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Abstract:

The presented Ph.D. thesis has originated in the framework of the
postgraduate study under tuition of my supervisor Prof. RNDr. Michal
Kotoul, DrSc. The thesis focuses to the solution of the problems of general
stress concentrators in anisotropic media. Particularly, it is a problem of
cracks terminating on the interface of two dissimilar materials or
problems of general multi-material wedge. The work is possible to
sectionalize into three parts. The first part is dedicated to the search study
in the area of interest, the second part to the methods chosen for the
achievement of the thesis aims. These aims are as follows: the description
of the stress field in the vicinity of the general stress concentrator, the
inclusion of the effect of crack bridging into the resulting stress field, and
definition of the fracture criteria for the crack impinging at the interface in
dissimilar anisotropic media. The last, third, part contains several
demonstrative examples — applications of methods on specific bi-material
models. For the description of the stress field the so-called Lechnitskii-
Stroh  formalism and continuously distributed dislocation technique,
exploiting the complex potential theory. The first step is the singularity
analysis of the general stress concentrator, next the calculation of the
generalized stress intensity factor and of the T-stress. The obtained
asymptotic expansion for stresses and displacements is subsequently used
for the fracture criterion definition, where the theory of Finite Fracture
Mechanics and matched asymptotic expansions is used for its derivation.
All the needed calculations are performed in the mathematical softwares
MAPLE 10.0 and MATLAB 7.1 and in the finite element system ANSYS
10.0. The two-state ¥-integral is widely applied in this work — especially
for the calculation of the generalized stress intensity factor or T-stress,
calculation of the bridging effect and for the application of the fracture
criteria.

Keywords:

Anisotropic bi-material, two-state integral, generalized stress intensity
factor, T-stress, FEM, bridged crack, fracture criteria.






Abstrakt:

Predkladand disertacni prace vznikla v rdmci doktorského studia pod
vedenim mého Skolitele Prof. RNDr. Michala Kotoula, DrSc. Prdce se
vénuje problematice obecnych koncentratoru napéti v anisotropnich
prostredich. Zejména se jednd o problém trhlin koncicich na rozhrani
dvou riiznych materidalii, ¢i problém obecného vice-materidlového kiinu.
Prdce je clenéna do nékolika casti, kde prvni je vénovdna resersi v oblasti
reSené problematiky, druhd cdst je potom vénovana jednotlivym metoddm
zvolenych pro splnéni cilii prdce, tj. popis pole napéti v okoli obecného
koncentratoru, zahrnuti vlivu premosténti trhliny do vysledného pole napéti
a definici lomovych kritérii pro obecny koncentrdtor v anisotropnim
prostiedi. Posledni cast je vénovana ukazkovym prikladim, tedy aplikaci
metod na konkrétni bi-materialové modely. U popisu pole napéti je vyuZit
tzv. Lechnického-Strohitv formalismus a technika spojité rozloZenych
dislokaci vyuzivajici teorii komplexnich potencidii. Prvnim krokem je
analyza singularity obecného koncentrdtoru, ddle vypocet zobecnéného
soucinitele intensity napéti a T-napéti. Ziskany asymptoticky rozvoj pro
napéti a posuvy se ndsledné uplami pri formulaci lomovych kritérii,
pricemz je pouZita teorie tzv. , konecné lomové mechaniky“ a teorie
sdruzenych asymptotickych rozvojii. VeSkeré potrebné vypocty jsou
provadeény v matematickych softwarech MAPLE 10.0 a MATLAB 7.1 a
konecnoprvkovém systému ANSYS 10.0. V praci je Siroce uplatnén tzv.
dvoustavovy Y-integral, zaloZeny na Bettiho reciprocnim teorému. VyuZit
je pro vypocet zobecnéného soucinitele intensity napéti, T-napéti, vypoctu
premosténti i pri aplikaci lomovych kritérii.

Klicova slova:

Anisotropni bimateridl, dvoustavovy integrdl, zobecnény faktor intensity
napeéti, T-napéti, MKP, premosténa trhlina, lomovd kritéria.
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1. Introduction

1 Introduction

The increasing use of fibre-reinforced composites (or other modern materials) in high
performance structures has brought a renewed interest in the analysis of cracks in
anisotropic and moreover heterogeneous media. Without the tools for the assessment of
fracture-mechanics behaviour of these materials it is impossible to apply them into any
critical machine parts, where the unexpected failure can have a catastrophic consequence.
Therefore, there is a necessity to correctly assess the singular points in constructions
(potential stress concentrators) and be able to predict their future behaviour during the
operation. Lot of recent works have been focused on the description of the general stress
concentrators in isotropic media. As a consequence, this field is explored quite well.
However, in case of the anisotropic materials, there are certain complications which
generally disallow applying the same approaches as for isotropic materials. Therefore, it is
necessary to find other possible ways how to involve general anisotropy into the solution
and assessment of the general stress concentrators.

Most matrices of the advanced composite materials are brittle. They prone to cracking
under very low applied stresses and the failure frequently occurs in the form of multiple
matrix cracking. The orientations of these cracks may vary depending on the relative
position of the reinforcement in relation to the load. The stress field in the neighbourhood
of crack is governed by the overall anisotropic material response. The existence of material
interfaces in composites, especially in laminates, brings other problems in the analysis of
cracks — the problem of cracks terminating at the interface of two anisotropic (most often
orthotropic) solids and the problem of interfacial cracks [22]. These problems are also
encountered in the technology of protective coatings. For the assessment of crack
behaviour in the aforementioned situations it is essential to investigate and describe the
stress field near the crack tip. Although the FE analysis is capable of capturing the singular
stress behaviour near a corner or a crack tip in homogeneous regions with a refined mesh
of conventional elements, this traditional FE approach fails to accurately capture the
appropriate singular behaviour near a corner or a crack tip at the junction of dissimilar
materials. A very promising approach to an accurate calculation of the near crack tip fields
consists in the application of so-called two-state (or mutual) conservation integrals - [34],
[40], [80], [107]. The two-state conservation integrals, e.g. in conjunction with a
displacement-based FEM provide an efficient tool for calculating the stress intensities and
elastic T-stresses without need of the very fine mesh in the singular point vicinity. This is a
major advantage over the singular finite elements [93], and other wvarious special
techniques such as the boundary collocation or the singular hybrid FEM.

The problem complexity can be further increased by presence of the bridging phase
which can significantly influence the resulting stress field in the vicinity of the crack tip.
These situations can be often found for example in laminated structures composed of
layers which are reinforced by long fibres. In spite of the crack existence in some layer,
there may be present intact bridging fibres which positively influence the fracture
behaviour of the structure (due to the crack closure effect). Therefore, this fact should be
also involved in the stress field analysis which stands as a basis for the subsequent
fracture-mechanics behaviour assessment. The main objective of this assessment and of the
whole described problems is to understand the mechanism of competition between the
crack deflection along the interface and penetration into the adjoining material and be able
to design such a construction which will exhibit the desired behaviour. The solved
problems are very topical and will provide a basis of the subsequent research following
this thesis.
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2 Analysis of the investigated problems

2.1 Basic terms
General stress concentrator:

Generally the singular stress field in the vicinity of a singular point exhibits the asymptotic
behaviour o ~ ™!, where r is the distance from the singular point, & is called a
characteristic eigenvalue of the singularity and 1-0 is called as a stress singularity
exponent. In the case of sharp crack in homogenous media, this singularity exponent is
equal to 0.5. If the singularity exponent differs from this value, the stress concentrator is
called a general stress concentrator. In that case the characteristic eigenvalue (or
singularity exponent) can generally acquire a value from the interval (0,1). It can be also
generally complex, whereas the real part is from interval (0,1).

For instance, the following configurations give rise to the general stress concentrators:

o Cracks or notches with tip on the interface of two dissimilar materials (can be
positioned at arbitrary angle to the interface)

o Interfacial cracks
o V-notch

o Generally a junction of several materials (covers all previous cases)

\ Mat. 1 Mat. 2
©
[h o \
\ anisotropic E., Er, Ez,

o
\ (orthotropic) Vi1, V1z, Viz,s

\ Git, Grz, Gz
N

B

Fig. 1 Different types of the general stress concentrators — crack terminating at the interface of two
dissimilar materials, interfacial crack, notch and V-notch and a general multimaterial wedge.
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2. Analysis of the investigated problems

Complex potential theory:

The Lechnitskii formalism is the oldest and the most frequently used formalism in
engineering practise employed for the description of plane deformation of anisotropic
media — see [52], [53], [54] and [55]. This formalism is in fact a generalization of the
Muschelishvilli theory [67] of complex potentials in plane isotropic elasticity which
assumes that stresses are dependent only on coordinates x; a x,. Therefore, in relations
outgoing from the Lechnitskii theory the components of the reduced compliance matrix
occur. The opposite situation is in the case of the Stroh formalism which comes out of the
works [20] and [85]. The Stroh formalism assumes that displacements U; (i=1, 2, 3) are
dependent on coordinates x; and x, (axes of coordinate system with origin at the crack tip).
Due to this assumption, instead of the compliance matrix components in the corresponding
relations, the components of the stiffness matrix are present. The advantage of the Stroh
formalism is its mathematical elegance and its power in the solution of 2D anisotropic
elastic problems.

In case of the general plane anisotropic elasticity it is necessary to consider all
components of the stress and strain tensor. Each anisotropic material can be characterized
by three complex numbers g4 (i=/, 2, 3) and their complex conjugate opposites. The
numbers y; are eigenvalues of the matrix 3x3 whose elements depends on material elastic
properties. A significant simplification can be made if the stiffness (or compliance) matrix
has a symmetry planes, as e.g. in the case of orthotropic materials. In such a case the
number of characteristic material eigenvalues is reduced to two and the nonzero
components of stress (strain) tensor are reduced only to 6, or &, , where i, j=1,2.

The singular stress and displacement field in the vicinity of the crack tip is useful to
express as a functions of polar coordinates 7 and 6:

U, :Hrsgl(e) ., Oy :Hrs’lfy.(e) , (1)

where O is a characteristic eigenvalue of the given singularity which is obtained as a
solution of the singular eigenvalue problem. The Generalized Stress Intensity Factor H
depends on the external load and on the whole body geometry.

Generalized Stress Intensity Factor (GSIF):

Within the framework of the linear-elastic fracture mechanics, the stress field in the
vicinity of the general stress concentrator is possible to write (for the general case of
loading) in the following form:

Gg’/(n’p) :Hl : ral_l ﬁl (¢>a>ﬂ> 8170) +H2 ,}/-62_1 J?/Z (¢,6{,ﬂ, 8270) +"'T{l)é‘ilé‘/l +T{2)6;25/2 +0(r6) . (2)

Expansion (2) is called a Williams asymptotic stress expansion [2]. The first two terms
are singular (generally there can be also more of them or only one). The amplitude of the
singular term is then called a Generalized Stress Intensity Factor and is denoted as H, or
H,. Here, H, corresponds to the GSIF of a stronger singularity and H, to the GSIF of a
weaker singularity (note that A, can be matched with the stress intensity factor Kj for a
crack in homogenous body, where characteristic eigenvalues 8, and 6, are equal to 1/2).
Variables 7 and 6 denote the polar coordinates, 7 is the T-stress and O(r°) are the higher
order terms which are negligible in comparison with the previous ones for r—0.

17
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T-stress:

The T-stress is a non-singular term in the Williams asymptotic expansion (2) denoted as 7.
It represents stress component oy, acting parallely with the crack faces. This term is not
dependent on the distance from the crack tip (on the polar coordinate 7). The T-stress is a
second fracture-mechanics parameter which mostly characterizes the influence of the body
geometry and it can be also used for the description of the constraint effect at the crack tip.
T-stress can be tensile (positive) or compressive (negative). Its value is changing with the
applied stress, specimen geometry and is also dependent on the boundary conditions. Since
it can have a significant influence on the fracture-mechanics behaviour of the stress
concentrator, there is necessary to have some available methods for its determination.
Some of them are mentioned in the chapter 4.1.4 with the corresponding references to the
literature.

2.2  Definition of the studied problem

The main subject of the thesis is the analysis of the behaviour of the general stress
concentrators in the anisotropic media. The goal is to work up a suitable technique for the
description of the stress field in the vicinity of the general stress concentrator with
involvement of a possible crack bridging effect. Subsequently, to set up a criterion which
will have made possible to predict failure behaviour originated at the given loading
conditions. All materials are considered to be orthotropic (or generally anisotropic). In
case of the full orthotropy the nine independent material characteristics are required to its
description and in case of the transverse isotropic material only five independent elastic
constants are needed (due to the material symmetry). All studied problems are restricted to
the validity of the linear elastic fracture mechanics (LEFM). Solution of these problems is
of a high importance for the fracture-mechanics analysis of e.g. laminated composite
structures composed of anisotropic laminae, analysis of the protective surface layers or
some general multimaterial wedges.

M2 M2 M2 M2
\J \J
M1 M1
a) b)

Fig. 2 Geometric configurations of general stress concentrators in anisotropic media solved within
the thesis: a) crack perpendicular to the bi-material interface; b) crack situated at arbitrary angle to
the bi-material interface.
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3. Problem formulation

3  Problem formulation

In order to describe fracture-mechanics behaviour of the studied general stress
concentrators (Fig. 2), first the stress field has to be investigated and subsequently the
suitable fracture criterion defined. Namely the following steps are required to perform:

= In the first step it is necessary to obtain the characteristic eigenvalue(s) of the given
singularity which are in case of the general stress concentrator different from 1/2.
The studied geometric configurations are depicted in Fig. 2. In literature one can
find several approaches which can be used for the singularity analysis. In case of
isotropic materials, it is possible to employ analytical solution as was proposed by
Williams and used e.g. in [68]. However, the approach is not very suitable for the
case of junction of more than two materials, especially in case of generally
anisotropic materials. It is due to resulting very long analytical expressions which
are significantly difficult to manipulate. For this reason, it is better to employ e.g.
some semi-analytical methods based on the complex potential theory and Stroh
formalism which simplify the problem.

< In the second step, the stress distribution in the vicinity of the general stress
concentrator has to be determined. This step is in fact connected with the step no.
one. That is, after the appropriate eigenvalues of the given singularity are found,
the eigenvectors describing the distribution of the stress field can be calculated (by
the same method).

# In the third step, the amplitude of the singular term in Williams asymptotic
expansion (2) (Generalized Stress Intensity Factor - GSIF) has to be determined for
a selected configuration. It is an important fracture-mechanics parameter, which
involves the information about the loading conditions. To refine the local stress
field description, considering the T-stress may improve a characterization of the
fracture behaviour. In many cases, it can have a significant influence on this
behaviour. The GSIF or the T-stress can be calculated e.g. using a combination of
the FEM and two-state integral method based on Betti’s theorem. For the same
purpose the Continuously Distributed Dislocation technique can be used as well.

= The fourth step (optional) depends on the solved material configuration. It involves
a case, when the crack is bridged by long fibres and the goal is to quantify the
bridging effect and its influence on the applied GSIF (from the third step). These
crack bridging situation can be very often found e.g. in some laminated structures
composed of plies with long fibres, where the possible crack in some ply is bridged
by these fibres. If the bridging effect exists, it should be taken into account,
because it can have a significant influence on the crack stability.

<= In the last step, the appropriate fracture criterion for the general stress concentrators
is to be set up and defined. Within the thesis, the criteria based upon the energetic
approach, are to be applied. The main goal is to propose a procedure which allows
to predict a fracture stemming from the concentrator. Particularly, the possibility of
crack deflection along the interface (single or double) or further penetration of the
main crack across the interface into the next material will be considered. The
competition between these processes will be assessed.
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4  Summary of references relating to the solved problems

With regards to the solved problems (as stated in the previous sections), this chapter will
be divided into three main parts which will include the recherché study in the field of the
thesis topic. The main objective is to give information concerning the current state of
research and to find suitable techniques for the solution of the defined problems. In the
fourth, summarizing part of this chapter all findings with respect to own work objectives
are classified.

4.1 Description of the stress field in the vicinity of the general stress
concentrator

4.1.1 Singularity analysis

In the first stage of the analysis of the stress field induced by the general stress
concentrator, the eigenvalues and eigenvectors pertaining to the given singularity have to
be found. These eigenvalues determine the stress singularity exponent — the order of the
stress singularity in the Williams-like asymptotic expansion (2). The eigenvectors
determine the shape and distribution of the stress field (see function f;(0) in (1)). Note that
when the eigenvalue changes from real to complex at some combinations of elastic
constants and crack/wedge geometry, multiple eigenvalues corresponding to the same
independent eigenfunction may occur. For the singularity analysis, two main categories of
numerical methods are available — explicit and implicit methods - [71]:

a) Explicit methods

An explicit form of the transcendent equation for the eigenvalues of the singular problem —
roots of this equation are the eigenvalues of the singular problem operator is derived.
Analytical solution was proposed e.g. by Williams or Westergaard and used in works [33],
[68] or [76] for a solution of the problem of crack terminating at the interface in isotropic
solids. However, from practical point of view, this solution is limited to isotropic materials
(or very special cases of anisotropy) and at present, only to the problems of maximum tri-
material wedge. As was already mentioned, it is because it leads to very long analytical
expressions which are significantly difficult to manipulate. For the bi-material case, the
authors of [16], using similar techniques, obtained explicit eigenequations with each
expression corresponding to a different boundary condition. In [108] an explicit closed
form expression for the eigenequation for a tri-material wedge includes the uni- and bi-
material cases. The eigenequation was again derived as the determinant of a 2x2 matrix. Its
roots were sought in a given region of the complex plane. As is noted in the above papers,
the uniform expression for a tri-material wedge is 15 pages long and is almost impossible
to work out by hand, while for a four-material wedge, the size of the expression is too big
to handle even with symbolic manipulation programs. Therefore some other approaches
based on the semi-analytical solution have to be used.

- L.IE.S. method

The method is named after Lechnitskii [55], Eshelby [20] and Stroh [85] who introduced
the complex potentials for anisotropic bodies. The complex potentials formally satisfy the
equilibrium, the compatibility equations and the elastic/strain laws but the specific form of
the solution is gained by matching boundary conditions. The stresses o;;, displacements U;
and a resulting force 7; along the half-line leading from the origin of coordinate system is
possible to write in the following form:
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o, =H-r"-£(6,.), U=Hr"g(0,..), -[=H-r'-F(8,.), (3)

where f;(0,...), gi(0,...) and F;(0,...) are the functions of the polar coordinate 0, material
elastic properties (given by material stiffness matrix), further of the characteristic material
eigenvalues y; (see chapter 2.1), and mainly of the searched singularity exponent
(characteristic eigenvalue of the singularity 6). The means of obtaining the complex
numbers g have been proposed by Lechnitskii [55], Eshelby et al. [20] and summarized
by Suo in [86].

Providing a perfect bonding between two adjacent materials and application of
appropriate boundary conditions (equivalent displacements U; and resulting force 7; along
the interface of the adjoining materials and traction free crack surfaces) we get a system of
4N homogenous linear equations [17] (N is the number of material wedges). This system is
shortly possible to write in the following form:

K@©)v=0, 4)

where for non trivial solution all equations have to be linear dependent, so the determinant
of system matrix K have to be zero (det(K)=0). From this condition we get a non-linear
equation whose roots are the searched characteristic singularity eigenvalues . The real
part of the least root from interval (0,1) define a singularity exponent (9;-1) — see (2).

- Transfer matrix method:

The procedure originally developed by Ting [95], [96], [97] is an efficient tool for the
singular characterization of non-degenerate anisotropic multimaterial corners. The ith
material wedge occupies the polar sector ;-1 <0 <, i=1,... N (see Fig. 1). Perfect
bonding is considered between material wedges. Fixed or free boundary conditions are
considered at the external faces. The solution can be written in the condensed form using
the complex variable z,=x1+ pox2 =1(cosO + psind)=rC,(0):

w(r,0)=r'XZ°(0)q, ®)

where w'(,0) = [u(7,0),® (r,0)]’, u stands for the displacement vector and ® is the stress
function vector. p, are three distinct complex numbers with positive imaginary parts,
which are obtained as the roots of the characteristic equation

det |:Cilk1 tp (Cilkz + Cizkl) + p2012k2:| =0. (6)
cyu 1s the tensor of elastic constants, i.e. G;; = ¢t 1, the matrices X and Z are defined as
—_ o
A A H <§* > 0
X = — Z = — 5
L 0 (&)

where A and L are matrices given by L, = A4, (¢ +PuCors), Ara denotes the

(7)

eigenvector corresponding to the eigenvalue p, above, the overbar denotes the complex
conjugate. <Cf’> = diag[( 2.0 C f’]. d€(0,1) is the characteristic eigenvalue of the

singularity, q" =[v, V]T is the corresponding eigenvector which can be determined up to a

multiplicative constant. If d is a real number, then v =V . Ting’s procedure makes use of a
transfer matrix, which transfers the displacements and stress function vector components
from one edge of the material wedge to the other. Using the continuity conditions
introduced by the hypothesis of perfect bonding between the wedges, wi(r, ®; ) = win(7,
o) =1, ... N—1), and the transfer matrix for each wedge, it is easy to arrive at an
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expression for the whole multimaterial corner, as it relates the variables between its
external faces (0o and oy):

uy(roy)|_[KY KO [Mu(r.o,) :
@, (ro)] [KY KO (0 ®

where Ky is obtained by the product of the sequence of the successive transfer matrices E;
of all the wedges in the corner:

K,=E, E .E, E, E=XZ(0,)[Z°(0,)] X" (9)

This is worthy of note that Ting’s procedure directly yields a linear system whose size
is 3x3 or 6x6, irrespective of the number of materials N, contrary to traditional analytical
procedures leading to a linear system of (6N x6N).

- Continuously distributed dislocation technique

This technique can be used for modelling of arbitrary cracks (opened or closed ones) [26]
and it is based on the so-called Bueckner’s principle. The basic idea is to use the
superposition of the stress field present in the uncracked body, together with the unknown
distribution of edge dislocations, chosen so that the crack faces become traction free. In
other words, the crack is modelled by means of the continuous distribution of edge
dislocations along the crack with a certain dislocation density which is unknown in the
beginning of the solution and has to be determined. The goal is to set up an integral
equation where the appropriate fundamental solution for the isolated dislocation is
integrated along the crack line (the dislocations are distributed with certain dislocation
density). By solving resulting Fredholm’s integral equation the dislocation density is
found. When this function of dislocations distribution is known, arbitrary quantity (stress
or displacement) in the vicinity of the crack tip can be calculated. Also GSIF or the T-
stress can be determined.

interface interface interf_ace
M2 M1 M2 M1 M2 M1
X2 X2 X2
0
r
a) b) c)

Fig. 3. Modelling of the crack by means of the CDD technique: a) crack perpendicular to the bi-
material interface; b) Isolated dislocation in the semi-infinite plane; ¢) Array of dislocations
distributed along the crack plane with certain dislocation density.

On the basis of work of Suo [86] it is possible to write the stress field component (e.g.
o1i) induced by one isolated dislocation with Burger’s vector b; placed in the point (x;,,X2,)
in infinite anisotropic bi-material in the following form:

o (5) =L D {z[qmgg e }M;;

B o B

o, (x,,%,, ———ZL Z{ C, My,

}rC.C., ze2 (10
ZOL _GOL

d,

}rCC (11)
u_gﬁ
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where the indices / a /] refers to the material 1 and 2 respectively and C.C. is an expression
complex conjugate to the previous one. The matrices L and M contain information about
the bimaterial elastic properties and p, are the characteristic material eigenvalues—see [86].

Introduce the local density of the Burger’s vector f; in some position (x;=0, x;) and
define

dk :fk(xzo)dxzw (12)

where dy is the elementary Burger’s vector between xj, and x,+ dxy,. By integration of
(10) along the whole crack one obtain the integral equation for stresses induced by the
dislocation density f; in position (0, x;):

()= 2t 2| G, Mgz’ii; JAlu)dn, d M| [Ail)dn, _) 200 (13)
o —0 —ﬂ 27 M0 20

The asymptotic stress field in the vicinity of the crack tip is possible to model using
(13) with dislocation density f;:
-5
ﬁc(XZU):H'Vk (_'x2u) > x2u <O> (14)
where 0 is the characteristic eigenvalue of the singularity which is searched, v, are
components of the corresponding eigenvector and H is the generalized stress intensity
factor. By substitution (14) into (13), integration and application of the boundary condition
of traction free crack surfaces one obtains:

—ir\™®
ZZLZ ocﬁMﬁ[z[_%\] cse(8) ~8, cot(nd) | v, =0 = D(8)v, =0 (15)

ol

The eigenvalues & are obtained from the characteristic eigenequation:
det| D(5) |=0. (16)

The potentials for the interaction of an edge dislocation with the interface of two
anisotropic materials can be obtained by invoking the standard analytical continuation
arguments along the interface, as described by Suo in [86] and [87]. This work describes
how the presence of other singularities, as for example the bimaterial interfaces, influences
the solution for the edge dislocation which is placed in the infinite homogenous plane.

- Babuska’s method:

The eigenpairs 0, q (as defined in the Transfer matrix method paragraph) can also be
evaluated using the method developed by Papadakis and Babuska in [71]. Their method
can be used with multi-material wedges, with anisotropic materials and general boundary
conditions under the assumption of plane strain. Along the interfaces at 6 = ©,, the
following continuity conditions are assumed [U] =0, [t] =0 where U is the

displacement vector, t is the traction vector and the brackets denote a jump along 8 = o,.
The problem of finding the characteristic exponent & can be viewed as the following
eigenvalue problem: Find the characteristic exponent 6 such that there exists F # 0 such
that
oF (0) .
——==H(5;0)F(f) mo,<b0<o,,
ae ( ) ( ) i i+l (17)

6)[F(®,)} =0 for 6=0,, O, (6)[F(®,+1)} =0 for 0=

i+1>
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H is a 4x4 matrix whose elements depend in a complicated manner upon elastic constants
and the angle 6, Oy, O, are 2x4 matrices and F(6) is 4x1 vector F(8)=[u,,u,,u,u}] ,
where u, and u, stand for radial and tangential displacement component respectively. The
general idea in solving the above problem is as follows: First construct two initial value

problems using the matrix 7 (8, 6) and start with two independent initial vectors that
satisty the left boundary conditions

F'(0)=H(50)F(0). F(0)={, and F'(8)=H(&0)F(0),F(0)=y,  (I8)

where Cy , Yo are two linearly independent vectors which satisfy the boundary conditions
0:1(8)Co = 0, 02(83)ywo = 0; Co Yo can be determined a priori. Then the fact that a linear
combination of the solution of the two initial value problems k§(6)+k,y(0)will be a
solution of Eq. 7 only if it satisfies the right-hand side boundary conditions, leads to the
formation of the determinant of a matrix which depends on &. Specifically, in each
material, two initial value problems are solved and the interface conditions are used to
calculate two independent vectors which will be used as the initial vectors for the initial

value problem in the next material. Finally, £§(6)+k,w(6) solves Eq. (17) if ky, &, are

chosen to satisfy

0, (5)(le (0y)+hy (0, )) =0 or equivalently D(3) B?}

2

0. (19)

For non zero k; a k; satisfying (19) the determinant det[D(5)] must vanish. A special
iterative procedure named Shoot was developed to solve the problem in equations (17) -
(19). This method has been also used in work [46] for calculation of eigenvalues of the
multimaterial wedge.

