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Annotation 

The Belousov-Zhabotinsky reaction is a well-known model for 
investigating the self-organization manifestations in nature. The 
chemical reaction cascade is easy to control and measure in laboratory 
conditions, which makes the investigation of diverse scenarios of the 
system behavior possible. The aim of this thesis was to evaluate the 
course of the reaction under the assumption of multifractality of 
observed chemical patterns. The approach of the information entropy 
theory was applied to image analysis to assess the visible changes in the 
reaction oscillation. Furthermore, the new characteristics - point 
information gain entropy and point information gain entropy density - 
were also introduced. These values were used to construct the state 
trajectory of the complex system with unique oscillation states 
recognition by multivariate stochastic data analysis.  

The reliability of the developed approach was tested on numerous 
experiments, including the insufficiently-studied BZ reaction wave 
formation under the space constriction and distortion by re-shaking 
effect. It has been confirmed that each of the system states has its own 
characteristic spectrum of information entropy. The obtained state-
trajectories for the BZ reaction allows researchers to study the changing 
system behavior in response to variation of the initial conditions and to 
make a prediction about state-trajectory evolution in the imminent 
future. It was showed that the information entropy calculation is an 
effective and cheap tool for non-invasive analysis of a wide range of 
self-organized systems. Finally, it may be implemented also to automate 
laborious tasks for different cell stage recognition in medicine and 
biology.  
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Anotace 

Reakce Bělousova-Žabotinskyho je dobře známý model pro zkoumání 
projevů samoorganizace v přírodě. Kaskádu chemické reakce je snadné 
ovládat a měřit v laboratorních podmínkách, což umožňuje zkoumání 
různých scénářů chování systému. Cílem této disertační práce bylo 
zhodnotit průběh reakce za předpokladu multifractality sledovaných 
chemických vzorců. Pro zhodnocení viditelných změn v průběhu 
oscilace BZ reakce během analýzy obrazu byly použity přístupy teorie 
informační entropie a byly zavedeny nové charakteristiky: informační 
příspěvek jednoho bodu a entropie informačního příspěvku. Konečným 
výsledkem navrhovaného přístupu je vytvoření trajektorie stavů 
komplexního systému s unikátním zaznamenáním oscilačních stavů, 
které bylo dosaženo pomocí multivariační stochastické analýzy dat. 

Spolehlivost vyvinutého algoritmu byla testována prostřednictvím 
rozmanitých experimentů včetně nedostatečně prozkoumané tvorby vln 
v BZ reakci v rámci prostorové konstrikce a narušení efektem 
opětovného otřesu. Byla potvrzená hypotéza, že každý ze stavů systému 
má své charakteristické spektrum informační entropie. Získané 
trajektorie stavů BZ reakce umožňují posuzovat měnící se chování 
systému v návaznosti na změnu počátečních podmínek a předpovídat o 
evoluci trajektorií stavů v blízké budoucnosti. Bylo prokázáno, že 
výpočet informační entropie jé účinný a levný nástroj pro neinvazivní 
analýzu širokého spektra samoorganizovaných systémů a může být 
použitý pro automatizaci laboratorních analýz například při identifikaci 
různých buněčných stavů v medicíně a biologii. 
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INTRODUCTION 

1.1. History of the Belousov-Zhabotinsky Reaction  

The recipe of the Belousov-Zhabotinsky (BZ) reaction was discovered 
by chance, when Russian chemist Boris Belousov, in attempt to devise 
a primitive model of citric acid cycle, employed cerium ions instead of 
an enzyme as a catalyst (Belousov, 1959) and found that his test tube 
contained a biochemical oscillator. The discovered chemical oscillator 
has some of the fundamental features of the metabolism of aerobic 
organisms (Shanks, 2001). That makes the Belousov-Zhabotinsky 
oscillations and accompanying self-organisation (Taylor, Tinsley, 2009) 
a very interesting phenomenon for investigating principles of self-
organisation in nature. Belousov’s work has not received proper 
recognition in the scientific community because the reversibility of the 
chemical process contradicted the postulates of the second law of 
thermodynamics.  

A few years after the first discovery, Russian postgraduate student 
biophysicist Anatol Zhabotinsky not only rediscovered the phenomenon 
but also suggested the first interpretation of its reaction dynamics 
(Zhabotinsky, 1964). Zhabotinsky improved the components involved 
in the reaction by using ferroin C36H24FeN6

2+, a blood-red complex of 
Fe2+ ion with 1,10-phenanthroline that catalyzes the reaction, instead of 
cerium Ce4+ to enhance contrast during chemical oscillation. He was the 
first person to observe the reaction dynamics in a thin layer of solution 
in a Petri dish where the chemical waves produced were organized in a 
pattern with an impressive variety of shapes and sizes. He also made the 
first system description which did not contradict the second law of 
thermodynamics and charted a mathematical model of the chemical 
reaction dynamics (Rovinsky et al., 1984). Due to the foundation-laying 
work of these two scientists, the reaction was named after them as the 
Belousov-Zhabotinsky reaction and was introduced to the world’s 
scientists at the “Conference on Biological and Biochemical 
Oscillators” in Prague (Vavilin, 1968). 

Basic principles of non-equilibrium thermodynamics were honored with 
the Nobel Prize in 1977 (Nicolis and Prigogine, 1977) and the BZ 
reaction was the cornerstone of this theory.  
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1.2. The Main Features of the Chemical Waves 

The result of performing the BZ reaction in a thin layer of reaction 
mixture in a Petri dish is the formation of two-dimensional space 
structures of the ferric/ferrous concentration gradient that migrate and 
evolve over time. These are the so-called chemical waves or BZ 
patterns, first described in the work by Zaikin et al., 1970.  Up to now, 
it is not known what serves as the initiation points of the waves. 
According to some researchers (Amemiya et al., 1996; Taylor et al., 
1996), the circular and spiral-like waves could arise from local 
excitability perturbation (by an increase in the excitability of the 
medium in the foci region). The chemical waves phenomenon represents 
itself not only through the concentration changes of Fe(phen)3

3+ and 
related reaction components (malonic acid, bromomalonic acid, and �����), but also through density changes (Kasuya et al., 2005) and a 
temperature gradient  (Böckmann et al., 1996). There are several types 
of waves (Cross et al., 1983), generated by the BZ system.  

 

1.2.1. The Travelling Waves’ Properties  

There are the following types of travelling waves: wave trains (the wave 
profile V (ξ) is periodic); wave fronts (V (−∞) and V (∞) exist and are 
unequal); pulses (V (−∞) and V (∞) exist, are equal, but V (ξ) is not 
constant); radially symmetric wave or circular waves; and their 
combinations (Kuttler, 2011). The wave trains in the initial reaction 
phase tend to keep an equal distance from each other and produce 
circles. Mikhailov et al., (2006) claims that the wave propagates 
according to Huygens's principle, where each point on a wave front 
became a source of wavelets, and wavelets spread out in the forward 
direction at the same speed as the source wave, forming a new wave 
front in a tangent line to all of the wavelets. This opinion is clearly 
challenged by the experiments (Fig. 1.1.), where we show that the 
chemical waves do not cross each other as Huygens-type waves, e.g., 
those observed upon throwing two stones into the water.  The variability 
of the wave velocity, mainly acceleration of the wave trains registered 
in Pojman et al., 1990, was explained by the convection effect (Wu et 
al., 1995), whereas the wave front’s diversity, namely the existence of 
big waves compared to the normal trigger wave, is attributed to an 
unequal concentration distribution of ferriin caused by the Marangoni 
effect (Inomoto et al., 2012) – the flow between two fluids’ interface is 
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caused by the surface tension gradient, but the authors do not rule out 
the influence of the temperature effect.  

 

1.2.2. The Spiral Waves’ Properties  

The spiral waves (so-called Archimedean spirals), according to work in 
Agladze et al., 1982, could be generated as open wave ends that evolve 
from a breaking-down continuous wave front, or, according  to Tóth et 
al., 2000, from the refractory tail of another wave. The breaking of wave 
fronts was often shown to be induced by microbubbles evolving in the 
reaction solution. The Winfree turbulence (Winfree 1994a,b) also 
credited for the appearance and further development of spiral waves in 
the BZ reaction medium (Alonso et al., 2003). The spiral tips, as it was 
shown in theoretical and experimental studies (Skinner et al., 1991; 
Jahnke, 1989), have different types of motion: from rigid around a small 
circular core to compound rotation along epicycle-like patterns. This 
drift could be caused by inhomogeneity of the reaction medium (Pertsov 
et al., 1988) or wave interaction with a boundary (Ermakova et al., 
1986). For example, an interesting effect of the spiral lateral drift along 
a straight line in conditions where the forcing frequency is equal to the 
spiral frequency was observed by Agladze et al., 1987. Also, single and 
double so-called “ram's horns” spirals, which exhibit different dynamics 
drift, were identified during the reaction (Rovinskii, 1986; Steinbock et 
al., 1993; Jensen et al., 2002). In addition, there were reported feedback 
phenomena found in the BZ system, which automatically correct 
unstable waves (waves with free ends) by changing the particular size 
and shape of the unstable wave segment (Mihaliuk et al., 2002). When 
waves collide with the boundaries of the container or with other waves, 
they vanish upon annihilation.  

The final step of the damping non-stirred BZ reaction is the transition 
from space-arranged spiral waves to the chaos (random orientation of 
the reaction surface wave front’s fragments mixed with spiral waves and 
blank spaces), which  develop from the propagating waves interaction 
with stationary dissipative structures (presumably the bubbles generated 
during the organic substrate consumption) (Agladze et al., 1984). 
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I was able to reproduce many of the waves, including the spiral types of 
waves (Fig. 1.1a) but their identification with structures described in the 
literature is often complicated by the lack of original data for 
comparison. Typically there are observed circular waves (target 
patterns) of three frequencies: dense irregular waves which, by 
formation of “ram’s horns”, break into a system of dense waves and 
spirals. These patterns are observed in gently-mixed circular vessels (i.e. 
a Petri dish mixed by hand or by the orbital mixer). In experiments with 
vigorous mixing (magnetic mixer) the system collapsed into dense 
waves much faster, and additional patterns were observed in square 
vessels (Fig, 1.1 b).  

    

Figure 1.1. The time-lapse shots (at the 75 sec, 8575 sec and 19525 sec after the start 
of the reaction) of the chemical wave’s evolution during the Belousov-Zhabotinsky 
reaction in a thin layer (1.3 mm) of liquid: (a) circular waves, (b) wave trains’ 
interaction, (c) spiral waves. The surface area is 40ˣ40 mm. 

The constant build-up of these varying and often conflicting 
hypotheses indicates that the existence of spatial segregation driven by 
the chemical reaction remains an unresolved problem.  

 

1.2.3. Chemical Waves’ Parameters Estimations 

Visualization of the BZ reaction is based on the  optical property of the 
redox indicator ferroin whose absorption maxima in the reduced state 
Fe(phen)3

2+  is 510 nm, and is 630 nm in the oxidized state Fe(phen)3
3+ 

(Kinoshita, 2013). This makes the chemical waves available for visual 
perception, recording by common RGB photo cameras, and analysis by 
commonly available image processing approaches. In other words, it is 
generally believed (1) that the color change by which the progress of the 
BZ reaction is monitored is solely the reflection of the redox potential, 

a b c 
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which is instantly reflected in the change of the redox state of the 
Fe(phen)3

2+/3+ in that particular region of the Petri dish and (2) that there 
is no other significant light-absorbing compound (and perhaps (3) that 
there is a constant concentration of Fe(phen)3

2+/3+).  

In our experiments, the speed of the wave fronts was estimated by 
measuring the shift of the intensity profile curve from blue color channel 
for two subsequent frames using the MATLAB image tool box (The 
MathWork Inc., 2014). Even one frame of the BZ reaction scene 
presents a combination of a variety of wave fronts spreading with 
different velocities (see Fig. 1.2.). As it may be seen---although in most 
cases the increase in the absorbance recorded in the red camera channel 
was accompanied by the decrease in the blue camera channel---there 
were cases of asynchronicity. This indicates that even the most basic 
assumption on which the observation of the course of the BZ reaction is 
based should be re-examined. Indeed a prime candidate for the 
additional light-absorbing compound is molecular bromine, which is 
present in all reaction schemes and has a strong absorption in the far red 
region of the spectrum.  

It should also be mentioned that (1) the Fe(phen)3
2+/3+ is itself part of 

the complicated redox process, it is part of many chemical reactions (as 
described in chapter 1.3) which cause changes in the redox state and 
thus Fe(phen)3

2+/3+ does not necessarily “per se” have to be in a redox 
equilibrium with the environment in all places in the reaction vessel and 
(2) the true end of the redox process is observed after a long period of 
time and results in precipitation of Fe2O3 or some of its hydrated forms. 
Thus neither of the assumptions about the chemical basis of the 
observation of the BZ process may be taken for granted.  
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Figure 1.2. BZ wave fronts intensity profiles, calculated from red, green and blue color 
channels (the profile colors correspond the colors of the RGB channels), and taken 
from the image place marked by the vector with consecutive number. The estimates 
for wave velocities are given below under the profile scheme. 

 

1.3. Chemical Mechanism 

A detailed BZ reaction chemical description was proposed by Field and 
coworkers (Field et al. 1972). This kinetic model is known as FKN 
mechanism and contains 80 elementary reactions and 26 concentration 
variables which provide quite a precise explanation of the chemical 
transformations of the reactants. The 16% of reaction chains accounts 
for the inorganic part, i.e., the interaction between bromate HBrO3

- and 
bromide Br-. The remaining 84% of the reaction chain includes the 
organic substances, mainly malonic acid C3H4O4 and its derivatives. 
The majority of the organic reactions chain consists of reactions with 
the participation of radicals and the products of radical reactions: 
malonil radical, peroxymalonil radical, oxymalonil radical, tartronic 
acid, oxalic acid and mesoxalic acid ( Hegedús et al., 2001). In the core 
of the reaction process is a reduction-oxidation loop branching into a  
tree-like scheme process. Process A  consists of bromate BrO3

- reduction 
to bromine Br by the reducing agent bromide Br- in the presence of a 
ferroin Fe(phen)3

2+ catalyst and results in production of bromomalonic 
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acid BrCH(COOH)2 and hypobromous acid HBrO2, which is included 
in process B (model adopted by Zhabotinsky and colleagues, 1984): 

H+ + Br- + HBrO2 ↔ 2HOBr                                     (k1 = 106 M-2s-1) 

H+ + Br- + HOBr ↔ Br2 + H2O                                  (k2 = 8ˣ106 M-2s-1) 

H+ + Br- + HBrO3 ↔ HBrO2 + HOBr                        (k3 = 2 M-3s-1) 

In process B, the hypobromous acid begins to compete with the bromide 
Br- to reduce the bromate BrO3

-. Fe(phen)3
3+ is produced in this 

autocatalytic sequence. The solution color changes from red to blue: 

H+ + HBrO3 + HBrO2 ↔ HBrO2
+ + BrO2

. + H2O       (k4 = 10 M-2s-1) 

BrO2
. + H+ ↔ HBrO2

+                                                   (k5 = 2 ˣ10-5 M-2s-1) 

Fe(phen)3
2+ + HBrO2

+ ↔ Fe(phen)3
3+  + HBrO2          (k6 = 6ˣ105 M-2s-1) 

2HBrO2 ↔ HBrO + HBrO3                                          (k7 = 10 M-2s-1) 

The organic reactionsin process C consist of concurrent oxidation of 
bromomalonic acid and other organic species, in which the   Fe(phen)3

3+ 
reduces to the Fe(phen)3

2+, restoring the original red color to the BZ 
solution. Bromide Br- that is released during the process pushes the 
system to a reduction loop after reaching some critical level and the 
entire reaction sequence repeats itself again until the main reaction 
components, mainly bromine and malonic acid, will not be consumed 
by the oscillating system: 

Fe(phen)3
3+ + CHBr(COOH)2 + HBrO ↔  

Fe(phen)3
2+ + H+ + .CBr(COOH)2                    (k8 = 2 M-2s-1 ; k-8 = 2ˣ106M-2s-1) 

.CBr(COOH)2 + H2O + HBrO ↔  

H+ + Br- + .COH(COOH)2                                                     (k9 = 2ˣ103 M-2s-1) 

HOBr + CHBr(COOH)2 ↔  

CBr2(COOH)2 + H2O                                                     (k10 = 7.5ˣ10-3  M-2s-1) 
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Br2 + CHBr(COOH)2 ↔  

CBr2(COOH)2 + H+ + Br-                                                     (k11 = 10-2 M-2s-1) 

According to prevalent opinion, the oscillation process in the BZ 
reaction is guided by the chemistry of bromine oxoacids HBrOx. A more 
detailed study in Glaser et al., 2012 shows that the rate-limiting effect 
could be caused by a bromous acid disproportionation reaction: 
2HOBrO ⇄ HOBr + HBrO3 with the generation of (HOBr)(HOBr2), 
which aggregates as the products of disproportionation. In support of 
this theory also is the fact that hypobromous acid and bromous acid are 
not dissociated at pH values typical for the reaction (Glaser et al., 2013). 
The reaction cascade resulting in Fe(phen)3

3+ reduction occurs at a much 
slower rate than the inverse to it---Fe(phen)3

2+ oxidation process---since 
that Fe(phen)3

3+ complex is unstable itself (Jamal et al., 2008), breaking 
into Fe(phen)3

2+ and colorless intermediate derivatives 
[Fe(II)(phen)2(L’)]n+ that could conjugate with Br- to form the BZ 
reaction products. So far the final product of the reaction is not clear. 
Previously, Hegedüs et al., 2006 claimed that the main organic 
oxidation product of bromomalonic acid is bromo-ethene-tricarboxylic 
acid, but the authors were not able to find any oxidation product of 
malonic acid in the ferriin-malonic acid and stood on the opinion that 
Fe3+ oxidizes mostly by its phenantroline ligand. In the Ce4+-catalyzed 
BZ reaction, the following products of the Ce4+-malonic acid reaction 
were found: ethane-tetracarboxylic acid, malonyl malonate, and CO2 
(Gao et al., 1994). The schematic view of the BZ reaction cascade is 
presented in Figure 1.3.  
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Figure 1.3. The schematic draw of the ferroine-type Belousov-Zhabotinsky reaction 
oxidation-reduction loop (adopted from Hiro, 2009). 

 

The existence of different waves and sometimes counteracting velocities 
discussed in 1.3. is an experimental indication of a rather complicated 
reaction scheme. The observable color changes of the redox state of the 
Fe(phen)3

2+/ Fe(phen)3
3+ complex (chapter 1.2) may not be a response 

to the overall redox potential since the redox indicator is involved in a 
few processes which may not be in instant equilibrium with the 
surroundings. If this were true, we lack a good measure of the local state 
in the reaction vessel. The only study which considers the elementary 
bottleneck reaction  is based exactly on the assumption  that the change 
of bromine redox state and not that of the Fe(phen)3

2+/ Fe(phen)3
3+ 

complex is the rate limiting process (Glaser et al., 2012, Glaser et al., 
2013). In this case, the spectrum of the Fe(phen)3

2+/ Fe(phen)3
3+  

complex would be a good measure of the local redox state.  

The only effect which is included in the real reaction’s course beyond 
any doubt is the oxidative breakage of brominated malonic acid, which 
gives rise to carbon dioxide. The evolution of CO2 is sparsely discussed 
in articles that focus on the reaction mechanisms. This energy-driving 
mechanism likely requires the existence of certain redox conditions (i.e. 
potential) but details of the mechanism at the level of chemical bond re-
structuring are not known. In addition, it is known that it is possible to 
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re-start the wave formation by re-shaking the reaction vessel (Cohen 
2011). This is evidence that the formation of chemical waves is not 
directly related to the course of the depletion of chemicals.  

