
PALACKÝ UNIVERSITY IN OLOMOUC
FACULTY OF SCIENCE

DISSERTATION THESIS

Functional regression models

Supervisor: doc. RNDr. Eva Fišerová, Ph.D.
Author: Mgr. Veronika Římalová
Study program: P1104 Applied Mathematics
Field of study: Applied Mathematics
Form of study: Full-time
The year of submission: 2023



BIBLIOGRAFICKÁ IDENTIFIKACE

Autor: Mgr. Veronika Římalová
Název práce: Funkcionální regresní modely
Typ práce: Disertační práce
Pracoviště: Katedra matematické analýzy a aplikací matematiky
Vedoucí práce: doc. RNDr. Eva Fišerová, Ph.D.
Rok obhajoby práce: 2023
Abstrakt: Cílem této disertační práce je představit nový neparametrický přístup
k testování významnosti parametrů ve funkcionálním lineárním regresním mode-
lu pro prostorová data pro případ heteroskedasticity nebo prostorové korelace.
Pro testování významnosti regresních parametrů v prostorovém funkcionálním re-
gresním modelu navrhujeme využít metodiku založenou na permutačních testech.
Tyto metody jsou navrhnuty tak, aby bylo možno s jejich pomocí pracovat s daty
s heterogenní prostorovou strukturou a to na základě Freedmanova a Laneova
permutačního schématu. Přirozeně, vlivem prostorové závislosti mezi daty ne-
jsou residua regresního modelu permutovatelná, čímž je porušen základní před-
poklad Freedmanova a Laneova permutačního schématu. Abychom tento problém
vyřešili, navrhujeme v případě heteroskedasticity modelovat data pomocí vážené
metody nejmenších čtverců a poté vydělit odhadnutá residua jejich směrodat-
nou odchylkou, čímž získáme asymptoticky permutovatelná residua. V případě
prostorově závislých dat navrhujeme odhadnout varianční strukturu pomocí vari-
ogramu a poté dekorelovat odhadnutá residua a založit permutační test na těchto
přibližně permutovatelných residuích. Za účelem ohodnocení navrhovaných testů
z hlediska empirické velikosti a síly testu byly provedeny simulační studie zkou-
mající chování testů pro různé varianční struktury dat. Ukážeme, že zanedbání
varianční struktury residuí (tedy permutování přímo heteroskedastických či pros-
torově korelovaných dat) vede v permutačním testování k buďto velmi liberál-
ním, či velmi konzervativním výsledkům testů, zatímco empirická velikost námi
navrhovaných testů je v případě heteroskedasticity či prostorové korelace blízká
té nominální. Navrhované metody jsou též prezentovány na reálných datech
z oblastí geochemie a turismu. Mimo to je potenciál analýzy funkcionálních dat
ukázán na datech z oblasti dopravního výzkumu s důrazem na regresní model
s funkcionálním regresorem a funkcionální závisle proměnnou.
Klíčová slova: Analýza funkcionálních dat, funkcionální regresní modely, per-
mutační testy, neparametrická inference, heteroskedasticita, prostorová korelace,
funkcionální geostatistika, prostorově filtrovaná residua, permutovatelnost
Počet stran: 110
Počet příloh: 0
Jazyk: anglický

2



BIBLIOGRAPHICAL IDENTIFICATION

Author: Mgr. Veronika Římalová
Title: Functional regression models
Type of thesis: Dissertation thesis
Department: Department of Mathematical Analysis and Application of Math-
ematics
Supervisor: doc. RNDr. Eva Fišerová, Ph.D.
The year of presentation: 2023
Abstract: This thesis proposes a novel nonparametric approach to the signif-
icance testing of the null hypothesis in a functional linear model for data with
a heterogeneous spatial structure. A permutation approach is introduced to test
for the effect of covariates in a spatial functional regression model with het-
eroscedastic or spatially correlated residuals. In this context, the proposed meth-
ods account for the heterogeneous spatial structure of the data by grounding on
the Freedman and Lane permutation scheme for the estimated residuals of the
functional regression model. Indeed, due to the spatial dependence among the
data, the residuals of the regression model are not exchangeable. Therefore, the
basic assumption of the Freedman and Lane permutation scheme is violated. To
overcome this issue in the case of heteroscedasticity, we propose to fit a weighted
least squares model to the observations, and then to divide the estimated resid-
uals by their corresponding standard deviation, leading to asymptotically ex-
changeable, and thus, permutable residuals. In the case of spatially correlated
observations it is proposed here to estimate the variance-covariance structure of
the residuals by variography, remove this correlation by spatial filtering of the
residuals and base the permutation test on these approximately exchangeable
residuals. To evaluate the performance of the proposed methods in terms of the
empirical size and power, simulation studies are conducted, examining the be-
haviour of the tests under different covariance settings. We show that neglecting
the spatial structure of the residuals in the permutation scheme, i.e., permuting
the heteroscedastic or spatially correlated residuals directly, yields very liberal or
conservative results, whereas the proposed procedures are close to the nominal
size of the test. The results of modelling and testing on the case studies are
shown and discussed on the data from geochemistry and tourism. Moreover, the
potential of FDA methodology is shown in the field of transportation research,
focusing on the permutation-based inference in a regression model with functional
covariates and functional response.
Key words: Functional data analysis, functional regression models, permutation
tests, nonparametric inference, heteroscedasticity, spatial correlation, functional
geostatistics, spatially filtered residuals, exchangeability
Number of pages: 110
Number of appendices: 0
Language: English

3



Statement of originality

I hereby declare that this dissertation thesis has been completed indepen-
dently, under the supervision of doc. RNDr. Eva Fišerová, Ph.D. All the mate-
rials and resources are cited concerning scientific ethics, copyrights and the laws
protecting intellectual property. This thesis or its parts were not submitted to
obtain any other or the same academic title.

In Olomouc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4



Contents

Introduction 10

1 Motivational examples 16
1.1 The driving speed on expressway ramps based on floating car data 16
1.2 The soil samples collected on the border between field and forest . 18
1.3 The production of municipal waste in the Venice province . . . . . 18

2 Overview of functional data analysis 20
2.1 Basic steps in functional data analysis . . . . . . . . . . . . . . . 20
2.2 Basic definitions of functional data . . . . . . . . . . . . . . . . . 24

3 Regression models for functional covariates and functional re-
sponse under homoscedasticity 26
3.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Estimation of the regression functions . . . . . . . . . . . . . . . . 28
3.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 The global permutation tests for the effect of the covariates . . . . 30
3.5 Detecting the differences in the means of two functional populations 33
3.6 Application: Analysis of the driving speed on expressway ramps

based on floating car data . . . . . . . . . . . . . . . . . . . . . . 34
3.6.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Floating car data as the functional observations . . . . . . 35
3.6.3 Basic characteristics of the driving speed . . . . . . . . . . 36
3.6.4 Examining the properties of the merging lanes . . . . . . . 38
3.6.5 Differences in the means of the driving speed from two dis-

tinct lanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.6 Models for the driving speed data . . . . . . . . . . . . . . 44
3.6.7 Model limitations . . . . . . . . . . . . . . . . . . . . . . . 55

4 Regression models for spatial covariates and functional response 56
4.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Analysis of the spatial correlation . . . . . . . . . . . . . . . . . . 58
4.3 Estimation of the regression functions . . . . . . . . . . . . . . . . 59

5



4.4 The global permutation tests for the effect of the covariates . . . . 62
4.5 Assessment of the model assumptions under heteroscedasticity . . 68
4.6 Simulation studies under heteroscedasticity . . . . . . . . . . . . . 70

4.6.1 Assessing the empirical size and the power of the TOLS and
TWLS tests in a simple model with an indicator . . . . . . 72

4.6.2 Assessing the empirical size of the TOLS and TWLS tests in
a more complex model with more covariates . . . . . . . . 74

4.6.3 Evaluating the precision of the estimates of the regression
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Simulation studies under spatial correlation . . . . . . . . . . . . 80
4.7.1 Assessing the empirical size of the TOLS and TGLS tests . . 81
4.7.2 Assessing the empirical size and the power of the T`

GLS test 83
4.8 Application: Analysis of the soil samples collected on the border

between the field and the forest . . . . . . . . . . . . . . . . . . . 84
4.8.1 Modelling the KCl pH . . . . . . . . . . . . . . . . . . . . 86
4.8.2 Modelling the H2O pH . . . . . . . . . . . . . . . . . . . . 88
4.8.3 Modelling the percentage of organic carbon . . . . . . . . . 89

4.9 Application: Analysis of the production of the municipal waste in
the Venice province . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Discussion and conclusion 96

References 101

6



List of Figures

1.1 Interchange scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 A view of the selected parts of the ramps. . . . . . . . . . . . . . 17

2.1 A view of the cubic B-spline basis system, raw observations, func-
tional data after smoothing using different roughness penalties. . . 23

3.1 A circular radii for ramp 2. . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Functional observations of the driving speed, ramps 1, 2, and 3. . 39
3.3 Functional observations of the driving speed, ramps 4, 5, and 6. . 40
3.4 The results of interval-wise testing for ramps 1 and 2. . . . . . . . 42
3.5 The results of interval-wise testing for ramps 3 and 5. . . . . . . . 43
3.6 Functional regression model for ramp 1. . . . . . . . . . . . . . . . 50
3.7 Functional regression model for ramp 2. . . . . . . . . . . . . . . . 51
3.8 Functional regression model for ramp 3. . . . . . . . . . . . . . . . 52
3.9 Functional regression model for ramp 4. . . . . . . . . . . . . . . . 53
3.10 Functional regression model for ramp 5. . . . . . . . . . . . . . . . 54

4.1 Examples of the nugget and exponential models for the semivari-
ogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The true regression functions and their estimates for the simple
model with an indicator (4.31). . . . . . . . . . . . . . . . . . . . 73

4.3 The empirical power of the TOLS and TWLS tests. . . . . . . . . . 75
4.4 The true regression functions and their estimates for the more

complex model (4.33). . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 The true regression functions and the theoretical spherical models

for the semivariogram. . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 The empirical power of the T1

GLS test. . . . . . . . . . . . . . . . . 84
4.7 The fitted model (4.50) for the drift and the semivariogram of the

residuals from model (4.50). . . . . . . . . . . . . . . . . . . . . . 87
4.8 The KCl pH data, weighted least-squares model (4.50). . . . . . . 88
4.9 The H2O pH data, ordinary least-squares model (4.52). . . . . . . 89
4.10 The percentage of carbon data, weighted least-squares model (4.53). 90

7



4.11 Full model for the production of the municipal waste in the Venice
province. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.12 Estimates of the regression functions of the full model for the pro-
duction of the municipal waste in the Venice province. . . . . . . 92

4.13 Final model for the production of the municipal waste in the Venice
province. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8



Acknowledgement

I would like to express my gratitude to my supervisor Eva Fišerová for her
support, motivation, valuable advice, patience and guidance through my PhD
studies. I am also grateful for the guidance, inspiration and help from Alessandra
Menafoglio and Alessia Pini during my research stay in Milan. My parents, family
and friends are gratefully appreciated for being there for me. I would also like to
thank my colleagues from studies for a great and inspiring working environment.
Finally, I am particularly grateful to Pavel for his understanding, encouragement
and endless support during my studies, research and writing this thesis.

9



Introduction

In many practical tasks involving high-dimensional measurements, such as

curves or surfaces, it is convenient to treat the data not as a sequence of single

measurements taken one after another, but as the whole entities. Such approach

has developed into functional data analysis (FDA), where the basic elements of

the statistical analysis are the functional observations as a whole [28, 62]. In

these days, functional data occur in many scientific fields, such as an analysis of

human gait by means of linear models [1], analysis of variance [69], modelling the

time trends and forecasting the future rates of age-specific breast cancer mortality

using time series models [25, 26], or predicting the risk of drought by principal

component logistic regression [27]. The overview of the recent trends in FDA can

be found in summary surveys [8, 9, 35].

Most FDA methods strongly rely on the assumption of independence among

the observations. Under the presence of spatial dependence, applying these meth-

ods is inappropriate, and the analysis could fail because of the consistency prob-

lems [39]. Spatial dependence needs to be properly treated; for this purpose,

the classical geostatistical methods can be extended to the functional framework

[15, 51, 52].

In the geostatistical framework, the functional observations can occur, e.g.,

as soil or weather measurements taken from the same site with possibly daily,

weekly or monthly frequency (see, e.g., [41, 62, 67]). In general, the extension of

the geostatistical methods to the functional setting is well-developed these days,

including ordinary or universal kriging [34, 50, 51, 52], or other aspects related

to spatial statistics, such as the change point analysis [44], clustering [68], tests
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for detecting the spatial autocorrelation [33], or the regression with differential

regularization to model dependent functional data in space [11].

In functional data analysis, regression models play an important part of the

methods used. A thorough overview of the methodology with application can be

found in vast amount of the literature, see, e.g., [61, 62], focusing on situations

where at least the covariates, or the response, or both is functional. The cases

of the concurrent model, as well as the functional-on-functional model, where

the functional domains of the covariate and the response differ, i.e., β(t1, t2) is

a function of these two domains, are detailed here. In the work of [39], the

methodology for models for independent, dependent, and spatially correlated

data is introduced. In the work of [28], the focus is on the analysis of nonpara-

metric functional data, including the models for such data. In the work of [43],

functional regression models, including the generalized models and models for

spatially correlated data, are concerned. An overview of recent trends in FDA

can be found in summary surveys [8, 9, 35], including also topics related to func-

tional regression models, see, e.g., the work on variables selection, such as [17], or

[13], where the variables selection is based on smoothed centred ridge regression

approach. In the work of [23], a nonparametric approach to the construction of

prediction bands in the multi-functional regression framework is concerned.

Focusing on the inference in the context of functional data, testing for the

significance can be performed by means of either parametric or nonparametric

methods. The nonparametric approach appears particularly promising, as it

allows for minimal assumptions on the data-generative model. In this context,

permutation tests have been recently successfully developed, leading to flexible

approaches for testing in FDA [1, 60]. Indeed, the permutation tests are only

based on the assumption of exchangeability between the units under the null

hypothesis [42, 49], meaning that, underH0, the data distribution does not change

if the units are randomly resampled [36, 58]. In practice, this is evaluated by

comparing the test statistic evaluated on the original data to the distribution of

the test statistics obtained from the permuted data. If the observed statistic lies

11



in the tail of this distribution, the null hypothesis can be rejected [12, 61].

In the context of a two-population test, the idea behind the permutation

scheme is as follows (see, e.g., [58]). Under the null hypothesis of equality in

distribution of two populations, the distribution of the two samples is the same

as the distribution of any two samples obtained upon permuting the data. A test

statistic computed for the original sample (e.g., the difference of the means)

should thus have the same distribution as that calculated from any permutation

of the data. Hence, the evidence against H0 is provided by values of the test

statistic under permutations that are statistically different from the one obtained

on the original data [49, 58]. Due to a large number of all possible permutations

(a factorial of the sample size) it would be hardly feasible to consider all possible

rearrangements of the data. Instead, the permutation distribution of the test

statistic can be approximated with Monte Carlo methods by randomly generating

a subset of permutations [30, 47, 58].

In the framework of linear models, it is not possible to directly observe the

exchangeable quantities under the null hypothesis unless the model only contains

a single covariate. The permutation scheme can be adapted in different ways

to obtain the approximate exchangeability. In the work of [31], permuting the

estimated residuals from the model under the null hypothesis (also referred to as

the reduced model) was proposed; in the work of [71], permuting the residuals

of the full model was proposed; other authors, see [48, 54], proposed to permute

other quantities, such as the covariates’ values, or the responses. In the work of

[6], Freedman and Lane’s methodology (see [31]) and other approaches were com-

pared by a simulation study, concluding that the permutation scheme proposed

by Freedman and Lane [31], relying on the permutation of the estimated residuals

from the reduced model, gives the best empirical results in terms of the power

and the size of the test. From a theoretical point of view, since the estimated

residuals of the null model are asymptotically exchangeable, the obtained test

is asymptotically exact. In the work of [75], this approach was applied to the

multivariate case of testing for the differences between two sets of images; in the
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work of [1], Freedman and Lane permutation scheme was adapted to testing in

a functional regression model for the knee movement.

