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Abstract 
This work focuses on Watson-Crick languages inspired by D N A computing, their models 
and algorithms of deciding the language membership. It analyzes a recently introduced 
algori thm called W K - C Y K and introduces a state space search algori thm which is based 
on regular Breath-first search but uses a number of optimizations and heuristics to be 
efficient i n pract ical use and able to analyze inputs of greater lengths. The key parts are 
the heuristics for pruning the state space (detecting dead ends) and heuristics for choosing 
the most promising branches to continue the search. 

These two algorithms have been tested wi th 20 different Watson-Crick grammars (40 
including their Chomsky normal form versions). W h i l e W K - C Y K is able to decide the 
language membership i n a reasonable t ime for inputs of length of roughly 30-50 symbols 
and its performance is very consistent for a l l kinds of grammars and inputs, the state space 
search is usually (89-98 % of cases) more efficient and able to do the computat ion for inputs 
wi th lengths of hundreds or even thousands of symbols. Thus, the state space search has 
a potential to be a good tool for pract ical Watson-Crick membership testing and is a good 
basis to further bu i ld on and further improve the efficiency of the algori thm. 

Abstrakt 
Tato p r á c e se zabývá W a t s o n - C r i c k o v ý m i jazyky, k t e r é jsou insp i rovány v ý p o č t y nad D N A , 
dá le jejich modely a algori tmy pro rozhodován í č lens tv í ř e t ězců v t ěch to jazyc ích . Analyzuje 
n e d á v n o p ř e d s t a v e n ý algoritmus n a z v a n ý W K - C Y K a prezentuje algoritmus za ložený na 
p roh ledáván í s t avového prostoru, j ehož z á k l a d e m je s t a n d a r d n í p roh l edáván í prostoru do 
šířky, ale použ ívá m n o ž s t v í op t ima l i zac í a heuristik, aby b y l v praxi efektivnější a dokáza l 
analyzovat delší vstupy. Klíčové jsou heurist iky pro p ro řezáván í s t avového prostoru (de­
tekuj í s lepé větve) a heurist iky pro v ý b ě r nejsl ibnějších vě tv í pro dalš í výpoče t . 

T y t o dva algori tmy jsou t e s továny na 20 r ů z n ý c h Wa t son -Cr i ckových g r a m a t i k á c h (40 
vče tně jejich verzí v C h o m s k é h o n o r m á l n í formě) . Z a t í m c o W K - C Y K je schopen rozhod­
nout č lens tv í v jazyce v r o z u m n é m čase u v s t u p ů o délce zhruba 30-50 symbo lů , jeho efek­
tivnost je velmi konz i s t en tn í u r ů z n ý c h gramatik a různých v s t u p ů , algoritmus p roh ledá ­
vající s t avový prostor je obvykle (v 89-98 % p ř í p a d ů ) efektivnější a je schopen provés t 
v ý p o č e t pro vstupy s dé lkou o s tovkách čas to i t isících s y m b o l ů . Tedy tento algoritmus 
m á p o t e n c i á l bý t v h o d n ý m n á s t r o j e m pro p rak t i cké použ i t í p ř i r ozhodován í č lens tv í ve 
Wa t son -Cr i ckových jazyc ích a nab íz í v h o d n ý zák lad pro dalš í vývoj a vylepšení , k t e r á by 
dá le zvyšovala efektivitu algori tmu. 

Keywords 
Watson-Cr ick languages, formal grammars, D N A computing, state space search, language 
membership problem 
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Rozšířený abstrakt 
Tato p r á c e se zabývá W a t s o n - C r i c k o v ý m i jazyky, k t e r é jsou insp i rovány v ý p o č t y nad D N A , 

dá le jejich modely a p ř e d e v š í m algoritmy pro rozhodován í č lens tv í ř e t ězců v t ě c h t o jazycích . 
T y t o j azyky pracu j í s dvo j i tými v s t u p n í m i ře tězci , jej ichž symboly jsou spojeny komple­
m e n t á r n í relací . 

Jeden z h lavn ích m o d e l ů pro tyto j azyky jsou Watson-Crickovy bezkon tex tové gra­
matiky. N e d á v n o p ř e d s t a v e n ý algoritmus W K - C Y K , k t e r ý je modif ikací a lgori tmu C Y K pro 
bezkon tex tové gramatiky, je u r čen p rávě pro rozhodován í č lens tv í v t ě c h t o jazyc ích . Tento 
algoritmus pracuje s gramat ikami ve Wat son-Cr i ckově C h o m s k é h o n o r m á l n í formě ( W K -
C N F ) , což je modifikace C h o m s k é h o n o r m á l n í formy b e z k o n t e x t o v ý c h gramatik. V t é t o 
prác i je algoritmus ana lyzován , i m p l e m e n t o v á n , je ověřena jeho funkčnost a dek l a rovaná 
složitost 0(rr) vzhledem k délce vstupu. 

H l a v n í m p ř í n o s e m p r á c e je použ i t í a lgori tmu p roh ledáván í s tavového prostoru pro rozho­
dování č lens tv í ve Wa t son -Cr i ckových jazyc ích . Jeho z á k l a d e m je s t a n d a r d n í algoritmus 
B F S (p roh ledáván í s tavového prostoru do š í řky) , k t e r ý b y l rozš í řen o několik op t ima l i zac í a 
heuristik, aby jeho efektivita byla za j ímavá pro p rak t i cké použ i t í . K o ř e n s tavového stromu 
je p o č á t e č n í symbol gramatiky a nás ledníc i jsou získáni ap l ikac í všech možných pravidel 
gramatiky na p r v n í n e t e r m i n á l n í symbol ve slově. 

Nejdůlež i tě jš ím rozš í řen ím oproti p ů v o d n í m u B F S je p ě t heuristik pro p ro řezáván í 
s tavového stromu. T y k a ž d ý uzel ana lyzuj í a rozhoduj í , jestl i je možné , že d a n ý uzel 
vede k h l e d a n é m u řešení . Heur is t iky kontroluj í , zda nen í j iž ve slově příl iš mnoho sym­
bolů , p ř i čemž poče t t e r m i n á l n í c h s y m b o l ů se snížit n e m ů ž e a u n e t e r m i n á l n í c h s y m b o l ů je 
p o č í t á n m i n i m á l n í p o č e t symbo lů , k t e r é z nich mohou vzejí t . Dá le je kon t ro lováno d o d ržen í 
k o m p l e m e n t á r n í relace a s p r á v n o s t p o ř a d í již vygenerovaných t e r m i n á l n í c h symbo lů . Dá le 
je zde p o u ž i t a sada heuristik pro v ý b ě r nej s l ibnějšího uzlu , pro dalš í p roh ledáván í . O b e c n ě 
preferují slova s m é n ě n e t e r m i n á l n í m i symboly a slova, jej íchž t e r m i n á l n i symboly se více 
shoduj í s v s t u p n í m ře t ězcem. 

P ro t e s t o v á n í bylo v y b r á n o 20 různých Wat son -Cr i ckových gramatik, k t e r é byly použ i t y 
jednak v p ů v o d n í formě a t a k é po transformaci do W K - C N F . Tes tování bylo provedeno 
v někol ika fázích. Nejprve byly p o r o v n á n y na všech g r a m a t i k á c h všechny d o s t u p n é heuris­
t iky pro v ý b ě r uz lu a v y b r á n a ta, k t e r á d o s á h l a nej lepš ího celkového času , p ro tože je 
m o ž n é mí t a k t i v n í v ž d y jen jednu z nich. Dá le byly na všech g r a m a t i k á c h t e s továny pos­
t u p n ě všechny heurist iky pro p ro řezáván í s tromu a p o r o v n á v á n o , zda m á algoritmus lepší 
výkon s danou heuristikou a k t i v n í nebo vypnutou. T í m t o z p ů s o b e m byla z í skána konfig­
urace, k t e r á m á nejlepší celkový výkon . S touto konfigurací p r o b ě h l y opě t na všech gra­
m a t i k á c h testy, k t e r é zjišťovaly m a x i m á l n í dé lku vstupu, pro kterou algoritmus p roh ledáván í 
s tavového prostoru získá výs ledek v d a n é m časovém l i m i t u (10 sekund). P o d o b n é t e s tován í 
nás l edně p r o b ě h l o i pro algoritmus W K - C Y K . 

P ř i t e s t o v á n í se ukáza lo , že W K - C Y K je schopen v r o z u m n é m časovém horizontu 
rozhodnout č lens tv í v jazyce pro ře tězce o délce 30-50 z n a k ů . Jeho v ý h o d o u je konzis­
tentnost — ve všech t e s tovaných p ř ípadech , pro r ů z n é gramat iky i vstupy byla časová 
složitost velice p o d o b n á . 

V ý h o d o u algori tmu p roh ledáván í s t avového prostoru je p ř e d n ě un ive rzá lnos t . Je schopen 
pracovat s W a t s o n - C r i c k o v ý m i gramat ikami v jakékol i formě a s l ibovolnou k o m p l e m e n t á r n í 
relací . D íky tomu nen í n u t n é gramatiky p řevádě t do W K - C N F , což m ů ž e v y ú s t i t v daleko 
komplikovanějš í gramat iku s více pravidly. P ř i t e s tován í gramatik v z á k l a d n í formě by l 
v ý p o č e t v 38 ze 40 tes tovac ích p ř í p a d ů (tedy 97.5 %) v ý r a z n ě efektivnější — je takto 
m o ž n é rozhodnout č lens tv í ř e t ězců s ř ádově s tovkami, č a s to i t isíci s y m b o l ů . P o z a h r n u t í 



gramatik po transformaci do W K - C N F b y l algoritmus efektivnější v 71 z 80 (tedy 88.75 %) 
tes tovac ích p ř í p a d ů . Dalš í v ý h o d o u tohoto algori tmu je jeho konfigurovatelnost, je m o ž n é 
pro k o n k r é t n í gramat iku porovnat úč innos t heuristik pro v ý b ě r uz lu a použ íva t tu , k t e r á 
je pro d a n ý p ř í p a d ne jvhodně jš í . S te jně tak u heuristik pro p ro řezáván í s t avového stromu 
m ů ž e bý t v h o d n é pro danou gramat iku n ě k t e r é vypnout , č ímž se efektivita dá le zvýší . 
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Chapter 1 

Introduction 

The abi l i ty to read D N A , to understand it or even to modify i t , is certainly one of the ways 
that many people think w i l l define the future. B u t in order to work w i t h D N A , there needs 
to be a mathematical model that can actually do calculations wi th such structures and that 
is prepared to be run on computers. Moreover, working wi th this model must be efficient 
enough because genetic code has a huge number of digits. 

This works follows the work of M . Zulkuf l i et a l . [10], [12], [11] who have studied 
models for working wi th Watson-Cr ick languages and introduced the W K - C Y K algori thm, a 
modification of the C Y K algori thm, which works wi th Watson-Cr ick context-free grammars 
and is able to decide the membership problem for these languages. The stated complexity 
of this a lgori thm is C ( n 6 ) w i th respect to the input length. However, w i th this complexity 
the a lgori thm s t i l l does not seem to be useful for pract ical D N A computations considering 
how long D N A code is. 

Therefore this work introduces the state space search algori thm. W h i l e its theoretical 
complexity is not as good as i n case of W K - C Y K , it takes a more pract ical approach. In 
practice, thanks to various heuristics, it is very often able to decide the membership in 
languages defined by Watson-Crick context-free grammars of inputs far longer then what 
W K - C Y K can handle. 

Chapter 2 contains an overview of most common models for working wi th Watson-Crick 
languages. Chapter 3 discusses ways of deciding membership problem of those languages 
wi th the focus on the W K - C Y K algori thm. Chapter 4 introduces the state space search 
algori thm and the heuristics and optimizations that make it more efficient. Chapter 5 
focuses on the implementat ion of the state space search and is probably going to be useful 
to someone who wants to delve into the code and use it or further bu i ld on i t . F ina l ly , 
chapter 6 contains twenty grammars that were used for testing both state space search and 
W K - C Y K algorithms in practice and presents results of these tests. 

A integral component of this thesis is an implementat ion i n the P y t h o n programming 
language of the state space search algori thm, the W K - C Y K algori thm and a number of 
tests used to analyze the state and space complexities and to compare the algorithms. 
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Chapter 2 

Models of Watson-Crick languages 

A number of models working wi th double stranded sequences has been proposed. The 
purpose of this chapter is to present a motivat ion for using them and to summarize these 
models and some of their key attributes that w i l l be important i n later chapters. 

2.1 D N A as an inspiration for Watson-Crick languages 

The study of Watson-Cr ick models is motivated by D N A (deoxyribonucleic acid) computing. 
In order to study the D N A mathematically, i.e. to perform mathematical operations over 
it, it is necessary to work wi th a suitable abstraction — a model which captures its key 
characteristics. Specifically, there are two characteristics that the Watson-Crick models 
capture — the fact that the D N A is a double stranded chain and the Watson-Crick relation 
between D N A nucleotides. 

The two fundamental models that are used to define a language in computer theory are 
grammars and automata. Several versions of both have been proposed but a l l of them work 
wi th these two characteristics i n a very similar manner. 

D N A consists of two chains of nucleotides, one of which is marked as 5' end and the 
other 3' end. The chains are connected by covalent bonds and together form a double 
helix (figure 2.1). These two chains are represented in the Watson-Crick automata by two 
reading heads which read two inputs independently but are controlled by the same states. 
Similarly, Watson-Crick grammars produce by their rules not just a chain of symbols, but 
two chains. 

Each nucleotide contains one of the four nucleobases - cytosine (C) , guanine (G) , adenine 
(A) and thymine (T) . These bases are always connected wi th their counterpart: cytosine 
wi th guanine and adenine wi th thymine. Tha t means that whenever one of the four appears 
in a chain, its counterpart appears i n the other chain i n the corresponding place being 
bound together by the covalent bond. The Watson-Cr ick models therefore introduce a 
complementarity relation — a relation between symbols which must be kept i n the whole 
input for it to be val id . Typica l ly , this relation is symmetric (aRb 44> bRa) and covers the 
whole alphabet (every symbol must have at least one counterpart). Often every symbol 
has exactly one counterpart, just like i n case of D N A . The relation is usually defined as 
an identity (i.e. each symbol is related to itself and only to itself) which is s t i l l somewhat 
similar to the D N A pairing. 
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hydrogen bonds 

Figure 2.1: The D N A double helix 

2.2 Watson-Crick automata 

Watson-Cr ick automata have first been proposed i n [7] as an enhancement of standard 
F in i te Au toma ta . Watson-Crick finite automaton is a 6-tuple M = (V,p,Q,qo,F,P) w i th 
the following meaning. 

• V - finite input alphabet 

• p C V x V - complementarity relation 

• Q - finite set of states 

• qo G Q - s tart ing symbol 

• F C Q - set of final states 

• P - finite set of t ransi t ion rules i n a form q(™^) ~* l' where q, q' G Q, w\, u>2 £ V* 

Compared to F in i t e automata, Watson-Crick automata have different form of transi t ion 
rules which read two strings at the same time. These represent the two independent reading 
heads — one reading the upper strand (u>i) and the other reading the lower strand ( ^ 2 ) • 
They also add the complementarity relation which is usually required to be symmetric. The 
symbols i n the upper and lower strands wi th the same indexes need to adhere to i t . 

( ^ ) denotes s imply a pair {w\,W2)- A Watson-Cr ick domain is a set WKp(V) which 
denotes a l l val id double strands associated w i t h a given V and p. Formal ly: 

Th is implies that the both strands in a W K domain must have the same length. 
A configuration of a Watson-Crick automaton is a pair (q, )) where q G Q is a current 

state and wi, wi G V* are the parts of the upper and lower strands yet to be read. 

WKp{V)=[v

vYp where [v

v]p = { [«] \a, b G V, (a, 6) G p } 



If qCD ^ q ' eP and ( ™ ) G ( £ ) then =• g ^ ) is a t ransi t ion of the 
Watson-Cr ick automaton. =4>* denotes the transitive and reflexive closure of the relation 
=>. 