 

1.4. Models of the BZ Reaction 

1.4.1. The Reaction-Diffusion Model: Concepts and Existing 

Mathematical Models of the BZ Reaction 

The reaction schemes presented in Fig. 1.3. do not directly explain why 
there are oscillations, spatial dynamics and/or segregation, and other 
observed phenomena. In order to solve this issue, the current reaction 
scheme has been modified. The new model is called Oregonator 
(Gyorgyi et. al. 1990), which is the first known oscillatory chemical 
dynamics model of BZ. This network (Fig. 1.4) is obtained by reduction 
of the complex chemical mechanism of the BZ reaction to a few 
processes and consideration of the rate-determining-step of a reaction 
unit (Espenson, 1995). Another variant of such BZ system model are 
Brusselator (Prigogine et al., 1968) and three-variable Györgyi-Field 
(Györgyi et al., 1992) models with characteristic oscillating BZ reaction 
chaotic behavior. The negative feedback BZ reaction loop involving a 
fast reaction between malonyl and bromine dioxide radicals was 
described by Försterling et al., 1990 in the Radicalator model. The 
Marburg-Budapest-Missoula (MBM) model, a compromising model 
that combines both bromous acid-bromide ion and bromine dioxide-
organic free radicals BZ reaction feedback with some additions and also 
considers the newly discovered radical-radical recombination reactions, 
was proposed by Hegedus et al. in 2001. 

The work of these scientists is based on a reaction-diffusion theory 
(Fisher, 1937; Kolmogorov et. al., 1937; Grindord, 1996) - the most 
popular explanation of the phenomenon of chemical oscillations in the 
BZ reaction up to the present day. 

The assumptions of the reaction-diffusion theory are: 

• the reaction–diffusion system approximates the observed 
phenomenon by the mathematical model which exhibits the 
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same properties as the studied physical phenomena in 
continuous space; 

• spatial elements – cells -- are dealt with indirectly through their 
vector function q(x, t); 

• the final model describes the local chemical reactions in which 
the substances are transformed into each other; and 

• the chemical reaction occurs instantly in comparison to the 
diffusive events. 

 

Changes in concentrations of the components of the system during its 
evolution may be expressed in general form by the partial differential 
equation: 

��	
�, 
� = �∇�	
�, 
� + �
	
�, 
�� 
where q(x, t) represents the unknown vector function (corresponding to 
a concentration variable in our case), D is a diagonal matrix of diffusion 
coefficients, and R accounts for all local reactions. In the case of the BZ 
reaction (activator-inhibitor system class), we are dealing with a two-
component system and according to Rovinsky et al., 1984, the ODE 
equation for BZ system has the following final form: 

� ���� = �
1 − �� − 2	� �1 − �	� − 	�� + 	� = �
�, �� 
���� = � − 	� �1 − � = ℎ
�, �� 

where          � = 	 �!"[$%&'(]!*[$%&'+] ;                        

� = 	 [,-
./-0�++1]2,-
./-0�+(134	[,-
./-0�++1];  

� = 	 !*[$%&'+]!"2,-
./-0�+(134	[,-
./-0�++1];                � =	 !"!5!6[7$%&
7''$�(]!85!*([$%&'+](/9( ; 

(1) 

(2) 

(3) 
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� = 	 �!"!:!*!; ;                                                  � = 	 !*([$%&'+](/9(!"2,-
./-0�+(13 
;   
ℎ< is the acidity function (Igh, = - Ho);  	 is the stoichiometric factor. 
k1-7 are rate constants determined in 1.4. x, z, ɛ, µ, α, and τ are variables 
which are introduced to simplify the form of the final equation and 
indicate the nature of the dependence of the corresponding components 
of the reaction among themselves. Indeed, each of the reaction schemes 
leads to a different set of differential equations. 

Solution of such a system of ordinary first order differential equations 
(ODEs) can be shown as the 3-dimensional attractor (see subfigure (b) 
in Fig. 1.4.), the vertical intersection of which represents a Poincare 
plane: a limited cycle that reproduces the periodic behavior of the 
oscillating reaction (subfigure (a) in Fig. 1.4.). The BZ reaction contains 
various nonlinear dynamic behaviors such as period-1, period-2, quasi-
periodic oscillations, chaotic attractor, and period-doubling bifurcation. 
It is well known that if chaotic behavior should occur in continuous 
systems (i.e. ODE), the dimensions of the system must be 3 or higher 
(Györgyi et al., 1992). With the application of an external periodic force, 
the BZ system could switch its behavior from periodic to chaotic and 
vice versa as a bifurcation switch (Petrov et al., 1993; Zhang et al., 
1993). According to the hypothesis presented in Li et al., 2003, the 
transition observed as oscillations is caused by resonance between the 
main frequency of the chaos and the frequency of the external periodic 
perturbations. In this way, just a very narrow range of the perturbation 
frequencies (mainly those that caused the resonance effect) are 
appropriate to force the reaction oscillation to change its regime. The 
periodic perturbation in this case has the double-face structure: i.e., the 
transitions from periodicity to chaos in the periodic window and the 
transitions from chaos to periodicity in the chaotic window.  
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Figure 1.4. The BZ system limit-cycle with periodic behavior as an Oregonator-type 
system solution and strange attractor in 3-dimensional concentration coordinates as a 
BZ process phase. (a) The BZ reaction � − � phase plane with nullclines �
�, �� = 0 
and ℎ
�, �� = 0, the reaction curse vector and critical points that system pass depended 
on parameters ℎ<  and 	 (for more details see Gray, 2002); (b) a three-dimensional 
phase portrait of fractal tore, represented the manifold of concentration distributions 
during BZ reaction process (according to Ryzhkov, 2000). 

With the addition of the second component, the system acquires new 
properties: a state that is stable can become unstable in the presence of 
diffusion (Turing, 1952). When such a system undergoes a change of 
parameters (so-called bifurcation), one may pass from conditions under 
which a homogeneous ground state is stable to conditions under which 
it is linearly unstable. The corresponding bifurcation may be a Hopf 
bifurcation (a qualitative change in the phase portrait that occurs as the 
real parts of eigenvalues of the Jacobian matrix for the system (evaluated 
at a fixed point) change from negative to positive) whose parameters 
depend on the stirring rate. This bifurcation type, according to authors 
in Gang, 2000 and Kalishyn et al., 2010, is prevalent in the oscillation 
process in the BZ reaction. The alternative proposal is a Turing 
bifurcation, for which the diffusion coefficients of both components of 
the system must be very different to each other, which results in a 
globally patterned state which is not observed in the BZ reaction. The 
majority of spatial structures in BZ reaction patterns (fronts, spirals, 
targets, etc.) can be obtained as particular solutions for types of reaction-
diffusion systems in spite of large variety of border conditions and input 
arguments (for more details see Gray et. al., 1994; Taylor, et. al., 1999; 
Alonso et. al., 2006). But no theory predicts the sequence of patterns 
observed in the experiment. 

 

a b 
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1.4.2. Disadvantages of the Reaction-Diffusion Theory 

The reaction-diffusion theory describes the cause of the oscillations in 
the system and some of the factors influencing the oscillation parameters 
well, explaining the presence of migrating chemical waves in the 
environment. It does not give explanations for the spatial variation in 
wave patterns produced by the changing chemical process. Moreover, 
the stoichiometric relations between ferric reduction and Br- production 
that had been obtained in continuous-time simulation of FKN model 
(Fields et al. 1974) were not confirmed by direct discrete-time 
experimental measurements and thus the FKN model was strongly 
criticized because such simple model could not account for the 
complexity of real systems (Tyson, 1984). The FKN scheme could not 
be applied to the ferroine-catalyst BZ reaction category because, unlike 
cerium, the phase of ferroin oxidation is very fast while the phase of 
ferriin reduction is rather slow (Rovinsky et al., 1984). In addition, ODEs 
based on Oregonator models are not chaotic, and are valid only for 
certain values of a variable’s parameters (Connolly et al., 2011). 

Description based on the reaction-diffusion theory obviously needs 
many very specific conditions to be valid. Any of its postulates still are 
not able to create a robust explanation of observed waves’ diversity 
effect. We (Stys et al., 2016a) suggested that if the spatial segregation 
and state quantisation is included, the specific model does not have to 
be sought or – in another words – the freedom of choice of available 
chemical models is much higher.  

First the assumption that the reaction occurs “instantly” in comparison 
to the diffusion-based events should be discussed. This certainly is not 
the case in all chemical reactions, namely in organic chemistry. 
Consideration of several reactants which have to be involved in the 
process leading to the evolution of carbon dioxide invokes a need for an 
extensive local re-structuration upon the critical bond breakage and 
active complex restoration. To this local process the assumption of 
“instant-to-be chemical reaction” or a lengthy “general” diffusive 
process cannot be applied. This somewhat-detailed analysis clearly 
questions the foundation of the reaction-diffusion theory.  

We suggest a version of a Bénard-Marangoni type of spatial segregation 
as discussed in section 1.2.1., which challenges the fundamental 
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component of the reaction-diffusion theory, the spatial continuum. The 
principles of quantum mechanics assume the existence of discrete 
excitation states of the chemical bond and the maximal energy needed 
for the bond breakage neglects the state continuity assumption of the 
reaction-diffusion approach. Finally, any numerical calculation of the 
ODE system is implemented in the computer and is thus performed 
always in a discrete way. Therefore, if there is a strict qualitative 
difference between the discrete and continuous model, the validity of all 
computer simulations should be re-examined.  

 

Figure. 1.5. A handful of individual molecules involved in the process which leads to 
the carbon dioxide evolution, a key observable process in the BZ reaction. 
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1.4.3. The Cellular Automata Model of the BZ Reaction 

In discrete systems, complex spatial phenomena including chaotic 
behavior may be observed already in a one dimensional case (Poincare 
1901, Bendixson 1901, in essence Schröder, 1870 who first examined 
the logistic equation). As an alternative to the existing FKN model of 
the BZ reaction, but aimed primarily at understanding the causes of 
spatial patterns orientation within the BZ reaction, the cellular automata 
(CA) model was designed (Dewndey 1988). In contrast to the reaction-
diffusion theory, it does not aim to explain particular chemical reactions 
but focuses on explaining observed spatial phenomena.  

The cell space or lattice that comprises the CA model is defined as: 

> = {
@, A�|@, A	 ∈ D: 0	 ≤ @ < H, 0 ≤ A	 < I} 
where i, j is the number of columns and rows, and, correspondently, n,m 
is the maximal amount of columns and rows. 

Each subsequent cell state at time t (an,t) is determined from the previous 
one: 

K0,�LM4N = O
K0,�LM , K ∈ 	D�LM� 
where Nt are neighborhoods of the considered cell.  

In the simplest version, each cell has two possible values, 0 or 1, and 
evolves according to deterministic or stochastic rules that depend only 
on the values of the cell itself and of its nearest neighbors (Wolfram, 
1983). The behavior of each cell in response to changing external 
conditions makes a complete picture of the behavior of the automata and 
expresses the model’s response in its effort to adapt to the outside 
environment. The theory of two state cellular automata is still under 
development; the theoretical foundation of multilevel cellular automata, 
i.e., when the cell may achieve many states (i.e. Wuensche, 2011), is a 
matter of extensive research of many research groups.  

By applying different transitions rules and initial/boundary conditions, 
multilevel CA could be developed into the complex system with unique 

(4) 

(5) 
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evolution trajectory into discrete space (Vanag, 1999). Any reaction-
diffusion system may be modelled by a multilevel cellular automaton.  

The BZ-like CA type of model is called an excitable system and is 
characterized by a steady increase of the cell state level and dropping of 
the cell state level to zero when the maximal level is reached (Zhao et 
al., 2005). The dynamics of individual elements in such media are not 
chaotic and spatiotemporal chaos can develop only as a result of 
interactions between the elements. Relatively simple rules in the CA 
pattern pictures are near-identical to those found in BZ reaction 
experiments (see Fig. 1.6. below). 

 

Figure 1.6. Snapshot of spiral waves’ formation during the BZ reaction course in a 
blue color channel on a 30ˣ50 mm cell (a) and CA simulation results performed on a 
canvas of 1000 x 1000 cells (b) (according to Stys et al., 2016a).  

This stunningly good agreement in the structure of spiral waves between 
the experiment and the simulation by multilevel cellular automata was 
reported by ourselves (Stys et al., 2016a; Stys et al., 2016b; Stys et al., 
2016c), but has been, in essence, observed already by Dewndey in 1988 
(Dewndey, 1988). Any CA model so far was not able to mimic anything 
like target waves until a small number of ignition points was introduced 
(Stys et al., 2016a; Stys et al., 2016b).  

The noise that was originally introduced to compensate for the lack of 
precise knowledge about internal mechanism was considered 
(Horsthemke et al., 1984; Kádár, 1998).  

We have shown that for the successful observation of waves, an 
asymmetric rule for ignition points and noise within a certain interval of 

a b 
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levels is needed (Stys et al., 2016c). This model is the only one which is 
qualitatively equivalent to the experimental observations; it starts with 
circular structures that break into dense waves evolving around the 
proto-spirals, and irregularities in dense waves give rise to the final 
spirals’ and waves’ coexistence in which spirals and waves are in the 
same ratio as that found in the experiment.  

The correctness of the description of the final stage of the B-Z reaction 
is outside any discussion (for 30 years). For that reason, the 
mathematical and technical basis of the model should be examined from 
the point of view of its realization in nature. In our opinion, this model 
may easily be translated into chemical reality based on these principles:  

(1) Nature is in part discrete. At least, the molecules in the vast 
majority experiments behave as discrete units. These units, to 
some extent, interact. Discrete elements repeat in nature at all 
levels, from microcrystals up to galaxies, and the discrete 
description of the nature is natural – but, to many extents, 
resistant to smooth mathematical analysis. Thus it is more than 
acceptable to assume a discrete unit to be the element of the 
proper model of the natural process. 

(2) The energy levels are discrete and have a maximum. Anyone 
familiar with the quantum mechanical description of chemical 
bonds and with molecular spectroscopy understands that the 
chemical bond behaves as quantized string which, when the 
upper limit of the vibrational energy is exceeded, breaks. It is 
thus natural to assume a countable number of discrete levels of 
energy in any model including chemical bond breakage. This 
assumption is a basis of the textbook model of the transition 
state complex of Eyring (Eyring and Polányi 1931). 

(3) A simple ionic reaction in inorganic chemistry likely occurs 
much faster than the diffusion of compounds. Yet, when there 
is a significant contribution from solvation/re-solvation of ions 
and bond re-arrangements, already this elementary reaction may 
contain a few diffusive processes. Thus, the chemical change 
does not necessarily occur at negligible speeds. Even more so, 
the diffusive process may not be spatially symmetrical.  
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In summary of the arguments (2) and (3), the breakage of the bond 
and re-formation of the Eyring complex is quantized and includes 
the specific re-distribution of many molecules. Its duration may be 
comparable with the diffusion “outside” the broken and newly 
restored Eyring complex. There is no reason to prefer the continuous 
model over the discrete one--and the discrete model gives proper 
results. 

 

1.4.4. Disadvantages of the Cellular Automata BZ Model 

Technical disadvantages of the cellular automata model (Wolfram, 
1985) include that the modeling accuracy depends on the number of 
cells in the model, which is restricted by computer power, and the limits 
of the periodic boundary condition have been reported (Stys et al. 
2016c). 

Objections against the CA model were cast against the assumed 
homogeneity (each cell is updated according to the same rules related to 
some logic formulas), when there are some doubts about BZ system 
homogeneousness (Menzinger et al., 1986; Ali et al., 1997; Kasuya et 
al., 2005). We have, however, shown, that the inhomogeneity naturally 
arises in the properly chosen CA model (Stys et al., 2016c). 

The arguments that the elementary unit is the Eyring-complex-at-large, 
which we gave in the previous chapter, is questioned by our own 
observation (Stys et al., 2016a) that the elementary cell is rather big, 
with an estimated size of 1010molecules. On the other hand, we have 
shown that as long as the number of energy levels is countable, it is only 
the ratio of the two processes which determines the behavior. In other 
words, in the chemical explanation proposed by us, we accept the a 
priori spatial separation in the reaction vessel as it was suggested in 
some articles mentioned in chapter 1.2.1. and assume a critical maximal 
value of the excitation within one spatial element. Some suggestions 
about the chemical identity of the compounds involved in the reaction 
are included (Fig. 1.3.), but their exact identity is not critical for the 
explanation. The two assumptions, a priori spatial segregation and 
existence of a maximal critical value of the state of the cell, allowed us 
to map the experimental observation on the cellular automaton model. 
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1.4.5. Combining the Models 

Interesting solutions from combinations of partial differential equations 
with the cellular automata model were presented in previous work 
(Méndez et al., 2004). Such models are widely used for modeling the 
processes of tumor dissemination (Swanson et al., 2002). The authors 
propose to express the wave front transport equation through 
substituting the q(x, t) vector function on the probability density 
function P(x, t) of finding a random walker at time t at distance x from 
its starting point: 

P
�, 
�	~	exp	[−U	
 �

 NVW

� VWVXYZVW�VXYZ ] 
where �[ is the random-walk dimension of the fractal, and �M\0 is the 
fractal dimension of the minimum distance between points of the fractal. 
Although a mean-square displacement in a fractal object at time t 
depends on the �[ as: 〈��〉	~	
� VW⁄ , the wave front speed depends on 

�M\0 as: `	~	

N VXYZ��Na . The transport takes place through the 
“chemical distance” space, which is defined as the shortest path between 
two points belong to the fractal, not their Euclidian space. This approach 
may be valid in respect to the Belousov-Zhabotinsky reaction. It 
explains the acceleration of fractal fronts phenomena that were observed 
in BZ reaction wave dynamics (Miike et al., 1993).  

 

1.5. Sensitivity to the Operating Environment 

The chemical oscillation observed in the BZ reaction is very sensitive, 
not only to changes in reaction compound concentrations (Menzinger et 
al., 1990), but also to variation of the external factors, like temperature 
(Vinson et. al, 1997), illumination (Toth et. al., 2000), mechanical 
mixing (Menzinger et al., 1986; Kalishyn et al., 2010), reaction medium 
size and shapes (Liveri et al., 2003), air composition in the reactor 
(Steinbock et. al, 2000; Kalishyn et al., 2005), the presence of electrical 
(Ševčíková et al., 1983) or magnetic (Nishikiori et al., 2011) field, etc. 

(6) 
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In order to examine the simplest influence, the spatial constraint, we 
have done a few experiments in dishes of various shapes. Indeed, the 
nearly free evolution was found only in the largest circular dish (20 cm 
in diameter). The influence of mixing was also rigorously examined. It 
was found that it is only the gentlest mixing method which leads to free 
evolution of the system.   