The aim of this thesis is to introduce a novel approach to the inference in

functional regression models, aiming also at more complex data structures. In

particular, a testing procedure for a regression model with functional covariate

and functional response, based on a Freedman and Lane permutation scheme

is outlined in Chapter 3, being a novel approach in the field of transportation

research, grounding on a real-world task from this research area.

Extending this methodology from homoscedastic [1, 64] to the space-time set-

ting, both the observed data and the residuals are likely to be heterogeneous

by virtue of their geographical closeness and thus treating them as exchangeable

may bias the results. This methodology is developed in Chapter 4. Firstly, a case

of heteroscedasticity among the spatial observations is concerned [66]. Under the

presence of more groups in the data, an interesting research question is whether

these groups have different properties. Assuming the same variance within the

groups and the different variance between the groups, a permutation testing pro-

cedure based on a spatial regression model is here proposed. To deal with the

nature of spatial observations, which depend on their spatial coordinates, we

propose to permute the residuals of the spatial regression model and not the ob-

servations themselves. For this purpose, the permutation scheme by Freedman

and Lane (see [31]) is adapted here. An emphasis shall be given to the exchange-

ability of the residuals, since this assumption can be easily violated whenever the

data are heteroscedastic.

Secondly, a case of spatially correlated observations is concerned [65]. To

ensure the approximate exchangeability of the units being permuted, a spatial

filtering of the residuals of the functional linear model is proposed. More precisely,

the spatial covariance of the residuals is estimated through the functional variog-

raphy [39] and then the residuals are decorrelated by using the inverse-square root

of the estimated variance-covariance matrix, eventually obtaining approximately

exchangeable residuals, suitable for using the Freedman and Lane permutation
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scheme. A similar approach can be found in [10], where the spatial covariance is

estimated through the trace variogram and used to fit the functional analysis of

variance model with GLS. Then, the inference is based on an approximate chi-

squared distribution of the test statistic, that is derived based on the assumption

of normality of the residuals, whereas a nonparametric permutational approach

is proposed in this work.

To summarize the previous paragraphs, the aims of this thesis are to

1. model functional data and to set up the methodology for spatiotemporal

observations, the estimation of the spatial relationship among the observa-

tions through variography (Chapter 4),

2. introduce a novel approach to the inference in spatial functional regression

models based on a permutation scheme by Freedman and Lane [31], aiming

at the inference in case of (i) heteroscedastic and (ii) spatially correlated

functional observations (Chapter 4),

3. apply the proposed methodology to real-world spatiotemporal data (Chap-

ter 4),

4. show a potential of FDA framework in the field of transportation research,

focusing on the inference in functional-on-functional regression models

(Chapter 3).

In Chapter 1, the real-world data which are further analysed in this thesis

using the methods concerned here are introduced to provide examples of the

functional observations. The basic aspects of functional data analysis and data

processing are summarized in Chapter 2. Functional-on-functional regression

model, together with the inferential framework suitable for this setting, is con-

cerned in Chapter 3, followed by an application to the driving speed data. Chap-

ter 4 introduces the inferential framework to regression models for spatiotemporal

functional data, focusing on heteroscedastic and spatially correlated observations.

The performance of the proposed methodology is examined through extensive
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simulation studies. Finally, the methods for spatiotemporal data are applied to

real functional observations from the fields of geochemistry and tourism.

To avoid confusion, the following notation is used in this thesis. Spatiotem-

poral data, i.e., the observations recorded in both time and space, are denoted as

Xs(t), where s refers to a position of the observation in space D and t ∈ T refers

to a (functional) temporal domain. On the other hand, temporal data, i.e., the

observations recorded in time, are denoted as y(t).

Moreover, it should be noted here that the random errors in a regression

model are referred to as residuals in Chapter 4, and their estimates, residuals,

are referred to as the estimated residuals, consistently with the commonly used

notation in the geostatistical literature. In Chapter 3, the standard notation, i.e.,

random errors and residuals, is used.

This dissertation thesis is based on the following papers that were published

during my PhD. study:

• V. Římalová, A. Menafoglio, A. Pini, V. Pechanec, and E. Fišerová.

A permutation approach to the analysis of spatiotemporal geochemical data

in the presence of heteroscedasticity. Environmetrics, 31(4):e2611, 2020

(Chapter 4).

• V. Římalová, E. Fišerová, A. Menafoglio, and A. Pini. Inference for spatial

regression models with functional response using a permutational approach.

Journal of Multivariate Analysis, 189:104893, 2022 (Chapter 4).

• V. Římalová, J. Elgner, J. Ambros, and E. Fišerová. Modelling the driv-

ing speed on expressway ramps based on floating car data. Measurement,

195:110995, 2022 (Chapter 3).
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Chapter 1

Motivational examples

1.1. The driving speed on expressway ramps based
on floating car data

The first case study is based on the data set collected on the interchange

number 2432A012 (road I/42 × II/384, Žabovřeská × Kníničská street) in Brno,

Czech Republic, during the years 2014 and 2015. This interchange can be further

divided into six unique ramps with several auxiliary lanes (i.e., merging and exit

lanes), see Figure 1.1. There are merging lanes into ramps 1 and 2 (see Figure

1.2a), and exit lanes from ramps 3 and 5, (see Figure 1.2b).

These data were retrieved from the floating car data (FCD), collected by a fleet

of company vehicles, which is maintained by a third party. The raw data include

time, position and speed recorded at the 4 Hz frequency (4 times per second)

and are stored by the Vetronics on-board units. According to the data provider,

the position accuracy in terms of CEP (Circular Error Probable, i.e., the median

error radius) was 2.5 m; the speed accuracy was 2 km/h. The data provider

collects this data for the purpose of the fleet management, monitoring of the fuel

consumption, vehicle tracking, recording of the travel diaries, etc. Nevertheless,

FCD may also be used for secondary tasks, such as the analysis of the kinematic

characteristics (speed, acceleration, etc.), as demonstrated, e.g., by [3, 4, 5].

It is upon interest to (i) investigate the smoothness of the speed when passing

a ramp, (ii) point out the sections with a rapid change (decrease or increase)
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of the speed, (iii) describe and evaluate the effect of the ramp curvature and

of the auxiliary lanes on the vehicle’s speed, and (iv) identify the parts where

the observations from the central and the auxiliary lanes are indistinguishable

in terms of their speed. The theoretical background and the case study are

concerned in Sections 3.1 - 3.5, and the case study is detailed in Section 3.6.

1
2

43

6
5

Figure 1.1: Scheme of the interchange number 2432A012 (road I/42 × II/384,
Žabovřeská × Kníničská street).

(a) Merging into ramps 1 and 2. (b) Exit from ramps 3 and 5.

Figure 1.2: A view of the selected parts of the ramps, Google street view, June
2014.
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1.2. The soil samples collected on the border be-
tween field and forest

The second case study is based on the data resulting from the analysis of the

soil samples collected in the growing seasons (March-October) of the years 2015

and 2016 at the site located near Křtiny, Czech Republic.

The site contains 11 sampling points equally distributed on a straight line,

perpendicular to the border between the field and the forest. The sampling points

are located every 3 metres, and the total length of the studied site is 30 metres.

The site is naturally divided into two parts by the central sampling point, the

ecotone. The soil samples were taken 5 cm beneath the surface.

The main goal here is to compare the chemical properties (KCl pH, H2O

pH, and the percentage of organic carbon) of the field (A) and the forest (B).

Using the state-of-the-art permutation tests, the problem would be dealt with by

(i) randomly reassigning the data to the two groups and (ii) comparing the dis-

tributions of the randomly reassigned samples to the distribution of the original

ones. Under the null hypothesis that (A) and (B) do not differ the distribu-

tions of the two groups should not differ when the data are permuted. However,

such permutation procedure grounds on the key assumption that the data are ex-

changeable under the null hypothesis. This assumption may clearly be violated

in the case of spatial data, as they are likely to depend on their coordinates. In-

stead of permuting the data directly, a spatial trend is fitted to the data, and the

estimated residuals from this model, assumed to be approximately exchangeable,

are permuted instead. The model and the procedure are formally introduced in

Sections 4.1 - 4.5 and the case study is detailed in Section 4.8.

1.3. The production of municipal waste in the Ve-
nice province

The third case study is based on a data from the field of tourism, collected in

49 cities in the Venice province during the years 1997 and 2011. The data include
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the yearly records of the per capita amount of the municipal waste, which shall be

modelled as the functional observations of time. This data set was used by [15],

where the focus was on fitting a spatiotemporal regression model with differential

regularization [14, 46]. We here focus on testing the significance of the covariates

within a spatial functional regression model inspired by that of [15], but fitted by

the generalized least-squares. To model the production of the waste, the spatial

coordinates of the centre of each city is accounted for, as well as the proportion of

the number of the beds in the accommodation facilities to the number of residents,

to account for the tourism in each city.
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Chapter 2

Overview of functional data analysis

2.1. Basic steps in functional data analysis

This section aims at introducing the basic concepts of functional data analysis.

In the FDA framework, we assume that the observed discrete data are generated

by some unknown function, i.e., [62]

xg = y(tg) + ξg, g ∈ {1, . . . , G}, t ∈ T ⊂ [0,∞), (2.1)

where G is the number of discrete observations of the function y(t) and ξg is the

random error. Moreover, it is assumed that the underlying function is smooth,

therefore the two adjacent discrete data points are likely to be similar to each

other.

Assume now that i ∈ {1, . . . , n} functions were observed. Then, the i-th

function yi(t) can be represented by a linear combination of the known basis

functions and the unknown basis coefficients as [62]

yi(t) =

Ky,i∑

k=1

ckiφki(t) = φ′i(t)ci, i ∈ {1, . . . , n}, (2.2)

whereKy,i is the number of the basis coefficients of the i-th functional observation,

φki(t) are the known basis functions and cki are the unknown basis coefficients,

which can be estimated, e.g., by the least-squares method. The symbol ′ denotes

the transposition.
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In the following, only the B-spline basis system is detailed, as it allows for

a great flexibility for fitting the nonperiodical functional data [62], being the most

convenient choice for the real-world data introduced in Chapter 1 of this thesis.

To construct a B-spline basis system, the functional domain T is partitioned

into τ subintervals by τ−1 knots. At each subinterval, a B-spline is a polynomial

of order 4 (note that, a cubic spline is the most popular choice implying conti-

nuous second derivatives) with a non-zero property over 4 adjacent subintervals.

An example of a B-spline basis with 17 basis functions is provided in Figure 2.1.

In general,Ky,i, the number of basis functions, helps to control the smoothness

of the functional observation yi(t). This process is also referred to as the least-

squares smoothing. When estimating curves from the raw observations, the goal

is to reach a trade-off between the bias and the variance [62]. Under this setting,

it can be achieved by choosing the number of the basis functions. The greaterKy,i

is, the better yi(t) fits the observed data, but at the same moment it increases

the variance and can lead to overfitting. On contrary, the smaller Ky,i is, the

smoother and less noisy yi(t) becomes, but if the number of the basis functions

becomes too low, important data features can be lost due to oversmoothing, and

yi(t) may not give sufficient information about the observed data. An appropriate

number of the basis functions can be found, e.g., by means of the generalized

cross-validation [62].

A better control over the smoothness can be provided by the roughness penal-

ties, where the roughness of a function can be quantified as its curvature, i.e., the

square of the second derivative: [D2yi(t)]
2. Then, the roughness can be measured

by an integrated squared second derivative [62]

PEN2(yi) =

∫

T

[D2yi(t)]
2dt. (2.3)

Note that, in general, one can assume the ν-th power of the ν-th deriva-

tive, that is, [Dνyi(t)]
ν , ν ∈ {1, 2, 3, . . .}. Following Equation (2.2), Equation

(2.3) can be rewritten as c′iRy,ici, where Ry,i represents the roughness penalty

matrix for the i-th function yi(t). The (j, k)-th entry of Ry,i is given as
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Ry,i(j,k) =
∫
T
D2φji(t)D

2φki(t)dt. An optimal fit to the observed discrete data is

then found by minimization of the penalized residual sum of squares criterion

[62]

PENSSEλi(yi|xi) = [xi − yi(t)]′[xi − yi(t)] + λy,ic
′
iRy,ici, (2.4)

where xi is a set of discrete observations of yi(t) and λy,i ≥ 0 is a smooth-

ing parameter controlling the smoothness of yi(t), which can be selected, e.g.,

by the generalized cross-validation. Increasing λy,i puts more emphasis on the

smoothness of yi(t) and less on the closeness of its fit to the observed data points.

Conversely, decreasing λy,i is less and less penalizing the roughness, leading to

a high variability of yi(t). Note that, in general, λy,i can vary from function to

function.

An important theorem can be found in the work of [20] stating that the

function yi(t) which minimizes Equation (2.4) is a cubic spline with knots placed

at the data points [62]. However, in the case of a very large number of the

recorded data, placing a knot at each data point would become unfeasible. This

is the case of, e.g., the analysis of floating car data (see the introduction in

Section 1.1 and the case study in Section 3.6). Recall that, the driving speed

was recorded with the frequency of four observations per second, obtaining on

average lower thousands of raw data points per ride (the exact number depends

on the length of each ramp). By that, the sequence of the knots for defining

a B-spline basis may be initially chosen by an expert assessment to capture enough

variation and data features. Then, a roughness penalty (2.4) can be used to obtain

the smooth functional observations. Figure 2.1 provides an example of a cubic

B-spline basis as described in this paragraph, as well as an example of the real-

world observations and the smoothed functional data. To compare the different

levels of smoothness of the functional data, two different sets of curves are shown

based on different values of the smoothing parameter λ.

To take into account the whole data set, define the diagonal basis func-

tions matrix Φ = diag(φ′1(t), . . . ,φ
′
n(t)), the set of all discrete observations

x = (x′1, . . . ,x
′
n)′, and a symmetric block-diagonal matrix
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Ry = diag(λy,1Ry,1, . . . , λy,nRy,n). Then, the vector of the basis coefficients

c = (c′1, . . . , c
′
n)′ can be estimated as [61]

ĉ = (Φ′Φ + Ry)
−1Φ′x. (2.5)

Define further the total number of the basis coefficients Ky =
∑n

i=1Ky,i, the

Ky-dimensional column vector φ = (φ′1(t), . . . ,φ
′
n(t))′ and the n×Ky matrix of

the basis coefficients Ĉ = diag(ĉ′1, . . . , ĉ
′
n). Then, one can write ŷ = Ĉφ.
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Figure 2.1: Top left: A view of the cubic B-spline basis system with 17 basis
functions. Top right: Raw observations, for clarity connected by lines. Bot-
tom: Functional data after smoothing using the roughness penalty approach
with smoothing parameter λ = 10−5 (bottom left) and λ = 1 (bottom right). For
further details regarding this data, see Section 4.9.
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2.2. Basic definitions of functional data

Suppose now that a function yi(t) is a realization of a random function Yi(t).

To describe and quantify the attributes of this function, we consider the follow-

ing [43]. The random function Y = {Y (ω, t), t ∈ T}, where T is the functional

domain, is defined on a probability space Ω, that means, ∀ω ∈ Ω, Y (ω) is a deter-

ministic function. The realizations Y (ω), ω ∈ Ω, are assumed to be elements of

L2(T ) (or L2 for short), a space of the square-integrable functions, i.e., ∀ω ∈ Ω,

it holds [43]

‖Y (ω)‖2 =

∫

T

[Y (ω, t)]2dt <∞, (2.6)

where ‖ · ‖ represents the L2-norm.

