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Abstract

Coastal zone of Louisiana, USA, is experiencing high rate of wetland loss since the 
Mississippi  River  was  isolated  from  the  delta  by  man  made  levees.  Freshwater 
diversions reintroduce the river water into coastal marshes in order to balance salinity 
levels and provide sediments and nutrients for marsh accretion. This study presents the 
geostatistical analysis of soil moisture (MOIST), bulk density (BD), pH, organic matter 
content  (OM),  total  phosphorus  (TP),  total  nitrogen (TN),  and total  carbon (TC) in 
0–10 cm and  10–20 cm  soil  depth  in  the  ponding  area  of  Davis  Pond  Freshwater 
Diversion that has been receiving Mississippi River water since 2002. Cores from 139 
locations  visited  in  2007  were  analysed  by  members  of  the  Department  of 
Oceanography and Coastal Sciences, Louisiana State University. In 0–10 cm soil depth, 
TN, TC, and OM had similar spatial properties and were closely related to BD. Practical 
range of exponential variogram models fitted to TN, TC, and OM was approximately 
3300 m, exponential model of BD had range around 2700 m. Close relationship of these 
variables  is  explained  by  the  role  of  vegetation  in  marsh  ecosystems.  Spatial 
autocorrelation of both TP and pH was weak and interpolated values were associated 
with high uncertainty. Also relationship between TP or pH and any other variable was 
weak. Spherical variogram model with 1400 m range was fitted to TP and we infer that 
processes driving dynamics of TP in Davis Pond act on finer spatial scale than processes 
affecting TN, TC, and OM. TP was highly variable even at distances shorter than the 
minimum  sampling  interval  (100 m).  Spherical  variogram  model  fitted  to  pH  with 
4500 m range indicated that pH was autocorrelated over the longest distances. Maps of 
soil  properties  in  0–10 cm  soil  depth  were  produced  using  kriging,  but  no  spatial 
autocorrelation was detected in 10–20 cm soil depth.
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Abstract

Coastal zone of Louisiana, USA, is experiencing high rate of wetland loss since the 
Mississippi  River  was  isolated  from  the  delta  by  man  made  levees.  Freshwater 
diversions reintroduce the river water into coastal marshes in order to balance salinity 
levels and provide sediments and nutrients for marsh accretion. This study presents the 
geostatistical analysis of soil moisture (MOIST), bulk density (BD), pH, organic matter 
content  (OM),  total  phosphorus  (TP),  total  nitrogen (TN),  and total  carbon (TC) in 
0–10 cm and  10–20 cm  soil  depth  in  the  ponding  area  of  Davis  Pond  Freshwater 
Diversion that has been receiving Mississippi River water since 2002. Cores from 139 
locations  visited  in  2007  were  analysed  by  members  of  the  Department  of 
Oceanography and Coastal Sciences, Louisiana State University. In 0–10 cm soil depth, 
TN, TC, and OM had similar spatial properties and were closely related to BD. Practical 
range of exponential variogram models fitted to TN, TC, and OM was approximately 
3300 m, exponential model of BD had range around 2700 m. Close relationship of these 
variables  is  explained  by  the  role  of  vegetation  in  marsh  ecosystems.  Spatial 
autocorrelation of both TP and pH was weak and interpolated values were associated 
with high uncertainty. Also relationship between TP or pH and any other variable was 
weak. Spherical variogram model with 1400 m range was fitted to TP and we infer that 
processes driving dynamics of TP in Davis Pond act on finer spatial scale than processes 
affecting TN, TC, and OM. TP was highly variable even at distances shorter than the 
minimum  sampling  interval  (100 m).  Spherical  variogram  model  fitted  to  pH  with 
4500 m range indicated that pH was autocorrelated over the longest distances. Maps of 
soil  properties  in  0–10 cm  soil  depth  were  produced  using  kriging,  but  no  spatial 
autocorrelation was detected in 10–20 cm soil depth.

Keywords
geostatistics, Mississippi Delta, Davis Pond, total phosphorus, total nitrogen, total 
carbon
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 1 Introduction

Marshes in southern Louisiana were isolated from the Mississippi River by man made 
levees in the 20th century. This isolation prevented spring time river water coming into 
coastal  marshes,  which resulted in  increasing  salinity,  ecosystem destabilization and 
consequently  rapid  increase  in  wetland  loss  rate.  There  are  numerous  restoration 
projects  that are currently taking place in southern Louisiana to slow down or even 
reverse the process of marsh deterioration. One of the main ideas behind this effort is to 
reintroduce fresh river  water  into  the  ecosystem to balance  salinity and re-establish 
marsh accretionary processes.

This study focuses on the ponding area of Davis Pond Freshwater Diversion which has 
been receiving fresh Mississippi River water since 2002. The aim of this study is to 
describe spatial distribution and relationships of several key variables in this freshwater 
marsh. Soil sampling was conducted in 2007 by the Department of Oceanography and 
Coastal Sciences, Louisiana State University. Information about moisture, bulk density, 
pH, total phosphorus (TP), organic matter content, total nitrogen (TN), and total carbon 
(TC) from 139 sampling points were made available by Department of Oceanography 
and Coastal Sciences, Louisiana State University. The specific objectives of this study 
were to 1) investigate univariate properties of each variable 2) construct experimental 
variograms  and  fit  variogram models  if  possible,  3)  produce  maps  showing  spatial 
distribution of the variables, 4) describe the spatial relationships between the variables 
using geostatistical methods and moving window statistics.

 2 Literature Review

 2.1 Broad View of the Mississippi River Delta

Mississippi River Delta undergoes substantial changes that affect both the ecological 
and economic stability of Louisiana, Texas and Mississippi states and consequently the 
whole United States. The region (both inland and offshore) is important for fisheries, oil 
and  gas  supplies,  and  other  resources  (Turner  and  Cahoon,  1987;  LNDR,  2005; 
Lindquist  and  Summer,  2007;  LNDR,  2009).  Although  land  loss  and  land  gain 
permanently occur during natural delta formation, the land loss rate in Louisiana is high 
and extensive landscape changes are documented in many studies (Turner and Cahoon, 
1987; Evers et al.,  1992; USGS, 2003; Barras, 2006; Lindquist and Summer, 2007). 
Change of coastal marshes into open water is of the major concern. The land loss rate 
increased  rapidly  between  1930’s  and late  1970’s,  up  to  about  104 km2 year‒1,  then 
decreased  and  was  stabilized  in  1990’s  at  the  average  annual  rate  of  62 km2 year‒1 

(Lindquist and Summer, 2007). The increase in the rate of environmental changes in the 
last century is attributed mainly to anthropogenic activities like building levees along 
the Mississippi River and dredging of navigational canals (Turner and Cahoon, 1987; 
Reed, 1989).
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In 1930’s, levees along the Mississippi River were finished (Turner et Cahoon 1987), 
which prevented flooding in adjacent areas. This had two major negative effects. The 
water from spring overbank floods, which used to be crutial source of sediment and 
nutrients for marshes accretion, could not interact with surrounding landscape any more 
(Hatton et al., 1983; Evers et al., 1992; Day et al., 2009). Furthermore, the nutrients in 
the river water that are now led through the river channel directly to the sea cause severe 
eutrophication, hypoxia, and consequently so called ‘dead zones’ in the Gulf of Mexico 
(Turner and Rabalais, 1994; Rabalais et al., 1998; Engle et al., 1999; Dodds, 2006). Not 
only that marshes can no longer serve as a natural water treatment, they undergo rapid 
deterioration as the accretion cannot keep pace with sea level rise due to the lack of 
nutrient and sediment load.  Extremely low slope of the Mississippi  Delta and often 
insufficient marsh accretion rates result in submergence of many wetlands although the 
relative sea level rise is in order of a few centimetres (Turner and Cahoon 1987; Reed,  
1989; Evers et al., 1992; DeLaune et al., 2003).

Linear  structures  like boat  canals  contribute  to  intrusion  of  salt  water  from the sea 
further into the coastal zone (Hatton et al., 1983; Turner and Cahoon, 1987). Changes in 
salinity and hydrologic regime affect wetland soils and plant communities, particularly 
in the freshwater marshes (Turner  and Cahoon, 1987; Mitsch and Gosselink,  2000). 
Emergent plants in the submerging marshes do not root properly, hence the inorganic 
sediments and organic debrits cannot be fixed in the sparse web of roots and the marsh 
deteriorates (Evers et al., 1992).

The rapid land loss  rate  has triggered more than 600 coastal  restoration projects  of 
various  extent,  objectives,  and funding since  1970’s  (Lindquist  and Summer,  2007; 
LDNR, 2009). The projects particularly relevant for this study are the Mississippi River 
diversions, which reintroduce river water into the delta lobes to support sedimentation 
processes,  thus  marsh  accretion,  and  to  reduce  eutrophication  and  the  amount  of 
sediment deposition in the Gulf of Mexico (DeLaune et al., 2003; DeLaune et al., 2005; 
Lindquist and Summer 2007; Allison and Meselhe, 2010). Several studies warned that 
freshwater reintroduction may cause eutrophication of the basin (DeLaune et al., 2003; 
DeLaune et  al.,  2005;  DeLaune et  al.,  2008;  Turner  et  al.,  2007).  Determination  of 
optimal operational regimes of freshwater diversions and evaluation of their effects on 
biogeochemistry  of  the  receiving  ecosystems  are  subject  for  recent  and  ongoing 
research (DeLaune et al., 2008; Day et al., 2009; Boustany, 2010).

 2.2 Freshwater Wetlands Biogeochemistry and its Relation to the Measured Variables

Processes typical for both terrestrial and aquatic ecosystems take place in marshes; the 
presence  and  range  of  aerobic  and  anaerobic  processes  is  highly  determined  by 
hydroperiod of each marsh (Mitsch and Gosselink, 2000). Many studies (DeLaune et 
al., 2005; Grunwald et al., 2006; Gardner and White, 2010) focus on a specific part of 
the  nutrient  cycle  or  describe  specific  form  of  each  nutrient,  but  properties  and 
relationships of agglomerative variables like TP, TC, TN are mentioned sporadically. 
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Several geostatistical studies of TP, TC, or TN have been conducted elsewhere, such as 
in The Everglades, Florida (Bruland et al., 2006; Corstanje et al., 2006).

Both phosphorus (P) and nitrogen (N) are major limiting factors for plant and microbial 
growth in wetlands (Mitsch and Gosselink, 2000; DeBusk et al., 2001). Conley et al. 
(2009) emphasize that it  is also the ratio of bioavailable P and N which affects the 
primary production. Grunwald and Reddy (2008) identified the main processes affecting 
P and N in marshes  as influx,  transformation,  resuspension, transport,  and chemical 
precipitation  for  P,  then  transport,  mineralization,  nitrification,  denitrification,  NH4

+  
adsorption and desorption, NH3  volatilisation, and vegetative assimilation and decay as 
processes driving distribution of N.

Plants accept P in form of H2 PO4
− , potentially HPO4

2− , and nitrogen as NO3
−  or NH4

+ . 
While the bioavailability of P is predominantly driven by interaction of orthophosphates 
( H2 PO4

− , HPO4
2− ,  PO4

3− )  with  ions  ( Fe3 +,  Al3 +,  Mn2 +,  Ca2+ ) and  sorption to  soil 
particles, the bioavailability of N is to large extent determined by the microbial activity 
and  relative  rates  of  nitrification,  denitrification,  and  N  fixation.  Microbes  play 
important role also in dynamics of the metal ions. Carbon (C) is accepted by plants from 
the  atmosphere  as  CO2 ,  which  is  generally  abundant,  and  represents  a  dominant 
compound of plant tissues. Dead vegetation parts  enter the detrital  processing chain 
typical for marshes to eventually become a resource for bacterial anaerobic processes 
like  fermentation  and  methanogenesis,  or  aerobic  respiration.  Decomposition  under 
anaerobic  conditions  in  waterlogged  environment  is  slow  which  usually  results  in 
accumulation of dead plant tissues in various stages of decomposition as peat (Mitsch 
and Gosselink,  2000; DeBusk et  al.,  2001; Kayranli  et  al.,  2010).  Both N and C in 
wetland soils are bounded mainly in complex organic substances and inorganic forms 
represent just a small fraction, while considerable portion of P in wetlands is inorganic 
and  interactions  with  mineral  sediments  through  sorption  play  important  role  in 
dynamics of P (Mitsch and Gosselink, 2000, DeBusk et al., 2001; Rivero et al., 2007).

Relationship of pH and the three elements is complex, indirect, and poorly understood. 
However, there is a reasonable belief that pH alters the concentration of C, N, and P in 
soil through bacteria and plant growth (Mitsch and Gosselink, 2000; Gutknecht et al., 
2006; Grunwald and Reddy, 2008). There are still many interactions of nutrients with 
biota and effects of other environmental factors in marshes about which very little is 
known (Mitsch and Gosselink, 2000; Gutknecht et al., 2006).

Soil  moisture  and bulk density in  marshes  are  naturally negatively correlated.  Bulk 
density is defined as dry weight of soil material per unit volume (Mitsch and Gosselink, 
2000), thus a sample with high water content has less space for the solid compound. 
From the methodical perspective, bulk density was necessary for recalculation between 
concentration per mass and concentration per volume of soil, utilized for derivation of 
total  stocks  of  elements  in  Davis  Pond  (Appendix  D).  For  TP,  TN,  and  TC, 
concentrations per mass of soil were the primary units for the geostatistical analysis.

4



 2.3 Geostatistics

 2.3.1 General background

Investigation  of  spatial  relationships  by  statistical  means,  geostatistics,  has  become 
highly popular  since  the  first  theoretical  cornerstones  and practical  techniques  were 
developed in 1960's.  Geostatistics  has  been widely used in  soil  science (Goovaerts, 
1992; Taylor et al.,  2003; Carrol and Oliver, 2005) and more specifically in wetland 
soils they were used in Everglades National Park, Florida, USA (Bruland et al., 2006; 
Corstanje et al., 2006; Grunwald et al., 2006; Rivero et al., 2007). This paper presents 
the first geostatistical study of coastal marshes of Louisiana.

Geostatistics relies on the assumption that values of the variable of interest, Z, in certain 
region, are an outcome of a random function Z(bold x). The values of Z at a finite set of 
locations within the region represent one particular realisation of the random function 
and  constitute  the  regionalized  variable  (Clark,  1979;  Isaaks  and  Srivastava,  1989; 
Cressie, 1993; Burrough and McDonnell, 2000; Webster and Oliver, 2007). A general 
linear model describing Z at location x can be formulated as:

Z x  = mx x  ' x   [1]

where m x  represents the structural (deterministic) component, x  is the stochastic 
spatially  autocorrelated  component,  and   ' x  represents  the  stochastic  spatially 
uncorrelated  noise  with  normal  distribution  with  zero  mean.  Note  that  in  this 
formulation,  the  regionalized  variable  is  only  the  x  (Burrough  and  McDonnell, 
2000). In a basic case, mx  is assumed to be spatially invariable and  ' x  can not be 
separated from x , thus the linear model can be written as:

Z x  = x   [2]

where  is the unknown spatially invariant mean and x  is the stochastic component.

The assumption of spatially invariant mean is important for the description of spatial 
dependency which is generally described by taking the value of  Z x  as one random 
variable,  value  of  Z xh,  where  h is  the  lag  (separating)  vector,  as  the  second 
variable,  and  calculating  a  measure  of  similarity  between  these  two  variables.  The 
assumption of stationarity is necessary to calculate covariance, Cov, between these two 
considered variables. Assumption of weak (second order) stationarity,  the most strict 
assumption  applicable  in  practice,  states  that  the  mean  and  variance  of  Z x  are 
invariant across the region and hence the covariance between the considered variables 
depends only on the lag vector, not on the location of the points within the region:

Cov [Z x  , Z  xh] = E {[Z x −][Z  xh−]} =  
= E {[Z x Z xh−]2} = Covh

[3]

The covariance in Eq. [3] is also called autocovariance function of variable Z and it still 
requires   to be estimated. To get rid of this requirement, the assumption of intrinsic 
stationarity  has  to  be  accepted.  Under  intrinsic  stationarity,  constant  mean  is  still 
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assumed, but semivariance, h  (Eq. [4]), refered also as semivariogram or variogram 
value, is used as a measure of similarity to describe spatial dependency.

h = 1
2

E {[Z x −Z xh]2}  [4]

The goal  of geostatistical  analysis  is  usually kriging,  estimation of the value of  the 
studied  variable  at  unsampled  location,  Z xo, from  values  measured  at  different 
locations  z x i , i=1,2,. .. n.  However,  it  is  also  the  variogram  or  autocovariance 
function that reveals spatial properties of Z (Burrough and McDonnell, 2000; Taylor et 
al., 2003). 

Variograms  are  typically  described  by three  main  features.  For  simplicity,  isotropic 
situation,  h=∣h∣,  is  considered  further.  From  certain  |h|,  called  range, 
semivariance can reach more or less stable value, sill. Range provides information about 
the scale of spatial dependency; points further than range from x have no influence on 
the  value  of  Z x .  In  practice,  semivariance  often  does  not  approach  zero  as  |h| 
approaches zero, but there is a step increment in semivariance near the origin of the 
variogram. This step increment is called the nugget effect and expresses the  ' x  term 
in Eq. [1], i.e., the variability for |h| shorter than the shortest sampling interval and the 
variance  introduced  from measurement  errors.  Nugget  to  sill  ratio  (relative  nugget) 
expresses the strength of spatial autocorrelation and how close does the kriging estimate 
approach  simple  averaging  of  measured  values.  The higher  the  relative  nugget,  the 
weaker is the spatial autocorrelation and the closer is the kriging estimate to the sample 
mean (Isaaks and Srivastava, 1989; Rivero et al., 2007; Webster and Oliver, 2007). Note 
that the variogram model with nugget effect is sometimes expressed as two separate 
models, e.g., pure nugget and pure spherical model, then sill of the spherical structure is 
called partial sill of the whole model (Fig. 1).

Fig. 1.Example of experimental variogram with fitted spherical model and main features identified: sill,  
partial sill, range, and nugget (Burrough and McDonnell, 2000, adjusted).

6



 2.3.2 Geostatistical work flow

Typical  work  flow  of  geostatistical  analysis  involves  1) explanatory  data  analysis, 
2) construction of experimental variograms, 3) fitting variogram models, 4) kriging and 
map production.