A Watson-Crick automaton accepts the language L ( M ) : 

L ( M ) = {Wl G V*\q0[Zl] ^* f(X
x) where / G F, w2 G V * , [ £ ] G ^ „ ( 7 ) } 

where A denotes a str ing of zero length (an empty string). Th is means that only the 
upper strand is accepted by this automaton to the language L. The lower strand has just 
an auxi l iary purpose. 

2.3 Special versions of Watson-Crick automata 

Four special versions of Watson-Cr ick automata ( W K A ) are often used ([5], [13]). These 
are: 

• stateless W K A — the W K A has only one state: Q = F = q$ 

• a l l final W K A — a l l the states are final: Q = F 

• simple W K A — each rule reads only one head: (<z(™*) —> q' € P) {w\ = AVW2 = A) 

• 1-limited W K A — reads only one symbol at a t ime: (<z(^) —> q' G P) =>• | iui iU2| = 1 

Three of these four special types of W K A s have the same expressing power as the 
actual W K A , namely a l l final W K A , simple W K A and 1-limited W K A (stateless W K A 
is weaker). Therefore, one possible approach to decide membership would be to l imi t the 
decision algori thm to one of these three types without any loss in expressing power. 

There are three different variants of deterministic W K A proposed in [5]. These are: 

• Weakly deterministic W K A : W K A where in each reachable configuration, there is at 
most one possible continuation. 

• Determinist ic W K A : For any two rules which lead from the same state, either their 
upper strands or their lower strands must not be prefix comparable (one is not the 
prefix of the other). Formal ly : (<?(") qi G PAq(™,) q2 G P) =^ u oop u'Vv oop v ' 
where ~ p is the relation of prefix comparabili ty. 

• Strongly deterministic W K A : A deterministic W K A whose complementarity relation 
is identity. 

It is not specified how to actually achieve weak determinism. In fact, [5] shows that 
this property is undecidable. Intuitively, for a W K A to be weakly deterministic but not 
deterministic, there must be at least two rules which could both be used in a certain 
configuration (otherwise it would be deterministic). B u t such a configuration must not 
be reachable (otherwise it would not be weakly deterministic). The configuration may be 
unreachable t r iv ia l ly — by rules using an unreachable state or a symbols that have no 
related symbols i n the complementarity relation. B u t a configuration may be unreachable 
non-trivially, if it is possible to tel l how many symbols w i l l be read from each strand before 
reaching certain state. 

5 



B o t h weakly deterministic and deterministic W K A are i n reality not deterministic (in an 
intuit ive sense). The i r determinism relies on the fact that the configuration is known and for 
the configuration to be known, the entire input (meaning both strands of the input) needs 
to be specified. B u t that is often not a way how W K A are used, since W K A decides the 
membership in a language for the upper strand only. Tha t means that a compatible strand 
has to be found in the process of running the W K A . Theoretically, it is possible to approach 
this problem by first generating a l l possible lower strands for the given upper strand based 
solely on the complementarity relation and afterwards use a l l these pairs as inputs for the 
W K A . In such a case, the weakly deterministic and deterministic automata would be t ru ly 
deterministic, however this is clearly not feasible for non- t r iv ia l complementarity relations. 
Therefore, the strongly deterministic W K A is the only one wi tch is t ru ly deterministic 
under a l l circumstances because the identity relation requirement leaves no space for these 
types of non-determinism. 

2.4 Watson-Crick grammars 

The first k ind of Watson-Cr ick grammars introduced were the Watson-Cr ick regular gram­
mars [14]. The key features are shared w i t h Watson-Crick automata. Specifically, it it the 
complementarity relation p and the double stranded strings that the grammar produces. 
The W K regular grammars have been used as a basis for Watson-Cr ick linear grammars 
and Watson-Crick context-free grammars introduced i n [10]. Since a W K linear grammar is 
a generalization of W K regular grammar and W K context-free grammar is a generalization 
of W K linear grammar, it makes sense to start w i th the definition of the context-free version 
and then specify the constraints of linear and regular versions. 

A Watson-Crick context-free grammar is G = (N, T, p, P, S) where iV is a finite 
set of non-terminals, T is a finite set of terminals and i V U T = 0, S G A M s a starting 
non-terminal, p C T x T is a symmetric complementarity relation, and P is a finite set of 
rules that have the form A a where A e N A a G (N U (^* ))*. 

The derivation of the grammar G starts w i th the starting symbol S. x G (N U (y*))* 

directly derives y G (N U (y* ))*, denoted by x =>• y, if and only if: 

x = j3A'~) A y = /3cry 

where Ae N A a,/3,j G (N U (?**))* A A ^ a G P. 

The language generated by the grammar G is: 

where =̂>* is a reflexive and transitive closure of =X 
A Watson-Crick linear grammar is a special version of a Watson-Crick context-free 

grammar where a l l the rules i n the set of rules P are i n one of the following forms: 

where A, B G N 

A Watson-Crick regular grammar is also a special version of a Watson-Crick 
context-free grammar (and of a Watson-Crick linear grammar) where a l l the rules i n the 
set of rules P are i n one of the following forms: 

L(G) = {W1\S^ [£]€[£],} 

G 



where A,BeN 

A further specialization of Watson-Crick regular grammar has been defined i n [14] called 
1-limited Watson-Crick regular grammar ( N 1 W K grammar). A l l rules of such a 
grammar must contain exactly one terminal symbol on the left-hand side and the starting 
non-terminal must be the only non-terminal i n the grammar. In other words, the form of 
each rule must be one of the following: 

where S is the only non-terminal of the grammar. 

2.5 Some other models for Watson-Crick languages 

This section mentions some other, perhaps slightly less often used, models for Watson-
Cr ick languages — Watson-Crick pushdown automata, Watson-Cr ick context-free systems 
and parallel communicat ing Watson-Crick automata. 

2.5.1 Watson-Crick pushdown automata 

The Watson-Crick Pushdown automata ( W C P D A ) have been introduced i n [1]. It is ba­
sically a two-head pushdown automaton wi th the complementarity relation added on top. 
Formal ly a W C P D A P is a 10-tuple P = (Q, #, $, V, V, 6, q0, Z0, F, p) w i th most symbols 
having the same standard meaning as i n a conventional pushdown automaton — Q is a 
finite set of states, V is an input alphabet, T is a stack alphabet, qo G Q is a start ing state, 
Zq G r is a starting stack symbol and F C Q is the set of final states. Symbols $ ^ V are 
left and right input markers of the two strands, p is the complementarity relation similar 
to standard W K A . 

5 is a set of rules in the following form: (q, ), x) —> (q', 7 ) where q, q' G Q,W\,W2 G 
V* U j^V* U V*% U #V*$, x G r , 7 G V*. It means that the automaton can transi t ion from 
state q reading the input w\ w i th the first head and W2 w i th the second head and go to state 
q' while removing the top symbol from the stack and put t ing a string (i.e. 0 -n symbols) 
of the stack symbols onto the stack. The two strands on the input are enclosed i n the 
beginning symbol # and the closing symbol $, therefore the symbol # may appear i n the 
beginning of w\ or u>2 and s imilar ly the closing symbol $ at the end. 

A configuration of P is a triple (q, ( ^ ) , 7 ) where q G Q is a state, (^) is the remaining 
input to be read where x, y G #V*$ U V*$ U A and 7 G T* is the content of the stack. The 
in i t i a l configuration of the automaton is (qo, ( ^ ^ J ) , Zq) where [ ^ ] G WKp(V). 

A transi t ion h of P is a relation between configurations defined as follows: 

( « . f f i ) . ^ ) h ( P . ( S W ) M £ ) , * ) - > ( P , « ) € * 
h* is a transitive and reflexive relation of h denoting zero or more transitions. 
The language accepted by P is: 

L(P) = {Wl G V*\w2 G V*A[Zl] G WKp(V)A{q0, Z „ ) K (g, ( J ) , a ) A « G FAa G r * | 

meaning that there exists a sequence of transitions (h*) from the in i t i a l configuration to 
a final configuration where the remaining input to be read is (^) , the content of the stack 
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is arbi trary and the state is i n the set of final states F. This means that W K pushdown 
automata accept by final states. 

[1] also defines two special versions of W K pushdown automata — deterministic Watson-
Cr ick pushdown automata ( D W K P D A ) and strongly deterministic Watson-Cr ick pushdown 
automata ( S D W K P D A ) which are inspired by the deterministic and strongly deterministic 
W K A . 

Watson-Crick pushdown automaton is deterministic i f any two rules, which start i n the 
same state, read inputs which are prefix incomparable i n the upper or lower part. Formal ly: 

(q, {u
v), X) (q', 7 ) G S A (q, ( £ ) , * ) - > • (<?", V ) G 8 => u oop u ' V v *>p v' 

Watson-Crick pushdown automaton is strongly deterministic if it is deterministic and 
its complementarity relation is identity. 

2.5.2 Watson-Crick context-free systems 

A Watson-Crick context-free systems ( W K C F S ) have been defined i n [15] A W K C F S is: 
S = (V, E , p, A, P) where V is a finite alphabet, E C V, p C E x ( V \ E ) is a complementarity 
relation where i f (a, a) G p then a G V — E is unique for a G E . A is a finite set of axioms 
in form [™] where w G E * , s G (V — E ) * and (w, s) G p. P is a finite set of rules i n one of 
the forms: 

( 2 ) - • ( ; ) . ( ; ) - • ( ; ) . ( i ) - ^ o 

where a G E , (a, a) G p, x G E * and y € ( V — E ) * 
A derivation =4> in S is a relation between and ("^) defined as follows: 

if one of the following conditions is met 

1. = ( 2 X 2 X 2 ) 
(x\xxi N j£ /aN _ 
v y\yyi> vs/ 

2. = ( 2 X S X 2 ) 

a 2 ) 
(x\xxi N j£ la\ _ 
\y1yy2! va/ 

3. ~ (1/1X0X3/2) 

a 2 ) 
_ (x1xx2\ j£ /An 

V1/11/1/2/ Va/ + 5 ) ^ 

where a G E , (a, a) G p, x i , X2 G E * , y i , y2 G ( V — E ) * 
The language of S is: L(S) = {x\[w

s} ^* [*]} where [™] G A , x G E * and y G ( F - E ) * 

2.5.3 Parallel communicating Watson-Crick automata systems 

Paral le l communicat ing Watson-Crick automata systems ( P C W K ) have been defined i n [3]. 
P C W K ( n ) is a P C W K of degree n which is a (n + 3)-tuple: A = (V, p, A1,A2, ...,An, K) 

where V is an input alphabet, p is a complementarity relation, Ai = (V, p, Qi, qi, F j , Si) 
for 1 < i < n is a Watson-Cr ick automaton. 7\T = X i , K 2 , Kn C | J™ = 1 is a set of query 
states. 
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The automata Ai_n are the components of the system A. A configuration of a P C W K 
is a 2n-tuple ( s i , ( " * ) , S 2 ; ("^), Sn> ("")) where Sj is a state of component and (" { ) 
is part of the input word that has not yet been read by Aj for 1 < i < n. 

A transi t ion is a relation h between two configurations and is defined as follows: 

( -1 . a 1 ) . * . ( £ ) > - > - » . d ) ) h (n> C j ) ^ , (%)> - . » • » . ( $ ) ) 

if one of the following conditions is met: 

1. 
{sltS2, . . . , , „ } = 0 A ( £ ) = ( ^ ) C J ) A r , G fc(fli> ( ; ) ) for 1 < i < n 

2. for a l l 1 < i < n such that Sj = Kjt A Sj^ ^ K there is rj = Sjt and for a l l other 
i < 3 <n there is r; = si 

C i ) = C ; ) f o r a U l < t < n . 

h* denotes the reflexive and transitive closure of h and the language recognized by 
P C W K A is: 

= { « , ! € V | ( g i , [Zl],q2, [Zl},...,Qn,[Zl}) H* ( -1 , [ } ] , - 2 , [ } ] , . - , - » , € 

Fi for 1 < i < n | 

2.6 Expressing power of Watson-Crick models 

The comparison of expressing power of W K language families i n the context of the Chomsky 
hierarchy has been studied in [10] and [12]. The ma in result is shown at the figure 2.2. 
The Chomsky hierarchy is represented on the right ( R E G — regular languages, L I N -
linear languages, C F — context-free languages, C S — context sensitive languages, R E 

- recursively enumerable languages) while the Watson-Cr ick languages are on the left. 
W K R E G are languages defined by a non-deterministic Watson-Crick automata or a Watson-
Cr ick regular grammars ([14] shows that these are equivalent). W K L I N are languages 
defined by W K linear grammars and W K C F are languages defined by W K context-free 
grammars (it has not been shown, yet, that W K pushdown automata have the same power). 
The full arrows denote proper inclusion, dotted arrows denote inclusion and dotted lines 
denote incomparabili ty. 

It has been shown i n [9] that the type of complementary relation which is used does 
not increase the expressing power of the Watson-Crick automata and grammars. A l so 
[4] provides an a lgor i thm how to transform any W K automaton to an equivalent W K 
automaton wi th the relation being identity. Therefore, many models and algorithms l imi t 
themselves to working wi th identity complementarity relation. 
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Figure 2.2: Compar ison of W K language families in the context of the Chomsky hierarchy 
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Chapter 3 

Existing ways of testing 
membership in Watson-Crick 
languages 

This chapter focuses mainly on the W K - C Y K algori thm which is pract ical ly the only algo­
r i thm expl ic i t ly designed to decide a membership in Watson-Crick languages defined by a 
W K context-free grammars. Another way could be using W K automata, which is discussed 
in the latter part. 

3.1 The W K - C Y K algorithm 

The W K - C Y K algori thm has been introduced i n [11] and it is an enhancement of the C Y K 
algori thm modified for W K context-free languages. To understand i t , it is good to be 
familiar w i th the way the original C Y K algori thm works. 

3.1.1 The C Y K algorithm as an inspiration of W K - C Y K 

The C Y K algori thm is named after J . Cocke, D . Younger and T . K a s a m i [2], [17] [8]. It 
is used to decide the membership i n a language defined by a context-free grammar, which 
must be in the Chomsky normal form ( C N F ) . 

O n the input there is a string and a grammar and the a lgori thm decides whether the 
string belongs to the language defined by the grammar (accepts or rejects the string). There 
are two kinds of rules in a grammar i n the C N F (disregarding the S —>• e rule which is used 
only to include empty string i n the language): A —>• a and A —> BC where A,B,C are 
non-terminals and a is a terminal . 

In the first stage, it analyzes the first k ind of rules — each of the symbols from the 
input string has to be generated by a rule or several rules of this form. Thus, it gets a set 
of candidate non-terminals for each symbol. 

In the next stage it uses the second k ind of rules. Every non-terminal (except the 
starting one) has to be generated by such a rule. The algori thm is looking for rules which 
can generate the candidate non-terminals which have been found i n the previous stage. A l l 
possible combinations need to be considered, for instance the sequence of non-terminals 
ABC may be generated by rules X —> AB and Y —> XC or by rules X —> BC and 
Y —> AX. In this way, the a lgori thm needs to find a l l possible ways to generate words of 
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increasing length (all parse trees). F ina l ly , it needs to find a non-terminal that can generate 
the whole word and, at the same time, it must be the start ing non-terminal i n the given 
grammar. If it succeeds, the word given on the input is i n the language, otherwise it is not. 

The complexity of the C Y K algori thm is 0 ( n 3 x R) where n is the input str ing length 
and R is the number of rules i n the grammar. 

3.1.2 Watson-Crick Chomsky normal form 

Just like the C Y K algori thm works wi th grammars i n the Chomsky normal form, the W K -
C Y K algori thm requires grammars to be in the Watson-Cr ick Chomsky normal form. The 
Watson-Cr ick Chomsky normal form ( W K - C N F ) is a modification of C N F for Watson-Crick 
context-free grammars. A grammar in the W K - C N F has only rules of one of the following 
forms: 

• ^ (a) 

. A^BC 

• S —> (^) (this rule is used only to include an empty word in the language) 
where A, B and C are non-terminals, S is the start ing non-terminal and a is a terminal 

of the grammar. It is possible to transform any W K context-free grammar to the W K - C N F . 
The steps are mostly analogous to the transformation of the standard context-free grammar 
to the C N F . Th is process includes: 

1. removing A-rules (rules of the form A —> (^)) 

2. removing unit rules (rules of the form A —>• B) 

3. removing useless rules and symbols (symbols that are unreachable from the starting 
symbol or cannot lead to a terminal string and rules which use such symbols) 

4. replacing every terminal on the left-hand side of each rule (except the rules already 
in the right form) wi th a new non-terminal and adding a new corresponding rule 

5. breaking down the rules producing non-terminals, so that they produce only two at 
a time 

The procedure of the transformation is described formally in [11]. 