A special iterative procedure named Shoot was developed to solve the problem (17)-(19)
in the MATLAB 7.1 and presented in [46] and [74].

Fig. 4 Scheme of multimaterial wedge.

b) Implicit methods

These methods do not lead to the closed form of the equation for the eigenvalues, they are
slower, however they can be used also for the anisotropic materials and multi-material
wedges as well. For example a method based on the variational formulation of the solved
problem is available [49]. The main idea is to replace the classical formulation by the
variational one by the construction of functional as sesquilinear form [71]. The classical
approximation for the finding of functional minimum using FEM leads to the homogenous
system of algebraic equations for eigenvalues and eigenvectors. In other words, the
problem of infinite dimension is converted into discrete one. These methods will not be a
subject of the thesis so the more detailed information will not be given here.
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4.1.2 Description of the singular stress field
Crack in anisotropic homogenous body

The problem of a crack in general anisotropic material under LEFM conditions is
presented in work [81]. Three methods are presented for the calculation of the stress
intensity factors for various anisotropic materials. All of the methods employ the
displacement field obtained by means of the finite element method. The first one is known
as displacement extrapolation and requires the values of the crack face displacements. The
other two are conservative integrals based upon the J-integral. One employs symmetric and
asymmetric fields to separate the mode I and 1II stress intensity factors. The second is the
M-integral which also allows the calculation of K; and Ky separately. All of these methods
were originally presented for isotropic materials. Displacement extrapolation and the M-
integral are extended for orthotropic and monoclinic materials, whereas the Ji- and Jy-
integrals are only extended for orthotropic material in which the crack and material
directions coincide. Results are obtained by these methods for several problems appearing
in the literature. Good to excellent agreement is found in comparison to published values.
New results are obtained for several problems. In Part II, the M-integral is extended for
more general anisotropies. In these cases, three-dimensional problems must be solved,
requiring a three-dimensional M-integral. Similar problem were studied also in work [38].

Crack terminating at the interface of two different anisotropic materials

Number of works has been devoted to the problem of singularity analysis of cracks
terminating at the interface in anisotropic media — e.g. [56], [97]. Ting in [97] studies the
order of stress singularities at the tip of a crack which is normal to and ends at an interface
between two anisotropic elastic layers in a composite material. Work [56] extends this
study on problem of inclined crack at the bi-material interface. Equations for determining
the stress singularity exponent are derived. The works are based on the complex potential
theory which is analyzed in more details in [95].

Multimaterial wedge in anisotropic media

In the paper [10] the singular stress states induced at the tip of linear elastic multimaterial
corners are characterized in terms of the order of stress singularities and angular variation
of stresses and displacements. Linear elastic materials of an arbitrary nature are
considered, namely anisotropic, orthotropic, transversely isotropic, isotropic, etc. Thus, in
terms of Stroh formalism of anisotropic elasticity, the scope of that work includes
mathematically non-degenerate and degenerate materials. Multimaterial corners composed
of materials of different nature (Fig. 1) are typically present at any metal-composite, or
composite-composite adhesive joint. Several works are available in the literature dealing
with a singularity analysis of multimaterial corners but involving (in the vast majority)
only materials of the same nature (e.g., either isotropic or orthotropic). Although many
different corner configurations have been studied in literature, with almost any kind of
boundary conditions, there is an obvious lack of a general procedure for the singularity
characterization of multimaterial corners without any limitation in the nature of the
materials. With the procedure developed in [10], and implemented in a computer code,
multimaterial corners, with no limitation in the nature of the materials and any
homogeneous orthogonal boundary conditions, could be analyzed. This work is based on
an original idea of Ting [95] in which an efficient procedure for a singularity analysis of
anisotropic non-degenerate multimaterial corners is introduced by means of the use of a
transfer matrices (as mentioned in chapter 4.1.1) — see also [44].

25



Doctoral thesis

4.1.3 Overview of references focusing on the GSIFs and T-stress calculation

The next stage of the stress field analysis consist in the GSIF calculation (parameter / in
(2)). There are several approaches for the calculation of the singular term amplitude in the
Williams asymptotic expansion. One of the simplest is based on the comparison of
numerical calculations of the stress (or displacement) field in front of the crack tip (e.g. by
FEM) with the appropriate analytical expressions for stresses or displacements. GSIF is
then extracted for r—0 — see e.g. works [68], [99]. This approach is called a “direct
method” and it can be used for cases where only one singularity is present. The accuracy of
this method is strongly dependent on the element size at the crack tip. The higher accuracy
is desired, the smaller elements have to be placed in the vicinity of the crack tip. This
condition can therefore lead to high computation times and to dis-economy of this
approach. Note, that stress intensity factor in case of general stress concentrators cannot be
calculated using any function integrated in commercial FE software (these functions are
designed only for cracks in homogenous media - [3]). A specific FE post-processing
approach is also proposed in work [6].

Another, much more effective method, which can be used, for the GSIF calculation
(eventually also the T-stress calculation) is based on the method of two state (interactive)
integrals in combination with FEM — e.g. [1], [17], [32], [39]. This method enables to
determine the local stress field parameters in the vicinity of the crack tip using the
deformation and stress field in the remote points, where the numerical results obtained e.g.
using FE analysis are more accurate. The two-state integrals, which are path independent,
are based on the J-integral [22], [32] or M-integral [23]. The physical meaning of the M-
integral is interpreted as an energy release rate with respect to the unit expansion of 2D-
cavity.

The application of the two-state integrals requires knowledge of the so-called auxiliary
solution in the form of eigenfunctions of the appropriate singular problem [39]. The value
of the two-state integral is possible to express in the closed form from the local stress-
strain field and from an auxiliary solution.

The auxiliary solution has been found for the semi-infinite or finite crack, generally
terminating at the interface of two anisotropic materials. In the connection with a
description of V-notches or other general stress concentrators it is necessary to point out
that J-integral is not path independent, so it cannot be applied for the calculation of GSIF
in these cases. On contrary the two-state M-integral is path independent for the case of V-
notch configurations [23].

GSIF can also be determined using the so-called W-integral [17]. This method which
turned out to be very efficient is an implication of the Betti’s reciprocity theorem. Major
advantage of this integral consists in its path independency also for cases of multimaterial
wedges in anisotropic media [84] — that is result of its definition. The reciprocal theorem of
elastostatics states that in the absence of body forces and residual stresses the reciprocal
theorem states that the following integral is path independent

T(U,V)zI[GU(U)n, VJ.—GU.(V)n,Ust, (20)
T
where I' is any contour surrounding the crack tip and U, V are two admissible
displacement fields. The asymptotic expansion of the displacements U(x) is possible to
write in the following form

26



4. Summary of references relating to the solved problems

U(x) = U(0)+ Hy™u, (6) + Hyru, () + T u, (6) +...= Y krow, (6). 8,=1,  (21)
i=0

where H, ,H, are the generalized stress intensity factors w, (), i=1,2 are the angular
distribution of the displacements corresponding to the singular terms in the stress
asymptotic expansion and u, (6’) is the angular distribution of displacements for the T-
stress. In the following we will consider U(0)=0. T-stress is a non-singular stress

component 622(0,x;) ( observe, that the crack lies along the x, axis) acting at the crack tip,
T=0,(0,x, )| . Due to the elastic mismatch, there exists also the non-singular stress

X, >0
component 61 ahead of the crack tip, i.e. in the material M1, contrary to homogeneous
materials, where T-stress is the only non-singular in-plane stress component. If the

following displacement fields are considered U= (x)=r"u,(0), V=U, (x)= rﬁ/uj (9),

(where d,, 0; are obtained by solving the eigenvalue problem, see the Section 4.1.1, it can
be proved [49], [101], that the contour integral ¥ is equal to zero for -§; # 6; and non-zero
if -8; = §,. Since the basis function corresponding to coefficients ky =H\, ky =H,, k3 =1"in
the asymptotic expansion for U arer™u, (8),r™u, (6),r*u, (6), it holds

‘P(U,r'ﬁlu_l) = Zw:k,‘l’(rﬁ'u, ,r'S‘u_l) = kl‘I’(rS‘ul ,r'S‘u_l)
i=1

‘P(U,r'ﬁzu_z) = Zw:k,‘l’(rﬁ'u, ,r'SZu_z) = kzll’(rﬁlu2 ,r‘Szu_z) , (22)
i=1

W(Urou) =Y kW (o, L) = R (o)
i=1

where ‘P(rﬁ'ul,r’ﬁ'ufl) is computed analytically along the path I'; surrounding the crack

tip with diameter approaching zero, while W (U,7 *u_,) is computed along I'; which is
1 g

any remote integration path with finite diameter (see Fig. 5). Thus, the GSIFs H,= k, H,=
k> can be computed as follows:

‘P(U,r'g’lu_l) o ‘P(U,r'g’zu_z)

8 -5 > 2 8 -5 )
‘P(r u,,7 1u_l) ‘P(r u,,r 2u_z)

H, = (23)

Observe, that the dual displacement fields (so called extraction solutions) r *u_, (6’)

are singular at the crack tip, hence they have unbounded energy near the crack tip and thus
correspond to some concentrated sources at the crack tip. They are mathematical tools
which allow extracting asymptotic coefficient terms from the complete exact solution U.
Since the exact solution U is not known, a finite element solution U” can be used as an
approximation for U so to obtain an approximation for GSIFs see e.g. [74], [75]. Thus, one
gets e.g. for H,

‘P(Uh,rfa‘ufl) - 1-‘[[G(Uh)'n'rSlu1_6("61111)'11'Uh:|ds 5
T | Ty e e R

r,

H, =

and similarly for H,.

Due to the path independence, the W-integral standing in the denominator of Eq. (23)
is evaluated along an infinitesimal path that shrinks to the crack tip.
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Fig. 5 Integration paths surrounding the singular point.

4.1.4 Description of the non-singular stress field

The non-singular term in the Williams asymptotic stress expansion — the T-stress - is often
neglected. However, when aiming to describe the stress field in the vicinity of the crack tip
more exactly, it should be also paid the same attention to the T-stress as to GSIF. The
singular terms in the Williams asymptotic expansion corresponds to the characteristic
eigenvalues 0 € (0,1). The T-stress term is related to the characteristic eigenvalue 6 = 1, so
it is no more singular.

It is well known that the T-stress co-determinates plastic zone size at the crack front
(for metals), microcracking region (or phase transformation region) — for brittle materials
and structural ceramics. T-stress also has a significant influence on the crack initiation
angles in brittle fracture [64]. In general, numerical determination of T-stresses requires
careful handling, because of their location in the vicinity of singular points. A closed form
solution of the T-stress in plane elasticity crack problems in homogenous materials is
possible to find for example in [36]. However, for the case of general stress concentrators,
this solution can be very complicated or even impossible. There exist lot of other methods
for the T-stress determination in case of stress concentrators in homogenous media [79],
but most of them fail if they are applied on general stress concentrators. In these cases
there are several other possibilities and approaches how the T-stress can be obtained:

Calculation of the T-stress using FEM

Estimation of the T-stress using the FE analysis is possible with a quite good accuracy for
cracks in the homogenous materials. However in case of the general stress concentrators
this analysis becomes controversial due to the presence of media discontinuity at the
interface. This approach can be used only as a first approximation, but cannot be taken as
an accurate solution. The T-stress is estimated by this method as a stress in direction of the
crack face at distance »—0 from the crack tip. The estimation is strongly dependent on the
mesh refinement in the vicinity of the crack tip.

Calculation of the T-stress using contour integrals

Calculation of the T-stress in the anisotropic linear elastic homogenous solid is presented
in papers [106] and [88]. The T-stress is calculated using the path independent line integral
and Betti’s reciprocal work theorem, together with selected auxiliary fields. To determine
the T-stress, special auxiliary fields for a crack under moment acting about axis x; at the
crack tip are used. Through the use of Stroh formalism in the anisotropic elasticity,
analytical expression for the T-stress is derived in a compact form that has surprisingly
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simple structure in terms of one of the Barnett-Lothe tensors, I — see e.g.. [105]. The
solution forms for degenerated materials, monoclinic, orthotropic, and isotropic materials
are also presented. However, all the presented theory is applicable only to the case of crack
in the homogenous body. In case of the general stress concentrators the application of J-
integral is not possible, because it become path dependent. Therefore is necessary to use
other path-independent integral such as for example the W-integral as it was proposed in
the previous chapter for the calculation of GSIF. Of course, in that case, first the suitable
auxiliary field has to be constructed. The work [41] discusses a calculation of the T-stress
in functionally graded materials using the M-integral, where arbitrarily oriented cracks are
considered. Authors [82] developed techniques for calculation of the T-stress based on the
interactive integrals in combination with the Boundary Element method to the solution of
the crack problem.

Similar arguments which lead to Eq. (23), apply also for T-stress calculation, i.e. 7= k3 can
be computed as follows

‘P(U,r’lu 73)

= ‘P(ru3,r’lu73) ’

(25)

see also Eq. (22). Similarly like with GSIF a finite element solution U” can be used as an
approximation for U so to obtain an approximation for 7’

- \P(Uh,rflu%) ) I{[G(Uh).n.rlu3—6(r1u3).n.Uh:|ds .
_\P(rlu”rflu%)_I[“(rluz)'ll'flll,,;—c(r’lu%)-n.rlu3]ds' (26)

T,

e

In equations (25), (26) u (6) denotes the extraction solution for the T-stress. Physically,

this solution corresponds to the concentrated moment about x; acting at the crack tip.

Calculation of the T-stress using CDD technique

As suggested by Broberg [11], the T-stress can also be determined using dislocation
arrays. Determination of the T-stresses via dislocation arrays leads to a Fredholm equation
that can be solved very accurately and provides more accurate values of the T-stress
comparing to common finite element methods. However, the application of this method
requires determining the solution for a dislocation in a complicated domain. Such an
approach is not economical, but there are strategies, which may be employed to overcome
this problem. These strategies start with a dislocation in a crack free infinite domain
aiming to determine stresses along the curve 0Q which stands for the boundary of finite
body. Introducing tractions along 0 such that they negate stresses found previously and
solving for stresses along the dislocation plane e.g. by FEM, one can finally derive the
regular part of the dislocation solution for a specified finite domain [42].

Modelling of a finite crack perpendicular to the bi-material interface, and terminating
in front of the interface at distance /, is presented in [35] and [104]. The continuously
distributed dislocation technique is used here. The materials are considered as isotropic.
The complete solutions of the problem, including the T-stress and the stress intensity
factors are obtained. The latter mentioned paper also discusses a comparison of the stress
intensity factors between the finite and infinite problem.
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4.2 Crack bridging problem

Fibre reinforced ceramic materials have promising potential e.g. for high-temperature
applications. Under the tensile loading of the composite in the fibre direction, the brittle
matrix can undergo extensive cracking normal to the fibres, but the associated matrix
cracking stress may be substantially greater than the critical fracture stress of the
unreinforced ceramic. Furthermore, with the intact fibres, the composite material can
continue to sustain additional load up to the fibre bundle fracture stress. In papers [13] and
[14], the critical conditions for the onset of widespread matrix cracking are studied
analytically on the basis of fracture mechanics theory. Two distinct situations concerning
the fibre-matrix interface are considered: (i) unbonded fibres initially held in the matrix by
thermal or other strain mismatches, but susceptible to frictional slip, and (i1) fibres that
initially are weakly bonded to the matrix, but may be debonded by the stresses near the tip
of an advancing matrix crack. The results generalize those of the Aveston-Cooper-Kelly
theory [4] for case (1). Theoretical results are compared with experimental data for a SiC
fibre, Lithium-Alumina-Silicate glass matrix composite.

4.2.1 Generalized bridging stress intensity factor

To quantitatively express the influence of the bridging fibres on the resulting stress field
the value of the generalized bridging stress intensity factor Hj. caused by the bridging
stress have to be calculated. As a result, the local generalized stress intensity factor
H,jy=H 4y -Hp acting in the very crack tip is lower than the remote applied stress intensity
Hppi. One of the possible ways how to calculate the influence of the bridging effect can be
found e.g. in [43] or [66]. The contribution [43] deals with a theoretical and experimental
analysis of the bridged crack in the chevron-notched three point bending specimen made of
the glass matrix composite reinforced by long SiC fibres. The fracture toughness (Kic)
values are determined using the chevron notch technique and compared with the
theoretical predictions based on micromechanical analysis exploiting weight functions.
The weight functions are further used together with appropriate bridging models to
theoretical prediction of R-curve. The generalized bridging stress intensity factor is then
calculated using the following formula:

0
Hbr:'[W(xz,h) o, (x,)dx, , (27)
h

where W(x,,h) is the mentioned weight function which can be obtained numerically using
the FE analysis as was proposed for example in [78]. The weight function depends on the
component geometry, but it is independent of the applied loading. The stress intensity
factor at the tip of a crack in a chevron-notched specimen is there calculated for the direct
line loading of the crack surfaces by a constant traction. The traction is applied in different
positions between the apex of the chevron notch and the crack tip so that the whole weight
function is obtained. This technique can be modified for the solution of the plane crack
problems by use of pair of concentrated forces instead of the line loading.

The bridging stress o can be calculated using the recurrent formulas and suitable
bridging models as is presented in paper [43]. In work [21] is possible to find a procedure
which allows determining of the bridging stress from the measured R-curve. After the
weight function and bridging stress is calculated, the generalized bridging stress intensity
factor Hy- can be determined and the local GSIF H;, as well. The applied stress intensity
factor H,,, can be calculated on the unbridged configuration e.g. using some of the two
state integral methods as mentioned in chapter 4.1.3.
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The bridging crack problems can also be solved efficiently using the continuously
distributed dislocation technique. This technique leads to a Fredholm integral equation that
can be solved very accurately using e.g. polynomial-base Galerkin method. For the bi-
material half-space, see Fig. 3, the solution can be worked out due to recent findings of
Choi and Earmme [37], who studied singularities in anisotropic trimaterials. An integral
equation is obtained by choosing the dislocation distribution to meet the traction
conditions along the line of the crack and within crack bridging zone:

Im( A M” -
( ( 5 ))ik j‘ﬁc(xzo)dxh +.(iN1ik (x2>xzo) k(x20)dx20 :GTIPPI(XZ)JFSUGM (V(xz))' (28)
T ° c

Xy =Xy,

Here, Ny are regular kernels in the closed interval [-4,0] (along the crack), o/ (x,)

denotes the negated stresses in x;=0 produced by the given boundary loads, acting on a
specimen with boundary 6Q), but without cracks and dislocations. o, is the bridging stress
as a function of the upper crack face displacement. fi(xy,) is the unknown dislocation
density which has to be non-singular at an open end. The integral equation may be solved
using the Gauss-Jacobi quadrature. Once the dislocation density fi(x,) is found, the

displacement of the upper crack face v(x;) is also known and from o, [v(xz)}, the

bridging stress as a function of position follows. After the bridging stress and dislocation
density is known, arbitrary stress component in front of the crack tip can be calculated.
Afterwards the resulting local generalized stress intensity factor is obtained as the
following limit:

H, =lim r'c (r,0=7/2). (29)

fip r—0

4.2.2 Bridging models

To calculate a bridging stress or bridging crack face closure effect the bridging model has
to be defined. The bridging models generally describe a relation between the crack face
displacements and the bridging stress. In literature is possible to find several different
models, describing different behaviours in dependency on the crack opening displacements
- Budiansky et al. [12], [14] or Thouless et al. [94]. Some possible types of constraints
between fibre and matrix are depicted in Fig. 6:

' Bridging with fibre  |Bridging with friction between |  Elastic
pull out fibre/matrix _ bridging

©)
Fig. 6 Interface fibre/matrix: a) decohesion of fibre in matrix; b) frictional constraint between fibre

and matrix; ¢) characteristic bridging areas and corresponding types of constraints between fibre
and matrix.
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4.3 Problems of fracture criteria

It is now well established that the increase of the toughness of ceramics laminates or
ceramic-matrix composites can be achieved by introducing weak interfaces between layers
or between the fibre and the matrix [60]. Deflection along the interface then results in a
crack blunting and this effect increases the required energy for the next crack propagation.
Understanding the mechanism of the crack deflection along the interface is thus essential
to determine for example the suitable interlayer and the optimum interface toughness
which are necessary to favour this phenomenon [47]. Various attempts have been made to
attain this objective.

The discontinuity in the elastic properties at the interface strongly influences the
behaviour of the energy release rate of the crack in the vicinity of the interface. In the case
of a strong singularity (crack lies in a stiffer material and a characteristic eigenvalue
8<1/2), the energy release rates G,(a,=0), Ga(as~0) for a crack terminating at the interface
are infinite and interface penetration or deflection is thus possible at any finite load level.
In contrast, the presence of a weak singularity (crack lies in a softer material, 6>1/2)
implies that the energy release rates G,(a,=0), Ga(as~0) for a crack terminating at the
interface are zero and interface penetration or deflection is not predicted for any applied
load. This is a drawback of the classical differential theory which can be used with success
for cracks in homogenous media however not in the case of cracks propagating near the
interface. The mentioned problem of zero or infinite energy release rates may be overcome
with the help of the so-called finite fracture mechanics [61], where the crack increment of
a finite length is used instead of the infinitesimal one. The evolution of the energy release
rates in three different cases are depicted in the following figure:

ENERGY RELEASE RATE A ENERGY RELEASE RATE

\/l Ml Crack propagation Penetration into MI or
2 in material M2 deflection at the interface
Crack - propagation G Yenefration into MI or
SR (a) deflection at the interface X, Gy(a,) /
- ‘ >
I X1
X1 Gaaq)
Gf
A
AW (ap)|F . i
AW 4 (apq)
Gag)
< > >
ap Qga apq Aop ap ap Qg agp
LIGAMENT WIDTH a CRACK EXTENSION INTO M1 (a,) AND LIGAMENT WIDTH a CRACK EXTENSION INTO M1 (a;) AND
ALONG THE INTERFACE (aj) ALONG THE INTERFACE (@)
a) b)

Fig. 7 Evolution of the energy release rates Gi(a), G,(a,). GAa,), depending on the crack
increments (a, a,, a;) — taken over from [61]: a) case of a strong singularity (6 < 1/2 ; E<E);
b) case of a weak singularity (& > 1/2 ; E 1 >FEyy).

The first case (left side of both graphs) describes energy release rate Gi(a) of the crack
which is approaching interface from the left with some ligament width a (Fig. 8.a). On the
right hand side the curves express energy release rates G,(a,) and GAa) when the crack
extends into the material M1- or is deflected along the interface. The problem of infinite or
zero release rates is obvious.
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With the help of the asymptotic analysis, He and Hutchinson [28] derived a deflection
criterion which compares the ratio of the interfacial toughness G.' over the toughness of
the penetrated material G.!. The results can be used to determine the range of interface
toughness relative to bulk material toughness which ensures that cracks will be deflected
into interface. The paper [27] moreover discusses an influence of residual stresses, caused
by the thermal expansion misfit, on the energy release rates for interface cracking and
crack penetration. The approach used by He and Hutchinson was extended by taking
anisotropy into account in [62] and was confirmed by Tullock et al. [98]. Martin el al. [61]
improved the criterion which does not require any assumption concerning the crack
extension ratio. The capability of an interface to deflect a crack is usually analyzed in
terms of the competition between deflection and penetration for a stationary crack
terminating at the interface at a normal angle — e.g. [30], [S1] and [61]. Problems of cracks
terminating at arbitrary angle to the interface are solved in work [28]. The solution
procedure used in that work is similar to, or extension of, the integral equation methods
used in the earlier papers — e.g. [15] where only crack perpendicular to the bi-material
interface have been considered. In all cases, the materials on either side of the interface are
taken to be elastic and isotropic.

Other approach, where the tendency of crack to deflect or penetrate at an interface
between two dissimilar elastic materials in finite-sized sample is investigated by means of
the boundary element method (BEM), can be found in papers [57] and [98]. The ratio of
the energy release rate of a deflecting crack to the maximum energy release rate of a
penetrating crack is computed as a function of Dundurs’ elastic parameters for several
double-edged notch specimen geometries and loading conditions. For moderate differences
in relative stiffnesses of the two materials and when the crack is advancing toward a stiffer
material, there have been found no difference between the singly and doubly deflected
crack and the numerical calculations are in excellent agreement with recent analytical
predictions as e.g. in [27]. However when the crack is advancing into a material of much
lower modulus, the numerical calculations for a doubly deflected crack are smaller than the
analytical predictions.

4.3.1 Matched asymptotic analysis

Matched asymptotic analysis is powerful tool for deriving the change in potential energy
induced by a finite crack increment growth [48], [S1] or [101]. It is performed within the
framework of 2D linear elasticity. As shown in Fig. 8, different crack paths are considered
(single or double deflection along the interface and the penetration into the material M1).
In order to keep a validity of the asymptotic analysis, the condition of a4, a, — 0 must
hold. It means that a ratio of a/L. <<1, where L. is a characteristic size of the main crack. It
is worthy of note that the asymptotic assumptions of the small crack extensions imply that
the constant loading conditions have no influence on the energy balance.

The following figure shows four different crack paths in the vicinity of the interface
which have been considered in the previously mentioned works. The crack either
approaches the interface by an increment a (Fig. 8 a) or penetrate into the material M1
with increment a, (Fig. 8 b) or is deflected along the interface by increment a, (singly or
doubly — Fig. 8 ¢, d) - [62], [61].
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Fig. 8 Different crack paths: a) propagation towards the interface (ligament a); b) crack
penetrating into the material M1; ¢) singly deflected crack; d) doubly deflected crack.