 

1.6. Applied Examples of the BZ Reaction for Complex-System 

Dynamic Investigations 

The similarity of the reaction with other oscillatory processes in nature 
(such as growth pattern of Dictyostelium discoideum, a soil-
dwelling amoeba colony (Lee et al., 1996), the catalytic surface reaction 
of CO oxidation on platinum (Nettesheim et al., 1993), the oscillation 
regulation mechanism was found in the gene network (Zhang et al., 
2012), etc.) prompted scientists (Adamatzky, 2002) to come up with the 
idea of a computer using a chemically-active environment of the BZ 
reaction as the main structural memory cell to mimic  certain properties 
of neurons (Hodgkin et al., 1952). In other works (Rambidi et.al., 1997; 
Rambidi, 2004; Gorecki et. al., 2015) the possibilities of using the BZ 
reaction-diffusion system as a low cost and effective information 
processing device had been discussed. The reaction particles generated 
by the BZ reaction are a primary mechanism for carrying information 
over long space-time distances. Logical operations on the signals are 
performed when the particles interact (Crutchfield, et al., 1995). 
Understanding of the mechanisms of life’s self-organization at the 
molecular level should enable us to approximate laws on the complexity 
observed in various biological species. 

Under certain conditions, it is possible to achieve the transformation of 
flat 2D waves into complex spatial structures or 3D waves in the BZ 
reaction space (see example in Fig. 1.7.). This type of pattern is similar 
to ones generated by nerve impulses into the cardiac muscle (Davidenko 
et al., 1992) or into the chicken retina (Gorelova et al., 1983), which 
makes the BZ reaction an irreplaceable phenomenon for modeling 
abnormal states in many internal organs.  

 



22 

 

     
Figure 1.7.  3D waves’ formation in the Belousov-Zhabotinsky reaction, which was 
observed in a test tube of 1 cm in diameter (reaction volume is 2.5 ml) and after 5 
minutes’ continuous mixing of components by a magnetic stirrer (Fisher Scientific 
Isotemp Magnetic Stirrer 60-1200 Rpm) with 150 rot/min.  

 

The frequency of the finding of BZ-like patterns in nature increases 
scientific interest in finding a unifying mathematical concept. We have 
shown (Stys et al., 2016a) that in the simplest possible rule of the cellular 
automaton, i.e. where the evolution rule is that (a) a new state is an 
average of non-zero states in the closest neighborhood and a constant, 
and, (b) upon achievement of the maximum state, the state drops to zero, 
then the final structure of spirals and waves is highly similar in a certain 
range of ratios of total number of levels to constants. At a too-high ratio, 
diffusive structures are observed, and at low ratio, very small spirals are 
observed. This model is very natural for a colony of living cells which 
grow in time and divide upon achievement of certain size. It looks like 
this simplest CA model called the hodgepodge machine (Dewndey, 
1988) may be one of the unifying models in nature. 

 

 

 

1.7. Global Analysis of the BZ Reaction Experiment 

The comparison of BZ reaction experiments with the model is 
complicated by the (1) absence of good characteristics of observed 
structure and (2) obvious and observable mixtures of structures in 
various stages of evolution of the system.  
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1.7.1. The General Stochastic Systems Theory Concepts  

For the analysis of the observed (measured) trajectory we used the 
theory of Žampa (Žampa et al., 2004), which is, to our knowledge, the 
best breakdown of the factual process of measuring an experimental 
dynamic system. The main features of the theory are the inclusion of the 
input and output into the description of the system, and the 
acknowledgment of the fact that measureable parameters of the system 
– system variables – are aspects of the system model and are distinct 
from the system’s internal variables. In other words, due to the limitation 
of existing laboratory techniques, only the system parameters recorded 
for a certain short time window 
!  (camera shot) are available, and state 
trajectory is composed from a set of consecutive (
! < 
!4N) 
experimental records of an examined event in a given time window: 


! ∈ b, c ∈ d,d = {0, 1, 2,…f} 
where T is non-empty set of all time events, and K is the appropriate 
index set. 

Due to technical limitations, it is not possible to measure all of the 
system parameters (authors call it system attributes K\): 

g = {K\|@ ∈ h} 
where I is an appropriate non-empty index set. 

The i-th variable of the i-th attribute (`\ ∈ i\ , @ ∈ h) only could be 
measured to map the examined system state trajectory (z) using the 
mathematical equations reflecting our knowledge about relations 
between attributes and variables: 

�: b × h	 → 	li\
\∈m

	noUℎ	
ℎK
	�

, @� ∈ 	i\ , @ ∈ h 
The state of the system (i.e. Petri dish in which the BZ reaction is 
performed, organism, etc.) is known when a complete set of possible 
trajectories (Ω) is known: 

(9) 

(7) 

(8) 
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p = {�|	�: b × h	 → 	li\
\∈m

	noUℎ	
ℎK
	�

, @� ∈ 	i\ , @ ∈ h} 
The system state trajectory z may be mapped through the definition set 
D: 

� = b × h 
The system is measured at certain time intervals, but it also evolves 
between them. Thus the entire trajectory of the evolution of the system 
z can be drawn by means of its individual segments �|�!,q, which could 
be used in mathematical modelling to adequately relate the measured 
points and the behavior of the system under the influence of intense 
external factors (Fig. 1.8.).  

 

Figure 1.8. The set of variables measured at a time instant (represented by circles and 
ovals) and causal relations in the behavior between measuring times (adopted from 
Žampa et al., 2004 handouts for the lecture). 

The complete set of trajectories may not be determined and the system 
may be replaced by the probabilistic system mapping instead of the 
deterministic one.  

Irrespective to the deterministic or probabilistic definition of the model, 
the causality relation in the system is preserved. In this way, the 

(10) 

(11) 
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complete immediate cause r!,q of the consequence �\,s should be 
considered to express the system trajectory while considering the 
causality within the measurement time intervals: 

r!,q ⊂	 l �\,s

\,s�u
!,q�

 

The state trajectory thus depends on as many previous time events as the 
model predicts. In discrete dynamic systems (Štys et al., 2015, 
Wuensche 2011) for a given attractor only the basin of attraction may be 
identical for all the trajectories and the trajectories themselves may be 
widely different. A complete description of the system trajectory may 
include even the starting conditions which may not be known (Štys et 
al., 2015). The discrete dynamic systems, on the other hand, predict the 
existence only of a certain number of avenues towards the basin of 
attraction, i.e. there may be anticipated a natural classification of system 
events defined by eq. 9.  

The basis of the analysis of the BZ reaction trajectories given in this 
thesis is the search for statistically-most-appropriate set of variables 
which describe the observed phenomena. 

 

1.7.2. Phenomenological Analysis Using Information Theory 

Assumptions 

As mentioned by the authors of Žampa et al., 2004, we must accept the 
technical limitation of the information. The Shannon information 
entropy theory may be easily adopted to these concepts of measurements 
(Shannon, 1948). Let us consider the information process in the example 
of the BZ experiment recording via the charge-coupled device (CCD, 
see Hainaut, 2016 for details). Each element of such an experiment 
could be represented as the operating unit in the Shannon 
communication scheme (see Fig. 1.9.).  

The CCD-chip is divided into cells (pixels) that are covered by a Bayer 
mask to translate them into color (the most common Bayer mask 
represent the square of four pixels has one filtered red, one blue, and 
two green corresponding to the human eye’s color perception abilities). 

(12) 
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Each pixel should be considered as a unique information source, and the 
final image that we see on the screen consists of the sum of signals from 
each pixel (see the work of Nakamura, 2006 for details). 

The light transmitted through the investigated object was modified to 
conduct information about the object (like object color, the position of 
its borders, coordinates of patterns on the object surface, dynamics of its 
shape changes, etc.). This message from the object is in a standard 
software transformed by the CCD into a digital signal by the image 
processing, which was performed in the PC core (GPU, CPU): 
linearization, white balance correction, demosaicing, color space 
correction, brightness and contrast control, and compression (see i.e. 
work by Sumner, 2014 for the details).  

 

Figure 1.9.  Schematic diagram of the signal transmission during the process recording 
by CCD photo camera (adopted from Shannon, 1948) 

In the final step, only part of the initial information will reach the 
receiver. The percentage of correctly transmitted information can be 
measured by the Shannon information entropy: 

v
w\� = 	−dxw\
0

\LN
ln w\ (13) 
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where w\ is the probability of i-th event occurrence, K is the positive 
constant, and ln K is the most natural and practically suitable choice of 
the logarithmic function (time, bandwidth, etc. tend to vary linearly with 
the logarithm of the number of possibilities). 

In the standard camera capture approach, the noise source, namely the 
processing algorithms, distorts the signal in an uncontrollable way. In 
order to use the digital camera as, in fact, a three-channel spatially 
resolved colorimeter, we have developed a whole set of software 
procedures, data compression standards, etc. which enable us to 
preserve the maximum original information and correct the visual 
inspection of data (Štys et al. 2016, Macháček et al. 2016). In the final 
data processing, we deal with the original dataset and the noise observed 
should be attributed to the electrical responses of the camera and to the 
properties of the optical system.  

Among the Shannon information entropy disadvantages is the 
following: it was designed to process non-stationary signals coming 
from the stochastic process obeying the central limit theorem. The 
biological or BZ-like processes could hardly be assigned as having 
normal distribution. The information entropy by Shannon is not 
associated with information content or message meaning, but with the 
amount of information generated by source per symbol or per second 
(so-called entropy rate); it is scale-dependent and has special problems 
when applied to continuous variables, etc. 

Restrictions of the Shannon entropy can be avoided by using the more 
general Rényi entropy (Rényi, 1961), which extends Shannon entropy to 
a continuous family of entropy measures and connects them with the 
information content (Bromiley et al., 2004): 

h{
w\� = 	 11 − � lnxw\{
|

\LN
 

where α is Rényi coefficient. The Rényi entropy becomes Shannon 
entropy as � → 1. (Rényi, 1961). The formula proposed by Rényi allows 
scientists to calculate quantitatively the amount of undistorted 
information for some i-th event from N possible events with the 
probability of occurrence w\ in space order determined by α.  

(14) 
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Any complex structure may be assumed to be of a multifractal character. 
That by no means constraints the possibility that the object is not 
unifractal or that it does not have a whole number dimension. The 
generalized dimension of a multifractal object (Grassberger and 
Procaccia, 1983) may be defined using the Rényi entropy as: 

�{
w\� = 	 1� − 1 lim&→< ln
∑ w\{\ln � = 	 lim&→<

−h{
w\�ln �  

where w\ is the probability of a system being in cell i with the side size 
r of its phase space, and α is the order of generalized dimension. For α 
= 1, the generalized average is the geometric average; for α = 2, it is the 
ordinary arithmetic average, when for α = 3 it is a root mean square 
(according the work by Theiler, 1989). h{
w\� – the Rényi entropy – is 
the average information needed to specify one cell (or pixel in our case) 
to a given accuracy w\ under the assumption of distribution appropriate 
to the α coefficient. There is thus a direct relation between the 
information variable – entropy – and the generalized dimension of the 
fractal system. The multifractal system has a spectrum of fractal 
dimensions. 

Thus, the use of Rényi information entropy not only extends the range 
for information theory action objects, including the ability to describe 
the properties of the multi-fractal objects (Sporring et al., 1997), but also 
provides a complete set of data for a more detailed representation for the 
mathematical modelling of a process exhibiting spatial structures like a 
BZ reaction or many biological processes (Phillips et al., 2006; 
Thalheim et al., 2014).  

In the article Rychtáriková et al., 2016, there were defined new 
information variables: the point information gain (PIG), point 
information gain entropy (PIE) and point information gain entropy 
density (PIED). 

The point information gain (�{,\
�, ��) is defined as: 

�{,\
�, �� = 	 11 − � lnxw\,�,�{
!

\LN
−	 11 − � lnxw\{

!

\LN
 

(15) 

(16) 
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where k is the number of elements in the discrete distribution, and w\ 
and w\,�,�  are the probabilities of the occurrence of a given intensity for 
a given point x, y coordinate of a camera pixel without and with the 
examined point. 

Point information gain entropy (v{) is calculated using the formula:  

v{ =	xH\�{,\
!

\LN

�, �� 

And v{ is a cumulative variable in which all �{,\
�, �� values are 
summed. Finally, the point information gain entropy density (�{) is 
defined by the formula: 

�{ =	x�{,\
!

\LN

�, �� 

where ni is the total number of pixels in the examined data array. PIE 
and PIED can be understood, respectively, as a multiple of the average 
point information gain (v{) and as an average gain of the phenomenon 
i (�{). 

These variables enable us to combine the calculation of information 
content with a certain algorithm-assumption about the structure of the 
valid surrounding components of the element of the set. In case that the 
element is classified in the context of the whole set, i.e. image, the same 
classification is used for the case of any standard entropy or from other 
point of view, generalized dimension. In this way, we can obtain many 
new information measures which may be used for particular purposes. 
Thus, any structured dataset may be represented by one unique number 
or by a vector of numbers and these numbers may be used for classifying 
the data, as similar objects give similar PIE/PIED values. 

1.8. Summary 

In summary, the Belousov-Zhabotinsky reaction is a process with a 
complex behavior consisting of many potential feedback loops which 
are extremely sensitive to any variations in the external conditions and 
can change the oscillatory mode or chemical waves’ geometry. The BZ 
process has more than 60 years’ investigation history. Despite the many 
works which are summarized in this thesis’ theoretical introduction, 
many of the properties of the system are left without explanation (for 

(17) 

(18) 



30 

 

example the nature of the ignition point, what defines the spatial 
geometry in BZ patterns, how it is possible that the system ‘remembers’ 
to come back into its previous state after the application of some external 
force, etc.). Existing methods of modelling (ODE, cellular automata or 
their combinations) did not give a complete description of all these 
details and therefore it became necessary to apply an alternative 
approach to the construction of an adequate BZ reaction model.  

As a first step, before introducing a new model and assuming certain 
chemical process, we decided to analyze in detail all technical settings 
in the BZ process and classify them using PIE and PIED.  

 

Aims of the thesis: 

The aim of this thesis is  

1) to complete a detailed experimental series of the BZ reaction that 
would allow us to analyze the course of the evolution of 
individual structures;  

2) to evaluate the course of the reaction under the assumption of 
multifractality of observed structures;  

3) to test the possibility of the usage of multivariate stochastic 
modelling for analysis to estimate the system behavior at the 
most probable orthogonal internal coordinates.  
 

Together these goals gave us the experimental basis for other analyses 
of structured dynamic systems in which the starting conditions are less 
controllable and the trajectory is more difficult to measure.  
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MATERIALS AND METHODS 

 

2.1. Belousov-Zhabotinsky Reaction Composition and Compound 

Mixing Conditions 

 

The oscillating and self-organizing bromated-ferroin-bromomalonic 
acid system, known as the Belousov-Zhabotinsky reaction (BZ), was 
chosen for our experiments. The BZ reaction was performed as 
instructed by the commercially available reaction kit (Cohen, 2009). 
The reaction mixture include 0.34 M sodium bromate (manufactured by 
Penta), 0.2 M sulfuric acid (99.9 %, manufactured by Penta), 0.057 M 
sodium bromide (manufactured by Penta), 0.11 M malonic acid 
(manufactured by Sigma-Aldrich) as substrate, and redox indicator 0.12 
M 1,10-phenanthroline iron(II) complex (ferroine, manufactured by 
Penta). All the solutions were prepared with distilled water.  

The structure formation in the chemical system was initiated by 
consistent mixing of the reaction compounds and reagents in the order 
described above. After adding the last one (the redox indicator), the 
reaction mixture was stirred for another 2 minutes by different methods 
(detailed below). The reaction dish was kept at a constant temperature 
of 26 °C. 

The development of the BZ system was examined with respect to two 
fundamental conditions: influence of mixing and space constriction. We 
applied three methods of mixing for the BZ reaction initiation: (1) 
commonly used dish mixing by hand with non-regulated frequency and 
depending only on the personal habits of the experimenter; (2) gentle 
reagent mixing using an orbital mixer (Edmund Buhler GmbH, TL-10) 

at different regimes (14
&��
M\0 and 16 

&��
M\0); (3) and intensive reaction 

mixture infusion in a chemical beaker by the magnetic stirrer (Fisher 
Scientific Isotemp Ceramic Hotplate 11-700-49SH) at various rotational 

speeds (100 
&��
M\0 and 200 

&��
M\0). We modified the BZ reaction space by 

using vessels of different space geometry: circular, squared, rectangular 
and triangular. The initial component concentration was maintained 
through all experiments in the series. The thickness of the reaction layer 
was also kept constant at 3 mm.  
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2.2. Recorded System Setup  

 

Two different photo-systems were used for monitoring the BZ reaction 
pattern evolution.  

In the first system, images were captured by a Nikon D90 camera with 
12.3 effective megapixels Nikon DX-format CMOS image sensor (see 
camera specification in Fig. 2.2. and in source provided by Nikon Corp., 
2014). Images were stored in an un-compressed 12-bit NEF (4096 
shades per channel) image format in order to store the maximum 
information from the original space-structure proper for further image 
data processing. 

The photo-camera was set to time-lapse with a time interval between 
frames of 10 seconds. Camera settings were chosen to capture the 
highest resolution of BZ reaction patterns; specifically, with Exposure 

compensation + 
�
�  EV, ISO 320, Aperture 

�
N� and Shutter speed 

N
N< 

second. Minor fluctuations in the focal distance of the camera were 
compromises between the wide variation of the size of the investigated 
object and achieving the maximum visual clarity of recorded images.  

When designing the system for the BZ reaction recording procedure, we 
had to take into account the optical characteristics of the investigated 
object, including the reflective properties of liquids, as well as the 
transparency of and blurring of observable chemical waves’ boundaries. 
The recording device was placed in a fume hood and an illuminated 
photographic tent to control the factors of external light influence on the 
photographed area (the construction is presented in Fig. 2.1.).  

For illumination, white light from two Spiral 5500K daylight lamps of 
40 Watt oriented in 45° to both sides of the reaction surface was used. 
A white reflectance diffuser (type SG 3214 with 95% surface 
reflectivity, manufactured by the SphereOptics Company, see 
transmission specification in Fig. 2.2.) was placed under the vessel’s 
bottom. To obtain the diffused light and to minimize the external 
stochastic light impact by the light source in the laboratory, the 
experimental sample photographing was conducted in the white photo 
tent (manufactured by Opnamebox).  

The photo-system constructed in this way provides the best image 
quality we could reach in our experimental setup with uniform light 
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distribution throughout the whole photographed area and a lack of glare 
on the surface of the BZ reaction. 

 

 
Figure 2.1. Photo of the experimental installation for Belousov-Zhabotinsky reaction 
pattern monitoring: (1) laboratory hoods corps; (2) photo-tent; (3) thermostat; (4) 
position of investigated object (vessel with BZ reaction); (5) optical diffuser plate; (6) 
Nikon D90 photo-camera; (7) light sources; (8) connection with PC; (9) water bath. 
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Figure 2.2. The typical transmission of the Zenith Diffusion Material through the 
entire wavelength range of 250 nm to 2500 nm (according to Zenith Specification 
Datasheet).  

 

 

Figure 2.3. The spectral response of Nikon D90 camera to red (in red color), green (in 
green color) and blue (in blue color) color channels. The X-axis is a wavelength in nm 
and the Y-axis shows the relative signal response (according to Vitabin, 2013). 
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In the case of the second photo-system, a JAI Spark SP-5000-USB rapid 
high-resolution camera (manufactured by JAI, see specification for 
more details) was used. The best image quality was reached with the 
following camera adjustments: exposure 170; gain 100; shutter: 1.8; 
gamma: 0.45; gamma raw 7; pulse generator clock 0.72; acquisition 
frame 30.9943 Hz; acquisition raw 32264. The recorded images were 
stored in 16-bit grayscale PNG format (resolution: 2048ˣ2560). The 
Delay between shots was 1000 ms, which, in comparison with Nikon 
D90 results, obtains more data for plotting more precise BZ reaction 
state-trajectories from more segments. 