Define now the mean function as [43]

µ(t) = E[Y (t)], t ∈ T, (2.7)

the variance function as [43]

var(t) = E[Y (t)− µ(t)]2, t ∈ T, (2.8)

and the covariance function as [43]

cov(t1, t2) = E{[Y (t1)− µ(t1)][Y (t2)− µ(t2)]}, t1, t2 ∈ T. (2.9)

Assume now that y1(t), . . . , yn(t) is a sample of n functions. Define the point-

wise estimators where

ȳ(t) =
1

n

n∑

i=1

yi(t), t ∈ T, (2.10)

is the point-wise sample mean function [43, 62] and

v̂ar(t) =
1

n− 1

n∑

i=1

[yi(t)− ȳ(t)]2, t ∈ T, (2.11)
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is the point-wise sample variance function [62]. One also can define the point-wise

sample standard deviation function [62] as
√

v̂ar[y(t)].

To describe the dependence of the observations across different values of the

functional domain T , let

ĉov(t1, t2) =
1

n− 1

n∑

i=1

[yi(t1)− ȳ(t1)][yi(t2)− ȳ(t2)], t1, t2 ∈ T, (2.12)

be the point-wise sample covariance function [43, 62].
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Chapter 3

Regression models for functional
covariates and functional response
under homoscedasticity

The driving speed observations introduced in Section 1.1 can be viewed as the

functions of distance travelled from the starting point of the ramp, and the meth-

ods specified in Chapter 2 can be applied to represent the observed floating car

data as the functional observations of the driving speed. Then, these can be ana-

lysed, and a relationship between the functional observations of the driving speed

and the explanatory variables can be examined by the functional-on-functional

regression model. Under this setting, the estimates of the regression functions

β(t) will also be functions over the same functional domain T as the functional

observations yi(t). Throughout this chapter, the functional domain T will repre-

sent the distance from the starting point of the ramp. This allows, e.g., to see

where and how is the driving speed changing over T . Also, as β(t) are functions

of T , the regression model can describe the relationship between the dependent

and the explanatory variables in a way which allows to assess the effect of the

explanatory variable at a specific part of T , not being evaluated just as an overall

information.

In the first part of this chapter, the methods for the functional-on-functional

regression model are summarized in Sections 3.1 - 3.3, together with a permu-

tation-based testing procedure suitable for this setting (Section 3.4). Then, the
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interval-wise testing procedure for the comparison of the means of the two func-

tional populations, allowing to detect the dissimilarity between the curves of

speed in the merging, the exit, and the central lanes, is recapitulated as well

(Section 3.5). Lastly, a real-world example from the field of transportation re-

search is presented in Section 3.6.

3.1. Model specification

Assume that a sample of functions yi(t), i ∈ {1, . . . , n}, has been observed.

In the following, yi(·) represents an element of the Hilbert space of the square-

integrable functions L2(T ). We further assume that the functional observations

can be represented through the linear model [1]

yi(t) = β0(t) +
L∑

`=1

β`(t)fi`(t) + εi(t), t ∈ T, i ∈ {1, . . . , n}, (3.1)

where fi`(t), ` ∈ {1, . . . , L}, t ∈ T , are the known covariates, possibly scalar,

categorical, or functional, and β`(t), ` ∈ {0, 1, . . . , L}, t ∈ T , are the unknown

regression functions. The random errors εi(t), i ∈ {1, . . . , n}, t ∈ T , are inde-

pendent, identically distributed random functions with zero mean and constant

variance, that is, the variance-covariance matrix is Σ = σ2I, where σ2 is an

unknown parameter and I is an n× n identity matrix.

Using a matrix notation, model (3.1) can be rewritten into the form [62]

y = Fβ + ε, (3.2)

where y = (y1(t), . . . , yn(t))′, t ∈ T, are the functional observations,

β = (β0(t), . . . , βL(t))′, t ∈ T, are the unknown regression functions, and

ε = (ε1(t), . . . , εn(t))′, t ∈ T, are the random error functions. A known n×(L+1)

functional design matrix F can be symbolically expressed through a common no-

tation with the i-th row (1, fi1(t), . . . , fiL(t)), t ∈ T , where fi`(t), ` ∈ {1, . . . , L},
are the known covariates related to the i-th observation. As the covariates can in

general be functions, the element fi`(t) of the design matrix would in that case

represent the functional covariate.
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3.2. Estimation of the regression functions

Express now the unknown regression functions through the basis expansion

[61, 62]

β`(t) =

Kβ,`∑

k=1

bk`θk`(t) = θ′`(t)b`, ` ∈ {0, 1, . . . , L}, (3.3)

where Kβ,` is the number of the basis coefficients of the `-th regression function,

θk`(t) are the known basis functions and bk` are the unknown coefficients. In

this way, the problem of estimating the functions β`(t) reduces to estimating the

coefficients bk` by, e.g., the least-squares method.

In order to express the model (3.2) with respect to the basis expansion (3.3),

define the total number of the basis coefficients of the regression functions, i.e.,

Kβ =
∑L

`=0Kβ,`, and stack the vectors b` vertically to obtain a Kβ-dimensional

column vector b = (b′0,b
′
1, . . . ,b

′
L)′. By defining an (L + 1) × Kβ matrix

Θ = diag(θ′1(t), . . . ,θ
′
L(t)), model (3.2) can be rewritten as [62]

y = FΘb + ε, (3.4)

and then can be formally transformed to a constant coefficient linear model [62]

by defining an n×Kβ matrix F̃ = FΘ as

y = F̃b + ε. (3.5)

Note that, by performing this step, we moved from the estimation of L + 1

regression functions in model (3.2) to the estimation of Kβ scalar coefficients in

model (3.4).

Following the general assumption that the roughness penalty term

PEN2(β`) =
∫
T

[D2β`(t)]
2dt can be different for each regression function

β`, ` ∈ {0, 1, . . . , L}, one can, following Equation (3.3), write

PEN2(β`) = b′`Rβ,`b`, where Rβ,` =
∫
T
D2θ`(t)D

2θ′`(t)dt represents the rough-

ness penalty matrix. Then, a symmetric block-diagonal Kβ × Kβ matrix

Rβ = diag(λβ,0R0, . . . , λβ,LRL), where λβ,`, ` ∈ {0, 1, . . . , L}, are the smooth-

ing parameters, can be created. The penalized least-squares estimator of the
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regression coefficients b is then defined as [62]

b̂ =

[ ∫

T

F̃′(t)F̃(t)dt+ Rβ

]−1 ∫

T

F̃(t)′Cφ(t)dt. (3.6)

Then, β = (β0(t), . . . , βL(t))′, t ∈ T , can be estimated as β̂ = Θb̂.

To characterize the precision of the estimator β̂ and to obtain the point-wise

confidence intervals for the regression functions β`(t), ` ∈ {0, 1, . . . , L}, consider
the following substitution [62]

A =

[ ∫

T

F̃(t)′F̃(t)dt+ Rβ

]−1 ∫

T

φ′(t)⊗ F̃′(t)dt, (3.7)

where the symbol ⊗ denotes the Kronecker product. Then, the estimator of the

regression coefficients can be written as b̂ = Ac, where c is a vector of the basis

coefficients (see Equation (2.5)). Then, the variance-covariance matrix of β̂ can

be estimated as [61]

v̂ar(β̂) = σ̂2ΘA(Φ′Φ)−1A′Θ′, (3.8)

where [66]

σ̂2 =
1

n

n∑

i=1

‖κi(t)‖2. (3.9)

Here, the symbol ‖ · ‖ represents the L2-norm and κ = ε̂ = y−Fβ̂ is the vector

of functional residuals. The approximate 95% point-wise confidence intervals for

β`(t), ` ∈ {0, 1, . . . , L}, are then the intervals with the limits

β̂`(t) ± 2ŝe[β̂`(t)], where ŝe[β̂`(t)] = σ̂
√
{ΘA(Φ′Φ)−1A′Θ′}`,` is an estimated

standard error of the estimator β̂`(t). Note that, in general, the coverage proba-

bility of such confidence intervals may differ from 95%.
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3.3. Model validation

The accuracy of regression models can be assessed by the (normalized) root

mean squared error (N)RMSE

RMSE =

√√√√ 1

n

n∑

i=1

‖yi(t)− ŷi(t)‖2, NRMSE =
RMSE

‖ȳ(t)‖ , (3.10)

where ŷi(t) are the fitted values and ȳ(t) = 1
n

∑n
1 yi(t) is the functional mean.

The R2 (the coefficient of determination)

R2 = 1−
∑n

i=1 ‖yi(t)− ŷi(t)‖2∑n
i=1 ‖yi(t)− ȳ(t)‖2 (3.11)

characterizes how accurately a model explains a phenomenon. Note that, the

model selection can be performed, e.g., by the backward elimination, or by the

generalized cross-validation [62].

3.4. The global permutation tests for the effect of
the covariates

This section focuses on testing for the significance of the regression functions

in model (3.2). Most linear hypotheses about the effect of the covariates can be

expressed in a compact matrix form as

H0 : Cβ = 0, against H1 : Cβ 6= 0, (3.12)

where C is an h × (L + 1) matrix of constants and 1 ≤ h ≤ L + 1 is a number

of linearly independent hypotheses. An important special case, helping to assess

the model, is the omnibus test that at least one covariate has a significant effect

on the response variable. Symbolically, in model (3.2), we aim at testing the

hypothesis

H0 : β1(t) = β2(t) = . . . = βL(t) = 0 ∀t ∈ T, against (3.13)

H1 : β`(t) 6= 0 for some ` ∈ {1, . . . , L} and some t ∈ T. (3.14)
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Using the notation introduced in Section 3.2, the omnibus hypothesis can be

equivalently written as

H0 : b1 = b2 = . . . = bL = 0, against H1 : b` 6= 0 for some ` ∈ {1, . . . , L},
(3.15)

or in a matrix form as

H0 : Cb = 0, against H1 : Cb 6= 0, (3.16)

where C is a (
∑L

`=1Kβ,`) × Kβ block matrix of the form C = (0|I), where 0 is

a
∑L

`=1Kβ,`×K0-dimensional matrix of zeros and I is a (
∑L

`=1Kβ,`×
∑L

`=1Kβ,`)

identity matrix. To verify the omnibus hypothesis, one can use the test statistic

T =
1

σ̂2
b̂′C′

[
C(F̃′F̃ + Rβ)−1C′

]−1
Cb̂. (3.17)

The test for the significance of a single regression function β`(t), ` ∈ {1, . . . , L},
through the hypothesis

H`
0 : b` = 0, against H`

1 : b` 6= 0, (3.18)

can be run using the test statistic

T` =
1

σ̂2
b̂′`(F̃

′
`F̃` + Rl)b̂`, (3.19)

where F̃` denotes the block-diagonal part of F̃ corresponding to b`.

In this section, only the omnibus and the single-hypothesis tests are concerned.

The case of the more general linear hypotheses is detailed in Section 4.4.

A decision about the hypotheses (3.16) and (3.18) can be made by the Freed-

man and Lane permutation scheme (see [31]), adapted to the functional data

setting [1, 66]. Algorithm 1 provides a detailed overview of the scheme for testing

the hypothesis (3.16). Similarly, one can proceed in the case of a single-covariate

hypothesis (3.18). This procedure allows one to estimate the distribution of

the test statistics T (or T`) under the random permutations by Monte Carlo

techniques. In particular, the residuals ε̂ of model (3.2) are estimated from the
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reduced model (i.e., the model fitted under the null hypothesis) and they are per-

muted at each iteration, each time creating a permuted data set over which the

test statistic is evaluated. Under H0, the distribution of T (or T`) is asymptoti-

cally invariant to permutations. The asymptotical invariance is a consequence of

performing the test on the estimated and therefore asymptotically exchangeable

residuals. Finally, one can compute the global p-value of the T (or T`) test as

the proportion of permutations leading to a value of the T (or T`) statistic that

is higher than or equal to the statistic from the observed data.

Algorithm 1 Freedman and Lane permutation scheme for the hypothesis (3.16).

1. Compute the test statistic Tdata from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Determine the residuals ε̂i,r of the reduced model
yi,r(t) = θ′0(t)b0 + εi,r(t). Obtain b̂0, ε̂i,r(t) = yi,r(t) − θ′0(t)b̂0,
i ∈ {1, . . . , n}.

(b) Permute the residuals ε̂1,r(t), . . . , ε̂n,r(t), obtaining ε̂∗i,r(t),
i ∈ {1, . . . , n}.

(c) Compute the permuted responses y∗i,r(t) through the fit-
ted reduced model and the permuted residuals ε̂∗i,r(t) as
y∗i,r(t) = θ′0(t)b̂0 + ε̂∗i,r(t), i ∈ {1, . . . , n}.

(d) Estimate the regression coefficients b of the full model from the
permuted responses y∗r by the OLS (Equation (3.6)). Obtain b̂∗,
ε̂∗i,p(t), i ∈ {1, . . . , n}.

(e) Estimate the parameter σ2
p from the residuals ε̂∗i,p(t),

i ∈ {1, . . . , n}, from step (d), obtaining σ̂2
p

(f) Compute the test statistic T ∗e as

T ∗e = 1
σ̂2
p
b̂∗
′C′
[
C(F̃′F̃ + Rβ)−1C′

]−1
Cb̂∗.

3. Compute the global p-value of the T test as the proportion of all permuta-
tions for which T ∗e ≥ Tdata, e ∈ {1, . . . , E}.

32



3.5. Detecting the differences in the means of two
functional populations

The presence of the auxiliary lanes in the interchange introduced in Section

1.1 has motivated the task of identifying where exactly does the mean speed of

the vehicles driving in the main lane and in the auxiliary lane differ, and where it

cannot be distinguished. For this purpose, we apply the interval-wise permutation

test proposed in the work of [60], allowing to identify the parts of the functional

domain T where the two groups of the functional observations significantly differ.

Let y1i(t), i ∈ {1, . . . , n1}, and y2i(t), i ∈ {1, . . . , n2}, denote the functional

observations from the two groups. Let µ1(t) and µ2(t) be their functional means

and let I ⊆ T be an arbitrary interval (t1, t2) ⊆ T or its complement T\(t1, t2).
The aim is, for each I, to test the hypothesis [60]

H0 : µI1 (t) = µI2 (t) ∀t ∈ I, against H1 : µI1 (t) 6= µI2 (t) for some t ∈ I, (3.20)

using the test statistic [60]

TI =
1

|I|

∫

|I|
[ȳ1(t)− ȳ2(t)]2dt, (3.21)

where µIm(t) denotes µm(t) restricted on the sub-interval I of T , |I| is the length
of I and ȳm(t) is the sample functional mean of the m-th group, m ∈ {1, 2}.

The permutation test described in the work of [38] and a test statistic (3.21)

can be used to compute the p-value pI of the TI test (3.21). For some I, given
two random independent samples YI1 = yI1i(t) and YI2 = yI2i(t), denote by PI

the pooled sample YI1 ∪ YI2 . For e ∈ {1, . . . , E}, where E is the total number of

permutations, the test statistics TI∗1 , . . . ,T
I∗
E are computed by randomly resam-

pling n1 values from PI , assigning them to YI1 , while the remaining n2 values

are assigned to YI2 . Then, the p-value pI is calculated as the proportion of all

permutations for which TI∗e ≥ TIdata, e ∈ {1, . . . , E}. Finally, define for each t ∈ T
the interval-wise adjusted p-value p̃(t) of the test (3.21) as [60]

p̃(t) = sup
t∈I

pI , t ∈ T. (3.22)
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The details of the computation of the interval-wise adjusted p-value (Equation

(3.22)) can be found in [60].

3.6. Application: Analysis of the driving speed on
expressway ramps based on floating car data

In this section, the methodology introduced in Chapter 2 and Sections

3.1 - 3.5 is applied to floating car data introduced in Section 1.1. All the

steps which are necessary to perform the analysis, starting with preprocessing

the raw observations, proceeding to testing for the significance in a functional-

on-functional regression model or to detecting differences in the means of two

groups of functional data, are detailed here.