The  distribution  of  data  needs  to  be  investigated  and  outliers  removed  during  the 
explanatory data analysis. Although normal distribution is beneficial for geostatistics, 
non-normality is not an obstacle (Clark, 1979; Cressie, 1993; Lark, 2000; Webster and 
Oliver, 2007). However, square root or logarithmic transformation are recommended to 
stabilize variance of samples from highly skewed data. Logit, box-cox, or normal score 
transformations  are  other  alternatives  (Goovaerts,  1999;  Burrough  and  McDonnell, 
2000; Webster and Oliver,  2007).  Webster and Oliver (2007) state that although the 
estimated values based on skewed distribution may not be the most accurate, it is still 
possible to proceed. Whether to transform and which transformation to use is one of the 
subjective decisions that has to be made by the practitioner. During the explanatory data 
analysis,  data  should  be examined for  presence  of  trend and a  decision  whether  to 
remove trend should be made.

Construction of experimental variograms and subsequent fitting of variogram models, is 
the most critical step (Cressie, 1993; Webster and Oliver, 2007). Classical approach is to 
estimate h for certain lag vectors  h and then fit a continuous function through these 
estimates  to  obtain  h defined  for  any  h.  The original  method  for  semivariance 
estimation is the Matheron's method of moments:

h = 1
2 N h∑i=1

N h

[z x i − z  x ih]
2  [5]

where N h denotes the number of points in the data set that are separated just by the 
vector  h.  Some directional  and distance tolerance on  h must  be set  if  the sampling 
design  is  irregular  (Isaaks  and  Srivastava,  1989;  Webster  and  Oliver  2007),  which 
results in a series of breaks of |h| for the isotropic situation.

An  important  detail  is  that  N h must  be  regarded  in  weightings  for  the  fitting 
procedure (Cressie, 1993; Webster and Oliver, 2007). Weighted sum of squares between 
experimental and modelled semivariogram values is  the measure commonly used to 
asses goodness of fit of different types of models. The choice of the model is again 
partly a matter of the practitioner's experience and knowledge of the underlying process 
(Isaaks and Srivastava, 1989). Exponential (Eq. [6]) and spherical (Eq. [7]) variogram 
models are the most commonly used in soil science (French et al., 1995; Lark, 2000; 
Bruland et al., 2006; Grunwald et al., 2006; Webster and Oliver, 2007):
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exp ∣h∣ = c {1 − exp −∣h∣/r }  [6]

 sph∣h∣ = c {3∣h∣2∣h∣
− 1

2∣h∣a 
3} for a≤∣h∣ ; sph ∣h∣ = c for a∣h∣  [7]

where c is the sill, a is the range, and r is the distance parameter for exponential model 
(practical range of exponential model is approximately 3r).

Once the model parameters are known, kriging, referred also as the best linear unbiased 
estimator  (Isaaks  and  Srivastava,  1989;  Burrough  and  McDonnell,  2000),  can  be 
performed. Kriging is linear because the value of the variable at unsampled location 
Z x0 is a linear combination of observed values at sampled locations z x i:

Z x0=∑
1

n

i z x i
 

[8]

and the question is how to determine the weights i  for each of the n points used for the 
prediction. Kriging is unbiased as the expected residual (difference between estimated 
and true value) is 0:

E [ Z x – Z  x ]=0  [9]

Finally, kriging is best in the sense that the variance of the residual is minimal:

Var [ Z x −Z x ]=E {[ Z  x −Z  x]2}  min.  [10]

It  can  be  shown  that  Eq.  [9] constrains  the  weights  so  that  ∑i=1. Then  the 
minimization in Eq. [10] with inclusion of Lagrange multiplier  leads to the following 
system of equations.

11 12 ... 1n 1
21 22 ... 2n 1
⋮ ⋮ ... ⋮ ⋮
n1 n2 ... nn 1
1 1 ... 1 0

1

2

⋮
n


 = 01

02

⋮
0n

1
  [11]

where  ij= x i – x j is the value of semivariance, obtained from the semivariogram 
model  for  the  vector  separating  points  x i  and  x j .  Weights  for  [8] are  obtained by 
solving Eq. [11] (Isaaks and Srivastava, 1989; Webster and Oliver, 2007).

Kriging provides also an estimate of variance of Z x0, KR
2 x0 :

KR
2 x0 = 01 02 ⋯ 0n 1 1 2 ⋯ n T  [12]

where ⋅T  denotes transposition.

8



 2.3.3 Linear model of coregionalization

When more than one regionalized variable is considered in a set W={Z w , w=1,2,t }, 
spatial  relationships  between them can be  described by cross-variograms and linear 
model of coregionalization (LMCR) fitted to auto and cross-variograms (Wackernagel, 
2003;  Webster  and  Oliver,  2007).  Pringle  and  Lark  (2006)  used  this  approach  to 
describe spatial relationships of modelled values of  CO2 released from soil and their 
error,  Goovaerts  (1992)  presented  LMCR  and  factorial  analysis  of  soil  data  and 
simulated data set, and Webster and Oliver (2007) demonstrated LMCR on an example 
of relationships between barley yields, available P, and exchangeable potassium. Cross-
variogram, uvh of variables Z u  and Z v  is defined as (Webster and Oliver, 2007)

uv h=
1
2

E {[Z u x−Z u xh][Z v x −Z v  xh]}  [13]

When  Z u  and  Z v  are  measured  at  identical  locations,  their  cross-variogram can be 
estimated by method of moments:

uv h=
1

2 N h∑i=1

N h

[ zu x i−z ux ih] [z v x i− zv x ih]  [14]

where z ux i  and z v x i are the observed values of variables Z u  and Z v  at location x i  
respectively.  Variogram  model  is  not  fitted  to  the  auto  and  cross-variograms 
independently,  because  such model  of  coregionalization  does  not  guarantee  positive 
semi-definitness (Lark and Papritz, 2003). However, LMCR assumes that the random 
functions  Z w∈W with  means  w  are  linear  combinations  of  independent  random 
variables Y j

s x  with standard normal distribution (Pringle and Lark, 2006):

Z w x  = w  ∑
s=0

L

∑
j=1

t

awj
s Y j

s  x   [15]

where s is an index, not a power, awj
s  are the coefficients of the linear combination, L+1 

is  the  number  of  considered  elementary variogram models,  and  t is  the  number  of 
variables included in the LMCR. It is assumed that the variables Y j

s x  have a common 
semivariogram:

1
2

E[Y j
s x – Y j

s xh][Y j '
s ' x – Y j '

s ' xh]= jj ' ss ' gs h  [16]

where  pq is the Kronecker delta being 1 for p=q and 0 otherwise, and g sh is the s- th 
elementary variogram model with unit sill.  Consequently, the cross-variogram of two 
variables Z u  and Z v  from W can be written as follows.
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uv h = ∑
s=0

L

∑
j=1

t

auj
s avj

s g sh = ∑
s=0

L

buv
s gs h  [17]

where buv
s  represents sill of the s-th structure in the cross-variogram of Z u  and Z v  if the 

models  g sh are  bounded (Webster  and Oliver,  2007).  The variogram models  in  a 
LMCR can be therefore characterized by the individual elementary models g sh and a 
set  of  L+1 positively  semi-definite  coregionalization  matrices  containing  buv

s .  For 
example when t=2 and L+1=2, the models can be written as:

11h 12h
21h 22h = g0 hb11

0 b12
0

b21
0 b22

0   g1hb11
1 b12

1

b21
1 b22

1   [18]

Algorithms  for  fitting  LMCR and  methods  of  describing  coregionalization  are  still 
subject  of  contemporary research  as  the  requirement  of  positive  semi-definitness  of 
LMCR is challenging (Lark and Papritz, 2003; Bishop and Lark, 2008; Emery, 2010). 
Same as for fitting autovariograms, simple models are recommended for fitting LMCR 
and usually just  nugget  and one or  two other  structures  are  used (Goovaerts,  1992; 
Carroll and Oliver, 2005; Pringle and Lark, 2006; Webster and Oliver, 2007; Bishop and 
Lark, 2008).

Recent  developments in  variogram model  parameters  estimation focus on maximum 
likelihood (ML) methods (Diggle et al., 2003; Marchant and Lark, 2007c). However, 
construction of experimental variogram by classical methods as described above is still 
respected  as  a  tool  for  explanatory  analysis  of  spatial  autocorrelation  and  cross-
correlation (Diggle et al., 2003) which was one of the objectives of this study and so 
classical approach was preferred.

 2.4 Moving Window Analysis

Geostatistical tools like cross-variograms describe correlation of the variables for the 
whole study area. To investigate the local spatial distribution of correlation, a moving 
window approach was used. Performing specific operations within a moving window 
drifting  over  a  data  set  is  a  widely used technique  for  example  for  terrain analysis 
(Burrough and McDonnell, 2000), image processing (Richards and Jia, 1999), and for 
investigation of a raw data set (Isaaks and Srivastava, 1989). Grunwald et al. (2006) 
used moving windows to describe P in an Everglades marsh. They passed two (spatially 
coincident) interpolated rasters to a moving window function and calculated correlation 
coefficient for each cell of the interpolated rasters from cells that fell within a window 
of specified size centred on that cell. We used moving windows in a similar way.
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 3 Materials and Methods

 3.1 Study Area

Davis Pond is  a  fresh water  marsh with area of  37.1 km2,  located in  the Barataraia 
Basin, Louisiana, USA, at 29°53´ N, 90°17´ W (Fig. 3). Underlying material is alluvial 
sediment  accumulated  by  the  Mississippi  River  and  its  distributaries  in  geological 
history. The dominant soils are histosols. In 1884, a crevasse in the river levee occurred, 
which contributed to the marshy character of the area (Ensminger and Simon, 1993; 
Fortner, 2000; Gardner and White, 2010).  Panicum hemitomon  (Schult.),  Polygonum 
spp. (DeLaune et  al.,  2008),  Sagittaria lancifolia  (L.),  Eichhornia crassipes  (Mart.), 
Alternanthera  philoxeroides  (Mart.),  Bidens  spp.,  and  Typa  spp. represent  the  most 
abundant emergent plants, Taxodium distichum (L.) is also present mainly in the western 
part (Gardner and White, 2010). 

Before the diversion structure was built,  precipitation,  about 168 mm year‒1 (LNDR, 
2005), was the primary water source for the marsh. The freshwater diversion became 
operational in 2002 (LDNR, 2005) and Davis Pond started to receive the Mississippi 
River water through a canal in the north. The diversion structure can divert up to about 
300 m3 s‒1 of water (Lindquist and Summer, 2007), however, the actual discharge (Fig. 
2) is adjusted according to the operational plans and historical data can be requested 
online  (LNDR,  2010;  USGS,  2010).  There  is  also  a  pump  which  pumps  water 
accumulated after storms into the ponding area over the northern guide levee (Fig.  3). 
When  the  discharge  from the  diversion  is  low,  most  of  the  water  flows  through  a 
naturally developed system of canals in the central part (Gardner and White, 2010). 
Basically the whole south-eastern boundary of Davis Pond is an outflow to a brackish 
Lake Cataouache,  which is  connected  with larger  Lake Salvador  in  the south.  New 
Orleans  city  starts  about  8 km downstream the  Mississippi  from the  diversion,  the 
nearest urban area is Luling, about 2 km upstream.

One of the main function of the ponding area is to slow down the water coming from 
the diversion before it gets further to the Barataria Basin and hence to imitate the regime 
of spring floods and balance the salinity level (Fortner, 2000; DeLaune et al., 2005). 
Few studies have been conducted in Davis Pond since 2002. DeLaune et  al.  (2005) 
reported that Davis Pond was able to remove all nitrate from the introduced river water 
if  the  diversion  discharge  was  not  pulsed  or  high,  Gardner  and  White  (2010) 
documented that denitrification activity was generally higher near the water inlet, and 
DeLaune et al.  (2008) found that Davis Pond acted as a source of dissolved organic 
carbon  for  the  adjacent  Lake  Cataouache  and  that  it  represented  a  source  of 
ammonium–N.

11



Fig. 2. Daily discharge of Davis Pond Freshwater Diversion before and during the time of soil sampling  
(Oct 2006 - Aug 2007) (USGS, 2010).

Fig. 3. Overview map of the study area, Davis Pond, Louisiana, USA.

 3.2 Sampling and Soil Analysis

Soil samples were collected between May 13 and July 10 2007. At each location, a 
plexiglass tube 7 cm in diameter was used to collect a sample of the upper 20 cm of soil, 
which was then partitioned into 0–10 cm and 10–20 cm segments referred further as the 
upper (UP) and lower (LW) layer respectively. Support for each sample was therefore a 
10 cm high cylinder 7 cm in diameter. Gardner and White (2010) describe details about 
the chemical  analysis  except  for TP,  which was determined using the absorbic  acid 
automated  colorimetric  procedure  (Method  365.1;  USEPA,  1993).  Three  sampling 
locations were eventually excluded as outliers, which resulted in 139 sampling points 
for the geostatistical analysis and sampling density of 0.0375 ha‒1.
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Sampling design was optimized for geostatistical analysis by Dr Ben Marchant from 
Rothamsted Research using  spatial simulated annealing (SSA) (Van Groenigen et al., 
1999; Van Groenigen, 2000). SSA ensures that the whole area is more or less uniformly 
sampled, which is desirable for kriging, but also provides broader variety of distances 
between points (Table 1) and thus allows to account for short range variability, which is 
beneficial for variography (Marchant and Lark, 2007b; Webster and Oliver, 2007). Only 
11 pairs were closer than 300 m.

Seven  variables  were  measured  at  each  sampling  point  in  both  layers  (Table  2): 
moisture (MOIST), bulk density (BD), pH, organic matter content (OM), content of TP, 
TN, and TC.

Table 1. Distribution of distances between sampling locations.

Minimum 1st quartile Median Mean 3rd quartile Maximum

Value, m 100 1905 2943 2081 4115 8588

Table 2. Variables measured at each sampling point, their units and naming convention.

Property Units
Variable name in soil depth

0–10 cm 10–20 cm

Moisture proportions MOIST_UP MOIST_LW

Bulk density g cm‒3 BD_UP BD_LW

pH pH units PH_UP PH_LW

Organic matter content proportions OM_UP OM_LW

Total phosphorus mg P kg‒1 soil TP_UP TP_LW

Total nitrogen g N kg‒1 soil TN_UP TN_LW

Total carbon g C kg‒1 soil TC_UP TC_LW

 3.3 Statistical Analysis

R software (R Development Core Team, 2010) and its packages GeoR (Ribeiro and 
Diggle, 2001) and Gstat (Pebesma, 2004) were used for the analysis. Steps introduced 
in section   2.3   were followed to produce maps. Code for calculation of codispersion 
coefficient, structural codispersion coefficient, moving window correlation, and other 
custom functions is enclosed in  Appendix G together with scripts written during the 
analysis.

Webster  and  Oliver  (2007)  recommend  100  sampling  points  as  a  minimum  for 
geostatistical analysis, when spatial anisotropy is not an issue, and at least 250 sampling 
points  for  multidirectional  variogram estimation.  Identification  of  outliers  was  done 
visually,  only 3  points  were  eventually  excluded  based  mainly on  their  position  in 
scatter-grams. Histograms and normal quantile-quantile plots were drawn to investigate 
distribution properties, Shapiro-Wilk test of normality (De Sá, 2007) was performed. 
Data were investigated for presence of trend visually and by the variance ratio F-test as 
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suggested by Burrough and McDonnell (2000, p. 109). No trend was removed from the 
data, discussion on this topic can be found in Appendix A.

Experimental variograms were initially constructed for breaks 0, 200, 400, 500, 600, 
1000, 1400, to 8000 m, another set of breaks was 0, 600, 1200, to 8000 m, and finally 
breaks 0, 300, 600, to 3300 m were considered optimal for model fitting. Spherical and 
exponential models were fitted and the model with the lowest weighted sum of squares 
between  experimental  and  modelled  semivariance  was  chosen.  Classical  method  of 
moments (Eq.  [5])  and  Hawkins and Cressie robust variogram estimator (Eq.  [19]) 
(Ribeiro and Diggle, 2001) were used.

CH h =
{ 1

N h ∑i=1

N h

∣z x i−z  x ih∣
1
2}

4

0.914[0.988 /N h]
 [19]

Because  the  robust  estimator  did  not  produce  visually  very  different  experimental 
variograms, method of moments was used for model fitting. Number of pairs in each lag 
was used as weightings for weighted least squares fitting procedure.

Neither method of moments, nor robust estimator produced clear variogram of pH, but 
based the experimental variogram and previous studies (Fennessy and Mitsch, 2001; 
Bruland  and  Richardson,  2005;  Smith  et  al.,  2007),  pH  was  considered  spatially 
autocorrelated  and  variogram  model  parameters  were  found  using  the  residual 
maximum likelihood (REML) method (Cressie, 1993; Ribeiro and Diggle, 2001; Kerry 
and Oliver, 2007).

Because the number of sampling points was too low to split the data set into calibration 
and validation sets, all points were used for variogram construction and model fitting. 
Cross-validation of the fitted models was performed to assess how faithfully did they 
express the spatial dependency. Cross-validation is done by leaving out each point x i  
and kriging an estimated value at its location from the remaining samples (Pebesma, 
2004). One of the summative indicators that can be calculated from cross-validation 
results is the mean squared deviation ratio (MSDR) (Webster and Oliver, 2007):

MSDR = 1
n∑i=1

n [z x i − Z  x i]
2

KR
2 x i

 [20]

where n is the number of points in the data set. The value of MSDR should be close to 1 
(Webster  and Oliver,  2007),  however,  Isaaks  and Srivastava (1989) remind that  this 
single value should not be regarded as a  bulletproof indicator of model quality and that 
investigation of individual cases where the difference between measured and estimated 
value is high can provide useful information.
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The  variogram  models  were  used  for  punctual  ordinary  kriging  with  global 
neighbourhood (Ribeiro and Diggle, 2001), i.e., all the data points were used for each 
estimate. Final map layouts were produced in ArcMap (ESRI, 1999–2009).

LMCR was  fitted  to  the  auto  and cross-variograms of  variables  in  the  upper  layer 
(excluding  moisture)  using  the  Gstat  R  package  (Pebesma,  2004).  Based  on  visual 
inspection of the auto and cross-variograms, just nugget (index  s=0) and exponential 
model  with  range  of  1100 m  (index  s=1)  were  included  in  the  LMCR.  This 
generalization  of  model  type  and  unification  of  ranges  for  the  LMCR is  desirable 
because models with different ranges represent individual structures in the LMCR (Lark 
and Papritz, 2003; Wackernagel, 2003; Carroll and Oliver, 2005; Webster and Oliver, 
2007). To obtain a valid (positively definite) LMCR, weightings for the fit were set to 
N ∣h∣ / [∣h∣2] .