Like the case of the first photo-system, the second photo-system was 
constructed in a way to prevent the reflection of the camera and of light 
patches on the photographed surface of the reaction (see Fig. 2.4.). To 
isolate the experimental system from the laboratory light sources and to 
provide homogenous sample lighting, a two-layer cube was constructed 
from white plastic. On surface of the sides of the outer cube, there were 
homogeneous light sources, which were also dispersed through the sides 
of the internal plastic cube. In order to avoid camera reflection on the 
reaction surface, the camera body was positioned in the white photo tent 
(Opnamebox). Additional stabilization during photography was 
achieved by placing the entire structure on the Anti-Vibration Optical 
Table (CVI Melles Griot). The air conditioning system in the laboratory 
room maintained a constant temperature of 24° C. 
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Figure 2.4. Photo of the second experimental installation for Belousov-Zhabotinsky 
reaction patterns monitoring: (1) outer plastic cube with homogeneous light sources; 
(2) internal plastic cube; (3) photo-tent; (4) JAI Spark SP-5000-USB photo-camera; 
(5) position of the sample (vessel with BZ reaction); (6) Optical Table. 

 

 

2.3. Extracting Useful Information from the Belousov-Zhabotinsky 

Reaction Image Series 

Considering that each camera chip producer has its own raw file format, 
the image preprocessing steps were different for the Nikon NEF format 
and the RAW image format from the JAI camera. 

 

2.3.1. Nikon Images Preprocessing Strategy 

The individual frames from the unique experimental run of the BZ 
oscillation process were processed in the sequence described in Fig. 2.4. 
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The original NEF format was transformed into a 12-bit PNG format 
without information loss. In the next step, the 12-bit format was 
transformed into the least information loss (LIL) format (Štys et al., 
2016), where most the information was still preserved. Then the relevant 
region of the image was extracted by manual selection using the 
Expertomica cell marker software (Císař, Štys, 2011).  The relevant part 
of the image was analyzed with the calculation of point information gain 
(PIG), point information gain entropy (PIE) and point information gain 
entropy density (PIED) (Rychtarikova et al., 2016). The resulting 
spectrum of values, collected from the image sequence, was subjected 
to multivariate analysis which resulted in objective classification of 
states along the BZ self-organization trajectory.  

 

 
Figure 2.4. The sequence of manipulations carried out for each Belousov-Zhabotinsky 
reaction image for the BZ system state-trajectory construction.  
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Nikon Electronic Format (NEF, see Nikon Inc. 2016 for the details), the 
Nikon’s RAW file format, does not come directly from the camera CCD 
image sensor, it is transformed after the capture by the camera chip from 
the original 14 bit digital set. In other words, is an image format in which 
the unmodified data is written on the memory card was already 
processed in the camera and we do not have access to the original signal. 
The image files contain all the image information captured by the 
camera's sensor, along with the image's metadata (the camera's 
identification and its settings, the lens used and other information). 
Despite the high image quality, the lack of a uniform standard for the 
RAW data is another significant disadvantage of this format. In order to 
convert this specialized NEF format into the PNG image format which 
is necessary for further analysis, we needed to convert the NEF images 
to DNG, which is a specific kind of TIFF file, and transform them into 
MATLAB Tiff class images with PNG extensions (Eddins, 2011). 
These conversions were done in two stages. 

During the first step, the NEF image format was converted to the DNG 
(Digital Negative) uncompressed (bit-packed) 12-bit color depth format 
without demosaicing by using the commercial software Adobe DNG 
Converter (version 8.7.1.311, see Adobe Systems Inc.  2015 for more 
detail). The second image preprocessing step consisted of the DNG 
image format transformation to the one adopted for the LIL conversion 
procedure (Stys et al. 2016d, see also Least Information Loss (LIL) 
Conversion section below for the details) that has PNG extension. The 
DNG to PNG image conversions were performed in MATLAB® 
(version 2014b, 8.4.0.260532 64-bit, developed by MathWorks Inc., 
2014). The conversion algorithm makes a structure which contains Exif 
information (metadata embedded within images) associated with the 
DNG version of the image file, reads the image metadata from the 
current image file directory (IFD) in the MATLAB Tiff class file, and 
stores the obtained files with new names as images with a PNG 
extension format.  

The final product of the image transformation is the adopted PNG 
signature and extension for convenience to further LIL conversion with 
nonlinear quantization off the original 12-bit values (coming from 
Nikon raw sensor data compression procedure – Martinec, 2010) and 
GBRG Bayer grid that contains the same metadata information as 
original NEF files. 
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A full-color RGB image typically consists of three color channels—red, 
green and blue. The digital camera sensor actually captures one 
grayscale intensity value at each pixel location. Color filters are applied 
to each pixel to imitate the human perception of light (so-called Bayer 
masks – Bayer, 1976). The resulting capture still has just one full 
channel of information, but some of those pixels represent regions in 
part of the spectrum---for example, some represent green and blue 
spectral regions. 

Least Information Loss (LIL) compression format was developed by our 
laboratory (Náhlík et al., 2015). It preserves most of the information 
contained in the 12/16-bit original data and creates a foundation for an 
objective visual evaluation of an image series, as it allows for the 
maintenance of scale along the whole image series.  

The data conversion is performed in two ways: 

o unoccupied levels are removed in all images individually and the 
remaining levels are expanded uniformly into 256 levels; 

o only levels which are unoccupied in all images in the series are 
omitted and the remaining levels are expanded. 

The LIL conversion does not offer any possibility to adopt the relative 
intensity levels to the visual perception by the human eye. Thus, the 
resulting images may seem strangely colored. But it should be noted that 
for image comparison only the intensity histogram is important. The LIL 
conversion is very useful when the color camera is used for technical or 
scientific purposes. For our purposes, when we assess the distribution of 
intensities in space, such a procedure is vital.  

We performed LIL conversion of preliminary prepared images as 
described in the previous section for 12-bit color depth NEF.RAW 
images (Nikon D90 only provides one color depth option) with the 
following software set-up: 

o RAW Bit Color Depth = 12 bit; 
o the resulting .DNG.LIL.PNG image format has 8 bit color depth; 
o the applied Bayer grid is GBRG;  
o the demosaicing algorithm is Simple LIL (normalization of the 

all RGB color channels together); 
o the calibration rows and columns were removed. 

The results of the LIL conversion operation with corresponding 
histogram for each color channel in comparison with RAW.NEF and 
losses .JPEG conversion are presented in Fig 2.5. 
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Figure 2.5. Example of the LIL conversion performance. The RGB color profiles 
histogram (right side) and image view (left side) represent the difference between 
original (a) 12-bit color depth (4096 intensity levels) NEF images, (b) images 
converted by the LIL algorithm 8-bit color depth format (256 levels), and (c) common 
JPEG 8-bit color depth format (256 levels) images. LIL conversion saved the original 
amount of intensity profiles for each color channel, and the JPEG conversion algorithm 
merges the unique intensities. Therefore, the intensity histograms of JPEG images look 
smoother than LIL-converted image histograms. 

 

a) 

b) 

c) 
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The image background (outside Petri dish boundaries) has been found 
to not be the informative part of the image and was removed by 
Expertomica CellMarker software (Císař et al., 2011, 2016). This 
software was originally developed for manually labeling cells in a series 
of microscopy images. However, it provides a wide range of 
possibilities, including object ID assignment, scale definition, and 
storing the information about labeled cells into txt file. In this work, it 
was used for manual definition of the borders of the object of interest, 
border replication into the next frame, and extraction of the defined 
objects by cutting at the drawn border (see subfigures (a) and (c) at the 
Fig. 2.6.). The software also allows for visual inspection of individual 
color channels as well as the extension of levels and inspection of image 
patterns which differ only in a few intensity levels. 

We use CellMarker software for the automatic extraction of the BZ 
reaction scene encapsulated in the reaction vessel’s interior without any 
contrast adjustment procedure. 

 



 

 5
4

 

 

 

  

Figure 2.6. Screenshot of CellMarker work window with image view coming from each of RGB color channel with 
corresponded intensity distribution histograms (right column) and some software function demonstration applied on the 
original image (a), like contrast enhancement (b) and  background extraction (c). 
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2.3.2. JAI Images Preprocessing Strategy 

Image preparation obtained by the JAI camera was different from 
Nikon (see Fig. 2.8.), especially on the first-ever image processing 
steps. The crucial difference was that with the use of JAI camera we 
for the first time had access to the true primary signal captured by the 
camera chip. 

The CMOS element in the JAI Spark SP-5000-USB camera produces 
the 16-bit grayscale PNG format. The object color composition and  
“true” curvature of the intensity profile information in each of RGB 
camera channel was related to spectral ranges of all three color 
channels (acquired by OceanOptics USB4000-VIS-NIR-ES portative 
spectrometer with range 350-1000 nm), measured in the same light 
conditions as ones applied under experiment recording.  The specially 
developed software application – Image Corrector v. 1.2. was designed 
to solve the issue. The image correction was achieved by constructing 
a correcting matrix for the camera chip of the reference solution with a 
known spectrum and color. The result of the procedure is the 
construction of a calibration curve receiving the corrected micro-
objects images with the "true colors.” During the correction process, 
the image did not undergo any compression or conversion with 
smoothing algorithms where some pixels are interpolated and lost. 

In the next step, the uninformative background and dish borders were 
dissected from the BZ reaction image by the MATLAB® (version 
2014b, 8.4.0.260532 64-bit, developed by MathWorks Inc., 2014) 
tools. The software recognized the outlines of the dish borders and 
extracted only internal content within the vessel to the new created 
image, living the environment intensity signal as zero. 

Processed in this way, images store the native information recorded by 
the chip that is corrected for all the non-idealities of the optical path. 
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Figure 2.8. The sequence of manipulations carried out for each Belousov-Zhabotinsky 
reaction image from JAI Spark SP-5000-USB camera for the BZ system state-
trajectory construction.  
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2.4. Information Entropy Extraction. Point Information Gain 

(PIG), Point Information Gain Entropy (PIE) and Point 

Information Gain Entropy Density (PIED) as Characteristics of the 

Structured Object State 

  

As described in Rychtarikova et al. (2016), the PIG may be calculated 
using different assumptions about the pixel’s surroundings. In this 
thesis, there were two approaches: 

(a) No specific surrounding, i.e. the dataset from which the pixel 
was extracted includes all pixels in the image (the whole 
method).  

(b) The dataset is formed by a cross of pixels' columns and rows 
whose shanks intersect in the position of the examined point (the 
cross method).  

Each of these approaches is focused on certain type of information 
content of examined image -  the former ignores any information about 
the pixel’s surroundings, the other maps all possible surroundings at all 
available distances in the dataset. These two methods thus, from a 
certain point of view, represent the dataset completely.  

Fig. 2.7. shows the dependency of PIG values of different pixels of on 
the value of the α parameter. The dependency of each of the values on 
the coefficient α is another unique characteristic of the distribution. Due 
to limitations of the digital precision, there is not any characteristic 
available over the whole range of α (in fact even the value of α→∞ may 
be decisive). The visualization of the effect of different Rényi 
coefficients on the information entropy calculation output is shown in 
Fig. 2.8. From practical point of view, Fig. 2.8. demonstrates that a few 
α values must be used for the calculation of PIG, PIE and PIED to avoid 
the influence of digital averaging on the results. We used a selected set 
of 13-th values in the range from 0.1 to 4.0: 0.1; 0.3; 0.5; 0.7; 0.99 (in 
order to avoid � = 1.0,  the Shannon information entropy case, which 
would then be implemented differently in the computer); 1.3; 1.5; 1.7; 
2.0; 2.5; 3.0; 3.5 and 4.0 in our calculation to cover most of the above-
mentioned cases. 
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Figure 2.7. Distribution the �{
�, �� for different α-values for one examined image 
from the BZ reaction recording that collects a set of statistical characteristics of the 
image components (BZ particles) and is a unique feature of the BZ system state fixed 
by the camera at the shooting time ∆t. 

 

In the following steps, the PIG values for the single image pixels are 
assembled into PIE or PIED (see equations 17 and 18 in the Introduction 
part), which are unique characteristics of the whole set of image 
intensity scenes and can be understood, respectively, as a multiple of the 
average point information gain (v{) and as an average gain of the 
phenomenon i (�{). 



 

 5
9

 

 

 

Figure 2.8. The light intensity distribution histograms for different cases of α-values for one BZ reaction Entropy image from experimental 
series with classical (90-mm diameter) Petri dish. For α<1, the events with rare occurrence are highlighted (a, b), when for α>1 the more 
eventful field of action falls into the focus of research (d, e, f), and α=1 present the intensity distribution, typical of the Shannon information 
entropy case (c). The intensity values are in the range from 0 to 255 (an 8-bit image). 
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2.5. Statistical Analysis of the Multi-dimension Data: Principal 

Component Analysis (PCA) and K-Means Clustering  

 

After the image characteristic structure extraction as pair of v{ or �{ 
for each image from the experimental series, we got a 39- dimensional 
data set, consisting of thirteen α-parameters, calculated for each RGB 
camera color channel. Taking into account that the number of frames 
taken during one full BZ reaction run is about 500, the outcome of one 
experiment represents a huge data matrix. Working with such a data 
dimension is very difficult. 

We chose principle component analysis (Pearson, 1901) and k-means 
clustering (Forgy, 1965) for further statistical analysis of obtained data. 
The mentioned multivariate analysis was performed by using the 
commercial software the Unscrambler X 10.1 (CAMO Software, 2011). 

In the orthogonal transformation, the PIE and PIED image data set---
from a combination of thirteen Rényi coefficients and three (red, green 
and blue) color channels---is transformed into a set of values of linearly 
uncorrelated variables (called principal components) in a new 
coordinate system (orthogonal basis set). During PCA (NIPALS 
computation method), the initial data matrix (X) with n rows and p 
columns undergoes a decomposition into a set of empirical mean 
matrices (��). The algorithm performs the subtraction from that sequence 
of p-dimensional vectors of weights (loadings) �
!� = 
�N, . . , �.�
!� 
that map each row vector �\ of X to a new vector of principal component 
scores 

\� = 	 

N, . . , 
!�
\�, given by 
!
\� = �
\� ∙ �
!�, coming from 
each subsequent PC plus noise (the matrix of unmodeled residuals �!): 

� = 1 ∙ �� +	
N ∙ �N� +⋯+	
!
\� ∙ �
!�� +	�! 

where 1 is a vector of ones, symbol “T” means that matrix �
!� was 
transposed, and k determines the number of PC applying for the analysis. 
Scores describe the data structure in terms of sample patterns, which are 
the differences or similarities with each other, whereas loadings describe 
the data structure in terms of variable contributions and correlations, 
which are the amount of individual variable contribution to the 
examined PC. More details about PCA interpretation was provided in 
the work by Abdi et al. (2010). 

The initial number of principal components for our data set was chosen 
to equal 10, but during the detailed analysis of explained variance from 

(19) 
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obtained statistical model (see Discussion section for more details), the 
number of principle components (PC) was reduced to three. As a result, 
instead of the 39-dimension matrix we got the BZ reaction state 
trajectory charted in orthogonal 3D space (phase space) of the first three 
principal components, wherein each point (individual event that 
comprises a BZ patterns evolution track during individual experiment 
performance) is represented by projections of PIE or PIED outcomes 
from the combination of three color channels and 39-th α parameters for 
each time instant. We call the obtained plot: the individual (under the 
certain experimental conditions) phenomenological model of the BZ 
reaction. 

The difficulty in the interpretation of the model arising from PCA-based 
dimensionality reduction (Linsker, 1988) is that the measurement does 
not give us the position of the point in a multidimensional chemo-
mechanical space but only the projection of it into a fewer-dimensional 
space. In other words, we plotted the model not in real world (yet 
phenomenological) coordinates (as concentrations), but in orthogonal 
coordinates of projections which connected to the information entropy 
outcomes. These new coordinates may or may not be identical to 
internal orthogonal coordinates of the observed process, for example 
physio-chemical activities. 

The obtained set itself does not represent the state of the system, which 
has to be determine by using other statistical analysis approach. We use 
the k-mean clustering approach to separate the BZ system state 
trajectory into similar points which may represent individual states that 
corresponds to unique phases of the chemical self-organization. We use 
PCA scores as inputs for the clustering procedure (Ding et al., 2004). 
The algorithm works on the principle of minimizing an objective 
function know as squared error function given by: 

�
i� = 	xx
||�\ −	`\||��
�Y

sLN

�

\LN
 

where ||�\ −	`\||	 is the Euclidean distance between �\ (element in set 
of data points: � =	 {�N, ��, … , �0}) and ̀ \ (element in the set of centers:  

i =	 {`N, `�, … , �̀}), U\ is the number of data points in i-cluster, and c 
is the number of cluster centers. 

The main goal of this approach is the objective separation of PC-space 
state trajectories into clusters weighted by shortest distance to cluster 

(20) 
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core, each of which is supposed to present the one phase of system 
dynamics which is characterized by a set of states with similar 
properties. In order to determine the optimal value of c, we were led by 
the previous information about the investigated BZ system (see 
Introduction section) and our previous results (Zhyrova et al., 2013, 
2014, 2016).  Usage 7 clusters is the number that the best logically 
characterizes our system.  

The output of the clustering in seven clusters more logically represents 
the states of the BZ reaction: chemical wave initiation, target patterns 
spreading through the available reaction space, the creation of the spiral 
wave centers and their competition with target waves, drift of the spiral 
wave centers and reorganization the BZ pattern picture, and chemical 
oscillation damping. Depending on imposed external conditions (such 
as reaction vessel size or geometry, or intensity of reaction component 
mechanical mixing), the intermediate states (coexistence target waves 
and spiral waves in the reaction medium) could elongate and stand out 
in a separate phase or, in the contrary, some stages could be eliminated 
during BZ system evolution (see Discussion section for details). Under 
these conditions, the “rule of seven clusters” is not followed and the 
algorithm either distributes the appropriate states into separate clusters 
or determines the smaller number of clusters for the investigated system. 

In any case, performing k-mean clustering based on standard PCA of 
PIE(PIED)/α/color channel data gives us a quite nice logical separation 
of the image sequence into groups which we identify with states on the 
systems trajectory and gives a clear picture of BZ pattern dynamics in 
response to changes in initial conditions. An example of one experiment 
calculation, which is the BZ reaction state-trajectory with oscillating 
stages segmentation (by color), id shown in Fig. 2.9. 
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Figure 2.9. 3D model of Belousov-Zhabotinsky reaction (reaction state-trajectory) 
obtained by the developed information entropy calculation algorithm. The unique 
reaction oscillation stages highlighted by the different colors and images 
corresponding to them represent the reaction process time-schedule. 
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RESULTS AND DISCUSSION 

 

3.1. Information Entropy Approach as a Method of Analyzing 

Belousov-Zhabotinsky Reaction Wave Formation 

 

This chapter is based on Paper I: 

Zhyrova, A., Štys, D., Císař, P., 2013. Information entropy approach as 
a method of analysing Belousov-Zhabotinsky reaction wave formation, 
Chemicke Listy, 107 (Suppl. 3): S341-S342. (Print). (IF 2013 = 0.196) 

 

ABSTRACT 

This work is aims to develop a method of analysis for self-organized 
systems such as living cell cultures or herds in native ecosystem. The 
Belousov-Zhabotinsky reaction (chemical clock) was chosen as a simple 
and appropriate model. Our proposed method is based on the 
information theory of mutifractal objects. We use the Renyi information 
entropy equation for the calculation of information gain by which a point 
contributes to the total information in the image, the point information 
gain. Obtained values present unique information about object structure.  
This method allows us to highlight tiny features in investigated samples’ 
structures and characterize system behavior in dynamic systems. 