3.6.1. Data preprocessing

Prior to proceeding to the analysis of the functional data, the raw observations

obtained from the on-board GPS units were preprocessed as follows. Based on

FCD, the area of interest was determined by a polygon function. Given our focus

on the specific sections of the ramp, the data were trimmed in its immediate

vicinity and the directions were deducted based on the GPS coordinates and the

recorded time of each ride. The detailed characteristics of the specific sections

of the ramp were detected as well (e.g., GPS coordinates of the road centres

and their cumulative distance). The trimmed data respect the same start and

end of each ride. Moreover, the rides distinguish the specific driving directions.

Due to different recording frequencies that affected the final cumulative distance,

additional cleaning of the data was considered. Atypical rides, e.g., clear errors

or unrealistic accelerations in the source data, were omitted.

To achieve a higher accuracy of the recorded data, it was necessary to

transform the WGS84 [degrees, EPSG:4326] coordinates to the planar

S-JTSK [m, EPSG:5514] coordinates. The latter are standardly used coordi-

nates for the data collected in the Czech Republic. This transformation can be

conducted using the sf_project function (R package sf [56]).
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Finally, the identification of centres and breakpoints of the curvature of the

monitored ramp was needed. The least-square-circle fit method [18] was applied

to determine the curvature, i.e., the reciprocal value of the circular radius for

each ride with respect to the central lane, the merging lane, and the exit lane.

For this purpose, the lsfit.circle function can be used (R package circular

[2]). According to [7], a section with a circular radius greater than 2000 m

is considered a tangent (straight) section. Lower values of the circular radius

indicate the circular curve. For ramp 2, the process is illustrated in Figure 3.1,

having identified six breakpoints of the curvature.

The potential presence of the spiral (transition) curves between a circular

curve and a tangent section was not considered here due to the complexity of the

determination of the parameters of the spiral curve from the point data, compared

to the relatively simple determination of the parameters of the circular curve. In

addition, several authors (see, e.g., [32, 55, 57]) found out that the transition

curves do not significantly influence the speed, and had disregarded them in their

studies. Following these findings, the spiral curves were not included into this

analysis either.

3.6.2. Floating car data as the functional observations

In the first step, the data were cleaned from the rides with nearly zero speed,

where there presumably was a congestion, as only the standard rides are of in-

terest. Then, using the R package FDA [63] the data were turned into functional

observations using a projection over a cubic B-spline basis with 100 basis func-

tions and equispaced knots, preserving enough variation of the original discrete

data, yet not being too noisy. The smoothing was performed using the penalized

residual sum of squares criterion, where, for each ramp, an appropriate value

of the smoothing parameter λ was selected via the generalized cross-validation

[62]. The summary of the final data set available for the analysis is provided in

Table 3.1. To identify the sections with a rapid change of the speed, the obser-

vations themselves and their first derivatives are studied, allowing to analyse the
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Figure 3.1: A circular radii for ramp 2 (the central lane by red, the merging lane
by cyan), obtained from the least-square-circle fit method. Blue points denote
the breakpoints of the ramp curvatures. The fitted yellow circles correspond to
the central lane, the blue circle corresponds to the merging lane. The red triangle
indicates the beginning of ramp 2. Upper-right corner: detailed view of ramp 2.

driving speed and the acceleration, respectively. To model the driving speed on

each ramp, a set of potential covariates is selected, including the auxiliary lane,

i.e., merging/exit lane (indicating from which direction the vehicle joined/left the

ramp, 1 for the auxiliary lane, 0 otherwise) and the radius of the circle fitted to

the particular part of the ramp (in metres), measuring its curvature.

3.6.3. Basic characteristics of the driving speed

In this section, to focus on the smoothness of the functional observations of the

driving speed on each ramp, we study the observations of the driving speed and

their first derivatives. The behaviour of the functions of the driving speed on the

less complex (i.e., relatively straight) ramps 1 and 3 has only minimal fluctuations

(Figures 3.2a and 3.2c). In contrast, the driving speed and the acceleration on
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Table 3.1: ramp ID, ramp length (m), number of the observations from the
central, merging and exit lane and the total number of the observations per
ramp. Symbol - denotes the absence of the merging/exit lane in the ramp.

ramp ID ramp length ncentral lane nmerging lane nexit lane ntotal
1 395 473 9 - 482
2 653 365 40 - 405
3 386 684 - 23 707
4 839 168 - - 168
5 888 309 - 18 327
6 604 141 - - 141

the more complex loop ramps 2, 4, 5, and 6 show higher variability (Figures 3.2b,

3.3a, 3.3b, and 3.3c).

The behaviour of the vehicles driving in the auxiliary lanes is also of interest.

The local conditions, including the speed limits, need to be considered in order

to provide the correct interpretation.

Firstly, consider merging into ramps 1 and 2, posted by a STOP sign located

at 64.6th meter. The merging lane ends at 94.3th meter and the vehicles must

stop before reaching this point. It can be concluded that the driving speed in

the merging lane is the lowest at approximately 90th meter (Figure 3.2). Note

that, although it is obliged to stop there, the minimum speed is above zero. This

is in fact a consequence of smoothing the data with the purpose of reducing its

variability and ensuring the overall smoothness of functions of the driving speed.

After the STOP sign, a weaving section follows, where the exiting drivers are

obliged to drive not faster than 40 km/h. Therefore, the merging drivers need to

accelerate from the zero speed, while at the same time they need to decelerate

in case of the necessary weaving manoeuvres. This creates turbulent patterns

in both the speed and the acceleration (Figure 3.2), as evidenced also by the

previous studies of the behaviour in the weaving sections [74]. The overall speed

limit in the central lanes at ramps 1 and 2 is 60 km/h. Note that, the mean

speed in the central lane at ramp 1 is around 80 km/h, exceeding the maximum

allowed speed (Figure 3.2a). The driving patterns in the merging lanes at ramps

1 and 2 are further analysed in Section 3.6.4.
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Secondly, consider the exit lanes from ramps 3 and 5. Although the exit is

not posted by any speed limit sign, the speed should not exceed 50 km/h. From

the driver’s point of view, the radius of the curve is relatively small, which is

probably the reason why the observed speed is reduced even below 40 km/h.

The acceleration also drops significantly, especially in the case of ramp 3 (see

Figure 3.3).

3.6.4. Examining the properties of the merging lanes

In order to maintain the safety and the smoothness of the traffic, it is recom-

mended for the merging lane to be long enough to reach the speed of 3/4 of the

speed limit for the central lane [73]. However, this assumption is in practice often

fulfilled only in case of the roads which comply with the technical standards. In

reality, these standards are often violated, e.g., by the presence of a STOP sign.

For this reason, we suggest to approximate this recommendation by 3/4 of the

mean speed of the vehicles driving in the central lane for the sake of examining

the driving speed at merging lanes 1 and 2. Concluding from a visual inspection

of the functions of speed, the vehicles from the merging lane at ramp 1 reach the

3/4 of the mean speed of the vehicles driving in the central lane at approximately

180th meter and, compared to the central lane, their mean speed is lower ∀t ∈ T
(Figure 3.2a).

The vehicles driving in the merging lane at ramp 2 reach 3/4 of the mean speed

of the vehicles driving in the central lane at approximately 150th meter and they

quickly reach similar speed as the vehicles driving in the central lane (Figure

3.2b). Note that, these findings are based on descriptive statistics and visual

inspection of the data. A more concise analysis regarding the (dis)similarity of

the observations from the central and the merging lane is given in Section 3.6.5.
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(a) Ramp 1

(b) Ramp 2

(c) Ramp 3

Figure 3.2: Left: observations of the speed in kilometres per hour after smoothing;
right: acceleration in kilometres per hour squared. The black curves represent
the observations from the central lane, the blue curves represent the observations
from the merging lane, the green curves represent the observations from the exit
lane. The cyan and yellow curves represent the mean of the speed and the 3/4 of
the mean of the speed of the vehicles driving in the central lane, respectively. The
red line represents the mean of the speed of the vehicles driving in the merging
lane.
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(a) Ramp 4

(b) Ramp 5

(c) Ramp 6

Figure 3.3: Left: observations of the speed in kilometres per hour after smoothing;
right: acceleration in kilometres per hour squared. The black curves represent the
observations from the central lane, the green curves represent the observations
from the exit lane.
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3.6.5. Differences in the means of the driving speed from
two distinct lanes

In case of the ramps with both the central and the auxiliary lanes, it is of

interest to focus on the specific parts of the ramp from/to which the observations

from the central lane and from the auxiliary lane become indistinctible in terms of

the driving speed. This can be analysed by testing the hypothesis of the equality

of the means of the driving speed in the central and the auxiliary lane, applying

the interval-wise testing procedure [60] (the methodology is discussed in Section

3.5), using the R package fdatest [59].

The test (3.21) for equality of the means of the driving speed for the central

and the merging lane at ramp 2, based on 1000 permutations, leads to rejecting

the null hypothesis (Figure 3.4b). To conclude, it takes approximately 180 metres

for the vehicles driving in the merging lane to reach the same mean speed as the

vehicles driving in the central lane. On the contrary, at ramp 1 (Figure 3.4a), the

mean speed of the vehicles driving in the merging lane is, ∀t ∈ T , significantly
lower than the mean speed of the vehicles driving in the central lane. In the case

of ramp 3 (Figure 3.5a), the mean speed of the vehicles driving in the exit lane

and in the central lane differs significantly ∀t ∈ T . At ramp 5 (Figure 3.5b), the

mean speed of the vehicles driving in the exit lane is significantly lower, compared

to the mean speed of the vehicles driving in the central lane, from approximately

800th meter until the end of the ramp.
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Figure 3.4: The results of testing the hypothesis (3.20) of equality of the means
of the driving speed in the merging and the central lane. Left: The observations
from the merging lane (blue) and the central lane (black). Right: The adjusted
p-values of the test (3.20). Light grey: 0.05 level of significance, dark grey: 0.01
level of significance.
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Figure 3.5: The results of testing the hypothesis (3.20) of equality of the means
the driving of speed in the exit and the central lane. Left: The observations from
the exit lane (green) and the central lane (black). Right: The adjusted p-values
of the test (3.20). Light grey: 0.05 level of significance, dark grey: 0.01 level of
significance.
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3.6.6. Models for the driving speed data

The initial models chosen to describe the vehicle’s driving speed include the

functional covariate radius(t) and the factor covariate auxiliary lane (either the

merging lane or the exit lane). Following Equation (3.2), the corresponding i-th

row of the design matrix F can be symbolically expressed for the i-th functional

observation of the driving speed as (1, radiusi(t), auxiliary lanei), from left to right

representing the intercept, the function of the radius of the i-th observation,

and a factor variable auxi taking either the value 0 for the vehicle driving in

the central lane, or 1 for the vehicle driving in the auxiliary lane. To find an

optimal model, the backward elimination method can be used, where at each

iteration, a covariate with the largest p-value is removed and the model is re-

estimated. The procedure stops when only the significant covariates remain in

the model. In all cases, 1000 permutations are performed, considering the level

of significance α = 0.05. The results for the final models for the global p-values

of the T and T` tests (Equations (3.17) and (3.19), respectively), as well as the

model evaluation characteristics, can be seen in Table 3.2. In more detail, the

normalized RMSE takes the values from 0.10 to 0.14 for all analysed ramps, which

indicates a sufficiently high accuracy of the fitted models. On the other hand,

small values of the R2 indicate that the analysed covariates (the radius, and the

auxiliary lane) explain the behaviour of the driving speed only poorly, indicating

that more covariates would be needed to sufficiently model the driving speed.

This is further discussed in Section 3.6.7.

Note that, the design matrix can be augmented by a column with an interac-

tion term between the radius and the auxiliary lane allowing to model the effect

of the curvature separately for the central and the auxiliary lane. In this case, the

i-th row of the matrix F can be of the form (1, radiusi(t), auxiliary lanei,

auxiliary lanei · radiusi(t)). Nevertheless, the interaction term is not significant

in any of the considered ramps, and therefore it is not presented here in more

detail.

For each ramp, the resulting fitted speed and the estimates of the regression
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Table 3.2: Left part of the table: The global p-values of the T and T` tests for the
final models based on 1000 permutations of the driving speed data. The symbol
- means the covariate is not included in the final model. Right part of the table:
Model evaluation. Note that, ramp 6 has not been included based on the results
of the backward elimination in the initial model, as none of the covariates had
a significant effect on the driving speed.

Global p-values of the final models Model evaluation
ramp ID Omnibus test βradius βmerging lane βexit lane R2 RMSE NRMSE

1 0 - 0 - 0.138 201 0.143
2 0 0.015 0 - 0.384 159 0.111
3 0 0 - 0 0.206 186 0.119
4 0.012 0.015 - - 0.016 176 0.104
5 0 0 0.001 0 0.091 219 0.130
6 0.139 - - - - - -

functions, together with the approximate 95% point-wise confidence intervals for

β̂(t), are presented in Figures 3.6 - 3.10.

Concern now the results of the regression models for each of the six ramps.

Overall, the auxiliary lanes are indeed the important predictors of the driving

speed. Note that, this can be observed in the regression models as well as in

the interval-wise testing (Section 3.6.5), see ramps 1, 2, 3, and 5. For the more

complex ramps, speaking in terms of their curvature (ramps 2, 4, 5, and 6), the

radius has a significant effect on the driving speed for ramps 2, 4, and 5. Ramp 3

would be classified as a rather less complex ramp based on its curvature, although

the effect of the radius is a significant predictor of the driving speed as well. The

individual results of the models for the driving speed are discussed in more detail

in the following part of this section.

Starting with the more complex ramps in terms of the curvature, the shape

of βmerging lane(t) at ramp 2 indicates that the effect of the merging lane on the

driving speed is mainly in lowering the driving speed at first 100 m by 30-40 km/h,

compared to the central lane. On approximately 100-250 m, the vehicles driving

from the merging lane accelerate, and after passing this distance, the effect of the

merging lane becomes only marginal. Secondly, the shape of βradius(t) suggests

that the effect of this functional covariate manifests in a slight increase of the
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driving speed ∀t ∈ T . However, the point-wise confidence interval, for some

t ∈ T , includes also the negative values, concluding that there are sections of the

ramp where the effect of the radius is not significant. Recall that, for rejecting

the global null hypothesis it is sufficient that β(t) is significantly different from

0 for at least some t ∈ T . This may indicate that the hypothesis is rejected at

some parts of T and not rejected on the rest. As the test is of global nature, the

interpretation should be very careful.

The effect of the radius is also significant for ramp 4 where its effect mani-

fests in a slight decrease of the speed at approximately 220th meter, followed by

similarly high increase of the driving speed after 250th meter. At approximately

250th meter the radius reaches its lowest values, i.e., the curvature of the road is

the highest here (see Figures 1.1 and 3.9).

Regarding the loop ramp 5, the shape of βexit lane(t) suggests that at first 700

metres the speed of the vehicles leaving the ramp in the exit lane is comparable

to those driving in the central lane. Then, as exiting the ramp, they quickly

decelerate at the last 180 m, where their speed becomes almost 40 km/h lower

than the speed of the vehicles driving in the central lane. The loop begins at

approximately 500th meter, from where the effect of the radius causes a slight

decrease of the driving speed, reaching its local minimum at approximately 630th

meter where the curvature of the loop is the highest (i.e., the radius is the lowest),

see Figures 1.1 and 3.10 for more details.

Assessing ramp 6, no significant relationship is found between the radius and

the driving speed.