Codispersion  coefficient  uv h is  calculated  as  uv h = uv h/ uuh⋅vvh , 
where uvh, uu h, and vvh refer to the value of cross-variogram of variables Z u  
and Z v , autovariogram of variable Z u , and autovariogram of variable Z v , respectively, 
for certain lag vector h (Pringle and Lark, 2006). Structural codispersion coefficient uv

s  
is calculated directly from the coregionalization matrices as uv

s = buv
s /buu

s bvv
s , where 

b ij
s  refers to the element at position (i,j) in the coregionalization matrix for structure s. 

The advantage of codispersion coefficient is that it  is not affected by the LMCR fit 
(Lark and Papritz, 2003; Pringle and Lark, 2006). When uv h does not change with h, 
the two variables are said to be intrinsically correlated, i.e., the correlation is the same 
for all  spatial  scales within the region (Wackernagel,  2003; Pringle and Lark,  2006; 
Webster  and  Oliver,  2007).  Interpretation  of  uv h and  uv

s  is  similar  to  the  usual 
Pearson product moment correlation coefficient. Values are within interval [‒1,+1] with 
negative values indicating association of high values of one variable with low values of 
the other, and positive values indicating association of high values of one variable with 
high values of the other variable. The closer to one (or minus one), the stronger the 
relationship. While  uv h provides an information how does this correlation changes 
with  different  lag  vectors,  uv

s  provides  more  general  information  how are  the  two 
variables related within the range of the particular structure (Pringle and Lark, 2006). 

So called hulls of perfect correlation (Eq.  [21], Wackernagel, 2003) represent another 
approach  how  to  look  at  intensity  of  spatial  correlation  between  two  variables. 
Proximity of the cross-variogram to the hull of perfect correlation indicates the strength 
of the relationship (Webster and Oliver, 2007).

hull[uv h] = ±∑
s=0

L

buu
s bvv

s gs h [21]

where s denotes the index of one of the L+1 structures (in the case of this study, L=1, 
s=0 for the nugget, s=1 for the exponential model with 1100 m range), buu

s  and bvv
s  are 
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the sills of the s-th structure in autovariogram models of  Z u  and Z v  respectively (and 
are  on  the  diagonal  of  the  s-th  coregionalization  matrix),  and  g sh represents  the 
standardized form of the s-th structure.

During the moving window analysis, Pearson's product moment correlation coefficients 
were calculated  in square windows of 6 different side sizes: 250, 500, 750, 1100, 2200, 
and 3300 m. These thresholds were selected with respect to the approximate common 
range of variograms about 1100 m. Centres of the windows were specified as a fixed 
grid with 100 m spacing. Only cells that fell within Davis Pond were regarded as input 
data points.

 4 Results

During the explanatory data analysis, sound deviations from normality were detected. 
Only  pH  and  TP_LW  had  normal  distribution  according  to  Shapiro-Wilk  test  of 
normality. However,  only  BD_UP  was  eventually  transformed  by  box-cox 
transformation  with  power  ‒0.5.  This  transformed  variable  is  further  referred  as 
bxBD_UP.  Transformations  of  other  variables  did  not  bring  any  substantial 
improvement.  Univariate  summary  statistics  with  other  results  of  explanatory  data 
analysis are enclosed in Appendix A.

Investigation  of  histograms  (Appendix  A) and  spatial  location  of  values  revealed 
presence of  two distinct  groups in  the lower  layer,  mostly characterized  by organic 
matter content.  Highly organic samples (OM_LW>0.5, 87 points) had high moisture 
content (MOIST_LW>0.8), low density (BD_LW<0.3), and generally higher content of 
C and N. Remaining 52 points had OM_LW<0.5, lower moisture content, and higher 
density.

Scatter-grams  (Appendix  A)  showed  that  there  were  strong  non-linear  relationship 
between density or moisture and other variables. Within the same layer, there was an 
obvious strong relationship between moisture and density (ρ≈‒1). Very strong positive 
correlation was between TC, TN, and OM (ρ≈1) and all  these three variables  were 
strongly correlated with moisture and density (|ρ|=0.8). Correlation of TP or pH with 
other  variables  was  generally  low.  Between  layers,  relationships  were  weak 
(usually ρ≤0.5), the strongest correlation (ρ≈0.7) was found again between TC, TN, and 
OM. Pearson's (Table 3) and Spearman's rank correlation coefficients of all 14 variables 
can be found in  Appendix A.

It  was  concluded  that  there  was  no  spatial  relationship  in  the  lower  layer  and  any 
interpolation of the variables in 10–20 cm soil depth was found meaningless. This was 
based on experimental variograms constructed by method of moments and Hawkins and 
Cressie  robust  estimator  (Appendix  B).  Trend  removal,  directional  variogram 
investigation, data transformation, splitting the data set into more parts, nor indicator 
variogram investigation (Appendix E) did not help.
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Table 3. Pearson's correlation coefficients between variables in 0–10 cm soil depth in Davis Pond.†

Moisture BD pH OM TP TN TC

Moisture 1.00

BD ‒0.99 1.00

pH ‒0.25 0.27 1.00

OM 0.79 ‒0.78 ‒0.39 1.00

TP 0.44 ‒0.42 0.16 0.31 1.00

TN 0.79 ‒0.78 ‒0.39 0.97 0.38 1.00

TC 0.78 ‒0.77 ‒0.38 0.99 0.30 0.97 1.00

†BD, bulk density; OM, organic matter content; TP, total phosphorus; TN, total nitrogen; TC, total  
carbon.

In the upper layer, variogram models were fitted to all variables except MOIST_UP 
(Fig.  4).  Appendix F describes how map of MOIST_UP was produced. The maximal 
distance between points regarded for the construction of these variograms was 3300 m 
because  variogram values  calculated  from points  further  than  this  distance  became 
erratic. Appendix B contains experimental variograms also of the variables in the lower 
layer. Spherical variogram model fitted better for TP_UP, but exponential model had 
lower  sum of  weighted  least  squares  for  OM_UP,  TC_UP,  TN_UP,  and  bxBD_UP 
(Table 4). Even in the case of TP_UP, MSDR of the exponential model was closer to 
one than the MSDR of the spherical model, but spherical model fitted the nugget more 
realistically and was used for kriging.  Parameters of the spherical model of PH_UP 
were obtained using the REML method because experimental variograms were erratic 
for both method of moments and Hawkins and Cressie robust estimator. The assumption 
of normality required by the REML method (Diggle et al., 2003; Webster and Oliver,  
2007) was fulfilled in the case of PH_UP.
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Fig. 4. Experimental autovariograms (dots) and fitted variogram models (lines) of soil properties in  
0–10 cm soil depth; (a) total nitrogen, (b) total carbon, (c) bulk density transformed by box-cox  
transformation with power ‒0.5, (d) pH, (e) organic matter content, (f) total phosphorus. Model of pH 
was obtained by residual maximum likelihood method.

Table 4. Variogram models used for kriging of soil properties in 0–10 cm soil depth.†

Property Model type SSSQ‡ Nugget‡ Partial sill‡ Range Practical range MSDR

––––––––– m ––––––––

pH spherical ‒1.79×101§ 5.73×10‒2 5.44×10‒2 4694 4694 1.0057

OM exponential 9.39×10‒2 1.13×10‒2 5.63×10‒2 1080 3235 1.0046

TP spherical 1.60×105 3.30×104 2.88×104 1393 1393 0.9415

TN exponential 7.51×101 1.81×101 5.98×10‒2 1095 3280 0.9886

TC exponential 2.37×104 4.15×103 1.54×104 1237 3707 0.9995

bxBD exponential 5.38×101 9.69×10‒1 3.31×100 905 2712 1.0300

†OM, organic matter content; TP, total phosphorus; TN, total nitrogen; TC, total carbon; bxBD, bulk  
density transformed by box-cox transformation with power ‒0.5; SSSQ, square root of weighted sum of  
squares of differences between experimental and modelled variogram value; MSDR, mean square  
deviation ratio obtained by cross-validation.
‡ Units are (pH Units)2, mg2 P kg‒2 soil, g2 N kg‒2 soil, and g2 C kg‒2 soil for pH, TP, TN, TC,  
respectively, otherwise the quantities are dimensionless.
§ maximized loglikelihood obtained by residual maximum likelihood method, dimensionless.

Maps of  BD_UP, PH_UP, TC_UP, and TP_UP (Fig.  5)  with  the estimated  standard 
deviations disclosed that spatial distribution of TC_UP and BD_UP was similar. Both 
TP_UP and PH_UP exhibited  different  spatial  pattern.  The uniformly high  standard 
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deviation of PH_UP and TP_UP was a consequence of high nugget effect. OM_UP and 
TN_UP exhibited the same pattern as TC_UP. All maps are enclosed in Appendix H.

Fig. 5. Maps of (a) total carbon (TC), (b) pH, (c) total phosphorus (TP), and (d) bulk density (BD) in  
0–10 cm soil depth and associated estimated standard deviations. Gray line is Davis Pond boundary,  
black crosses are sampling locations.
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Mean range of exponential variograms of OM_UP, TN_UP, and TC_UP (Table 4) was 
1137 m, hence LMCR with nugget and exponential model with 1100 m range was fitted 
to the autovariograms (Fig. 7) and cross-variograms (Fig. 6) of the variables in the 
upper layer (Table 5). MOIST_UP was not included.

Fig. 6. Experimental cross-variograms (dots) of pH, bulk density transformed by box-cox transformation  
with power ‒0.5 (bxBD), organic matter content (OM), total phosphorus (TP), total nitrogen (TN), and  
total carbon (TC) in 0–10 cm soil depth and fitted linear model of coregionalization with exponential  
model of 1100 m range (solid line). Proximity of the exponential model to the hull of perfect correlation  
(dashed lines) indicates strength of spatial relationship between the involved soil properties: (a) pH and  
TP, (b) OM and TP, (c) pH and OM, (d) pH and TN, (e) OM and TN, (f) TP and TN, (g) TC and bxBD,  
(h) pH and TC, (i) OM and TC, (j) TP and TC, (k) TN and TC, (l) pH and bxBD, (m) OM and bxBD, (n)  
TP and bxBD, (o) TN and bxBD.
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Fig. 7. Experimental autovariograms (dots) of soil properties in 0–10 cm soil depth and fitted linear  
model of coregionalization with exponential model of 1100 m range (line); (a) pH, (b) organic matter  
content, (c) total phosphorus, (d) total nitrogen, (e) total carbon, (f) bulk density transformed by box-cox  
transformation with power ‒0.5.

Codispersion coefficients calculated for a series of lag distances (Fig. 8) suggested that 
OM_UP, TN_UP, and TC_UP were intrinsically correlated, which corresponded to the 
close  proximity of  the  cross-variograms  of  these  three  variables  to  hulls  of  perfect 
correlation (Fig.  6) and  uv

1  of almost 1 (Table 6). Codispersion coefficients between 
TP_UP and OM_UP, TN_UP, or TC_UP were approximately 0.5 within the first 1000 m 
and then decreased below 0.4. Weak spatial relationship of TP_UP to other variables 
was documented also by uv

1 <0.5 and uv
0 >0.7. This was in accord with cross-variograms 

being  close  to  pure  nugget  when  TP_UP  was  involved,  and  actually  also  the 
autovariogram model of TP_UP had nugget to sill ratio almost 0.75.

The  LMCR  and  its  proximity  to  hulls  of  perfect  correlation  suggested  moderate 
negative spatial correlation of PH_UP with OM_UP, TN_UP, or TC_UP (uv

1 ≈‒0.5) and 
relatively strong spatial correlation between PH_UP and TP_UP (uv

1 >0.7). However, 
experimental cross-variograms with PH_UP, as well as the values of  uv h, indicated 
much weaker, if any, spatial relationship of PH to the other variables.
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Table 5. Parameters of linear model of  
coregionalization of soil properties in 0–10 cm 
soil depth. Model type is exponential with fixed  
range of 1100 m.†

Properties Nugget Partial sill

pH, (pH units)2 4.21×10‒2 8.05×10‒2

OM 7.30×10‒3 6.49×10‒2

TP, mg2 P kg‒2 soil 394×102 269×102

TN, g2 N kg‒2 soil 9.75×100 7.08×101

TC, g2 C kg‒2 soil 2.05×103 1.75×104

bxBD 9.17×10‒1 3.60×100

pH and OM 7.30×10‒3 ‒2.83×10‒2

pH and TP 4.23×100 1.27×101

pH and TN 2.30×10‒1 ‒1.17×100

pH and TC 4.12×100 ‒1.92×101

pH and bxBD ‒1.05×10‒1 2.10×10‒1

OM and TP 9.78×100 1.00×101

OM and TN 2.23×10‒1 2.08×100

OM and TC 3.51×100 3.31×101

OM and bxBD ‒3.51×10‒2 ‒4.26×10‒1

TP and TN 4.10×102 4.65×102

TP and TC 5.80×103 3.98×103

TP and bxBD ‒1.42×102 ‒9.57×101

TN and TC 1.25×102 1.10×103

TN and bxBD ‒1.14×100 ‒1.43×101

TC and bxBD ‒1.64×101 ‒2.23×102

†OM, organic matter content; TP, total  
phosphorus; TN, total nitrogen; TC, total  
carbon; bxBD, bulk density transformed by  
box-cox transformation with power ‒0.5
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Table 6. Structural codispersion coefficients of  
each structure and variable in the linear model  
of coregionalization.

Properties uv
0 uv

1

pH and OM 0.42 ‒0.39

pH and TP 0.10 0.27

pH and TN 0.36 ‒0.49

pH and TC 0.44 ‒0.51

pH and bxBD ‒0.54 0.39

OM and TP 0.58 0.24

OM and TN 0.84 0.97

OM and TC 0.91 0.98

OM and bxBD ‒0.43 ‒0.88

TP and TN 0.66 0.34

TP and TC 0.65 0.18

TP and bxBD ‒0.75 ‒0.31

TN and TC 0.89 0.99

TN and bxBD ‒0.38 ‒0.90

TC and bxBD ‒0.38 ‒0.89

†OM, organic matter content; TP, total  
phosphorus; TN, total nitrogen; TC, total  
carbon; bxBD, bulk density transformed by 
box-cox transformation with power ‒0.5; uv

0  
and uv

1  are structural codispersion coefficients  
for nugget and exponential model with 1100 m 
range respectively.
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Fig. 8. Codispersion coefficients (dots)  of pH, bulk density transformed by box-cox transfromation with  
power ‒0.5 (bxBD), organic matter content (OM), total phosphorus (TP), total nitrogen (TN), and total  
carbon (TC) in 0–10 cm soil depth for lag distances from 300 to 8000 m by 600 m. The dashed line is  
constant zero; (a) pH and TP, (b) OM and TP, (c) pH and OM, (d) pH and TN, (e) OM and TN, (f) TP 
and TN, (g) TC and bxBD, (h) pH and TC, (i) OM and TC, (j) TP and TC, (k) TN and TC, (l) pH and 
bxBD, (m) OM and bxBD, (n) TP and bxBD, (o) TN and bxBD.

Moving  window  correlation  surfaces  (Appendix  C)  depict  spatial  distribution  of 
correlation  between  variables,  correlation  surface  between  TC_UP and  PH_UP and 
TP_UP is shown as an example (Fig. 9). There was a general tendency that correlation 
surface became smoother with increasing window size. This was caused by increasing 
overlap of adjacent windows. At larger scale (window size >750 m), OM_UP, TN_UP, 
and TC_UP were positively correlated. There were small patches of negative correlation 
in southern part of the region at smaller scale (window size ≤750 m), most pronounced 
near  the  southern  boundary  and  when  TN_UP was  one  of  the  variables  involved. 
Correlation coefficient surfaces for TP_UP with the three discussed variables exhibited 
irregular  patches  of  positive  and  negative  correlation  at  smaller  scale.  With  large 
window sizes, there was a big area of negative correlation in the northern part of the 
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region and near the south-eastern boundary, otherwise the correlation coefficient was 
positive. Correlation of TP_UP with any other variable in smaller windows was highly 
patchy and patches of both strong positive and strong negative correlation were present. 
With increasing window size, it became more apparent that correlation (with TP_UP) in 
the northern part was predominantly negative, while patches of positive correlation were 
more abundant in south-western part of Davis Pond. A ‘doughnut-shape’ feature in the 
northern part of the region was more or less distinct in all correlation surfaces, except 
between OM_UP, TN_UP, and TC_UP. This feature was most apparent in correlation 
surfaces between PH_UP and OM_UP, TN_UP, or TC_UP (Fig. 9a). Correlation surface 
of  BD_UP with  OM_UP,  TN_UP,  or  TC_UP was  generally  strongly  negative.  The 
correlation  surface  of  BD_UP and  PH_UP exhibited  pattern  similar  to  correlation 
surfaces  of  PH_UP  with  any  other  variable,  but  with  the  opposite  sign,  thus 
predominantly negative correlation in the south and positive in the northern part. The 
pattern of correlation between BD_UP and TP_UP was very similar to the pattern of 
correlation between TP_UP and OM_UP, TN_UP, or TC_UP.

Fig. 9. Moving window correlation surfaces of (a) total carbon and pH, and (b) total carbon and total  
phosphorus in 0–10 cm soil depth.
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 5 Discussion

When the crevasse in the river levee occurred in 1884, a large amount of predominantly 
mineral  material  was  spread  over  Davis  Pond  and  settled  in  patches  (J.R.  White, 
personal  communication,  2010).  This  can  explain  the  bimodal  distribution  of  some 
variables as well as absence of a spatial relationship in the lower layer. Some samples 
were most probably taken from areas of these highly mineral patches, while others were 
collected at locations that did not receive the sudden mineral material load.

All  our  analyses  indicated  very  close  relationships  between  OM_UP,  TC_UP,  and 
TN_UP. These close relationships are not that surprising because C and N in marshes 
are present mostly in organic forms and represent considerable portion of organic matter 
(Mitsch  and Gosselink,  2000;  DeBusk et  al.,  2001).  For  simplicity,  only TC_UP is 
discussed further as a representative of these three variables.