3.1.3 Order of generating terminals in W K grammar 

A complicat ion compared to the C Y K algori thm that W K - C Y K has to deal wi th , is the 
ambiguity in the order of generating terminals. In case of a standard context-free grammar 
i n the C N F , the order of non-terminals that generate a word, for instance abed, is clear -
if the rules are 4̂—?• a, !?—?•&, C — ^ c and D —>• d, the non-terminal word that generates 
the terminal string abed must be ABCD. The order cannot change. 

B u t in case of W K grammars, the order is not clear. For the terminal str ing ( a j ) , the 
only given order of generation is a before b and c before d, anything else is uncertain. If the 
rules are A - ) • (I), B ->• ( J ) , C ->• (*) and D - ) • ( J ) , that terminal word can be produced 
by six different orderings of the non-terminals: ABCD, ACBD, ACDB, CABD, CADB 

and CDAB. 
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3.1.4 Description of the W K - C Y K algorithm 

The W K - C Y K algori thm taken from [11] is on the figures 3.1 and 3.2. 

1 procedure SetsConstruction: 
2 Input: string [w/w] = [ x n X i 2 . . . x i n / x 2 i x 2 2 . . . x 2 n ] 
3 
4 for 1 < i < n do 
5 X i : i f i : 0 = {A: (Xli/X)} 
6 XQ:QM = {A: A ^ (\/x2i)} 
7 
8 f or 2 < y < 2n do 
9 f or 0 < P < n do 

10 a = y - /3 
11 i f a = 0 then 
12 i = j = 0 
13 for l < k < n — y + 1 do 
14 1 = k + y - 1 
15 ComputeSet X^.j^-i 
16 else ±±(3 = 0 then 
17 k = 1 = 0 
18 f or 1 < i < n - y + 1 do 
19 j = i + y - 1 
20 ComputeSet Xi-j^-i 
21 else 
22 f or 1 < i < n - a + 1 do 
23 for l < f c < n - / 3 + l do 
24 j = i + a - 1 
25 1 = k + P - 1 
26 ComputeSet X^.j^-i 
27 i f S e X i : n j i : n then 
28 w G L(G) 
29 else 
30 w <£ L(G) 

Lis t ing 3.1: Procedure SetsConstruction of W K - C Y K 

1 procedure ComputeSet: 
2 
3 i f i = j = 0 then 
4 Xo-.0,k:l = { Ute[fc,Z-l] ^0:0,fc:t^0:0,t+l:z} 
5 else i f k = 1 = 0 then 
6 Xi:jfl:Q = { UsG[ij ' - l ] ^J:s,0:0^s+l:j,0:o} 
7 else 
8 Xi-j^-.l = {Xi:jfi:oX0:0:k:l U XQ-Q^.IXi-.jfl-.O}U 

9 Use[i,i-l],te[fc,Z-l] {^i:s ,fe:A+l: j , t+l:z}U 

10 UsG[iJ - l ] {^i:s,fcl^s+l:i,0:0 U ^i:s,0:0^s+l:j,fc:l}U 

11 Ute[fc,Z-l] {Xi:j:k:tX():0:t+l:l U -^0:0,Zi::t^J:j,t+l:Z } 

Lis t ing 3.2: Procedure ComputeSet of W K - C Y K 
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W K - C Y K algori thm expects a grammar i n the W K - C N F and a double stranded string 
on the input . Since one of the algorithm's requirements is that the complementarity relation 
must be identity, the upper and lower strands are always the same. 

W K - C Y K uses sets marked as Xa-\,)C-d. These are sets of non-terminals that can generate 
a segment of the input double stranded string specified by the indexes a, 6, c and d. a and 
b are indexes of terminals in the upper strand and specify an interval (the indexing starts 
wi th the index 1 and the edge indexes are included). The lower strand interval is specified 
by indexes c and d. If a pair of indexes is 0, no symbols from the corresponding strand are 
included. For instance, for the segment ( ^ j ) , Y2 :2,0:0 would contain a set of non-terminals 
that generate ( ? ) , X2-AJI-.3 non-terminals that generate ( ^ ) . 

T h e main procedure of W K - C Y K 

In the first step (lines 4-6 of figure 3.1) W K - C Y K finds sets Y j ^ ^ o and Yo :o,j :j for 0 < 
i < \n\ (n is the length of the input) . These are non-terminals that directly generate 
single terminals. Then, it searches for ways to generate segments of the input of increasing 
lengths, beginning wi th length of 2 and up to the length of 2n. It is because i n the input of 
length n there are actually 2n of terminals — n i n the upper and n i n the lower strand. For 
each length of the segment it takes a l l possible combinations of number of symbols from 
the upper and the lower strands. For instance, if the length of the current segment is 3, 
that can include 3 terminals from the upper strand and 0 from the lower or 2 and 1, 1 and 
2, 0 and 3. 

For each of these segments, it calls the procedure ComputeSet which finds a l l non­
terminals, that could generate the given segment. W h e n W K - C Y K uses this procedure to 
compute set X of a segment of length n , it is necessary to have already computed sets X 
for a l l segments of length m < n. Therefore it proceeds from the length 1 upward. 

Let us consider an example wi th input ( ^ J ) . The first step looks for way of generating 
the ind iv idua l terminals, in other words non-terminals that generate ( ? ) , (? ) etc. 

Then it looks for non-terminals that could generate two terminals, meaning either two 
terminals from the upper strand, two terminals from the lower strand or one from each. In 
each of these cases, a l l possible combinations need to be considered. If the two terminals 
are from the upper strand, the combinations are either ( a \ ) , or ( ^ ) (or using the 
X sets: Yi : 2 ,o :0) ^2:3,0:0 or XS:^Q:Q). It the two terminals are one from each strand, there 
are 16 combinations (^) where x,y G {a,b,c,d} ( Y ^ i ^ i , Y 2 : 2 , i : i , Y i : i 5 2 : 2 etc.). A n d for 

terminals from the lower strand, the combinations are (^ 6 ) , ( ^ ) or ( c ^) (Yo:o,i:2> Yo:o,2:3 
and Y 0 :o,3:4)-

W h e n the segment of length In has been computed, W K - C Y K is finished. It has 
succeeded if the starting symbol S can generate the whole input, in other words: i f S £ 
Xl-n^l-n-

T h e ComputeSet procedure 

The ComputeSet procedure has as a parameter a segment of input specified by the four 
indexes. It searches a l l pairs of sets X which could together produce the given segment. If 
the segment consists of symbols from one strand only (Yj : J i o :0 or Yo : o,j : j ) , the si tuation is 
simpler — it needs to consider the pairs of sets X that produce the segment split in any 
two parts. If the segment contains symbols from both strands, there are more ways to split 
it: 
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• The first set could produce the entire upper strand and the second set could produce 
the entire lower strand or the other way around (the order matters) 

• The first set could produce the entire upper (or lower) strand and any part the lower 
(upper), the second one would produce the rest of the divided strand. Aga in , a l l 
possible divisions of the divided strand need to be considered. 

• B o t h sets could produce parts of both strands. A g a i n , a l l possible combinations of 
divisions of both strands need to be considered. 

W h e n a l l combinations of two X sets potential ly producing the input segment have 
been found, the procedure then needs to check the grammar rules to find those rules which 
actually generate non-terminal from these sets. Th is step is not expl ici t ly described in 
the ComputeSet procedure. For each such a rule, the non-terminal on its left-hand side is 
going to be included i n the procedure's result. The final result is then a set of a l l such 
non-terminals. 

Lets us consider an example, where the procedure computes Xi-^ia, in other words, 

the segment ( aj))- A l l possible divisions of this segment are i n the table 3.1: 

Figure 3.1: A l l possible divisions of the segment 

sub- segments corresponding sets example of sets contents 

1. ( ? ) • (ab) -Xl:2,0:0, Ao:0,l:2 {Ni}, {N2} 

2. (abJ • ( ? ) -^0:0,1:2, -Xl:2,0:0 {N3}, {N4,N5} 

3. (ab\ 
\ a I . ( { ) -Xl:2 , l : lj -̂ 0:0,2:2 {N6}, 0 

4. I a > 
\ab) . ( ! ) -Xl: l , l :2 , -̂ 2:2,0:0 0, 0 

5. ( A ) (ab) -Xl:l,0:0) -̂ 2:2,1:2 0, 0 

6. ( 2 ) ( ? ) -^0:0,1:1) -X"l:2,2:2 0, 0 

7. C) (1) - X l : l , l : l j -̂ 2:2,2:2 0, 0 

A l l the 14 X sets from the middle column must already be computed, they are sets 
for segments of lengths 1, 2 and 3. E a c h of these sets contains zero or more non-terminals 
that can produce the given sub-segment. In last step, the procedure checks a l l rules of the 
grammar of type A —> BC to find rules where B is i n the first X set and C is in the second 
X set of one of the divisions of the segment. In the example, there are three combinations 
of non-terminals that could lead to a result: N1N2, N3N4 and N3N5 (NQ is alone — that 
is not not enough to produce the segment). Therefore, the result w i l l be a set {X,Y, Z} 
if there are rules X —> N1N2, Y —> and Z —> If only subset of these rules is 

found, the resulting set w i l l contain only left-hand sides of those rules (or could even be an 
empty set). 

Two remarks regarding W K - C Y K 

1. The loop on the line 9 of the procedure Sets Construction (figure 3.1) iterates j3 from 0 to 
n. In this context, (3 represents the length of the lower strand segment while a represents 
the length of the upper strand segment and a = y — (3 where y is the length of the whole 

15 



segment. Par t of the loop actually calculates w i th non-sensical values. W h e n calculating 
wi th segment that is shorter then one strand (i.e. y < n), it includes the case when j3 > y 
and so a < 0. In other words, the a lgor i thm splits the segment of length, for instance, 2, 
to two parts of lengths 3 and -1. 

W h e n calculat ing wi th segment that is longer than the input, it includes the case where 
(3 is too short and so a is then longer then a strand length. In other words, if the input 
length is, for instance, 4 and the segment length is 8, it splits the segment to lengths 7 and 
1 which is not possible w i th the input length of 4. 

This does not affect the correctness of the computat ion because the non-sensical values 
find no result. However, more precise and efficient solution would be to iterate j5 over the 
interval: (max(y — n, 0), min(n, y)) instead of interval (0, n). 

2. The t ime complexity of W K - C Y K is C ( n 6 ) . A s described i n [11] (section 6), the 
W K - C Y K main procedure has complexity of C ( n 4 ) and the nested procedure ComputeSet 
has complexity of 0(n2). This is true wi th respect to the input length. Possibly, more 
precise description of the complexity would be C ( n 6 x R) where n is the input length and 
R is the number of rules i n the grammar. The description of the procedure ComputeSet 
uses the operation of set union (U), as i f it has constant t ime complexity which, i n reality, 
it does not — it requires i terating over the rules of the grammar. 

3.2 Using automata to test the membership in Watson-Crick 
languages 

In general, automata seem more suitable for deciding the membership in a language than 
grammars. In case of deterministic automata, the si tuation is quite straightforward -
every input determinist ically leads to the next state and when the whole input is read, the 
automaton decides whether the input is accepted by finishing i n a final state or not. The 
situation is not as clear in case of the weaker types of deterministic automata. 

3.2.1 Strongly deterministic Watson-Crick automata 

The strongly deterministic automata represent the simplest case as they have clearly linear 
complexity. A disadvantage may be the fact that strongly deterministic automata are 
weaker then deterministic automata. 

3.2.2 Weakly deterministic and deterministic Watson-Crick automata 

Weakly deterministic and deterministic automata are similar in the sense that their de­
terminism depends on the configuration being known. B u t the membership of a string 
in a W K language is defined by the string being equal to upper strand only (see section 
2.2). A corresponding lower strand s imply needs to exist but is not automatical ly known 
in advance. If this is not the case and the entire input w i th both strands is available at the 
beginning, then there is pract ical ly no difference between the three types of deterministic 
W K A . The strongly deterministic W K A knows the lower strand thanks to the fact that the 
complementarity relation is identity — the strands must be identical. 

If the lower strand is not known, however, the deterministic W K automata are in practice 
the same as non-deterministic W K automata. It is, i n general, not necessarily clear what 
the next state w i l l be given the input . Th is is demonstrated by example on the left on the 
figure 3.2. The snippet of the W K automaton has two transi t ion rules: <7o(b) — • Qi a n d 
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(7o(c) 12• Let us suppose that both (a, 6) G p and (a, c) G p and there is the string aaa 
on the input . These rules fulfill the condit ion for deterministic W K A which, for this case, 
is: a oo a\J b oo c. It is not possible to choose the next path based on the upper strand as 
a is a prefix of a. However, it should be possible to decide based on the lower strand -
either a symbol b is going to be read and the automaton w i l l t ransi t ion to q\ or symbol c 
and the automaton w i l l t ransi t ion to q2. B u t i f the process of accepting a str ing is at the 
same t ime looking for a suitable lower strand, it is up to the automaton to decide between 
these two possibilities and produce either the symbol b to the lower strand or the symbol c. 

The figure 3.2 on the right shows a snippet of a completely non-deterministic W K A . 
The rules shown are: (?o(h) Qi and Qo{It) ~* 02- Even i f bo th input strands are known, 
in case the upper strand contains aa and the lower strand contains 66, bo th paths are 
possible. E i ther one symbol from each strand w i l l be read and transi t ion w i l l lead to gi or 
two symbols from each strand w i l l be read and the transi t ion w i l l lead to q2. So i n practice, 
there is not much difference between a weakly deterministic W K A , deterministic W K A and 
non-deterministic W K A unless the lower strand is known i n advance. 

Figure 3.2: Example of non-determinisms i n W K A 

3.2.3 Accepting inputs by a non-deterministic Watson-Crick automaton 

It is possible to propose a s imilar a lgori thm for a run of W K A as for non-deterministic finite 
automata ( F A ) . Such an algori thm for a finite automaton needs to consider a l l possible paths 
the F A may take — i n practice it must remember, not just one state where the F A is at 
the moment, but a subset of a l l its states. However, this is not enough in case of W K A . 
A n a lgor i thm which controls a run of a non-deterministic W K A needs to remember not 
only a l l the states where the automaton can be at a given moment, but also, what inputs 
have been read from the upper strand and what inputs have been generated to the lower 
strand. The figure 3.3 demonstrates the difference between undeterminism in run of a F A 
and W K A . 

The F A snippet on the left starts i n state qo. If the next symbol on the input is a, the 
automaton can transi t ion to state q\ or q2. This means that the a lgori thm keeps i n mind 
that the current state is one of the two (a subset of a l l F A states: {qi,q2})- If there is 
another a which causes another non-deterministic choice, it turns out that the number of 
possibilities can even decrease or, as in this case, stay the same because some branches are 
merged. The new state is either (73 or q±. 

The si tuat ion in case of W K A on the right is much more complicated. Even though it 
may seem like the paths merge in the state q±, they do not. Let us assume that the input 
string is aaa and that (a, 6) G p and (a, c) G p. The automaton has three choices: 

17 



Figure 3.3: Non-determinisms in a W K A and a finite automaton 

1. Transi t ion to q\, read symbol a from the input and generate symbol b to the lower 
strand. This may be possible even i f (a, b) £ p because a different number of symbols 
might have been read from the two strands (they are, i n a way, out of sync). 

2. Transi t ion to q2, read two symbols aa and generate two symbols bb to the lower strand. 

3. Transi t ion to q^, read symbol a and generate symbol c. 

In these three cases, there are more differences between these states of the a lgori thm 
then just the the different W K A state. Therefore, after the next step, the three paths 
w i l l s t i l l differ i n what has been read from the input (upper strand) and what has been 
generated to the lower strand. 