Concerning the less complex ramps in terms of the curvature, at ramp 1, the

shape of βmerging lane(t) shows that the speed of the vehicles driving in the merging

lane is approximately 40-50 km/h lower at first 100 m, compared to the speed

of the vehicles driving in the central lane. After passing this point the vehicles

start to accelerate. The acceleration is most evident at 100-180 m; from there,

the vehicles drive at almost constant speed, accelerating only mildly, although

still being approximately 10 km/h slower compared to the vehicles driving in the
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central lane. Overall, the shape of βmerging lane(t) shows that the vehicles driving

in the merging lane drive slower throughout the whole ramp, compared to the

vehicles driving in the central lane (Figure 3.6). The effect of the radius is not

significant.

Ramp 3 is located on the same road as ramp 1 but in the opposite direction.

The final model for ramp 3 includes the exit lane and the radius. Concluding

from the shape of βexit lane(t), the effect of the exit lane in the model is negative

at the whole ramp and the vehicles are decelerating even more as t increases.

Their driving speed changes only slightly at first 200 m, being 10-20 km/h slower

compared to the vehicles driving in the central lane. After passing 200th meter,

the drivers begin to decelerate sharply, reaching a minimum speed and, compared

to the vehicles driving in the central lane, their mean speed is 60 km/h lower at

the end of the ramp. The effect of the radius is significant here, causing a slight

decrease of the speed starting from approximately 170th meter until the end of

the ramp. Note that, although ramps 1 and 3 are located on the same road,

their shapes are not symmetrical. Ramp 1 is more curved in the beginning and

straighter in the end of the ramp; on contrary, ramp 3 starts with the straightest

part and then becomes more curved in its second half. At ramp 3, the significance

of the effect of the radius on the driving speed is shown by the global permutation

test presented in Section 3.4. This difference between the curvature of ramps 1

and 3 is also evident from the behaviour of the functions of the radius (see Figures

3.6 and 3.8 for comparison).

The precision of the regression models for the driving speed can be assessed

through the precision of the estimators of the regression functions using the point-

wise confidence intervals (see Figures 3.6 - 3.10). Firstly, the precision of the

estimates of β0(t) is discussed. The confidence interval at ramp 1 has almost the

same width over the whole functional domain T (the margin of error is approx-

imately 1 km/h). Similarly, the confidence interval for the estimate of β0(t) at

ramp 3 has almost constant width (the margin of error is approximately 5 km/h)

but is slightly narrower in the middle part of the ramp (the margin of error is
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approximately 3 km/h). At ramp 2, the precision of the estimate of β0(t) is the

highest at approximately 250th meter (the margin of error is less than 1 km/h);

this part of the ramp corresponds to the curve. From here towards the beginning

and the end of the ramp, the margin of error increases to 5 km/h. Concerning

ramp 4, the width of the point-wise confidence interval for the estimate of β0(t) is

estimated with a higher precision in the first half of ramp 4 (the margin of error

is approximately 5 km/h), while after 500th meter, the margin of error increases

to 40 km/h and then it sharply decreases. In the case of ramp 5, the width of the

confidence interval is higher in the first half of the ramp (the margin of error is

approximately 50 km/h) and then β0(t) is estimated with more precision in the

part of ramp 5 corresponding to the loop.

Secondly, we concern the precision of the estimates of βradius(t). At ramp

2, the margin of error increases from 0.005 to 0.01 with the increasing distance.

A similar pattern is observed at ramp 3 with a similar shape and magnitude of the

margin of error. In the case of ramp 4, the margin of error varies from the very

low values in the beginning and the end of the ramp (0.1 and 0.2, respectively)

to approximately 0.8 at 220th meter and 1.5 at 300th meter where the margin of

error amplitudes and then becomes lower again. Concerning ramp 5, the point-

wise confidence interval for the estimate of βradius(t) is narrower in the beginning

of the ramp (the margin of error increases from 0.01 to 0.025), from where it

increases to the maximum of almost 0.1 at 520th meter. From this point, the

width of the confidence interval for the estimate of βradius(t) begins to decrease

very sharply to 0.01. It should be noted that the radius is shown in metres,

which allows to capture even small changes in the curvature. Therefore, based

on the units chosen for the radius, the effect of the estimate of βradius(t) and the

point-wise confidence interval limits manifests in small values only.

Lastly, the point-wise confidence intervals for the estimates of the regression

functions for the auxiliary lane are discussed. One can see that they have similar

width over the whole functional domain T . The most precise estimate of the

regression function for the auxiliary lane, relative to the units, can be observed
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at ramp 2 where the margin of error varies from 3 km/h at first 100 m, 1 km/h

until 200th meter, and from 200th meter until the end of the ramp increases up

to 2.5 km/h (see Figure 3.7). At ramp 1, the margin of error of the estimate of

βmerging lane(t) is the highest, approximately 5 km/h over the whole ramp (Figure

3.6). As can be seen at ramp 5, the precision of the estimate of βexit lane(t)

is slightly less accurate at first 550 m (the margin of error is approximately

5 km/h). From there until the end of the ramp the confidence intervals become

narrower (the margin of error decreases to 2 km/h), probably as the vehicles drive

through the loop which is followed by the exit lane. In the first, more straight

part of ramp 5, their speeds can vary more, while after entering the loop, they

all need to drive similarly, which allows for a greater precision of the estimate of

βexit lane(t) (see Figure 3.10). In contrast, the confidence intervals for the estimate

of βexit lane(t) at ramp 3 are narrower in the first part of the ramp (the margin

of error is approximately 4 km/h) and become slightly wider after 200th meter.

After passing this point, the vehicles start to decelerate to exit the central lane

and the margin of error increases from 4 to 8 km/h (Figure 3.8).
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Figure 3.6: Ramp 1: The functional observations of the speed and the radius, the
fitted speed, the estimates of the regression functions together with the point-wise
confidence intervals. The colours distinguish the observations from the central
lane (black) and from the merging lane (blue).
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Figure 3.7: Ramp 2: The functional observations of the speed and the radius, the
fitted speed, the estimates of the regression functions together with the point-wise
confidence intervals. The colours distinguish the observations from the central
lane (black) and from the merging lane (blue).
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Figure 3.8: Ramp 3: The functional observations of the speed and the radius, the
fitted speed, the estimates of the regression functions together with the point-wise
confidence intervals. The colours distinguish the observations from the central
lane (black) and from the exit lane (green).
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Figure 3.9: Ramp 4: The functional observations of the speed and the radius, the
fitted speed, the estimates of the regression functions together with the point-wise
confidence intervals.
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Figure 3.10: Ramp 5: The functional observations of the speed and the radius, the
fitted speed, the estimates of the regression functions together with the point-wise
confidence intervals. The colours distinguish the observations from the central
lane (black) and from the exit lane (green).
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3.6.7. Model limitations

Firstly, from the transportation research point of view, more variables related

to the driving speed may be used in the future studies, as numerous factors are

known to influence the driving speed [24, 29, 72]. These factors may fall into

three domains: the road environment, the drivers, and the vehicles. Since FCD,

due to the privacy regulations, do not usually contain information regarding the

drivers and the vehicles, the road environment factors are usually the only ones

available, including, e.g., the cross-section (road width, lane width) or the road-

side characteristics (barriers, fixed obstacles, vegetation). For example, a more

generous road width, i.e., more lanes, wider lanes, and a wider obstacle-free zone,

was associated with a higher speed in the previous studies. On the other hand,

the visual constraints, such as buildings or vegetation along the road or more

curves, which limit the sight length, were associated with a lower speed [70].

The second limitation arises from the data source. Since FCD are only sourced

from the fleet vehicles, the received data represent this subgroup and its char-

acteristics only. The most influential characteristic is probably the type of the

source vehicles. In the case of the data concerned in this application, these are

the company vehicles and it is likely that their drivers may have different driving

patterns compared to the general population of the drivers.

Thirdly, from the methodological point of view, the inference procedures pre-

sented in this chapter assume homoscedasticity among the observations. This

assumption can be verified, e.g., by the global test for homoscedasticity [66] (dis-

cussed in Section 4.5) or by the two-sample interval-wise t-test [60] (discussed in

Section 3.5) generalized for testing the variances.

The last limitation can arise from the computational demand. In case of this

application, the data preparation and the model fitting were running fast, but the

inference in regression models, the model selection and the estimates of point-wise

confidence intervals required more computational time. In particular, the model

selection for all six ramps ran approximately 8 hours (parallel computations on

a Windows 10 Home machine with AMD Ryzen 7 2700U, 2.2 GHz, 8-GB RAM).
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Chapter 4

Regression models for spatial
covariates and functional response

In this chapter, a definition of the spatial-on-functional regression model, to-

gether with the methods for the analysis of spatial correlation are provided in Sec-

tions 4.1 and 4.2. Then, the estimation of the regression functions is overviewed

in Section 4.3, detailing the estimates of regression functions for the cases of

homoscedastic, heteroscedastic, and spatially correlated functional observations.

Next, the permutation-based tests for the general linearly independent linear hy-

potheses about the spatial covariates and their special cases, the omnibus and

the single-parameter hypothesis tests for the lack of the effect of the spatial co-

variates, are introduced in Section 4.4. In Section 4.5, the methods for assessing

the model assumptions for the case of heteroscedasticity are introduced. The

performance of the proposed permutation-based tests is evaluated in Sections

4.6 and 4.7 through the extensive simulation studies. Lastly, all the proposed

methods are demonstrated on the available real-world data sets from the fields

of geochemistry and tourism (Sections 4.8 and 4.9).

4.1. Model specification

Let the spatial domain of interest be denoted as D ⊂ Rd. Let s be a point in

D and denote by Xs(t) an observation at location s ∈ D at time t ∈ T = [t1, t2].

From this point, we assume that for the fixed location s, the random function
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Xs(·) is an element of the Hilbert space L2(T ) of the square-integrable functions.

The set

{Xs(t), t ∈ T, s ∈ D ⊂ Rd} (4.1)

is called the functional random field of the time-varying entity, defined on L2.

In the following, we assume that the functional random field (4.1) is second-

order stationary and isotropic in the sense of the work of [52], i.e.,

1. Second-order stationarity

• E(Xs(t)) = µs(t),∀s ∈ D,

• Cov(Xsi ,Xsj) = E(〈Xsi −msi ,Xsj −msj〉) = C(h),∀si, sj ∈ D,
h = si − sj, h ∈ D, and si, sj, h are d-dimensional vectors,

2. Isotropy

• Cov(Xsi ,Xsj) = E(〈Xsi − µsi ,Xsj − µsj〉) = C(‖h‖D),∀si, sj ∈ D,
h = si − sj, h ∈ D, and si, sj, h are d-dimensional vectors,

where ‖ · ‖D is a norm over D and 〈·, ··〉 denotes the inner product in L2. This

means that, only the mean E(Xs(t)) is a function of the location s, whereas the

global covariances Cov(Xsi ,Xsj) do not depend on the locations si, sj, but only

on ‖h‖D, the distance between these locations [21, 39, 52].

Following the work of [52], we assume that the random field can be modelled

as

Xs(t) = ms(t) + δs(t), s ∈ D, t ∈ T, (4.2)

where ms(t) is the drift and δs(t) are the residuals, the realizations of a zero-

mean, second-order stationary and isotropic random process. The drift captures

a non-constant mean variation in space D and can be represented by a linear

model

ms(t) = β0(t) +
L∑

`=1

β`(t)f`(s), s ∈ D, t ∈ T, (4.3)
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where β`(t), ` ∈ {0, . . . , L}, t ∈ T , are the unknown regression functions, inde-

pendent on the location in space D, and f`(s), ` ∈ {1, . . . , L}, s ∈ D, are the

known functions of the spatial variable s ∈ D.

Model (4.2) can be rewritten into the matrix form as

X = Fβ + δ, (4.4)

where X = (Xs1(t), . . . ,Xsn(t))′, t ∈ T , is a matrix of the functional observa-

tions at the spatial points s1, . . . , sn ∈ D,Fi = (1, f1(si), . . . , fL(si)), si ∈ D,

i ∈ {1, . . . , n}, is an i-th row of a known n × (L + 1) design matrix F,

β = (β0(t), . . . , βL(t))′, t ∈ T , are the unknown regression functions, and

δ = (δs1(t), . . . , δsn(t))′, s1, . . . , sn ∈ D, t ∈ T , are the spatially correlated residu-

als with an unknown variance-covariance structure represented by the matrix Σ.

Note that, Σ is constant over T .

4.2. Analysis of the spatial correlation

From here, to avoid a heavy notation, we directly set h = ‖si − sj‖D.
A covariance function of a second-order stationary and isotropic random field

(4.1) can be typically parametrized as

C(h) = σ2ρ(h), h ≥ 0, ρ(0) = 1, (4.5)

where ρ(h) is a correlation function measuring the linear relationship between

the observations at the distance h. Under these assumptions, the (i, j)-th entry

of the variance-covariance matrix Σ is given as

Σij = Cov(δsi , δsj) = C(h), si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n}. (4.6)

The spatial dependence among the residuals can be also specified by means of

the (functional) semivariogram

γ(h) =
1

2
Var

(
δsi − δsj

)
=

1

2
E[‖δsi − δsj‖2], si, sj ∈ D, h = ‖si − sj‖D , (4.7)
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where ‖·‖ is the L2-norm. Note that, one can define the variogram as 2γ(h). The

relationship between the semivariogram (4.7) and the covariance function (4.5)

can be expressed as

γ(h) = C(0)− C(h), si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n}. (4.8)

The functional semivariogram is estimated by the empirical functional semi-

variogram [51, 52]

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi − δsj‖2, si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n},

(4.9)

where N(h) is the set of all pairs of the observations at a distance approximately

h and |N(h)| is the cardinality of this set. As was pointed out in [52], calculating

γ̂(h) for every distance h may not be feasible in real applications. Instead, the

distances can be binned into K intervals centred in h1, . . . , hK , computing a dis-

cretized version of the semivariogram γ̂(h) = (γ̂(h1), . . . , γ̂(hK)). In the next

step, a parametric model is fitted to the empirical semivariogram. To find an

optimal model, a distance between the empirical estimate γ̂(h) and a parametric

model γ(h) is minimized.

Similarly to the scalar case [19], the shape of the trace-variogram can be used

to determine if Σ is diagonal. Indeed, the uncorrelated residuals δsi are associated

with a pure nugget model for a variogram, that is, a constant trace-variogram

function.

The more detailed information regarding the variography and the other ap-

proaches to the estimation of the variance-covariance matrix Σ can be found,

e.g., in [19, 51, 52].

4.3. Estimation of the regression functions

Consistently with the case studies which shall be concerned in this chapter, we

assume that the residuals are either homoscedastic, heteroscedastic, or spatially

correlated, and that their spatial variance-covariance matrix is invertible.
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When the conditions rank(F) = L + 1 ≤ n and rank(Σ) = n hold, the

regression functions β in the model (4.4) can be estimated as follows.

For the case of homoscedastic and uncorrelated residuals, the

variance-covariance matrix is of the form Σ = σ2I, where I is an identity ma-

trix, and the estimator of the regression functions β simplifies to the ordinary

least-squares (OLS) one [52] as

β̂OLS = (F′F)−1F′X . (4.10)

The OLS estimator is the best linear unbiased estimator and is associated with the

variance-covariance matrix Var(β̂OLS) = σ2(F′F)−1. The parameter σ2 is usually

unknown and is simply estimated from the estimated residuals by Equation (3.9),

where κ = δ̂ = X − Fβ̂OLS is a vector of the estimated functional residuals.

For the case of heteroscedastic and uncorrelated residuals, the

variance-covariance matrix Σ is a diagonal matrix. Let W = Σ−1 be a diag-

onal matrix of the weights. In general, the weight wii, i ∈ {1, . . . , n}, can differ

for each observation. However, in the following, based on the example outlined

in Section 1.2, we shall assume that the weights are constant within the groups

and possibly different between the groups in the data. The regression functions

β can be estimated through the weighted least-squares (WLS) estimator as

β̂WLS = (F′WF)−1F′WX . (4.11)

Assuming W is a diagonal matrix, the WLS estimator is the best linear unbiased

estimator and is associated with the variance-covariance matrix

Var(β̂WLS) = (F′WF)−1.