Spherical  model  of  TP_UP  with  approximately  1400 m  range  suggested  that  the 
processes  affecting  TP_UP act  on  finer  spatial  scale  than  processes  that  determine 
distribution of TC_UP with practical range of the exponential model about 3700 m. The 
high nugget in case of TP_UP indicated that the processes causing the high TP_UP 
variability operate at  distances shorter than the minimum sampling interval (100 m). 
This does not agree with what was found in Everglades, where TP had usually longer 
range than TC or TN (Grunwald and Reddy,  2008).  However,  no long-range spatial 
autocorrelation structure was found in the variogram of TP_UP in Davis Pond. Maps of 
kriged values showed that TP_UP tended to form patches of low and high values about 
1400 m  meters  in  diameter,  which  was  coherent  with  the  range  of  the  spherical 
variogram (Webster and Oliver, 2007). Few small patches (diameter about 500 m) of 
very high values were present and they probably contributed to the high nugget to sill 
ratio of the TP_UP variogram. High nugget resulted in high kriging variance even in 
close proximity of the sampling points (standard deviation about 210 mg P kg‒1 soil).

Spherical model of PH_UP had the longest range (more than 4500 m) and the highest 
nugget to sill ratio, which indicates weak spatial autocorrelation and resulted in a kriged 
surface with low gradients and kriging standard deviation of about 0.25 pH units even in 
close  proximity  of  the  sampling  points.  Considering  the  narrow range  of  predicted 
PH_UP (6.1 to 7.7 pH units), any conclusions about the spatial behaviour of PH_UP are 
associated with high uncertainty.

The variogram of bxBD_UP suggested that bulk density had similar spatial properties as 
TC_UP, even the spatial patterns of kriged maps of bxBD_UP and TC_UP are obviously 
similar.  The  atypical  pattern  of  kriging  variance  surface  of  bxBD_UP  (thus  also 
MOIST_UP)  is  a  consequence  of  extreme  skewness  of  the  original  distribution  of 
BD_UP and the box-cox back transformation of kriging variance.
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Cross-variograms and LMCR suggested that TP_UP was only loosely related to any of 
the other variables considered in this study and this was reflected in  uv h and  uv

s . 
Dynamics of P is likely to be determined by interactions with inorganic material more 
strongly than C or N (Mitsch and Gosselink, 2000). However, saying that TP_UP is 
driven by abiotic processes would be an oversimplification. For example Rivero et al. 
(2007) found that about 2/3 of TP were in organic form in Water Conservation Area 2A, 
Everglades.

Pringle and Lark (2006) warn that close proximity of cross-variogram to the hull of 
prefect correlation may not truthfully reflect the relationship between variables and can 
be caused by poor fit of the LMCR. The variograms of OM_UP, TC_UP, and TN_UP 
were  almost  coincident  with  the  hulls  of  perfect  correlation,  however,  the  natural 
explanation  of  relationships  between these three variables,  strong simple  correlation 
(ρ≈1), and the shape of autovariograms make the LMCR fit reasonable.

The LMCR did not fit the autovariograms and cross-variograms with PH_UP or TP_UP 
that closely because the range of the model (1100 m) was set according to OM_UP, 
TC_UP, and TN_UP. However, also the codispersion coefficients, which do not depend 
on the LMCR fit, confirmed weak spatial relationship of PH_UP to other variables. The 
relationships appeared to be even weaker (Table 6) in the case of TP_UP. Codispersion 
coefficients  suggested  that  TP_UP  was  more  strongly  correlated  to  TC_UP  and 
bxBD_UP at  shorter  range.  However,  different  choice  of  LMCR model  and,  more 
importantly, more sampling points separated by distances shorter than 300 m would be 
necessary to confirm this.

Interpretation of the moving window correlation surfaces should be done with caution. 
Correlation  coefficient  generally  fails  to  indicate  presence  of  other  than  linear 
relationship (De Sá, 2007). It should be remembered that  w  was calculated from the 
kriging  estimates  and  that  kriging  as  an  interpolation  technique  smooths  extremes 
towards the sample mean (Webster and Oliver, 2007). Due to spatial autocorrelation of 
each variable, neighbouring cells had similar values, consequently scatter-gram of two 
variables within a window produced often a peculiar cloud. It is the case when spatial 
autocorrelation complicates utilisation of otherwise commonly used statistics (Cressie, 
1993). Furthermore, kriging variance was not utilized to express any level of confidence 
about  w .  Smoothing  of  the  correlation  surface  with  increasing  window  size  is 
explained in  section   4  .  Although  w  can help to  interpret properties of two raster 
surfaces, it cannot be recommended as a rigorous tool for exploration of the local spatial 
relationships between variables. Nevertheless, two major trends were interesting.

Negative w  of PH_UP and TC_UP occurred in the northern part with generally higher 
PH_UP. In the southern part, with predicted PH_UP values mostly below 7, areas of 
positive correlation were present. Association of rather acidic conditions with organic 
matter could be explained by higher concentrations of humic substances coming from 
the  microbial  degradation  of  dead  plant  tissues  (Reddy  and  DeLaune,  2008). 
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On the other  hand,  maps and correlation surfaces showed that  areas of high organic 
matter  content  were  associated  with  high  moisture  content  which  implies  reduced 
conditions and consequently higher pH.

Another  striking  property  of  most  correlation  surfaces  was  the  presence  of  the 
‘doughnut-shape’ feature in the north, where was an area of continuously low values of 
TC_UP. Perhaps the constellation of this cold spot of TC resulted in this distinct feature. 
The relationship between TC_UP and TP_UP in the northern part may be more affected 
by the river water because the water inlet is in the north. As already mentioned, high 
estimated standard deviation of PH_UP implies high level of uncertainty associated with 
conclusions about PH_UP and the same is true for TP_UP.

The similar pattern of correlation surface between any variable versus TC_UP, OM_UP, 
or TN_UP and correlation surface of that variable versus bxBD_UP can be expected 
because bulk density was strongly negatively correlated with TC_UP, as documented 
also by the correlation surface of TC_UP and bxBD_UP.

Absence of spatial autocorrelation in the lower layer does not allow for many insights 
and makes interpolation in this layer by any method unreasonable.  However, spatial 
continuity in the upper layer suggests that the freshwater intrusion plays an important 
role in  interactions of the studied variables. Although there is no direct evidence that 
this spatial continuity has been developed because of the water inlet, we assume that the 
river water carrying nutrients and sediments also mobilises material at the surface of the 
marsh  and redistributes  it.  Transport  and redistribution  are  likely to  be  the  primary 
forces  that  are  amplified  by  freshwater  intrusion.  Higher  mobility  and  influx  of 
sediment and nutrients alter the rates of more complicated processes related to microbial 
activity and vegetation communities.  Although these processes are crucial  for marsh 
accretion,  it  is  impossible  to  judge  the  influence  of  freshwater  intrusion  on  these 
complex interactions based on our results. Links to biogeochemistry or vegetation are 
also missing in other recent studies that assess the impact of freshwater intrusion on 
marsh accretion (DeLaune et al., 2003; Boustany, 2010).

The accretion  rate  of  Louisiana  marshes  is  driven predominantly by organic  matter 
accumulation (DeLaune et al., 2003) which is again determined by the level of primary 
production  and  rate  of  OM decomposition.  Information  about  vegetation  should  be 
therefore  recorded  and  analysed  together  with  soil  properties  in  future  research. 
Corstanje et al. (2006) also suggested that inclusion of an up-to-date vegetation map 
would be beneficial for further research in Everglades.

Comparison of results from Davis Pond with other marshes is not straightforward for 
two reasons. One is the uniqueness of hydrologic conditions in each marsh (Mitsch and 
Gosselink,  2000),  the  second  is  of  methodological  nature.  Davis  Pond  has  been 
receiving  river  water  since  2002,  which  strongly  altered  the  hydrologic  regime. 
Geostatistical studies investigating freshwater marsh under similar conditions have not 
been published yet. Although studies of the same soil properties exist, mainly from the 
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Everglades, the hydrologic regime and the objectives of protection or restoration plans 
differ. Furthermore, researches often use different data transformations to fit variograms 
and, more importantly, different sampling densities. Also the size of the area of interest 
varies widely. Sampling density in Davis Pond (0.0375 ha‒1) was closer to the level of 
studies  from Everglades  (sampling  density  about  0.002 ha‒1)  than  to  the  studies  of 
individual fields with sampling densities several orders higher than 1 ha‒1  (Grunwald 
and Reddy,  2008).  Different  sampling density,  minimum distance  between sampling 
points and in practice also the size of the study area affect the scale of autocorrelation 
structures that can be revealed. Taking Everglades as an example, spatial continuity of 
soil  properties  was  studied  in  individual  conservation  areas  at  scale  of  several 
kilometres (Bruland et al., 2006; Corstanje et al., 2006; Grunwald et al., 2006; Rivero et  
al.,  2007;  Grunwald  and Reddy,  2008),  but  the variograms changed considerably at 
regional scale of tens of kilometres (Corstanje et al., 2008). This makes it difficult to 
generalize soil properties from individual marshes and compare independent studies.

Variogram parameter estimation in this study was based on classical  geostatistics and 
the method of moments. Studies from Everglades generally adopted the same approach 
(Bruland et al., 2006; Corstanje et al., 2006; Grunwald et al., 2006; Rivero et al., 2007; 
Corstanje et al., 2008; Grunwald and Reddy, 2008). The classical approach brings in the 
need to make several arbitrary decisions. Perhaps the most critical are the choice of 
breaks  for  the  experimental  variogram,  the  choice  of  estimator  type  (method  of 
moments or robust estimators), and the choice of weightings for the fitting procedure. 
Rather pragmatic attitude is generally recommended in the literature, when the decisions 
are made based on visual impression and trial (Clark, 1979; Webster and Oliver, 2007) 
or (cross-)validation (Lark, 2000). ML methods reduce the need for arbitrary decisions 
(Diggle et al., 2003; Chai at al., 2008). In the original form, ML methods rely on the 
assumption of normal distribution of residuals from the structural component (Cressie, 
1993), but robust ML method of variogram parameter estimation has been proposed 
(Marchant and Lark, 2007c) and even LMCR parameters have been estimated by ML 
method (Marchant and Lark, 2007a). These, however, have not yet been implemented in 
generally available software. Our experience was that the procedure that implements 
REML in  GeoR  (Ribeiro  and  Diggle,  2001)  was  extremely  sensitive  to  the  initial 
settings of the range parameter and usually did not alter the initial range and converged 
to the same maximized likelihood value as for different initial settings. The numerical 
complexity of ML methods represents major challenge for practical application, but the 
theoretical background of ML methods (Cressie, 1993; Diggle et al.,  2003) provides 
a vital alternative to the classical approach and we recommend them as a way forward.

It is worth to mention several observations in case that sampling in Davis Pond should 
be repeated to assess changes in soil properties and possibly develop a framework for 
monitoring of similar systems. Optimized sampling design for geostatistical  analysis 
ensures relatively uniform coverage of the region, which is beneficial for kriging, but 
also provides sufficient variety in lag istances for variography (Lark, 2002; Marchant 
and Lark, 2007b; Webster and Oliver, 2007). The optimization is in principle based on 
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minimization  of  kriging  variance  and  the  variance  arising  from  the  variogram 
uncertainty  (Burrough  and  McDonnell,  2000;  Marchant  and  Lark,  2007b).  The 
constellation  of  sampling  points  for  this  study  was  designed  using  SSA with  the 
variogram models of TP from Everglades, because no variogram from Davis Pond was 
available  (R.  Corstanje,  personal  communication,  2010).  Final  sampling  design 
contained  10 point  pairs  separated  by 100 m.  Paradoxically,  variograms  of  TC_UP, 
OM_UP, TN_UP, and bulk density were successfully depicted,  but TP_UP had high 
nugget. PH_UP is even more challenging variable as it had both high nugget and long 
range. We suggest using similar approach for ongoing sampling campaigns, but taking 
one additional sample 50 m from one of the points in the pairs separated by 100 m (Fig. 
10). This form of nested sampling is not the most efficient from the kriging perspective, 
but we expect it would substantially help to describe the short range variability and to 
lower the nugget of TP_UP and PH_UP variograms. Another option is to perform new 
SSA based on variograms presented in this paper. The high nugget of TP_UP variogram 
may  be  partly  caused  by  different  behaviour  of  organic  and  inorganic  forms  of  P 
(Grunwald  et  al.,  2006).  Rather  than  investing  resources  into  gathering  even  more 
samples, we assume that differentiation of TP into organic and inorganic fraction would 
help to understand P dynamics in Davis Pond.

Fig. 10. Concept of recommended extension of sampling design for future sampling in Davis Pond. Black  
circles represent the original points, black square is the newly added sampling point.

Material  presented  in  this  paper  can  be  used  to  formulate  hypotheses  about  soil 
properties  in  Davis  Pond.  The distinct  cold  spot  on maps  of  TC_UP, OM_UP, and 
TN_UP  brings  doubts  whether  stationarity  is  a  reasonable  assumption.  Testing 
stationarity requires sample size much larger than are realistic requirements for Davis 
Pond (Corstanje et al., 2008). However, it is the northern part that should be sampled 
with higher density if stratified sampling is concerned.

 6 Conclusions

The results presented in this study set a first benchmark for soil dynamics monitoring in 
Davis Pond. OM, TC, and TN in 0–10 cm soil depth exhibited similar spatial pattern 
with distinct area of low values in the northern part of Davis Pond and were highly 
correlated  at  all  spatial  scales.  These  three  variables  were  also  highly  spatially 
correlated with BD. Very strong linear relationship was found between moisture and 
BD, map of BD was produced by kriging and the linear relationship was used to map 
moisture. We explain these relationships by the role of vegetation in marsh ecosystems. 
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Accumulation of dead plant tissues as soil organic matter, in which C and N represent 
abundant  elements,  leads  to  low  bulk  density  and  consequently  high  moisture. 
Distribution of TP was driven by processes that act at finer spatial scale (practical range 
1400 m) than in the case of OM, TN, TC (practical range 3300 m), and BD (practical 
range 2700 m) in 0–10 cm soil depth. TP was highly variable even at distances shorter 
than  the  minimum sampling  interval  (100 m)  and correlation  with  any of  the  other 
variables was low at all spatial scales. We expect that differentiation of TP into organic 
and inorganic fraction and taking 10 more samples in the near range would help to 
explain the short range variability and to understand the dynamics of P in Davis Pond. 
High nugget to sill ratio in the case of TP and pH in 0–10 cm soil depth resulted in high 
uncertainty associated with interpolated values. Spatial correlation of pH with any of the 
other variables was low and the role of pH remains unclear. However, variogram of pH 
suggested that, although weakly, pH was autocorrelated within Davis Pond (range of 
4500 m).  No  spatial  relationships  were  found  in  10–20 cm  soil  depth.  Therefore, 
interpolation in the lower layer was not performed.
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Appendix A Explanatory Data Analysis

Table A.1 shows summary statistics for all the soil properties included in this study, thus 
moisture (MOIST), bulk density (BD), pH (PH), organic matter content (OM), content 
of total phosphorus (TP), content of total nitrogen (TN), and content of total carbon 
(TC), from 0–10 cm (UP) and 10–20 cm (LW) soil depth, bxBD is BD transformed by 
box-cox transform with power ‒0.5. All results presented are without the three sampling 
points  that  were  excluded  as  outliers,  hence  number  of  observations  is  139.  Data 
distribution  properties  and  deviations  from  normal  distribution  were  investigated 
visually by histograms (Fig. A.1) and quantile-quantile plots (Fig. A.2) and by Shapiro-
Wilk test of normality (Table A.2). Only pH in both layers and TP in the lower layer 
followed normal distribution, the P value for TP_UP was 0.009. Relationships between 
soil  properties  not  regarding the  spatial  domain  are  expressed  by Pearson's  product 
moment  correlation  coefficients  and  Spearman's  rank  correlation  coefficients  (Table
A.3) and visually on scatter-grams (Fig. A.3) which can be found also on the enclosed 
CD.  Spearman's  rank correlation  coefficient  should  perform better  as  a  measure  of 
correlation when the relationship is non-linear (De Sá, 2007). However, both types of 
correlation coefficient returned similar values (Table A.3).

Table A.1. Summary statistics of soil properties obtained from 139 samples.†

Property Layer Units Min Q1 Median Mean Q3 Max. Sd Skw

MOIST UP proportion 0.58 0.89 0.92 0.90 0.94 0.98 0.08 ‒2.07

BD UP g cm‒3 0.03 0.06 0.08 0.12 0.12 0.55 0.10 2.32

PH UP PH units 6.07 6.83 7.09 7.04 7.24 7.72 0.31 ‒0.41

OM UP proportion 0.08 0.39 0.65 0.59 0.80 0.93 0.25 ‒0.49

TP UP mg P kg‒1 soil 359.60 842.00 961.80 942.50 1073.00 1521.00 235.47 ‒0.37

TN UP g N kg‒1 soil 2.52 12.28 21.64 19.48 26.66 34.32 8.71 ‒0.44

TC UP g C kg‒1 soil 26.38 184.90 319.50 292.10 407.40 499.20 134.85 ‒0.43

bxBD UP N/A ‒10.02 ‒6.04 ‒5.03 ‒4.88 ‒3.77 ‒0.69 1.96 ‒0.01

MOIST LW proportion 0.36 0.79 0.91 0.84 0.93 0.98 0.15 ‒1.72

BD LW g cm‒3 0.02 0.07 0.09 0.20 0.23 0.98 0.24 2.09

PH LW PH units 5.90 6.67 6.97 6.92 7.19 8.13 0.36 ‒0.01

OM LW proportion 0.09 0.32 0.72 0.60 0.87 0.93 0.30 ‒0.50

TP LW mg P kg‒1 soil 331.80 577.60 715.90 713.50 832.50 1163.00 191.38 0.13

TN LW g N kg‒1 soil 1.34 9.69 23.76 19.62 28.19 34.94 10.27 ‒0.50

TC LW g C kg‒1 soil 17.77 148.10 358.40 298.20 441.50 495.90 160.89 ‒0.48

†MOIST, moisture; BD, bulk density; OM, organic matter content; TP, total phosphorus; TN, toal  
nitrogen; TC, total carbon; bxBD, bulk density transformed by box-cox transformation with power ‒0.5;  
UP, 0–10 cm soil depth; LW, 10–20 cm soil depth; Min, minimum; Q1, first quartile; Q3, third quartile;  
Max, maximum; Sd , standard deviation; Skw, skewness.
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Fig. A.1. Histograms of moisture (MOIST), bulk density (BD), bulk density transformed by box-cox  
transformation with power ‒0.5 (bxBD), pH (PH), organic matter content (OM), total phosphorus (TP),  
total nitrogen (TN), and total carbon (TC) in 0–10 cm (_UP, a to h) and 10–20 cm (_LW, i to o) soil  
depth with probability density function of normal distribution with mean and standard deviation of the  
sample superimposed.
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Fig. A.2. Normal distribution quantile-quantile plots of soil moisture (MOIST), bulk density (BD), bulk  
density transformed by box-cox transformation with power ‒0.5 (bxBD), pH (PH), organic matter  
content (OM), total phosphorus (TP), total nitrogen (TN), and total carbon (TC) in 0–10 cm (_UP, a to  
h) and 10–20 cm (_LW, i to o) soil depth.