The competition between the deflection of the main crack along the interface and the
penetration into the substrate can be assessed so that the crack will follow the path which
maximizes the additional energy AW released by the fracture. If crack deflection occurs
preferentially to penetration at the interface, the following condition must be satisfied:

AWy= Wa— G ag > AW,= W, G, a,, (30)

where G.' is the interface toughness, G.' is the fracture toughness of the material M1 [22]
and O is a change of the potential energy between the original and new crack position.
The YW integral also plays a useful role in the calculation of the change of the potential
energy 8 between the unperturbed state U° (without the crack extension) and perturbed
state U® (with the small finite crack extension). The change of the potential energy dW
between the unperturbed state U° (without the crack extension) and perturbed state U°
(with the small finite crack extension) is given by the relation:

W =W -W* :%j(a,.j (U )nU; =, (U°)nU} ) ds :%‘P(UO,UE). 31)
r

Remark 1: Derivation of the relation (31) can be done as follows. The change of the
potential energy SW between the unperturbed state U’ (without the crack extension) and
the perturbed state U (with the small finite crack extension) is given by the relation:

=l [ - 1 .
W= :ui"ff'(Uo)‘%(Uo)dS —xf% U dSMiE%(U Je, (U )dS—Eag[g p U ds |=
% i"f/ (V)0 ds—&[gijf ds—%agij/ (U )Un ds+ | pU;ds= 62)

a

q

5 Jpuidse] Lo (V)gndses [ puias— [ o (0)gn s
%

where the boundary conditions
G,n =p, on 0Q; =0Q_ and U,=g, on o0 =0Q), (33)

were applied.

Now consider the domain D obtained from the original domain Q by excluding the
singularity by using a contour I', see Fig. 9. The boundary 0D consists of 0Q and the
contour I'. Consider following integrals
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J.ay.(Ug) ( dS J. nUOds+J.0 nUOdS—

P 34

= J. p,U, Ods+ J. gjn,ds+J.0 nUods ’ 9
oQ,

IJU(UO)ey(Ug)dS:J.ay.(Uo)njUgderJ.J U0 l’lUgdS—

J.ijjderJ.JU(UO nds+J.0 nUgds
0

where again the boundary conditions (33) were applied. Applying the reciprocal theorem
to the left sides of Eqs. (34), (35) one gets:

I (U‘E)nUOds IG (Uo)njdes:

= ij Usds+ I (Uo)gjnids ijUOds—I (U‘E)gjnids. (36)

The right-hand side of Eq. (36) is equal to the right-hand side of (32). Thus the change
of the potential energy 8/ can be put into the form

1

SW = j( (U - .j(Ug)niUf)ds:E‘P(Uo,UE), (37)

where the flow direction of the contour I' (and consequently the direction of the normal on
this contour) was reversed.

Fig. 9 Scheme of domain Q and its boundary 6Q, subdomain D and the contour I" which excludes
the crack tip.

A very efficient tool for the calculation of the change of the potential energy in the
case of generalized stress concentrators such as crack cracks impinging a bi-material
interface and/or multimaterial wedges is the matched asymptotic expansion method [49],
[101], which does not require carrying out repeatedly a full field analysis. Let the domain
Q) with crack impinging the interface is perturbed by a small deflected (double) crack
extension of length a; or small penetrating crack extension of length a, The small
perturbation parameter € is introduced by definition as e =a/L <1, a=a,,a,, where L is

the characteristic length of Q. Denote the perturbed domain as )°. The displacement U* of
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the perturbed elasticity problem due to the crack extension can be expressed as the
unperturbed solution U’(x), (x = (x1,x2)), defined in Q (Q is the limit of OF as e—0). plus a
small correction

U (x)=U"(x)+k (e)U" (x)+... with lri_{lolkl (e)=0, (38)
which may be rearranged into the form
U (x) =k, (8) Uy (x) + K, () Uy (x) +.. = Dk () U (%) » (39)
i=0
where limk,,, (g)/k (e)=0, Vi=12,..and {U,U,, .} form a set of linearly independent
£—0
basis functions, ¢/ (x)=r"u,(8), where the eigenvalues §; are positive or negative, see

also the Section 4.1.1. Observe that the basis functions {¢/} satisfy the elasticity problem

on the same domain Q ~Q° but with zero body force and with homogeneous boundary
conditions. Such an expansion is called ‘outer’ and is valid in the whole domain Q (or €)°)
except near the former main crack tip where the geometry is perturbed. A second scale to
the problem can be introduced, represented by the scaled-up coordinates
y=x/e. or (y.y,)=(x/e.x,/e). In order to have a description of the near fields, the

domain Q° is stretched (x1/g) and as e—0 it leads to the unbounded ‘inner’ domain Q"
spanned by the stretched variables y; and y,. The inner domain becomes unbounded for
€—0. The solution can be expanded in this domain as:

V() =R (e)RW)+F )X+ = 2F ()X (), (40)
i=0
where lim 77, (e)/F(e)=0, Vi=12...and {}},},},...} form a set of linearly independent

basis functions. This expansion is called ‘inner’. Conditions at infinity are missing to
define well-posed problem for the unknown functions )/ ( y). They derive from the

matching conditions based on the existence of an intermediate area where both expansions
(39) and (40) hold. In other words, the behaviour of the outer terms in Eq. (39)or Eq (40)
when approaching the singular point must match with the behaviour of the inner terms in
Eq. (40) at infinity. This common area is near the crack tip in the outer domain and far
from it in the inner domain. The expansion of the elastic solution in positive powers of the
distance r to the crack tip is a generalization of the Williams series. The successive terms
have a finite energy in the vicinity of the tip. The behaviour at infinity is described by
similar series but with negative powers in order to have a bounded energy at infinity.

To get a physical insight, consider the domain Q° perturbed due to a small crack extension
a while freezing the far-field boundary conditions. Since a is very small, the asymptotic
solution far from the crack tip will still be the same as in Eq. (21). To meet the traction-
free condition on the crack extension a, however, the displacement field for the disturbed
domain will be given as a superposition of the elastic state of Eq. (21) and another elastic
state whose displacement field is given by the eigenfunction expansion of a Laurent series
type obtained by taking ¢/, (x)=r"u, (), with §; <0. This assumes an essential similarity

to the case of a crack under small-scale yielding: in the situation of small-scale yielding an
eigenfunction expansion of negative powers occurs in addition to the inverse square
singularity, which represents the leading term in the outer solution (see [29]). Note that the
appearance of any eigenvalue d; < 0 in the expansion for the perturbed domain would yield
a finite displacement at the boundary and therefore would violate the boundary condition
on the far-field, where the displacement field is frozen according to Eq. (21).
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4.3.2 Measuring of the interfacial toughness

In order to decide whether the crack will deflect along the interface or cross the interface,
the very important mechanical property — interfacial toughness has to be known - see (30).
In accordance to the literature, there exist many methods to measure this characteristic for
different types of material configurations with interfaces. It starts with measurement of the
interfacial toughness for thin films on substrates [100] where the films of thickness 30-
30000 nm are considered. Methods of superlayer test, indentation test (Fig. 10 ¢)), scratch
test and sandwich specimen test are used for its determination. Similar problem is also
investigated in [65] and [69]. In the work [110], the method of three point bending test is
used for the measurement of the interfacial toughness of Si;N,/BN composite (Fig. 10 a)).
This method can be modified to four point bending test (Fig. 10 b)) in order to measure the
mixed mode interfacial fracture toughness [103]. A comparison of other types of test
specimen for measuring of the interfacial toughness is given in [70]. Proposed specimens
are well-suited for investigating interfacial toughness over a wide range of mode mixity on
which is this characteristic strongly dependent.
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Fig. 10 Some of the measuring methods for the interfacial toughness a) three point bending test, b)
four-point bend test, c) indentation test.
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S  Application of methods for the stress field description
in the vicinity of the general stress concentrator

5.1 Analysis of the singular and auxiliary (extraction) fields
S5.1.1 CDD technique

The semi-infinite crack is modelled as an array of continuously distributed edge
dislocations along the negative x;-axis, see Fig. 11. The potential functions for an isolated
dislocation located at the point (x,,X2,) in an infinite homogeneous anisotropic medium is

@, (z)=q,In(z-¢,), (41)
where
G, =X, +P.X%,, 0=1,.3 (42)
and
1
qot = _Motkdk’ (43)
47

where the vector d is related to the Burgers vector b; through the equation

b,=B,d,, with B, = %Z (AitxMtxk - IZiuMuk ) =—Im [Z A M ]> (44)
where the matrix M is defined as the inverse of Li,, M Lis= Oup. The quantities po, 4iq,
Li, are given by Lekhniskii [55]. For the plane deformation, the elastic field can be
represented in terms of the complex potential functions ®(z;), ®x(z2), Pi(z3), each of
which is holomorphic in its arguments z, = x; + p, x». Here, p,, are three distinct complex
numbers with positive imaginary parts, which are obtained as the roots of the characteristic
equation

2
det |:cilk1 +p (cilkZ + cizkl) +p cizk2:| =0, (45)
where
ciji 1s the tensor of elastic constants, i.e. o; = cjur;, which satisfies the symmetry
conditions
Citt = Cyie = Cjim = Cry- (46)

With these holomorphic functions, the representation for the displacements U; and stresses
Gij is

U :ZR{Z}:AMCD& (z, )}, o, :ZR{Z}:LMCD; (z, )}, o, :—ZR{Z}:LM 2,2, (z, )}. (47)

a=1 a=1 a=1

Here, ()’ designates the derivative with respect to the associated arguments, and A and L
are matrices given by

L, =4, (CiZkl + puCiZk2)> (48)

where Ay, denotes the eigenvector corresponding to the eigenvalue p, above.
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interface interface interface

X1

Fig. 11 Semi-infinite crack terminating perpendicular to the interface between two anisotropic
materials.

The potentials for the interaction of an edge dislocation with the interface of two
anisotropic materials can be obtained in terms of Eq. (41)

D, (Z) = [ql ln(z—gl),q2 ln(z—gz),q3 ln(z—g3)JT , (49)

by invoking the standard analytical continuation arguments along the interface, as
described by Suo [86]. The solution for the two media can be written as

q)(z):q)l(z), zel, q)(z):q)”(z)Jrq)g(z) ze?2, (50)

@' (z)=C®,(z), C=M'H'(A"M"-A"M")L", zel H=i(A'M'-A"M"),
®' (z)=G®,(z), G=—M"H" (A'M" -A'W' )T, ze2 (51)

The solution for the stress field produced by an isolated dislocation located at point
(10, X20) with the Burgers vector b; in an infinite anisotropic bi-material follows from (47),
(50) and (51) as

o (55~ =3 1 {z@m@ d_ ]+M;;
B Z

}rC.C., ze2, (52)

tx_gB Zot_gcx
1 1 wall dk 1 dk
Gzl(xl,xz):EZLM{ZB:[GQBMMZ - }JrMukZ - :)+C.C., ze2, (53)
o o B o o

o, (%, ):——Z D QZ[CQBM&ZC?Q ]+C.C., zel, (54)

o p
G, (xl,xz):%ZquZ[C My, 4, ]+CC (55)

Ty B u_g]}

where C.C. denotes the complex conjugate of the preceding expression, superscript [ and 11
refers to the material 1 and 2 respectively, and the convention of summing over repeated
Latin indices is used. Introduce a function f; at a point on the crack (x;=0, x,) which relates
to the elemental Burgers vector 6b; between x», and x, + 0 x2, as

8b, = B,8d, = B, f, (x,,)8x,,, (56)
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and integrate (52) along the whole crack. The tractions produced at a point (0, x;) by the
density function f; can be expressed as

1 p[[ h dxzo u (S (x20)dx20
_ __ L{[ MH o M
o (XZ) 4m Za: - B " _é[ '[o ?1 X, =X, “ I Xy =Xy,
(57)
i Z[_‘H G MI[ p(x J‘ M[[ J'fk x20) X120
o " [3 —0 _Z x2 x20 2 x20

The asymptotic stress field near the crack tip is modelled as a continuous distribution
of dislocations with density function

fk (x20) = Hvk (_x20 )571 > x2o < O’ (58)

where & is the stress singularity exponent, which is yet unknown, v; are the components of
corresponding eigenvector, and H is the generalized stress intensity factor (GSIF).
Substitute Eq. (58) in (57), integrate and apply the traction-free condition on the plane of
the crack to obtain

—1\7®
N R ) ST

Eq. (59) can be briefly written as

o o 1
o

—\7?
D(8)v=0, where D, (8)=R ZZL”G Mg, [ B ] csc(nd) -8, cot(md) |r. (60)
The parameter § is calculated from the characteristic equation
Det[ D(8)|=0 (61)

and the eigenvector v is determined from Eq. (60) up to a multiplicative constant.
Taking
z, = r(c056’+ pr siné’) =rt, (0) for z,€2, z, = r(c056’+ o siné’) =r1,(6) for z, €1 (62)

the stresses induced by the distribution of dislocation in Eq. (58) can be expressed as

o, (r.0)= %Re{z I pt z[GmBMg; ()" +5,(p" )1%(%«7:6) )vk},

3
e [_E Oj [TE ETC), (63)
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H _ 3 - - —l 1-3 .
<r,e>FRe{2Lf;Z[GaﬁMéz (7)o (o) ] (cot<n6>—1>vk},

o B T, (9) o
64
e [—%,Oju(n,%nj,

o, (r,0)=- Re{ZmeaZCaBMéZ( )’ (I_l)ll:(cot(mﬁ)—i)vk}, 6e(0,m), (65)

o, (r,@)

Re{z ZC M”( ) S_l)llss(cot(‘rd})—i)vk}, 96(0,7[). (66)

Apparently, the previous results can be written in the form of (47), where the function @’
is given by

@/ = Z[G Mg, ( ”) +38., (pf )8} ([_1) 7175 (cot(né)—i)vk, forze2,  (67)

7 (0)
hence
e — 1 =1\ m\?® (_1)178 .
5 Z[GOLBMBk(pB) +6ik(pa) } — (cot(né)—l)vk, forze2  (68)
B T, (9)
and
5 (_1)175
D’ - IBZC MH( ) - 9)175 (cot(nS)—i)vk, forzel, (69)
hence
5 L\
o ~H5c (pél)_b (1) — (cot(nS)—i)vk, forzel. (70)

o 48 - of " Bk

A

Using Eqs. (47), (68) and (70), the displacement field can be expressed as

i:—Re{ZAmZ[ aﬁMéz(pé[)BJrSik(pf)j (H_l) = (cot(nS)—i)vk}, forze2 (71)

and

{ZAMZC&BMH( )5%((;0‘[(755)—1')\@}, forzel. (72)

CDD technique can be also used for the determination of the dual (auxiliary) fields which
are needed for the application of -integral.

Assume the the following distribution of dislocations f; (x,)
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wk
o) >
(—_X2 )E)+l

where wy, is the eigenvector of matrix D in Eq. (60) corresponding to the eigenvalue 8" =-5.

fi(x)= —o <X, <0, (73)

The dual displacement field can be expressed as

U (r0)=" {g A B[t (o) v, (22 (1) (cot(ns)_i)wk},
ee[_g,o]u[n,gn],
s (-1)7

{ZAWZC oty L

and correspondingly the dual stress field o, |:U711 (r,@)} .

—~

U, (r, ) (cot(nS) )wk}, Oe(0,m). (75)

Using the results (63)-(72) and (74)-(75) together with corresponding results for the
dual stress field one can compute the ¥-integral ‘P(rs'ul,r’s'ufl) along the path I';

surrounding the crack tip with diameter approaching zero as follows
‘P(rg‘ul,r’g‘ufl):cl—cz, (76)

where

1]y I Vi 7 (=1\° o (1 B .
4="s J;Re{gllm(smé’p06 cos@)zﬁ:[GmﬁMﬁk(pﬁ) +6,k(pm) }E{ ) ‘(cot(né})—l)vk}x

ol

xRe{;Amz[GmﬁMﬂpﬁ5+61k<p5>1 §71>~<cot<ns>—f>wk}de+

+IRe{§l; (sin~ Pl cos6) 3 C.iMi ()" T([ o (cot(md) —")"k}x

xRe{ZAmZCwMgC( oK ([_l)lé (cot(m)—i)w, td6+ (77)

7\ 1-8
L{p é[ 5, (_1)
G“f’MgC VA [_ +_;C[ Vi 5 vk X

Py

+J. Re{ZL” sin@- p! cos 6’) Zﬁ:

xRe{glAmZ[G M (P ) 5, (1) a} E;l)lz (cot(né})i)wk}dﬁ},
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ot S 1 P ]

XM{&%[GW&@;)5+6,»k<p5 T o) —z')vk}de .

k
=

(78)

Jrije{glLfm(siné’p[fc cosé’)Zﬁ:CocBZ\/léi(pé[)8 ) ; (Cot(TrB) i)wk}x

><Re{§:AmZﬁ:C[wj\/[éf]’C (pél )’8 17([_(16)’)HS (cot(TtS)—i) Vk}d9+

] {im{&’i@w o S 7 ) o

2

xRe{%lAaZﬁ:[GaB&lgc (ﬁg)fs +0,, (pf)s} T(H_l) : (cot(TrB) i)vk}dé’}

43



Doctoral thesis

5.1.2 L.E.S. method

Choose the coordination system so that the material containing crack is in the area x,<0.
Both of these materials are homogenous and linear elastic and the Hooke's law is valid for
the deformations:

g= Y, 8,0, (i=12,06). (79)
j=12.,6
Here the rule of short tensor index notation was applied
11, 2622 6612621, (80)

Where s;; 1s a compliance matrix and the Eq. (79) holds for the case of the plane stress. In
the case of plane strain it is necessary to perform a conversion of the compliance matrix
components according to the relation

, $i38 3

Sij :Sij - > (l>]:l>2>6) (81)

S33

The compliance matrix s;; of an orthotropic material has in terms of usual engineering
constants the following form

L _m - Vs 0 0 0
El Ez E3
Yo L Ve 0 0 0
E E, K
s v 1 0 0
E E E
s=| T | (82)
0 0 0 — 0 0
G23
1
0 0 0 O — O
G31
1
0 0 0 0 0o —
L Gy, d

The subscripts 1,2,3 denotes the appropriate material direction, where the direction 1 is
called the Longitudinal (L), 2 — Transversal (T) and 3 as Z. Note, that a general
orthotropic material is characterized by 9 independent elastic constants and the matrix s is
symmetric (s;j= Sji) - in other words, the appropriate non-diagonal components has to be in
terms of usual engineering constants equal.

Orthotropic materials are characterized by the complex numbers x;, Im(u;)>0, where
i=1,2 and Im(.) denotes the complex number imaginary part. Numbers g, are depending on
material characteristics and can be obtained as the roots of the 4™ order equation

At + 20" 1 +1=0, (83)

where

l:i’pzzﬁ’lﬁsﬁg (84)

S2n 2,/8,18y
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M2 M1

X2

X4
Fig. 12 Semi-infinite crack, perpendicular to the interface of two orthotropic materials.
Eq. (83) is a special case of the characteristic equation of the 6™ order presented by
Lechnitskii [52]. The roots u; of the characteristic equation (83) are as follows

w=iA""(n+m), p,=il""*(n—-m) for 1<p <o,

w=A" n+m), p,=1""(@in-m) for —1<p<l, (85)
=M, =il for p=1,
where
1 1-
n= i, m=[—2|. (86)
2 2

The case p=1 corresponds to material with cubic symmetry and A=p=1 corresponds to
isotropic material. These are the so-called degenerate cases of anisotropy, where the L.E.S.
formalism cannot be applied directly. One of the ways to overcome the problems with
material symmetry was introduced by Suo [86]. This is an analogy to the Muschelishvilli’s
complex potential method.

For the two aligned orthotropic media, it is possible to define two generalized
Dundurs’ parameters « and £ [25], which are the only bi-material constants that enter the
solution for the problem involving dissimilar materials with prescribed tractions at the
boundary. Thus, the solution for the problem under consideration should depend upon A
and p for each material and the two bi-material parameters o and £ (indices M1, M2
denotes pertinence of the matrix components sj to the given material —see Fig. 12):

[\/(Suszz )MZ /\/(Suszz )Ml _IJ 5= [\/E"'Slz :|M2 _[\/E"'Slz]m

o . B= NCY
[\/(S“SZZ )MZ /\/(Sllszz)Ml ‘HJ JVH H,,
where
H, = [211/1”4,/5*“5*22 ]Ml + [2}1/1”4, 5,5, ]Mz ,
(88)

H :[211/1’”4 S .S ] +[2n/1’”4 S8 ] )
22 11722 M1 11722 M2

Both parameters « and [ can take the value from interval (-1, 1). For the case of
anisotropic material, i.e. for p#1, is possible to write the relations for displacements U,
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stresses o0y, and the resulting force 7; along the half-line leading from the CS origin:

U =2Re {i Af (zj)}, T=-2 Re{zz: Lf, (zj)}
Fl Fl (89)

o, :2Re{zz:Lijfj'(zj)}, o, = —2Re{ZZ:Lqufj'(zj)}

where z, = x, +ix,, ()" denotes differentiation with respect to z; and the matrices 4, L;; are
defined by

A :{ Sn/ulz +5), Sn/uzz +5), } L= |:_.u1 _ﬂz} (90)
S k4 +Szz//u1 St +Szz//uz 1 1

In case of the isotropic material, i.e. for A=p=1, the relations for displacements U,
stresses oy, and the resulting force 7; along the half-line leading from the can be written in
the following form

2 2
U, = 2Re{z A gj(z)}, T = 2Re{z Bg, (z)}
J=1 j=1
o1
2 2
0y = 2Re{z Bg! (z)}, 0, =2Re {Z Lg (z)},
J=1 j=1

where z =x, +1x,, (.)" denotes differentiation with respect to z and the matrices 4;;, L; are

defined by
) o ) o ) 3 1
NS R L (92)
4Gi| k1 211 1 211 -

where k =3—4vfor plane strain and k= (3 - V)/(l + V) for plane stress, v and G are

Poisson’s ratio and shear modulus. The vector function gj(z) depends on Muschelishvilli's
potentials ¢(z), yAz) and is possible to write as follows

* Gk

8(2)=[0(2), w(2)+(F -2)0'(2)] =F"(2)+(EZ-2)Q1"(2), ©3)
g'(2)=[0' (2. (D) +EF -2)¢"(2)] =1"(2)+(E-)QT"(2),
where (. ) is a complex conjugate expression
r'(2)=lo@, v, Q - ﬁ g} ©4)

The stresses in the crack tip region are proportional to 7° " and displacements to r°. r
denotes the distance from the crack tip and the exponent 0 is, for a crack perpendicular to
the interface of two different materials, a real number. The exponent 6 depends on the local
boundary conditions (i.e. on the character of the crack faces loading and the character of
the interface between the materials) and the material characteristics of both materials. The
unknown potentials fi(z;), ¢(z) and yAz) are sought in the following form
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5. Application of methods for the stress field description in the vicinity of the GSC

1@ =4z o' (2)=¢"2", v ()=¢"2", (j=12,J=LILII), (95)

where gzﬁjJ and gzﬁj*J are vectors of complex coefficients. The superscripts denotes the
appropriate bi-material region (see Fig. 12), the subscript denotes either the pertinence to
characteristic number y; of the orthotropic material or pertinence to the potential of the
isotropic material. The coordinates z; and z are considered as polar (see Fig. 12)

z] :r(cos6’+yj sin@), z=r(cosf +isind). (96)

In the crack tip region, the following boundary conditions have to be satisfied

T=0 for 6=—2%3%
22
U'=U" T"=T" for =0, (97)

Uill — UI-H[, ]'i'[[ — ]'i'[[[ for e — 72_’ l — l, 2’

The goal is to find the unknown singularity exponent 0 and the corresponding
unknown eigenvectors gzﬁjJ or gzﬁj*J so that the boundary conditions (97) are satisfied.

Substituting the assumed form of the potential solution f(z;), ¢(z) and y(z) from (95)
into (89) or (91) one obtain for the case of the anisotropic media the following relations

UJ :AJZJECDJ‘FKJZJE’CT)J,

_TJ :LJZJECDJ‘FI_JJZJECT)J (98)
where
27" =diag| z°, 5,° | =diag| (5, +44%,)", (5 + 15, | 09)
=r° diag[(cos6’+ 1 sin0)° (cos @+ 1] sin 6’)5].
For the case of the isotropic media one obtains
U/ =AYZ7°0" + AVZ"D"
T’ -B2°0" +B L% (1o
where
e | 7 o}{ (x, +ix, )’ 0
7-2)8z°" 2° —2ix,8(x, +ix,)*" (x, +ix,)°
[ (Z-2) 200% +ix,)" " (v +ix;) (101)

| r°(cos@ +isin6)° 0
| —2r%i5(cos@ +isin@)*'sind  r°(cosf+isin@)® |
For the bi-material composed of two anisotropic media, the boundary conditions (97)

and relations for the displacements and resulting force (98) lead to the following
homogenous algebraic equation system
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‘B, -B, -B! B! 0 0 |[ Lo |
X xt -xr X' o0 0 || L'd
1 Dl m 3/ I /17
0 0 Bi[ __]3[; _BIHI ]illl I:IICEDI[ = 0’ (102)
0o o Xx' X' X' X"|Lo®
Xé )_(g 0 0 0 0 1At
i 0 0 0 0 Xg[[ )_(gll J_I_J[[[ CT)III J

where in the system matrix on the left-hand side of (102), the 0=0; denotes the zero matrix
2x2, on the right-hand side the 0=0; is a vector 12x1, J;; denotes the unit matrix 2x2 and
*J_- *J * 3 *J_l *J_ *J * & *J_l D _
BY =iAYZ'B"", X7 =BYZ'B”", (j=0,1,2,3, J=1,1I,1I)

2 2 2

Z) =diag[1,1], Z] :diag[ei”‘"’,ei’fﬁ], (103)

w ‘0 e"i"’a} 7] = diag UMJ ’ ei(Z”_d))ﬂ.