For the case of spatially correlated residuals, a general

variance-covariance matrix Σ is associated with the residuals, and the regres-

sion functions β can be estimated through the generalized least-squares (GLS)

estimator [52] as

β̂GLS = (F′Σ−1F)−1F′Σ−1X , (4.12)

The GLS estimator is the best linear unbiased estimator and is associated with

the variance-covariance matrix Var(β̂GLS) = (F′Σ−1F)−1.
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In practice, the variance-covariance matrix Σ describing the spatial depen-

dence is usually unknown, so that the GLS estimator is not available. The general

variance-covariance matrix Σ can be estimated, e.g., from the estimated resid-

uals by the semivariogram through an iterative two-step procedure for the GLS

estimates of the regression functions (Algorithm 2). Particularly, with respect to

Equations (4.5) and (4.8), the (i, j)-th entry of Σ is estimated as

Σ̂i,j = σ̂2 − γ̂(h), si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n}, (4.13)

where σ̂2 and γ̂(h) are given by Equations (3.9) and (4.9), respectively.

In the case of the diagonal variance-covariance matrix Σ = W−1, under the

presence of groups in the data where the variances are assumed to be constant

within each group and possibly different between the groups, the estimation of

the diagonal matrix W is as follows. Assume δsi(m)(t), si ∈ D, i ∈ {1, . . . , nm},
m ∈ {A,B}, are the two groups of the functional residuals from the model

specified in Equations (4.2) and (4.3), where i is the unit index and m is the

population index. Let σ2
(A) and σ2

(B) be the global variances (constant over T )

of these two populations. The variances are estimated separately for each group

by Equation (4.27), and their estimates σ̂2
(A) and σ̂2

(B) are indeed the estimates

of the reciprocal diagonal elements wii(A) and wii(B) of the matrix of weights

W, i.e., ŵii(m) = 1/σ̂2
(m), i ∈ {1, . . . , n},m ∈ {A,B}. The rest of the procedure is

analogous to the GLS case and is described in Algorithm 2.

In both cases, the iterative estimation procedure of β should be repeated few

times until the convergence is reached [52]. The iterative procedure is stopped

when the change of the estimates of the residuals in two consecutive steps is

sufficiently small, i.e., if

‖δ̂si,l − δ̂si,l−1‖ < given value, si, sj ∈ D, i ∈ {1, . . . , n}. (4.14)

Here, δ̂si,l denotes the estimate of the residual δsi in the l-th step.
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Algorithm 2 Iterative two-step estimation procedure of the regression functions.

1. Estimate the regression functions β by the OLS (Equation (4.10)).

2. Determine the estimated residuals δ̂ as δ̂ = X − Fβ̂OLS.

3. Estimate the variance-covariance matrix Σ (or W) from the estimated
residuals δ̂.

4. Estimate the regression functions β by the GLS (or the WLS) by plugging
in Σ̂ (or Ŵ) into Equation (4.12) (or Equation (4.11)).

5. Estimate the residuals δ as δ̂ = X − Fβ̂GLS (or as δ̂ = X − Fβ̂WLS).

6. Repeat steps 3-5 until the condition (4.14) is met.

4.4. The global permutation tests for the effect of
the covariates

This section focuses on the problem of testing for the significance of the re-

gression functions in model (4.3). Recall a compact matrix form of the linear

hypotheses about the effects of covariates as

H0 : Cβ = 0, against H1 : Cβ 6= 0, (4.15)

where C is an h× (L+ 1) matrix of constants and 1 ≤ h ≤ L+ 1 is a number of

linearly independent hypotheses. An important special case is the omnibus test

considering

H0 : β1(t) = . . . = βL(t) = 0 ∀t ∈ T, against (4.16)

H1 : β`(t) 6= 0 for some ` ∈ {1, . . . , L} and some t ∈ T, (4.17)

to compare the full and the null models. In this case, C is an L× (L+ 1) block

matrix partitioned as C = (0|I), where 0 is a vector of zeros of length L and I is

an (L×L) identity matrix. In the case of testing the effect of a single regression

function β`(t), ` ∈ {1, . . . , L}, through the hypothesis

H`
0 : β`(t) = 0 ∀t ∈ T, against H`

1 : β`(t) 6= 0 for some t ∈ T, (4.18)
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the matrix C is reduced to a unit row vector with 1 on the `-th entry and zeros

otherwise, i.e, C` = (0, . . . , 0, 1, 0, . . . , 0).

If the variance-covariance matrix has the form Σ = σ2I, one can use the test

statistic [66]

TOLS =

∫

T

1

σ̂2

(
Cβ̂OLS

)′ [
C(F′F)−1C′

]−1 (
Cβ̂OLS

)
dt (4.19)

for testing the hypothesis (4.15). The test of a single regression function β`(t),

` ∈ {1, . . . , L}, expressed through the hypothesis (4.18), can be run using the

test statistic

T`
OLS =

∫

T

(
C`β̂OLS

)2

σ̂2C`(F′F)−1C′`
dt. (4.20)

Without the presence of spatial correlation and under homoscedasticity, a de-

cision about the hypotheses (4.15) and (4.18) can be made by the Freedman and

Lane permutation scheme (see [31]) suitably adapted to the functional data as

in [1]. The principle of this permutational scheme is outlined in Section 3.4.

Algorithm 3 provides a detailed description of the scheme.

Under the presence of heteroscedasticity or spatial correlation, a modification

of the testing procedure provided in Algorithm 3 is necessary to account for the

heterogeneous structure of the estimated residuals δ̂ which are no longer asymp-

totically exchangeable if characterized by a heteroscedastic or spatial structure.

Without the presence of spatial correlation and under heteroscedasticity, the

hypothesis (4.15) can be tested using a test statistic accounting for the covariance

structure of the residuals,

TWLS =

∫

T

(
Cβ̂WLS

)′ [
C(F′ŴF)−1C′

]−1 (
Cβ̂WLS

)
dt, (4.21)

where β̂WLS is the weighted least-squares estimator of β, obtained by Algorithm 2.

One can proceed analogously in the case of the test of a single regression function
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Algorithm 3 Freedman and Lane permutation scheme for the omnibus test in
the case Σ = σ2I.

1. Compute the test statistic Tdata
OLS from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Determine the estimated residuals δ̂si,r of the reduced model
Xsi,r = β0 + δsi,r. Obtain β̂0, δ̂si,r, si ∈ D, i ∈ {1, . . . , n}.

(b) Permute the estimated residuals δ̂s1,r, . . . , δ̂sn,r, obtaining δ̂∗si,r,
si ∈ D, i ∈ {1, . . . , n}.

(c) Compute the permuted responses X ∗r through the fit-
ted reduced model and the permuted estimated residuals
δ̂
∗
r as X ∗si,r = β̂0 + δ̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(d) Estimate the regression functions β of the full model from the per-
muted responses X ∗r by the OLS (Equation (4.10)). Obtain β̂

∗
OLS, δ̂

∗
p.

(e) Estimate the parameter σ2
p from the estimated residuals δ̂

∗
p from step

(d), obtaining σ̂2
p.

(f) Compute the test statistic T∗eOLS as
T∗eOLS =

∫
T

1
σ̂2
p

(
Cβ̂

∗
OLS

)′
[C(F′F)−1C′]

−1 (
Cβ̂

∗
OLS

)
dt.

3. Compute the global p-value of the TOLS test as the proportion of all per-
mutations for which T∗eOLS ≥ Tdata

OLS, e ∈ {1, . . . , E}.

(see hypothesis (4.18)), using the test statistic

T`
WLS =

∫

T

(
C`β̂WLS

)2

C`(F′ŴF)−1C′`
dt. (4.22)

Define the vector ε = W1/2δ, as

εsi = w
1/2
ii δsi , si ∈ D, i ∈ {1, . . . , n}. (4.23)

Clearly, Cov(ε) = I, and {εsi}, si ∈ D, i ∈ {1, . . . , n}, are exchangeable. In

principle, one may specify any model for the weights wii, i ∈ {1, . . . , n}, without
substantial modifications of the method here proposed.

In this section, we propose to consider for the permutation scheme the stan-

dardized residuals ε, which can be obtained from the estimated residuals δ̂ as
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ε̂ = Ŵ1/2δ̂. Assuming the homoscedasticity within the groups and the het-

eroscedasticity between the groups, the variance σ2
(m) in the m-th group can be

estimated via the sample variance within this group (Equation (4.27)). The

estimated standardized residuals ε̂ are then randomly permuted, and the corre-

sponding permuted responses are used similarly as in the case of homoscedasticity.

The permutation scheme is described in detail in Algorithm 4. This algorithm is

a new proposal for the case of heteroscedasticity among the observations.

Algorithm 4 Freedman and Lane permutation scheme in the case Σ = W−1.

1. Compute the test statistic Tdata
WLS from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Determine the estimated residuals δ̂si,r of the reduced model
Xsi,r = β0 + δsi,r using Algorithm 2. Obtain β̂0,Ŵr, δ̂si,r, si ∈ D,
i ∈ {1, . . . , n}.

(b) Determine the exchangeable estimated residuals ε̂r from δ̂r
as ε̂r = Ŵ

1/2
r δ̂r.

(c) Permute the estimated exchangeable residuals ε̂s1,r, . . . , ε̂sn,r, obtain-
ing ε̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(d) Compute the permuted responsesX ∗r through the fitted reduced model
and the permuted estimated heteroscedastic residuals δ̂

∗
r = Ŵ

−1/2
r ε̂∗r

as X ∗si,r = β̂0 + δ̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.
(e) Estimate the regression functions β of the full model from the per-

muted responses X ∗r by the WLS (Equation (4.11)) using Algorithm
2. Obtain β̂

∗
WLS, δ̂

∗
p, Ŵp.

(f) Compute the test statistic T∗eWLS as

T∗eWLS =
∫
T

(
Cβ̂

∗
WLS

)′ [
C(F′ŴpF)−1C′

]−1 (
Cβ̂

∗
WLS

)
dt.

3. Compute the global p-value of the TWLS test as the proportion of all per-
mutations for which T∗eWLS ≥ Tdata

WLS, e ∈ {1, . . . , E}.

Similarly to the case of heteroscedasticity, the residuals δ̂ are no longer asymp-

totically exchangeable if characterized by a spatial correlation. As an approach

to dealing with this issue, we propose a modification of Algorithm 3, which
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will be here referred to as the spatial functional Freedman and Lane Permu-

tation scheme (SF-FLPerm). In the spatial functional setting, assuming a global

variance-covariance matrix Σ, the test statistic can be formulated as

TGLS =

∫

T

(
Cβ̂GLS

)′ [
C(F′Σ̂

−1
F)−1C′

]−1 (
Cβ̂GLS

)
dt, (4.24)

where β̂GLS is the generalized least-squares estimator of β, obtained by Algorithm

2. One can analogously proceed when testing the hypothesis (4.18), using the

test statistic

T`
GLS =

∫

T

(
C`β̂GLS

)2

C`(F′Σ̂
−1

F)−1C′`

dt. (4.25)

Define the vector of spatially filtered residuals ε as

ε = Σ−1/2 δ, (4.26)

where Σ−1/2 is a symmetric square root of Σ−1 [42]. Clearly, Cov(ε) = I, and

{εsi}, si ∈ D, i ∈ {1, . . . , n}, are exchangeable.

The key difference of the SF-FLPerm scheme, compared to the Freedman

and Lane scheme (see [31]) is that the inference is based on the permutations of

the spatially filtered residuals ε̂ instead of on the permutations of the correlated

residuals δ̂. In more detail, at each iteration, the residuals δ̂ are decorrelated by

using the inverse-square root of the residual spatial covariance Σ̂, i.e., ε̂ = Σ̂
−1/2

δ̂.

The spatially filtered residuals ε̂ are permuted and then they are correlated back

by using the square root of Σ̂, i.e., δ̂ = Σ̂
1/2
ε̂, to create the permuted data set.

That is, the distribution of the TGLS (T`
GLS) test statistic under the permutations

is estimated in a similar manner as in the homoscedasticity or heteroscedasticity

cases, but through the estimated approximately exchangeable spatially filtered

residuals ε̂. The detailed overview of the spatial functional Freedman and Lane

Permutation schemes is provided by Algorithms 5 and 6 which are designed for

testing the general linear hypotheses about the effect of the covariates and the

single parameter hypothesis, respectively. Algorithms 5 and 6 extend the scheme
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for heteroscedastic observations proposed in [66] to the more complex structures

of the data. To avoid repetition, a single hypothesis algorithm is not shown for

OLS and WLS cases, but Algorithm 6 can be adapted to these cases as well.

Algorithm 5 Spatial functional Freedman and Lane permutation scheme for
hypothesis (4.15).

1. Compute the test statistic Tdata
GLS from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Determine the estimated residuals δ̂si,r of the reduced model
Xsi,r = β0 + δsi,r using Algorithm 2. Obtain β̂0, Σ̂r, δ̂si,r, si ∈ D,
i ∈ {1, . . . , n}.

(b) Determine the exchangeable estimated spatially filtered residuals ε̂r
from δ̂r as ε̂r = Σ̂

−1/2
r δ̂r.

(c) Permute the estimated exchangeable spatially filtered residuals
ε̂s1,r, . . . , ε̂sn,r, obtaining ε̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(d) Compute the permuted responsesX ∗r through the fitted reduced model
and the permuted estimated spatially correlated residuals δ̂

∗
r = Σ̂

1/2

r ε̂∗r
as X ∗si,r = β̂0 + δ̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(e) Estimate the regression functions β of the full model from the per-
muted responses X ∗r by the GLS (Equation (4.12)) using Algorithm 2.
Obtain β̂

∗
GLS, δ̂

∗
p(t), Σ̂p.

(f) Compute the test statistic T∗eGLS as

T∗eGLS =
∫
T

(
Cβ̂

∗
GLS

)′ [
C(F′Σ̂

−1
p F)−1C′

]−1 (
Cβ̂

∗
GLS

)
dt.

3. Compute the global p-value of the TGLS test as the proportion of all per-
mutations for which T∗eGLS ≥ Tdata

GLS, e ∈ {1, . . . , E}.
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Algorithm 6 Spatial functional Freedman and Lane permutation scheme for
hypothesis (4.18).

1. Compute the test statistic T`data
GLS from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Determine the estimated residuals δ̂si,r of the reduced model
Xsi,r = β0 +

∑
k 6=` βkfk(si) + δsi,r using Algorithm 2. Obtain β̂0, β̂k,

k ∈ {1, . . . , L}, k 6= `, Σ̂r, δ̂si,r, si ∈ D, i ∈ {1, . . . , n}.
(b) Determine the exchangeable estimated spatially filtered residuals ε̂r

from δ̂r as ε̂r = Σ̂
−1/2
r δ̂r.

(c) Permute the estimated exchangeable spatially filtered residuals
ε̂s1,r, . . . , ε̂sn,r, obtaining ε̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(d) Compute the permuted responsesX ∗r through the fitted reduced model
and the permuted estimated spatially correlated residuals δ̂

∗
r = Σ̂

1/2

r ε̂∗r
as X ∗si,r = β̂0 +

∑
k 6=` β̂kfk(si) + δ̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(e) Estimate the regression functions β of the full model from the per-
muted responses X ∗r by the GLS (Equation (4.12)) using Algorithm 2.
Obtain β̂

∗
GLS, δ̂

∗
p, Σ̂p.

(f) Compute the test statistic T`∗e
GLS as T`∗e

GLS =
∫
T

(C`β̂
∗
GLS)

2

C`(F′Σ̂
−1
p F)−1C′`

dt.

3. Compute the global p-value of the T`
GLS test as the proportion of all per-

mutations for which T`∗e
GLS ≥ T`data

GLS, e ∈ {1, . . . , E}.