Table A.2. Results of Shapiro-Wilk normality test.†

Property

Soil depth

0–10 cm 10–20 cm

Shapiro W statistics P value Shapiro W statistics P value

Moisture 0.744 0.000 0.718 0.000

Bulk density 0.703 0.000 0.649 0.000

pH 0.986 0.155‡ 0.988 0.241‡

Organic matter content 0.920 0.000 0.850 0.000

Total phosphorus 0.974 0.009 0.986 0.183‡

Total nitrogen 0.938 0.000 0.881 0.000

Total carbon 0.937 0.000 0.863 0.000

† Sample size was 139.
‡P value >0.05

Table A.3. Correlation coefficients between soil properties. Lower triangle contains Pearson's product  
moment correlation coefficients, upper triangle contains Spearman's rank correlation coefficients.†

MTU BDU PHU OMU TPU TNU TCU MTL BDL PHL OML TPL TNL TCL

MTU 1 ‒0.98 ‒0.12 0.76 0.46 0.75 0.75 0.57 ‒0.56 0.15 0.46 0.29 0.47 0.48

BDU ‒0.99 1 0.14 ‒0.78 ‒0.45 ‒0.76 ‒0.77 ‒0.58 0.59 ‒0.11 ‒0.49 ‒0.28 ‒0.49 ‒0.50

PHU ‒0.25 0.27 1 ‒0.36 0.18 ‒0.36 ‒0.35 ‒0.23 0.25 0.53 ‒0.38 0.06 ‒0.36 ‒0.37

OMU 0.79 ‒0.78 ‒0.39 1 0.26 0.96 0.99 0.59 ‒0.57 ‒0.16 0.68 0.20 0.67 0.69

TPU 0.44 ‒0.42 0.16 0.31 1 0.34 0.26 0.34 ‒0.33 0.22 0.23 0.58 0.29 0.26

TNU 0.79 ‒0.78 ‒0.39 0.97 0.38 1 0.97 0.60 ‒0.58 ‒0.15 0.67 0.26 0.72 0.71

TCU 0.78 ‒0.77 ‒0.38 0.99 0.30 0.97 1 0.57 ‒0.55 ‒0.15 0.65 0.19 0.66 0.69

MTL 0.43 ‒0.43 ‒0.34 0.50 0.35 0.52 0.48 1 ‒0.96 ‒0.10 0.82 0.64 0.81 0.83

BDL ‒0.42 0.43 0.33 ‒0.47 ‒0.34 ‒0.49 ‒0.45 ‒0.99 1 0.12 ‒0.80 ‒0.59 ‒0.79 ‒0.81

PHL 0.01 0.02 0.47 ‒0.20 0.21 ‒0.19 ‒0.19 ‒0.25 0.23 1 ‒0.32 0.02 ‒0.29 ‒0.30

OML 0.50 ‒0.50 ‒0.41 0.69 0.25 0.69 0.67 0.84 ‒0.78 ‒0.37 1 0.46 0.92 0.97

TPL 0.27 ‒0.26 0.08 0.19 0.59 0.24 0.17 0.62 ‒0.58 0.04 0.49 1 0.54 0.48

TNL 0.50 ‒0.50 ‒0.40 0.68 0.29 0.69 0.66 0.84 ‒0.79 ‒0.35 0.98 0.54 1 0.95

TCL 0.50 ‒0.50 ‒0.41 0.70 0.25 0.70 0.68 0.83 ‒0.78 ‒0.36 1.00 0.49 0.99 1

†MT, moisture; BD, bulk density; PH, pH; OM, organic matter content; TP, total phosphorus; TN, total  
nitrogen; TC, total carbon; index U and L refers to 0–10 cm and 10–20 cm soil depth respectively.

When  spatial  trend  (external  drift)  affects  the  investigated  variable,  assumption  of 
stationarity is not valid. One method used to obey with trend is to fit  a polynomial 
surface to the data, subtract it from the original values, fit a variogram model and krige 
the residuals,  and finally add the trend surface to  the kriging  estimates  (Isaaks  and 
Srivastava,  1989; Webster and Oliver,  2007). This method is  equivalent to universal 
kriging if all the data points are used in the kriging procedure (Lark and Webster, 2006; 
Webster  and  Oliver,  2007).  Isaaks  and  Srivastava  (1989)  point  out  that  fitting  a 
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polynomial surface directly to the data may not produce sensible trend surface coherent 
with  nature  of  the  trend.  The  problem  is  mainly  that  the  estimated  trend  surface 
parameters have associated some error with them as well,  and that the estimates of 
variogram of the residuals is underestimated, particularly for increasing lag distances 
(Lark and Webster, 2006). This makes it impossible to obtain unbiased estimates of the 
kriging variance and residual maximum likelihood method (REML) is suggested as a 
way forward.  Lark and Webster (2006) demonstrated that kriging estimates obtained 
using variogram model fitted to experimental variogram of residuals from trend surface 
is similar to that obtained using the model found by REML, however, the estimated 
variance was much higher for the REML method as the variogram of residuals from the 
trend was largely underestimated.

Burrough and McDonnell (2000) point out that coefficient of determination increases 
with  the  order  of  the  fitted  polynomial  surface,  but  generally  only  low  orders  are 
sensible.  The  choice  of  the  order  of  the  polynomial  is  based  on  the  practitioner's 
understanding  of  the  process  that  induced  the  trend  (Isaaks  and  Srivastava,  1989; 
Cressie,  1993)  and  judgement  of  the  effect  of  trend  removal  on  the  experimental 
variogram (Lark and Webster, 2006). Alternative option to trend surface removal is to 
estimate  the  variogram  only  as  a  directional  variogram  in  a  trend-free  direction. 
Directional variograms were visually investigated also in this study, but they had to be 
interpreted with caution because of the insufficient sample size. Mainly the direction of 
potential tides and location of the inflow canal would make trend removal reasonable. 
Trend was detected in all variables in our data set, except TP, using the variance ratio 
F-test  as  suggested  by  Burrough  and  McDonnell  (2000,  p.109),  but  the  highest 
coefficient  of  determination  was  0.37 for  second order  polynomial  surface  fitted  to 
OM_UP (Table A.4), hence trends were generally weak. Trends were eventually not 
removed from the data, because the detection of trend and its properties were affected 
by few extreme values and because trend removal did not contribute much to clarity of 
variograms.

Table A.4. Coefficients of determination of polynomial trend surfaces fitted to the original data.

Property

Coefficient of determination for the trend surface in a soil depth

0–10 cm 10–20 cm

1st order trend 2nd order trend 1st order trend 2nd order trend

Moisture 0.10 0.16 0.17 0.19

Bulk density 0.10 0.17 0.14 0.17

pH 0.18 0.22 0.24 0.28

Organic matter content 0.27 0.37 0.30 0.32

Total phosphorus 0.01 0.03 0.02 0.05

Total nitrogen 0.30 0.35 0.30 0.32

Total carbon 0.28 0.36 0.30 0.31
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Fig. A.3 (1 of 4). Scatter-grams of soil moisture (MOIST), bulk density (BD), pH (PH), organic matter  
content (OM), total phosphorus (TP), total nitrogen (TN), and total carbon (TC) in 0–10 cm (_UP) and 
10–20 cm (_LW) soil depth. The figure continues on the next page.
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Fig. A.3 continued (2 of 4). Scatter-grams of soil moisture (MOIST), bulk density (BD), pH (PH), organic  
matter content (OM), total phosphorus (TP), total nitrogen (TN), and total carbon (TC) in 0–10 cm 
(_UP) and 10–20 cm (_LW) soil depth. The figure continues on the next page.

43



Fig. A.3 continued (3 of 4). Scatter-grams of soil moisture (MOIST), bulk density (BD), pH (PH), organic  
matter content (OM), total phosphorus (TP), total nitrogen (TN), and total carbon (TC) in 0–10 cm 
(_UP) and 10–20 cm (_LW) soil depth. The figure continues on the next page.
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Fig. A.3 continued (4 of 4). Scatter-grams of soil moisture (MOIST), bulk density (BD), pH (PH), organic  
matter content (OM), total phosphorus (TP), total nitrogen (TN), and total carbon (TC) in 0–10 cm 
(_UP) and 10–20 cm (_LW) soil depth.
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Appendix B Variograms of the Original Variables

Experimental variograms of soil properties in 0–10 cm (Fig. B.1) and 10–20 cm (Fig.
B.2) soil depth provide insights into spatial relationships between sampling locations.

Fig. B.1. Experimental variograms of (a) soil moisture, (b) bulk density, (c) pH, (d) organic matter  
content, (e) total phosphorus, (f) total nitrogen, and (g) total carbon in 0–10 cm soil depth  constructed  
by method of moments (dots) and Hawkins and Cressie estimator (line). Breaks were 0, 200, 400, 500,  
600, 1000 to 8000 by 400 m.
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Fig. B.2. Experimental variograms of (a) soil moisture, (b) bulk density, (c) pH, (d) organic matter  
content, (e) total phosphorus, (f) total nitrogen, and (g) total carbon in 10–20 cm soil depth  constructed  
by method of moments (dots) and Hawkins and Cressie estimator (line). Breaks were 0, 200, 400, 500,  
600, 1000 to 8000 by 400 m.

Experimental variables were also constructed for mass per volume units of P, N, and C 
(Fig. B.3). Units were converted using the measurements of bulk density.
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Fig. B.3. Experimental variograms of total phosphorus (TP), total nitrogen (TN), and total carbon (TC)  
in 0–10 cm  (UP, a to c) and 10–20 cm (LW, d to f) soil depth  constructed by method of moments (dots)  
and Hawkins and Cressie estimator (line) using mass per volume units. Breaks were 0, 200, 400, 500,  
600, 1000 to 8000 by 400 m.
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Appendix C Correlation Surfaces

Pearson's product moment correlation coefficients were calculated in windows of sizes 
250, 500, 750, 1100, 2200, and 3300 m on a grid with 100 m spacing (Fig. C.1,  Fig.
C.2).  These  surfaces  provide  information  about  spatial  distribution  of  areas  were 
predicted values of two soil properties were positively or negatively correlated. Input 
data were the kriged estimates of each variable on a grid with 25 m spacing. Resulting 
rasters can be found on the enclosed CD.

Fig. C.1. Correlation surfaces between organic matter content (OM), bulk density (BD), total carbon  
(TC), total phosphorus (TP), and total nitrogen (TN) in 0–10 cm soil depth (variables involved in each  
surface are separated by dot).
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Fig. C.2. Correlation surfaces between organic matter content (OM), bulk density (BD), total carbon  
(TC), total phosphorus (TP), total nitrogen (TN), and pH in 0–10 cm soil depth (variables involved in  
each surface are separated by dot).
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Appendix D Derivation of Regional Stocks

Function of wetlands as sinks and/or sources of carbon has become relevant also with 
increasing concern about global climate change. This appendix explains how the overall 
amount of total carbon stored in Davis Pond was calculated. Stocks of total nitrogen and 
phosphorus were estimated in a similar way.

Instead of  using ordinary punctual  kriging,  we can use ordinary block kriging  with 
block size 25 m × 25 m (Fig. D.1). For each block Bi  in the pond region R, we obtain 
estimated concentration of total carbon, Z TCB i, in g C kg‒1 soil, and its block kriging 
variance  TC

2 Bi in  g2 C kg‒2 soil.  Further,  we  need  to  block  krige  soil  density, 
Z DENS B i, in g cm‒3 with its variance DENS

2 Bi in g2 cm‒6. We get the content of total 
carbon in a unit of volume of soil (kg m¬3 ) within each block Bi  and its variance (under 
assumption of no correlation, see Burrough and McDonnell, 2000, p. 248) as follows.

Z TC , VOLBi = Z TCB i⋅Z DENSB i

TC , VOL
2 B i = Z DENS

2 ⋅TC
2  Z TC

2 ⋅DENS
2

To get the estimate of overall amount of total carbon in one block, we need to account 
for the volume of the block, thus:

Z T ,TC ,VOLBi = Z TC , VOLBi⋅0.1⋅252 = Z TC ,VOLB i⋅62.5

T , TC ,VOL
2 Bi = TC ,VOL

2 Bi⋅62.5 2

Fig. D.1. Block dimensions and schematic orientation (units are metres).

Finally, the overall estimate of total carbon storage in the whole region R, TC , (in kg) 
is the sum of the amount of carbon stored in individual blocks and its variance should 
be derived from covariance model:

TC = ∑
i |Bi∈R

Z T ,TC , VOLB i

TC ,
2 =∑

i
∑

j
cov  Z T ,TC ,VOLB i , Z T , TC ,VOL B j
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Regional  stocks  (Table  D.1)  were  estimated  using  the  described  procedure.  ArcGIS 
Geostatistical  Anayst  (ESRI,  1999–2009)  was  used  for  kriging  with  global 
neighbourhood, each block was represented by 4 × 4 regular point grid to obtain the 
block estimate (Isaaks and Srivastava, 1989). Variance of the regional estimates was not 
derived as the covariance model was unknown. In the lower layer, the total stock was 
calculated from the original sampling points by converting variables to mass per volume 
units, taking sample mean and multiplying it by the area of Davis Pond (37071250 m2) 
and by 0.1 to account for 10 cm layer thickness. Same calculation was used also in the 
upper layer. Maps of elements content per volume in 0–10 cm soil depth are included in 
Appendix  H.  When block kriging  is  used,  it  is  possible  to  map  the  distribution  of 
elements, while the sample mean provides only one value for the whole region. Webster 
and Oliver (2007, p. 168), describe interesting influence of the nugget effect on block 
kriging variance estimation,  Isaaks and Srivastava (1989, chapter 13), present useful 
practicalities of block kriging.

Table D.1. Estimated elements stocks in Davis Pond.†

Element

Stock in soil depth

0–10 cm 10–20 cm

Using block kriging Using sample mean Using sample mean

t t ha‒1 t t ha‒1 t t ha‒1

C 97029 26.17 88986 (2494) 24.00 (0.67) 115357 (3246) 31.12 (0.88)

N 6470 1.75 5976 (150) 1.61 (0.04) 7725 (215) 2.08 (0.06)

P 337 0.09 372 (25) 0.10 (0.01) 440 (33) 0.12 (0.01)

† C, carbon; N, nitrogen; P, phosphorus, numbers in parentheses are standard error, sample size  
was 139.
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Appendix E Indicator Variograms of Variables in the Lower Layer

Indicator kriging is a technique for kriging categorical variables or classified continuous 
variables. For continuous variables, values are classified as 1 or 0 according a specified 
threshold. Indicator experimental variograms can be then constructed as usually. Details 
and applications can be found for example in Webster and Oliver (2007, chapter 11). We 
investigated indicator variograms of the variables in 10–20 cm soil depth to see if any 
spatial relationship can be revealed (Fig. E.1). The R code written for this purpose is 
enclosed in Appendix G.

The only variogram that would be sensible to model was the organic matter content with 
threshold of 0.8. The model fitted to this indicator variogram was exponential with sill 
0.1295, range 1381 m, and nugget 0.1244. The minimized weighted sum of squares was 
0.4091. Other variograms did not indicate any spatial autocorrelation. There was also 
little evidence (based mainly on investigation of histogram) that the value of 0.8 would 
be of particular importance for organic matter content and indicator kriging was not 
performed.
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Fig. E.1. Experimental indicator variograms  for the variables in 10–20 cm soil depth. (a) pH, (b)  
moisture, (c) bulk density, (d) organic matter content, (e) total phosphorus, (f) total nitrogen, (g) total  
carbon. Breaks were a sequence from 0 to 4500 by 300.
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Appendix F Mapping Moisture According to Density
There was a close linear relationship between moisture (MT) and bulk density (BD) in 
0–10 cm soil depth (Fig. F.1, Table F.1), which was utilised for mapping MT. Variogram 
model was not fitted to experimental variogram of MT because it was not that clear as  
the variogram of BD. Map of BD was produced by ordinary kriging and the close linear 
relationship between the two variables was used to map MT. The regression model was 
a general line MT=01⋅BD , where 0  and 1  are regression parameters and  is 
the residual error therm. The regression formula with estimated parameters (Table F.1) 
was used to obtain the estimated value of MT for each cell. To accept this linear model, 
we had  to  ignore  the  spatial  correlation  between  measurements  of  BD (Heuvelink, 
G.B.M.  1998.  Error  propagation  in  environmental  modelling  with  GIS.  Taylor  & 
Francis,  London,  UK).  Skewness  of  the  distributions  was  neglected  because  the 
relationship was very strong.

Table F.1. Results of linear regression between  
moisture and bulk density in 0–10 cm soil depth.  
R2 = 0.98, F-statistic: 7882 on 1 and 137 degrees  
of freedom.†

Parameter Estimate Standard error t value

0 0.99† 0.0013 740

1 ‒0.78† 0.0088 ‒89

 0.0 0.0101 N/A

† Computed P values were <1×10‒15.

Fig. F.1. Regression line of  
Moisture = 0.99 ‒ 0.78 Density, R2=0.98.

The linear regression was based on the original measurements, with assumption that the 
independent variable was measured with negligible error. However, kriged BD values 
had associated error with them. Standard error of the predicted MT in each cell was 
calculated according to general rules for error propagation (Burrough and McDonnell, 
2000).  Correlation  coefficient  between  parameters  0  and  1 was  0,1=−0.7661, 
otherwise  elements  on  the  right  side  of  the  regression  equation  were  considered 
uncorrelated. This led to the following error propagation equation:

MT 2 =  0
2  BD2⋅ 1

2  1
2⋅BD 2   2 BD⋅ 0⋅ 1⋅0,1

where  ⋅ denotes  standard error,  ⋅ expresses  estimate,  and  BD2 is  the kriging 
variance of BD.
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Appendix G R Code

Most of the analysis was performed in R statistical software, version 2.11.1. (R Core 
Development  Team,  2010),  packages  GeoR  (Ribeiro  and  Diggle,  2001)  and  Gstat 
(Pebesma, 2004) were highly utilized. The convention for variable names in the R code 
is  that  UP indicates  0–10 cm  soil  depth,  LW  indicates  10–20 cm  soil  depth.  Soil 
properties were moisture (MOIST), bulk density (DENS), bulk density transformed by 
box-cox transformation with power –0.5 (bxDENS), pH (PH), organic matter content 
(ORGAN), total phosphorus (TP), total nitrogen (TN), and total carbon (TC).