 

1 Introduction 

The Belousov-Zhabotinsky (BZ) reaction was devised as a primitive 
model of the citric acid cycle. When performed in a thin (few 
centimeters thick) layer, it creates easily observable travelling waves 
which may be captured by an ordinary color camera and analyzed. The 
system behavior in time indicates the existence of a sequence of distinct 
states stable for a certain period of time. The experimenter has control 
of mechanical constraints imposed on the system. Intermediate states in 
the reaction may be identified in all cases when the geometry of the 
experimental vessel allows the creation of travelling waves. 
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2 Material and Methods 

Experiments were performed with the oscillating bromated-ferroin-
bromomalonic acid reaction type (kits were provided by Dr. Jack 
Cohen) [1].  The reaction mixture was composed of the following 
solutions: 0.34 M sodium bromate, 0.2 M sulphuric acid, 0.057 M 
sodium bromide, 0.11 M malonic acid as substrate, and the redox 
indicator 0.12 M 1,10-phenantroline ferrous complex.  All reagents were 
coherently mixed at the temperature of 22 ºC and added into a Petri dish. 
Images were captured by a Nikon D90 camera in regime time-lapse 
shooting with an interval of 10 seconds between snapshots. 

In our practical approach [2,3], we calculated the Renyi entropy 
contribution of each of the points in the image. We calculated the Renyi 
entropy difference for the data set containing the examined point and the 
dataset in which the examined point was excluded. This is the Point 
Information Gain (�{
�, ��) for given entropy of the order α:  

�{
�, �� = 	 11 − � �H �xw\,�,�{
0

\LN
� − 11 − � �H�xw\{

0

\LN
� 

where ρi,x,y  and ρi  are probabilities of occurrence of given intensity for given 
point/x, y coordinate of camera pixel at a given α in the image without and with 
the examined point. 

In the next step, the number of points of a given intensity is summed and 
normalized to obtain Point Information Gain Entropy (H{):  

H{ = x 	
�L0

�LN
	 x �{
�, ��
�LM

�LN
 

And in the final step of image processing, Point Information Gain Entropy 

Density (Ξ{) was calculated:  

Ξ{ 	= xΓ{,\
�, ��	
\L�

\LN
 

(1) 

(2) 

(3) 
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For a given dataset, i.e. image, the ordered set of H{ and Ξ{ tuples a unique 
characteristic of the image, i.e. each image will have a different dataset, 
provided that the image is captured with infinite precision and the calculation 
is performed for all α values form 0 to infinity. In reality, the precision is 
defined by the digital camera and the set of α values is chosen arbitrarily. 

Using statistical approaches such as principal component analysis (PCA) [4], 
we may construct orthogonal spaces which best fit the observed dataset. All 
data divided on the clusters depend on the value of the PCA-components. Each 
cluster of the trajectory presents one of the states of the BZ reaction. 

 

3 Results and Discussion 

The sets of Hα were used for describing the evolution of the system as a 
multi-fractal object. The state evolution is split into a logical sequence 
of clusters in the new orthogonal, although still phenomenological, state 
space. In Fig. 1 is shown the decomposition of the system trajectory of 
the Belousow-Zhabotinsky reaction into a series of states which are, for 
a distinct period of time, asymptotically stable under current conditions. 
Clusters (series of images) are very well separated and consistent in 
time, for each of group could find characteristic image represented the 
state of the system in their developing process.  Moreover, each of the 
clusters’ states should have its own spectrum of Hα values which 
characterizes it. 

 

4 Conclusions 

Applying the information entropy as the basic characteristics of the 
image is a promising area for further research, with the ultimate aim of 
creating a reliable method of automated segmentation of the self-
organizing system state space obtained by a non-invasive imaging 
method. The trajectory segmentation may be used despite the fact that 
we do not know the proper manifold in the internal orthogonal 
coordinate space. 
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Fig. 1. The state trajectory of the BZ reaction performed in the Petri dish. Principle 
component analysis of the Hα allows us to designate different states of the system 
(changes in waves structure during the reaction evolution) from the point of view of 
the method clusters of points in the state space. Scores differ significantly between 
clusters oriented and form logical trajectory in the principal coordinates space. 
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3.2. Construction of the Phenomenological Model of Belousov-

Zhabotinsky Reaction State Trajectory 

 

This chapter is based on Paper II: 

Zhyrova, A., Štys, D., 2014. Construction of the phenomenological 
model of Belousov-Zhabotinsky reaction state trajectory. International 
Journal of Computer Mathematics, 91 (1): 4–13. doi: 
10.1080/00207160.2013.766332. (Print). (IF 2014 = 0.824).  

 

ABSTRACT 

The Belousov-Zhabotinsky reaction is used as an example of a self-
organizing system which is easily and intelligibly observable and 
experimentally accessible. The analysis does not require elaborate 
reconstruction of series of 3D images as in the case of bird flocks or fish 
schools or organ behavior. The analysis of living cells’ microscopic 
image series is even more elaborate. Moreover, the experimenter in the 
case of this BZ chemical clock has full control of the mechanical 
constraints imposed on the system.  

We report both experimental and theoretical results using the Belousov-
Zhabotinsky reaction as an experimental tool for analysis of the 
behavior of the self-organizing system.  

We have created a state trajectory using several selected image 
identifiers (point information gain entropy – Hα). The Hα values define 
an approximate state space which may be analyzed using multivariate 
analysis. In this paper, we provide results of this analysis.  

 

1. Introduction 

The BZ reaction [1, 2] was devised as a primitive model of the citric 
acid cycle. To the surprise of the authors, it brought about the 
phenomenon of a chemical clock (in mixed systems) or spontaneous 
pattern formation (in still compartments). The distinct feature of the BZ 
reaction is that although it in fact consists of 80 chemical reactions, 
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relatively simple patterns arise and may be modeled by approaches such 
as cellular automata. Most BZ reactions are homogeneous. 

For our experiments, we used a recipe for the Belousov-Zhabotinsky 
reaction modified by Dr. Jack Cohen [1] – bubble-type one with 
reagents of sodium bromate, sulphuric acid, sodium bromide, malonic 
acid, and 1,10 phenantroline ferrous complex as a redox indicator. 

The BZ reaction makes it possible to observe the development of 
complex patterns in time and space with the naked eye on a very 
convenient human time scale of dozens of seconds and a space scale of 
several millimeters. The BZ reaction can generate up to several thousand 
oscillatory cycles in a closed system, which permits studying chemical 
waves and patterns without constant replenishment of reactants. 

In the case of the Belousov-Zhabotinsky reaction, we can choose the 
form of the reaction vessel, which is impossible in living cells [4]. This 
approach allows us to discover whether the developed method is 
sensitive to changes in the shape and size of the investigated objects 
and how well the resulting model describes the internal changes in the 
self-organizing properties. Comparing the results of the study for both 
objects (the development of the cell cycle and the states’ evolution in 
the reaction) makes it possible to judge the appropriateness and 
sensitivity of the developed method, and the impact of external factors 
(change of form, the formation of intercellular connections) on the 
state trajectories discovered by our model. 

 

2. Preliminaries. Assumptions for model construction 

The reason for developing an automatic method is that it is impossible 
to describe, objectively, all the features manually due to time and 
precision requirements. We base our analysis on the generalized 
stochastic systems theory [8], which is based mainly on proper 
description of the experimental dataset. In any real experiment, there is 
nothing equivalent to continuous time record. In the best scenario, the 
achieved time resolution is smaller than the highest time resolution that 
does not distort the response of the model used by us for experimental 
evolution.  The sampling frequency must be at least double the 
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frequency of the fastest event. We must determine the time instants 
experimentally. 

Let s(t, au) represents the value of u-th variable (for example, individual 
values of measurement  outcome i. e., spectral line intensity or 
molecular absorption) at a time point t ϵ T. Then the ordered n-tuple: 

s(t) = [s(t, a1), s(t, a2), … , s(t, au)] 

is called the state of the system at time t. The state, s(t), in our approach 
[3] represents the set values of recurrent objects’ parameters for a given 
time window.  The state, s(t), is defined as the unique description of the 
system behavior at a given time instant. The state describes the system 
itself without knowledge of previous states. There is, however, no 
guarantee that the evolution of the system could be described solely 
based on a set of values obtained at given time instant. In reality, it is 
usually exactly the opposite case.  

General system theory, provided by Zampa and Arnost [8], introduced 
the term “trajectory elements”. By trajectory we mean mapping z, given 
by the Cartesian product:  

z : T × U → ⋃ i��∈�  such that z(t, u) ∈ Vu, u ∈ U 

This minimal number of preceding and actual state variable values 
defines the trajectory element. Here T represents the ordered set of 
concrete time instants for a given experiment, U is a set of system 
attributes, and i�  is a set of system variables corresponding to the subset 
of attributes o which the system attains at time 
.  
In the Belousov-Zhabotinsky reaction, a variety of chemical 
transformations is taking place in the volume limited by the Petri dish. 
These reactions manifest themselves as ornate drawing of the reaction 
where every point is in occupied space. We must deal with the 
combination of a mechanical and a chemical space. Therefore, analyzing 
the data must clearly address this fact. The chemical space in 
equilibrium thermodynamic needs to be characterized with chemical 
potentials which are in logarithmic relation to activities ai:  

	�\ =	�\� + �b ln K\ 

(1) 

(2) 

(3) 
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where �\ is the chemical potential of the species under the conditions of 

interest, �\�  is the chemical potential of that species in the chosen 
standard state, R is the gas constant, and T is the thermodynamic 
temperature.  

The chemical reaction pattern is a consequence of chemical dynamics, 
not a static event. Thus, the observed pattern is a reflection of the phase 
space rather than the state space. The problem is that we could not 
clearly define all the specific parameters of the system at each time 
evolution of the system. A key issue is the definition of system variables 
which may be measured at a time, although their relation to system 
attributes is unclear. 

 

3. Dimension definition and multivariate analysis of the self-

organized system 

Self-organization arises in dissipative dynamical systems whose post-
transient behavior involves fewer degrees of freedom than are nominally 
available. The system is attracted to a lower-dimension phase space, and 
the dimension of this reduced phase space represents the number of 
active degrees of freedom in the self-organized system. Estimating 
dimensions from a time series is one way to detect and quantify the self-
organizational properties of natural and artificial complex system. 

For our example, we consider the system as a set of chaotic attractors 
developing gradually in time and replacing each other. 

Informally, the attractor A of a dynamical system is the subset of phase 
space toward which the system evolves. We define the phase-space 
volume of the attractor as µ(A). A measure µ is defined on the set A if 
the subsets B of the set A can be associated with real values µ(B) that 

represent how much of A is contained in B (the so called “natural 
measure”). Our entire fractional dimension is covered by a fixed-size 
grid (box-counting dimension) limited by the bounds of the investigated 
system. If Bi denotes the i-th box, let pi = µ(Bi)/ µ(A) be a normalized 
measure of this box (the number of points in the box is taken into 
account). Equivalently, it is the probability of a randomly chosen point 
on the attractor to be in Bi , and it is usually estimated by counting  the 
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number of points that are in the i-th box and dividing by the total number 
of points. 

The generalized dimension is defined by [6]:  

D� 	= 	 1� − 1	lim&→<
���∑ w\{\log �  

In such way Dα can be identified as a scaling of bulk with size:  

D�	~ lim¡\¢-→<
log 	£o�clog 	n@�¤  

The parameter α determines the order of the generalized dimension. 
Limit α→1 leads to a geometric average and, finally, α = 0 corresponds 
to the plain box-counting dimension. 

A generalized dimension is useful for quantifying the non-uniformity of 
the fractal or, in general, for characterizing its multifractal properties. 

As an alternative to the scaling of mass with size, one can also think of 
the dimension of a set in terms of how many real numbers are needed to 
specify a point on that set.  Here, dimension is something that counts the 
number of degrees of freedom. One way to extend this definition is to 
determine not how many real numbers but how many bits of information 
are needed to specify a point to a given accuracy. For example, for a line 
segment of unit length, k bits are needed to specify the position of a point 
to within r = 2-k. In general, S(r) = -d log2(r) bits of information are 
needed to specify the position of the unit d-dimensional hypercube to an 
accuracy of r.  

Consider partitioning the fractal into boxes Bi of size r. To specify the 
position of a point to an accuracy r requires that one specify in which 
box the point is. The average information needed to specify the box is 
given by Shannon’s formula:  

¥
�� = −xw\ log� w\
\

 

Where pi is the probability measure of the i-th box: pi = µ(Bi)/ µ(A). This 
relation leads directly to an expression for the information dimension of 
the attractor:  

(4) 

(5) 

(6) 
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D¦ 	= lim&→<
−¥
��log� � = lim&→<

∑ w\ log� w\\ log� �  

Is necessary to stipulate that the Shannon entropy is a limiting case of 
the Renyi entropy:  

h{
�� = N
{�N ��� ∑ w\{\  , 

which reduces to Shannon’s formula in the limit α → 0. The generalized 
information dimension associated with the Renyi entropy is just the 
generalized dimension that has been defined:  

Dα = lim&→< �m§
&�¨©ª &  = 
N

{�N lim«→< ¨©ª∑ .Y§Y¨©ª &  

The practical estimation of dimension begins with a finite description of 
the fractal object. In the model calculation, we have only the limit of the 
digital precision. In reality, we analyzed the representation of the 
multifractal object, i.e. a digitized photograph with finite resolution, as 
an aggregation with a finite number of aggregates, or a finite sample of 
points from the trajectory of a dynamical system.  

In our case, we worked with images (initial form of our data). This is a 
two-dimensional representation of the spatial distribution of 
concentrations of chemicals giving rise to image color. In other words, 
the images are reflections of the position of the system in a two-
dimensional chemo-mechanical phase space. It may be a reflection of a 
higher dimensional chemical space but such an assumption is not very 
likely to be true. In other words, the dimensionality of the systems in the 
Belousov-Zhabotinsky reaction shrinks from the observed over-80 
chemical-individuals into a smaller number, perhaps even one chemical 
dimension.  Our intention should be to find the most intelligible 
representation of the movement of the system in the phase space, a 
dynamic model which would allow the comparison of experiments of 
different types.  

Obviously if the only source of information is the intensity of the signal 
in the given color channel at given image point, the only measure which 
may be examined is the multifractality of the object at the image. The 
intention of this article is not to discuss in depth the theoretical 

(7) 

(8) 

(9) 
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background of our method but to show its practical use in the case of an 
image series of objects of changing structure. 

	

    
   original image                     α = 0.1                      α = 1.0                       α = 2.5 

Figure 1. Examples of the influence α parameter on the value of Point Information 
Gain (�{
�, ��). The color and intensity is the result of projection of the �{
�, �� for 
the given color channel and image point into the RGB space. In contrast to the original 
image at the left side, where the colors are given by true coloration of the reaction 
vessel, the �{
�, �� - based images represent pseudo-colors used for visualization of 
the information structure of the image.  Due to the multifractal structure of the image, 
there is no single α value which would be appropriate for proper representation of the 
intensity distribution in the whole image. With changing α value, different occurrences 
are emphasized. At low α the rare points are emphasized; at high α, points with higher 
occurrence are emphasized.  

 

We chose the Belousov-Zhabotinsky reaction because we believe that 
the process generating the structure actually has the character of the 
chaotic attractor, although quite probably it is in a 2-dimensional 
mechanical and chemical space of low number of dimensions.  

In our practical approach, we calculated the Renyi entropy contribution 
of each of the points in the image. In practice our resolution is limited 
by the data point. We calculate the Renyi entropy for the data set 
containing the examined point and the dataset in which the examined 
point was excluded. This is the Point Information Gain (�{
�, ��) for 
given entropy of the order α:  

�{
�, �� = 	 N
N�{ �H¬∑ w\,�,�{0\LN ­ − N

N�{ �H
∑ w\{0\LN � , (10) 
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 where ρi,x,y  and ρi  are probabilities of occurrence of given intensity for 
given point/x, y coordinate of the camera pixel at a given α in the image 
without and with the examined point.  

The question remains how large the dataset used for calculation of the �{
�, �� should be.  

In the next step, the number of points of given intensity is summed and 

normalized to obtain Point Information Gain Entropy (H{):  

H{ = x 	
�L0

�LN
	 x �{
�, ��
�LM

�LN
 

For a given dataset, i.e. image, the ordered tuple of dimensionless α 

coefficient and H{ is a unique characteristic of the image, i.e. each 
image will have a different set to the extent of the precision of the digital 
imaging. As seen from comparing the equations (9) and (10), 

respectively (11), H{  is a measure of the same characteristics of the 
object as the generalized dimension �{. Detailed reasoning why this 
simplification was chosen for practical reasons is beyond the scope of 
this article. Nevertheless, it is beyond doubt that with a given technical 

setup, the set of  H{  for a sufficiently high number of α values is 
uniquely characteristic of the image. Indeed, we may explore whether 

the H{ values could be used as phenomenological coordinates for 
construction of the phenomenological phase space of the multifractal 
image of the BZ reaction.  

The ®{(i) occurrence histogram of images obtained for different α values 
indicates that the set of cumulative variables H�	 is a unique identifyier 

of the image. We may construct a provisional phase space based solely 

on H{  values. There is, however, no guarantee that H{values are 
linearly independent; quite the contrary, they probably are not 
orthogonal for many reasons both fundamental and technical in scope. 
Using statistical approaches such as principal component analysis 
(PCA), we may construct orthogonal spaces which best fit the observed 
dataset [3,4].  

(11) 
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The probability density function may be calculated for the whole 
object/image intensity distribution or for some kind of local 
surrounding. These two approaches differ in principle. In the case of 
using the whole image intensity distribution/approximate probability 
density function, we consider only the “meaning” of the point. This is 
the whole image approach, indicated by the subscript w, which gives 
semantic information. However, when we define some context, we place 
the “meaning” into a certain “context”. This is partly syntactic 
information. We decided to define context by using intensity 
distribution in the cross intersecting the image whose shanks intersect 
in examined point, with the cross approach indicated by the subscript c. 
Thus, we have two algorithms of calculation.  For a detailed description, 
we refer the reader to our previous work [7].  

The probability density functions’ approximations, which we define in 
previous paragraphs, are reflections of the multifractal nature of the 
observed object. We consider them phenomenological variables in the 
same way as, for example, in chemistry the absorbance at a given 
wavelength is used instead of the activity/chemical potential of given 
compound. We do not have any information on the probability density 
function of the processes contribution to observed phenomena in 
experimental self-organizing systems equally well as we do not have 
any information on intensity and nature of molecular interactions which 
determine activity of given compound. In the case of a chemical clock, 
this analogy is very relevant. A discussion of this aspect deserves a 
separate paper. The only thing which will be done here is to use a 
statistical approach to best approximate variables of the system.    

When nothing is known about the appropriate distribution, the best 
choice is to assume the action of the central limit theorem, and expect 
that the normal distribution will be the best choice. We were guided by 
this assumption by choosing the principal component analysis (PCA) as 
the method of multivariate analysis for our system proceeding [4]. 
Adequate expression of the system behavior in the phase space depends 
on coordinates’ transformations and could not be mapped in a way that 
will skew normal distribution. The principal component analysis 
application consists of three steps: (1) normalization of each data-set, 
(2) calculation of the covariance matrix and (3) calculation of principal 
components, i.e. orthogonal coordinates which determine directions of 
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the main variance in the data. The resulting variables, called principal 
components, may be assumed merely as practical descriptors of the 
system. However, the principal components are also the best 
approximation to internal orthogonal coordinates in state space 
approximate to stochastic (macroscopic) variables of which each has 
normal distribution. Thus, we construct a coordinate system in which 
the state function is a plane in multidimensional space. 