The algori thm that would simulate the run of a W K A could therefore be designed as 
a state space searching algori thm. E a c h node would contain three items — 1. what state 
is the W K A in , 2. what remains to be read from the input, 3. what has been generated 
to the lower strand. The solution would then be a node where W K A is i n a final state, 
nothing remains to be read and the two strands (one read, one generated) adhere to the 
complementarity relation. 

This is quite close to the solution that is proposed in the following chapter w i t h the 
main difference that the space state search is based on W K context-free grammars instead 
of automata as they have more expressive power (see 2.6). 
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Chapter 4 

Testing membership by searching 
the state space 

This chapter introduces the main algori thm of this thesis for testing membership in W K 
context-free languages. In this thesis it is referred to as the state space search or the 
tree search. Its core is a standard Breadth-first search algori thm ( B F S ) wi th various 
optimizations added on top. 

Standard B F S starts w i t h a root node. In case of grammars, that is the start ing non­
terminal symbol of the grammar. T h e n the tree is buil t by applying a l l possible rules to a l l 
possible non-terminals. Each rule applicat ion generates a new node. The node contains a 
word which consists of some non-terminals, some terminals in the upper strand and some 
terminals in the lower strand. 

The B F S algori thm always finds a solution if there is one. It finds the opt imal solution 
which, in this case, means the shortest sequence of rules that generate the input string from 
the start ing non-terminal. However, whether the solution is op t imal or not is irrelevant for 
the membership problem. If there is no solution, the a lgori thm w i l l probably never stop, as 
the state tree is usually infinite. Also , such a tree would grow very rapidly and the solution 
would usually not be found i n a reasonable t ime frame. Therefore, some optimizations need 
to be used. This work introduces two key kinds of optimizations. Fi rs t ly , identifying dead 
ends i n the search tree and removing them from the computat ion — this is referred to as 
pruning. Secondly, choosing such nodes for the subsequent computat ion which seem to be 
the most promising i n leading to the solution. This is referred to as node precedence. 

4.1 Key characteristics of the state space search 

Besides pruning and node precedence heuristics, the a lgori thm keeps a set of states which 
have been generated (added to the tree), in order to avoid analyzing the same word repeat­
edly or even getting stuck i n a loop. Also , it considers leftmost derivation only. Th is means 
that a node which contains several non-terminals can generate new nodes only by applying 
rules to the first non-terminal in the word. 

The figure 4.1 shows an example of a tree search progress. The rules of its grammar in 
this example are S —> SS \ ABC, A —> ( ° ) | (^) and some rules B —> C —> ... which 
are not important . S is the starting non-terminal, therefore, S is the first node and there 
are two possible rules that can be applied to S, so this node has two successors. The node 
precedence heuristic w i l l choose one of the successors to be analyzed next — perhaps the 
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left one w i t h word ABC. T h i s node, too, only has two successors, which are made by the 
two rules that can be applied to the first non-terminal — A. Even though there are some 
rules for B and C , these rules are not used to produce successors, yet. The nodes created 
by rules applied on B would be successors of the words (^)BC and (^)BC which have the 
symbol B as the first non-terminal from the left. 

A B C 5 5 

( a / a ) B C ( b / b ) B C 

Figure 4.1: Example of a search tree 

In a word of a W K grammar, the terminals are clustered together into segments. If two 
segments appear next to each other i n a word, they are merged. These segments, as well 
as non-terminals, are referred to as letters because together they constitute words. For 
instance, a three-letter word: (ab^)A(b

h) after appl icat ion of rule A —>• ("M, w i l l result i n a 
word wi th just one letter: ( ° ? ? ) -

The word i n a node that is the solution needs to meet the following criteria: 

1. It contains no non-terminals. Since neighboring terminal segments are always merged 
this implies that there is only one letter — a segment of terminals. 

2. The upper and lower strands of this segment are of the same length. 

3. Each pair of symbols from the upper and lower strands wi th the same index must be 
related by the complementarity relation. 

4. The upper strand must be equal to the input string. 

If the cri teria are met, the a lgori thm has found the right node and that means the input 
string is a part of the language defined by the grammar. It has been accepted by the state 
space search algori thm. If the whole state space has been searched (in case it is not infinite), 
there is no solution and the input has been rejected by the state space search algori thm. 

4.2 Identifying a dead end in the state tree 

A b l ind B F S would stop searching a branch only when a l l non-terminals have been used 
to generate a l l possible terminal words (words w i t h terminals only) . B u t sometimes it is 
possible to te l l in advance that a specific word cannot lead to the desired solution. If that 
is the case, the node can s imply be removed and the whole branch which it would generate 
is skipped. The next section describes various ways (heuristics) of recognizing the dead 
branches. These are referred to as pruning heuristics, there are five of them and each one 
has an abbreviat ion which is used further on. 

1. Detecting that one of the strands is already too long — S L 
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2. Detecting that the overall word is already too long — T L 

3. Ma tch ing the starting terminals i n the upper strand to the input — W S 

4. Checking the complementarity relation — R L 

5. Compar ing the input to a regular expression generated from the word — R E 

4.2.1 One of the strands is too long (SL) 

A terminal symbol which appears both in the upper or lower strand can never disappear 
further in the branch. Tha t means that the count of a l l symbols i n upper and i n the lower 
strand must not be grater then the length of the input string. Otherwise the solution can 
never be reached from that branch. 

4.2.2 The word including non-terminals is too long (TL) 

Non-terminals present a more complex problem when dealing wi th the length of the word. 
Fi rs t of a l l , the a lgori thm calculates in advance how many terminals each non-terminal 
produces at min imum. For instance, i f the grammar contains rules: A —>• AA | ("^) | BB 
and B -> (I), the non-terminal B produces always one terminal , that means one terminal 
at min imum. The non-terminal A can produce various number of terminals, but two at 
m in imum — thanks to the rule A —> BB and the fact that B has the m i n i m u m of one. 
This value is than considered to be the length of the given non-terminal. This length can 
be applied both to the upper or to the lower strand because, i n general, it is not known 
which strand w i l l absorb the symbols generated from the non-terminal. Th is then leads to 
the following constraint on the word: 

\upper\ + \lower\ + \nts\ < 2 x \input\ 

where \upper\ and \lower\ are the counts of terminals i n the upper and lower strands, 
\nts\ is the length of a l l non-terminals i n the word and \input\ is the length of the input 
string. If this constraint is broken, the word cannot lead to the solution and the branch 
can be pruned. 

If the grammar contains no A-rule (rule of the form N —>• (^)) , This constraint guaran­
tees that the a lgor i thm w i l l finish. Once a l l the words wi th in the given length l imi t have 
been generated and a solution not found, the search w i l l end. 

If the grammar does contain A-rules, the previous constraint can s t i l l be applied — the 
non-terminals that can be erased are assigned the length of zero. In this case, it is not 
possible to guarantee that the search w i l l end, because the non-terminals of length zero 
can be combined infinitely many times. However, it is possible to uti l ize the a lgori thm for 
removing A-rules (which is described in [11] and which is implemented i n the applicat ion 
described i n the next chapter). 

4.2.3 The beginning of the word does not match the input (WS) 

If a word in a node begins w i t h some terminal symbols in the upper strand, these symbols 
w i l l always stay at the beginning further i n the given branch. Unl ike the other terminals, 
these starting terminals already have fixed indexes. If these symbols do not match the 
prefix of the input string of the same length, the input string can never be generated from 
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this branch. If on the other hand, the word starts w i th a non-terminal, there is nothing to 
be said about what can be at the beginning of the word further in the branch. 

It is possible to check the end of the word i n the same manner but the generation is 
performed from the left to the right and so there is l i t t le benefit i n checking the end. 

4.2.4 Checking the complementarity relation (RL) 

A s previously described, the symbols i n the upper and lower strands wi th the same indexes 
must be related by the complementarity relation. Unfortunately, this can be checked only 
at the beginning of the word (Technically, it can be checked at the end as well, while 
indexes of these symbols are not yet known, the last terminal symbol w i l l always stay the 
last. B u t just like in the case of previous heuristic, there is l i t t le benefit i n checking the end 
when the generation is done from the left side.). Indexes of the symbols in the middle part 
(anywhere after the first non-terminal) are not known. Thus this check can be understood 
as an extension of the previous one — if the word begins w i th some terminal symbols and 
there are some symbols in both the upper and lower strands, these symbols can be tested 
whether they adhere to the complementarity relation. B u t only to the length of the shorter 
of the two strands in this letter. 

4.2.5 The input matches a regular expression generated from the word 
(RE) 

It is possible to generate a regular expression that represents the current word. E a c h non­
terminal serves as a w i ld card (•*)• Each terminal i n the upper strand stands for itself. 
Lower strand is ignored. This expression must be matchable to the input string, otherwise 
it is not possible to generate it from the current branch. For instance, i f the word is 

then the resulting regular expression w i l l be: ~abc.*d.*e. The symbols abc must be 
at the beginning (therefore the ~ denoting the beginning of the expression is placed at the 
start); then it is not known what w i l l be generated by the non-terminal N\ — therefore 
the wi ldcard is there next; then there w i l l have to be a symbol d; another wi ldcard for 
non-terminal A ^ ; symbol e; and then anything. The regular expression might end wi th 
a wi ldcard generated from the last non-terminal N$ but that is not necessary. W i l d c a r d 
before and after the expression is impl ic i t . A start ing non-terminal can be represented by 
omit t ing the symbol ~ which denotes the beginning of the string. A n ending non-terminal 
can be represented by omit t ing the symbol $ which denotes the end of the string. 

The order i n which the pruning heuristics are applied matters. It is good to first apply 
the heuristics that are more l ikely to succeed and that require less computat ional power. If 
they are successful, the more complex heuristic can be skipped. 

It is possible to come up wi th some more checks that could identify a dead end in 
the search tree. The disadvantage of any check is the computing power that has to be 
used for checking any node that is generated and analyzed. If some checks are unlikely to 
significantly prune the tree and /or are complicated to compute, it is not clear if they w i l l 
improve the actual performance of the algori thm. 
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4.2.6 Examples of pruning 

Let us consider a grammar wi th no A-rules w i t h the identity complementarity relation, the 
input string abed and the following words: 

The input string can never be generated from this word because the fragments of the 
lower strand are too long already — it has five symbols and the input string only has 
four. The S L pruning w i l l remove this word. 

2. 
ONiN2(X

d)N3N4 

This word would be promising i f there had been some A-rules. Since there are not, 
the word contains too many non-terminals. E a c h of them is going to generate at least 
one te rminal symbol and only three symbols are missing (c and d i n the upper strand 
and c i n the lower strand). Inevitably, there w i l l be at least one symbol too many. 
This word w i l l be removed by the T L pruning. 

Regardless of what can be generated from N\ and N2, the upper strand w i l l always 
have to begin wi th symbols abd. There is no way how to insert c between b and d. 
Therefore the input string can never be generated from here and this word w i l l be 
removed by the W S pruning. 

4. 

The upper strand looks promising as it starts w i t h the same symbols abc as the input 
string. B u t the lower strand starts w i th ac. The first symbol pair (a/a) adheres to 
the complementarity relation, the second one (6/c) does not. The th i rd symbol i n the 
upper strand — c cannot be related to any symbol — it has no counterpart, yet. The 
check was always going to end wi th the second symbol pair. Anyway, this word w i l l 
be removed by the pruning R L . 

5. 

Whatever is generated from the non-terminals N\, N2 and Ns, the upper strand w i l l 
always keep the order of symbols — first, the symbol 6, then the symbol a (with 
potentially some symbols before, i n between and after). Tha t can never result in the 
string abed. Th is word w i l l be removed by the pruning R E . 

4.3 Heuristics for node precedence 

The a im of the node precedence heuristics is to choose a path in the search tree, which 
is l ikely to lead to the solution, the more promising nodes are taken before the others 
and their successors are generated sooner. The ind iv idua l heuristic functions attempts 
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to answer the question — which node is more promising than the rest? It assigns 
each node a number — an evaluation of the node. The lower the node evaluation, the 
higher pr ior i ty the node has. 

Such heuristics can only be effective i f the answer of the search is positive — if there 
actually is a solution. Unfortunately, if it is negative, it does not help that the 
algori thm eliminates the more promising branches of the tree first. Eventually, it w i l l 
have to search through a l l possible states anyway, i n order to make sure that there is 
no solution. 

The following node precedence heuristics have been implemented. Each heuristic also 
has an abbreviation that w i l l refer to it further on. 

• N o heuristic ( N O N E ) — the evaluation of the word is always 0. Th is is used for 
comparison to the other heuristics. 

• Aversion to non-terminals ( N T A ) — the evaluation is equal to the count of non­
terminals i n the word 

• Weighted aversion to non-terminals ( W N T A ) — each non-terminal has a pre-
calculated weight, which is the m i n i m u m amount of rules that must be used in 
order to generate a terminal word from i t . The evaluation is equal to the sum 
of the weights of a l l non-terminals i n the word. 

• The terminal matching — there are three variants that differ slightly ( T M 1 , 
T M 2 , T M 3 ) . Each of them increases the pr ior i ty (i.e. decreases the evaluation) 
for each upper strand non-terminal (going from left to right) which matches the 
input string symbol on the same index. 

— T M 1 examines terminals going from the left while ignoring non-terminals, 
decreases evaluation (i.e. increases priori ty) for each match and finishes 
when it discovers the first difference. 

— T M 2 is similar to T M 1 , but when it discovers a difference, it does not finish 
but increases the evaluation and moves on 

— T M 3 evaluates the first i tem i n the word only. If it is a non-terminal, it 
returns zero. 

. Combinat ions of N T A / W N T A and T M 1 / T M 2 / T M 3 — There are six combina­
tions because it does not make sense to combine N T A and W N T A or T M 1 - 3 
together: N T A + T M 1 , N T A + T M 2 , N T A + T M 3 , W N T A + T M 1 , W N T A + T M 2 , 
W N T A + T M 3 . 

In summary, there are 12 node precedence heuristics considered i n to ta l ( including the 
first, empty heuristic). Unl ike i n case of pruning, where a l l methods can be applied 
at the same time, there can be only one node precedence heuristic active at one time. 
Therefore chapter 6 contains the tests and comparison of the effectiveness of these 
heuristics. 

4.4 Theoretical complexity of the state space search 

The state space search algori thm uses Breadth-first search ( B F S ) as its basis. B o t h the time 
and space complexity of B F S are 0(bd) where b is the m a x i m u m number of successors of a 
node (branching factor) and d is the depth of the tree. The branching factor is then equal 
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to the m a x i m u m number of rules of the given grammar that have the same non-terminal on 
the left-hand side. This is because always only the first non-terminal in the word is used to 
generate successors i n the tree. The depth of the tree is going to be different for different 
grammars and even for different inputs. 

In general, the theoretical complexity of the state space search algori thm is not impres­
sive, it is much worse then W K - C Y K ' s C ( n 6 ) or C ( n 6 x R). However, this is because it 
has been designed wi th a rather pract ical approach, it relies heavily on the heuristics and 
optimizations and so its performance is usually much better. 

4.5 Parallelization of the state space search 

The parallel ization of the state space search should be very much possible and straightfor­
ward. The algori thm uses a pr ior i ty queue to store a l l the nodes which are to be analyzed. 
Therefore, mult iple processes could be taking nodes from the queue and analyze them in­
dependently. There are many variants how this could be done — analyzing one node at 
the t ime and returning result immediately to the queue shared by a l l process or analyzing 
independently whole segments of the tree w i t h less need for synchronization but, perhaps, 
more redundant work — these are questions of the efficiency of the actual implementat ion 
which is out of the scope of this work. 
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Chapter 5 

Implementation of the state space 
search 

The implementat ion has been done i n the language P y t h o n (version 3.9.7). The main 
components are the following: 

• the class representing a Watson-Crick context-free grammar, including the implemen­
tat ion of the W K - C Y K algori thm and the state space search algori thm 

• classes representing a rule of a grammar and a tree node 

• a set of grammar definitions and generators of the input strings 

• a set of test scripts that run the various tests comparing heuristics, performance etc. 