Four scripts  (Table G.1) are  presented in this  appendix.  When code lines had to be 
truncated to fit in the page, symbol “..” at the end of a line and at the beginning of the 
subsequent line indicates that the two lines are the same line of code. All four scripts 
can be found on the enclosed CD without the lines truncated.

Table G.1. R scripts used during the analysis.

Script name Page Description

main.r 57 Contains variography, kriging, fitting of the linear model of 
corregionalization, and moving window analysis. Represents the core 
script for the whole analysis.

rfunctions.r 68 Contains custom functions used in main.r script including function for 
moving window analysis.

regional_stocks.r 80 Derivation of regional stocks of carbon, nitrogen and phosphorus 
from sample means.

indicator.variograms.r 81 Indicator variograms of soil properties in 10–20 cm soil depth.
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# main.r #
#main script for the analysis

#set directories
setwd("E:/cranfield/00_thesis/data")
outpath<-"E:/cranfield/00_thesis/data/outputs/variograms/"
prefix<-"" #prefix for outputs
suffix<-"" #suffix for outputs
#load packages and functions
source("./rfunctions.r")
require(foreign)
require(geoR)
require(gstat)
require(lattice)
require(maptools)
require(spatstat)
#load the data
dta.orig<-read.dbf("son.dbf")
  dta.orig<-dta.orig[dta.orig$OUT!=1,] #exclude points labeled as outliers ("OUT"==1)
  dta.orig<-dta.orig[,1:(length(dta.orig[1,])-1)] #remove the OUT column
dta.all<-dta.orig[,c("PID", "XCOOR", "YCOOR", "SID", "PH_UP", "ORGAN_UP", "TP_UP", "TN_UP", "TC_UP", "", "DENS_U..
..P")]
gdt.all<-as.geodata(dta.all, coords.col=2:3, data.col=5:length(names(dta.all)), na.action='ifany')

#########################
#####               #####
#####  VARIOGRAPHY  #####
#####               #####
#########################

xv<-list() #list to store cross-validations

##### ORGAN_UP ##### proportions ##########################
g<-as.geodata(dta.all, coords.col=2:3, data.col="ORGAN_UP")
summary(g); plot(g); print("skewness"); f_skewness(g$data)
vg.dir<-variog4(g); plot(vg.dir);
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus"); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-3500; br<-seq(0,maxd,300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16)
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#so the final variogram for fitting is:
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#models
pars.sig<-seq(0.04,0.055, 0.005); pars.phi<-seq(500,2500,500); pars.nug<-c(0,seq(0.01,0.04, 0.01))
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(0.048, 2500), cov.model="spherical", nug=0.033, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(0.067, 1080), cov.model="exponential", nug=0.028, weights="npairs", max.dist=maxd)
lines(model.exp, lwd=2)
#by reml
reml<-f_likfit(g, model="unspecified", pars.sig=c(0.05,0.01,0.01), pars.phi=c(2000,500,500), trend="cte", lines=TRUE, cl..
..r="red", method="REML")
lines(reml.sph$models$s0.04p2500, col="red", lwd=2)
#so finally:
vg.ORGAN_UP<-vg
model.ORGAN_UP.sph<-model.sph
model.ORGAN_UP.exp<-model.exp
model.ORGAN_UP.reml<-reml$models$s0.04p500
#cross-validation
msdrvar<-"ORGAN_UP"; xv[[msdrvar]]<-xvalid(g, model=model.ORGAN_UP.exp, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)

##### TC_UP ##### [g/kg] ##################################
g<-as.geodata(dta.all, coords.col=2:3, data.col="TC_UP")
summary(g); plot(g); print("skewness"); f_skewness(g$data)
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus"); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-3500; br<-seq(0,maxd,300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#models
pars.sig<-seq(10000,18000,1000); pars.phi<-seq(500,2500,500); pars.nug<-seq(5000,10000,1000)
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(11250, 2900), cov.model="spherical", nug=6834, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(15400, 1240), cov.model="exponential", nug=4150, weights="npairs", max.dist=maxd)
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lines(model.exp, lwd=2)
#so finally:
vg.TC_UP<-vg
model.TC_UP.exp<-model.exp
model.TC_UP.sph<-model.sph
#cross-validation
msdrvar<-"TC_UP"; xv[[msdrvar]]<-xvalid(g, model=model.TC_UP.exp, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)

##### TN_UP ##### [g/kg] ##################################
g<-as.geodata(dta.all, coords.col=2:3, data.col="TN_UP")
##g<-as.geodata.except(dta.all, data.col="TN_UP", val=c(7051, 7052, 7074, 7107)) #exclude some points if you want
summary(g); plot(g); print("skewness"); f_skewness(g$data)
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v, pch=16)
vg.rob<-variog(g, estimator="modulus"); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-3500; br<-seq(0,maxd,300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#models
pars.sig<-seq(40,60,10); pars.phi<-seq(500,3000,500); pars.nug<-seq(25,35,5)
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(43, 2830), cov.model="spherical", nug=31, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(60, 1094), cov.model="exponential", nug=18, weights="npairs", max.dist=maxd)
lines(model.exp, lwd=2)
#so finally:
vg.TN_UP<-vg
model.TN_UP.sph<-model.sph
model.TN_UP.exp<-model.exp
#cross-validation
msdrvar<-"TN_UP"; xv[[msdrvar]]<-xvalid(g, model=model.TN_UP.exp, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)

##### TP_UP ##### [mg/kg] #################################
#g<-as.geodata.except(dta.all, coords.col=2:3, data.col="TP_UP", col="PID", val=c(7051,7052,7056,7074,7141,7080)) #exclu..
..de some points if you want
g<-as.geodata(dta.all, coords.col=2:3, data.col="TP_UP")
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summary(g); plot(g); print("skewness"); f_skewness(g$data)
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus"); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-3500; br<-seq(0,maxd,300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#models
pars.sig<-seq(10000,25000,5000); pars.phi<-seq(500,3000,500); pars.nug<-seq(30000,45000,5000)
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(28840, 1359), cov.model="spherical", nug=33038, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(49567, 365), cov.model="exponential", nug=12474, weights="npairs", max.dist=maxd)
lines(model.exp, lwd=2)
#so finally:
vg.TP_UP<-vg
model.TP_UP.sph<-model.sph
model.TP_UP.exp<-model.exp
#cross-validation
msdrvar<-"TP_UP"; xv[[msdrvar]]<-xvalid(g, model=model.TP_UP.exp, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)

##### PH_UP ##### [ pH = -log(c(H+)) ] ####################
g<-as.geodata(dta.all, coords.col=2:3, data.col="PH_UP")
summary(g); plot(g); print("skewness"); f_skewness(g$data)
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus", breaks=seq(0,8000,300)); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-8000; br<-seq(0, maxd, 300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#models
pars.sig<-seq(0.005,0.04,0.005); pars.phi<-seq(4000,6500,500); pars.nug<-seq(0.05,0.07,0.005)
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(0.068, 6390), cov.model="spherical", nug=0.0557, weights="npairs", max.dist=maxd)
model.sph<-variofit(vg, ini=c(0.03, 1500), cov.model="spherical", nug=0.04, weights="npairs", max.dist=maxd)
model.sph<-variofit(vg, ini=c(0.1, 0), cov.model="power", nug=0, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
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pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(0.06, 1000), cov.model="exponential", nug=0.03, weights="npairs", max.dist=maxd)
lines(model.exp, lwd=2)
#by reml
reml.sph<-likfit(g, ini.cov.pars=c(0.09,5250), cov.model = "spherical", lik.method = "REML")
reml.exp<-likfit(g, ini.cov.pars=c(0.09,3000), cov.model = "exponential", lik.method = "REML")
lines(reml.sph, col="red", lwd=2)
lines(reml.exp, col="blue", lwd=2)
#so finally:
vg.PH_UP<-vg
model.PH_UP.exp<-model.exp
model.PH_UP.sph<-model.sph
model.PH_UP.reml.sph<-reml.sph
model.PH_UP.reml.exp<-reml.exp
#cross-validation
msdrvar<-"PH_UP"; xv[[msdrvar]]<-xvalid(g, model=model.PH_UP.reml.sph, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)

##### DENS_UP ##### g/cm^3 ################################
g<-as.geodata(dta.all, coords.col=2:3, data.col="DENS_UP")
summary(g); plot(g); print("skewness"); f_skewness(g$data); print("variance"); var(g$data)
vg.dir<-variog4(g, lambda=-0.5); plot(vg.dir) #note that transformation is applied (lambda=-0.5)
vg.mom<-variog(g, lambda=-0.5); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus", breaks=seq(0,8000,300), lambda=-0.5); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-3500; br<-seq(0, maxd, 300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd, lambda=-0.5)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd, lambda=-0.5)
plot(vg)
pars.sig<-seq(2.5,3.5,0.5); pars.phi<-seq(500,2500,500); pars.nug<-seq(0.5,1.5,0.5)
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(2.4, 2380), cov.model="spherical", nug=1.69, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(0.69, 817), cov.model="exponential", nug=0.18, weights="npairs", max.dist=maxd)
#so finally:
vg.bxDENS_UP<-vg
model.bxDENS_UP.exp<-model.exp
model.bxDENS_UP.sph<-model.sph
dta.all$bxDENS_UP<-bcx(dta.all$DENS_UP, lam=-0.5)
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#cross-validation ('lambda' slot must be set manually to 1)
msdrvar<-"bxDENS_UP"
tmp<-model.bxDENS_UP.exp
tmp$lambda<-1
xv[[msdrvar]]<-xvalid(coords=g$coords, data=bcx(g$data, lam=-0.5), model=tmp, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)
median(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)

##### MOIST_UP ##### proportions ##########################
#EVENTUALLY, MAP OF MOIST_UP WAS DERIVED FROM MAP OF DENS_UP (Kral, 2010)
g<-as.geodata(dta.all, coords.col=2:3, data.col="MOIST_UP")
g$data<-log(g$data/(1-g$data)) #logit transformation
summary(g); plot(g); print("skewness"); f_skewness(g$data); print("variance"); var(g$data)
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus", breaks=seq(0,8000,300)); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-4500; br<-seq(0, maxd, 300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
plot(vg)
abline(a=var(g$data), b=0)
pars.sig<-seq(0.1,0.4,0.1); pars.phi<-seq(1000,2500,500); pars.nug<-seq(0.2,0.3,0.1)
rslt.sph<-fitting(vg, "spherical", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.sph<-variofit(vg, ini=c(0.27, 1969), cov.model="spherical", nug=0.21, weights="npairs", max.dist=maxd)
lines(model.sph, lwd=2)
pars.phi<-pars.phi/3
rslt.exp<-fitting(vg, "exponential", maxd=maxd, pars.sig=pars.sig, pars.phi=pars.phi, pars.nug=pars.nug)
model.exp<-variofit(vg, ini=c(0.40, 605), cov.model="exponential", nug=0.08, weights="npairs", max.dist=maxd)
lines(model.exp, lwd=2)
#so finally:
vg.ltMOIST_UP<-vg
model.ltMOIST_UP.exp<-model.exp
model.ltMOIST_UP.sph<-model.sph
dta.all$ltMOIST_UP<-log(dta.all$MOIST_UP/(1-dta.all$MOIST_UP))
#cross-validation
msdrvar<-"ltMOIST_UP"
xv[[msdrvar]]<-xvalid(g, model=model.ltMOIST_UP.sph, trend="cte")
windows(); layout(matrix(1:10, 2,5, byrow=T)); plot(xv[[msdrvar]])
mean(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)
median(((xv[[msdrvar]]$data-xv[[msdrvar]]$predicted)^2)/xv[[msdrvar]]$krige.var)
reml.sph<-likfit(g, ini.cov.pars=c(0.5,1970), cov.model="spherical", lik.method="REML")
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lines(reml.sph, col="blue")

##### DENS_LW ##### g/cm^3 ################################
g<-as.geodata(dta.orig, coords.col=2:3, data.col="DENS_LW")
summary(g); plot(g); print("skewness"); f_skewness(g$data); print("variance"); var(g$data)
hist(log(g$data-0.0)); hist(bcx(g$data, lam=-0.5))
#g$data<-f_normal_score(g$data)[[1]]
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus", breaks=seq(0,8000,300)); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-4500; br<-seq(0, maxd, 300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#Any transformation did not reveal any clear variogram

##### MOIST_LW ##### g/cm^3 ###############################
g<-as.geodata(dta.orig, coords.col=2:3, data.col="MOIST_LW")
summary(g); plot(g); print("skewness"); f_skewness(g$data); print("variance"); var(g$data)
hist(bcx(g$data, lam=3))
hist(log(g$data/(1-g$data)))
#g$data<-f_normal_score(g$data)[[1]]
vg.dir<-variog4(g); plot(vg.dir)
vg.mom<-variog(g); points(vg.mom$u, vg.mom$v)
vg.rob<-variog(g, estimator="modulus", breaks=seq(0,8000,300)); points(vg.rob$u, vg.rob$v, pch="+")
maxd<-4500; br<-seq(0, maxd, 300)
vg.mom<-variog(g, trend="cte", breaks=br, max.dist=maxd)
points(vg.mom$u, vg.mom$v, pch=16, col="red")
vg<-variog(g, trend="cte", breaks=br, max.dist=maxd)
#Any transformation did not reveal any clear variogram

#####################
#####           #####
#####  KRIGING  #####
#####           #####
#####################

krg<-list() #list to store all the kriged maps
#list of models used for kriging
mdls<-list(model.PH_UP.reml.sph,model.ORGAN_UP.exp,model.TP_UP.sph,model.TN_UP.exp,model.TC_UP.exp, model.bxDENS_UP.exp)..
..
names(mdls)<-c("PH_UP","ORGAN_UP","TP_UP","TN_UP","TC_UP", "bxDENS_UP")
#region and raster grid definition
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res<-25
region<-list(x=seq(756500,766600,res), y=seq(3305400,3312400,res), xbounds=list(min=756500, max=766600), ybounds=list(mi..
..n=3305400,max=3312400), res=res)
ras<-expand.grid(x=seq(region$xbounds$min,region$xbounds$max, region$res), y=seq(region$ybounds$min,region$ybounds$max, ..
..region$res))

for(i in names(mdls)){#kriging itself
  if(i=="bxDENS_UP"){
    g<-as.geodata(dta.all, coords.col=2:3, data.col="DENS_UP")
    krg[[i]]<-krige.conv(g, locations=ras, krige=krige.control(type="ok", obj.mod=mdls[[i]], lambda=-0.5))
  }else{
    g<-as.geodata(dta.all, coords.col=2:3, data.col=i)
    krg[[i]]<-krige.conv(g, locations=ras, krige=krige.control(type="ok", obj.mod=mdls[[i]]))
  }
}

#regression of MOIST_UP~DENS_UP
reg<-lm(dta.all$MOIST_UP~dta.all$DENS_UP)
plot(dta.all$MOIST_UP~dta.all$DENS_UP, asp=1, xlab="DENS_UP", ylab="MOIST_UP", pch=16)
abline(a=reg$coefficients[1],b=reg$coefficients[2])
reg.pred<-reg$coefficients[1]+reg$coefficients[2]*krg[["bxDENS_UP"]]$pred
db_0<-summary(reg)[[4]][1,2]; db_1<-summary(reg)[[4]][2,2] #SE of beta_i
b_0<-reg$coefficients[1]; b_1<-reg$coefficients[2] #beta_i
#error propagation
reg.var<-db_0^2 + (krg[["bxDENS_UP"]]$pred^2)*(db_1^2) + (b_1^2)*(krg[["bxDENS_UP"]]$krige.var) + summary(reg)$sigma^2 +..
.. krg[["bxDENS_UP"]]$pred*db_0*db_1*(-0.76610515905554088522677602668409235775470733642578) #the long number is correla..
..tion coefficient between b_0 and b_1, derived from covatiance matrix of b~N(beta, inv(X'X)*sigma^2)
krg[["bxMOIST_UP"]]<-list(predict=reg.pred, krige.var=reg.var)

#crate a mask to mask out pixels that are not in Davis Pond
shp<-readShapePoly("bnd.shp")
shp.win<-as(as(shp, "SpatialPolygons"), "owin") #convert shapefile to owin
ras.mask<-inside.owin(x=ras$x,y=ras$y,w=shp.win) #vector, TRUE when cell is within Davis Pond, FALSE otherwise.
for(i in names(krg)){ #mask out the cells out of Davis Pond
  krg[[i]]$predict[!ras.mask]<--9999
  krg[[i]]$krige.var[!ras.mask]<-10000000000
}

#write all the kriging predictions and variances to ascii grids
for(v in c("PH_UP", "ORGAN_UP", "TP_UP", "TN_UP", "TC_UP", "bxDENS_UP", "bxMOIST_UP")){
  map.pred<-matrix(krg[[v]]$pred,ncol=length(region$x), nrow=length(region$y), byrow=TRUE)
  map.var<-matrix(krg[[v]]$krige.var,ncol=length(region$x), nrow=length(region$y), byrow=TRUE)
  map.sd<-matrix(sqrt(krg[[v]]$krige.var),ncol=length(region$x), nrow=length(region$y), byrow=TRUE)
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  mx2asciigrid(map.pred, outpath%p%prefix%p%v%p%"_pred"%p%suffix%p%".txt", 25, xll=756500, yll=3305400)
  mx2asciigrid(map.var, outpath%p%prefix%p%v%p%"_var"%p%suffix%p%".txt", 25, xll=756500, yll=3305400, nodata=10000000000..
  ..)
  mx2asciigrid(map.sd, outpath%p%prefix%p%v%p%"_sd"%p%suffix%p%".txt", 25, xll=756500, yll=3305400, nodata=sqrt(10000000..
  ..000))
}