 

4. Analysis of the obtained BZ reaction state trajectory 

After all the transformations above are done for a given image, we 
obtain a complex system in the 39-dimensional space (13 variations of 
α parameter in 3 different color filters). One of the advantages of the 
method which we use for multivariate analysis is that this method –
Principal Component Analysis (PCA) –allows us to not only reduce the 
dimensionality of the space to a 5-dimensional space, but also transform 
a set of our data in orthogonal coordinates which generally fits with the 
theory we use. Special arrangement of the data-points in the space of 
PCA-components creates the phenomenological state trajectory of the 
BZ reaction in the phenomenological phase space defined by 
statistically well-defined orthogonal coordinates (Figure 2).  

One of the drawbacks of PCA is that, due to the nature of mathematical 
apparatuses working at the base of the method, we get a distorted 
multidimensional space for the realization of experimental data: each of 
the positions of points in state trajectory is projected onto a plane. This 
can distort the spatial structure of the discovered model. An important 
criterion is that, in the processing of data by the PCA-method, the noise 
is filtered out and the important data signal stays unchanged (sometimes 
useful signal intensity is largely inferior to noise ratio). These 
correlations between each of the PC-components to the original data 
should be found in successful analysis. Total residual and explained 
variances provided by PCA show how well the model fits to the data (in 
our case we analyzed the second one). 
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Figure 2.  The state trajectory of the BZ reaction performed in the Petri dish. Principle 
component analysis of the H{,[	 calculated by the whole image method is presented 

on the left, and principle component analysis of the H{,� calculated by cross method is 
presented on the right. It is possible to notice the differenced caused by the method of 
entropy calculation when you compare syntactic–cross method and semantic–whole 
image method information.  

 

First, we section the state trajectory into clusters. They should reflect the 
change in the overall character of the observed image structure as it is 
clearly observed during the time evolution of the reaction. With respect 
to the inner structure of the phase space, which is only reflected in the 
image, we believe that the state space is partitioned into basins of 
attraction of individual asymptotically stable structures.  In the real BZ 
reaction, it is possible to observe several observable typical states of the 
reaction following each other as the reaction proceeds: first the 
formation of colored spots in the reaction medium, then their growth 
into a series of expanding concentric rings or spirals, the development 
of dense waves, then development of an oscillating pattern, and at last 
the disappearance of the structure. For a more detailed analysis of the 
structure of the system we have conducted nonhierarchical type of 
clustering (k-means clustering analysis) based on certain specific 
distance measurements between the components of the system. We used 
our state trajectory obtained by the principal component analysis. Each 
of the clusters should present a certain state of the system and have its 
own spectrum of values that characterizes it [5]. 

In this practically focused article, we show that in our new 
phenomenological orthogonal space we are able, using k-mean 
clustering method and with the assumption that nearby points belong to 
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the same stage of evolution of the system, to discriminate between 
states. As we do not have any independent measure of the identity of the 
state, the only measure for us was that clusters in the phase space have 
to logically follow each other with only certain possible overlaps in 
intermediate cases, i.e. that they lay on state trajectory of the system. 

 

 

 

 

Figure 3. The developed method of calculating the entropy with the exception of one 
pixel allows us to successfully carry out a cluster analysis of the obtained state 
trajectory and to separate the individual clusters (in this example there are 7) 
corresponding to certain phases of the reaction. 
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We started with two clusters and increased their number and found that 
the minimum number of clusters which satisfies this assumption is seven 
and that using the Hα, c values is more feasible than using Hα, w (see the 
annex 1 for details of the procedure) value. Using this logic, we may say 
that it was experimentally proved that the division of the state trajectory 
into seven states most adequately describes the behavior of the system. 
There are some obvious problems in this analysis. They come mainly 
from the smooth transitions between different states which results in the 
existence of mixed states. Nevertheless, we were able, for example, to 
identify three different states in the late oscillating phase of the reaction 
which were obvious after following expert examination. This is shown 
in the diagrams (Figure 3 and 4) of cluster distribution --- even in the 
course of successfully chosen number of clusters in the distribution, it is 
impossible to avoid some points which may not be assigned to a 
particular cluster. 

The important question is what the origin of this success of data 
classification is. For that we must examine contribution of individual 
components. The result is given in Figure 5, where the spatial 
distribution of ®<.N,[ is depicted. In this way, rare points are emphasized. 
We may analyze the result as a three channel spatially resolved 
colorimetric assay. Obviously, there is a big difference between 
information carried by different channels. The ®<.N,[ mainly emphasizes 
rare points. In the blue channel, these points are located at the contours 
of the object; in the green channels, we see contributions of “smears” 
behind travelling waves; while in the red channel, we see a strong 
contribution of structures inside the objects. From the first sight, it is 
clear that there is nothing like “sick”, “healthy” and “infected” cells 
which are considered in the cellular automata model of the chemical 
clock. 
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Figure 4. Color filter apportionment used not only for plotting 3D construction for 
further computer analysis and model plotting, but also to make more visible some 
details in our image that are sensitive to light wave length. The image processing was 
performed by the software tool CellMarkerSci [9], which permits us to separate a RGB 
image into three components according to three image color channels and change the 
span of observed intensity levels. 

 

The image below (in Figure 5) represents ®�.<,� by which each particular 
point contributes to the overall information in the image of the reaction 
dynamics. The blue channel carries most structural information and was 
thus chosen as an example image. The upper image represents the full 
information about the blue channel for which ®�.< was calculated using 
cross sampling of the image. The central and bottom images show how 
sections from the original image in one blue color channel are 
represented in the image. Large areas, with low ®�.<, represent the noise; 
medium ®�.< highlights edges of the image; and rare, high entropy 
points, represent stripes of chemically different regions in the medium. 

The image represents the ®�.<,� value by which each particular point 
contributes to overall information in the image of the reaction dynamics. 
As the main changes are observed in the blue channel, it carries the most 
information about the shapes of spreading waves (which also have blue 
color), which may be shown by its contribution to discrimination 
between clusters. Thus, as we mentioned earlier, the blue channel was 
chosen as an example image. 
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Figure 5.  Selected regions of different ®�.<,� value. Here, as we utilize a circular vessel, 
the number of relevant points changes, which causes the peak-like appearance of 
individual signals. Points of similar types in similar locations contribute to individual 
peaks. Lines may be separated into groups and examined selectively. 

 

The whole method is prone to technical errors caused mainly by signal 
digitization, image compression, etc. These problems could not be 
discussed here. The success of grouping of image sequence into logical 
states indicates that many of these potential problems are not critical for 
analysis of the complexity of the images with the point information gain 
entropy method. 
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5. Conclusions 

Based on the obtained data, we can conclude that using the proposed 
method point information gain entropy it is possible to classify images 
of dynamic, complex systems. We may construct statistically relevant 
approximations of the trajectory of the observed system through 
phenomenological phase space. It is usually advantageous to utilize this 
approach for considering the context of the point in the image for many 
reasons. There may be “intelligent smoothing” caused by the grouping 
of individual points combined with inaccuracies caused by numerical 
precision. There may also be real differences between the use of 
semantic and syntactic information. In any case, this method allows us 
to automate image classification in a series of evolving or similar images 
which is would be extremely labor-intensive to do manually.  
The application shown here was performed using a prominent example 
of the complex, self-organizing system which, due to natural change of 
parameters, also jumps between two distinct regions of the chaotic 
attractor or even between different attractor types. Principal component 
analysis using a set of ¯{,[ 	component analysis is possible for the 
clustering of similar states, but it does not give any information about 
the possible models. 
In particular, we may say that the phenomenological state trajectory of 
the Belousov-Zhabotinsky reaction may be distinguished into several 
rather clearly separable states. The validity of the observation of one 
image for the calculation of statistical variables, which is behind the 
calculation of generalized dimension Dα, remains an open question. 
Therefore, it is not possible yet to derive any conclusions about the 
internal structure of the observed self-organizing system.  The proposed 
approach requires numerous technical improvements before we may be 
able to draw more in-depth conclusions about the origin of the system 
observation.  
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3.3. Effect of Spatial Constraints on the Self-Organizing Behavior 

of the Belousov-Zhabotinsky Reaction 

 

This chapter is based on Paper III: 

Zhyrova, A., Rychtáriková, R., Náhlík, T., 2016. Effect of Spatial 
Constrain on the Self-Organizing Behavior of the Belousov-
Zhabotinsky Reaction, IWBBIO 2016: Proceedings Extended Abstracts 
on Bioinformatics and Biomedical Engineering, pp. 246-258, ISBN: 
978-84-16478-75-0 (Print). (Book series, conference paper). 

 

ABSTRACT 

The effect of the deformation by the available space’s limitations on the 
self-organizing system evolution space was observed. The common-
known oscillating Belousov-Zhabotinsky reaction was chosen as an 
example of a primitive self-organizing system. As the pattern detection 
method was used, point information gain entropy density calculations 
could be made, which allowed us to determine subtle changes in pattern 
geometry and system states’ identification. Upon the change of 
geometry, we observed changes in duration of reaction initiation phases 
and intrusions in the traveling wave period and shape when the BZ 
system was performed in the space constriction conditions. Transfer of 
the reaction mixture from a circular vessel to the square vessel induces 
the generation of atypical wave evolution. Results indicate that pattern 
formation is independent from actual concentration of chemicals in a 
broad range of concentrations. Structure dilution occurs at the end of the 
process when the reaction mixture is exhausted of the organic substrate 
and bromine oxidant.  

 

INRODUCTION 

The Belousov-Zhabotinsky (BZ) reaction, discovered more than half 
century ago [1, 2] is the most well-known representative of chemical 
self-organization in nature. The chemical system was chosen as an 
object of investigation due to analogues of organizational dynamics 
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provided by the reaction pattern phenomena with ones found in 
biological systems [3]. The result of the chemical oscillation in the thin 
(less than 3 mm) layer of reagents mixture, spread in Petri dish (2D 
space model), is manifested as pattern (chemical waves) formation 
whose geometry changes significantly during the system evolution. 
There is a great variety of shapes’ geometry and their dynamics. The 
literature [4] distinguishes three main states of the BZ system: target 
patterns, travelling waves, and spiral waves. The transitions between 
these states are very blurred and there is as of yet no consensus on a 
logical explanation in the scientific community. There is also no general 
agreement on factors influencing the formation of wave generation 
centers. According to some researchers [5, 6], the initial concentrations 
of the reagents constituting the BZ system play a leading role in the 
pattern dynamic. The most famous model of the BZ dynamics – the 
Field-Koros-Noyes model [7] - reflects these works. From the other 
point of view [8, 9], the diffusion and convection of the reaction volume 
play the dominant role in the pattern shape definition. From the point of 
view of other authors [10], the network connectivity between oscillating 
space groups and its interaction with other waves forms a unique picture 
of the BZ patterns. Results in this paper fit with another popular model 
reaction, the cellular automata [11].  

Only a few works, like [12], explored the influence of space geometry 
on pattern formation, reporting an experiment when decreasing the 
reaction cuvette width caused a change of the chemical oscillation 
regimen from chaotic to periodic behavior. According to the inverse 
Ruelle-Takens-Newhouse scenario [13], the system's behavior 
corresponds to the sequence period-1 → quasiperiodicity → chaos, or, 
as far as the attractors in the phase space are concerned, limit cycle → 
torus → strange attractor.  

This paper aims to shed light on the above questions and on the 
importance of the geometry of space as a guiding factor for the 
predetermination of states of the BZ system pattern dynamic.  Based on 
the results of previous research [14, 15, 16], we are using the 
information entropy changes---in particular the point information gain 
entropy density---as the parameter for characterizing the system 
structure. By consequent multivariate statistical analysis, we are able to 
define system states to the best technically achievable precision. We 
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believe that the work algorithm could be used as a tool for 
characterizing, designing, modeling, and understanding oscillation 
dynamics in nature and may find it to be applicable to such fields as bio-
medical signal analysis, simulation and visualization of biological 
systems, or medical image processing. 

 

MATERIALS AND METHODS 

The oscillating bromated-ferroin-bromomalonic acid reaction was 
chosen for experiments (Belousov-Zhabotinsky reaction recipe 
provided by Dr. Jack Cohen) [17].  The reaction mixture includes 0.34 
M sodium bromate (Penta), 0.2 M sulphuric acid (Penta), 0.057 M 
sodium bromide (Penta), 0.11 M malonic acid (Sigma-Aldrich) as 
substrate and redox indicator and catalyst 0.12 M  1,10 phenantroline 
ferrous complex (Penta).  All reagents were mixed in the previously 
mentioned sequence. Experiments were performed in a specially 
constructed thermostat which included: an aquarium from Plexiglas and 
built-in aquarium base heated by the Low Temperature Circulating 
Water Bath-Chiller. The construction allowed us to adjust the needed 
temperature with inaccuracy of 0.1 °C. During the experiments 
described here, the temperature was 26 °C. 

To create spaces of different sizes and geometry, different experimental 
dishes were used. These Petri dishes included: those with a circular 
shape with diameters of 35 mm, 90 mm, 120 mm and 200 mm (further 
referred as 35 mm Petri dish etc.) and square-shaped dishes of the size 
75 ˣ 75 mm and 30 ˣ 30 mm. The mixing of all reagents was performed 
directly in the dish of the predetermined shape by hand for 1 minute. 

The chemical waves were recorded by Nikon D90 camera in Time lapse 
shooting mode with an interval of 10 seconds between snapshots with 

Exposure compensation + 
�
�  EV, ISO 320, Aperture 

�
N� and Shutter speed 

N
N< second. Image quality was of the NEF 12-bit raw-format provided by 

the camera manufacturing company. As a result of subsequent image 
processing, the original RAW data format was transferred to the 12-bit 
PNG image format without losing data. 
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The experiments’ recording of each particular dish shape and size were 
performed three times. Since the analyzed data showed the same pattern 
dynamics, and to prevent from overflowing this paper with redundant 
information, the results from one experiment for each particular case 
were presented. 

The analytic tool invented by our work team is based on calculation of 
the Renyi entropy gain/loss for each pixel in single image [15]: 

h{
w\� = 	 11 − � lnxw\{
|

\LN
 

where parameter α – the Renyi coefficient -- indicates the information 
cost with regards of the of the anticipated and examined probability 
distribution. Renyi entropy provides information characteristic of the 
multifractal system and is included in the generalized dimension 

measure  �° =	 limq→<
m§
.
q��¨±
q�  , which represents the information needed to 

specify a point on the set of accuracy w\. Renyi entropy, unlike Shannon 
information entropy, has a measure that is much more flexible due to the 
parameter α. From the practical point of view for measurements in any 
multifractal structure, we may use �{,�,� to gain multiple parameters (i.e. 
measures) representing uncertainty corresponding to a given reference 
distribution. 

To examine the point information contribution, we calculate the point 
information gain �{,�,�  as a difference between the information content 

of a given distribution with and without the examined point:  

�{,\
�, �� = 	 11 − � lnxw\,�,�{
!

\LN
−	 11 − � lnxw\{

!

\LN
 

where k is number of elements in the discrete distribution, w\{ and w\,�,�{  

are the probabilities of occurrence of given intensity for given point x, y 
coordinate of camera pixel without and with the examined point. By 
changing the α parameter we focused on the probability distribution of 
one type of the events of interest while suppressing the other. Just to 
have a general overview of the examined event, we used thirteen α 
values: 0.1; 0.3; 0.5; 0.7; 1.0 (Shannon information entropy case); 1.3; 

(1) 

(2) 
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1.5; 1.7; 2.0; 2.5; 3.0; 3.5. To collect the total information from a 
connected series of events, we determine point information entropy v{ 
as a sum of all �{
�, ��, and point information entropy density �{ as a 
sum of all  �{
�, �� levels found in the image:  

v{ =	xH\�{,\
!

\LN

�, �� 

�{ =	x�{,\
!

\LN

�, �� 

where H\ is number of points in the examined distribution. The v{  may 
be understood as a multiple of the average of �{
�, ��, while the �{ 
could be interpret as average gain of the phenomenon. From a practical 
point of view, �{ gives the same emphasis to each different element of 
the distribution, is more sensitive to changes, and is thus more useful. It 
is also a principally different concept from standard entropy while v{ is 
merely its variation. 

Obtained spectra �{ vs. α were used to draw the BZ system state 
trajectory. We obtained a point in 13-dimensional space in which the 
structure of examined image is defined by  �{ values. The original space 
is in general not orthogonal. From these values, we did principal 
component analysis and obtained an orthogonal coordinate space whose 
first three principal components are reported on Figs. 2-7. The different 
states of the chemical system evolution were recognized by k-mean 
clustering analysis performed for each experiment separately. Since the 
patterns in the chemical system evolve in the strict order: target patterns 
→ travelling waves → spiral waves, the sequence number of the cluster 
ought to associate with certain reaction stages for the different 
experiments and the charted state trajectory time synchronization was 
obtained for all of the performed experiments due to this experimental 
object properties.  

In the selection of the optimal number of clusters, we were guided by 
knowledge from literature [4], according to which at least three different 
states should be presented in the BZ system (the case of smaller dish 
shapes we had used in experiments) and also by our assumption that in 
case of increasing the reaction space,  the proper conditions for co-

(3) 

(4) 
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existence of the intermediate system stages where both of the pattern 
regimes could be present in the same time on the reaction surface (the 
case of a bigger size experimental dishes) will be discovered. However, 
the crucial role in the number of k centers definition was played by the 
experimental image series time separation on the cluster dispersion 
histogram: for seven cluster domains, it presented the most logical 
scene. Therefore, the number of clusters in our method was adjusted 
empirically and for the majority of our experiments (with the exclusion 
of the smallest Petri dish with diameter 35 mm, and the square dish with 
side 30 mm, where the area limitation came into effect) was chosen to 
be seven. The clustering separation picture mentioned above was 
repeated with negligible variation for all repetitions of the experiments 
from the same dish shape and size cases. 

 

RESULTS AND DISCUSSIONS 

Circular reaction vessel 

The space geometry and area size effect on pattern formation during BZ 
reaction performance could be observed by the naked eye (see Fig. 1). 
The presented reaction images demonstrate the simple logic: the more 
space available for the developing system, the more pattern diversity is 
observed in the system. The number of repeated experiments showed 
that in the cases of the smallest Petri dish and smallest square dish, the 
spaces were not sufficient for long-term generation of circular 
expanding waves (target patterns). The space-limited oscillation system 
couldn't persist in a travelling wave’s state for a long time and jumped 
immediately to the next state (spiral wave formation). The calculation 
results below give numerical values for each case of geometrical 
organization. With space area increasing, there is space and time for the 
formation of a higher number of wave initiation centers’ formation 
caused by the fact that the next phase does not start only in the vessel 
interior but predominantly at its curvy borders. For example, in the 
biggest Petri dish (200 mm), more than five target pattern centers could 
exist. Another case is the pattern formation in the dish of 'non-standard' 
square geometry constrictions. The corners play the role of wave 
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initiation centers from which the waves proceed to the centroid of the 
dish (cross point of the square diagonals).  

 

Figure 1. BZ reaction pattern formation response to the change of space geometry 
circle → square and area: extended Petri dish (upper row), extended square dish (lower 
row). 
 