• test runner class which is a middle layer between the test scripts and the main gram­
mar class. 

In the code and its description I use the term word to refer to the right hand side of 
the rules and, i n general, a list of letters. The term letter is a one element of the word, 
which is either a non-terminal, or a segment w i t h terminals. Such segments w i th terminals 
are stored as a pair (tuple) of two lists — upper and lower strand. For instance, a word 
A(alc)B has three letters: non-terminals A and B and a segment of non-terminals ( a ^ c ) , 
which contains two lists, first (upper strand) wi th three items — terminals a, b and c and 
the second one (lower strand) is an empty list. 

5.1 Implementation of the main class representing the gram­
mar 

The class representing a grammar is called cWKCFG, it contains the following data: 

• the items which define the grammar: nts — the set of non-terminals, which are repre­
sented by alpha-numeric characters; ts — set of terminals, also represented by alpha­
numeric characters; startSymbol — start ing non-terminal; rules — set of grammar 
rules, which are objects of the class cRule; relation — list representing a complemen­
tar i ty relation, it contains tuples of two terminals. These five items are parameters 
which need to be passed to the class constructor. Th is corresponds to the way how a 
context-free W K grammar is formally defined. 
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• nodePrecedenceList — a list of a l l implemented node precedence heuristics, it is stored 
as a list of pairs (tuples) of heuristic name and function; currentNodePrecedence is 
the index of the active one 

• pruningOptions — a dict ionary wi th a pruning function as a key and a boolean as 
a value indicat ing which pruning heuristics are active; pruneCnts — a dict ionary of 
pruning functions as keys and integer values which counts, how many times the given 
pruning has been successfully used 

• ruleDict — grammar rules stored in a dict ionary wi th non-terminals as keys and list of 
rules as values. This is a more efficient way of accessing rules for a given non-terminal 
then i terating over a l l rules and filtering them based on left-hand side non-terminal. 

• relDict — complementarity relation stored i n a more convenient way i n a dict ionary 
wi th first symbol as a key and string of symbols (symbols that are related to the key 
symbol) as a value. Th is is more efficient way of finding a l l symbols related to a given 
symbol. 

• ntDistances — a pre-calculated dictionary, w i th a l l non-terminals as keys and distance 
to terminals as values. This distance is a m i n i m u m number of rules which lead from 
the given non-terminal to a word w i t h terminals only. Th is is used for the node 
precedence heuristic W N T A . 

• erasableNts — a pre-calculated set of non-terminals which can be erased by applying 
certain sequence of rules. It is used for removing the A-rules. 

• termsFromNts — a pre-calculated dict ionary which has a l l non-terminals as key and as 
a value m i n i m u m amount of terminals that can be generated from this non-terminal. 
This is used in the pruning heuristic T L . 

• t imeLimi t — after how long should the tree search or W K - C Y K time out 

A constructor of the cWKCFG class requires as parameters a list of non-terminals, a 
list of terminals, the start ing non-terminal, the list of rules and the list of relations. A n 
example of an object construction would then be (for rules definition, see 5.2): 

g = cWK_CFG(['S', 'A'], ['a', 'b'], 'S', rules, [('a', 'a'), Ob', 'b')]) 

The class cWKCFG has these key functionalities: 

• in i t ia l izat ion, backup and restore 

• the run of the tree search algori thm 

• pruning heuristics 

• node precedence heuristics 

• the transformation of grammar to the W K - C N F 

• the run of the W K - C Y K algori thm 
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5.1.1 Initialization, backup and restore 

Dur ing an ini t ia l izat ion of the class, several methods are run ensuring val idi ty of the gram­
mar and pre-calculating data. 

• method is_consistent verifies that the constructor parameters that define the gram­
mar are consistent: sets of terminals and non-terminals must be exclusive, the start 
symbols and a l l rules left-hand sides must be found among the non-terminals, rule 
right hand sides must contain only specified terminals and non-terminals and the 
complementarity relation list must refer only to the defined terminals. If the method 
fails, an exception is thrown and the class is not created. 

• method generate_rule_dict parses the set of rules and creates ruleDict 

• method generate_relation_dict parses the complementarity relation and creates rel-
Dict 

• method find_erasable_nts creates the set erasableNts, a set of non-terminals that can 
be erased by applying a sequence of rules. The set is empty if the grammar contains 
no A-rule. 

• method calc_nt_dis tances creates the dict ionary ntDistances mapping non-terminals 
to the m i n i m u m number of rules needed to reach a terminal word 

• method c a l c _ m i n _ t e r m s _ f r o m _ n t creates the dict ionary termsFromNts mapping 
non-terminals to the m i n i m u m number of terminals that they can generate 

• method ca lc_ru les_n t_ lens calculates the rule length for a l l rules 

A rule length is a value which indicates how the min ima l length of a word w i l l be changed 
after the applicat ion of the rule. It is used by the T L (total length) pruning heuristic. The 
rule length is equal to the negative left-hand side non-terminal length plus lengths of a l l 
elements on the right-hand side. 

For instance, let us have a word A^^B, the rule being applied A —>• -B(^) and the 
min imum number of terminals generated from A is 2 and from B is 3. The resulting word 
w i l l be B(d^^)B. The word at the start had to ta l length of 8 (1 for each terminal symbol, 
2 for A, 3 for B). The word afterwards has a total length of 11 (3 for each B and 1 for 
each terminal) . Therefore, the rule A —> -B(^) must have the length of 3. A n d it does: —2 
for the non-terminal A on the left-hand side, 1 for each of the two terminals and 3 for the 
non-terminal B. 

Since the grammar is able to apply certain transformations (like to the W k - C N F or 
removing lambda rules), it is convenient to be able to save the state of the grammar and later 
restore i t . Th is is what the methods backup and restore are for. The backup method s imply 
saves a copy of the sets of rules, non-terminals and terminals as rulesBackup, ntsBackup 
and tsBackup. The restore method then restores these backup sets and runs again the 
pre-calculating methods s imilar ly to the class in i t ia l izat ion phase. 

5.1.2 Run of the state space search algorithm 

The state space search algori thm is run by the run_tree_search method which has one 
parameter: the string to be tested for the language membership. It uses a pr ior i ty queue 
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(python Priority Queue class from the queue module) to store the nodes of the search tree. 
W h e n getting items from this queue, it returns the smallest value i tem that it contains. 
The items in the queue are objects of the class cTreeNode (described in 5.2). The method 
also uses a set of hash codes (acquired by the standard P y t h o n hash function) of a l l the 
nodes that have been put i n the queue (whether they are s t i l l there or have been taken 
out), so that duplicate nodes are skipped. 

A t the beginning, the queue contains one node — the start ing non-terminal. If the 
queue is empty (and there is no node being parsed), it indicates that the whole state 
space has been searched and the method ends wi th a negative response. Otherwise, it gets 
the next node from the queue and generates a l l possible successors of this node (method 
get_all_successors). Each of the successor nodes is tested whether it is the desired solution 
(method is_result). If so, the search optional ly prints the path to the solution and ends 
wi th the positive result. Otherwise, it checks whether the node is new (has not been in 
the queue before) by computing its hash and looking into the set of hashes of a l l generated 
states. If it is new, it is added to the queue. Also , the main loop checks during every 
iteration whether the t ime l imi t has been exceeded. If so, it returns an empty response 
{None value). 

The return value of the method is a tuple containing following items: a max imum 
number of items i n the queue, number of a l l generated nodes, list of pruning statistics, the 
actual result (True, False, or None). 

The get_all_successors method requires two parameters — a node and the input string 
(which is then passed to the pruning methods). Fi rs t , it finds the first non-terminal in the 
given word. It applies a l l the rules (method apply_rule) that the grammar has for this 
non-terminal, each t ime creating a new node. The node is then checked by a l l the pruning 
algorithms (method is_word_Jeasible described in next section) to see, i f the node can lead 
to the solution. If so, the pr ior i ty of the node is calculated (method calculate_distance 
described i n the next section) and the node is yielded as a result. 

The is_result method needs to check a l l the conditions that the node has to meet in 
order to be a solution (word contains only one letter, the letter is a segment of terminals, its 
upper strand and lower strand have the same length, a l l the symbols from the two strands 
correspond to the complementarity relation and the upper strand is equal to the input 
string). It takes a word and the input string as parameters and returns a boolean value 
indicat ing whether the word is the solution. 

The apply_rule method takes three parameters: a word, an index of the non-terminal 
to be replaced and a rule right-hand side. It removes the non-terminal specified by its index 
(because there can be more than one occurrence of this non-terminal i n the word) from the 
word, and replaces it w i th the word snippet specified by the rule left-hand side. It contains 
logic for merging letters containing terminals i f they appear i n the word next to each other. 
It returns the final word. 

5.1.3 Pruning heuristics 

In order to be able to work flexibly w i th the pruning methods, the class contains a dict ionary 
(called pruning Options) of the implemented pruning functions and indicat ion whether they 
are active or not. The method is_word__feasible iterates through a l l items i n this dict ionary 
and if the value is True, indicat ing the active pruning, it runs the corresponding method. 
The pruning methods are: 
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• prune_check_strands_len (SL) : checks that the sum of the symbols in the upper and 
the lower strand is not greater than the input length 

• prune_check_total_len ( T L ) : checks that the to ta l length of the word (count of a l l 
terminal symbols plus lengths of a l l non-terminals) is not greater then the doubled 
input length 

• prune_check_word_start ( W S ) : checks that the start ing terminals of the word cor­
respond to the input string 

• prune_check_relation ( R L ) : checks that the start ing terminals meet the complemen­
tar i ty relation constraint 

• prune_check_regex ( R E ) : checks that the input matches the regular expression based 
on the word 

A l l the pruning methods require a word and the input string as parameters. They return 
a boolean value indicat ing whether the word is feasible or not. 

The pruning heuristics can be activated or deactivated by the method activate, param­
eters are the name of the heuristic and a boolean value indicat ing if it should be active or 
not. For example: 

g.activate('RE', True) # g i s an object of class cWK_CFG 
g.activate('K L ' , False) 

5.1.4 Node precedence heuristics 

Just like w i th pruning, the node precedence functionality needs to be flexible — it must be 
possible to switch between various node precedence methods. The functionality is imple­
mented by the method compute_precedence. This methods s imply uses nodePrecedenceList 
and currentNodePrecedence to cal l the right specific method. There are 12 of these methods 
called compute_precedence_[name] where name is the name of the specific heuristic (one 
of N T A , W N T A , T M 1 , T M 2 , T M 3 , N T A _ T M 1 , N T A _ T M 2 , N T A _ T M 3 , W N T A _ T M 1 , 
W N T A T M 2 , W N T A T M 3 , N O N E ) . A l l of these methods take a word and an input 
string as parameters, they return an integer evaluation of the node. 

The node precedence heuristics can be activated by the method activate, the name of 
the chosen heuristic is the only parameter. For example: 

g.activate('NTA') # g i s an object of class cWK_CFG 

5.1.5 The transformation of a grammar to the W K Chomsky normal 
form 

The transformation of a W K grammar to W K - C N F is quite similar to the transformation 
of a standard context-free grammar to the C N F . It is performed by the method to_wk_cnf 
and it takes the following steps: 

1. Removing A-rules — this is done by the method remove_lambda_rules 

2. Removing unit rules — unit rules are rules i n the form of A —>• B where A and B are 
non-terminals. These is performed by the method remove_unit_rules. 
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3. Removing unterminatable symbols — unterminatable symbols are non-terminals, 
which cannot be transformed into terminal strings by any sequence of rules. It is 
possible to remove them without affecting the grammar language because i f such a 
rule ever appeared i n a word, the whole word would be automatical ly useless. A n y 
rules containing such a symbol are useless, as well , and are also removed. This is 
performed by the method remove_unterminatable_symbols. 

4. Removing unreachable symbols — unreachable symbols are symbols that can never 
appear i n a word because there is no sequence of rules leading from the starting 
symbol that would be able to generate them. Therefore they can be removed without 
affecting the grammar language. A n y rules containing such a symbol are useless, as 
well, and are also removed. T h i s is done by the method remove_unreachable_symbols. 

5. Dismant l ing rules generating terminal letters — W K - C N F requires a l l rules generating 
terminals to generate one symbol only, this means only rules i n the form of A —>• (?) 
and A —>• ("M are allowed. This is achieved by the method dismantle_term_letters 
which iterates through a l l the rules and replaces any terminal letters at the rule right-
hand side w i t h a newly generated non-terminal. Afterwards, new rules are added and 
non-terminals are created which assure that the terminal letter is generated i n steps, 
each rule having at m a x i m u m two items on the right-hand side. 

If the rule is A -)• AB(a*) (A, B being non-terminals, a, 6, c being terminals), then 
the A and B are skipped and the letter (" b ) is replaced by a new non-terminal N\. 
Then, another rule is created: N\ —> (a^), which needs to be broken down further. 
For each terminal i n this letter, a new rule is created and the terminal replaced by a 
new non-terminal, un t i l there remains only one terminal i n that letter. The final set 
of rules is then going to be: A -)• ABNU Nx -> {QN2, N2 -)• {X

C)N3, i V 3 ->• (J) 

6. Dismant l ing rules generating non-terminals — in the final stage of the transformation, 
the method transform_to_wk_cnf_J'orm iterates through a l l the rules, it keeps the 
rules i n the W K - C N F form (A ->• BC, A ->• ( ° ) and A ->• (*)) and breaks down 
other rules i n a process analogous to the actions of dismantle_term_letters. 

7. Recalculat ion of data — runs the methods that pre-calculate data, s imilar ly to the 
class in i t ia l iza t ion phase or after restore method 

The methods which remove A-rules, unit rules, unterminatable symbols and unreach­
able symbols are useful even outside of the transformation to the W K - C N F . Removing 
unterminatable symbols and unreachable symbols (and rules containing these symbols) are 
optional but useful steps i n the transformation. The dismantl ing of rules are two steps that 
make sense only i n this context. 

5.1.6 Run of the W K - C Y K algorithm 

The W K - C Y K algori thm is implemented by the method run_wk_cyk which takes as a 
single parameter an input string and returns a boolean value indicat ing whether the input 
has been accepted or not. S imi lar ly to tree search, every i teration of the algorithm's main 
loop checks the elapsed t ime and if it exceeds the time l imi t , it returns an empty value 
(None). The implementat ion follows closely the description i n [11] (in section 6) and 3.1. 
The run_wk_cyk method corresponds to the sets construction procedure. The compute set 
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procedure called from sets construction then corresponds to the computeSet method of the 
c W K _ C N F class. 

5.2 Implementation of the rule and node classes 

A rule of a grammar is modeled by the class cRule. It contains the following data: 

• Ihs — a non-terminal, left-hand side of the rule 

• rhs — a word, r ight-hand side of the rule 

• ntsLen — length of a l l non-terminals of the right-hand side 

• upperCnt — count of a l l terminals in the upper strand of the right-hand side 

• lowerCnt — count of a l l terminals i n the lower strand of the right-hand side 

The items ntsLen, upperCnt and lowerCnt are there for opt imizat ion purposes. It is 
always possible to iterate over the word and count them, but it is more efficient to count it 
once for every rule and store this value. 

The cRule class then contains the following methods: 

• compactize — this method is called during the object in i t ia l iza t ion phase and ensures 
that the right-hand side does not contain any terminal letters next to each other, i f it 
does, then these are merged together. For instance a rule A —>• (?) (?) is transformed 
to an equivalent rule A —>• (??) • 

• calculate_cnts — method is called during the object in i t ia l iza t ion phase and counts 
values for upperCnt and lowerCnt. The length of non-terminals is calculated during 
the in i t ia l iza t ion of the c W K C F G object because it needs to know the length of 
non-terminals. 