###############################################
#####                                     #####
#####  LINEAR MODEL OF COREGIONALIZATION  #####
#####                                     #####
###############################################

d<-dta.all
vars<-c("PH_UP","ORGAN_UP","TP_UP","TN_UP","TC_UP", "bxDENS_UP")
#build the gstat object
if(exists("gs")){rm(gs)}
gs<-gstat(id=vars[1], formula=as.formula(paste(vars[1],"~1")), locations=~XCOOR+YCOOR, data=d[,c("XCOOR","YCOOR",vars[1]..
..)], degree=0)
for(i in vars[-1]){
  gs<-gstat(gs,id=i, formula=as.formula(paste(i,"~1")), locations=~XCOOR+YCOOR, data=d[,c("XCOOR","YCOOR",i)], degree=0)..
  ..
}
#variograms
vgrams<-variogram(gs, boundaries=seq(0,3500,300))
#fit LMCR
lmc<-fit.lmc(vgrams, gs, model=vgm(100,"Exp",1100,1), fit.ranges=FALSE, fit.lmc=TRUE, correct.diagonal=1.0, fit.sills=TR..
..UE, fit.method=2)
for(i in names(lmc$model)){ #insert the models into the gstat object
  vname<-unlist(strsplit(i, "\\."))
  gs<-gstat(gs, id=vname, model=lmc$model[[i]])
}
plot(vgrams, model=gs$model)

#coregionalization matrices and hulls of perfect correlation
lmcr<-f_lmcr_mx(gs, structures=c("Nug", "Exp"), hulls=TRUE, hulls.x=1:4000) 

#plotting hulls
windows()
vgr<-vgrams
lyt<-matrix(0, nrow(lmcr$nmx)-1, ncol(lmcr$nmx)-1)
lyt[lower.tri(lyt, diag=TRUE)]<-1:length(lmcr$nmx[lower.tri(lmcr$nmx)])
x<-1:4000
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layout(lyt)
for(v in lmcr$nmx[lower.tri(lmcr$nmx)]){
  h<-lmcr$hull[[v]]
  par(mar=c(2,2,2,1))
  plot(x,h, ylim=c(-max(h), max(h)), type="l", main=v, xlab="", ylab="")
  lines(x,-h)
  points(vgr[vgr$id==v,]$dist, vgr[vgr$id==v,]$gamma)
  mdl<-gs$model[[v]]
  lines(x, mdl[1,2] + mdl[mdl[,1]=="Exp",2]*Exp(x, range=mdl[mdl[,1]=="Exp",3] , sill=1), lwd=2)
} #end plotting hulls

#codispersion coefficients
codisp<-ccc(variogram(gs, tol.hor=180, boundaries=seq(0,8000,600)))
#structural codispersion coefficients
ccc_mx<-ccc_structural(lmcr)

###########################
#####                 #####
#####  MOVING WINDOW  #####
#####                 #####
###########################

#constitute the matrix of predicted values
mw.variables<-c("PH_UP", "TN_UP", "ORGAN_UP", "TP_UP", "TC_UP", "bxDENS_UP") #variables to include in the mowing window ..
..analysis
mw.data<-matrix(NA,nrow=length(krg[[1]]$predict), ncol=length(mw.variables), dimnames=list(NULL, mw.variables))
for(i in dimnames(mw.data)[[2]]){ mw.data[,i]<-krg[[i]]$predict }
mw.data[!ras.mask,]<-NA #mask out the cells out of the Davis Pond

#set the properties of the grid of moving window centres
mw.grdsp<-100 #grid spacing
mw.region<-list(x=seq(min(region$x),max(region$x), mw.grdsp), y=seq(min(region$y),max(region$y),mw.grdsp))
mw.grd<-expand.grid(x=mw.region$x, y=mw.region$y)
mw.wws<-c(250,500,750,1100,2200,3300) #a vecotr of window widths to use
mw.rslt<-list() #for storing the results of moving window

#run the moving window analysis
for(w in mw.wws){
  mw.rslt[[paste("win", w, sep="")]]<-movin(gridx=mw.grd$x, gridy=mw.grd$y, ww=w, wh=w, datx=ras$x, daty=ras$y, dat=as.d..
  ..ata.frame(mw.data), corr=TRUE)
  print(w) #just to keep the user informed
}
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#mask the grid cells (centres of moving windows) that are out of Davis Pond
#mask values in all columns except("gridx","gridy","nofpts","nofpts.compl")
mw.mask<-inside.owin(x=mw.grd$x,y=mw.grd$y,w=shp.win)
for(i in names(mw.rslt)){
  mw.rslt[[i]][,-(1:4)][!mw.mask,]<--9999
}

#write the moving window results into files
for(i in names(mw.rslt)){
  tmp<-mw.rslt[[i]]
  write.csv(tmp, outpath%p%i%p%"_vec.csv")
  for(j in names(tmp)[grep("rho", names(tmp))]){
    map.rast<-matrix(tmp[,j],ncol=length(mw.region$x), nrow=length(mw.region$y), byrow=TRUE)
    mx2asciigrid(map.rast, outpath%p%prefix%p%i%p%"_"%p%(paste(strsplit(j, "\\.")[[1]], collapse="2"))%p%"_rast"%p%suffi..
    ..x%p%".txt", 100, xll=min(mw.region$x), yll=min(mw.region$y))
  }
}
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# rfunctions.r #
#custom functions used during the project:
#bcx, f_xvalid, movin, mx2asciigrid, ccc_structural, ccc, Sph, Exp, f_lmcr_mx, f_likfit, f_dowd, hist.data.frame, f_tren..
..d, f_normal_score, f_normal_score_back, "%p%", as.geodata.except, fitting, hist.pdf.normal, f_skewness_desa, f_skewnes..
..s, f_pca

bcx<-function(x, lam=1){#Box-Cox transformation with parameter lambda
  if(lam==0){return(log(x))} else { return( (x^lam - 1) / lam ) }
}

f_xvalid<-function(x,y,z, model){
#variogram model cross-validation
#e.g.: x=dta$X, y=dta$Y, z=dta$TN_UP, model=vgm(832,"Sph",2000,236)
#NO INPUT CHECKING IS PERFORMED!
  n<-length(x); predictions<-numeric(n); variances<-numeric(n)
  for(i in 1:n){#leave one out
    left_out<-data.frame(x=x[i], y=y[i]) #coordinates of the left-out point
    d_tmp<-data.frame(x=x[-i],y=y[-i],z=z[-i])
    gs_tmp<-gstat(id="z", formula=z~1, locations=~x+y, data=d_tmp)
    gs_tmp<-gstat(gs_tmp, id="z", model=model)
    p<-predict(gs_tmp, left_out)
    predictions[i]<-p[1,3];
    variances[i]<-p[1,4]
  }
  return(data.frame(Z.orig=z, Z.pred=predictions, Z.var=variances))
}

movin<-function(gridx=c(0), gridy=c(0), ww=1, wh=1, datx, daty, dat, corr=TRUE){
#Moving window statistics
#gridx, gridy: vector of x (and y) coordinates of points of the grid (centres of the windows)
#ww,wh: window width and window height define a window as (x,y)+-(ww/2,wh/2)
#datx, daty: vector of x (and y) coordinates of the data points
#dat: vector, data.frame, or matrix of data values with columns as vectors of data values (it is convenient to use a dat..
..a frame with named columns to make the output easy to understand)
#corr: if TRUE, correlation coefficients of variables in each window are included in the output
#
#Retunrns a data frame where each row represents one window with columns:
# gridx, gridy (same as input), mean_name1, .., mean_nameM, var_name1, var_nameM for all the M variables (columns) in da..
..t input, nofpts reports number of points in the window, nofpts.compl is number of rows that have non-NA values in the ..
..window
# if corr==TRUE, then also columns rho_name1.name2 etc. of correlation coefficients of corresponding variables in each w..
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..indow are included 
#NOTE that NA values are removed from calculation of means and variances, sample variance is calculated (1/(N-1)), the u..
..se parameter for cor() function is "na.or.complete" (see ?cor details for description)
#
#201006281130

  nvar<-ncol(dat) #number of variables
  nms<-names(dat) #names of variables
  if(is.null(nms)){nms<-1:nvar}
  w<-ww/2; h<-wh/2 #half of the window size
  dat<-as.matrix(dat)
  if(length(gridx)!=length(gridy)){ print("gridx and gridy must have the same length"); return();}
  if(corr && length(dat[1,])<2){ print("dat must have more than one column to enable correlation coefficients computation..
  .."); return()}
  if(length(datx)!=length(daty) || length(datx)!=length(dat[,1]) || length(dat[,1])!=length(daty)){print("datx,daty,dat[..
  ..,i] must have the same length"); return();}

  #declare outputs
  means<-data.frame(gridx,gridy)
  vars<-data.frame(gridx,gridy)
  np<-numeric() #number of data points in each window
  np.compl<-numeric() #number of complete measurements in each window
  cr<-list() #correlation matrices for each window

  for(i in 1:length(gridx)){
    winx<-which((datx>=gridx[i]-w & datx<=gridx[i]+w) & (daty>=gridy[i]-h & daty<=gridy[i]+h)) #indexes of rows of dat t..
    ..hat are within the current (i-th) window
    np[i]<-length(winx)
    if(np[i]>0){ #if there is a data point in the window then proceed
      curwin<-dat[winx,, drop=F] #extract the points in current window to a separate variable
      np.compl[i]<-0; for(r in 1:np[i]){ if(all(!is.na(curwin[r,]))){np.compl[i]<-np.compl[i]+1} } #count the number of ..
      ..complete measurements in the current window
      for(k in 1:nvar){
        means[i,k+2]<-mean(curwin[,k], na.rm=TRUE)
        vars[i,k+2]<-var(curwin[,k], na.rm=TRUE)
      }
      if(corr){#note that cor returns NA for one point or when sd=0
        cr[[i]]<-cor(curwin, use="na.or.complete")
      }
    }
  }

  #finishing outputs (names etc.)
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  out<-data.frame(gridx, gridy, np, np.compl)
  outnames<-c("gridx", "gridy", "nofpts", "nofpts.compl")
  for(i in 3:length(names(means))){
    out[,length(names(out))+1]<-means[,i]
    outnames<-c(outnames, paste("mean_", nms[i-2], sep=""))
  }
  for(i in 3:length(names(vars))){
    out[,length(names(out))+1]<-vars[,i]
    outnames<-c(outnames, paste("var_", nms[i-2], sep=""))
  }
  if(corr){
    rho.nms<-c()
    for(k in 2:nvar){rho.nms<-c(rho.nms, paste(nms[k-1], nms[k:nvar], sep="."))}
    rho<-matrix(NA,nrow=length(gridx), ncol=length(rho.nms))
    j<-1;  for(i in cr){ rho[j,]<-i[lower.tri(i)]; j<-j+1 }
    rho<-as.data.frame(rho)
    names(rho)<-paste("rho_",rho.nms, sep="")
  }
  names(out)<-outnames
  if(corr){return(data.frame(out,rho))} else {return(out)}
}

mx2asciigrid<-function(mx, filename="map.txt", resolution, xll, yll, nodata=-9999, offset=TRUE){
#Writes matrix 'mx' to a file 'filename' as an ascii grid prepared to import to ArcGIS by ASCII to Raster tool.
#'resolution' is the cell size, 'xll' and 'yll' are the coordinates of lower left cell of the matrix 'mx',
#'nodata' is the value that should be used to indicate nodata (note that the actual value for no data in 'mx' is not alt..
..ered and this must be handled by the user)
#if 'offset' is TRUE then the origin is shifted half the cell size so that values are associated with cell centres in th..
..e resulting ascii grid file
#201006112000
  hdr<-data.frame(c("ncols","nrows","xllcorner","yllcorner","cellsize","NODATA_value"), c(ncol(mx), nrow(mx), xll, yll, ..
  ..resolution, nodata))
  if(offset){hdr[3,2]<-(xll-resolution/2); hdr[4,2]<-(yll-resolution/2)}
  write.table(hdr, filename, col.names=FALSE, row.names=FALSE, sep=" ", quote=FALSE)
  for(k in nrow(mx):1){
    write.table(t(mx[k,]), filename, col.names=FALSE, row.names=FALSE, sep=" ", append=TRUE)
  }
}

ccc_structural<-function(lmcr){
#Calculate structural correlation coefficients for linear model of coregionalization.
#lmcr: output of function f_lmcr_mx() containing the $b: coregionalization matrices for individual structures, $nmx: mat..
..rix of names of variables to facilitate queries
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#Returns a named matrix of structural correlation coefficients for each combination of variables and structures.
#NOTE that variable names containing more than one period in the lmcr will cause problems.
#201006112000
  structures<-names(lmcr$b) #names of the structures present in lmcr
  u.v<-lmcr$nmx[lower.tri(lmcr$nmx)] #names of the combinations of variables
  out<-matrix(NA, length(u.v), length(structures), dimnames=list(u.v, structures))
  for (struct in structures){#for each structure present in the lmcr$b
    bi<-lmcr$b[[struct]] #coregionalization matrix of particular structure in the struct loop
    cc<-numeric()
    for (i in 1:length(u.v)){ #for each combination of variables
      u<-strsplit(u.v[i], "\\.")[[1]]
      v<-u[length(u)]
      u<-u[1]  
      inx.uv<-which(lmcr$nmx==u.v[i], arr.ind=TRUE)[1,] #indices of the particular combination in the i loop
      inx.u<-as.numeric(inx.uv[2])
      inx.v<-as.numeric(inx.uv[1])
      cc[i]<-bi[inx.u,inx.v]/sqrt(bi[inx.u,inx.u]*bi[inx.v,inx.v])
    }
    out[,struct]<-cc
  }
  return(out)
}

ccc<-function(vgrm){
#Calculate codispersion coefficient.
#vgrm: experimental variogram obtained from gstat::variogram function, must contain at least two variables and their com..
..bination (cross-variogram)
#Returns a data frame (similar to that which returns function gstat::variogram)
# values of codispersion coefficient (column 'gamma') are calculated at specific lag distances (column 'dist') for the p..
..articular variable (column 'id')
# at each lag h, the codispersion coefficient is calculated according to equation 8 in Pringle and Lark (2006), i.e. ccc..
..=gamma_uv(h)/sqrt(gamma_u(h)*gamma_v(h)), where gamma stands for tha value of experimental variogram.
#NOTE that variable names in the vgrm containg more than one period will cause problems.
#201006112000
  out.d<-numeric(); out.c<-numeric(); out.v<-character()
  u.v<-levels(as.factor(vgrm$id))
  for(i in 1:length(u.v)){
    u<-strsplit(u.v[i], "\\.")[[1]]
    zetor<-6 #limit for zero tolerance (used for evaluating two distances as the same if the difference is at a further ..
    ..than zetor-th decimal place)
    vgrm$dist<-trunc(vgrm$dist*10^(zetor))/(10^zetor)
    if(length(u)>1){
      v<-u[length(u)]
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      u<-u[1]
      vg.uv<-vgrm[vgrm$id==u.v[i],]
      vg.u<-vgrm[vgrm$id==u,]
      vg.v<-vgrm[vgrm$id==v,]
      h<-vg.uv[vg.uv$id==u.v[i],]$dist #lag distances
      cc<-numeric() #codispersion coefficient
      for(j in 1:length(h)){
        cc[j]<-vg.uv[vg.uv$dist==h[j],]$gamma/sqrt(vg.u[vg.u$dist==h[j],]$gamma*vg.v[vg.v$dist==h[j],]$gamma)
      }
      out.d<-c(out.d, h); out.c<-c(out.c, cc); out.v<-c(out.v, rep(u.v[i], length(h)))
    }
  }
  return(data.frame(dist=out.d, gamma=out.c, id=out.v))
}

Sph<-function(x, range, sill){
#Spherical variogram model function (Webster and Oliver, 2007, p. 88)
#201006111000
  k<-length(x); y<-numeric(k)
  for(i in 1:k){ if(x[i]<=0){y[i]<-NaN}else{ if(x[i]>range){y[i]<-sill} else {y[i]<-sill*((3*x[i])/(2*range) - 0.5*((x[i..
  ..]/range)^3))}}}
  return(y)
}

Exp<-function(x, range, sill){
#Exponential variogram model function (Webster and Oliver, 2007, p. 88)
#201006111000
  k<-length(x); y<-numeric(k)
  for(i in 1:k){ y[i]<-sill*(1-exp(-x[i]/range)) }
  return(y)
}

f_lmcr_mx<-function(gs, structures=c("Nug", "Exp"), hulls=FALSE, hulls.x=NULL){
#Extract coregionalization matrices from the object gs (gstat::gstat).
#gs: gstat object with fitted linear model of coregionalization by gstat::fit.lmc
#structures: a character vector specifying which structures are present in the LMCR, currently just models like Nug+Exp+..
..Sph are supported, not Nug+Exp+Exp
#hulls: if TRUE, then also a list of hulls of perfect correlation is returned
#hulls.x: numeric vector to specify at which lag distances to calculate the hull of perfect correlation (e.g., 1:4000)
#Returns a list with items:
# b: a list of coregionalization matrices for individual structures in the linear model of coregionalization of object g..
..s
# nmx: a matrix of names that correspond to each element in the items of b
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# hull: a list of vectors defining the hull of perfect correlation (can be used for plotting the hulls)
#201006112000
  v.v<-names(gs$model)
  b<-list() #list for coregionalization matrices for individual structures
  ord<-length(names(gs$data)) #order of the coregionalization matrix
  nmx<-matrix(NA, ord, ord) #"matrix of names of the variables to facilitate further queries
  structures<-structures
  for(s in structures){
    b[[s]]<-matrix(rep(NA,ord^2), nrow=ord)
    elm<-numeric()
    for(v in v.v){
      elm[v]<-gs$model[[v]][gs$model[[v]]==s,][,2]
    }
    #fill in the lower triangle and diagonal
    k<-1
    for(j in 1:ord){ for(i in j:ord){
      nmx[i,j]<-v.v[k]
      b[[s]][i,j]<-gs$model[[v.v[k]]][gs$model[[v]]==s,][,2]  ;  k<-k+1
    } }
    #fill in the upper triangle symmetrically to lower triangle
    for(j in 2:ord){ for(i in 1:j){
      b[[s]][i,j]<-b[[s]][j,i]
      nmx[i,j]<-nmx[j,i]
    } }
  }
  