Using the point information gain entropy density, �{, spectrum it is 
possible to classify the state evolution of the structure formation. In 
comparison with the 'classical' size Petri dish, the one with the smaller 
diameter (35 mm) produced the smaller number of clusters in the Cluster 
dispersion plot (see Fig. 2 and Fig. 3). This indicates that some of the 
states did not evolve to the extent detectable by the analysis and were 
overcome by the next state.  
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Figure 2. �{  three major components of the principal component analysis of spectral 
values calculated from images captured on the trajectory BZ wave evolution in circle 
Petri dish with diameter of 35 mm (left), cluster dispersion of the presented data series 
(right) and corresponding characteristic images (bottom, numbered). 
 

The reaction phase in which the target pattern evolves through the 
available space (recorded on Fig. 3, image 2) is absent in the small 35 
mm Petri dish. Also, the relative length of different phases is different. 
In the smallest 35 mm Petri dish, 19% of evolution time accounts for 
wave initiation whereas in the 'classical' 90 mm one it is only 8%. The 
length of the spiral wave phase in 90 mm dish is much longer than in 35 
mm Petri dish (50% versus 38%). Both these values are, however, 
obscured by potentially incorrect cluster assignments, respectively 
cluster merging in the 35 mm Petri dish. In the 35-mm dish, the chemical 
oscillation damping phase takes a longer time: 30% of the whole 
reaction time in contrast to 21% for the 90 mm Petri dish. 
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Figure 3.  �{  three major components of the principal component analysis of spectral 
values calculated from images captured on the trajectory BZ wave evolution in circle 
Petri dish with diameter 90 mm (left), cluster dispersion of the presented data series 
(right) and corresponding characteristic images (bottom, numbered). 

 

Upon increasing in size from a standard Petri dish (90 mm) to that of 
120 mm in diameter (Fig. 4), the phase for the target pattern formation 
was further elongated (22% vs. 20% of the whole reaction time in the 
“classical” Petri dish). The effect is obviously caused by the placement 
of centers far enough from each other and from the dish border to allow 
longer evolution until the fronts reach each other, merge, and eventually 
give rise to spiral waves. Spiral waves arise from wave front fractures 
which result in traveling waves’ overlap. The bigger area offers more 
suitable conditions for the intermediate BZ reaction state elongation, 
where there coexist target patterns and spiral waves (18% vs. 9% for 90 
mm case). The minor decrease of the oscillation damping time (18% vs. 
“classical” 21%) could be explained by the consumption of chemicals 
which, in the Petri dish, is independent from the wave evolution phase-
-- and the longer the waves evolve, the shorter the observation of the 
"dilution" effect only.   
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Figure 4. �{  three major components of the principal component analysis of spectral 
values calculated from images captured on the trajectory BZ wave evolution in circle 
Petri dish with diameter 120 mm (left), cluster dispersion of the presented data series 
(right) and corresponding characteristic images (bottom, numbered). 
 

The trend of elongation of the initial period continued in the 200 mm 
Petri dish (see Fig. 5) (19% in comparison to 8% resp. 3%), as did the 
traveling waves/spiral waves phase: 34% vs. 18% resp. 9% for 11304. 
The cluster analysis allowed us to separate the later stage into two 
clusters: 20% of the total reaction time was with travelling wave 
domination over the spiral wave and 14% for the spiral wave prevalence. 
The wave initiation phases, in this case, are equal to the smallest Petri 
dish results (19% of total reaction time), but the reason is different: in 
the 35 mm Petri dish, the wave initiation foci were suppressed by the 
space limitation, namely the border effects, and the cluster is merged 
with the next state. The biggest reaction area (200 mm) provided the free 
space for centers’ generation. Then it took more time to fill the provided 
space until the dense waves begin to evolve at borders. In other words, 
in the 200 mm Petri dish, the target pattern generation was freely 
evolving while in the 35 mm it was not observed and merged with the 
next phase. The resulting longer evolution indeed resulted in higher 
consumption of chemicals before the final phase was reached and the 
damping phase was correspondingly shorter, 16% vs. 18% resp. 21% 
for smaller dishes. 
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Figure 5. �{  three major components of the principal component analysis of spectral 
values calculated from images captured on the trajectory BZ wave evolution in circle 
Petri dish with diameter 200 mm (left), cluster dispersion of the presented data series 
(right) and corresponding characteristic images (bottom, numbered). 

 

Square reaction vessel 

The BZ waves’ behavior changed even more dramatically when we 
went from the circular to the square dish (see Fig. 6 and Fig. 7). Space 
restriction led to wave formation at dish corners. As shown in Fig. 6 
image 1, in the bigger 75 ˣ 75 mm area at least four centers of wave foci 
could co-exist, while the smaller 30 ˣ 30 mm space provided space for 
only two wave initiation centers (on Fig. 7 image 1). Also, it should be 
noted, that waves from foci in the square dish did not produce perfectly 
circular target patterns, but rather ellipses with curly borders. This 
circular geometry collapse is obviously an effect of the square corners 
but the nature of the border effect does not have any simple description. 
Also, in the circular dish, there is an observable effect of the borders, in 
particular for the dense waves’ evolution, but it is much less dramatic 
since the dish is circularly symmetric. The presence of additional 
geometric constraints in the reaction medium pushes the system to 
evolve to the spiral wave phase faster than in the circular dish, 
accounting for 22% of the whole reaction time in the 90 mm Petri dish 
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and 13% in 30 ˣ 30 mm. In the 75 ˣ 75 mm square dish, the spiral phase 
was completely absent. 

 

Figure 6. �{  three major components of the principal component analysis of spectral 
values calculated from images captured on the trajectory BZ wave evolution in square 
square area 75 ˣ 75 mm (left), cluster dispersion of the presented data series (right) and 
corresponding characteristic images (bottom, numbered). 
 

Like with the circular-shaped dishes, in the smaller square dish we could 
not detect several stages of the wave formation (the algorithm identified 
only four clusters for 30 ˣ 30 mm dish, see Fig. 7). The wave initiation 
phase took almost the same time for the both cases: 20% of the whole 
reaction time for the 35 mm Petri dish and 21% for the 30 ˣ 30 mm 
square dish. The early phase travelling waves were present for 13% of 
all reaction time; their fronts meet along the diagonal of the square. For 
the 75 ˣ 75 mm dish, we observed elongation of the spiral wave phase: 
62% compared to 32% for 30 ˣ 30 mm dish. The algorithm determined 
five different clusters for spiral wave phases in the 75 ˣ 75 mm square 
dish (image 2, 3, 4. 5 and 6 in Fig. 6). The damping phase of the BZ 
reaction took place in the 75 ˣ 75 mm dish for 18% from the whole 
reaction time, whereas in the 30 ˣ 30 mm dish it took 34% of the total 
reaction time.  
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Figure 7. �{   three major components of the principal component analysis of spectral 
values calculated from images captured on the trajectory BZ wave evolution in square 
area 30 ˣ 30 mm (left), cluster dispersion of the presented data series (right) and 
corresponding characteristic images (bottom, numbered). 

 

CONCLUSIONS 

Presented results are detailed analyses of one experimental series of the 
BZ reaction upon space constraints. In order to judge the free evolution 
of the system, we must examine the first the Petri dish of 200mm in 
diameter. In this case, there were 6 different stages of the evolution of 
structures: (1) phase of formation of centers, (2) phase of free evolution 
of concentric target patterns, (3) merging of target patterns, (4) 
coexistence of dense waves with target patterns, (5) breakage of dense 
waves into spirals, and (6) the wave damping phase. In the smaller 
circular vessels, some of the phases were overcome. In the smallest Petri 
dish of 35 mm in diameter, we detected only four phases and the last 
phase (damping phase) was the longest. The damping phase seems to be 
caused by the decay of the chemical energy while the other phases seem 
to be independent of the time of chemical decay. In the square dish, there 
was an undulation of the wave front and an evolution of waves from 
corners.  
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One obvious observation is the strong influence of borders. The more 
the border is curved, the more it initiates evolution of waves. In the 
circular dish, dense waves evolve; in the square dish the border seems 
to influence the whole dish. The narrower and more curved the borders 
are, the more the early phase of isolated target patterns is shortened and 
overcome by dense waves and spirals. The shortening of early phase 
results in elongation of the dampening phase. It thus seems that structure 
formation is to a large extent independent of the chemical composition 
of the vessel. This conclusion is supported by the observation of the 
possibility to re-start the structure formation form the early phase by re-
shaking the vessel [17]. 

 

Certain explanations may be given by comparing these results with 
those of the multilevel cellular automata model [11]. In this case, it is 
anticipated that the existence of a firm rectangular structure of cells in 
which the reaction occurs. Formation of such structures in non-linear 
dynamic systems such as Bénard cells [18] is rather well known. In the 
case of the BZ reaction, we only anticipate that a regular waves’ 
structures is maintained by chemical energy. In a large circular Petri 
dish, this structure is nearly ideal. The narrower the space is and the 
more curved the edges are, the more this ideal structure is compromised.  
The cellular automata concept supports the opinion that even the 
trajectories undergoing very unnatural intermediate structures end in a 
limited set of a mixture of spirals and waves like that of phase 5 in the 
experiment. The limited set is a very stable structure with a rather broad 
zone of attraction. 

We thus propose that the proper model of the BZ reaction which 
explains qualitatively all observations is the excitable media / multilevel 
cellular automaton operating on a regular structure induced by chemical 
energy. The spatial constraints induce numerous ignition points, namely 
at vessel borders. The resulting quickly evolving dense waves overcome 
the free evolving target patterns and shorten the time of the system 
evolution to the limit set. The regular structure is maintained as long as 
the chemical energy is sufficient and its collapse is to a large extent 
independent from the excitable media operation. For this reason, the 
wave damping phase is longer in cases in which the evolution is shorter. 
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3.4. Recognition of Stages in the Belousov-Zhabotinsky Reaction 

Using Information Entropy: Implications for Cell Biology 

 

This chapter is based on Paper IV: 

Zhyrova A., Rychtáriková R., Štys D., 2017. Recognition of Stages in 
the Belousov-Zhabotinsky Reaction Using Information Entropy. 
IWBBIO 2017, Proceedings, Part I, Lecture Notes in Computer Science, 
10208, Springer, Switzerland, 2017, pp. 335–346, ISBN: 978-3-319-
56147-9 (Print) (SJR 2016 = 0.315). 

 

ABSTRACT 

A common property of a living organism as a non-equilibrium dynamic 
system is self-organization, including the evolution of this self-
organized system through distinct consecutive stages. In this article, the 
properties of dynamic self-organization are examined on a primitive 
model of life -- the oscillating Belousov-Zhabotinsky (BZ) reaction. 
This system is sensitive to the changes of external conditions by 
dynamic reorganization of chemical waves. The generated patterns 
bring the information on history of the reaction evolution. We performed 
the pattern classification using calculation of the point information gain 
entropy density followed by multivariate statistical analysis. It was 
proved by numerous experiments that each obtained cluster is related to 
a unique reaction stage with characteristic concentrations of the 
reactants. The reliability makes this method promising for application 
to the recognition of stages in variety of complex systems. The results 
obtained via visual inspection of 6 parallel image series of the BZ 
reaction together with their statistical analysis approximate cell 
physiology during development and differentiation of tissues - a small 
change in the initial conditions leads to a different development of the 
cell population. This finding also explains a low reproducibility of 
measurements of biological systems.  
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INRODUCTION 

The Belousov-Zhabotinsky (BZ) reaction, which is named after the 
scientists who discovered it [1, 2], is a cascade of more than 80 chemical 
reactions whose starting mechanism and relationship between its 
components remain still unknown. The hallmark of this chemical 
process is its ability to change the direction of reaction in the precise 
frequency which leads to a periodic oscillation. When a thin layer of the 
reaction mixture is placed onto a vessel, the BZ reaction gives color 
patterns (chemical waves). These patterns have a complex geometry that 
changes over time in a distinct order (first analyzed by Winfree [3]) and 
their shape and duration depend on the actual composition of the 
reaction mixture and shape of the reaction vessel [4, 5]. The time 
evolution of chemical waves [6, 7] proceeds in the sequence from 
circular target patterns to the variety of spirals (a simply rotating spiral, 
a meandering spiral, a renascent stable spiral, a convectional unstable 
spiral, etc.). At the end of the reaction process, when the main reagents 
are exhausted, chemical structures are diluted (waves bleach and 
disappear at all). 

The choice of the BZ reaction as the object of investigation was not 
accidental, since the observed chemical reaction flows have all initial 
properties of life objects, such as: dissipative structure [8], ability to self-
organization [9] and regimes of periodicity [10]. Many processes in 
nature could be understand from the point of wave transformation view, 
e.g., spiral patterns of Dictyostelium molds [11], cardiac muscle [12] or 
chicken retina [13]. 

That make the BZ reaction an extremely valuable pilot object for 
studying the properties of life [14]. In terms of bio-engineering, it means 
that cause-effect models explaining the core processes pushing the BZ 
system to change its states could be used for the interpretation of the 
transformation circumstances underlying the more complex forms of 
life, like cells or biological species. 

In this paper, we describe the BZ system using a variable point 
information gain entropy density [15], which classifies multifractal 
scaling properties of a complex structured system. The found pattern 
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sequence as well as the duration of individual stages are similar but not 
identical to properties of living organisms [16]. 

 

MATERIALS AND METHODS 

Experiment Setup 

The experiments were performed with oscillating bromate-ferroin-
bromomalonic acid reaction (a recipe of the Belousov-Zhabotinsky 
reaction provided by Dr. Jack Cohen [17]). The reaction mixture 
includes 0.34-M sodium bromate, 0.2-M sulphuric acid, 0.057-M 
sodium bromide (all from Penta), 0.11-M malonic acid (Sigma-Aldrich) 
as substrates and a redox indicator and 0.12-M 1,10-phenanthroline 
ferrous complex (Penta) as a catalyst. All reagents were mixed in the 
above-mentioned sequence. The experiments were performed in a 
specially constructed thermostat which consists of a Plexiglas aquarium 
and a low-temperature circulating water bath-chiller. The temperature 
during the experiments was kept at 27 °C. 

The reaction mixture was placed onto a circular Petri dish with the 
diameter of 90 mm (this type of vessel was chosen because the majority 
of experiments described in the literature were performed in it) and 
mixed using a laboratory three-dimensional orbital shaker TL 10 - 
Edmund Bühler GmbH (Fisher Scientific) under 14 rot/min and angle 
of tilt equal 5° counterclockwise for 2 minutes. The experiment was 
repeated six times. 

Image Processing and Data Calculation Performance 

The chemical waves were recorded by a Nikon D90 camera (setting up: 

Time-lapse shooting 10 s/snapshot, Exposure compensation +1
N
� EV, 

ISO 320, Aperture 
�
�, Shutter speed 

N
�< s). The original 12-bit NEF raw 

image format was losslessly transformed to an 8-bit PNG format (using 
a Least Information Loss Converter [18]) and a non-informative image 
background was cropped using a MATLAB software [19]. 



 

 104 

 

Such-treated images were further processed using an Image Info 
Extractor Professional software [20]. The analytic tool for classification 
of image series was derived from the Rényi entropy: 

h{ =	 11 − � lnxw\{
M

\LN
 

where the parameter α -- the Rényi coefficient – α ≥ 0, α ≠ 1, indicates 
the information cost with regards to the examined probability 
distribution O
w\�. Variable w\ denotes a discrete probability of a given 
phenomenon i, i.e., in our case, a probability of occurrence of a given 
intensity in the center of the intersection of the row and column pixel 
grid of an image (so-called cross type of information surroundings). The 
total number of intensity levels in the histogram which was created from 
the intensities on this cross is marked as m. The Rényi entropy provides 
information characteristics for the multifractal system and is included in 
the measure of the generalized dimension:  

�° =	 limq→<
h{
��ln
�� 

where l is a measure of a spatial element. In the case of an image, the 
spatial element is a camera pixel and is fixed. 

To examine the point information contribution, we calculate the point 
information gain �{,�,� as a difference between the information content 
of a probability distribution of occurrence of the intensity i in the 
histogram which was created from pixels around the point at the 
coordinate (x, y) without w\,�,�	  and with w\ a point at the coordinate (x,y):  

�{,�,� = h{ −	h{,�,� =	 11 − � lnxw\,�,�{
!

\LN
−	 11 − � lnxw\{

!

\LN
=	 ln
∑ w\,�,�{!\LN∑ w\{!\LN � 

In the Image Info Extractor Professional software, the natural logarithm 
ln is supplied by the binary logarithm log� 	which gives the information 
contribution of the given pixel (x, y) in bits.  

Unlike the Shannon information entropy (which is a special case of the 
Rényi entropy for α = 1 and is derived for the normal distribution), the 
α-parameterized Rényi entropy in the computation of �{,�,� enables to 

(1) 

(2) 

(3) 
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specify multifractal structure of the distribution (the intensity histogram) 
unambiguously via usage of a multiple of the Rényi coefficients α which 
gives spectra �{,�,� vs. α. By changing the parameter α, we can focus on 
the probability distribution of one event of interest while suppressing 
the other. In order to have a general overview on the multifractality of 
the examined point, we calculated the  �{,�,� for thirteen α: 0.1, 0.3, 0.5, 
0.7, 1.0 (the Shannon information entropy), 1.3, 1.5, 1.7, 2.0, 2.5, 3.0, 
3.5, and 4.0. 

To collect the total information of the image, we determine a point 
information entropy v{ as a sum of all �{,�,�:  

v{ =	xx�{,�,�
&

�LN

¡

�LN
 

where s and r are dimensions of the image (i.e., numbers of pixels in the 
rows and columns, respectively). The v{ may be understood as a 
multiple of the average �{,�,�  by the total number of pixels. The full 
specification of each series image was achieved via calculation of the 
vectors v{ for each color image channel. 

The following cluster analysis (k-means algorithm, squared Euclidian 
distance) of the obtained spectra v{ vs. α using the Unscrambler X 
software [21] recognized different evolution states in the chemical 
system. The optimal number of k = 7 clusters was defined empirically 
by the comparison of the cluster dispersion histogram for different 
numbers of clusters with the visual inspection of the image series. Based 
on the calculation by the cluster analysis of the duration time of the 
unique BZ reaction phases, the correlation analysis of the examined six 
experiments was performed. 

 

 

 

 

 

(4) 
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RESULTS AND DISCUSSIONS 

The course of reaction was very similar for all experiments: 

1. a short latent period, no longer than 400 s, in which no wave 
exists; 

2. formation of (usually no more than two) wave foci, which further 
spread over the available reaction surface; 

3. frequent growth of drifting waves; 
4. interaction of wave fronts followed by initiation of formation of 

spiral waves in the points of wave breaks; 
5. evolution of the spiral waves, which occupy the two-thirds of 

total reaction time; 
6. damping of chemical oscillation, which manifests itself in 

bleaching of waves and turning the reaction system into the 
transparent blue color; 

7. the end of the reaction, when it is not able to register any change 
of color of the reaction medium (it is homogeneously blue). 