4.5. Assessment of the model assumptions under
heteroscedasticity

As was outlined earlier in this chapter, three possible scenarios may occur

under the spatial setting. Which approach to choose can be decided by the shape

of the semivariogram. Firstly, the concave shape, where the semivariogram in-

creases in the beginning part and then becomes constant or non-decreasing (see

the example in Figure 4.1b), is associated with the spatial correlation and a gen-

eral variance-covariance matrix Σ. Secondly, the constant shape of the semi-
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variogram (i.e., the pure nugget structure, see the example in Figure 4.1a) is

associated with a diagonal variance-covariance matrix (Σ equals either σ2I, or

W). However, even for the case of spatially uncorrelated residuals, one still needs

to verify the assumption of homoscedasticity, as this determines the exchange-

ability of the residuals. For this reason, we employ a test based on the same

permutations as described in Sections 3.4, 3.5, and 4.4, but with a test statis-

tic specifically aiming at detecting the differences in variances. Note that, using

the multiple comparison principles, the test can be extended to the case of more

populations.
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Figure 4.1: Examples of the nugget (left) and exponential (right) models for the
semivariogram.

Let δsi(m)(t), si ∈ D, i ∈ {1, . . . , nm},m ∈ {A,B}, be two groups of the

functional residuals from model in Equations (4.2) and (4.3), where i is the unit

index and m is the population index. Let σ2
(A) and σ

2
(B) be the global variances

(constant over T ) of these two populations, that is, σ2
(m) = E[‖δsi(m)‖2]. The

latter can be estimated as

σ̂2
(m) =

1

nm

nm∑

i=1

‖δ̂si(m)(t)‖2, (4.27)

where si ∈ D, i ∈ {1, . . . , nm}, m ∈ {A,B}, t ∈ T, and ‖ · ‖ is the L2-norm.

Note that, by construction, the overall residual sample mean is zero; furthermore,

the residual sample mean within the groups is zero if the dummy variables are

included among the covariates (i.e., in a functional analysis of covariance setting).
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The goal is now to test the hypothesis

H0 : σ2
(A) = σ2

(B), againstH1 : σ2
(A) 6= σ2

(B). (4.28)

For this purpose, we propose as a test statistic the absolute value of the log-

proportion of variances, as follows:

TVar =

∣∣∣∣log
(
σ̂2
(A)

σ̂2
(B)

)∣∣∣∣. (4.29)

To perform the test, we consider a permutation scheme similar to those discussed

in Sections 3.4, 3.5, and 4.4. UnderH0, the residuals are approximately exchange-

able, and the permutation procedure from [1] can be applied. The global p-value

of the TVar test (4.28) is computed as the proportion of the permutations leading

to a value of TVar higher than or equal to the one observed in the data. The

testing procedure is described in Algorithm 7. Its results can be used to estab-

lish which permutation strategy, among those detailed in Section 4.4, should be

used to test the significance of the regression functions. Note that, the proposed

statistical inference concerning homoscedasticity is only approximate due to its

definition on the estimated residuals.

4.6. Simulation studies under heteroscedasticity

In this section, we report the results of a simulation study intended to evaluate

the empirical size and the power of the proposed permutation-based global tests

for the significance of the effect of covariates in the spatial regression model under

heteroscedasticity (Section 4.1). In the following, we consider two simulation

scenarios. Firstly, the empirical size and the power of the TOLS and TWLS tests

are assessed for a simple functional linear model with one covariate. Secondly,

the empirical size of both tests is evaluated for a model with more covariates.

The design of the simulation studies is inspired by the real-world application

concerned in Sections 1.2 and 4.8.
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Algorithm 7 The permutation scheme for the homoscedasticity test for hypoth-
esis (4.28).

1. Compute the test statistic Tdata
Var from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Sort function’s indices as 1, 2, . . . , nA︸ ︷︷ ︸
group A

, nA + 1, nA + 2, . . . , nA + nB︸ ︷︷ ︸
group B

.

(b) Permute the estimated residuals δ̂si(m), si ∈ D, i ∈ {1, . . . , n},
m ∈ {A,B}, from both groups together. Obtain

δ̂∗s1 , . . . , δ̂
∗
snA︸ ︷︷ ︸

group A

, δ̂∗snA+1
, . . . , δ̂∗snA+nB︸ ︷︷ ︸
group B

(c) Using the rearranged functions δ̂∗si(m), si ∈ D, i ∈ {1, . . . , n},
m ∈ {A,B}, estimate the group variances σ̂∗2(A) = 1

nA

∑nA
i=1 ‖δ̂∗si(A)‖2

and σ̂∗2(B) = 1
nB

∑nA+nB
i=nA+1 ‖δ̂∗si(B)‖2.

(d) Compute the test statistic T∗eVar =

∣∣∣∣log
(
σ̂∗2
(A)

σ̂∗2
(B)

)∣∣∣∣.

3. Compute the global p-value of the TVar test as the proportion of all permu-
tations for which T∗eVar ≥ Tdata

Var , e ∈ {1, . . . , E}.

The data are divided into two groups, group A with a variance σ2
(A), and group

B with a variance σ2
(B) = a · σ2

(A), a ∈ (0,∞). The sample sizes of groups A and

B are chosen as follows:

1. unbalanced design I, where nB = 3nA,

2. balanced design II, where nA = nB,

3. unbalanced design III, where nA = 3nB.

The heteroscedastic residuals δs1(t), . . . , δsn(t), s1, . . . , sn ∈ D, t ∈ [3, 10], are

generated by the following procedure. Denote by {φq, q ∈ {1, . . . , 10}} the

cubic B-spline basis, where the knots are placed at the data points, and by

v = (v1, . . . , v10)
′ the corresponding coefficient vector. The residuals δsi(t),
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si ∈ D, i ∈ {1, . . . , n}, t ∈ [3, 10], are built on the same cubic B-spline basis

expansion {φq, q ∈ {1, . . . , 10}} as

δsi(t) =
10∑

q=1

v∗iq φq(t), si ∈ D, i ∈ {1, . . . , n}, t ∈ [3, 10], (4.30)

where the basis coefficients v∗iq are drawn from a multivariate normal distribution

with zero mean and a variance-covariance matrix Sv. For group A, the matrix

S
(A)
v is set to the sample variance-covariance matrix of v. To achieve heteroscedas-

ticity, the variance-covariance matrix for the group B is multiplied by a scalar

a, that is, S
(B)
v = a · S(A)

v , a ∈ (0,∞). In the next step, the simulated residuals

δs1(t), . . . , δsn(t), s1, . . . , sn ∈ D, t ∈ [3, 10], are added to the model for the drift

(4.3), obtaining the functional observations Xs(m)(t), s ∈ D, m ∈ {A,B}.

4.6.1. Assessing the empirical size and the power of the TOLS

and TWLS tests in a simple model with an indicator

The first simulation study is based on a functional linear model with one

covariate. To evaluate the empirical size and the power of the TOLS and TWLS

tests, a hypothesis of no effect of the covariate is tested. The nominal size of the

test is set to α = 0.05. The sample sizes n ∈ {20, 40, 200, 500} are considered.

The relationship among the group variances is modelled through a ∈ {3, 9}, such
that σ2

(B) = a · σ2
(A).

For each scenario, 2000 simulations are performed. In each case, the model is

built as

Xs(m)(t) = β0(t) + b · β1(t)soil(s) + δs(m)(t), s ∈ D, t ∈ [3, 10], (4.31)

where m ∈ {A,B},

soil(s) =

{
0 for group A,
1 for group B, (4.32)

and b ∈ [0, 5] controls the severity of the deviation between the means of groups

A and B. The true regression functions β0(t) and β1(t) are shown in Figure 4.2.
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Figure 4.2: The true regression functions β0(t) and β1(t) (black) and their esti-
mates β̂0(t) and β̂1(t) (red) for the simple model with an indicator (4.31). For
the sake of clarity, only 25 estimates are shown.

The results of the simulation study for the size of the TOLS and TWLS tests

are presented in Table 4.1; the power functions are shown in Figure 4.3. One

can see that, for the balanced design II, the TOLS and TWLS tests show similar

behaviour regarding the empirical size and the power; here, the empirical size

of both tests is close to the nominal one, α = 5 %. In the case of the unbal-

anced design I (nB = 3nA and σ2
(B) = a · σ2

(A), a ∈ {3, 9}), the TOLS test is

very conservative for each considered sample size n ∈ {20, 40, 200, 500}. Its em-

pirical size varies from 0.2 % to 1.3 % (95% confidence intervals: (0.1;0.5) and

(0.9;1.9), respectively). In contrast, for the case of the unbalanced design III

(nA = 3nB and σ2
(B) = a · σ2

(A), a ∈ {3, 9}), the TOLS test is, for each sample

size n ∈ {20, 40, 200, 500}, very liberal. Its empirical size ranges from 12.4 % to

23.9 % (95% confidence intervals: (11.0;13.9) and (22.1;25.8), respectively). In

general, under heteroscedasticity, the TWLS test performs better than the TOLS

test whenever the design is unbalanced. The empirical size of the TWLS test is

close to the nominal size of α = 5 % in the majority of cases. However, for design

III and a small sample size n ∈ {20, 40} the empirical size of TWLS is slightly

higher than the nominal one, with the maximum empirical size of the TWLS test

being 9.6 % (95% confidence interval: (8.4;11.0)). This effect is related to design

III, where there is necessary to estimate a high variance (a ·σ2
(A), a ∈ {3, 9}) from

a relatively small number of the observations (nB = n/4).
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Table 4.1: The empirical sizes (in percentages) together with the 95% confidence
intervals of the TOLS and TWLS tests for model (4.31) under different conditions
based on 2000 simulations and 1000 permutations. The nominal size of the tests
is set to α = 5 %. The sample size is denoted by n and the data are divided
into groups A and B, such that: unbalanced design I: nB = 3nA, balanced design
II: nA = nB and unbalanced design III: nA = 3nB. The relationship among the
group variances is modelled through a ∈ {3, 9}, where σ2

(B) = a · σ2
(A).

Design
I I II II III III

n Test a = 3 a = 9 a = 3 a = 9 a = 3 a = 9
20 OLS 1.3 (0.9;1.9) 0.3 (0.1;0.7) 6.0 (5.0;7.1) 5.9 (5.0;7.0) 13.1 (11.7;14.7) 23.9 (22.1;25.8)
20 WLS 6.2 (5.2;7.3) 5.5 (4.6;6.6) 6.8 (5.8;8.0) 7.0 (6.0;8.2) 8.0 (6.9;9.3) 9.6 (8.4;11.0)
40 OLS 1.2 (0.8;1.8) 0.2 (0.1;0.5) 4.9 (4.0;5.9) 5.4 (4.5;6.5) 12.5 (11.1;14.0) 21.5 (19.8;23.4)
40 WLS 5.7 (4.8;6.8) 4.5 (3.7;5.5) 5.5 (4.6;6.6) 6.5 (5.5;7.7) 6.1 (5.1;7.2) 8.2 (7.1;9.5)
200 OLS 1.2 (0.8;1.8) 0.3 (0.1;0.7) 5.2 (4.3;6.3) 4.7 (3.9;5.7) 13.1 (11.7;14.7) 20.3 (18.7;22.1)
200 WLS 6.5 (5.5;7.7) 5.4 (4.5;6.5) 5.8 (4.9;6.9) 5.4 (4.5;6.5) 5.5 (4.6;6.6) 6.9 (5.9;8.1)
500 OLS 1.1 (0.7;1.6) 0.5 (0.2;0.9) 4.9 (4.0;5.9) 4.6 (3.8;5.6) 12.4 (11.0;13.9) 19.9 (18.2;21.7)
500 WLS 5.8 (4.9;6.9) 6.5 (5.5;7.6) 5.4 (4.5;6.4) 5.3 (4.4;6.3) 5.6 (4.7;6.7) 6.2 (5.2;7.3)

Focusing on the size of the difference among the group variances, where σ2
(B) is

three or nine times higher than σ2
(A), one can see that, as a increases, the empirical

power of both TOLS and TWLS tests converges to 1 for a bigger difference among

the group means (compare the power functions for a = 3 and a = 9 in Figure

4.3). In the case of design III, the TOLS test may be mistakenly considered more

powerful than the TWLS test. Nevertheless, this is a consequence of a highly

liberal behaviour of the TOLS test. As one could naturally expect, the power of

both tests increases with a higher sample size n, as can be seen for each simulation

scenario in Figure 4.3.

4.6.2. Assessing the empirical size of the TOLS and TWLS tests
in a more complex model with more covariates

In this simulation scenario, the TOLS and TWLS tests are evaluated through

a functional linear model with three covariates; an indicator function, compara-

ble to model (4.31) from Section 4.6; a linear function of the distance; and an

interaction term of these two. In total, 2000 simulations are run for a sample size

n = 200.
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Figure 4.3: The empirical power of the TOLS (solid line) and TWLS (dot-dashed
line) tests under different a = σ2

(B)/σ
2
(A) and design, based on 2000 simulations

and 1000 permutations. The mean difference among the groups is modelled
as b · β1(t). The dashed horizontal line represents the nominal size of the test
α = 0.05.
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Inspired by the case study from Sections 1.2 and 4.8, the model is built as

Xs(m)(t) = β0(t) + b · β1(t)soil(s) + β2(t)dist(s) + b · β3(t)soil(s) · dist(s) + δs(m)(t),

(4.33)

where s ∈ D,m ∈ {A,B}, and t ∈ [3, 10]. The term dist(s) denotes the distance

from the central sampling point (the ecotone), where dist(s) ∈ {3, 6, . . . , 3nm},
and m ∈ {A,B}. In this case, evaluating the empirical size of the TOLS and

TWLS tests, b is equal to 0. In this simulation study, the TOLS and TWLS tests are

evaluated under both homoscedasticity and heteroscedasticity, i.e., for the group

variances it holds σ2
(B) = a · σ2

(A), a ∈ {1, 3, 9}. The true regression functions

β`(t), ` ∈ {0, 1, 2, 3}, are presented in Figure 4.4.

We aim at examining the empirical size of the TOLS and TWLS tests for the

global null hypothesis H0 : β1(t) = β2(t) = β3(t) = 0 ∀t ∈ [3, 10], and comparing

it to the empirical sizes for the simple model with an indicator (4.31). The results

(see Table 4.2) suggest that the TOLS and TWLS tests behave similarly for both

the simple model with an indicator (4.31) and the more complex model (4.33).

Under heteroscedasticity, the TOLS approach in model (4.33) is, compared to the

results for model (4.31), less conservative for design I and even more liberal for

design III. On contrary, under homoscedasticity, the empirical sizes of both TOLS

and TWLS tests are close to the nominal one, α = 5 %. The TWLS test, despite

being applied to homoscedastic data, gives results comparable to the (proper)

TOLS approach. The precision of the OLS and WLS estimators of regression

functions is more detailed in Section 4.6.3.

The results from the simulation studies from Sections 4.6.1 and 4.6.2 show that

the TWLS approach introduced in this section performs well under the setting of

a complex functional regression model and heteroscedasticity at the same time.