  #calculate hulls of perfect correlation if requested
  if(hulls){
    if(is.null(hulls.x)){print("Parameter hulls.x must be specified when hulls=TRUE. Using default settings: hulls.x=1:4..
    ..000"); hulls.x<-1:4000} else {x<-hulls.x}
    combinations<-nmx[lower.tri(nmx)]
    allhulls<-list()
    for(comb in combinations){
      v<-strsplit(comb, "\\.")[[1]]
      hll<-numeric(length(x))
      for(s in names(b)){
        if(s=="Nug") {
          b_uu<-b$Nug[which(nmx==v[1], arr.ind=TRUE)]
          b_vv<-b$Nug[which(nmx==v[2], arr.ind=TRUE)]
          hll<-hll+sqrt(b_uu*b_vv)
        }
        if(s=="Sph") {
          b_uu<-b$Sph[which(nmx==v[1], arr.ind=TRUE)]
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          b_vv<-b$Sph[which(nmx==v[2], arr.ind=TRUE)]
          hll<-hll+sqrt(b_uu*b_vv)*Sph(x, range=gs$model[[comb]][gs$model[[comb]][,1]=="Sph",3],sill=1)
        }
        if(s=="Exp") {
          b_uu<-b$Exp[which(nmx==v[1], arr.ind=TRUE)]
          b_vv<-b$Exp[which(nmx==v[2], arr.ind=TRUE)]
          hll<-hll+sqrt(b_uu*b_vv)*Exp(x, range=gs$model[[comb]][gs$model[[comb]][,1]=="Exp",3],sill=1)
        }
      } #end for s
      allhulls[[comb]]<-hll
    } #end for comb
  }

  return(list(b=b, nmx=nmx, hull=allhulls))
}

f_likfit<-function(g, model="spherical", ini.model=NULL, pars.sig, pars.phi, trend="cte", method="REML", print.pars=TRUE..
.., lines=FALSE, clr="red"){
#Run function likfit::gstat with a number of different parameters.
#g as geodata, pars.sig,pars.phi=c(middle, +-boundary, step)
#set lines=TRUE to enable drawing the models on a variogram plot (you have to check which device is the correct one)
#set model="unspecified" to obtain the model fitted by likfit in f_likfit()$models$...$cov.model
#Returns a list with vector logliks which are the log-likelihoods of the models in item models
#201006031315
  r<-list()
  best<-list()
  pars.sig<-seq(pars.sig[1]-pars.sig[2],pars.sig[1]+pars.sig[2], pars.sig[3])
  pars.phi<-seq(pars.phi[1]-pars.phi[2],pars.phi[1]+pars.phi[2], pars.phi[3])
  for(sig in pars.sig){#for each sill
    for(phi in pars.phi){#for each range
      if(is.null(ini.model)){
        if(model=="unspecified"){
          r<-likfit(g, trend=trend, ini.cov.pars=c(sig, phi), lik.method=method, print.pars=print.pars)
        }else{
          r<-likfit(g, trend=trend, ini.cov.pars=c(sig, phi), cov.model=model, lik.method=method, print.pars=print.pars)..
          ..
        }
      } else {
        if(model=="unspecified"){
          r<-likfit(g, trend=trend, ini.cov.pars=ini.model, lik.method=method, print.pars=print.pars)

        }else{
          r<-likfit(g, trend=trend, ini.cov.pars=ini.model, cov.model=model, lik.method=method, print.pars=print.pars)
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        }
      }
      if(lines){ lines(r, col=clr) }
      best[[paste("s",sig,"p",phi,sep="")]]<-r
    } #end sig
  } #end phi
  logliks<-numeric()
  for(i in names(best)){
    logliks[i]<-best[[i]]$loglik
  }
  return(list(logliks=logliks, models=best))
}

f_dowd<-function(cld, br=seq(0,8000,400)){
#Calculate the Dowd's robust estimate of variogram.
#Lark (2000) A comparison of some robust estimators of the variogram for use in soil survey, European Journal of Soil Sc..
..ience, 51, 137-157.
#cld: a variogram cloud from function variog(geodata, option="cloud")
#br: a vector of breaks
#Returns a variogram of estimator type "Dowd".
#NOTE that not all data items of class variogram are returned in the output properly which will probably cause problems ..
..whe using with other functions from geoR
#201006031030
  u<-numeric(); v<-numeric(); n<-numeric(); sd<-numeric()
  for (i in 1:(length(br)-1)){
    u[i]<-br[i]+(br[i+1]-br[i])/2
    y<-cld$v[cld$u<br[i+1] & cld$u>br[i]]
    v[i]<-0.5*2.198*median(abs(y))^2 
    n[i]<-length(y)
  }
  vg<-list(u=u, v=v, n=n, sd=sd, var.mark=var(cld$var.mark), estimator.type="Dowd", direction="omnidirectional", uvec=u)..
  ..
  class(vg)<-"variogram"
  return(vg)
}

hist.data.frame<-function(d, nr=2){
#Draw histograms of all numeric columns in data.frame d.
#nr: number of row in the resulting layout
#NOTE that dimensions are not checked.
#201006021715
  layout(matrix(1:(nr*(ceiling(length(names(d))/nr))), nrow=nr))
  for(i in names(d)){if(is.numeric(d[,i])){ hist(d[,i], main=i) }}
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}

f_trend<-function(x,y,z, ord=1, mode="residuals"){
#Detrending the data x,y,z.
#x,y,z: x,y, and z coordinates where x,y are meant to denote position and z the measured variable.
#ord: order of the polynomial surface to work with.
#if mode="expected", returns a vector of expected values of polynomial surface of order ord fitted through (x,y,z) at lo..
..cations (x,y)
#if mode="residuals", returns a vector of residuals (observed-expected)
#201006021715
  n<-length(z)
  if((n-length(y))!=0 || ((n-length(x))!=0)){ print("x,y,z must have the same length"); return() }
  require(spatial)
  surface<-surf.ls(ord,x,y,z) #fit the surface
  detr<-numeric(n)
  for(i in 1:n){ detr[i]<-trmat(surface, x[i], x[i], y[i], y[i], 1)$z }
  if(mode=="residuals"){ return(z-detr) }else{
    if(mode=="expected"){ return(detr) } else { return() }
  }
}

f_normal_score<-function(x){
#Perform normal score transformation.
#x: vector with data values
#Returns a list where first item ($nscore) is vector x transformed to its normal scores,
# second item ($trt) is the transformation table with columns 'orig' and 'norm' which can be used for backtransformation..
..
#Based on p.268 in Goovaerts (1999) Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, U..
..SA.
#NOTE that normal score transform should be performed after detrending ( http://help.arcgis.com/en/arcgisdesktop/10.0/he..
..lp/index.html#//00310000000v000000.htm )
#no declustering implemented
#201006021600
  n<-length(x)
  pre<-data.frame(1:n, x)
  pre<-pre[order(pre[,2]),]
  pscore<-numeric(0)
  for (k in 1:n){ pscore[k]<-(k/n)-(0.5/n) }
  pre$pscore<-pscore; pre$trans<-qnorm(pscore)
  trt<-data.frame(pre[,2], pre$trans); names(trt)<-c("orig","norm")
  pre<-pre[order(pre[,1]),]
  return(list(nscore=pre$trans, trt=trt))
}
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f_normal_score_back<-function(r, trt=data.frame(orig=c(1,2),norm=c(1,-1))){
#Perform normal score back transformation according to specified transformation table.
#r: vector of normal scores
#trt: transformation table with columns 'orig' (original value) and 'norm' (normal score).
#Returns a backtransformed values of r according to the transformation table trt
#linear interpolation is performed between values
#NOTE that transformation out of range of trt$orig is not implemented!
#201006021600
  if(any(names(trt)=="orig") && any(names(trt)=="norm")){
    return(approx(x=trt$norm, y=trt$orig, xout=r)$y)
  }else{
    return(approx(x=trt[,2], y=trt[,1], xout=r)$y)
  }
}

"%p%"<-function(a,b){paste(a,b, sep="")} #operator facilitating pasting

as.geodata.except<-function(dta, coords.col=2:3, data.col, col="PID", val=c()){
#Create a geodata object but exclude specific rows in the input data.frame.
#dta: data.frame that would be normally used to create the geodata object by geoR::as.geodata(dta)
#data.col: same as data.col for geoR::as.geodata()
#col: column name in dta, values in this column will be evaluated by this function for exclusion
#val: vector of values of col, specifies which rows should be excluded
#Returns a geodata object created from dta with specified rows removed.
  d<-dta
  for(i in val){
    print(paste("excluding:",i))
    d<-d[d[,col]!=i,]
  }
  return(as.geodata(d, coords.col=coords.col, data.col=data.col))
}

fitting<-function(vgram, model="exponential", maxd, pars.sig=c(1), pars.phi=c(1), pars.nug=c(0), weights="npairs"){
#Fit variogram with different initial parameters.
#vgram: output from variog()
#pars.sig, pars.phi, pars.nug are vectors of values of sill, range and nugget, all combinations of these values will be ..
..used as initial parameters for the fitting procedure
#maxd: is for max.dist
#see help for variofit() for description of weights and other details.
#Returns a data.frame ordered according to the minimised weighted sum of squares showing the corresponding model paramet..
..es
#model parameter kappa not implemented
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  fit<-list()
  for(s_i in pars.sig){ for(p_i in pars.phi){ for(n_i in pars.nug){
    fit[[paste("p",s_i,p_i,n_i,sep="_")]]<-variofit(vgram, ini=c(s_i, p_i), cov.model=model, nug=n_i, weights=weights, m..
    ..ax.dist=maxd)
  }}}
  pars.comb<-character();sig<-numeric();phi<-numeric();tau<-numeric();minsq<-numeric()
  for(i in names(fit)){
    pars.comb<-c(pars.comb, i)
    minsq<-c(minsq, fit[[i]][[5]])
    sig<-c(sig, fit[[i]][[2]][1])
    phi<-c(phi, fit[[i]][[2]][2])
    tau<-c(tau, fit[[i]][[1]][1])
  }
  rslt<-data.frame(pars.comb, minsq, sig, phi, tau)
  return(rslt[order(rslt[,2]),])
}

hist.pdf.normal<-function(x=c(1,2), lwd=1, lty=1, col="black"){
#Draw the probability density function for X~N(mean(x), var(x))
#to the active graphical window (must be managed by the user).
#Can be used for adding such lines to histograms
#The histogram must be the probability/density/relative histogram to match properly.
#201004152336
  x<-x[!is.na(x)] #remove NAs
  m<-mean(x); s<-sd(x)
  r<-max(m-min(x),max(x)-m)
  if(r<1){ step<-0.001 }else{ if(r<10){ step<-0.01 }else{ step<-0.1 } }
  a<-seq(m-4*r,m+4*r,step)
  lines(a, dnorm(a, mean=m, sd = sd(x)), lwd = lwd, lty = lty, col = col)
}

f_skewness_desa<-function(x=c(1), help=FALSE){
#Calculates skewness of vector x, removes NA values first.
#Core of the function from: De Sá, J.P.M. (2007) Applied statistics using SPSS, STATISTICA, MATLAB and R, (2nd edition), ..
..Springer-Verlag, Berlin, D. Page 66
#201005182130
  x<-x[!is.na(x)]; n<-length(x); y<-(x-mean(x))^3
  return(n*sum(y)/((n-1)*(n-2)*sd(x)^3))
}

f_skewness<-function(x=c(1), help=FALSE){
#Calculate skewness of the vector x, remove NA values first.
#Formula for skewness from http://en.wikipedia.org/wiki/Skewness

                                                                   78



#201005182130
  y<-x[!is.na(x)]
  m3<-0; m2<-0; mn<-mean(y); n<-length(y)
  if(length(x)!=n){ print(paste(length(x)-n, "NA values ignored."))}
  for (i in 1:n){ m3<-m3+(y[i]-mn)^3; m2<-m2+(y[i]-mn)^2 }
  m3<-m3/n; m2<-m2/n; g<-m3/(m2^(3/2))
  return(g)
}

f_pca<-function(x=matrix(c(1,2,3,4),2,2)){
#Return a list with two items. First is a matrix where colums
# are principal components of vectors in x, second item is a vector
# of eigenvalues of var(x).
#x: rows as replicates of different variables (columns)
#201005232115
  e<-eigen(var(x))
  y<-t(e$vectors)%*%t(x)
  return(list(t(y),e$values))
}
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# regional_stocks.r #

#estimation of element stocks in Davis Pond
#HAS TO BE EXECUTED IN THE MAIN WORKSPACE (AFTER main.r)

area<-sum(ras.mask)*25^2 #Davis Pond area (37071250 m2) 

#regional estimates in the upper layer using sample mean
rgn.up<-dta.orig[c("TC_UP", "TN_UP", "TP_UP")]
for(i in c("TC_UP", "TN_UP", "TP_UP")){
  conv<-ifelse(i == "TP_UP", 0.001, 1) #TP is in mg/kg, others are in g/kg, we will get kg/m3 after multipling it by den..
  ..sity [g/cm3] and this conversion factor
  rgn.up[i]<-conv*rgn.up[i]*dta.orig["DENS_UP"] #in kg/m3 at each sampling point
}
rgn.up.sum<-apply(rgn.up, 2, mean)*area*0.1 #the 0.1 is just the 10 cm layer
rgn.up.var<-apply(rgn.up, 2, var)*(area*0.1)^2 #variance D(cX) = c^2 D(X)
rgn.up.se<-sqrt(rgn.up.var/139) #standard error of the mean in kg

#regional estimates in the lower layer using sample mean
rgn.lw<-dta.orig[c("TC_LW", "TN_LW", "TP_LW")]
for(i in c("TC_LW", "TN_LW", "TP_LW")){
  conv<-ifelse(i == "TP_LW", 0.001, 1) #TP is in mg/kg, others are in g/kg, we will get kg/m3 after multipling it by den..
  ..sity [g/cm3] and this conversion factor
  rgn.lw[i]<-conv*rgn.lw[i]*dta.orig["DENS_LW"] #in kg/m3 at each sampling point
}
rgn.lw.sum<-apply(rgn.lw, 2, mean)*area*0.1 #the 0.1 is just the 10 cm layer
rgn.lw.var<-apply(rgn.lw, 2, var)*(area*0.1)^2 #variance D(cX) = c^2 D(X)
rgn.lw.se<-sqrt(rgn.lw.var/139) #standard error of the mean in kg
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# indicator_variograms.r # 
#indicator kriging in the lower layer

#set working directory, load packages and data
setwd("E:/cranfield/00_thesis/data/"); source("./rfunctions.r"); require(foreign); require(geoR)
d<-read.dbf("son.dbf"); d<-d[d$OUT!=1,]; d<-d[,which(names(d)!="OUT")]

#define functions that will facilitate the process

f_indicator_vg<-function(d, coords.col=1:2, data.col=3, tr, br=seq(0,8000,300), estimator="classical"){
 #returns indicator variogram using specified threshold 'tr'
 #d: data.frame or matrix containing coordinates and data columns, see ?variog for other details
  g<-as.geodata(d, coords.col=coords.col, data.col=data.col)
  g$data[g$data<tr]<-0; g$data[g$data>=tr]<-1
  return(variog(g, breaks=br, estimator.type=estimator))
}

plot_vgs<-function(vgs, maintext=NULL){
#function for ploting the list of lists of variograms
  layout(matrix(1:(2*ceiling(length(names(vgs))/2)),ncol=2))
  for(i in names(vgs)){
    nw<-TRUE; pt<-1
    if(is.null(maintext)){mtx<-i}else{mtx<-""}
    for(j in names(vgs[[i]])){
      if(nw){
        limits<-c(0,0)
        for(m in names(vgs[[i]])){ limits[2]<-max(max(vgs[[i]][[m]]$v),limits[2]) } #search for ylimits
        par(mar=c(2,4,2,1))
        plot(vgs[[i]][[j]], pch=16, main=mtx, ylim=limits, xlab="", ylab="")
        nw<-FALSE
      }else{
        points(vgs[[i]][[j]]$u, vgs[[i]][[j]]$v, pch=pt)
        pt<-pt+1
      }
    }
    if(!is.null(maintext)){mtext(maintext[i][[1]], side=3, line=0.5, outer=F, cex=0.7)}
    mtext(expression(gamma), side=2, line=-1, outer=T, cex=0.9) #indicator variogram has no units
  }
}

plot_vgs_legend<-function(trs, newin=TRUE, maintext=NULL){

                                                                   81



#function for plotting legend of the variograms based on thresholds in trs matrix
  if(newin){windows()}
  par(mar=c(0,0,0,0))
  plot(1:100,1:100, axes=FALSE, xlab="", ylab="", pch="")
  legvec<-numeric(1+length(trs[,1]))
  if(is.null(maintext)){ legvec[1]<-paste(dimnames(trs)[[2]], collapse="; ") } else { legvec[1]<- paste(as.character (mai..
  ..ntext[dimnames(trs)[[2]]]), collapse="; ")
  }
  for(i in 2:length(legvec)){legvec[i]<-paste(trs[i-1,], collapse="; ")}
  legend("center",legend=legvec, pch=c(NA,16,1:(length(legvec)-1)), title="Thresholds for variables")
}

#end of function definition

vars<-c("PH_LW", "MOIST_LW", "DENS_LW", "ORGAN_LW", "TN_LW", "TC_LW", "TP_LW")
maintext<-c("(a) pH", "(b) MOIST", "(c) BD", "(d) OM", "(e) TP", "(f) TN", "(g) TC"); names(maintext)<-vars

#decide what thresholds to use
hist(d[vars])
trs<-matrix(NA, 4, length(vars), dimnames=list(NULL, vars))
trs[,"PH_LW"]<-c(6.25, 6.75, 7.25, 7.75); trs[,"MOIST_LW"]<-c(0.5, 0.6, 0.7, 0.8)
trs[,"DENS_LW"]<-c(0.15, 0.25, 0.4, 0.6); trs[,"ORGAN_LW"]<-c(0.2, 0.4, 0.6, 0.8)
trs[,"TP_LW"]<-c(500, 700, 900, 1100); trs[,"TN_LW"]<-c(5, 16, 15, 20); trs[,"TC_LW"]<-c(80, 160, 240, 320)

#construct variograms
vgs<-list()
for(i in vars){ for(j in trs[,i]){
  vgs[[i]][["tr"%p%j]]<-f_indicator_vg(d, 2:3, i, j, br=seq(0,4500,300))
}}

#plot the variograms and a legend
plot_vgs(vgs, maintext=maintext)
plot_vgs_legend(trs, newin=FALSE, maintext=maintext)

#only ORGAN_LW for threshold 0.8 could be fitted
vg<-vgs[["ORGAN_LW"]][["tr0.8"]]
windows(); plot(vg)
md<-variofit(vg, ini.cov.pars=c(0.2,1000), cov.model="exponential", nugget=0.05, max.dist=3500, weights="npairs")
lines(md) #Exp(0.1295, 1381)+Nug(0.1244), minSQ=0.4091
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Appendix H Maps

Maps of the soil properties in 0–10 cm soil depth were produced in ArcMap (ESRI, 
1999–2009) and are included after this page. Data and the maps can be also found on 
the enclosed CD.
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