8 /(2703

74

2

Z; =diag U,uljr e,

where ¢ is the angle forming by the interface and the crack, see Fig. 12. The system of
twelve algebraic equations (102) is possible to reduce to the system of two equations

K(@G)v' =0, (104)

where 0=0; is a vector 2x1 and for the vector v/’ holds

vi-Llie (105)
H

where H is a generalized stress intensity factor (GSIF) — see e.g. (1). The parameter 0
indicates the dependency of the matrix K (of type 2x2) on this parameter, whereas K can
be written as follows
K =X/ ¥))+ (X XY (B B Y B (1Y)
H(X! X XXV BY B (B B)) (106)
x(By +B; )" (B, +B{Y, +B, (I-Y},)),

where
J _ v\l J
Y; _(X_/,) X (107)

Note, that in all matrices of Eq. (106) there are expressions containing the unknown
parameter § in the exponent. Hence, to effectively handle the components of the matrix K
it is useful to express some of the inverse matrices on the right-hand side of Eq. (106) by
means of the adjoint matrix. Specifically, it holds

(BfH + ﬁfIIY;II )—l — (det(BflI + ﬁfIIY;II ))71 (BfH + ﬁfIIY;II )adj , (108)

where the superscript adj denotes the adjoint matrix. By substitution of Eq. (108) into
(106) one gets
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5. Application of methods for the stress field description in the vicinity of the GSC

det(B!" +B"Y;")K = det(B!" + B Y/ )X/ (1-Y))
X - XY )B + B, ) B (1Y)
+(det(B{” +B" Y, (X! -X") (109)
—(X{H _ )_({HY;H )(B{H + E{HY;H )ad] (B{[ + ﬁ{[ ))
x(BY +By)" (B; +ByY, + By (I-Y,)).

The vector v/ in the system of algebraic equations (104) is generally a complex vector
— see [73]. This fact complicates subsequent numerical calculations. Using the relations

1 1
Re{VI}:—(VI+V1):—(I—Y21)V1 ,

2 2

1 1,
Im{vl}zi(vl—vl :—51(I+Y21)v1 (110)

=—i(I+Y;)I-Y;) ' Re{v'}
the system of equations (104) can be converted to the form
2KI(I-Y;) 'Re{v'} =0. (111)

The similar procedure can be applied to the combinations of anisotropic/isotropic bi-
materials. Namely, using the boundary conditions (97) and relations (98), (100) one
obtains a system of algebraic equations for the case of bi-material composed of isotropic
material (region II) and anisotropic material (region I, III — see Fig. 12)

‘B -B -B’ B/ 0 0 || B"®" |
X! X X -Xrooo 0 B ' ®’
0 0 Bﬁ[ _ﬁ{[ _B’lﬁlll Brl[[ LII @II
0 0 X{I Xfl _Xllll _Xllll LII @II
X7 X] 0 0 0 0 |[B"®"
0 0 0 0 X*l[l )_(*IH J ﬁ*[[[élﬂj
3 3 L

=0 (112)

where

B =iAVZ B, X/ =BYZ BV, (j=0,1,23, J=1I111I)

2 2 2 2

z; =diag[1,1], Z; =diag|e™, e™ |, (113)

Z* B e—i¢8 0 ZJ - ei(27r—¢)8 0
2 2i§e—l’¢(5—l) e—i¢8 ? 3 2i§ei(27r—¢)(5—l) ei(27r—¢)8 )

Similarly as the system (102) also the system (112) can be converted to the form (104)
or (111), whereas the changes consist only in the replacement of appropriate matrices B/,
or X;/ by the matrices B, or X;”. The following relation must hold in order the solution of
the equation system (104) would exist

det(K(8)) = 0. (114)

The relation (114) leads to nonlinear equation with parameter 8, which has at least one
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real root within the interval (0, 1) — another real or complex roots may be present.

Remark 2: It can easily be proved that if 6 is a root of the characteristic equation
Det[K(8)]=0 then - also verifies this equation. A general proof of this property for

general stress concentrator can be found e.g. in [71]. The corresponding displacement
field - so called dual displacement field or extraction solution, is singular at the crack tip,
hence it has unbounded energy near the crack tip and thus corresponds to some
concentrated source at the crack tip. It is a mathematical tool which allows extracting
asymptotic coefficient terms from the complete exact solution using the concept of so-
called W-integral based upon the reciprocal theorem.

Remark 3: The zero eigenvalue of matrix K and the corresponding exponent +3,
eventually +3, can be of multiplicity 2. In that case when searching the eigenvectors
corresponding to the given eigenvalue of the matrix, two cases can arise. In the first case
the two linearly independent vectors v and v are found and any linear combination of
these vectors provides the vector v'. In the second case, the only one eigenvector v’ can be
found, while besides to the solution (95) the following solution given in [71] has to be
considered.

- .
@)= | In( 2 ) +—(r 2] ) :
do 8=£3y 11

o' ()= | G2 L (2 ) } (115)
&=, ¢

do
5=y :) .

5.2 Numerical calculation of GSIF using P-integral

P A
v (@) =1 InG 02y ()

This section is devoted to the demonstration of W-integral technique for a crack impinging
perpendicularly at the orthotropic material interface.

Numerical calculations were performed using the FEM system ANSYS. The specimen
is made of two layers M1 and M2 of composite such as Graphite/Epoxy T300/5208
system. Elastic constants are taken from the work [38] and are the following: £ =137GPa,
ET: Ez=108GPa GZT =3.36 GPa, GZL = GTL =5.65 GPa, VT1Z = 049, VzL = VTL — 0.238.
Material properties of some other fibre reinforced composites and particular laminae can
be found in more details also in the paper [83]. The appropriate material directions of the
considered material configurations are obvious from the Fig. 13. The width of substrate
was ranging from 40 mm to 100 mm, and the specimen length was 100 mm. As indicated
in Fig. 13, three different mutual orientations of layers M1 and M2 were considered with
the axis of material symmetry either parallel or perpendicular to the material interface. For
each of considered configurations the eigenvalue problem (60) was solved. Both the pair of
quantities, 8, u,, pertaining to the real solution, and the pair of quantities, § = -8, u,,

pertaining to the auxiliary solution (see 4.1.3), were found. Calculated characteristic
eigenvalues of the singularity & and 8" are listed in the Table 1.
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5. Application of methods for the stress field description in the vicinity of the GSC

Characteristic Characteristic eigenvalue
Confieuration eigenvalue of the auxiliary solution GSIF
& 8 8 =-5 (CDD/LE.S)
(CDD/ L.E.S. method) (CDD/ L.E.S. method)

A 0.328318 -0.328318 6.48
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0328770 0328770 662
B 0.671682 -0. 671682 2.71
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0671825 0671825 282
C 0.661490 -0.661490 1.02

0.661486 -0.661486 1.13

Table 1. Results of the singularity analysis and GSIF calculation for different material
configurations - see Fig. 13.

Configuration A
100 MPa

Configuration B

T ]
M1 |

Configuration C

31 400 Elements

Crack terminating 1 to a
bimaterial interface

8-node 2D elements +Plane Strain

Fig. 13 2D finite element mesh used to model the cracked specimen.

Having eigenvalues and eigenvectors calculated, the near tip singular field and the
auxiliary solution can be found from Equations (63)-(66), (71)-(72), and (74)-(75). In
addition, expressions (77) and (78) can be set up which allows evaluating the GSIF from
Eqgs. (23) and (76). Both the stress field and the displacement field data obtained by means
of FE computations were stored in files which were further used as an input for the
calculation of the Y-integral using MATLAB 7.1. Calculated values of GSIF for different
configurations are given in the Table 1.

It is a matter of interest to compare the stress field and the displacement field,
calculated by FEM at some distance from the crack tip, with the analytical singular fields
(63)-(66), (71)-(72) making use of the calculated values of GSIF. Specifically, a circular
path with the radius R=Imm centred at the crack tip was chosen. The results are
summarized in the Fig. 14-Fig. 17 and were also presented by author in [90].
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Fig. 14 The courses of stress components, a) — ¢), and displacement components, d)- ¢), along the
circular path with the radius R = 1 mm for the configuration A.
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Fig. 15 Example of the courses of the auxiliary stress fields for the singular term, a) — ¢), and the
auxiliary displacement components, d)- ¢), along the circular path with the radius R = 1 mm for the

configuration A.
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Fig. 16 The courses of stress components, a) — ¢), and displacement components, d)- ¢), along the
circular path with the radius R = 1 mm for the configuration B.
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circular path with the radius R = 1 mm for the configuration C.
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5.3 T-stress determination
5.3.1 T-stress calculation using the CDD technique

In general, numerical determination of T-stresses requires careful handling, because of
their location in the vicinity of singular points. As suggested by Broberg [11], the T-stress
can also be determined using dislocation arrays. The determination of T-stresses via
dislocation arrays leads to a Fredholm equation that can be solved very accurately and
provides more accurate values of T-stress comparing to common finite elements methods.
However, the application of this method requires determining the solution for a dislocation
in a complicated domain. Such an approach is not economical, but there are strategies,
which may be employed to overcome this problem. These strategies start with a dislocation
in a crack free infinite domain aiming to determine stresses along the curve 6Q which
stands for the boundary of finite body. Introducing tractions along 0C2 such that they
negate stresses found previously and solving for stresses along the dislocation plane e.g. by
FEM, one can finally derive the regular part of the dislocation solution for a specified
finite domain. Thus, in the case of given finite bi-material plate, one obtains for stresses
acting along x; =0, x; € 2

P\ X=X,

S, (%=0x)= ZL#{Z{GMM pﬁ%] +M,, (dk J+CC+%k()e,xzu)dweeZ(ll6)

where /x5, Xx2,) denotes the regular part of the dislocation solution. Form a dislocation
array by introducing the density function fi(x2,) and integrate over the crack length /.

1 p fk X0 dx2o I fk X0 dx2o
(%)== 318 S| G i L M [ H e T
Glz(x2) An Za: o, ZB: Bk —11_! _Tx x, I X, —X,,
(117)
ZLH MH pa I _11 20 M(ilkj‘f].fxxh—ldxh +Ihlik(x2>x2o).fl.c(x2o)dx2o'
H 2 20 2 20 1,

For a crack with traction free faces, the left side of (117) should equal to —o{" (x, )

2

the negated stresses in x;=0 produced by the given boundary loads, acting on a plate with
boundary 0€), but without cracks and dislocations. This gives integral equations for fi(x,)

Ilpa ﬁc( ) 1 ﬁc( )
| T L AN g s
c (118)

I
Pu x x i x x
3

+Z[f; 11 p(x J‘ﬁc( 20) ”J‘ﬁ( 20 J‘hlk ( 20)dx20 :Gillppl(xz).

In general, numerical methods have to be used to determine -’ (x,). The crack may

be closed at both ends (an internal crack) or only at one end (edge crack). In the second
case, fi(x2) has to be non-singular at an open end, and, e.g. for the case in Fig. 18 with the
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left end at the point y=-4, fi(x2,) 1s sought in the form

£ () = El) (119)

x20

where g i1s a bounded function. After fi(x,,) is found, all interesting quantities can be
calculated, for instance the GSIF and/or T-stress. The T-stress component acting in the
direction perpendicular to crack front is found after calculating G, (notice that the
coordinate axis y lies in the crack direction), the expression for which is found in analogy
with Eq. (117) after addition of c“pp’( x,). This stress is the tangential stress in x, = 0

produced by the given boundary loads, acting on a bi-material plate with the boundary 0Q,
but without crack and dislocations. Thus

Bk —11

G, (x ) Z Z G, M 1J~j§;(x20)dx2 M J.ﬁ(xh )dx,, N

o B I ]_Tglxz_xzo 1, Xy =%
n Z 11 1 J‘ﬁc(xzo)dxz M(Z( J‘ﬁc(xzo dx . (120)
;ész—xzo p(x I, 2 20
+jhm ) £, (x,,)dx, +02 (x,),

where /55(x;, X3) 1s found in the same way as 4;{(x,, X»,). The singular integral in (120)
can be eliminated using (118):

l l f 0 0
oa(%) =1 22| X wM;z_HI Al
“« I—Jg 2" M0

(121)

/d

M| 1 Ai(x,)dx,
—H o ( )+Mlk(xz,n0)ﬁc(xzo)d)eo—% DI Y Gy _,,j ,,2 %\ lec | ||+ce

b, 7 a B P pﬁx =X,
By (,3,,) £ (3, ) dxy, +05 (3.
L

The T-stress is found as o,, (x,)

X, >0 ’

Remark 4: To determine the T-stress using the W-integral, the auxiliary elastic field with
stress singularity G, oc r asr — 0 must be used and can be obtained from the solution for

a concentrated moment acting at the crack tip.

In this work, an emphasis is put on the analysis of a crack in a thin layer terminating
perpendicular to a layer/substrate interface. For a sufficiently large specimen, the semi-
analytical solution for /,21(x2, X20) and A;(x2, X20) can be worked out due to recent findings
by Choi and Earmme [37], who studied singularities in anisotropic trimaterials. Namely,
authors in [37] used the so-called alternating technique that generalizes the formulas in
Eqgs. (50) and (51), and for the case in Fig. 18, it gives the following relations for potentials
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g @7 (Z)+ZB:(MIIEII)uB o (Z_pilh'f‘pélh)} _—

C,s P, (2) +ZZ(CM”) . Zé‘;icbg (z —pé’h+p;”h), zel,
B R
in which the recurrence formula for @, (z)is
D, (2) +ZGocBCT)Ba (z), ifn=0,
B

O () - 123
O s ), oot oo

®,(z)= (122)

Detailed parametric FEM computations were carried out to find bounds within which
the semi-analytical solution (122) can be used for the specimen considered.

free free free
surface  interface surface  interface surface  interface

X4

Fig. 18 Scheme of the bi-material half-plane.

5.4 Numerical calculations of GSIF and T-stress using CDD

Note that for all material configurations, the stress component o, calculated using
FEM along the circular path is shifted against the singular term by a negative constant
value. This shift can be attributed to the influence of T-stress. Remember that the FE
solution contains all terms of the Williams-like asymptotic expansion for crack terminating
at the interface. Apparently, at the distance R=1mm, the T-stress prevails over the higher
order terms in the asymptotic expansion.

It is worth mentioning that the displacement component U, obtained from FEM
exhibits a qualitatively different behaviour in comparison to the behaviour of the singular
solution pertaining to the configurations B and C. Analogous to the stress field, this
difference is due to the higher order terms in the asymptotic expansion which are included
in the FE solution. Since the higher order terms in the asymptotic expansion of U, ~7'x;
+..., the difference depends on location. A confirmation of this statement provides Fig. 19
which shows the courses of the displacement component U, obtained by both the FEM and
the singular solution along the circular path of the radius R = 0.01 mm and the path of the
radius R = 0.001 mm, respectively. Clearly, with decreasing distance from the crack tip,
the FE solution approaches the singular solution.
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N 10"
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Fig. 19 The courses of the displacement component uy obtained by both the FEM and the singular
solution a) along the circular path of the radius R = 0.01 mm; b) along the circular path of the
radius R = 0.001 mm.

As to the comparison of the results pertaining to the configuration A with the results
pertaining to the configurations B and C respectively, it should first be noted that the
resolution of the graphs for the configurations B and C is of 2 orders higher than that used
for the configuration A. Second, the exponent of the singularity in the case of the
configuration A (strong singularity) is twice the size of that pertaining to the
configurations B and C (weak singularity), see Table 1. Thus, the singular term dominated
region for the configuration A is larger compared with the singular term dominated region
for the configurations B and C respectively, which explains a minor influence of the higher
order terms in the asymptotic expansion at the distance R = 1 mm.

Fig. 20 shows the component G,,, calculated using FEM, plotted against the distance
from the crack tip for 6= -m/2 in case of the configuration A. As stated above, the T-stress
is found as ©,,(y)|__, . It is rather difficult to estimate this limit from Fig. 20 since the

curve exhibits a turning point very close to the crack tip and sharply increases behind this
point. Thus, a rough estimate of the T-stress is about of -50 MPa.

0 /\
20
-30 |

40 b

- S
o \\
-80 E \ \J

FE solution of 62, for x;=0 [MPa]

a0 b

100 I i i i i
-4 -3.5 -3 -25 -2 -15 -1 -05 0

Distance from the bi-material interface [mm]
Fig. 20 Plot of FE solution for o,,(x;) along the crack.

In the next step, detailed parametric FE computations were carried out to verify
whether the semi-analytical solution (122) can be used for the given specimen. To this end,
a dislocation with the Burgers vector » = (0.01,0) mm was introduced into the FE mesh
and the stress components o1; and o1, were calculated along the dislocation plane. The
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dislocation was modelled as a constant displacement along the dislocation plane ensuring
opposite sign of the displacement at the opposite faces of dislocation plane. The difference
of the opposite displacements defines the Burgers vector. The value of the Burgers vector
was carefully chosen with respect to the element size near the crack tip, which is of the
order of um.

Dislocation rooty=-322 mm

E B -
= ks TN
= ~ e . - ™ -
2 S I N
£ ~ | N ] 60
= > . ' v
g \ 1 \
- ‘\ | : 1| 80
= . 1
o y | ! \ '.I 1 -100
= ! -
- A1 . 1 v ‘.
gn = = Diglocation rootx= 0 mm | ' I 1 -120
= = = = —Dislocation rootx=0. 146 mm : i
< " . 14 140
= - 1 || mm—— Dislocation rootxz=0.912 mm N \
: m—u mm Dislocation rooty;=-2.1mm I 'l " 4 -160
8 1
- I
=
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I

II 1 -180

i
.

Distance from the bi-material interface [mm]

Fig. 21 Plots of the stress component oy, versus the distance from the bi-material interface for
several positions of the dislocation root along which the stress o is plotted.

Fig. 22 compares results obtained for two substrate widths, i.e. 40 mm and 100 mm.
Apparently there is only a slight difference in values of the stress 01;. Subsequent increase
of the substrate width did not provide any marked change of o1;. The FE calculations of
G11 obtained for the width of substrate of 100 mm were compared with the calculations of
c11 based upon the semi-analytical solution (122) when the infinite series was truncated at
n=4. This comparison is displayed in Fig. 23 revealing a very good agreement between FE
calculations and the calculations based upon truncated series in Eq. (122). Thus, for the
given specimen, the truncated semi-analytical solution of Choi and Earmme [37] can be
used as a fundamental solution for crack modelling using DDT — see also [89].

.
= =20 E “ H
= 40 - 3|
=2 € ~ i
T -60 E M =H
: L a
B i g s
R 2 S
2 g
= = @
= 140 g a H
c X —— Substrate width = 40 mm
% -160 a —+— Substrate width = 100 mm I
@
& -180 \ i
L L L L Il 1

-2004 Y 2 X ) AE 1 e n

Distance from the bi-material interface [mm]

Fig. 22 Plots of the stress component o) versus the distance from the bi-material interface for
several positions of the dislocation root and two substrate widths.
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5. Application of methods for the stress field description in the vicinity of the GSC

The integral equation (118), in which the regular kernel /;;1(x,, x2,) was obtained from
the truncated semi-analytical solution of Choi and Earmme [37], was solved numerically
for the unknown dislocation density in the case of the orthotropic bi-materials specified
above. The procedure involves the reduction of the integral equations and constraints to a
system of algebraic equations using the collocation technique. It is useful to separate the
singular part from the regular part of the integral equation. Since the material interface and
the crack plane correspond to the material symmetry planes, and the specimen is subjected
to simple tensile loading conditions, the Burgers vector component b, is equal to zero. In
such a case, there is more expedient to work directly with the dislocation density 85, /8x,

rather then with the density function f; introduced in Eq. (56). The density function f
follows from Eq. (56) as

., &b, ., 0b iy
S (x20) =B, @ =By, i = Byb] (124)
and Eq. (118) simplifies to the form
appl l -1 [ blr(x20) ’ [ '
Glipp (xz)_4_ 2Re(lgll ) '[ x20 + '[bl (XZO)lexl (x2’x20 )dx20 = O (125)
7 2 Xy, — X, :

The regular kernel K,..(x2,x2) describes the interaction of a dislocation with the bi-
material interface and with the free surface. K...(x2, X2,) possesses a complicated structure
and depends on elastic constants of both materials and on the layer width. Due to its
algebraic complexity, it is not given here. The substitutions

s=2%20 49 yop%0 g (126)
h h

2

allow to reduce the integral equation (125) to the form

appl l -1 l bl,(s) h l ’
ol (l)—E 2Re(B11 )I:derE bi(s)K,, (t,s)ds=0. (127)
| |

g
6 -500
£
3
,% -1000 v——= analytic,x,,=-0.05 mm 1
= o—o FEM, X2 =-0.05 mm
é e——e analytic,X2=-0.146 mm
e -1500 + z—=a FEM, X2 =-0.146 mm \
5 a——a analytic;X2e=-0.912mm | 4
s ¢ | =—= FEM,x2 =-0.912 mm
3 o——= analytic, X2 =-3.22 mm | ¢
£ -2000 8—a& FEM, X3 =-3.22 mm
-4 -3 -2 -1 0

Distance from bi-material interface [mm]

Fig. 23 Comparison of FE calculations of o, with the calculations of ,; based upon the semi-
analytical solution (122) with the infinite series truncated at n = 4.
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The dislocation density is sought in the form b/ (s) = (1- s)&1 (1+ s)k6 g (s), where g(s)
is a bounded function. As mentioned elsewhere [26], this choice means that 5/ (—l) must

vanish, i.e. that crack faces at the mouth are forced to be parallel and the solution is over-
constrained. Nevertheless, this incorrect end-point behaviour at the crack mouth had a
negligible effect on the calculated stress intensity factor. The integral equation may be
solved using the Gauss-Jacobi quadrature. The function g(s) is sought in the form of linear

combination of Jacobi polynomials P> (s)

© Ny -
g(s)= chPn(l_a’a_l) (s)= chPn(l_""’_l) (s). (128)
n=0 n=0

The kernel Kix(%s) in Eq. (127) is known only in discrete points s = s; and its
dependence on the variable s is approximated by the following truncated series of Jacobi
polynomials:

N,
lexl (tl ? S) = Z/: d”' (tl ) ])”(178’671) (S) : (129)
n=0

The preceding approximation is performed for collocation points # =#,1=0,1.... N3 -
1 at which the boundary conditions along crack faces, ¢;; = G, = 0, are controlled. A

convenient set is given by
2i+1
1, =cos za : (130)
2 N,

Using Eqs. (128) and (129) in the integral equation (127) and employing the integral
relations given in [19] one obtains the system of algebraic equations through which the
unknown coefficients ¢, can be evaluated:

Ny i X o
o (1) —%Re (Bl’ll)z c [cot (76)(1-1, )H (1+1, )071 P (1)~
n=0

, (131)
_ N .
_L@)r(r+s) F[n +1,-n; §l—l’ﬂ +ﬁ2cndn ()01 =0,
(n+1) 2 )| 2&
where
®(1,5_’§,1) _ 2 r(n—§+2)r(n+§) (132)
! 2n+1 nT (n+1) ’
_ N, forN, <N, | 133)
N, forN,>N,

F(n,nznsx;) stands for the hypergeometric function, I'(n) is the Gamma function and
i= O,l..NB -1.

The strength of the singularity in stress may be quantified in the usual way by defining
the GSIF H. Using the function-theoretic methods described in [26], [19] one obtains:
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5. Application of methods for the stress field description in the vicinity of the GSC

H=lim~2zr*o, (r,0 =7/2) =
r—0

- in(o-1) [ o N\ o
=Re —lj 27;1‘((317)[ g(l) L{lpll [CHA;[H [p_llh) +C12—Alj[21£p_21h] }—i_ (134)
—e D P P b
n (o N\ n (o N\
oo G Lp_llh) C_M[p_h] ,
P P> D, P

where g(1) denotes a value of the function g, see Eq. (128), at s = 1; other quantities were
already defined above.

Having found the dislocation density, the T-stress can be calculated using Eq. (121).
Both, the calculation of the GSIF and the calculation of the T-stress were carried out only
for the configuration A, specified in the Fig. 13. Table 2 contains the result of calculations
of the GSIF and the T-stress, and illustrates the convergence of the numerical scheme with
increasing number of terms Ny in the truncated series (129) while keeping the number of
collocation point Np equal to 10. Apparently, the results are in a good accordance with
those obtained using FEM.

N, GSIF —IIZ T — stress
- [MPa.m ™| [MPa]
10 5.45214 -48.72973
20 6.31186 -48.12727
30 6.42548 -48.05871
40 6.44138 -48.05004
50 6.44394 -48.04889
60 6.44439 -48.04879
70 6.44447 -48.04886
80 6.44448 -48.04891
90 6.44448 -48.04885
100 6.44448 -48.04893

Table 2 Calculations of the GSIF and the T-stress using the dislocation technique, Nz = 10.

Example of the courses of stresses and displacements for the solution of the T-stress
term are using the relations (63)-(66) and (74)-(75) depicted in the following Fig. 24. The
corresponding courses of the auxiliary solution are shown in the Fig. 25. Both figures are
for the configuration A (see Fig. 13) and the circular path with the radius R=1mm centred
at the crack tip.
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Fig. 24 The courses of the stress fields for the T-stress term: a) — ¢), and the displacement
components, d)- ¢), along the circular path with the radius R = 1 mm for the configuration A.
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Fig. 25 The courses of the auxiliary stress fields for the T-stress term: a) — ¢), and the auxiliary
displacement components, d)- ¢), along the circular path with the radius R = 1 mm for the
configuration A.
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6. Solution of the crack bridging problem

6  Solution of the crack bridging problem

6.1 Model of the crack bridging

For a simple sliding with a constant z,, Aveston et al.[4]; Budiansky et al.[14]; Budiansky
and Amazigo [12]; Marshall et al. [59] suggested a model of bridging fibres represented by
a continuous distribution of bridging springs obeying the quadratic bridging law

v(xz):L%T, (135)

where v(x;) is the displacement of the upper crack face (one half of the COD) and the

constant f3 is defined as follows
1/2

2 2
B= e L L 2TS ’ (136)
R, (1-¢,) E}

where Ry is the fibre radius, Ef, Ey, are material characteristics of the fibre and the matrix
respectively, ¢, fibre fracture volume and 7 is a interface slipping shear resistance stress.
Relation (135) follows from an estimate of the extra elastic elongation of a long bridging
fibre that occurs in regions on the two sides of a matrix crack wherein frictionally
constrained sliding occurs.