A constructor of the cRule class requires a left-hand side of the rule, which is a non­
terminal , and a right-hand side of the rule, which is a word, i.e. a list of letters. A letter is 
either a non-terminal or a tuple of two lists. A n example of a rule object creation for rule 
A A{°^) would then be: 

cRule('A\ ['A', (['a', >b>] , [])]) 

A tree node is modeled by the class cTreeNode which contains the following: 

• word — the actual word of the grammar 

• upperStrLen — number of upper strand terminals i n the word 

• lowerStrLen — number of lower strand terminals in the word 

• ntLen — length of a l l non-terminals 

• parent — node i n the search tree, which is this node's predecessor, this is not necessary 
for the search but once a solution is found, it may be useful to know what path has 
been taken to reach it 

• hashNo — a unique hash code of the node calculated during the object in i t ia l izat ion 
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• precedence — a value assigned by the active node precedence heuristic, it is used to 
compare two objects of this class which is needed by the pr ior i ty queue to order the 
nodes 

A cTreeNode constructor requires a word, three integers specifying the upperStrLen, 
lowerStrLen and ntLen, the parent node, and the precedence. O f course, the lengths of 
terminals could be counted by the tree node itself dur ing the ini t ia l izat ion or when needed. 
These values are passed to the constructor for opt imizat ion purposes. Count ing them would 
require i terat ing over the whole word which can be quite long. W h e n creating a new node, 
it is more efficient to take these counts from the parent node and add or subtract differences 
which are stored in the rule object which is being applied. 

A n example of a creation of this class object (in this case the root node) could then be: 

cTreeNode(['S'] , 0, 0, 1, None, 1) 

B o t h of these classes, cTreeNode and cRule, as well as the main class c W K C F G , are 
i n the source file lib/ctf_WK_grammar.py, as they are quite closely related. 

5.3 Implementation of the test runner class, test scripts and 
grammars 

The grammars that are used for testing both the tree search and the W K - C Y K are stored 
in the file lib/grammars.py. E a c h grammar is characterized pr imar i ly by its rules, those 
are created first. Then the instance of the c W K C F G is created and then a generator of 
inputs is assigned to each grammar. 

A generator of inputs is a method of each grammar object called input_gen_Junc. 
Its purpose is to generate inputs for the given grammar of increasing lengths. It takes 3 
parameters: a start ing number of characters, a step — how many characters should be 
added i n the next generated input, and a boolean indicat ing whether the generated inputs 
should be accepted by the grammar or not. The generator does not have to return the 
input string exactly of the length which it was specified. Sometimes it is not even possible. 
The generated string's length may be approximate to the specified values. 

Here is an example of input generator use for grammar 1: 

generator = gl.input_gen_func(5, 2, True) 
inputl = next(generator) # generates 'aaaaa' 
gl.can_generate(inputl) 
input2 = next(generator) # generates 'aaaaaaa' 
gl.can_generate(input2) 

I have implemented the following five test scripts, which are in the root directory: 

• ts_node_precedence_tests.py — runs a test for a l l of the 40 grammars (20 i n the 
basic form and 20 i n the W K - C N F ) w i th inputs which are going to be accepted (node 
precedence is irrelevant i f inputs are eventually rejected). E a c h test runs the tree on 
search this input one t ime for each of the available node precedence heuristics. 

• ts_pruning_tests.py — runs two tests for each of the 40 grammars, one wi th an input 
that w i l l be accepted and one that w i l l be rejected by the search. E a c h test runs the 
search wi th a l l pruning heuristics inactive, then wi th a l l active, and then for each 
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one it runs wi th activated a l l but the one heuristic. Thus comparing how each one 
heuristic contributes to the overall performance. 

• ts_speed_tests.py — runs two tests (one positive, one negative) for each of the 40 
grammars, in each test a Tree search is run repeatedly (up to 30 times or it is stopped 
if a search exceeds t ime l imi t ) w i th increasing input length. This is used to analyze 
the t ime and memory complexity of the tree search wi th respect to the input length. 

• ts_var_inputs_tests.py — runs tests for some hand-picked inputs of the same length 
in order to compare, how the different variants of the same length inputs affect the 
performance 

• wk_cyk_tests.py — runs two tests (one positive, one negative) for 17 grammars, which 
are ready for W K - C Y K run. Those must be in the W K - C N F and grammars 5, 19 
and 20 are excluded, since they use other complementarity relation then identity. In 
each test, the grammar runs the W K - C Y K repeatedly wi th increasing input lengths. 

Each of these scripts prints its output into a table where a l l the results are compared. 
Outputs , which I received by running these test scripts, are attached in the output directory. 

A l l these scripts use the cP erf Tester class, which is a sort of middle layer between the 
grammar class and the test scripts. It helps wi th displaying the result table and gathering 
and parsing data returned by the a lgori thm runs. It contains the following methods: 

• run_test_ntimes — runs the tree search several times, calculates and returns averages 
over results of these runs 

• run_node_precedence_test — a wrapper used by the script ts_node_precedence_tests.py 

• run_prune_test — a wrapper used by the script ts_pruning_tests.py 

• run_speed_test — a wrapper used by the script ts_speed_tests.py 

• var_inputs_test — a wrapper used by the script ts_var_inputs_tests.py 

• run_wk_cyk_test — a wrapper used by the script wk__cyk_tests.py 

5.4 How to use the application 

It is possible to direct ly run the one or more of the test scripts from the root folder. They 
do not have other requirements than having installed the interpreter of language P y t h o n 
(version 3). In the applicat ion root directory i n L i n u x terminal it can be run s imply by 
typing: 

python3 ts_node_precedence_tests.py 
python3 t s _pruning_t e st s.py 

In order to use the c WK_ CFG class directly there is a demo script i n the root directory 
demo.py which shows the use of predefined grammars and creating a new grammar step by 
step and can be called i n the same way: 

python3 demo.py 
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In a nutshell, when using a predefined grammar, it can be used right after import . To 
test if a grammar 1 can generate a string aaaaa, one could write: 

from lib.grammars import g l 
o, a, p, result = gl.can_generate('aaaaa*) 
print(result) 

A n d to define a grammar from scratch and, for instance, run the W K - C Y K algori thm, 
one can write: 

rules = [ 
cRule('S\ ['S', 'S', 'S']), # S -> S S S 
cRule('S\ [(['a'], ['a'])]) # S -> a/a 

] 
gl = cWK_CFG(['S'], ['a'], 'S', rules, [('a', 'a')]) 
gl.to_wk_cnf() 
result = gl.run_wk_cyk('aaaaa*) 
print(result) 
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Chapter 6 

Testing the state space search and 
the W K - C Y K algorithm 

In this chapter I present the set of grammars that have been used to test the algorithms 
and then the results of the tests. F i r s t , there is the test comparing the node precedence 
heuristics. Since only one can be active at a time, it is appropriate to start w i th choosing 
the one which provides the best overall performance. T h e tests that follow after that w i l l 
a l l use this winning node precedence heuristic. Next , I test pruning heuristics to see if a l l 
of them contribute to the overall performance or i f it is better to tu rn some off. Th is way 
I get the best configuration of the state space search that is available. In some cases, a 
different configuration would be more efficient but the goal here is to get the best overall 
performance. 

W h e n the best configuration is known, I test the performance of both the state space 
search algori thm and W K - C Y K wi th various inputs, especially inputs of increasing lengths 
and compare the results. 

A l l tests were run in the following environment: 

. C P U : A M D Ryzen 5 3600 6-Core Processor 

. Memory : 32 G B 

• Operat ing system: L inux , U b u n t u 21.10 

• Interpreter: P y t h o n 3.9.7 

6.1 Watson-Crick grammars used for testing 

For the testing of the tree search algori thm and the W K - C Y K algori thm, I have used the 
following Watson-Cr ick grammars. Unless stated otherwise, the set of non-terminals and 
the set of terminals is defined s imply by the symbols that appear i n the rules — a l l the 
uppercase letters are non-terminals of the grammar and a l l the lowercase letters and digits 
are terminals. The start ing non-terminal is S and the complementarity relation is identity. 
W i t h these specifications in mind the grammar can be defined by the rules only. 

1. 
S -> ( a ) \ S S S 
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The accepted language is: a(aa)* 

2. 
S -> ( a ) 5 I (b)S\ (Cc)S\ (a&c) 

The accepted language is: (a + 6 + c)*abc 

The a im of this example is to test inputs w i t h the decisive part on the very end. 
This could prove difficult since the tree search expands the non-terminals from left to 
right. 

3. 

* - ^ ( £ ) 

A ^ A i a a ) \ Aib) \ AiCc) I ( A ) 

The accepted language is: (a + b + c)*abc 

The a im of this example is, again, to test inputs w i th the decisive part on the very 
end while, at the same time, the rules are left recursive. 

4. 

S^Q(a

a) \ABCDEFG 

Q^QQ\ ABCDEFG 
a^O\(D 

( J ) 

^-(2)1«) 
i (i) 

<?-(;) i(j) 

The accepted language is: a?b?c?d?e?f?g? + (a?b?c?d?e?f?g?)*a (x? denotes that the 
symbol x is optional, i.e. (x + A) ) 

The problematic feature of this grammar may be the fact, that dur ing the transforma­
t ion of this grammar to the W K - C N F (more specifically, when removing the A-rules) 
the number of rules increases rapidly. 

S^(a

t)S\(*a)S\(°)S\(l)A 
A^(C

9)A\(at)S\(9

c)S\(l)B 

B^(C

9)A\(a

t)S\(l)S\(i)C 

c^(a

t)c\(l)c\(3c)c\(c

g)c\(*) 

The terminals i n this grammar refer to the actual nucleobases in the D N A and the 
complementarity relation mirrors the relations among them: p = {(a,t), (t, a), (c, g), (g, c)} 
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The accepted language is: ({a, i , c, g}*ctg{a, t, c, g}*)* 

This grammar is taken from [10] and is a first step towards an actual analysis of the 
D N A . In this case, it s imply looks for the substring ctg. 

6. 
S^(l)S\(a

x)A 

A^CM\(b

a)B 

B^(X

b)B\(X

b) 

The accepted language is: anbn where n > 1 (symbol xn denotes n occurrences of the 
symbol x) 

The grammar is taken from 

s^(a

a)s(a

a)\(b

b)s(b

b)\(c

c) 

The accepted language is: wcwR where w G {a,b}*(wR is the reversal of the string 
w) 

^ ( K ) l ( K ) K i ) 
The accepted language is: wwR where w G {a, b}* 

9. 

S ^ BL\RB 
L -¥ BL | A 

RB\A 
A -> £ A 5 | (=) 

* " • ( ? ) I ( J ) 

The accepted language is: x2y : x, y G {0,1}* A |x| / |y| 

The grammar is taken from [16]. 

10. 

S^T\T(p

p)S 
T ^ F\FT 

F^{l)\W\{l)T<*)S®\X(l)\(l)Y(l)('B) 

l(!)KS)K!) 
Y^T(l)S\F{*)T\X('s)\(°0)Y(l)(-a)\ZZ 

w^{\)\z 

z^{l)\{\)\zz 

The accepted language includes regular expressions over symbols 0 and 1 w i t h paren­
theses (o for opening and c for closing parenthesis), operators + (p), * (s), • (d) and 
symbols 0 (e), e (1) 

The grammar is taken from [6]. 
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11. 
S-*A\B\AB\BA 

A^(:)\(:)A(:)\(:)A(i)\(i)A(i)\cb)A(i) 

B^o\(:)B(:)\(a

a)B(i)\(i)B(i)\(i)BC) 

The accepted language is: {a, b}* \ ww where w G {a, b}* — i.e. the complement of 
the copy language. 

A^(d

r)A\(d

r)B 

B^{U

d)B\{u

d)C 

The accepted language is: r

ndn

u

n

r

n where n > 1 

The grammar is taken from [14]. 

13. 

^ ( K ) K M ) 

B^CMDKl) 
The accepted language is: ancnbn where n > 1 

The grammar is taken from [10]. 

14. 

S^(l)S\(a

x)A 

A^(b

x)A\(b

x)B 

B^C)B\C)C 

C^(i)C\(i)D 

D^(X

c)D\Cd)D\(l) 

The accepted language is: anbmcndm where n, m > 1 

The grammar is taken from [10]. 

15. 
S^(l)S\(l)S\(l)A 

A ^ ( a a ) A \ ( l ) A \ ( c ) B 

B^(X

a)B\Cb)B\Cx) 

The accepted language is: wcw where w G {a, b}* 

The grammar is taken from [10]. 
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16. 

A^OA\(™)A\(1)B 

The accepted language is: anbman where In < m < 3n 

The grammar is taken from [10]. 

17. 
s^ss\C)s(b

b)\(i)s\(i)A 

B^(i)B\(i)\BB\(l)S(h

h)\(l)S\(l)A 

The accepted language is: w : #a(w) = #b(w) a n d f ° r a n Y prefix v of w : #a(^) > 
#b(v) where #a(x) denotes the number of occurrences of symbol a in the string x 

The grammar is taken from [11]. 

18. 

A^{\)A\{\)B 

B^(L

R)B\CR)B\(l)\A 

The accepted language is: (lnrn)k where n does not increase for subsequent k. For 
instance: lllrrrlrlr is wi th in the language, llrrlllrrr is not. 

The grammar is taken from [10] (where it is stated that the language of this grammar 
is (lnrn)k for n,k > 1 which is not correct). The original symbols for opening and 
closing parenthesis have been replaced by letters I (left parenthesis) and r (right 
parenthesis). 

19. The grammar is identical to the grammar 13 wi th a difference i n the complementarity 
relation. The relations between symbols a, b and symbols a, c are added. This means 
that the relation is: p = {(a, a), (6, 6), (c, c), (a, 6), (6, a), (a, c), (c, a)} 

The accepted language is: anbmcn where n, m > 1 

20. The grammar is identical to the grammar 14 w i t h a difference i n the complemen­
tar i ty relation. The relation between symbols a, b is added making the relation 
P = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)} 

The accepted language is: ambnc°dP where m,n,o,p > 1 Am + n = o + p 

There are twenty grammars altogether. Grammars 1-5 are regular, 6-11 are context-
free and 12-18 are context-sensitive. Grammars 19 and 20 are context-free but they also 
have a non-bijective complementarity relation. 

In reality, there are not 20 but 40 grammars, because a l l of them can be used i n the 
basic form and after the transformation to the W K Chomsky normal form. Tha t results in 
a different grammar (although accepting the same language) which is usually significantly 
more difficult to calculate wi th , as there are more rules and many rules generate more 
non-terminals. 
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6.2 Testing the state space search 

There is a lot of parameters that could be tested and analyzed. How efficient are the various 
heuristics (both pruning and node precedence) for different grammars. W h a t input lengths 
are answered wi th in a reasonable t ime frame? O r more generally, what is the relation 
between input length and time to get the answer? W h a t are the memory requirements? 
W h a t is the difference i n decision t ime between input strings which are in the given language 
and those which are not? A r e there significant differences between some inputs of the same 
lengths? 

In order to analyze these questions, I have decided to test the state space search in the 
following stages. 

1. comparison of the node precedence heuristics and analysis of their efficiency 

2. comparison of the pruning heuristics and analysis of their efficiency 

3. analysis of the t ime and memory complexity based on the length of the input string 

4. testing i f there are any different inputs of the same length which would result in a 
significant difference i n the computat ion complexity 

5. testing the W K - C Y K algor i thm w i t h various grammars and inputs and comparison 
to the state space search 

6.2.1 Comparison of the node precedence heuristics efficiency 

In section 4.3, 12 node precedence heuristics have been described and only one of them can 
be active at a t ime. In order to compare their effectiveness I used the script ts_node_prece-
dence_tests.py which runs one test for each of the 40 grammars w i t h an input that w i l l 
be accepted. It is not useful to test the node precedence heuristics w i th inputs that are 
not wi th in the given language as in such cases, the whole space state needs to be searched 
and node precedence cannot help i n any way. The input strings have been chosen to have 
suitable lengths, so that the computat ion is finished (at least w i th some heuristics) i n a 
reasonable time, specifically wi th in the t ime l imi t of ten seconds but the search also should 
last some measurable amount of time. 

Each of the 40 tests consists of 12 runs, each wi th a different node precedence heuristic 
active. There are three metrics to observe: 

• How many times the search t imed out? 