The damping phase seems to be a result of the decay of the chemical 
energy, while the other phases seem to be independent of the time of 
chemical decay. Mainly in Experiment 1 and 4, the waves started to 
propagate as concentric structures of irregular geometry at the borders 
of the dish and further converged into the center of the dish. The border 
effect also led to the formation of radial patterns with sprained waves at 
the edges of the vessels followed by their compaction at the center of 
the dish. The used type of mixing of reagents (Sect. 2) formed a force 
vector which caused the drift of spiral centers in a counterclockwise 
direction. Also, it should be noted that bleaching of waves started in the 
center of the reaction space, where the processes such as evaporation of 
the organic substrate and bromide oxidant (formation of bubbles) were 
more intensive. This prolonged the attenuation of formation of waves 
placed near the dish boundaries. Indeed, the reaction process itself 
represents a transition from one (red reaction surface) to another 
(complete blue surface) state through many quasi-states (target patterns, 
circular waves, spiral waves, etc.). The samples of photos from 6 parallel 
experiments are shown in Fig. 1 (the latent reaction period and the end 
of the BZ reaction is not shown). 
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Fig. 1. Key moments in the dynamics of pattern formation in the course of the 
Belousov-Zhabotinsky reaction (6 experimental repetitions). The serial number of the 
image indicates the remoteness of the recorded picture on the initial reaction time. All 
reaction courses exhibit a general law of wave formation from organized circular 
waves to chaotically oriented spiral waves (from left to right). 

 



 

 108 

 

Experiment 1: Experiment 1 had the longest latent period from all 
experiments (200 s). The waves started to be formed at the dish borders 
(Img. 23) and spread along the perimeter to the dish center (Img. 83). In 
agreement with literature [6], due to the spatial constrains, the spirals 
started at the place of interaction of wave fronts (Img. 173). Diffusion 
processes in the reaction medium promoted rotation of waves, whose 
centers also drifted anticlockwise through the reaction system under the 
influence of mixing. After ca. 3000 s, the oscillation damping started 
(Img. 313) and blue waves broadened till the end of reaction. Even after 
5000 s, some weak oscillations were still observed at the dish border 
(Img. 543). It took the reaction system 2000 s to come to totally blue 
stage, when no waves were observed. 

Experiment 2: In contrast to Experiment 1, Experiment 2 started after 
a very short latent period (10 s), when a circular wave center appeared 
relatively far from the border (Img. 8). The circular wave fronts from 
this initiation center merged (Img. 83) with those generated at the dish 
border. In the same ways as in Experiment 1, two waves of different 
zones of package (more dense and less dense) were formed followed by 
the phase of spiral waves (Img. 173), the phase of degradation of pattern 
structures (Img. 313) and the complete attenuation of the reaction due 
to the exhaustion of the main components (Img. 433). It took 3300 s 
until the reaction was completely finished. 

Experiment 3: As in Experiment 2, the first wave focus appeared far 
from the dish border (Img. 8), whereas the second one was set at the 
border. After that, both circular wave fronts spread towards each other. 
The oscillation center was very stable and kept generating the waves 
(Img. 83) for more than 900 s. More and more wave fronts were 
evolving and interacted each with other which resulted in their breakage 
and generation of spiral waves (Img. 173). Spiral waves have more force 
to shift traveling waves when concurring in the space. The spiral waves 
evolved to chaotic patterns (Img. 313), which finally ended with the 
oscillation attenuating (Img. 543). The time of damping phase was equal 
to Experiment 1 (ca. 200 s). 

Experiment 4: As in Experiment 1, Experiment 4 exhibited a long latent 
period (130 s), when the patterns started to form from the dish border 
(Img. 16). After that, generated circular waves converged into the center 
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of the dish (Img. 83). As in the previous observations, the spiral waves 
appeared as a result of the interactions of wave fronts (Img. 173). The 
following transformation of spirals to the offensive of the chaotic 
reaction (Img. 343) was finished by the damping of the chemical 
oscillation (Img. 433). Like Experiment 2, the reaction was completely 
finished after 330 s. 

Experiment 5: The course of Experiment 5 almost copied Experiments 
2-3: after a 70-s latent period, two wave foci appeared --- one focus near 
the center of the dish and the second focus at the dish border (Img. 11). 
Such a distribution of the wave centers (Img. 83) led to the wave fronts 
forming two equivalent spatial cluster with more densely packed waves 
and less dense ones. The following phase of spiral waves (Img. 173) was 
replaced by the phase of chaotically oriented patterns (Img. 313). As 
registered in Experiments 2 and 4, the oscillations finished in 330 s when 
the first manifestations of the reaction damping were observed (Img. 
433). 

Experiment 6: The initial period in Experiment 6 took only 30 s, when 
two wave foci appeared --- one of them near the dish border and the 
second one at the dish border (Img. 8). Due to their short distance, these 
waves merged soon into a wave front which was further propagated 
from one edge of the reaction vessel to the opposite one (Img. 83). 
Spreading of the joint wave fronts avoided the breakage of waves for a 
long time and delayed the occurrence of the phase of spiral waves (Img. 
193). Compared with the previous experiments, the onset of the 
chaotically oriented patterns (Img. 433) as well as the beginning of the 
oscillation damping (Img. 573) were observed later. This reaction 
exhibited the shortest period of oscillation damping (1730 s). 
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Fig. 2. Time distribution of the reaction phases in the Belousov-Zhabotinsky reaction 
determined using cluster analysis of vectors of point information gain entropy (6 
experimental repetitions). 
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In most observed cases (four from six), initial reaction centers were 
placed far from the dish border. In these cases, after a short latent period, 
circular waves were smoothly developed. However, if the chemical 
waves started at the dish border, the course of the BZ reaction underwent 
significant changes. These "outlying" experiments did not correlate with 
the others as well as between each other. It thus seems that the formation 
of structures is to a large extent independent of the chemical 
composition in the vessel. This conclusion is supported by the 
observation of (1) re-formation of structures after re-starting a finished 
experiment by re-shaking the vessel [17] or (2) the change of the course 
of the BZ reaction in dishes of different geometry or size. For instance, 
compared with experiments in a 200-mm P. dish [25, 26] in which 
waves are generated mainly from the center of the dish, the results 
described here are more strongly influenced by borders and initial 
reaction centers are created more often at the dish border. 

The experimental observations of the stages of the BZ reaction are 
consistent with cluster analysis received from information-entropic data 
(Fig. 2). The plots of cluster dispersions show clear division of reaction 
patterns into stages as follows: 

1. wave initiation, which is dependent on the length of the latent 
period (Imgs. 1-30), 

2. target waves, which completely fill the whole reaction space 
(Imgs. 31-150), 

3. the spiral waves’ onset, which is the same for most of the 
experiments, regardless of the position of the initial point of 
reaction (Imgs. 150-200, the beginning of this cluster is marked 
by a dashed line), 

4. spreading of the spiral waves across the reaction space (Imgs. 
200-550), and 

5. the final stage of reaction oscillation damping, which occurs in 
the same time for all experiments as well (Imgs. 550-766, the 
beginning of this cluster is marked by a dash line). 
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The distinction in the initiation chemical waves observed in the 
experiments (Fig. 1) is also reflected in the plots of clusters (Fig. 2). 
When waves started from the dish border (Experiments 1 and 4), the 
latent period took a longer time, but phases of mixture of spirals and 
waves came faster - this is presented by two clusters. If the wave foci 
appeared far from the dish border, the variety of evolved patterns created 
several (up to four in Experiment 6) clusters. Anyhow, as noticed in the 
experiments as well as in the clustering of experimental data, in all 
experiments, the stage of spirals and waves began at the same time 
irrespectively of the position of the reaction initiation centers - in all 
plots, the beginning of a new cluster took place in Img. 150 (Fig. 2). 
Cluster analysis allocated evolution of spiral waves to several groups: 
The first cluster is associated with spiral wave deployment and diffusion 
between the BZ patterns, when the second cluster corresponds to the 
time of switching the phase of spirals and waves to chaotic structures 
(cf. Imgs. 173 and 313 in Fig. 1). The phase of oscillation damping is 
the longest stage in all examined experiments. It occupies the biggest 
cluster in the plots of clusters (Fig. 2) and started approximately at the 
same time after beginning of the reaction (dash line through Img. 550 in 
Fig. 2). The end of the reaction, when no waves were detected, was 
assigned to the same cluster as the latent period (Experiments 2, 3, 5, 
and 6). Due to the used calculation approach (i.e., cross point 
information gain), the distribution of the clusters does not depend on the 
predominance of blue or red color in the images, but on the presence and 
shape of the investigated patterns. 

The similarities between all six experiments were assessed by 
correlation analysis of the lengths of each reaction stage that was 
estimated by the k-mean clustering (Tab. 1). All experiments showed 
mutual significant correlation at the significance level p < 0.05 with 
Pearson's coefficients from 0.4585 (experiments 1 and 2) up to 0.9636 
(experiments 3 and 5). Obtained correlations as well as the visual 
inspection of the recorded data confirm our expectation: the way how 
the chemical waves started to spread change the course of the BZ 
reaction drastically. 
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The features detected in the experiments can be interpreted in terms of 
a proper model of the BZ reaction -- an excitable medium of multilevel 
cellular automaton, which explains qualitatively all observations and 
simulates an increase/decrease of chemical energy of regular structures 
[26]. The regular structure is maintained as long as the chemical energy 
is sufficient and its collapse is to a large extent independent of the 
operation of the excitable medium.  

 

Tab. 1. Pearson's correlation coefficient for 6 image series of the 
Belousov-Zhabotinsky reaction (evaluated for vectors of clusters 
obtained using vectors of point information gain entropy) 

Experiment 1 2 3 4 5 6 

1 1.000      
2 0.4585 1.000     
3 0.6049 0.5615 1.000    
4 0.6098 0.5742 0.9241 1.000   
5 0.5412 0.5574 0.9636 0.9051 1.000  
6 0.6160 0.5284 0.9440 0.9140 0.9538 1.000 

 

For this reason, the wave damping phase is longer in cases in which the 
evolution of waves is shorter. In the simulation, the limit set (the last 
phase) of mixture of spirals and waves is very similar to phase 5 in the 
experiments. The limit set is a very stable structure with a rather broad 
zone of attraction. 

 

 

 

 

 

 

 



 

 114 

 

CONCLUSIONS 

The paper proposed a new approach for a non-invasive detection of 
developmental phases followed by modeling of the state trajectory of a 
complex biological object. The transformation of the α-dependent 
variables point information gain entropy, which correspond to the 
visible structure of the investigated object, into the space of orthogonal 
principal components describes macroscopic behavior of a self-
organizing system and identifies each development state by a cluster on 
the charting state trajectory. This mathematical tool for image 
processing was tested on the series of photographs of the BZ reaction as 
a primitive simulation of life, with further plans to adopt the method for 
a wide range of biological phenomena. The obtained models of different 
modifications of the BZ reaction lead to the conclusion that application 
of the information-entropic approach to the image processing gives 
enough specific characteristics for plotting clear mathematical model of 
the self-developing system and for the automatic recognition of unique 
states of the investigated process. 

The developed procedure with necessary future updates can be used for, 
e.g., an inexpensive, automatic, contactless recognition of the cell cycle 
states [23, 24, 27, 28]. This will bring a major contribution to 
understanding of the reasons of cell cycle abnormalities that lead to 
malignization and genesis of cancer, which is a key objective of modern 
medicine, biology, and related sciences. Under the comparison with 
other methods, which are traditionally used in cell biology, the data 
processing using the information-entropic approach is much faster and 
precise than monitoring of cell growth by a human operator. 

Structures which are similar to the final mixture of spirals and waves 
were observed in many free-evolving self-organized objects. This fact 
indicates that these structures are results of many - qualitatively similar 
- processes. When a structure is mechanically constrained, the pattern is 
changed significantly and the evolution of the structure can be changed 
up to the level that some stages do not exist. In other words, the 
properties normally attributed solely to the living systems can be 
observed in simple chemical mixtures.  
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Based on the correlations of repetitions of the simple self-organizing BZ 
reaction, the results discussed in the paper also demonstrate a relatively 
low level of reproducibility of measurements in biological systems. 
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CONCLUSIONS 

 

The oscillating Belousov-Zhabotinsky chemical reaction is an easily 
performable example of self-organization. It manifests in the form of 
colored chemical patterns which could be straightforwardly recorded 
and estimated by available photographic technology. A series of 
reaction transformations leading to the formation of chemical waves 
have been investigated by scientists for more than 50 years. As I had 
shown in the Introduction, self-organization of the BZ system and its 
adaptation to the changing parameters of the external environment is 
still not fully understood.  

The purpose of this PhD thesis is to measure and to capture the pattern 
evolution in the B-Z reaction using the modern digital imaging 
technology and to analyze the chemical waves without a-priori 
assumptions using the most general approaches: Rényi entropy, 
multifractality – whose measure the Rényi entropy is, and multivariate 
statistics.  

 

The correct structural datasets may be analyzed with an a priori 
assumption, which is a deductive scientific method, or the data may be 
analyzed inasmuch without assumption. For an internally structured 
dataset, i.e. when the Gaussian statistics or, in other words, the central 
limit theorem may not be applied, the most general assumption is that 
the dataset is multifractal. This assumption is also technically 
advantageous because the dataset may be inspected for its generalized 
dimension spectrum (Theiler, 1989).  

�{
w\� = 	 1� − 1 lim&→<
ln∑ w\{\ln � = 	 lim&→<−h{
w\�ln �  

The Rényi entropy (h{) is key for the calculation of the generalized 
dimension spectrum. For discrete datasets, our team has developed local 
variable point information gain (PIG) and summary variables point 
information gain entropy (PIE) and point information gain entropy 
density (PIED) (Rychtáriková et. al., 2016).  In the BZ reaction case, 
when the dimension is given by the grid of the camera pixel, we have 
used PIGα, PIEα and PIEDα as operational variables replacing the 
generalized dimension (Zhyrova and Štys, 2014).  

(21) 
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Our work team (Císař, Macháček, Náhlík, Rychtáriková, Štys, Urban, 
Vaněk, Zhyrova,) developed the PIG, PIE and PIED calculation 
software “Image Info Extractor” and tested it on solution of a wide range 
of scientific problems where the results come in the form of digital 
camera datasets form the BZ reaction through microscopic images 
(Rychtáriková et al., 2017) down to the ethological observations (Štys et 
al., 2015b).  

The calculation of PIG, PIE and PIED thus may be used for the analysis 
and classification of trajectories of all self-organized systems due to 
their unavoidable multifractal nature (Štys et al., 2015).  

I applied the “Image Info Extractor Professional” for the investigation 
the oscillation process in BZ reaction. Estimated from experimental 
image series PIG, PIE ad PIED values I used for creation the state-
trajectory of the reaction course. Typically, I used 13 α coefficient 
values to sample the Rényi entropy spectrum. As a result, it was 
typically obtained 36 PIE and PIED values calculated by the whole and 
cross methods, i.e. up to 144 variables. I used the principal component 
analysis (PCA) to reduce the dimensionality of the problem and it was 
found in majority of the experiments that three principal components 
explain more than 90% of the variance and that a logical trajectory of 
the BZ reaction state-trajectory is found in this three-dimensional space 
(Zhyrova et. al., 2013; 2014). In other words, there are likely three main 
components (i.e. chemical self-organizing processes leading to 
observable multifractality) which dominate the formation of patterns 
(Zhyrova et al., 2017). Identification of these processes is not in the 
range of the experiment for the moment but emerging technologies such 
as MALDI – TOF imaging (Spragginse et. al., 2011) may bring the 
answer in the future.  

See Fig. 2-7 in Result and Discussion section (subsection 3.3.) for 
example of BZ reaction stage-trajectory plot. 

I also found out that segmentation of the trajectory into 7 clusters gives 
a separation of the trajectory into phases which reasonably resemble the 
segmentation which would be made by manual analysis of the reaction 
performed in the P. dish of 90 mm in diameter (Zhyrova et. al., 2014; 
2015; 2016; 2017). We may conclude that the each of the BZ system 
oscillation state (wave formation, stage of the circular waves, spiral 
waves generation stage, etc.) has its own characteristic values of PIE 
and PIED, i.e. that it has got its own multifractal spectrum. 
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I employed the information entropy method on the modified BZ 
reaction. By changing chemical vessel geometry (circular, squared or 
even triangular) and area (from 200 mm in diameter to 35 mm), I 
achieved the changes into reaction oscillation course. Even more 
significant were the changes caused by the method of mixing. The 
vigorous mixing by magnetic stirrer resulted in fast prevalence of dense 
waves emanating from vessel borders in circular vessels and whole 
vessel oscillation accompanied by stable patterns in the square vessel.  

These results have not been reported before and have important 
implications to the search of the B-Z reaction mechanism as well as in 
the less complicated chemical self-organization cases such as living 
cells. Namely, it is obvious that geometry of the vessel determines the 
pattern structure as well as the method of mixing. When the analogy to 
living cells is made, we propose that just the constriction of the cells by 
the surrounding tissue may change its chemistry. Similarly, the 
chemistry, and, perhaps, the duration of lifetime, may be affected by 
shaking. A complicated intracellular signaling is in many cases not 
needed. This analogy is further expanded in the article (Štys et al., 2015).   

Large amount of experimental material still undergoes analysis and 
remains unpublished. It is made available to the scientific public at the 
ftp: http://160.217.215.250/protocol/head/1169.  

The experiments done in years 2009-2015 suffered many technical non-
idealities. In the spring 2016 the Institute of Complex Systems in Nové 
Hrady installed the illumination box providing very homogeneous 
illumination (see Fig. 2.4. in Materials and Methods section) equipped 
by the JAI Spark SP-5000-USB rapid camera. In this set-up majority of 
the non-idealities of the image capture were eliminated. The 
summerschool students Martin Němec, Kateřina Tučková and later 
Pavel Souček developed the camera calibration software which enabled 
us to correct for most remaining problems. The main advantage of the 
new camera is acquisition of the 16-bit RAW image format in the rate 
of 30 frames/second. The image series was corrected using the 
calibration tool which enabled us to fully compare coloration in various 
parts of the image. It was found that the trajectory in the space of the 
first three components of the multivariate analysis is much smoother and 
even doublets reflecting that arose from a new wave were observed (Fig. 
2.9.1.). Also the separation into clusters was more logical and smooth 
(Fig. 2.9.2.).     
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Figure 2.9.1. The BZ model by the JAI SP-5000-USB rapid. It is clear identification 
of the unique states of the reaction highlighted by the different colors in BZ reaction 
state trajectory with corresponding characteristic image of the current system state.  

 

 

 

Figure 2.9.2. Cluster analysis of the BZ reaction recorded by JAI SP-5000-USB rapid 
camera. Since the equipment allowed to record more intermediate states in BZ wave 
transformation course, the obtained state separation is look more precise than for 
slower camera analogues (like /Nikon D90). 
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We may conclude that all questions about the validity of our approach 
were neglected by optimization of the technical set-up. We have 
repeated all key experiments and open them to the scientific public for 
discussions and analysis.  

 

Comments on articles with candidate co-authorship not included in 

the thesis.  

 A few articles dealing with the subject of the B-Z reaction contributed 
by myself were not included in the thesis. These were namely the articles 
dealing with the model of the B-Z reaction using cellular automata (Štys 
et al. 2016, Štys et al. Arxive .. Štys et al Arxive.., also part 1.4.3. of the 
introduction of this thesis). We found that starting from a small number 
of points and inducing asymmetry in the starting unit makes a trajectory 
more similar to that observed in the experiment than any of the models 
obtained so-far. On that basis, we introduced a simple chemical model 
which, however, induced a lot of controversies among the reviewers. 
The article is still in the review process. Thus the, in our opinion, 
simplest, elementary correct and assumption-free explanation of the BZ 
reaction pattern is still under the scrutiny of the academic society and I 
decided not to include it as part of the thesis.  
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