Under the assumption that the strength of the fibres, oy; has a single, deterministic
value, failure occurs when the bridging spring stress at the original crack tips reaches o=
c¢r oy Because of fibres/matrix slip, the fibre stress decays linearly from the crack mid-
plane. Since the stress on the fibres has a maximum value in the plane of the matrix crack,
the assumption of a single strength value of fibres leads to the conclusion that fibres break
in the plane of the crack. Consequently, the prediction of composite toughness and strength
may be unduly conservative. The reason is that with dispersion in the fibre tensile strength,
fibres may fracture within the matrix rather than at bridged faces of the matrix crack,
thereby leading to frictionally constrained fibre pullout before final failure occurs, and so
leading to enhanced composite strength. Apparently, fractured fibres still contribute to the
bridging stresses as they have to be pulled out from the matrix. The relative contribution of
intact fibres, which act as elastic ligaments between the crack faces, and broken ones
within the matrix, which are eventually pulled out, is analysed assuming that the fibre
strength follows the Weibull statistics [94]. This gave an explicit expression for the
average stress transferred by the fibres across crack given by

m,+1 m,, +1
(e O
Jal _ br br
0,, =0, exp| —| —= +o,q1—exp| -| —= , (137)
c,Z c,Z
f f
fraction of intact fibres fraction of broken fibres

where op is the average stress exerted by the broken fibres pulled out from the matrix, and
exp |:—(Gbr /e fZ)m" H} stands for the fraction of intact fibres in the crack wake. The fibre

1/(m,, +1)

0, ,, which

includes the information on the fibre tensile properties given by the Weibull modulus m,,
and the fibre characteristic strength oy, . Physically, there is typically one flaw of strength
oyrin a length /., of fibre and /.r= Ryoys /7, 1s twice the fibre slip length at an applied stress
of oyy.

strength distribution is introduced through the parameter X =(m, +1)
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Using a simple shear-lag approach, the stress transferred by the broken fibres as they
are pulled out from the matrix can be expressed as
_ 2¢y1,

% =R ((h)-v), (138)

where <h) is the average distance from the fibre failure position to the crack plane for the
broken fibres which was computed in [94] as

I
R = r£m11,+2]zc_f 1 r£m11,+2], (139)

- m,, [(m,,+1)
2t, m,+1  m, +1 2 ( m, + 1) m, +1

where I' is the Gamma function. Fibre pullout, thus, scales directly with the characteristic
length /..

6.2 Bridged crack modelling using the weight function method

It should be noted that an important task in the analysis of a component with a bridged
crack is the calculation of the bridging stress intensity factor for a specified bridging
stress-crack opening displacement relationship. There are a great number of methods
available for the determination of stress intensity factors such as e.g. the finite element
method with contact elements, the boundary element method, the boundary collocation
method, or the weight function method. High efficiency of the weight function method
consists in that once the weight function(s) are known the bridging intensity factor can be
easily calculated for any bridging stress distribution by evaluating the integral of the form
of Eq.(27). Moreover, it allows setting up a bridging stress-crack opening displacement
relationship by analysing the experimental crack opening displacement data and solving an
integral equation. The weight function method has been extensively used to the modelling
of bridged crack problems [21]. For a complicated domain, the weight function has to be
obtained numerically, e.g. from FEM calculations [78]. As to a crack impinging on the bi-
material interface, such calculations have not been reported yet. The weight function is
obtained numerically by performing a number of calculations of the generalised stress
intensity factor due to unit line load applied to the crack face at arbitrary points. To this
end, an application of the reciprocal theorem seems to be very efficient.

6.2.1 Bridging stress - recurrent calculations

To calculate the bridging stress along the crack face, the crack face displacements in
dependence on given load are needed. The recurrent calculations are used and consist of
the following steps:

1) In the first step, the magnitude of loading stress oy is estimated and the displacement of
the upper crack face for unbridged crack is calculated:

Vappl(l) (x2 ) = VapplO (x2 )O-D (140)

where v is the displacement of the upper crack face caused by the unit stress oy.

appl0
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Fig. 26 Displacement of the upper crack face caused by the unit loading o,.

2) After the first step (n=1) of the recurrent calculation of the loading stress o, an estimate
of the total displacement of the upper crack face is recurrently refined in several sub-steps.
In the first sub-step of the recurrent calculation the total displacement, v,;, n=1, is set

equal to Vor(um,) <0, n=1 (i.e. the bridged crack face opening will be equal to the

unbridged crack face opening in case of loading stress o;). Then the bridging stress is
computed via one of the following relation (bridging law) — a) is a already mentioned
simple quadratic bridging law and b) is an advanced bridging law taking into consideration
the statistical distribution of the fibre strength along the fibre length — see [43] or [45]:

a) O-br(n.l)(xz):B\/Vn.l(x2)> n=1 (141)

m,,+1 my,+1
A O-br(n,l) O-br(n,l)
B) Gpiur) = hyins) EXP —( s ] +0 41— €XP —{—cfz , (142)
fraction of intact fibres fraction of broken fibres
h 2¢,1, Thi K
where o, (%)=BVv,.(%). n=1, o, (x,)= R_(<h>_v’“ (x,)). n=1. This makes
f

possible to estimate the corresponding crack face displacement LA using the FEM

solution for the crack face displacement due to isolated force /" acting in position x»; .from

the relation
Vor(n.1) (xz) = varo (x2> Xai )&br(m) (x2i ) S(x2i ) 3 (143)

where vi0(x2, X2i) 1s the crack face displacement due to the isolated force / acting at the
point Xy, see Fig. 27, S(xy) is the area per node at the point x» and the summation is
performed over all node rows behind the crack tip.

3) In next sub-steps the total crack face displacement is refined as follows:

vappl(n) (x2 )
_ =1
vn-,mn +l (xz ) vn,ntn vn,ntn (xZ ) o vbr(n.,mn) (xz ) - ,

(144)

where v <0 is the crack face displacement due to the bridging
br(n,mn) p

~

stress OA-br(n.m,,) (xz) = br(n.m,) |:v”*m" (xz ):| '
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Note that for the exact value of vy(x;) the ratio in Eq. (144) equals to one. The
recurrent calculation stops when

2
vn,mn+1 (x2 ) - vn,mn (xz) < TOL’ (145)
vn,mn +1 (x2)

where the left side of the inequality is a square of the approximation in the actual and
preceding step over the approximation in actual step and 7OL is a prescribed tolerance.

Fig. 27 A pair of line forces acting on the crack faces and the integration path.
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Fig. 28 Displacement of the upper crack face for a number of positions of the applied line load.
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6.2.2 Weight function - application of the P-integral

Now assume that a pair of line forces acts on the crack faces at a point x,, see Fig. 27.
Other loading is absent. Eq. (20) modifies with help of Eq. (22) as

I[G,j (U)n, rif"ufl‘/ -0, (rif"ufl)n, Uj]derZFr*S'u 71:H‘P(r5'u1,r75'u71). (1406)

I's

I'; is an arbitrary contour enclosing a domain containing both the crack tip and the pair of
line forces. By definition, the weight function W(x.p, /) follows as

o, (U)n ru, —c (r°u )nU, |ds+2Fr "u ,
L e, s ,
_ - 5

m_|F| ‘P(ra‘ul,rfg‘ufl)

W= (147)

A finite element solution U” was used as an approximation for U in Eq. (147). Having
calculated a value of the weight function W for sufficiently large number of line force
positions, the generalized bridging stress intensity factor, Hj. can be obtained for an
arbitrary bridging stress distribution Gp(x7) as

0
H, =[W(x,.h) o, (x,)dx,. (148)

—-h
With elastic constants of two layers M1 and M2 specified in the preceding section, the
weight function were calculated for several ratio of the layer thicknesses /#/B. The results
are presented in Fig. 29 in dimensionless form such that the product W.A" is plotted against
the dimensionless distance from the crack tip —x,/A. The influence of the longitudinal

modulus £, is demonstrated in Fig. 30.

06 ; — — 1_ : : !
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Distance from the crack tip (-x,/h) [-]

Fig. 29 Bi-material normalized weight function against the dimensionless distance from the crack
tip for several values of the ratio /4/B.
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Fig. 30 Bi-material normalized weight function against the dimensionless distance from the crack
tip for several values of the longitudinal modulus £;.

6.3 Bridged crack modelling using the CDD technique

An integral equation is obtained by choosing the dislocation distribution to meet the
traction conditions along of the line of the crack and within the crack bridging zone. Since
the material interface and the crack plane correspond to the material symmetry planes, and
the specimen is subjected to simple tensile loading conditions, the Burgers vector
component b, is equal to zero. The integral equation then reads

q@fp'<x2>+&b,(v<xz>>+2iRe{izq M (8)) }j [ B5)K, (5.3, s, 0 (149
2 J

o (xz) denotes the negated stresses in x;=0 produced by the given boundary loads,

a=1

acting on a specimen with boundary 0CQ, but without cracks and dislocations, and
G,, (S(xz)) is the bridging stress from Eqs. (141) or (142). The integral equation (149)

must be complemented with the condition
l 0
V(xz)ZEIbl(xza)dxza, (150)

which relates the crack face displacement v to the dislocation density b,,. The regular
kernel K...(x2, X20) was obtained from the truncated semi-analytical solution of [37]. The
regular kernel describes the interaction of a dislocation with the bi-material interface and
with the free surface as well. K..(x2, X20) possesses a complicated structure and depends
on elastic constants of both materials and on the layer thickness. It can expressed as the
truncated series
K,
K (00,0, ) = Z N — (151)

The k/,are the constants developed from the alternating technique discussed above.

The substitutions
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6. Solution of the crack bridging problem

s=2220 1 4o (152)
h h

allow to reduce the integral equation (149) to the form

al"fpl(xz)Jr&br(( ))+2—Re{ZL ;M” B” }j—)der'[b K, . (t,s)ds=0, (153)

where
K. . (t.5) \Z ut 154
S)= - .
WA T Sk sk -k, (154)

The procedure involves the reduction of the integral equation and constraints to a
system of algebraic equations using the collocation technique.

The dislocation density is sought in the form &, (S):(l—s)&1 (l+s)175g(s), where
g(s) 1s a bounded function. As mentioned elsewhere [26], this choice means that b, (—l)

must vanish, i.e. that crack faces at the mouth are forced to be parallel and the solution is
over-constrained. Nevertheless, this incorrect end-point behaviour at the crack mouth had a
negligible effect on the calculated stress intensity factor.

Note that a more acceptable form of the density function can be found in the work [18].

_8(s) 155
b (s) = 05 (155)

The used quadrature method has to be adapted to the singularities of &, () using Jacobi

polynomials P°"”(s)at all. The form of the density function &, (s) disables to receive the

closed form solution of the regular kernel K,...(s, 7), which has to be approximated [74]. To
avoid the application of P°"”(s) polynomials, the following approach of the density

function can be used [18]
- 1+s)°
b (s)zblgl(s){:j &) (156)

where g_;(s) is some known, bounded function on [-1, 1] such that g i(s) =—1 and b_; is an
unknown constant, which equals & (—1). This equality serves as an additional consistency
condition. This form of the density function corrects the crack opening at the crack mouth
without the influence on the stress intensity factor. Because the objective of the paper is to
find the stress intensity factor, the crack mouth opening correction will be omitted below.

The integral equation may be solved using the Gauss-Jacobi quadrature. The function
g(s) 1s sought in the form of linear combination of Jacobi polynomials P(° L1-9) (s)

Ny o
g(s)= chPn(&_l’l_ﬁ) (5)= chPn("_l’l_") (s) (157)
n=0 n=0

This allows to express the integral containing the regular kernel K,,..(7,5) in the closed
form by integrating each component of the truncated series in Eq. (151). It is useful to
apply the theory of the curve complex integrals developed by [67] because of the

ambiguous behaviour of the (l—s)sf1 (1+S)175 around the points s =+1. Hence, after the

integration, the regular part of the integral equation (153) can be written as
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L kb (s)ds Nk F1+s) k,g(s)ds
[6.(5)K,, (t.5)ds = Z J’ Byt I[ ] L _
-1 n=1 1 - k t k n=1 kZ,n -1 l - s (k3,nt + k4,n) /kZ,n (l 58)

1-6

g((k3,nt + k4,n)/k2,n) - (ansn ...t aO)

Ny i(1-8)7

. 27ie
Z 1(1 3)2 7

1

(k, A +k47n) + k27
( t + k4,n) - kZ,n

B

s=(ky t+ky )1k,

where «, are the coefficients of the pole at the infinity of the function

b(z)=(1 j 2)871 (1+ 2)178 g(z).

The boundary conditions along crack faces, ¢;; = o;, = 0, are controlled at the
collocation points # = #,, i = 0,1.... Np - 1 given by

1, =cos z2i+l : (159)
2 N,

B

Using Eqs. (154) and (157) in the integral equation (153) and employing the integral
relations given in [19] one obtains the system of algebraic equations through which the
unknown coefficients ¢, can be evaluated:

{Z ZM” (BL) }Zc[ )(1-4)" (14) " P (1) -

a=1
I(9) F(n—(l—§) +l) 1-¢
F| n+1,-11-(1-0);— ||+
[(n+) (n L1~{1-5); 2 j (160)
N, i(1-6)7 \
- lﬁ_m 2721@ 3m’i 4m 2,m 5-11-95)
+ t+k, )k, )—(cs" +.. + =
nzﬁlzklm l_ i(1-0)27 (k3mt; +k4m) k2 ‘ ng): np ((k3mz 4m) k2,m) (O'/m %)s:(]%;zfx+k4;zz)/]‘z,zn >

where F(71,m2;n3;x1) stands for the hypergeometric function, I'(#) is the Gamma function
and i= 0,1..Np —1. The strength of the singularity in stress may be quantified in the usual
way by defining the local generalized SIF Hj,. Using the function-theoretic methods [19],
[26] one obtains

H,,=lim N2rro, (r,6 =7/2) =

-3

o (I-0)im ] 1 1
_ 27k *g(l)Re —eW = L{l[cu(M{{ (B) +M.(By) )p_g + (161)
1
I pir\™! 1 pi\! pH B I 1 pr\! I pll pH B
+C, (M21 (Bu) +M,, (le) )p21 +L, C21(M11(B11) +M,, (le) )plz +
1 )

v (1) o (82) )12
2

where g(1) denotes a value of the function g(s), see Eq. (157), at s = 1; other quantities
were already defined above.
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6. Solution of the crack bridging problem

6.4 Numerical results

At first the results of numerical analysis based upon the weight function method are
presented. The advanced bridging model described in the section 6.1 was applied with the
fibre volume fraction ¢,= 0.4, the fibre radius R¢ = 7 um, the sliding resistance ts = 6 MPa,
the fibre Young modulus £; = 228 000 MPa, and the matrix Young modulus £, = 76 000
MPa. A parametric study was performed in order to examine an influence of the Weibull
modulus m,, and the fibre characteristic strength o, As stated in the section 6.2.1, the total
displacements of the crack surface v = v,y + v 1s to be derived. Fig. 31 reveals the
influence of the Weibull modulus upon the crack opening displacement. As expected, the
lower value of m, leads to the lower crack opening due to higher bridging stress. Similarly,
higher value of the fibre characteristic strength 6o leads to higher bridging stress, and as a
consequence, the crack opening displacement is reduced, see Fig. 32. Similar results as for
the statistical model can be found in the author’s contribution [91] also for the simple
Budiansky’s model.

0.15 T

Vappl
= V= Vapprt Vir

' Vappl
T V= Vappit Vor

Crack face displacement [mm]

Crack face displacement [mm]

01y 35 ) 25 2 s g 33 0 ol 35 3 25 2 a5 3 05 0
Distance from the crack tip [mm] Distance from the crack tip [mm]
a) b)

Fig. 31 Applied, closure and total crack opening displacement for several values of the Weibull
modulus m,,, cor= 2300 MPa. The applied tensile loading: a) 6, = 90 MPa, b) , = 140 MPa.
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Fig. 32 Applied, closure and total crack opening displacement for several values of the Weibull
modulus m,,, cor= 2300 MPa. The applied tensile loading: a) 6, = 90 MPa, b) , = 140 MPa.

Having calculated the total displacements of the crack surface, the bridging stress
distribution can be obtained and, consequently, the generalized bridging stress intensity

71



Doctoral thesis

factor, Hp, can be evaluated from Eq. (148). The results of these calculations are presented
for the advanced statistical model in the Fig. 33, where the remote, bridging, and local
generalized stress intensity factors are plotted as functions of the applied tensile loading of
the bi-material specimen G, for several values of the Weibull modulus and the fibre
characteristic strength Gy
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Fig. 33 Remote, bridging, and local GSIFs (for the advanced statistical model) plotted as functions
of the applied tensile loading &, for a) several values of the Weibull modulus, b) several values of
the fibre characteristic strength .

It is evident that the local generalized SIF decreases with the decrease of the Weibull
modulus m,, and with the increase of the characteristic fibre strength o Also observe that
the bridging generalized SIF (grey lines) begins to decrease with loading when the broken
fibres are pulled out from the matrix. As a consequence, the resulting local generalized SIF
begins to increase more rapidly with loading. When doing the same analysis with the
simpler Budiansky’s model, all fibres are broken within very small change of the applied
tensile stress oy (when the bridging stress reaches the critical value of the fibre strenght).
Consequently, the bridging GSIF Hj, drops to zero. The local GSIF Hy;, then reaches the
value of Hypp1 and no more bridging effect is present.

It is a matter of interest to compare the calculations based upon the weight functions
method with the results obtained using the distribution dislocation technique (DDT)
according to Eq. (161). So far there are available only numerical data for the first stage of
loading when the broken fibres are not massively pulled out from the matrix. There exist
certain numerical problems for the subsequent stage of loading which were not resolved
satisfactorily yet. Nevertheless, Fig. 33 shows that the results obtained via DDT in the first
stage of loading are in a good accordance with the results obtained via weight functions
method.

Remark 5: A method of solution should be sought for the situation when the preferred
directions of the orthotropic material may not coincide with the reference axes in addition
to having the crack and/or the material interface with an arbitrary orientation. Apparently,
the concept of generalized anisotropic bi-material applies to such situations. In the case of
the generalized anisotropic bi-material some aspects of the solution take place. Because of
the participation of the all components of the displacement vector and stress tensor, the
potentials describe the stress and displacement field must be extended to three ones, as
well as the number of the eigenvalues characterizing each material.
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7. Fracture criterion for the assessment of the GSC stability in orthotropic media

7  Fracture criterion for the assessment of the general
stress concentrator stability in orthotropic media

7.1 Fracture criterion

As it was presented in the work [48], both energy and stress criteria are necessary
conditions for fracture but neither one nor the other are sufficient. Experiments by Parvizi
et al. - [72] on transverse cracking in cross-ply laminates corroborate this assumption.
Thanks to the singularity at the tip of the notch, the incremental form of the energy
criterion gives a lower bound of admissible crack lengths. On the contrary, the stress
criterion leads to an upper bound. The consistency between these two conditions provides
a general form of a criterion for the crack nucleation. It enjoys the desirable property of
coinciding with the usual Griffith criterion to study the crack growth and with the stress
criterion for the uniform traction along a straight edge.

7.1.1 The energy criterion

We consider the initial state of a loaded structure to be elasto-static. The equilibrium state
is characterized by a potential energy W, and a zero kinetic energy W, = 0. Next, we
consider the same structure after the onset of a new crack or the growth of a pre-existing
one. The start point of the energy criterion is an unquestionable balance between these two
states:

oW, +6W, +G.6a=0. (162)

Here, 6W, and 6W; are the changes respectively in potential and kinetic energy. The
newly created crack surface is denoted da (length per unit thickness) and G, is the
fracture energy per unit surface, the so-called toughness. Since the initial state is static oW
>0 and a necessary condition for fracture derives from (162):

W
-5 E>G, = 020W,+Ga. (163)
a

This incremental form of the energy criterion is the foundation of Finite Fracture
Mechanics (FFM). It requires the knowledge of the crack increment surface da. If the
crack grows continuously, the above condition must hold for any small surface change da,
then considering the limit oa —0 leads to the differential (Griffith) form of (163):

ow
——2=G=>G,, (164)
oa

where G is the energy release rate. Nevertheless, there are some contra-indications to the
use of the differential form (164) as explained in the section 4.3.

7.1.2 The stress criterion

The stress criterion is based on the data of a critical tension o (or shear 7;), the so-called
strength, that a material can bear before it breaks. The fracture of a surface occurs if:

c2o0, (or 7217,), (165)
where o and 7 are the tension and shear components of the stress tensor acting on the

surface. Such a criterion sounds like a necessary and sufficient condition for the failure. A
counter example will evidence that in fact it is only a necessary one.

Applied to a crack onset at a notch, these two criteria lead to the following paradox.
The Griffith criterion (164) is unable to predict such a mechanism. The energy release rate
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G vanishes and thus can never reach the critical toughness G.. On the other hand, the notch
tip is singular, the stress field tends to infinity when approaching this point and then
tension and shear stress components are always above the material strength. The stress
criterion would thus conclude systematically to a crack onset whatever the applied load.
The two criteria are contradictory. Moreover, neither one nor the other conclusion agrees
with the experiments. It can be observed that such a notch is a privileged site for the crack
nucleation and the fracture does occur at this point but not for any small applied load.

The main conclusion is that, when fracture occurs, the two criteria (energy and
strength) are fulfilled simultaneously, even if one often hides the other. Both are necessary
conditions and together they seem to form a sufficient one. Based on this ascertainment, a
criterion for the crack onset at a notch is derived in the next section using the singular
stress field around the notch tip. It ensures that the two criteria hold true. Giving both the
toughness G. and the strength o, brings us to define a characteristic length for the crack
onset. The failure is assumed to be a sudden and quasi-spontaneous mechanism as
proposed e.g. by [5], [72] and [102].

Fig. 34 The cracked notch in a heterogeneous material.

7.1.3 The crack initiation length

The potential energy change at a crack onset in the direction 6, is written [48]:

—SW, = H’K(,6,)a’°d (166)
where a is the small newly created crack length and d the width of the specimen
(considering plane elasticity). The coefficient K(®, 0p) is a scaling term depending on the

local geometry (0) and on the direction of fracture () - see [49]. The condition (163)
becomes:

—W,>G‘ad = H’K(0,6,)a™" 2G,. (167)
The stress intensity factor H is proportional to the applied load by « :
H=xo,, (168)

and (167) is a lower bound for the increment lengths a :

a*®! ZK(a) QG)CKzaz (where 25-1>0). (169)
>0

appl

Since the applied load at onset cannot be infinitely large, the increment length a
cannot be infinitely small. At onset, there is a jump from O to a which is an illustration of
the FFM. Of course, this lower bound must be compatible with the asymptotic framework,
it has to be small with respect to a characteristic length of the structure. However, it is
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7. Fracture criterion for the assessment of the GSC stability in orthotropic media

essential to recall that the energy balance is only a necessary condition.

The failure is assumed to occur spontaneously, which seems reasonable since the
critical traction acts uniformly all over the fracture surface. This condition will be extended
to the present case to provide an upper bound for the crack extension length. The singular
tension oy (i.e. the component oy of the stress tensor) at a distance a from the tip in the
direction 6 reads:

o,(a.6,)=Ha""'s,(6,)+.... (170)

It is a decreasing function of a. If the condition (165) holds at any point between O
and a, it becomes an upper bound for a:
KO 050 (00)

o

Cc

o,(a,0))z20, =>a™° < (where 1-8>0) (171)

Once again, this bound must be small in order to be sure that higher order terms in
(170) are negligible.

For a small applied load o, (169) leads to a high lower bound while (171) defines
an incompatible low upper bound, thus for a monotonically increasing load the solution is
achieved when equality holds in both (169) and (171). The increment length derives from
these two equalities:

GCS; (QO)
ay=———"—"
K(w,6,)0;

The structure embedding the micro-crack with length g, is in equilibrium in the sense

(172)

that the elastic solution is characterized by the absence of a kinetic energy. However, it is
highly unstable from the point of view of the growing crack. The energy release rate at the
tip of the newly created crack is an increasing function of its length and moreover is still
above the critical toughness G.in appropriate direction:

G(a,)=28G, (6>1/2), (173)
where G(a,) 1s computed using (166) and considering a small increment da to a,:

G(a,) = - lim W, (a,+8a)-W,(a,)

500 oa

(174)

Here, W,(a,) denotes the potential energy of a structure embedding a crack with
length a,. In a first step the crack length jumps from O to a, and then grows continuously.

There are two particular cases. If 6 = 1 (the straight edge, ®=m) the stress criterion
does not provide any upper bound:

2
a> G.s, (00)
K (7,6,)0;
If & = 1/2 (the crack tip @ = 0), it is the energy criterion that does not impose any lower
bound:

(175)

2
< GL'SH (00)
as————.
K (0,6,)0;
The crack increment length can be taken as small as needed and the differential
approach of Griffith is permitted.

(176)
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7.1.4 The crack onset criterion

It is now commonly admitted that the intensity factor H is the relevant parameter to define
a crack onset criterion at a notch. It takes the Irwin-like form:

H>H_, (177)
where H; is the critical value of the stress intensity factor. Herein, it will be derived in
terms of material toughness G and strength o, (or 7). Replacing for (172) in (167) or (171)
leads to a condition for a crack onset in the direction 6y:

Gc 1-9 Gc 26-1
Hz[w,eo)) Lsewo)) ' (47

The direction of fracture 6. can be determined by the minimum value of the right-hand
side of (178). Note, that in a homogeneous material, if the fracture properties are isotropic,
i.e. independent of the direction of fracture, G. and o, are constant and 6. is characterized
by:

26-1

K(0,0.)"s5,(6)"" =K (0.6,) "5,(6,)"", ¥6,,0<6,<27-0.  (179)

c

This condition coincides with the G-max branching criterion for a crack (6 = 1/2) [50].

If the direction 6. is known, function s4 &) can be normalized ( s(&;) = 1) and this
enjoys the following very nice property that it coincides with the Griffith criterion for a
crack (0 = 1/2) and with the strength criterion for a straight edge (6 = 1).

For a notch in a homogeneous isotropic material under symmetric loading the fracture
direction is known 6. = 1 - ®/2, thus we can define a critical value H. of H as a function of
the material properties o, and G and of the notch angle o (through 6 and K):

Gc - 26-1
ch[K(w)] o, (180)

where K(w) stands for K(®, ©t - @/2).