• W h a t is the to ta l t ime i n which a l l 40 tests were completed for each of the heuristics. 
There should be a k ind of penalty involved if the test times out because the time 
needed for the computat ion is, in that case, certainly greater then the t ime it actually 
ran before it was stopped by the t ime l imi t . Therefore, for the sake of the comparison, 
the t ime of the search is i n this case doubled. 

• The to ta l t ime normalized for each test — a l l the times are mul t ip l ied by a number 
n = l/tmin where t m i n is the t ime of the fastest heuristic for the given test. Th is 
is probably the most tel l ing metric as each test has roughly the same impact on the 
final number. 
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Each test prints out the results i n a table s imilar to 6.1. The upper part of the table 
displays the description of the accepted language, number of rules, non-terminals and ter­
minals i n the grammar, s tr ing on the input (if it is too long to be printed out, its beginning 
part and to ta l length is printed out instead), whether the input is expected to be accepted 
and the t ime l imi t . The lower part the table shows for each of the node precedence heuristic 
how much t ime it took, how many states at most were i n the queue at a t ime and how 
many states were analyzed, how many times each pruning heuristic was successful and the 
result of the search (True, False or Timeout ) . It would not be pract ical to present here 
the complete output but it can be recreated s imply by running the script again and is also 
attached in the file output/'node_precedence_test_output.txt. 

Figure 6.1: A n output of a node precedence heuristics test 
Test 1 
Grammar a(aa)* 
Rules / N T s / Ts 2 /1 /1 
Input string 
Should accept Yes 
Timeout 7 seconds 
Strategy T i m e States Q + C Prunes (SL, T L , W S , R L , R E ) Accepted 
N T A 0.4886 994 + 3001 0, 5, 0, 0, 250 T R U E 
W N T A 0.4189 498 + 2503 0, 3, 0, 0, 250 T R U E 
T M 1 0.739 1489 + 3994 0, 7, 0, 0, 249 T R U E 
T M 2 0.7385 1489 + 3994 0, 7, 0, 0, 249 T R U E 
T M 3 0.7366 1489 + 3994 0, 7, 0, 0, 249 T R U E 
N T A + T M 1 0.5903 992 + 2999 0, 5, 0, 0, 250 T R U E 
N T A + T M 2 0.5915 992 + 2999 0, 5, 0, 0, 250 T R U E 
N T A + T M 3 0.5923 992 + 2999 0, 5, 0, 0, 250 T R U E 
W N T A + T M 1 0.495 498 + 2503 0, 3, 0, 0, 250 T R U E 
W N T A + T M 2 0.4949 498 + 2503 0, 3, 0, 0, 250 T R U E 
W N T A + T M 3 0.4977 498 + 2503 0, 3, 0, 0, 250 T R U E 
N O N E 2.4445 4188 + 22147 0, 89, 0, 0, 239 T R U E 

It is interesting to notice how different heuristics are better i n different test cases. This 
is i l lustrated by selected test cases which are on figure 6.2. There are some cases where the 
best heuristic is the empty one which assigns zero to each node, like i n the case of test 23. 
This is because this heuristic is the simplest one to compute and i f no heuristic is effective 
in a part icular test case, this one wins. B u t since it does not win by a large margin, these 
cases do not have a decisive impact on the overall result. There was only one timeout of 
heuristic T M 2 and the empty heuristic. The significant result differences indicate that the 
state space search can be customized to fit a specific grammar and thus further improve its 
performance. 

In some cases, a certain heuristics do not work so well, but their combination does. This 
can be seen i n test 22 — N T A and W N T A have poor result, comparable to no heuristic. 
T M 1 , T M 2 , T M 3 have somewhat better result, but by far the best result is achieved by 
combination of N T A wi th any version of T N . 

The figure 6.3 shows the to ta l result for a l l of the 40 tests. The left bar of each heuristic 
shows the to ta l t ime for the 40 tests and the right bar shows the normalized time. It 
turns out that the best results are achieved by the combinat ion N T A + T M 1 . The best 
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Figure 6.2: Selected comparisons of node precedence heuristics 

t ime overall was achieved by T M 3 by very narrow margin. The normalized results of a l l 
N T A + T M 1 , N T A + T M 2 and N T A + T M 3 heuristics are very close but the narrow winner 
is N T A + T M 1 . Even if, in some cases, there are some faster heuristics, it 's usually not 
by much. Interestingly, even though T M 2 turns out to have the worst results of them a l l , 
often worse than no heuristic, w i th the combinat ion of N T A the results are among the best. 
Anyway, for a l l of the following tests, the winning node precedence heuristic N T A + T M 1 
w i l l be used. 

6.2.2 Comparison of the pruning heuristics efficiency 

Prun ing has the advantage of being useful whether the input str ing is going to be accepted 
or rejected by the tree search. A l s o , a l l of the pruning can be active at the same t ime. Each 
node can be tested by a l l available checks to see whether it can be pruned or not. 

The testing is performed over 80 tests — each of the 40 grammars is used for a positive 
test (where the input w i l l be accepted) and a negative test (the input w i l l be rejected). Each 
test contains seven runs of the tree search algori thm — one where a l l pruning heuristics 
are active, one where a l l are inactive, and one for each heuristic where a l l are active except 
the given one. 

Simi lar ly to the node precedence heuristics comparison, the metrics that are important 
are the to ta l t ime needed to compute the 80 tests and a number of timeouts for each of the 
seven cases. The main goal here is not to compare the heuristics to each other and find 
which one is the best — as they can be active at the same time, it does not matter that 
much. Rather, the goal is to decide whether each of the pruning heuristics improves the 
performance or if it is better to tu rn some off. Therefore the comparison between the case 
where a l l heuristics are active and the case where a specific heuristic is inactive and the 
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Node precedence heuristic used 

Figure 6.3: Compar ison of the node precedence heuristic functions 

rest are active is important . If the latter case is faster, the given heuristic's cost (in terms 
of computing power) is greater than its contribution. 

The tests are run by the script ts_pruning_tests.py and each test prints out a table 
similar to the table 6.4. A g a i n , it would not be pract ical to include the entire output here. 
The complete set of results can be recreated by running the script again and it is included 
in the file output/'pruning_test_output.txt. 

Figure 6.4: A n output of the pruning heuristics test 
Test 1 
Grammar a(aa)* 
Rules / N T s / Ts 2 /1 /1 
Input string 
Should accept Yes 
Timeout 7 seconds 
Strategy T ime States Q + C Prunes (SL, T L , W S , R L , R E ) Accepted 
A L L O N 0.7841 799 + 1200 0, 3, 0, 0, 400 T R U E 
strands len O F F 0.7781 799 + 1200 0, 3, 0, 0, 400 T R U E 
total len O F F 0.7799 801 + 1200 0, 0, 0, 0, 400 T R U E 
terms match O F F 0.7705 799 + 1200 0, 3, 0, 0, 400 T R U E 
relation O F F 0.655 799 + 1200 0, 3, 0, 0, 400 T R U E 
regex O F F 0.3594 800 + 1599 0, 3, 0, 0, 0 T R U E 
A L L O F F 0.2179 801 + 1600 0, 0, 0, 0, 0 T R U E 

The summary of results is displayed on figure 6.5 — the number of timeouts and 6.6 
- the amount of t ime for each of the seven cases across the 80 tests. The smaller the 

ind iv idua l bars are, the better the result. B u t in case of the bars representing a specific 
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pruning heuristic being turned off, the bigger the bar, the more important the given heuristic 
is because the result is that much worse without i t . 

ALL SL OFF TL OFF WS OFF RL OFF RE OFF NONE 

Figure 6.5: The number of timeouts of a l l pruning tests 
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Figure 6.6: The to ta l t ime of a l l pruning tests 

F rom these results it is clear that the tree pruning is the key feature of the tree search 
algori thm. After turning off the pruning, the results are quite poor — 67 out of 80 tests 
t imed out. The total t ime is then not relevant at a l l . The middle bars, which represent the 
ind iv idua l pruning heuristics being turned off, need to be compared to the first one, where 
al l heuristics are active, to see how important the given heuristic actually is. Thus, the 
figure suggests, that the R L (complementarity relation) check is the most important one 
because turning it off had the biggest impact on the result. Th is can be a bit misleading, 
as some heuristics can be sometimes backed up by another one. This is the reason why the 
W S (match of leftmost terminals to the input string) seem to have a rather smal l impact . If 
this heuristic is turned off, the dead branch can be identified by the R E (regular expression) 
check and so the impact is not so big. Similarly, turning off the S L (strands length) heuristic 
has smaller impact because it is backed up by T L (total length) heuristic. 
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Nevertheless, a l l heuristics are useful according to this result because no other result is 
as good as in the first case where a l l the heuristics are active. Th is finding is especially 
important i n the case of the R E heuristic. This one is quite demanding w i t h regards to 
computat ional power — regular expression match is performed each t ime this check is 
executed. It is the reason why it is the last check that is used, if there is another heuristic 
able to prune the node, a lot of computat ional power is saved. However, the figure shows 
clearly, that the R E heuristic contributes significantly to the overall performance. S t i l l , 
some tests cannot benefit from a l l heuristics and turning some off would improve the results. 
This , again, means that there is some space for improving the performance by customizing 
the a lgori thm to specific grammars. 

6.2.3 Analysis of the memory requirements 

The tree search algori thm needs to keep i n memory the nodes which have been generated 
but not yet analyzed. These are in the pr ior i ty queue wai t ing to be used. Also , it keeps 
track of a l l the nodes which have already been generated. These are the nodes that had 
been in the queue before and the nodes that are there at the moment, as i n both cases, 
there is no reason to put them into the queue again. B u t it is not necessary to keep a l l 
these nodes i n the memory i n order to identify them, their hash code is enough. 

If the a lgori thm should, not only find a solution if there is one, but also find the path 
from the in i t i a l node to the solution, it is not enough just to remember the hashes of nodes 
that have been analyzed. It is necessary to remember a l l of the nodes. Th is is actually 
the case in the current implementat ion because when testing the tree search algori thm, it 
turns out that the memory consumption is not a real issue and it is sometimes convenient 
to learn the path to the solution. A very simple modification would change this — simply 
removing the i tem parent from the tree node {cTreeNode class) and the method p r in tPa th 
from the grammar {cWKCFG class). 

The number of nodes in the queue can go up or down as the search progresses but it 
is more l ikely to go up, unless the search is coming to its end. In any case, the important 
figure is the m a x i m u m number of nodes that were in the queue at one point. 

Another parameter that needs to be considered is the size of one node i n the memory. A s 
mentioned in the section 5, one node contains six integers (storing the number of terminals 
in the two strands, number of non-terminals, hash number, the node parent and the node 
precedence evaluation) and the word itself. The word can contain up to twice the number 
of symbols then is the length of the input string. If it contains more, it is going to be 
pruned. 

This is not necessarily true, i f the grammar contains some A-rules and non-terminals 
that can be erased. Then the theoretical length of the word in memory has no l imi t but this 
is not a typica l scenario and it can be avoided altogether by applying the A-rules removal 
algori thm. 

The equation for getting the memory requirement, based on the number of nodes work­
ing wi th , is than the following: 

Sau x sizeiint) + Sau x (6 x size{ini) + 2 x size(symbol) x \input\) 

After the removal of the parent information from the nodes, the equation would be as 
follows: 

Sau x size{int) + Sopen x (6 x sizeiint) + 2 x sizeisymbol) x \input\) 
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Sau is the number of a l l generated nodes, Sopen is the m a x i m u m number of nodes in 
the queue, size{ini) is the size of an integer , size(symbol) is the size of one symbol of the 
grammar and |input\ is the length of the input string. 

I've chosen grammar 3 in W K - C N F to test the results in practice, as this grammar is 
among the hardest ones wi th respect to the computing complexity. I used inputs i n the 
form of anb w i t h increasing n , which w i l l always be rejected, because the grammar accepts 
strings that end wi th symbols abc. 

The figure 6.7 on the left shows the amount of memory needed in relation to the input 
length. The middle graph shows the memory consumption i n relation to the t ime needed 
for computat ion. To the right is the experimental result where I measured real memory 
consumption of the program in time. 

I 1 I 1 25001 1 

6 8 10 12 14 0 10 20 50 100 150 
Input length Time of computation Time of computation 

Figure 6.7: Memory consumption of the tree search (the left and middle parts show com­
puted values, the part on the right shows real measurements) 

The measurement of the real memory consumption shows that there is a possibil i ty to be 
l imi ted by the memory available. A s the figure 6.7 on the right shows, the tree search used 
1 G B of memory after approximately 80 seconds of running and the consumption increases 
linearly (the number depends on the hardware and environment so it is very crude). O n 
the other hand, it does not seem pract ical to have the t ime l imi t of the computat ion too 
high. If the result is not found in the order of tens of seconds or, at most, minutes, it is 
probably not going to be found (within a reasonable t ime frame) at a l l . 

6.2.4 The time complexity of the state space search 

The previous sections showed that the best overall performance is achieved when using a l l 
of the tree pruning heuristics and using the N T A + T M 1 as the node precedence heuristic. 
Th is may not be the case for every grammar or every input, but it is the case overall. 
Therefore, this w i l l be the setting used i n the sections that follow — testing the tree 
search performance, analyzing the pract ical complexity and comparison to the W K - C Y K 
algori thm. 

I used the script ts_speed_tests.py to test the t ime complexity w i th respect to the input 
length. It runs 80 test, two for each of the 40 grammars — one wi th inputs that are going 
to be accepted by the tree search and one wi th inputs which w i l l be refused. Each test runs 
the tree search several times and increases the input length. It stops when the computat ion 
takes longer than a l imi t of ten seconds or after 30 runs. For each of the 80 tests, it prints 
out a table similar to 6.8. A s it would not be pract ical to present a l l of the results here, 
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they can be recreated by s imply running the script again and they are included i n the file 
output/'speed_test_output.txt. 

Figure 6.8: A n output of the time complexity test 
Test 1 
Grammar a(aa)* 
Rules / N T s / Ts 2 /1 /1 
Should accept Yes 
Timeout 10 seconds 
Input length T i m e States Q + C Prunes (SL, T L , W S , R L , R E ) Accepted 
2001 4.6528 1999 + 3000 0, 3, 0, 0, 1000 T R U E 
2101 5.1277 2099 + 3150 0, 3, 0, 0, 1050 T R U E 
2201 5.6251 2199 + 3300 0, 3, 0, 0, 1100 T R U E 
2301 6.134 2299 + 3450 0, 3, 0, 0, 1150 T R U E 
2401 6.665 2399 + 3600 0, 3, 0, 0, 1200 T R U E 
2501 7.3398 2499 + 3750 0, 3, 0, 0, 1250 T R U E 
2601 8.057 2599 + 3900 0, 3, 0, 0, 1300 T R U E 
2701 8.4195 2699 + 4050 0, 3, 0, 0, 1350 T R U E 
2801 9.2167 2799 + 4200 0, 3, 0, 0, 1400 T R U E 

The performance for different grammars is quite different. In case of 11 of the 20 
grammars (specifically, grammars 2, 5-10, 12-14, 19), the resulting graph is a very regular 
parabola. Often a bit steeper when transformed to the W K - C N F and often steeper when 
the inputs are going to be rejected. A n example is on figure 6.9. The performance wi th 
these grammars allows at least hundreds, i n most cases thousands, of symbols on the input. 

Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

1000 2000 3000 1000 2000 3000 1000 2000 500 1000 1500 
nput length 

Figure 6.9: G r a m m a r 12: r
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Occasionally, thanks to the pruning heuristics, the algori thm is able to tel l pract ical ly 
immediately that there is no solution. This is the case of grammar 3 6.10 and grammar 4 
6.11 i n basic forms, making the complexity of this part icular search constant. The grammar 
3 has as the first rule, which it has to use to proceed further, S —> -A If the input 
string does not end wi th abc, the regular expression check immediately detects that the 
input cannot be matched, it prunes the only branch and the search is finished. 

