Mul t iBi tClass ic .wal le t ( scrypt ) 
hash. 
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Figure 8.28: Med ian from correlation mat r ix of data from M u l t i B i t H D ( s c r y p t ) hash. 
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Figure 8.29: M e d i a n from correlation matr ix of data S N M P v 3 H M A C - M D 5 - 9 6 - H M A C -
SHA1-968 hash. 
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Figure 8.30: M e d i a n from correlation mat r ix of data S N M P v 3 H M A C - M D 5 - 9 6 8 hash. 
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Figure 8.31: Med ian from correlation mat r ix of data S N M P v 3 H M A C - S H A l - 9 6 8 hash. 
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Figure 8.32: Med ian from correlation mat r ix of data S N M P v 3 H M A C - S H A 2 2 4 - 1 2 8 8 hash. 
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Figure 8.33: Med ian from correlation mat r ix of data S N M P v 3 H M A C - S H A 2 5 6 - 1 9 2 8 8 hash. 
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Figure 8.38: Med ian from correlation mat r ix of data TrueCryp t 5.0+ P B K D F 2 - H M A C -
P J P E M D 1 6 0 + Serpent -AES + boot (legacy) hash. 

8.1.7 Sumary of the Analysis 

Architecture is the most important aspect of G P U when discussing its performance, and it 
is no different in password cracking. The newer G P U s w i l l outperform the old ones because 
their architecture is better. We analysed other aspects of G P U s to see what difference they 
make. 

After reviewing the collected data, calculat ing the correlation matrixes and analysing 
them, the conclusion is that other than the architecture, the number of processors is the 
most cr i t ica l hardware parameter for password-cracking performance overall. The main 
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reason is that the user usually uses a large keyspace when cracking passwords, which means 
he needs to calculate a hash for every single one. The faster the hashes are calculated, the 
faster we can go through a keyspace and find the correct password. The only exception, 
when the number of processors would not be significant, would be when the keyspace is 
tiny, w i th just a few hashes. T h e n the speed at which the cores run and how powerful these 
cores are would be more cr i t ical . For such a use case, using a C P U wi th few cores that are 
much more powerful than G P U cores would be the better option. 

The second most crucial hardware characteristic is the boost clock speed of the G P U . 
The clock speed is the speed at which the processors run, directly affecting the password-
cracking performance. The faster the processors run, the faster the hash is calculated. 
Thus we can t ry new passwords from the keyspace more often. The data we went through 
directly support this c la im, where in almost every scenario, the higher the clock speed, 
the better the speed. The boost clock speed is much more important than the base clock 
speed because when G P U s are under much load, they go into the boost speed. Cracking 
passwords creates much load for G P U s , so their processors almost always run on the boost 
clock speeds. So the base clock speed is not that important . 

The th i rd most cr i t ica l hardware characteristic is memory size, even though it was not 
used to its full potential in our experiments most of the time. However, this is the case 
only because, i n the tests, we only used a few complicated password candidates. In reality, 
the hash configuration is much more complicated i f we want to crack the password. It 
uses many more complicated rules, which may use mult iple dictionaries and complex rules. 
Us ing such configurations would cause the memory to clutter, and it would be used to the 
fullest. We saw this when testing the hashes that are complicated to calculate. Even i f we 
used simple configurations, it s t i l l used a l l the memory. 

Memory bus size does not directly affect password-cracking performance that much. A s 
we saw i n the data, the G P U s w i t h bigger memory buses were not performing better. O f 
course, having the bigger memory bus size is not an issue, and i f having to choose between 
a smaller and a bigger memory bus, and a l l the other parameters are the same, choose 
the bigger one. However, choosing between a bigger memory bus or a higher number of 
processors, higher boost clock speed and bigger memory size, it is better to choose the 
latter. It is only better to choose the bigger bus size if we compare it to the better base 
clock speed, at which the G P U cores w i l l rarely run. 
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Chapter 9 

Conclusion 

The goal of the thesis was to test the password-cracking performance of available graphic 
cards, analyse the data collected from these tests and deduce which hardware parameters 
of graphic cards affect their password-cracking performance the most. 

Firs t ly , we studied password-cracking techniques and examined the different approaches 
to password-cracking. Then we surveyed currently available graphic cards. In this survey, 
we could see the broad spectrum of available G P U s wi th varying hardware parameters. In 
the th i rd part, we studied the hashcat password cracking tool and familiarised ourselves 
wi th the different attack modes the hashcat provided. 

We designed and implemented a tool for testing password-cracking performance from 
these findings. Th is tool controls the hashcat and launches it w i t h different configurations 
while simultaneously collecting the data hashcat provides alongside the other hardware 
G P U data. 

We tested each G P U wi th different configurations to simulate different password-cracking 
tactics. We used dictionary, force, hybr id and combinator attack modes i n these tests. The 
dict ionary attack had further configurations where we used smal l and big dictionaries along
side 10 and 100 rules. F r o m these tests, we collected data and used them for the analysis. 
Then we developed scripts to help us visualise and analyse collected data. 

After analysing the data, we have figured that the most important hardware specifica
tions, other than the architecture of the G P U , are the processor count, the clock speed at 
which the processors are running and the size of G P U R A M . 
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Appendix A 

The contents of the attached 
storage medium 

The attached S D card contains the following files: 

• dictionaries/ - dictionaries used in password-cracking tests, 

• dictionaries-diet/ - other dictionaries used in password-cracking tests, 

• hash-files/ - files containing hashes used in password-cracking tests, 

• input/ - configuration files used i n password-cracking tests, 

• jupyter-notebook/ - jupyter notebook files used for analysis, 

• output/ - output data from tests 

• input-hash.csv - file containing hashes used i n password-cracking tests, 

• rules - folder containing rule files, 

• sre - folder containing source files, 

• l a t e x - f i l e s . z i p - compressed archive containing latex source documents, 

• thesis.pdf - thesis report file. 

• README.md - R E A D M E manual for the project 

The collected data for each G P U under o u t p u t / G P U s are put into compressed archives 
because there were too many files. To use these data, you need to uncompress them. 
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