7.2 Perturbation analysis

In the case of a matrix crack impinging on the interface, a differential energy analysis is
unsuitable due to the discontinuity in the elastic properties: finite crack extensions ay, a,
are to be considered (instead of infinitesimal one) and the competition between deflection
and penetration at the interface is evaluated using the condition that the crack will follow
the path which maximizes the additional energy AW released by the fracture. If crack
deflection occurs preferentially to penetration at the interface, the following condition must
be satisfied:

AW, =8W,~Ga,>AW, =W, -G a,, (181)

where G.' is the interface toughness, G.' is the toughness of the material M1 and oW is a
change of the potential energy between the original and new crack position. It is also worth
remarking that the differential form of the condition (181) is identical to the maximum
energy release rate condition in the case of the homogenous material. Matched asymptotic
procedure is used to derive the change of potential energy. Consider the singularity of the
stress field at the crack tip impinging the material interface having the form r°, with r
being the radial coordinate emanating from the crack tip, and with d(0, 1). Further
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7. Fracture criterion for the assessment of the GSC stability in orthotropic media

consider a perturbation of the domain  with crack impinging the interface between
materials M2 and M1 as shown in Fig. 35; the perturbation is a deflected (double) crack
extension of length a; or penetrating crack extension of length a, with the small
perturbation parameter € defined as

anet domg,,
} o -I o ‘.\ an
N

-,
’

X1 X1

b) c) d)

Fig. 35 Outer and Inner domain used in the matched asymptotic analysis (in case of the singly
deflected crack) - zoomed-in view of crack neighbourhood perturbed by a small crack extension
b) — d) coordinate systems of the outer and inner domain.

8:%«1, a=a,,a,, (182)
where L. is the characteristic length of (2. A second scale to the problem can be introduced,
represented by the scaled-up coordinates

X X, X,

yi:_i> or (y1>y2):[_> j> (183)
€ €

€

which provides a zoomed-in view into the region surrounding the crack.
7.2.1 Matched asymptotic procedure

Matched asymptotic procedure [55] is used to derive the change of potential energy.
Consider a perturbation of the domain () with crack impinging the interface; the
perturbation is a deflected (double) crack extension of length a, or penetrating crack
extension of length a, with the small perturbation parameter € - (182). A second scale to
the problem can be introduced, represented by the scaled-up coordinates
y=x/e. or (y.y,)=(x/e.x,/e) which provides a zoomed-in view into the region

surrounding the crack. The displacement U® of the perturbed elasticity problem due to the
crack extension can be expressed in terms of the regular coordinate x and the scaled-up
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coordinate y as U®(x)=U"(ey)=V"(y). Consider now the asymptotic expansion for U*

(which is also known as the ‘‘outer expansion’’) and for V* (which is also known as the
‘“‘inner expansion’’)

U®(x) =k, () U, (x)+k, () U (x)+...= D k () U (x), outer expansion, (184)

where l‘ir%k,ﬂ(s)/k, (e)=0, Vi=12,.and {U,U,,. } form a set of linearly independent

basis functions, and the inner asymptotic expansion is possible to write in the following
form — for more details see [101]:

Ve () = Fy (6) K () +F () () +...= S F (€) 1(v). inner expansion , (185)

i=0
whete Lim ., ()/17 () =0. Vi=12.... Fy()=L %(»)=0"(0)=0 and {20}
form a set of linearly independent basis functions. The basis functions {i/} satisfy the

elasticity problem on the same domain Q ~Q° but with zero body force and with
homogeneous boundary conditions. From the matching conditions of the outer and inner
asymptotic expansion, the asymptotic expansion coefficients ky(e), ki(g),.. and Fiy(e),
F1(g),...can be found:

U° (x=gy)=He"p"u,(0)+Tepu, (6)+k (8)|:Kld(p)876'p76'u71((9)+....:|+

+k, (¢)epu, (6)+...=

=V*(»)=F (e)[ p"u (0)+K\yp "0 (0)+Kyyppu  (6)+.. ]+ (186)
+F, (8)|:p u (0)+K,,,p " u_(0)+K;,,p u 73(6’)+...]+
+F,(g)| p"u (6)+Kiyyp"u ,(8)+ Koy u (6)+...]+...

To derive the relations for the unknown functions ki(g), k2(€), Fi(e), Fa(e), F3(e) the
corresponding terms (with the same power exponent §) are to be compared.

He"p"u, (0)=F,(g)p"u () = F () = He" (187)
Tepu,(0)=F(e)puy(0)=>F(e)=T (188)
ki (2) Ky "'p " uy (0) = 1y (8) Ky "u, (0) = Ky (e) = He™ (189)

Finally, the following asymptotic expansion V°(y)is obtained (by substitution of
relations (187), (188) and (189) into (186)):

U’ (x=gy)=V*(y)=He" [pg"u (O)+K o u (8)+Kyy,p 'u (9)+...]+

(190)
+Ts[p u (0)+K,,p "u_(6)+K,,p'u (9)+]+

The terms in the expansions are ordered with respect to the increasing power of the
parameter €.

With an eye on applications we will distinguish between two cases: a) crack
perpendicularly impinging an interface, b) inclined crack impinging a interface.
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7.2.2 Crack perpendicularly impinging an interface

The asymptotic expansion of the displacements for the initial state U°(x) (main crack
terminating on the interface and no crack extension of length a is present) is possible to
write in the following form, see the Section 4.1.3

Uo(x):UO(O)+H1r51u1(9)+H2r62u2(9)+Tr63u3(9)+...zik,rﬁ’u,(ﬁ), §,=1, (191)
i=1

where H; and H, are the generalized stress intensity factors, u,(6) and u, (&) are the

angular distributions of the displacements corresponding to the singular terms in the stress
asymptotic expansion and u, (6’) is the angular distribution of displacements for the T-
stress — as discussed in the section 4.1.4. In the following we will consider U’(0)=0.
GSIFs H, and H, are calculated using relations (22) and (23) as already discussed in 4.1.3.

Remark 6: In the case of aligned orthotropic bi-materials and a crack perpendicularly
impinging at the interface, the GSIFs H, and H, closely relates to the mixed mode loading
and characterize symmetric and antisymmetric modes. Observe that the subscripts 1 and 2
mark the order of corresponding terms in the asymptotic expansion (185) and not the

loading modes. Hence, a carefull analysis is required to specify to which loading mode a
particular GSIF pertains.

The outer asymptotic expansion of U® (when the small crack extension has originated)
is possible to write as

U* (x) =0’ (x) +k, (s)[l(ld(p)r"g"u_1 (6) + ] +k, (s) ru, (6) + ... (192)

Linearly independent basis functions {}/,},}],...} of the inner expansion (185) are as

follows

K(y)= p’u 1 (0) +K1d(p)p'51u B (9)+K2d(p)p'lu . (0)+.... p= (193)

¥(y)=pu 3 (6) +K1’d(p)p'51u g (6)+K2’d(p)p'lu 5 (0)+... p=

The first terms on the right hand side of (193) express the asymptotic behaviour of the
functions )] for p—o. In equation (193) u _ (&) denotes the dual (auxiliary) solution for

the T-stress which has been already discussed in the chapter 4.1.4. The coefficients
Ky, and K,, = are computed on the inner domain Q", which is unbounded for e—0 but

in the model employed in the finite element calculation, Q" is approximated by a circular
region with radius R much larger than the crack extension length a4,. On the circle
boundary, the condition of the type U|_, =p”u (¢) is prescribed. K, and K,,, are

1d(p)
calculated as follows:

_IP(Vlh(pﬁ)’pSlul) K _‘I’()/lh(pﬁ),pu3)
1w ‘P(p'ﬁlu_l,pﬁlul) o ‘P(P_lu_3,Pu3)

, ¥"-FEapprox. to )/ .  (194)

The coefficients K, and K, in (193) are calculated in a similar way with the

d(p)

boundary condition U| o = PU (6’) prescribed on the circular region boundary.
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YR ()et) o (M (v).peuy) s
1d(p) —T(p_ﬁlu_l’pﬁlul), Kriip = ‘P(p . pu. ) ,}4"-FE approx. to Y (195)

The incremental energy release rate (ERR) Gy, related to the unperturbed state LIK
(without the crack extension) and perturbed state U* (with the small finite crack extension),
is defined as

. __§W _ wr-wt
d(p) — ay N 8(](p)L
& 1 &
I(G/(z( )nk O-/(I(Uo)nkU )ds Y L\P(U ’UO): (196)
Ly d(p)
1 _ s ; 1 , s .
ZLH K€ £ I\P(p “u _1(9),po‘u1(9)) 2L 7 HTK 8 OI\P(/) “u _1(9)”001“1(9))_
1 ; . | , . -
_ZHTsz(p)gol\P(p 'u 3 (6),pu3 (‘9)) 2LT Kyan® ’ 1\{,(10 u 3 (9),pu3 (‘9))

where W is the potential energy change, €4p) = dugp)/Lc, H — Generalized Stress Intensity
Factor and 7'is a T-stress. Observe, that line I" is any contour surrounding the crack tip and
the crack increment and starting and finishing on the stress-free faces of he primary crack.
Among others, the crack extension faces along a, or a, respectively, form an admissible
contour which allows to rewrite (196) as a work done along a4, and leads to the classical
virtual crack closure method

I (O',d( )nk O',d(Uo)n,(Uf)ds:
) cun (197)

L

1
2a

O',d(Uo)n,(Uf ds = 2, i O',d(UO)n,AU ds,

d(p) () 0
where the integral along ayp,) means along two faces a;( ) anda( and AU denotes

AU; :(Uf)+—(Uf)7 where the sign + or — refer to upper or lower crack face. The

expression (197) is rather difficult to handle numerically since the singularities govern the
behavior along aq,) Nevertheless, it offers an idea to calculate the fracture mode mixity
based upon the energy release rate (ERR). For &, > 1/3, the ratio of the debonding to the
penetrating ERR follows from (196) as

, 28,-1
&: KlleI +(K1le1 +K2le2)77d(p) a, where n :251“51

, > d d >
G, K, ¥ +(K ¥ +K,,¥, )0, 49, v g W (198)

p

¥, = ‘P(p“jlu L (8).p"y, (9)),‘1’2 = ‘P(p‘lu (). pu, (9))

Similar relation is obtained for 8, < 1/3. The fracture mode mixity based on the stress
intensity factor (SIF) concept is usually represented by the so-called local phase angle
W defined by K =K, +iK, =|K|e"* where K is the complex stress intensity factor (SIF),

associated to a reference length / according to the proposal by Rice [77]. The ERR based
fracture mode mixity originally results from the application of the virtual crack closure
method.
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Consider a small but finite length a, of a virtual crack extension along the interface.
The energy release rate (ERR) associated to this crack extension is

Gd (ad):GdI (ad)+GdII (ad)’ (199)
where

a4

Gy(a,) ZZL I 65, (5.0)Au, (a, —s)ds, Gy (a,)= L I 6, (5.0)Au, (a, —s)s.  (200)
a; Zad 0

The Mode I component G, corresponds to the energy released by normal stresses
acting through crack face opening displacements, and Mode II component G4 corresponds
to the energy released by shear stresses acting through crack face sliding displacements.
The energetic mode mixity Gau/Ggay for interface crack depends on a,; . The associated
phase angle W is defined as

an?w,, = Zu (@) ¥ < (201)

Gd[ (ad) ’

Instead of Eqs. (200), the concept of P-integral can be applied for to evaluate the
phase angle ;. First observe that Eq. (200) can be written in the form

DA

aq

| a

1 . i 1 ] ) (202)
= —ZW (0-22 (U )anf — 0y, (U0 )}12U2 )ds —ZJ (0'21 (U )anlo -0y (U0 )”2U1 )ds.
Gdl GdII
On the other side, assume any contour I surrounding the crack tip and write
1 > N &
G, = —i J (Uk, (U‘E )nkU,0 -oy (U0 )nka )ds = —EI[(UH (U‘E )nko,jU;’ -oy (U0 )nko,jUj )ds (203)

= —il(aﬂ (U‘E )nkn,njU;’ -oy (U0 )nkn,njUf )ds —i.l[(cfk, (U‘E )nkt,tjU;’ -oy (U0 )nkt,tjUf )ds,
where #; is the unit tangential vector of I'. The last two integrals in Eq. (203) are path-
independent only if nn; =0, that is if I' is a rectangle with its sides parallel to coordinate
axes. In such a case, the last two integrals correspond to G4 and Gy respectively. Thus,
the ERR based phase angle ¥ for deflected crack can be calculated by substituting for G4
and Gy from Eq. (203) to (201). Note that the ERR and the SIF based measures of mode

mixity for an interface crack, phase angle W and Wy, are related see [58]:

sinh (27e, )
2me, (1 + 48§)

C(1/2+ie,)

2Y¥ . )=
0s(2¥;) T+, )

cos {Z‘PK +2¢, lnj—ZJrarg{ }—arctan(ng)}, (204)

where g, is an oscillation index — see [7] , [24], [58] or [95].
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7.2.3 Inclined crack impinging a interface

Asymptotic expansion for the primary inclined crack before the perturbation inception
takes place reads

U’ (x)=U"(0)+H " (0)+Hyr*u, (0)+..., (205)

where only singular terms are considered. The GSIFs H, and H, can be again computed
using relations (22) and (23).

The outer expansion for the perturbed domain Q°is
U* (x) =U° (x) +, () Ky, uy (8) +K, (8) Koy 0, (6) +... (206)
The inner expansion for the perturbed domain Q° reads
Ve (y)=F (e) pu,(0)+ K,y p " () +Kyyyp ™u ,(6)+... ]+ F,(e)x
x[pf’Zu L(0)+Kl,, 0" (0)+K},,p " u 2(9)+....]+...

The first terms in the brackets on the right-hand side of Eq. (207) describe the
behaviour of functions )} for p—w. u_(6),u (6)are dual (auxiliary) solutions to

(207)

u (6),u,(f), see above. The determination of the  coefficients
Kld(p)’K2d(p)’Kld(p)’K2d(p)’
722, Ky K

subjected to the boundary condition U|,_, =p°u (8)

V) ew) POt

ld(p) ‘I’(pr u ,PBllll) 2d(p) ‘I’(p 6211,2 ,PBZUZ)

proceeds in a similar fashion as the coefficients K in the section

are calculated in the inner domain whose remote boundary 6Q" is

K )" - FE approx. to ¥ (208)

Similarly, the coefficients K, .\ K, . are calculated in the inner domain whose

ld(p) > 2d(p)

remote boundary 6Q" is subjected to the boundary condition U| o =P™u_(6)

YL ew) L PrO)e)

d , K, . Y"-FE approx. to ] . (209)
d(p) — ‘P(p SlU_l,PSlul) 2d(p) = ‘P(p 52u_2’p52u2) 2 2

The incremental energy release rate (ERR) Gy, related to the unperturbed state LIK
(without the crack extension) and perturbed state U* (with the small finite crack extension),
is defined as (see also Eq. (197))

we-w' 1 , 1 1 1
G = U)K 0) 0 0)
1 . , 5 s - 210
2LHH283(pd I[Kld(m\{l(pél“l(e)ﬁ “u 71(9))+K2d(p>\{1( u,(0).p 02“72(9))]_ (210
1 28-1

= —HK},,, d(p)‘{’(p52U2 (0).pu,(0))+...

The ratio of the debonding to the penetrating ERR follows from Eq.((210)) as
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’ ’ 2 26,71 5,-6,
G, _ K'Y, +(K1le1 +K2le2)77d +K Yo [a_dj n, = H, (ad J
Mg — >

G, K% +(K,¥+K,¥,)n,+K ¥ a,

211)
H (a7 . . : :
7, =#[fj =W (oM, (0).p7u (0)). ¥, =¥ (o, (0). 07 u,(0)).

1

which corresponds to the relation obtained by the authors [109] in a different way, see their
Eq. (18). An ERR based phase angle ¢ for deflected crack is defined as

a T 1 € €
tan> P, = i’[’((a:)) , 0¥, < > where G, = _EJ(GM (U )”/J/f/U? -c, (UO)nkt,t/U/)ds, 1)
G, = —%I(GM (Ug)nkn,n/Uf -0, (U0 ) nnnU; ) ds, t, - unit tangential vector of I,
d 1T

7.2.4 Competition between the crack deflection and the crack penetration

The real competition between the crack deflection (along the interface) and the crack
penetration can be assessed only with the knowledge of the toughnesses in the appropriate
directions — for the deflection: the interface toughness G.; for the penetration: the
toughness of the material M1 - G.!. These values have to be specified on the base of the
experiments (on the real specimens). This was not performed within this thesis. If these
quantities are known, then the deflection occurs if the following condition is satisfied:

G, _G.
—_—> .
G, G!

(213)

And vice versa, if the inequality is of the opposite sign, the penetration is preferred before
the deflection. Note, that the considered finite crack extensions of both, deflected and
penetrating crack, must have the same lengths (a/~a,).

This energetic criterion (213) for the crack deflection gives only the information about
the prospective propagation direction, however not any information whether the crack,
terminating on the interface, will start the next propagation under the given loading or not.
To this end also the stress criterion have to be used. The values of the tangential stresses at
the crack extension tip have to be compared with the critical stresses o, of the material in
appropriate direction. These critical values have to be also determined by the experiment.
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8 Examples

The previous chapters described the fundamental theory necessary for the assessment of
the general stress concentrators in anisotropic media. Description of the asymptotic stress
field and subsequent definition of the fracture criterion has been studied. To make this
work complete, several demonstration examples summarizing all outcomes will be
presented. The problems of the crack terminating at right and arbitrary angle to the bi-
material interface will be analyzed.

The fundamental question when assessing the general stress concentrators is how they
will behave under the given loading conditions. This question includes a prediction of the
further crack propagation direction (crack penetration or crack deflection along the
interface — debonding of the interface) and also determination of the load under which the
crack growth will occur.

For the finite element analysis of the stress and displacement field (on the bi-material
model) the commercial system for the Finite Element Analysis ANSYS 10.0 has been
used. The numerical calculations of the singularity exponent, GSIF, T-stress and problems
of the fracture criteria were performed by force of the mathematical software MAPLE 10.0
and MATLAB 7.1.

8.1 Crack perpendicular to the bi-material interface in orthotropic
media (with transversally isotropic surface layer)

The materials used within this example were purposely chosen to be transversally isotropic
(special case of the orthotropic material - material properties in the plane perpendicular to
the fibre direction L are isotropic - Fig. 36). This type of material is a typical representative
when considering e.g. the laminate composites with layers reinforced by the long fibres
and where the particular layers have different orientation. It can also be a case of the
orthotropic material protected by some surface layer or coating. In the example, the major
material directions in the specimen were chosen to be coincident with the coordinate
system axes as shown in the Fig. 36. If these material directions are not coincident with the
CS axes, the layer exhibits general anisotropic behaviour and in the given coordinate
system the material compliance matrix (82) is more complicated and not symmetric. This
case can also be solved using the above described theory with the only complication
consisting in the higher number of needed elastic constants. The definition of these
material properties for the calculations represents the main problem of the whole solution.
The anisotropy itself doesn’t represent any problem (thanks to the employment of the
Lechnitskii-Stroh formalism).

8.1.1 Description of the stress field

Consider now a bi-material specimen as shown in Fig. 36 which is subjected to the tension
load G4pp1 = 100 MPa on its boundary. Material M1 represents the substrate and material
M2 represents the transversally isotropic surface layer of the thickness #~=4mm. Further
consider the coupled DOFs of both materials along the loaded surfaces. A crack
perpendicular to the interface between M1 and M2 is introduced in the middle of the
surface layer. The orthotropic material M1 is described by 9 elastic constants, where 5 of
them are independent and the transversally isotropic surface layer is described in the plane
x1x2 by two independent elastic constants (specified in the Fig. 36).
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Fig. 36 Scheme of the solved bi-material configuration with a crack perpendicular to the bi-
material interface.

For the parametric study there were chosen several material configurations by
variation of Dundurs’ parameter « - see Eq (87) and by setting Dundurs’ parameter [=0.
The isotropic material of the surface layer was set as a reference material with constant
elastic properties £F=60000 MPa, v=0.238 and the elastic properties of the orthotropic
material were computed for each value of « using the relations (81)-(88) and setting the
composite parameters 4,=0.1, p;=2, 1L,=1, p,=1 -see (84). Note, that only the interval of the
parameter @ €(-0,99, 0.4) has the physical meaning for the chosen material configuration
and parameters A, p (maximum range of «is (-1, 1)). The resulting elastic properties of the
orthotropic material M1 for the values of « outside the range (-0.99, 0.4) do not satisfy the
following condition of a real material in the FE system ANSYS (the compliance matrix of
the material properties has to be positively definite):

E E E E
[1 _V12_T,l 'i_véz,l 'E_ZJ_VI%ZJ 'A_z'VLT,l "Vriz1 Vizi ﬁ] >0. (214)

L1 T.1 L1 L1

If this condition is not fulfilled, the FE solution cannot be performed with this
material. The FE solution is necessary for the GSIF determination and for the criteria
solution.

The model for the FE analysis has been specially defined so that the mesh in the
vicinity of the crack tip is uniform with linearly decreasing element size as approaching the
singular point. In the region where the integration path crosses the interface a finer mesh
was used (Fig. 37) in order to reduce the numerical errors in the integration process.
However, when the model is required to be simpler (to contain a smaller number of
elements), the mesh refinement is not required and the errors without this refinement are
relatively small and in some cases they are insignificant. Nevertheless, the study of this
influence is recommended to perform before any larger computations. In the next
calculations the refinement will be considered to keep the eventual errors on the as low
level as possible. Also a study of the influence of the whole mesh refinement on the results
has been carried out. It was found that a much coarser mesh (in comparison to that one in
Fig. 37) can also provide sufficiently good results, with no high deviations of GSIF values
from the results obtained with a finer mesh. No special singular elements have been
applied — only the standard quadratic plane 8-node elements are used in the FE model.
Again, the simpler 4-node linear elements can be used as well leading to very similar
results.
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Fig. 37 Example of the FE mesh in the vicinity of the crack tip perpendicular to the bi-material
interface with detail of the mesh refinement on the integration path at interface crossing.

The characteristic eigenvalues of the singularity &, 0, (Table 3) has been calculated
using the L.E.S. method analyzed in 0 and by employing mathematical software Maple 10,
where the code for these calculations has been written. The corresponding generalized
stress intensity factors H,, H, (GSIF) and the T-stress 7 have been calculated using the ‘P-
integral, based on the Betti's reciprocal theorem — as described in 4.1.3 and 4.1.4. The
calculations are carried out as a parametric study for several Dundurs’ parameters «:

B0, L=0.1, p=2. =1, p=1, E,=60000 MPa, v,=0.238

Characteristic Characteristic GSIF - H, GSIF - H, T-stress — T

a eigen\[/_a}lue o1 eigen\[/_a}lue 4, [MPa.ml's' | [l\/lPa.ml'62 | [MPa]
-0.99 0.039521 0.070269 0.081 29.015 12528.0
-0.9 0.124150 0.220120 0.012 8.334 11932
-0.8 0.174523 0.307537 0.005 5.929 387.1
-0.7 0.212760 0.371383 0.003 4993 159.9
-0.6 0.244859 0.421938 0.002 4 435 68.1
-0.5 0.273191 0.463121 0.002 3.997 248
-04 0.298994 0.496945 0.001 3.593 2.8
-0.3 0.323018 0.524661 0.001 3.193 -8.5
-0.2 0.345761 0.547175 0.001 2.796 -14.1
-0.1 0.367575 0.565216 0.001 2410 -16.6

0 0.388725 0.579406 0.0004 2.049 -17.1
0.1 0.409413 0.590282 0.0003 1.718 -16.5
0.2 0.429803 0.598308 0.0003 1.424 -15.2
0.3 0.450028 0.603876 0.0002 1.164 -13.5
0.4 0.470199 0.607312 0.0002 0.936 -11.6

Table 3 Values of the singularity exponents 6, GSIFs and T-stresses (calculated using the L.E.S.
method) for several values of Dundurs” parameter « for orthotropic substrate and transversally
isotropic surface layer with crack perpendicular to the interface.
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Note here, that 8, corresponds to the stronger singularity, 8, to the weaker singularity
and the characteristic eigenvalue of the singularity §3=1 corresponds to the regular term T-
stress. To all the characteristic eigenvalues 0; and §, pertain the appropriate GSIFs H, and
H, respectively. The mathematical software Matlab 7.1 has been used for the calculations
of GSIFs and T-stresses. Observe that for the perpendicular crack the first singular term is
negligible in comparison with the second one (H,<<H,) and most likely the non-zero value
of H, is due to numerical errors. This phenomenon is possible to observe only for the case
of the crack perpendicular to the bi-material interface and simultaneously for the case,
where the principal material directions of both materials coincide with the chosen CS xx;
(Fig. 36). Apparently in the case investigated, the GSIF H, relates to the antisymmetric
mode while H, relates to the symmetric mode, see also the remark in the section 7.2.2.
This implies that near the singular point the stress and displacement fields evoked by this
type of general stress concentrator under symmetric applied loading can be reliably
described by use of only one singular and one regular term (T-stress). In case of the
inclined crack or the material configuration with inclined major material directions, other
singular terms should be taken into consideration (as will be presented in the following
section) and assessed in terms of their importance. In this section which deals with the
perpendicular crack, the first singular term will be omitted from the calculations.