Similarly, i n the case of grammar 4, any inputs that are longer than seven symbols need 
to end wi th the symbol a and can be reached only by using 

s Q{1) a s t h e first r u l e - T h e 

regular expression check immediately prunes this branch. The rest of the tree is searched 
very quickly because the only other possible start ing rule is S —>• ABCDEFG, there are 
not many states that can be reached from it, so this part of the tree is always small . 
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Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

500 1000 1500 2000 1000 2000 3000 2.5 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 12.5 
nput length 

Figure 6.10: G r a m m a r 3: (a + b + c)*abc w i th left recursive rules 

Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

500 1000 1500 500 1000 1500 0 100 200 10 20 30 
nput length 

Figure 6.11: G r a m m a r 4: (a + b + c)*abc w i th right recursive rules 

After conversion of the grammar to the W K - C N F , the complexity usually goes up. The 
transformation adds a lot more rules and so the state space expands more rapidly, there 
are also longer paths from the start ing non-terminal to the final string (containing only 
terminals) making the tree deeper. Also , the node precedence heuristics and the pruning 
have harder t ime because many rules contain non-terminals only and most of the heuristics 
work wi th terminals. The most extreme case is the grammar 3 6.11 where the tree search 
is very effective for grammar in basic form (as discussed, i n case of rejecting inputs the 
result is immediate) but has very bad effectiveness for this grammar in the W K - C N F . The 
max imum length of input it can answer wi th in 10 second is about 13-14 symbols. 

The worst results for grammar in the basic form are in the case of grammar 17 6.12. 
Here, the tree search can handle only inputs w i t h length of about 20 symbols w i th in 10 
seconds. 

Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

10 15 20 12 14 16 18 10 15 20 12 13 14 15 16 
nput length 

Figure 6.12: Grammar 17: w : #a(u)) = #b(w) a n d for any prefix v of w: v : #a(^) > #b(v) 
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Some grammars manifest an interesting behavior — for some longer inputs the perfor­
mance is actually better. Th is is the case of grammars 11 (6.13 on the left), 16 (6.14 on 
the middle right) and 18 (6.15 on the middle left and middle right) . Some of these results 
may appear to be par t ly random, s imply the input generator might sometimes generate 
an input which is more complex and sometimes less complex to compute. This is the case 
of the grammar 18, here, in fact, the shape of the randomly generated input has a sig­
nificant impact on the performance which is the reason for the irregular curves. However, 
repeated tests of the other two grammars confirmed that this happens always and the figure 
of grammar 16 has a clear pattern, it is certainly not random. 

Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

1000 2000 3000 50 100 150 200 10 15 20 25 10 15 20 
nput length 

Figure 6.13: Grammar 11: (ww) 

Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

200 400 600 800 200 400 600 800 200 400 100 200 300 400 
nput length 

Figure 6.14: G r a m m a r 16: anbman where 2n < m < 3n 

Basic form, accepted inputs Basic form, rejected inputs CNF, accepted inputs CNF, rejected inputs 

1000 2000 100 200 300 400 500 100 200 300 100 150 200 
nput length 

Figure 6.15: G r a m m a r 18: (lnrn)k where n does not increase for subsequent ks 
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The results of the three grammars which have not been yet mentioned, grammars 1, 
15 and 20, are mostly similar to the standard parabola of the majori ty of tests w i t h some 
irregularities. 

6.2.5 Comparing different inputs of the same length 

There are some grammars which do not provide any possibil i ty of an interesting or edge 
case input . Specifically, it is the case of grammars 1-4. Grammar 1 works only w i t h the 
terminal symbol a, grammars 2, 3 and 4 are only interested whether a str ing ends wi th 
specific symbols. B u t the rest of the grammars, grammars 5-20, a l l provide some space 
for t ry ing to come up w i t h an edge case input — an input, which has the key part on 
the very end or on the very beginning etc. I have manual ly created some of these edge 
cases and tested what differences i n performance there are. For this test I used a script 
ts_var_inputs_tests.py. Its complete output can be again recreated by running the script 
and is attached in the file output/'var_inputs_test_output.txt. 

I have selected three of these tests to present here. The tables 6.16, 6.17, 6.18 show the 
output of three tests from the script ts_var_inputs_tests.py. The first column called Input 
displays the string that has been used as an input in a compact format (ns)* where n is a 
number of occurrences of the symbol or string s. For instance, 3a 2ab would translate to 
string aaaabab. 

A s previously mentioned, one advantage of state space search is that sometimes it can 
recognize right away that a certain input is not i n a given language. It is usually when 
the string starts w i th a symbol that cannot be at the beginning. For instance, the second 
input on table 6.16, where the language is anbn and the input starts w i th 6, can never be 
accepted. A similar case is the second input i n table 6.18 where the language is r

ndn

u

n

r

n 

and it cannot start w i th anything other than r. 
O n the other hand, sometimes the search has harder t ime finding a key part of the string 

which is at the end. This can take longer as is the case i n the last input of 6.16 (search has 
to get to the end of the string to see that there are not enough b symbols). Some inputs 
in the table 6.18 also suffer for the same reason. This is usually not a problem that could 
break the pract ical use completely. The result is typical ly s t i l l reached wi th in a reasonable 
time. A n extreme example is, however, on the table 6.17 where the last input is not decided 
in time, even though other inputs were decided very quickly. 

Figure 6.16: Test of various inputs for the grammar 6 
Test 2 
Grammar anbn 

Rules / N T s / Ts 6 /3 /2 
Timeout 10 seconds 
Input T ime States Q + C Prunes(SL, T L , W S , R L , R E ) Accepted 
500a 0.1881 2 + 999 4, 0, 998, 0, 0 F A L S E 
500b 0.0 1 + 0 0, 0, 2, 0, 0 F A L S E 
a 500b 0.3448 3 + 502 2, 0, 2, 2, 500 F A L S E 
500a b 1.0903 3 + 1996 2, 0, 1000, 998, 0 F A L S E 
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Figure 6.17: Test of various inputs for the grammar 8 
Test 4 
Grammar wwr 

Rules / N T s / Ts 3 /1 /2 
Timeout 10 seconds 
Input T i m e States Q + C Prunes(SL, T L , W S , R L , R E ) Accepted 
2000ab 2000ba a 0.0003 1 + 1 0, 0, 3, 0, 2, 0 F A L S E 
a 2000ab 2000ba 0.0003 1 + 1 0, 0, 2, 0, 3, 0 F A L S E 
2000ab a 2000ba 10.0079 1 + 1461 0, 0, 2921, 0, 1, 0 T I M E O U T 

Figure 6.18: Test of various inputs for the grammar 12 
Test 8 
Grammar 
Rules / N T s / Ts 10/5 /3 
Timeout 10 seconds 
Input T ime States Q + C P r u n e s ( S L , T L , W S , R L , R E ) Accepted 
500r 500d 500u 500r d 8.9568 1500 + 3001 o, o, 3002 998, 501, 1 F A L S E 
d 500r 500d 500u 500r 0.0001 1 + 0 o, o, 2, 0, 0, 0 F A L S E 
500r 500d 500u 501r 8.9805 1500 + 3002 2, o, 3000 1000 , 501, 0 F A L S E 
500r 500d 501u 500r 3.0577 1000 + 2001 o, o, 3000 2, 0, 0 F A L S E 
500r 501d 500u 500r 1.0785 1000 + 1001 o, o, 2000 2, 0, 0 F A L S E 
501r 500d 500u 500r 1.0763 1001 + 1002 o, o, 2002 2, 0, 0 F A L S E 
r 500d 500u 500r 0.0003 2 + 3 o, o, 4, 2, 0, 0 F A L S E 
500r d 500u 500r 0.191 501 + 502 o, o, 1002 2, 0, 0 F A L S E 
500r 500d u 500r 0.9625 1000 + 1003 o, o, 2002 2, 0, 0 F A L S E 
500r 500d 500u r 3.0452 1001 + 2002 2, o, 3000 2, 0, 0 F A L S E 

6.3 Testing the efficiency of W K - C Y K 

I have tested the W K - C Y K algori thm in the similar manner as the tree search. Th is time 
not a l l grammars can be used due to the l imitat ions of W K - C Y K . The grammars must be 
in the W K - C N F and grammars 5, 19 and 20 cannot be used at a l l , since W K - C Y K requires 
the complementarity relation to be identity which is not the case of these three grammars. 
Therefore there are 17 grammars that can be tested. The script wk_cyk_tests.py runs two 
tests for each of these grammars. One w i t h inputs that should be accepted and one wi th 
inputs that should be rejected. A g a i n , each test increases the input str ing length un t i l the 
computat ion lasts more that the l imi t of 10 seconds. The output of each test is a table 
similar to 6.19. The entire output can be recreated by running the script again and is 
attached in file output/wk_cyk_test_output.txt. 

It turns out that the W K - C Y K gives very similar performance i n a l l tests — for a l l the 
grammars and regardless whether the input is accepted or not. The figure 6.20 on the left 
shows a result for the first test which is very similar to a l l the others. The l imi t of ten 
seconds is reached by W K - C Y K when the input has about 33 symbols. 

These results confirm the c la im made by the authors of W K - C Y K that the complexity 
wi th regards to the input length is 0 ( n 6 ) . The figure 6.20 on the right shows the same test 
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Figure 6.19: A n output of the W K - C Y K time complexity test 
Test 1 
Grammar a(aa)* 
Rules / N T s / Ts 2 /1 /1 
Should accept Yes 
Timeout 7 seconds 
Input length T ime Accepted 
3 0.0 T R U E 
5 0.0 T R U E 
7 0.0 T R U E 
9 0.01 T R U E 
11 0.03 T R U E 
13 0.07 T R U E 
15 0.15 T R U E 
17 0.29 T R U E 
19 0.53 T R U E 
21 0.88 T R U E 
23 1.45 T R U E 
25 2.31 T R U E 
27 3.49 T R U E 
29 5.23 T R U E 
31 7.55 T R U E 
33 10.67 T R U E 

wi th the input lengths raised to the power of six which can be considered to be a number 
of numeric operations needed for the computat ion. The curve is then very close to linear. 

W h e n the results of the W K - C Y K and state space search are compared, the advantage 
of state space search is the actual speed in most cases. The results in the previous sections 
showed that of a l l the grammars only one (grammar 17) was slower i n the basic form when 
analyzed by tree search then when analyzed by W K - C Y K . After transformation to W k -
C N F two more grammars (grammar 3 and 11) were comparable or slower when analyzed 
by the tree search. G r a m m a r 1 was slower for the negative inputs. 

6.4 Comparison of the state space search and W K - C Y K 

It has been concluded i n the previous section that the W K - C Y K algori thm is able to 
compute wi th in the t ime l imi t of ten seconds results for inputs of length of approximately 
33 symbols. I assume that this w i l l always be the case even for grammars that would have 
to be modified in order to be suitable for W K - C Y K (grammars 5, 19 and 20). If these 
results are compared wi th the results of state space search over grammars i n basic forms, 
only one of them is more efficient w i th W K - C Y K . Other 19 are more efficient w i th the state 
space search allowing hundreds of input symbols at min imum. That means that state space 
search was more efficient i n 38 out of 40 test cases (each grammar is tested wi th accepted 
and rejected inputs) i.e. i n 97.5 % of cases. In this comparison the state space search 
benefits from being able to work wi th any W K grammar — there is no need to transform 
it to the W K - C N F . 
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Figure 6.20: W K - C Y K test result 

If the state space search is compared to W K - C Y K over a l l 40 grammars, W K - C Y K has 
better efficiency i n case of grammars 3 and 11 (in the W K - C N F ) and wi th the rejected 
inputs for grammar 1. Tha t is 9 test cases out of 80 (four test cases of grammar 17, two of 
grammars 3 and 11, one of grammar 1) i.e. i n 88,75 % of cases. However, this comparison 
assumes that there is a need to use the grammars i n the C N F . 

These results show some advantages and disadvantages of the two algorithms. A n 
advantage of state space search is the flexibili ty regarding the grammars. It does not require 
to work wi th grammars i n the W K - C N F . A l so , it does not require the complementarity 
relation to be identity. Even though it is always possible to transform any W K grammar 
to the W K - C N F and it is always possible to further transform the grammar i n order to use 
only the identity as the relation, this can significantly add to the grammar's complexity. 

A useful feature of the state space search is the fact that it can be configured for the 
need of a specific grammar. If the membership test w i l l be performed repeatedly on a 
grammar, it is possible to find out what node precedence heuristic works best and what 
pruning heuristics are useful in that part icular scenario by running tests analogous to those 
presented in section 6.2.1. Thus the performance may be further enhanced. 

A n advantage of W K - C Y K , on the other hand, is its universality. It has roughly the 
same speed every time, it does not significantly depend on the grammar (increasing number 
of rules adds a l i t t le bit) and it does not matter, i f the input is going to be accepted or not. 
For very complicated grammars, especially wi th lots of rules or long derivations from the 
starting symbol to the final string, W K - C Y K s t i l l might be more practical . 
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Chapter 7 

Conclusion 

In this work I have presented various existing models for representing Watson-Cr ick lan­
guages, most impor tant ly Watson Cr i ck automata and Watson-Crick grammars and I have 
analyzed the a lgori thm W K - C Y K which is used for testing a membership of strings in lan­
guages defined by Watson-Cr ick context-free grammars. T h a n I have come up wi th another 
algori thm for testing membership i n W K languages which I ca l l the state space search or 
the tree search which is the most important contr ibut ion of this thesis. 

The state space search is based on a standard Breadth-first search algori thm where the 
starting non-terminal of the grammar is the root node and every applicable rule creates 
successors i n the tree. The state space search then introduces various optimizations, from 
which the most important are pruning and node precedence heuristics. P run ing uses five 
different methods of identifying that a given node cannot produce the desired solution and 
removes the entire branch. Node precedence heuristics attempt to choose more promising 
nodes to be analyzed first. I have implemented and tested 12 such heuristics and chosen 
the one which had the best overall results (called N T A + T M 1 ) as the default one. 

I have collected or created twenty Watson-Cr ick context-free grammars to test the W K -
C Y K and state space search algorithms. I have implemented both W K - C Y K and state 
space search i n the P y t h o n language and wri t ten scripts to test the algorithms w i t h a l l 
these grammars and various inputs. The test results showed that for the majority of the 
grammars, the state space search was very efficient and it can quickly decide membership 
problem of inputs that are hundreds or even thousands of symbols long. 

A m o n g the advantages of the state space search is the fact that it can work over any 
forms of W K context-free grammars (not only grammars i n the W K - C N F or grammars wi th 
the identity complementarity relation). A l so , it can be opt imized for a part icular grammar. 
Tests comparing performance of node precedence heuristics and tests of pruning heuristics 
can be run i n order to find which combination is best for a part icular grammar thus further 
improving the performance. 

Testing the W K - C Y K algori thm showed that its theoretical complexity 0 ( n 6 ) w i th 
respect to the input length corresponds to the real performance. In practice, it is able to 
decide membership problem of inputs up to the length of approximately 30-50 symbols. 
Tha t is much less than state space search but, on the other hand, its performance is almost 
identical for any grammar and for any input . It is more efficient i n case of some specific or 
complex grammars where the performance of state space search struggles. 

The state space search is a suitable a lgori thm for paral l izat ion. Several processes can 
take nodes from the queue of open nodes and analyze different branches of the tree in­
dependently. Th i s would be a natural next step i n the further development of the state 
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space search. It is possible to come up wi th other heuristics for both the pruning and 
node precedence. A s for pruning, one possibil i ty would be to expand the regular expression 
matching ( R E ) heuristic also to consider the lower strand. Another idea for pruning is to 
calculate how many terminals can be generated at m i n i m u m to the lower strand and to the 
upper strand indiv idual ly (currently, it is calculated how many terminals a non-terminal 
produces to both strands) thus making the constraint of the words stronger. A s for the 
node precedence heuristics, it may be worthwhile to use some of the grammars wi th which 
state space search is not efficient (in part icular grammars 3 i n the W K - C N F and grammar 
17) and design or improve node precedence heuristics w i th respect to these part icular cases. 
Then it would be necessary to test a l l these new heuristics and see i f they contribute to the 
overall performance or not. Another promising improvement could be analyzing the input 
from both sides at the same time. This could help wi th the cases, when the key part of 
the input is at or near its end and the state space search may struggle to get there in a 
reasonable t ime frame. 
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