Fig. 38 -Fig. 41, show the decomposition of the full stress and displacement field
(around the vicinity of the crack tip) into individual terms. The thin dark (blue) curves are
the stresses and displacements obtained from the FE analysis. As such these curves
correspond to the full Williams-like asymptotic expansion (they contain all terms from this
expansion). On the other side, there are two lighter (orange) curves which have been
obtained from the asymptotic singularity analysis using the L.E.S. method and the ‘P-
integral (GSIF and T-stress calculations). The thin light (orange) curves correspond to the
singular solution where only one singular term in the asymptotic expansion is considered
(the more dominant one). It means the displacements and stresses are described as follows:

U'=H,-r*u,(0), o,=H, r*".f,,(0). When consider one more term in the

asymptotic expansion (T-stress in this case), then one obtain the light thick (orange) curve.
Then the displacements and stresses are described using the following expansions:

U'=H, ru, (0)+T-r~o‘l.2-o‘j2~u3 (0); o,=H,-r""f, (0)+T-5i2-5j2. All figures

clearly show that the more terms are considered, the more exact is the description of the
stress and displacement field (in comparison with the Finite Element solution). The
number of terms in the asymptotic expansion, which are necessary for the sufficiently
exact description of the stress and displacement field, depends also on the bi-material
configuration. Comparing the Fig. 38 with Fig. 39 or Fig. 40 with Fig. 41 one can observe
that the more the radius of the integration path is approaching the singular point the more
the FE stress and displacement fields are approaching the singular solution. The FE
solution can thus contain some influence of the free surface when the integration path is
close to it.
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Fig. 38 Comparison of the stresses and displacements for o=-0.1, /=0, obtained from the FE
analysis and from the asymptotic singularity analysis including (or not including) the T-stress term,
on the circular integration path of radius R=1mm.
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Fig. 39 Comparison of the stresses and displacements for o=-0.1, /=0, obtained from the FE
analysis and from the asymptotic singularity analysis including (or not including) the T-stress term,
on the circular integration path of radius R=0.1mm.
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Fig. 40 Comparison of the stresses and displacements for a=0.3, =0, obtained from the FE
analysis and from the asymptotic singularity analysis including (or not including) the T-stress term,
on the circular integration path of radius R=1mm.
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Fig. 41 Comparison of the stresses and displacements for a=0.3, =0, obtained from the FE
analysis and from the asymptotic singularity analysis including (or not including) the T-stress term,
on the circular integration path of radius R =0.1mm.
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8.1.2 Fracture criteria

The preceding results concern the description of the stress and displacement field near the
crack tip at the bi-material interface. A tool for the decomposition of the “full” stress
(displacement) fields (which can be obtained e.g. from the FE analysis) into asymptotic
expansion was developed. This effort is now to be utilized in the fracture criterion, where
the influence of particular asymptotic expansion terms on the resulting behaviour of the
general stress concentrator will be assessed. To this end, the theory of the finite fracture
mechanics and the matched asymptotic procedure (see 7.2.2) is to be employed. To predict
the subsequent crack extension (under the given loading conditions), the change of the
potential energy (and corresponding Energy Release Rate - ERR) caused by the increase of
the main crack by some finite extension (in all possible propagation directions) have to be
calculated. Using relations (194) and (195), the coefficients of the outer expansion (192) -
Kiap), Kaapy, K 1ap) and K 24, required also for the calculation of ERR Gy (196) are
obtained. Analogical calculations as for GSIF or T-stress based on the W-integral are used
here. The required FE solution is performed using the FE model of the inner domain of
circular shape as depicted in the Fig. 42. The FE code ANSYS 10.0 has been used again.
Note that the mesh refinement at the area where the integration path crosses the interface is
recommended (mesh in the Fig. 42 is not refined there):

S

Gy

c

S5 i
o X
Main

crack Penetrating

crack a,

Integration path I" -
inner domain

Inner domain —
subjected to a
displacement field

Fig. 42 Example of the FE mesh used for the case of a singly (doubly) deflected crack and
penetrating crack.

The determination of the change of the ERR Gy, - relation (196) (caused by the finite
crack extension), requires a numerical solution of the stress and displacement field on the
so-called inner domain by FEM. The ERRs are calculated from the change of the potential
energy between the unperturbed state (main crack without extension) and perturbed state
(main crack with small crack extension) — see (196).
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The inner domain (Fig. 42) is subjected to the displacement field on the diameter
R=Imm where for the calculation of parameters Kqp) and Kyqp) the boundary condition
(215) 1s used and for the parameters K "14p), K 24(p) the boundary condition of type (216) is
applied:

U’ (x,.x,)=H r%u, (0) ...... where H, =1 (215)
U’ (x,,x, =T ru, (0) ...... where T'=1. (216)

The characteristic eigenvalue 9, (corresponding to the more dominant singular term)
and the functions u,(6), u;(6) are taken from the singularity analysis — see previous section
8.1.1. In the FE calculations, GSIF H, and the T-stress 7 are set equal to unit. The actual
values of GSIFs and T-stresses (from Table 3) will be substituted later. Note, that the total
length of doubly deflected crack extension a, equals to the length of the singly deflected
crack extension and to the penetrating crack extension a, (as = a,). The crack extension
length is for the most part represented by the dimensionless parameter e=ag /L. in
pertinent relations.

The appropriate ERR Gy, Gq, Gp are calculated for all possible directions using
formula (196) where GSIF H=H, and the T-stress 7 are taken from the Table 3. All
coefficients K, ERRs G, and their ratios for several parameters « are given in the Table 4
(for e = 1/50) and Table 5 (for € = 1/500).

B=0, ,=0.1, p=2, Jo=1, py=1, E,=60000 MPa, v,=0.238, &= 1/50

: : : . ERRfor7=0 :  ERRfor 7#0
Kial-l | Kl | Kall § Kwll G, Gy
Kgl-] © Kuwll © Kall @ Kull | g, c(;;d//gp G, 5%d//gp
Kipl-l  K'ypl-l i Kypl-l @ Kypll ¢ G, 7% g, 7

P P

-0.078111 | -1.03 e-07 | -5.14 ¢-04 | -2.18 ¢-06 | 1.81¢-03 | 0.425 | 4.78¢-03 | 0.163
-0.9 | -0.077071 | -4.40¢-07 | -7.92¢-04 | -1.96¢-06 | 1.79¢-03 | 0.419 | 4.60e-03 [ 0.157
-0.183052 [ -2.66 ¢-05 [ -3.69 ¢-02 | -1.04 ¢-05 | 4.25 ¢-03 2.93 e-02
-0.015780 | -3.39¢-07(-539¢-04 | -6.94¢-07 | 7.22¢-05 | 0.187 | 9.82¢-05| 0.133
-0.7 | -0.015266 | -5.98 ¢-07 | -6.95¢-04 | -5.42¢-07 | 6.99¢-05 | 0.181 | 9.73¢-05 | 0.132
-0.083535 | -1.33 e-05|-1.22 ¢-02 | -2.54 ¢-06 | 3.82 ¢-04 7.38 ¢-04
-0.005948 | -4.44 ¢-07|-5.02 ¢-04 | -3.67¢-07 | 1.18¢-05 | 0.114 | 1.29¢-05| 0.110
-0.5 | -0.005926 | -5.64 ¢-07|-5.53 ¢-04 | -2.60¢-07 | 1.18e-05 | 0.114 | 131e-05 | 0.111
-0.051630 | -6.92 ¢-06 | -5.44 ¢-03 | -8.48 ¢-07 | 1.03 e-04 1.17 e-04
-0.003356 | -4.77 ¢-07 | -4.54 ¢-04 | -2.22¢-07 | 3.47¢-06 | 0.090 | 3.18 ¢-06 | 0.089
-0.3 | -0.003503 | -5.00¢-07 | -4.49 ¢-04 | -1.47 ¢-07 | 3.62¢-06 | 0.094 | 3.30¢-06 [ 0.092
-0.036793 [ -3.26 ¢-06 [ -2.38 ¢-03 | -2.29 ¢-07 | 3.81 e-05 3.58 e-05
-0.002565 | -4.60¢-07 | -4.19¢-04 | -1.41 e-07 | 1.41 e-06 | 0.090 | 1.06¢-06 | 0.072
-0.1 | -0.002716 | -4.25¢-07|-3.85¢-04 | -8.78 ¢-08 | 1.49¢-06 | 0.096 | 1.14e-06 | 0.078
-0.028200 | -8.86 ¢-07[-6.93 ¢-04 | -2.04 ¢-08 | 1.55 e-05 1.46 e-05
-0.002353 | -4.04 ¢-07 | -4.22 ¢-04 | -8.97¢-08 | 6.56¢-07 | 0.105 | 4.15¢-07 | 0.061
0.1 | -0.002440 | -3.40¢-07|-3.73 ¢-04 | -5.33 ¢-08 | 6.80¢-07 | 0.109 [ 4.61¢-07 | 0.068
-0.022230 | 6.98¢-07 | 3.60¢-04 | -1.71 ¢-08 | 6.19 ¢-06 6.76 ¢-06
-0.002360 | -3.17 ¢-07 | -5.00 ¢-04 | -5.57 ¢-08 | 3.04 ¢-07 | 0.135 | 1.72¢-07 | 0.054
03 | -0.002357 | -2.49¢-07 | -4.43 ¢-04 | -3.17¢-08 | 3.04¢-07 | 0.135 | 1.92¢-07 | 0.060
-0.017410 | 1.60¢-06 | 1.11 e-03 | -1.34 ¢-07 | 2.24 ¢-06 3.20 e-06

Table 4 Coefficients of the inner expansion, ERR of the deflected and penetrating crack (for a
finite crack extension of the characteristic size € = 1/50) and ratios of the ERR for singly (doubly)
deflected and penetrating crack (sd — single deflection, d — double deflection, p — penetration).
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Pa, v,=0.238, &= 1/500

£=0, =0.1, py=2, J=1, p=1, E,=60000 M

ERR for 7=0 ERR for 7#0
Kisa [-] K'1sa [-] Ko [-] K 54 [-] Gy C Gy
Kol | Kwll @ Kall @ Kull G, G/% g GG
Kpll Kl o Kpll | Kull g, %G g GG
-3.02¢-02 | -1.70 e-08 | -1.76 -04 | -8.90e-09 | 2.54e-03 | 0.386 | 2.55¢-03 | 0.362
-09 | -298¢-02 | -3.70e¢-08 | -1.87¢-04 | -5.81 ¢-09 | 2.51e-03 | 0381 | 2.52e-03 | 0.357
-7.77¢-02 | -1.89e-06 | -2.74 ¢-03 [ -9.99 e-08 | 6.55 e-03 7.04 e-03
-297¢-03 | -2.90e-08 | -1.68 e-04 | -9.85¢-09 [ 2.46e-05 [ 0.175 | 2.47e-05| 0.173
-0.7 | -2.87e-03 | -3.85¢-08 | -1.72e-04 | -7.96¢-09 | 2.37e-05| 0.168 | 2.40e-05| 0.168
-1.66 ¢-02 | -6.32 e-07 [ -7.06e-04 | -2.98 ¢-08 [ 1.37 ¢-04 1.43 e-04
<754 ¢-04 | -2.72¢-08 | -1.33e-04 | -3.49¢-09 [ 1.78e-06 [ 0.109 | 1.79e-06 | 0.115
-0.5 | -745¢e-04 | -3.01 e-08 | -1.33¢-04 [ -2.26e-09 | 1.75e-06 | 0.108 | 1.77e-06 | 0.114
-6.51 ¢-03 | -2.63 e-07 | -3.11 e-04 | -8.52 e-09 | 1.53 e-05 1.55 e-05
-3.28 ¢-04 | -2.52¢-08 | -1.11 e-04 | -2.45e-09 | 3.03e-07 | 0.089 | 3.01e-07 | 0.096
-03 | -3.36¢-04 | -2.50e-08 | -1.10e-04 [ -1.62e-09 | 3.10e-07 | 0.091 | 3.08e-07 | 0.098
-3.43¢-03 | -1.11e-07 [ -1.70e-04 | -2.51 e-09 [ 3.17 e-06 3.14 ¢-06
-2.06¢-04 | -2.15¢-08 | -1.10e-04 | -1.44 ¢-09 | 8.38¢-08 [ 0.090 | 8.11e-08 | 0.093
-0.1 | -2.13e-04 | -2.00e-08 | -1.08 -04 | -8.63 ¢-10 | 8.66¢-08 | 0.093 | 843¢-08 | 0.097
-2.15e-03 | -3.31e-08 [ -1.17e-04 | -2.13 e-10 | 8.76 e-07 8.70 e-07
-1.63¢-04 | -1.72e-08 | -1.44 ¢-04 | -9.02 e-10 [ 3.00e-08 [ 0.106 | 2.83e-08 | 0.101
0.1 | -1.65e-04 | -1.52e-08 | -1.42¢-04 | -5.19¢-10 | 3.04e-08 | 0.108 | 2.91¢e-08 | 0.104
-1.50e-03 | 1.18e-08 [ -1.23 e-04 | -1.62 e-10 | 2.75 e-07 2.79 e-07
-1.48 ¢-04 | -1.22 ¢-08 | -2.43 e-04 | -5.65¢-10 | 1.18e-08 [ 0.136 | 1.09e¢-08 | 0.118
03 | -1.45¢-04 | -1.03¢-08 | -2.42e-04 | -3.15e-10 | 1.16e-08 [ 0.134 | 1.09e¢-08 | 0.118
-1.09¢-03 | 3.61e-08 [ -2.03e-04 | -1.35e-09 | 8.71 e-08 9.28 ¢-08

Table 5 Coefficients of the inner expansion, ERR of the deflected and penetrating crack (for a

finite crack extension of the characteristic size € = 1/500) and ratios of the ERR for singly (doubly)
deflected and penetrating crack (sd — single deflection, d — double deflection, p — penetration).

Note that the results in the previous two tables present only a representative selection
of all computed results. A complete set of results is displayed in the Fig. 43. The graphs
show the dependency of the ratios Gs/Gp (Ga/Gp) on Dundurs’ parameter o for several
crack extension lengths assuming either the T-stress term in the Williams-like asymptotic
expansion is considered or not. Apparently, when the T-stress term is not considered, the
ratios Gsa/Gp (Ga/Gp) are in fact independent of the crack extension size. This also follows
from the relation (198), which simplifies to the plain ratio of Kisq and K, (or K14 and Kp)
if the T-stress is set to zero. Propably the small differences between curves, especially for
the lower values of « are caused by both the accuracy of the numerical integration and the
used element size in the FE model. When the T-stress is considered, the complete relation
(198) has to be used. The dependency on the crack extension length is obvious. This
property also follows from Eq. (198). The competition between the single or double
deflection is characterized by the ratios Gs/Gp and Go/Gy. If Goo/Gp > Go/G, the single
deflection is preferred before double deflection and vice versa. The competition between
single (double) deflection and penetration is given by the relation (213). As stated already
in 7.2.4, the final assessment of the propagation direction requires the knowledge of the
material and interface toughness which have to be determined experimentally.

Note that for the assessment of the propagation direction, the mode mixity should be
also taken into the account. It can strongly influence the criterion (213) and the decision
about the further propagation direction. The mode mixity characterized by the phase angle
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Wi (204) influences the resulting interfacial toughness. The bigger the phase angle Wy is,
the higher interfacial toughness is reached. The dependence of the interfacial toughness on
the mode mixity has been studied in several papers - e.g. [7]-[9] . It was suggested that the
resulting interfacial toughness can be described for example by the relation

G =G, -(lthan2 ‘PG), where G is the interfacial toughness for the zero phase angle ¥s.

It follows from this expression, that for the values of the phase angle ¥ higher than 40° or
50°, the resulting interfacial toughness starts to grow dramatically. The calculations of the
phase angle ¥ were not performed within this thesis and it should be a point of interest of
the subsequent work to involve another refining parameter in the criterion.

04

Ratio G/G,, for H,=0 and 70

Y - e=1/50 .................... .................... . !
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Fig. 43 The ratio of G./G,, (Ga/Gy) as a function of Dundurs’ parameter o for several values of the
characteristic crack extension size €.

When the T-stress term is considered, one can observe, that with decreasing € the
ratios Gs/Gp (Ga/Gp) approach the limiting case when the T-stress is not considered. In
other words, when the crack extension is too small, influence of the T-stress is not
measurable. The length of the crack extension should be chosen in accordance with
relation (172).

Observe also (in Fig. 43 or Table 4 and Table 5) that for the perpendicular crack the
difference between the single and double deflection ERR ratios is very slight. This leads to
a conclusion that it is not possible to decide for a certainty whether the single or double
deflection will occur. The resulting behaviour will depend also on some other factors like
the loading, geometry or bonding imperfections which will start up one of these deflection

types.
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8.2 Crack terminating at an arbitrary angle on the bi-material
interface in orthotropic media (with transversally isotropic surface
layer)

8.2.1 Description of the stress field

Solution to a similar problem as for the perpendicular crack is demonstrated for the case of

the main crack inclined with respect to the interface. All the theory and calculations are in

complete analogy to 8.1.1 with the only difference in the boundary conditions (97), where
the condition of zero resulting force 7;=0 (98) is set for the angles corresponding to the

inclined crack faces - @ =—¢-(7/180)and 6 =(360—¢)-(7/180).

Material directions

#9057 L
\ O
- \ <
Tm2] ¢ \ m2l ol g M2
Gappl « = ‘ < 7
“ M1 b| |9 z
-« | < O
«— L
\J

X2

—

Material properties
M1: Ey Evi Ez1, Vit V1za Viza, Gura Grzg Gz M2: E= Eqp= Ezo, vo

Fig. 44 Scheme of the solved bi-material configuration with crack situated at arbitrary angle to the
bi-material interface.

In the same way as in the previous section 8.1.1 the characteristic eigenvalues of the
singularity 0; and 0, have been calculated using the L .E.S. method (Table 6-Table 9). In
contrast to the case of the perpendicular crack the characteristic eigenvalue ;=1 does not
generally exist, hence the T-stress was not calculated. The whole stress and displacement
field is thus described only by the singular terms in the asymptotic expansion. The first
singular term which was not involved for the perpendicular crack because GSIF H, was
obviously zero is now getting to be significant. The more the crack is inclined from $=90°
the more significant the first singular term is. Therefore, the two generalized stress
intensity factors H; and H, will be needed for description of the stress and displacement
field. They are again computed using the W-integral for several values of Dundurs’
parameter « and for several inclination angles ¢ (see Table 6-Table 9). All the results from
the mentioned Table 6-Table 9 are displayed in Fig. 45.
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¢ =80° /=0, 1,=0.1, p=2, H=1, p,=1, E,=60000 MPa, v,=0.238
C.haracten'stic Characten'stic GSIF - H, GSIF - H,
a elgen\[/_a}lue 5, elgen\[/_a}lue ) [MPa.m'™ | [MPa.m'" |

-0.99 0.039831 0.071713 6.01 39.57
-0.9 0.125243 0.223763 1.04 11.52
-0.8 0.176213 0.311326 0.53 8.08
-0.7 0.214963 0.374518 0.34 6.62
-0.6 0.247513 0.424068 0.24 5.68
-0.5 0.276235 0.464170 0.18 491
-0.4 0.302365 0.497030 0.13 423
-0.3 0.326649 0.524034 0.10 3.60
-0.2 0.349576 0.546164 0.07 3.02
-0.1 0.371489 0.564182 0.05 251
0 0.392632 0.578710 0.03 2.07
0.1 0.413186 0.590273 0.01 1.70
0.2 0.433277 0.599323 0.01 1.41
0.3 0.452982 0.606264 0.02 1.18
0.4 0.472322 0.611467 0.03 0.99

Table 6 Values of the singularity exponents, and GSIFs (calculated using the L.E.S. method) for
several values of Dundurs’ parameter o for orthotropic substrate and transversally isotropic surface
layer with crack inclined to the interface at angle ¢=80°.

¢ =70° £=0, 4=0.1, p=2, L=1, py=1, E,=60000 MPa, v,=0.238
C.haracten'stic Characten'stic GSIF - H, GSIF - H,
a elgen\[/_a}lue o, elgen\[/_a}lue 5, [MPa.ml's‘ | [l\/lPa.ml'62 |
-0.99 0.040770 0.076363 9.10 51.97
-0.9 0.128533 0.235353 1.83 15.86
-0.8 0.181276 0.323176 1.01 11.12
-0.7 0.221556 0.384145 0.68 8.87
-0.6 0.255457 0.430503 0.51 7.29
-0.5 0.285356 0.467298 0.39 6.00
-0.4 0.312473 0.497282 0.30 491
-0.3 0.337528 0.522179 0.23 3.98
-0.2 0.360979 0.543164 0.17 3.19
-0.1 0.383121 0.561086 0.11 2.55
0 0.404141 0.576596 0.06 2.04
0.1 0.424141 0.590222 0.02 1.66
0.2 0.443143 0.602423 0.02 1.39
0.3 0.461097 0.613626 0.05 1.21
0.4 0.477877 0.624256 0.08 1.08

Table 7 Values of the singularity exponents, and GSIFs (calculated using the L.E.S. method) for
several values of Dundurs’ parameter o for orthotropic substrate and transversally isotropic surface
layer with crack inclined to the interface at angle ¢=70°.
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¢ = 60° /=0, 1,=0.1, p=2, H=1, p,=1, E,=60000 MPa, v,=0.238
C.haracteristic Characteristic GSIF - H, GSIF - H,
a eigen\[/_a}lue 5, eigen\[/_a}lue ) [MPa.m'™ | [MPa.m'" |

-0.99 0.042391 0.085323 13.66 67.91
-0.9 0.134086 0.256964 2.94 22.87
-0.8 0.189713 0.344368 1.71 16.06
-0.7 0.232480 0.400691 1.22 12.26
-0.6 0.268598 0.441210 0.94 9.50
-0.5 0.300441 0.472388 0.75 7.37
-0.4 0.329184 0.497687 0.59 5.70
-0.3 0.355472 0.519195 0.46 438
-0.2 0.379663 0.538290 0.34 3.35
-0.1 0.401937 0.555957 0.22 2.55
0 0.422352 0.572955 0.11 1.96
0.1 0.440892 0.589895 0.02 1.56
0.2 0.457504 0.607275 0.05 1.35
0.3 0.472145 0.625485 0.10 1.26
0.4 0.484812 0.644794 0.12 1.23

Table 8 Values of the singularity exponents, and GSIFs (calculated using the L.E.S. method) for
several values of Dundurs’ parameter o for orthotropic substrate and transversally isotropic surface
layer with crack inclined to the interface at angle ¢=60°.

¢ =50° /=0, ,=0.1, p=2, H=1, p=1, E,=60000 MPa, v,=0.238
C.haracteristic Characteristic GSIF - H, GSIF - H,
a eigen\[/_a}lue o1 eigen\[/_a}lue 4, [N[Pa.ml'a‘ | [N[Pa.ml'az |
-0.99 0.044827 0.101046 16.80 89.23
-0.9 0.142156 0.292137 4.03 33.62
-0.8 0.201654 0.376067 2.50 2291
-0.7 0.247675 0.423843 1.89 16.26
-0.6 0.286679 0.455550 1.53 11.72
-0.5 0.321059 0.479054 1.28 8.57
-0.4 0.351906 0.498214 1.05 6.33
-0.3 0.379693 0.515275 0.83 4.68
-0.2 0.404532 0.531772 0.60 3.43
-0.1 0.426330 0.548883 0.37 248
0 0.444952 0.567512 0.15 1.81
0.1 0.460412 0.588239 0.02 1.41
0.2 0.472954 0.611311 0.13 1.26
0.3 0.483002 0.636755 0.17 1.26
0.4 0.491024 0.664558 0.18 1.30

Table 9 Values of the singularity exponents, and GSIFs (calculated using the L.E.S. method) for
several values of Dundurs’ parameter o for orthotropic substrate and transversally isotropic surface
layer with crack inclined to the interface at angle ¢=50°.
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Fig. 45 Variation of the eigenvalues 6,, 8, and of the Generalized Stress Intensity Factors H,, H,
with Dundurs’ parameter « for several angles ¢ of the crack inclination with respect to the bi-
material interface (Dundurs’ parameter 5=0).

Again, in analogy to the previous section, the decomposition of the “full” stress and
displacement fields into asymptotic expansion (in the vicinity of the crack tip) was carried
out. The first two terms are displayed in the Fig. 46 - Fig. 49. The thin dark (blue) curves
refer to the stresses and displacements obtained from the FE analysis. The two lighter
(orange) curves stand for the singular solution obtained using the L.E.S. method and the
W-integral. The thin light (orange) curves correspond to the singular solution where only
the second singular term in the asymptotic expansion is considered. It means the

displacements and stresses are described, for this case, as follows: U’ =H,-r*.u, (6);
c,=H, % Sy (0) When both singular terms in the asymptotic expansion are
considered, one then obtains the light thick (orange) curve. Then the displacements and
stresses are described using the following expansions: U’ =H, -r* u, (6)+ H, - r*> u,(0);
o,=H,-r""f (0)+H, -r"".f,,(0) . All figures clearly show that by considering both

singular terms, the description of the stress and displacement field is more precise and
approaches the full FE solution.
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Fig. 46 Comparison of the stresses and displacements around the inclined crack for $=80°, o=0.1,
=0, obtained from the FE analysis and from the singular solution with consideration of a single or
both singular terms, on the circular integration path of radius R=0.1mm.
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Fig. 47 Comparison of the stresses and displacements around the inclined crack for $=70°, o=0.1,
=0, obtained from the FE analysis and from the singular solution with consideration of a single or
both singular terms, on the circular integration path of radius R=0.1mm.
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Fig. 48 Comparison of the stresses and displacements around the inclined crack for $=60°, o=0.1,
=0, obtained from the FE analysis and from the singular solution with consideration of a single or
both singular terms, on the circular integration path of radius R=0.1mm.
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Fig. 49 Comparison of the stresses and displacements around the inclined crack for $=50°, o=0.1,
=0, obtained from the FE analysis and from the singular solution with consideration of a single or
both singular terms, on the circular integration path of radius R=0.1mm.
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8.2.2 Fracture criteria

In the analogy to chapter 8.1.2 the values of ERRs for deflected and penetrating crack and
their ratios were calculated. In the present case, the inner domain of circular shape with the
diameter R=Imm measured in scaled up coordinates y (Fig. 42) is subjected to the
displacement field along its boundary. For the calculation of parameters Kiqp), Kaqqp) the
boundary condition (217) is used and for the parameters K 'iqp), K 24p) the boundary
condition of type (218) is applied:

U’ (x,x,)=H,r"u, (0) ......where H, =1, (217)
U (x,,x,)=H,r*u, (6) .....where H, =1. (218)

The characteristic eigenvalues 8, 6, and the functions u,(6), uy(6) are taken from the
singularity analysis — see section 8.1.1. All the other procedure and calculations are
identical with that for the perpendicular crack.

The obtained variations of the ERRs on Dundurs’ parameter o and on the crack
inclination angle are displayed in the Fig. 50 a)-c). By comparing (217) and (218) with
(215) and (216), one can see the difference in the considered terms of the Williams-like
asymptotic expansion. For the perpendicular crack, the second singular term and the T-
stress were considered, for the inclined crack the first two singular terms (and no T-stress)
were considered. As was already mentioned, this is because, the significancy of the first
singular term with the change of the crack inclination angle (from 90°) increases (for
perpendicular crack it vanishes). This phenomenon is also possible to observe in the
Table 6 - Table 9, where the crack inclination angle ¢ changes from 80° to 50°.

The appropriate ERR Gy, G4, Gy are again calculated for all possible directions using
formula (210) where H, and H, are GSIFs from Table 6 - Table 9. Coefficients K, ERRs
Gap, and their ratios for several parameters « are given (for ¢ = 1/100 and ¢ = 70°) in the
Table 10. All calculated results of ratios G/G, and Gg4/G,, are shown, for several crack
inclination angles, in Fig. 50. Results from Fig. 50 a)-d) are also summarized in the Fig. 51
for one chosen characteristic crack extension length e=1/100. In Fig. 51 a) only one (first)
singular term for ERR calculation is considered, while in Fig. 51 b) both singular terms are
considered. By comparison of Fig. 51 a) and b) one can conclude that the influence of the
second singular term on the ratios Gg/Gy, 1s very significant and it can strongly affect the
resulting verdict about the further propagation direction. The second singular term seems
to be here more dominant for the fracture criterion than the first singular term. The other
general conclusion which can be drawn for the inclined cracks is that the single deflection
is preferred before the double deflection (especially for higher inclination angles). Also,
with growing crack inclination (from the perpendicular direction) the probability of the
crack deflection along the interface (with respect to the penetration) is increasing.

Furthermore remark, that the penetrating crack was assumed to grow perpendicularly
towards the interface for the calculations of ERR G,. Generally, when considering the
main crack inclined, the further propagation direction can also be different from the
perpendicular one. Commonly, one should compute the ERR for the crack extensions in
several possible penetrating directions and then select that where the ERR is maximal. For
our material configuration the maximal ERR for the penetration was always (when
consider both singular terms in the criterion) in the direction perpendicular to the interface
(modulus Er is ten times lower than £, — given by parameter A,=0.1) — see Fig. 52.
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Fig. 50 Ratios G«/G, and G4/G,, as a function of Dundurs” parameters « for several valus of the
characteristic crack extension length e=1/50; e=1/100; e=1/500 and for several values of the crack
inclination angle ¢. a) $=80°; b) $=70°; ¢) $=60°; d) $=50°.
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second singular term is not considered (H,=0); b) both H; and H, singular terms are considered.
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Fig. 52 Variation of the ERRs G, with the angle of crack extension for a=0.1 and e=1/100; a) the
case when the second singular term is not considered (H,=0); b) the case when the first singular
term is not considered (H,=0); c) both A, and H, singular terms are considered.

¢=70° =0, 1,=0.1, p=2, =1, p,=1, E,=60000 MPa, v,=0.238, €=1/100

: : ERR for H,=0 ERR for H,#0
Kisal-l @ Kisal-l @ Kusal-]l ¢ Kosal-] : Gy Gy
Kgll  Kull @ Kall @ Kull - g, GG G GulG
Kpll = Kyl o Kpll @ Kyl @ g 9% g GG
-0.165673 | -0.013881 [ -0.009590 | -0.049351 | 3.25¢-04 | 0.939 2.41e-03 | 0.567
-09 | -0.165514 | -0.010550 | -0.007281 | -0.045615 | 3.24e-04 | 0.938 2.22¢e-03 | 0.522
-0.176296 | 0.018405 | 0.012735| -0.109177 | 3.46 e-04 4.25 e-03
-0.063845 | -0.008290 | -0.006754 | -0.009442 | 1.38¢-05 | 0.902 9.51e-05| 0.385
-0.7 | -0.062524 | -0.003871 | -0.003126 | -0.007168 | 1.36e-05 [ 0.883 7.00e-05 | 0.283
-0.070758 | 0.009175 | 0.007508 | -0.037660 [ 1.53 e-05 2.47 e-04
-0.032747 | -0.005052 | -0.005243 | -0.003843 | 1.77¢-06 | 0912 1.53 e-05 | 0.291
-0.5 | -0.030831 | -0.001548 | -0.001613 | -0.002676 | 1.67e-06 | 0.858 9.61 e-06 | 0.183
-0.035909 | 0.004429 | 0.004513 | -0.021324 | 1.94 ¢-06 5.26 e-05
-0.019336 | -0.003273 | -0.004519 | -0.002158 | 2.92¢-07 | 0.962 3.76 e-06 | 0.222
-0.3 | -0.017173 | -0.000678 | -0.001029 | -0.001554 | 2.59e-07 [ 0.855 224 ¢-06 | 0.132
-0.020091 | 0.002074 | 0.002625 | -0.015120 | 3.04 e-07 1.70 e-05
-0.012579 | -0.002288 | -0.004110 | -0.001455 | 3.91¢-08 | 1.059 1.05e-06 | 0.163
-0.1 | -0.010332 | -0.000322 | -0.000799 | -0.001191 | 3.22¢-08 | 0.870 6.94 ¢-07 | 0.108
-0.011885 | 0.000805 | 0.001072| -0.012313 | 3.70 e-08 6.44 ¢-06
-0.008866 | -0.001786 [ -0.003552  -0.001053 | 6.58 e-10 | 1.211 2.68¢-07 | 0.107
0.1 -0.006594 | -0.000166 | -0.000681 [ -0.001072 | 4.89¢-10 | 0.901 2.54e-07 | 0.101
-0.007327 | 0.000005 | -0.000374 | -0.010666 | 5.44 e-10 2.51 e-06
-0.006726 | -0.001581 | -0.002445 | -0.000680 | 4.34¢-09 | 1.424 1.04 e-07 | 0.116
0.3 -0.004440 | -0.000090 | -0.000516 | -0.000968 | 2.86¢-09 | 0.940 1.05e-07 | 0.117
-0.004729 | -0.000706 | -0.001284 | -0.008519 | 3.05 e-09 9.00 e-07

Table 10 Cocfficients of the inner expansion, ERR of the deflected and penetrating crack (for a
finite crack extension of the characteristic size € = 1/100 and crack inclination angle ¢$=70°) and
ratios of the ERR for singly (doubly) deflected and penetrating crack (sd — single deflection, d —

double deflection, p — penetration).
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9 Discussion

It was shown that for the case of the perpendicular and inclined crack in anisotropic media
there exist two real characteristic eigenvalues of the singularity 8, and 9, in the interval
(0,1) and hence also two generalized stress intensity factors (GSIFs) H; and H,.
Nevertheless, for the case of the perpendicular crack and symmetric loading it was shown
that the value of one of the GSIFs (in our case H;) is very small, practically approaching
zero, and most likely the non-zero value of H, is due to numerical errors. Thus, the whole
first singular term corresponding to 6; can be omitted for these configurations. Apparently,
in such a case H; and H, relate to antisymmetric and symmetric loading respectively. At
literature a reference was made that for the case of the perpendicular crack, the only one
real characteristic eigenvalue of the singularity exists in the interval (0, 1) — especially for
isotropic bi-materials. However, it has been shown in this thesis and also in some other
works — e.g. [56], that this statement does not hold for every bi-material configuration
(especially when one considers anisotropic — orthotropic - bi-materials). In this case, there
exist certain bi-material configurations for which two different real characteristic
eigenvalues of the singularity exist in the interval (0, 1). They exist only under the
condition that the imaginary part of the eigenvalues 0; is zero. Authors in [56] observed,
that the non-zero complex roots occur for Dundurs’ parameters f # 0. If § = 0 then the
both roots seems to be always real with zero imaginary part for all crack inclination angles
¢. However authors do not guarantee that this is the only sufficient condition and further
investigations are required.

When describing the stress field in the vicinity of the crack perpendicular to the
interface, the regular term in the Williams-like asymptotic expansion — called T-stress is
recommended to be taken into the account. This term corresponds to the characteristic
eigenvalue 03=1. The T-stress consideration precises the description of the stress and
displacement field and also precises the final fracture criterion for the case of the
perpendicular crack. When one consider the inclined crack, then the same conclusion holds
for another singular term (in our case that one corresponding to ;) which starts to be
significant for the angles ¢ > 10°. In these cases both singular terms should be used for the
stress and displacement field description and fracture criterion definition.

The GSIF and T-stress calculations were performed using the postprocessing
integration process in the mathematical software Matlab 7.1. However, it can be also
involved directly into the Finite Element software using the programming language, which
is in most of these codes implemented. The only limitation is that the appropriate
programming language has to be capable to handle complex numbers. The alone FE
calculation carried out on the 2D bi-material cracked model has no special needs or
limitations. Only a refined mesh in the vicinity of the crack tip is required as in every crack
problems.

Some other author’s recommendations for the GSIF and the T-stress calculation:

% When integrating across the interface a finer FE mesh in comparison with the
integration in homogeneous media it is advised to use — due to the presence of
media discontinuity which can in some cases influence the further integration
process.

% For the numerical integration of W-integral, a simple trapezoidal or rectangular
integration method is recommended to use instead of some advanced, e.g.
Simpson’s method, which in some cases result in an incorrect integration across the
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interface (due to the discontinuity of the integrated function). When the mesh is not
very coarse, also the simple integration formula leads to the sufficiently accurate
results. Moreover, there is no necessity of keeping a special attention to the
interface crossings. In addition, always is apparently convenient to integrate the ‘P-
integral piecewise in each material (domain) and sum up the particular results.
Integration in one step (from crack face to crack face) can lead to numerical errors.

% The T-stress can be also estimated directly from the FE analysis, when plotting the
stress along the crack face and considering the stress magnitude when approaching
the crack tip. These results should approximately correspond to the W-integral
calculations. However it is not recommended to use this method as the only one for
the T-stress determination, since its results are dependent on the used material
configuration and sometimes they can differ more then negligibly from the P-
integral calculations which should be closest to the exact value.

The same conclusions and recommendations concerning the FE mesh and integration
process hold also for the calculations of the factors Kiawp), Kadp) . K 1d(p) and K 24(p), which
are used for the calculation of the ERRs and the definition of the fracture criteria.

The presented method for the definition of the fracture criteria, based on the Finite
Fracture Mechanics and the matched asymptotic expansions represents an alternative way
how to overcome the problems of the classical differential approach. When calculating the
Energy Release Rate (ERR) for cracks terminating at the interface of two dissimilar
materials, the differential approach leads to a zero or infinite ERR (depending on the type
of the singularity) and therefore it is unusable for these applications. This problem is
caused by the considered infinitesimal crack extension and the media discontinuity. The
concept of the Finite Fracture Mechanics (FFM) offers the solution to this problem using
the finite crack extension length. The disadvantage of this method is the necessity of the
FE solution, which is used for the determination of the needed parameters. However, the
FE solution is not complicated at all so in fact it doesn’t represent any problem. The
length of the finite crack extension is to be determined by combining the energy and stress
condition of the crack onset — as stated in the section 7.1.3. When the crack starts to grow,
it happens usually by the small finite jumps of the main crack instead of the continuous
propagation.

The advantage of the used combination of the FFM and the matched asympotitc
expansion technique is that this method allows predition of prospective crack propagation
direction. It can be done by calculating the additional released energy AW for a number of
possible propagation directions and by selecting that which maximize the additional
released energy AW. This approach therefore provides an alternative to the criteria based
on the generalized factor of the strain energy density and related Sih’s approach discussed
e.g. in the thesis [68], which become again too much complicated when considering
generally anisotropic materials. The presented FFM based technique is universal for any
type of general stress concentrator in whatever media. A solution to all these cases has the
same complexity and also the same treatment. Moreover, several parameters (singular
terms or regular term) can be simultanously considered by this approach to improve the
crack stability prediction. It has been shown in the examples, that for some bi-material
configurations also the second (weaker) term can quite significantly influence the
propagation direction. Thus, it is not recommended to neglect them without any previous
analysis. The theory of FFM was also applied on the problem of the multiple cracks in the
thin surface layer under the temperature loading - presented in author’s work [92].
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10
10.1

Conclusion

Summary of the solved problems

It is possible to conclude, that the main aims of this thesis were realized. Briefly speaking,
a complex computational tool for the assessment of the general stress concentrators in
anisotropic media (especially cracks terminating at the interface of two dissimilar
materials) was created. Technique based on the complex potential theory has been
employed in combination with Finite Element Method.

The main particular outputs of this work are possible to summarize as follows:

=ay

Using the complex potential theory and the Lechnitskii-Stroh formalism, a
technique (the so-called L.E.S. method) for the calculation of the stress singularity
exponents and description of the singular (regular) stress field in the vicinity of
general stress concentrator in anisotropic media have been carried out. The
characteristic eigenvalues of the singularity and corresponding eigenvectors have
been calculated using this technique. The computational code is programmed in the
mathematical software MAPLE 10.0. The method enables to characterize the
singularities for cracks terminating at the interface at right (or arbitrary) angle and
after light modifications it can also be used for the notch with its tip on the
interface.

Next to this approach, the Continuously Distributed Dislocation technique has been
employed to attain the same objective (singularity analysis, description of the stress
and displacement field and the GSIFs calculations). The results of both methods are
compared and show a good agreement. A disadvantage of the CDD technique
consists in that it is limited to the crack-like concentrators. The problems of the
general notches are preferable to solve by use of the L.E.S. method or some other
technique. Other methods for the singularity analysis of the general multimaterial
notches have been also studied, however not widely used within this work.

Using the Betti's reciprocal theorem and the two state W-integral, a powerful tool
for the calculation of the Generalized Stress Intensity Factors - GSIF (amplitude of
the singular term in the Williams-like stress asymptotic expansion) and T-stresses
(non-singular term) has been developed. The P-integral is used in combination
with FEM and enables the calculation of GSIFs (or T-stresses) from the stress and
displacement far fields of the singular point. Due to this fact, this technique doesn’t
need any special (or very fine) mesh to avoid errors caused by the presence of the
singularity. Another significant property of the W-integral, in comparison with M-
integral or J-integral, is its integration path independency for any case of the
general stress concentrator. The finite element calculations were carried out within
the code ANSYS 10.0 and the post-processing, including the integration process for
GSIF (T-stress) calculation, has been programmed in the mathematical software
MATLAB 7.1.

In the FE calculations the standard linear or quadratic plane elements can be used,
without any special need of the mesh fineness. In the regions where the integration
path crosses the interface a finer mesh is recommended, however not required.

Since the aim of this work is to work up tools for the assessment of anisotropic
(orthotropic) materials with interface, a possibility of application to laminates
reinforced by the long fibres is also studied. If several layers of laminate fracture
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and the crack is bridged by the fibres, the resulting stress field can be strongly
influenced by these fibres - in positive sense (due to the crack closure effect). This
effect can be captured using the generalized bridging stress intensity factor which
reduces the GSIF calculated for the unbridged crack. The two different bridging
models have been used and compared - simple Budiansky's model and the
advanced statistical model. A comparison with experimental data obtained on the
same specimens has not been made yet, however when the results are qualitatively
compared to the similar experiments made on a different type of specimen, the
characteristic behaviour is the same. l.e. the statistical model leads to a higher
predicted load under which all the fibres loose the ability to transfer any loads (all
of the bridging fibres become broken). It can be explained as follows: according to
the simple Budiansky’s model, the fibre fracture always occurs in the plane of the
crack. However in case of the statistical bridging model, the fibres can be broken
(due to a statistical distribution of the fibre strength) also anywhere inside the
matrix. They can still contribute to the bridging effect by the frictional constraint
until they are completely pulled out from the matrix. In comparison with some of
the earlier experiments, this model describes the reality more realistically.

To utilize all the preceding effort devoted to the description of the stress and
displacement fields near the crack tip at the interface in terms of Williams-like
asymptotic expansion, a suggestion of the suitable fracture criterion has been made.
It is applicable to the problems of cracks in anisotropic bi-materials terminating at
the interface (at right or arbitrary angle). The theory of the finite fracture mechanics
in combination with the matched asymptotic expansions technique has been
employed here. This approach can overcome the classical differential analysis
problem of zero or infinite energy release rate for the general stress concentrators.
A relation for the energy release rate of the crack terminating at the interface of two
different (anisotropic) materials has been derived. This relation can involve two
parameters. Either the leading singular term of the Williams-like asymptotic
expansion together with the T-stress (for perpendicular cracks) or the two singular
terms (for inclined cracks). Thus, it is possible to assess an influence of the second
term, on the crack stability. All the computations have again been made using an
advantage of the FE analysis and of the already mentioned ‘-integral.

A direction of the prospective crack extension (crack penetration across the
interface or the crack deflection) has been studied (for the crack terminating at the
interface of the orthotropic substrate and the isotropic surface layer). The resulting
propagation direction depends mostly on the bi-material configuration, on the
character of the anisotropy and last but not least on the toughnesses of the substrate
and the interface. If the crack penetrates to the next material, then it follows that
penetration direction which maximizes the ERR for the chosen small crack
extension. However, in case of the anisotropy of the substrate, also the toughness of
this material can exhibit anisotropic behaviour. In that case the crack will follow

that path which maximizes the additional released energy AW, =3W, —G.a, . When

deciding between the penetration and the crack deflection, the ratios of AW of
deflected and penetrated crack have to be calculated and compared with the
corresponding ratios of toughnesses in deflected and penetrating direction. If the
calculated ratio is higher than the ratio of material properties, the crack should
deflect along the interface and vice versa.

106



10. Conclusion

= It was shown, for the case of the crack perpendicular to the interface, that in some
cases, also a consideration of the T-stress can influences the resulting direction of
the propagation (this problem is widely described in the discussion). Due to this
reason, it is recommended to take also T-stress into the account. Influence of the T-
stress strongly depends on the bi-material configuration and the material
characteristics of both materials, so the importance of this term should be always
assessed. On the contrary, for the case of the inclined cracks it is always
recommended to consider both singular terms from the Williams’s like asymptotic
expansion for the definition of the fracture criteria (especially for cracks inclined
more than 10° from the perpendicular state). The T-stress term was not proved to
exist for the inclined cracks, at least for investigated configurations. The existence
of the T-stress is closely related to the existence of the root 6=1 of the eigenvalue-
equation pertaining to a particular singularity problem. This is a necessary
condition but it is still not clear whether this condition is also sufficient one.

& All the described theory and examples can be applied after the experimental
verification and eventual model adjustment, for the assessment of general stress
concentrators, and also for the designing of special “smart” materials, which will
exhibit the predefined behaviour under the specific loading conditions. This is also
the final aim of the whole effort put into this research. The possibilities of the
further work are of course not closed yet and the suggestions, where to start the
continuation work are stated in the following section.
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10.2

Ideas for further research

The following points can serve as the author’s suggestions for the subsequent work:

=ay

One of the most important steps which is necessary to perform in the framework of
the next work is the experimental validation of the presented results. Experiments
were not performed within the framework of this thesis, because of its complexity,
time consumption and above all the high expensiveness. It has to be worked out
within the particular work or grant project to obtain any meaningful results. The
main problem consists in the availability of suitable test specimens, what have been
already shown as a relatively difficult issue. The aim of the experimental work
should be in the first step focused on the measuring of the bi-material
characteristics such as the interfacial toughness or the strength of the substrate. In
the second step, a verification of the predicted crack propagation direction and load
under which the crack starts to propagate should be performed.

As a future work, a technique for the calculation of the mode mixity should be
carried out, since as it was shown, consideration of this quantity can strongly
influence the assessment of the crack propagation direction. Theory and related
references for these calculations are stated in the thesis, see Eqs. (201)-(203).

All the presented problems were performed within the 2D linear elasticity. It could
be interesting to extend these pieces of knowledge into the 3D problem and to find
the main differences between 2D and 3D interpretation. This can turn out to be
helpful for the future implementation of the described theory into some FE code.

By linking to the previous point, very useful for the practical usage of the whole
problems could be the implementation of the described theory into some open FE
code. Most of the commercial FE softwares have their own programming language,
so most (or even all) of the calculations can be performed directly within a
particular FE package. Some extending functions can be developed, e.g. for the
calculation of the Generalized Stress Intensity Factors, T-stress and also for the
final assessment of the crack stability under the given loading conditions.

Some kinds of the advanced crack modelling techniques as Cohesive Zone Models
(CZM) or Extended FEM (X-FEM) can be applied to the solution and verification
of bi-material problems solved within this thesis.
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Nomenclature

Notation
a
ap, Aq
adj
A, A
bi
b (s)
B
cr
Cijki
dy
diag]...]
D
E;
Ev, Er, Ez, Ejj
Eg, En, E
Jil(®)
H(z)
Siyo)
F
Fi(e)
Fi(6)
g9

Gir, Gz, Gz, Gy

G
Ga, G,
G
G, G.'
Gw.i
)

h
H
Hy, H,
Hppi, Hyr, Hiip
H,

i

Description

Finite crack extension

Finite crack extensions of penetrating and deflected crack
Adjoint matrix

Matrix of material characteristic eigenvalues and components sj;
Burger’s vector

Density function

Thickness of the substrate (material without crack)

Fibre volume fraction

Tensor of elastic constants

Elementary Burger’s vector

Diagonal matrix

System of equations for the solution of the 6 exponent

Transfer matrices

Young’s moduli in longitudinal, transversal and Z-direction
Young’s moduli of fibre and matrix and overall modulus
Angular distribution of the stress field

Muschelishvilli’s complex potential

Local density function of the Burger’s vector

Line force acting on the crack faces (in the crack bridging problem)
Coefficients of the inner asymptotic expansion

Angular distribution of the resulting force 7;

Angular distribution of the displacement field

Shear moduli

Energy release rate

Energy release rate of the deflected and penetrating crack
Fracture toughness

Fracture toughness of the interface and of the material 1
Material wedge of the multimaterial interface

Average distance from the fibre failure position to the crack plane
Thickness of the surface layer

Generalized Stress Intensity Factor (GSIF)

GSIFs related to the stronger and weaker singularity

Applied, bridging and the local Generalized Stress Intensity Factor
Critical value of the GSIF

Imaginary unit
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Nomenclature

Im(...)
|
ki(e)

Kia, K14, K2a, K 2q
Kip, K 1p, Kop, K'2p
Ky, Ky
Kic
Kx

Re(...)
S,

Sij

Up,;
U
U,V
Ui, Ul
Ujo’ U’
Uih’ Ut

Imaginary part of the expression

Identity matrix

Coefficients of the outer asymptotic expansion

Coefficients of the perturbed solution for the deflected crack
Coefticients of the perturbed solution for the penetrating crack
Stress intensity factors for loading mode I and II

Fracture toughness

System of equations for the solution of the 6 exponent
Product of the sequence of transfer matrices

Distance of the main crack from the interface

Total crack length

Typical length of fibre with presence of one flaw
Measurement of the crack tip process zone

Characteristic size of the main crack

Matrix containing material characteristic eigenvalues.
Weibull shape coefficient

Characteristics of the material anisotropy

Normal pointing toward the origin of the coordinate system
Number of material wedges

Number of collocation points

Characteristic eigenvalues of the material

Polar coordinate

Radius of the integration path approaching the zero

Radius of the integration path

Fibre radius

Real part of the expression

Substituted coordinates

Components of compliance matrix

T-stress

Resulting force along the half-line leading from the singular point
Components of the strain tensor

Angular distribution of the displacement field

Angular distribution of the auxiliary displacement field
Displacement field

Displacement field (vector), auxiliary (dual) displacement field
Solution of displacements for the unperturbed state

Displacement field obtained by the Finite Element Analysis
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Uf, u® Solution of displacements for the perturbed state
V, Vi Eigenvector, components of the eigenvector
v(x2) Total displacement of the upper crack face
Vappi(X2) Crack face displacements of the unbridged crack under applied
Ver(X2) Bridging crack closure displacements
¥ Basis functions of the inner expansion
Wy, Wa Change of the potential energy for crack penetration and deflection
w, we Potential energies of unperturbed and perturbed state
W(xa,h) Bridging weight function
X1, X2 Cartesian coordinates
X10, X20 Location of an isolated dislocation in Cartesian coordinates
i, 2 Scaled up coordinates (for zoomed-in view)
Zy Argument of the complex potential function
o, Dundurs’ parameters
B Bridging characteristics
I, T; Integration path
I'(n) Gamma function
d, & Characteristic eigenvalue of the singularity
8", 8- Characteristic eigenvalue of the auxiliary solution
0jj Kronecker's delta
oa Crack increment
ow Change of the potential energy
Wa, W, Change of potential energy in case of crack deflection, penetration
AW Additional energy
€ Characteristic size of the perturbation
&y Components of the strain tensor
& Oscillation index
0 Polar coordinate
& Direction angle of the crack extension.
K Constant proportional to the loading
A Characteristics of the material orthotropy
L Characteristic eigenvalues of the material

V1Z, VZL, VIL, Vij Poisson’s ratio between appropriate directions

p Zoomed variable r with factor €

yo, Characteristics of the material anisotropy
O Critical stress — strength of material

Ojj Components of the stress tensor
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*

Ojj Auxiliary (dual) stress field
Oyj (tip) Stress field in the vicinity of the general stress concentrator
o)) Nominal tension load of the specimen
Oof Fibre strength
Obr Bridging stress
op Average stress exerted by the broken fibres
)y Fibre strength distribution
T Interface slipping shear resistance stress
o(2) Muschelishvilli’s complex potential
() Angle between crack and interface
& Vector of complex coefficients
D(z,) Complex potential function
WUz) Muschelishvilli’s complex potential
Y, ) Y-integral
Yo Energy based mode mixity angle
W Stress intensity factor based mode mixity angle
o} Polar sector of the multimaterial wedge
on Inner domain
Q° Outer domain
0Q Boundary of the finite body
Abbreviations:
BEM Boundary Element Method
C.C. Complex conjugate
CDD Continuously Distributed Dislocations
CS Coordinate System
DDT Distributed Dislocation Technique
ERR Energy Release Rate
FEA Finite Element Analysis
FEM Finite Element Method
FFM Finite Fracture Mechanics
GSC General Stress Concentrator
GSIF Generalized Stress Intensity Factor
LEFM Linear Elastic Fracture Mechanics
LE.S. Lechnitskii Eshelby Stroh (method)

Nomenclature

If not listed quantities occur in the text, then they have only a local meaning described
directly on the place of the appearance and no other references to this quantity should be
made in the following text.
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