Concerning the either liberal or conservative behaviour of the TOLS test, the

results presented in Sections 4.6.1 and 4.6.2 are consistent with those obtained,

in the scalar case, by [40].
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Table 4.2: The empirical sizes (in percentages) together with the 95% confidence
intervals of the TOLS and TWLS tests for models (4.31) and (4.33) and the sample
size n = 200 based on 2000 simulations and 1000 permutations. The data are
divided into groups A and B, such that: unbalanced design I: nB = 3nA, balanced
design II: nA = nB, and unbalanced design III: nA = 3nB. The relationship among
the group variances is achieved through a ∈ {1, 3, 9}, such that σ2

(B) = a · σ2
(A).

a
Design Model Test 1 3 9
I (4.31) OLS 5.2 (4.3;6.3) 1.2 (0.8;1.8) 0.3 (0.1;0.7)
I (4.31) WLS 5.7 (4.8;6.8) 6.5 (5.5;7.7) 5.4 (4.5;6.5)
I (4.33) OLS 6.2 (5.2;7.3) 2.5 (1.9;3.3) 2 (1.5;2.7)
I (4.33) WLS 6.5 (5.5;7.7) 5.4 (4.5;6.5) 5.6 (4.7;6.7)
II (4.31) OLS 5.2 (4.3;6.3) 5.2 (4.3;6.3) 4.7 (3.9;5.7)
II (4.31) WLS 5.4 (4.5;6.5) 5.8 (4.9;6.9) 5.4 (4.5;6.5)
II (4.33) OLS 4.3 (3.5;5.3) 6.3 (5.3;7.5) 7.3 (6.2;8.5)
II (4.33) WLS 4.1 (3.3;5.1) 5.7 (4.8;6.8) 6.4 (5.4;7.6)
III (4.31) OLS 5.6 (4.7;6.7) 13.1 (11.7;14.7) 20.3 (18.6;22.1)
III (4.31) WLS 6.0 (5.0;7.1) 5.5 (4.6;6.6) 6.9 (5.9;8.1)
III (4.33) OLS 4.3 (3.5;5.3) 15.6 (14.1;17.3) 24.7 (22.9;26.6)
III (4.33) WLS 5.0 (4.1;6.0) 6.5 (5.5;7.7) 5.9 (5.0;7.0)

4.6.3. Evaluating the precision of the estimates of the re-
gression functions

In this section, the precision of the OLS and WLS estimators of regression

functions β`(t), ` ∈ {0, 1, . . . , L}, is studied. As an optimality criterion, the

L2-norm of the difference between the true β`(t) and its estimate β̂`(t) is computed

for each iteration of the simulations and then the mean norm of the difference is

used as an overall criterion. In other words, for each `, we compute

L̄2
dif =

1

Niter

Niter∑

i=1

‖β`(t)− β̂`(t)‖2, (4.34)

where ` ∈ {0, . . . , L} and Niter represents the number of iterations. Naturally,

the closer L̄2
dif is to zero, the better the regression function is estimated. Indeed,

for L̄2
dif = 0, the true regression function and its estimate are exactly the same.

77



2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8 9 10
t

β 0

0.0

0.5

1.0

1.5

2.0

3 4 5 6 7 8 9 10
t

β 1

−0.100

−0.075

−0.050

−0.025

3 4 5 6 7 8 9 10
t

β 2

0.00

0.05

0.10

0.15

0.20

3 4 5 6 7 8 9 10
t

β 3

Figure 4.4: The true regression functions β`(t), ` ∈ {0, 1, 2, 3}, (black) and their
estimates β̂`(t), ` ∈ {0, 1, 2, 3}, (red) for the more complex model (4.33). For the
sake of clarity, only 25 estimates are shown.

The results obtained from 200 simulations for the sample sizes

n ∈ {20, 40, 200, 500} for designs I, II, and III for the model

Xs(m)(t) = β0(t)+β1(t)soil(s)+β2(t)dist(s)+β3(t)soil(s)·dist(s)+δs(m)(t), (4.35)

where m ∈ {A,B}, s ∈ D, and t ∈ [3, 10], are presented in Table 4.3. The

heteroscedasticity in the data is achieved through σ2
(B) = 3 · σ2

(A).

It can be clearly seen from the results in Table 4.3 that L̄2
dif tends to decrease

with the increasing sample size. Focusing on the comparison of the regression

functions, β̂2(t) and β̂3(t) are very close to the true regression functions. On

the other hand, the regression function β1(t) seems to be the most difficult to

estimate, probably because the covariate soil(s) is a group indicator only taking
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values 0 and 1. Despite that, the main shape of the estimated regression functions

is preserved for each regression function, including β1(t).

Under heteroscedasticity, the correct estimates of the variance-covariance ma-

trices of the OLS and WLS estimators are

V̂ar(β̂OLS) = (F′F)−1F′Ŵ−1F(F′F)−1, (4.36)

V̂ar(β̂WLS) = (F′ŴF)−1, (4.37)

respectively, and the difference V̂ar(β̂OLS) − V̂ar(β̂WLS) is a positive semidefi-

nite matrix. For the combination of predictors chosen in the simulation study

presented in this section, the accuracy of β̂OLS is very close to the accuracy of

β̂WLS.

On contrary, under homoscedasticity, we have

V̂ar(β̂OLS) = σ̂2(F′F)−1, (4.38)

V̂ar(β̂WLS) = σ̂2(F′ŴF)−1F′Ŵ2F(F′ŴF)−1, (4.39)

and the difference V̂ar(β̂WLS) − V̂ar(β̂OLS) is a positive semidefinite matrix.

Again, in our case, the accuracy of β̂WLS is very close to the accuracy of β̂OLS.

Thus, the differences between the variance-covariance matrices are very small for

both homoscedastic and heteroscedastic case and are not reported here.

Note that, these findings do not represent a general rule. Consider for example

the model without an interaction term

Xs(m)(t) = β0(t) + β1(t)soil(s) + β2(t)dist(s) + δs(m)(t), (4.40)

where m ∈ {A,B}, s ∈ D, and t ∈ [3, 10]. Under heteroscedasticity, the sum

of the variances of the OLS estimators is approximately 1.07 times higher than

for the WLS estimators. On contrary, under homoscedasticity, the sum of the

variances of the WLS estimators is almost 1.09 times higher than for the OLS

estimators.
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Table 4.3: the mean norms of the regression functions for model (4.35) under
different conditions for 200 simulations. The data are divided into groups A and
B, such that: unbalanced design I: nB = 3nA, balanced design II: nA = nB, and
unbalanced design III: nA = 3nB. The relationship among the group variances is
achieved through a ∈ {1, 3, 9}, such that σ2

(B) = a · σ2
(A).

design n β0(t) β1(t) β2(t) β3(t)
I 20 79.315 128.092 0.764 0.845
I 40 36.289 71.85 0.102 0.118
I 200 6.572 12.685 0.001 0.001
I 500 2.377 5.028 < 10−4 < 10−4

II 20 37.182 131.506 0.112 0.426
II 40 17.311 70.344 0.013 0.055
II 200 3.164 12.286 < 10−4 < 10−4

II 500 2.377 5.028 < 10−4 < 10−4

III 20 21.521 255.984 0.031 2.258
III 40 9.252 128.681 0.003 0.363
III 200 2.046 21.917 < 10−4 0.003
III 500 2.377 5.028 < 10−4 < 10−4

4.7. Simulation studies under spatial correlation

In this section, we report the results of a simulation study intended to evaluate

the empirical size and the power of the permutation-based global tests TOLS and

TGLS for the significance of the effect of the covariates in the spatial functional

regression model under the presence of spatial correlation (Section 4.1).

The spatially correlated residuals are generated by a two-step procedure.

In the first step, the uncorrelated residuals εs1(t), . . . , εsn(t), s1, . . . , sn ∈ D,

t ∈ [1, 8], are simulated as follows. Denote by {φq, q ∈ {1, . . . , 10}} the cu-

bic B-spline basis with knots at the data points, used to represent the data, and

by u = (u1, . . . , u10)
′ the corresponding coefficients vector. The residuals εsi(t),

si ∈ D, i ∈ {1, . . . , n}, t ∈ [1, 8], are built on the same cubic B-spline basis ex-

pansion as

εsi(t) =
10∑

q=1

uiqφq(t), si ∈ D, i ∈ {1, . . . , n}, t ∈ [1, 8], (4.41)

where the basis coefficients uiq are generated using the standard normal distribu-

tion for every location si = (xi, yi) in the space D = [0, 1] × [0, 1]. In order to
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obtain the spatially correlated residuals δsi(t), si ∈ D, i ∈ {1, . . . , n}, t ∈ [1, 8],

the specification of the variance-covariance matrix Σ is necessary. Recall that,

under the isotropy condition (see Equation (4.5)), one can assume Σ = σ2ρ(h). In

our case, we assume σ2 = 100 and a spherical model for the correlation function

ρ(h), i.e.,

ρ(h) =

{
1− 1.5

(
h
ψ

)
+ 0.5

(
h
ψ

)3
, h < ψ,

0, otherwise,
(4.42)

where ψ is a range, i.e., the maximum distance to which the spatial observations

are correlated, and h = ‖si − sj‖D is the distance between the points si and sj.

Then, to obtain the spatially correlated residuals δsi(t), we put δ = Σ1/2ε, i.e.,

δ =





Σ1/2



εs1(t)

...
εsn(t)







. (4.43)

In the second step, the correlated residuals are added to the model for the

drift (the structure of the drift is for each simulation scenario specified in the

following part of this section), obtaining the spatial functional observations Xsi(t),
si ∈ D, i ∈ {1, . . . , n}, t ∈ [1, 8]. The true regression functions β0(t), β1(t), and

β2(t) are shown in Figure 4.5.

4.7.1. Assessing the empirical size of the TOLS and TGLS tests

For clarity, in the rest of this section, the notation X (t;x, y) and δ(t;x, y) is

used instead of the short forms Xs(t) and δs(t). To evaluate the empirical size

of the test, the hypothesis of the lack of effect of the covariates is tested. More

precisely, the model is built as

X (t;x, y) = β0(t) + β1(t)x+ β2(t)y + δ(t;x, y), (4.44)

testing the hypothesis

H0 : β1(t) = β2(t) = 0 ∀t ∈ [1, 8], (4.45)

H1 : β`(t) 6= 0 for some ` ∈ {1, 2} and some t ∈ [1, 8]. (4.46)
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Table 4.4: The results of the simulation studies performed for the model (4.44)
testing the hypothesis (4.45). The empirical sizes of the omnibus TOLS and TGLS

tests, together with the 95% confidence intervals for the empirical size are dis-
played, considering the nominal size of the test α = 0.05 for the different sample
sizes n and the different nominal semivariogram ranges ψ, based on 500 simula-
tions and 1000 permutations.

ψ
n Test 0.10 0.25 0.50 0.75
50 OLS 0.082 (0.061;0.109) 0.336 (0.296;0.379) 0.658 (0.615;0.698) 0.804 (0.767;0.836)
50 GLS 0.034 (0.021;0.054) 0.056 (0.039;0.080) 0.014 (0.007;0.029) 0.036 (0.023;0.056)
100 OLS 0.134 (0.107;0.167) 0.492 (0.448;0.536) 0.788 (0.750;0.822) 0.888 (0.857;0.913)
100 GLS 0.042 (0.028;0.063) 0.060 (0.042;0.084) 0.034 (0.021;0.054) 0.022 (0.012;0.039)
200 OLS 0.232 (0.197;0.271) 0.678 (0.636;0.717) 0.890 (0.860;0.915) 0.946 (0.923;0.963)
200 GLS 0.048 (0.032;0.070) 0.048 (0.032;0.070) 0.026 (0.015;0.044) 0.016 (0.008;0.031)
400 OLS 0.436 (0.393;0.480) 0.832 (0.797;0.862) 0.942 (0.918;0.959) 0.978 (0.961;0.988)
400 GLS 0.050 (0.034;0.073) 0.068 (0.049;0.094) 0.036 (0.023;0.056) 0.040 (0.026;0.061)

Considering an 100 × 100 equispaced grid on D = [0, 1] × [0, 1], n functional

residuals are randomly drawn and their covariance structure is estimated. In

the simulation study evaluating the empirical size of the test, the sample sizes

n ∈ {50, 100, 200, 400} and the range parameters ψ ∈ {0.10, 0.25, 0.50, 0.75} are
considered. For the overview of the theoretical spherical model for the semivar-

iograms used in this study, see Figure 4.5. For each of the total 16 scenarios,

500 simulations are performed, focusing on the empirical size of the test and on

the comparison to the OLS approach. The nominal level of the significance is set

to α = 0.05. The empirical sizes of the TOLS and TGLS tests, together with the

95% confidence intervals, are summarized in Table 4.4.

Generally speaking, the empirical size of the TGLS test is close to the nominal

one, slightly worsening (in a conservative direction) for the data correlated over

the long distances (the range of the variogram ψ ∈ {0.50, 0.75}). This effect is

suppressed for a sufficiently large sample size. On the other hand, the empirical

size of the TOLS test is extremely liberal for majority of the scenarios. Moreover,

with increasing ψ, the empirical size of the TOLS test approaches to 1. Neglecting

the spatial correlation leads to very unreliable results regarding the significance

of the regression functions being tested.
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Figure 4.5: Left: The true regression functions β0(t), β1(t), and β2(t). Right: The
theoretical spherical models for the semivariogram with different ranges used in
the simulation studies.

4.7.2. Assessing the empirical size and the power of the T`
GLS

test

In this section, the results of the simulation studies intended to evaluate the

empirical size and the power of the T`
GLS test are presented for the sample size

n = 100 and the range parameters ψ ∈ {0.1, 0.25}. For each case, 500 simulations

are performed, evaluating the power of the T`
GLS test on the nominal level of

significance α = 0.05.

Specifically, we focus on three different situations; (i) a model with two spatial

covariates, (ii) a model with one spatial covariate, (iii) a scenario, where the

data-generative model has one spatial covariate (similarly to (ii)), but the model

assumed and fitted includes two spatial covariates (as in (i)). In more detail, we

consider the following models:

(i) Two-covariates model

X (t;x, y) = β0(t) + b · β1(t)x+ β2(t)y + δ(t;x, y); (4.47)

(ii) One-covariate model

X (t;x, y) = β0(t) + b · β1(t)x+ δ(t;x, y); (4.48)
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(iii) Misspecified model

data-generative model: X (t;x, y) = β0(t) + b · β1(t)x+ δ(t;x, y); (4.49)

fitted model: X (t;x, y) = β0(t) + b · β1(t)x+ β2(t)y + δ(t;x, y).

In general, b ∈ [0,∞), and a hypothesis H1
0 : β1(t) = 0 ∀t ∈ [1, 8], against

H1
1 : β1(t) 6= 0 for some t ∈ [1, 8], is tested on the level of significance α = 0.05.

The power of the single-parameter test T1
GLS (4.25) is evaluated for different

values of the parameter b. The power functions can be seen in Figure 4.6.
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Figure 4.6: The empirical power of the T1
GLS test for models (4.47), (4.48),

and (4.49) based on 500 simulations and 1000 permutations for the sample size
n = 100. The magnitude of β1 is modelled through parameter b as b · β1. The
dashed horizontal line represents the nominal size of the test α = 0.05.

Overall, for all the three scenarios (i), (ii), and (iii), the power functions have

a similar shape and the test on the data with a less-correlated structure has more

power. As expected, the power increases with the increase of b, the parameter

controlling the amplitude of the regression function being tested.

4.8. Application: Analysis of the soil samples col-
lected on the border between the field and the
forest

In this section, the methodology introduced in Chapter 4 is demonstrated

on a data set of the geochemical measurements introduced in Section 1.2. These
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data are a result from the analysis of the soil samples collected during the growing

seasons (March-October) of the years 2015 and 2016 at a site located near Křtiny,

Czech Republic. The total area of the site is 9131.4 m2. Its surface is formed by

the brown earth and the cambisol. The altitude of the site ranges from 524.3 to

529.3 m with a mean altitude of 526.8 m. The slope ranges from 0.05◦ to 16.32◦

with a mean slope of 2.7◦. The surface of the site is oriented to the southwest.

The agricultural soil covers 60.5% of the area, and 16% is covered by the beech

trees. The remaining part of the site is covered mainly by the spruces and by the

fixed coniferous forest.

The analysis of the samples was conducted in the certified laboratories. The

carbon samples were carried out through the method of oxidation of the sam-

ple chromium mixture and a subsequent measurement on a spectrophotometer.

Following the methodology of the Central Institute for Supervising and Test-

ing in Agriculture, Czech Republic [77], the combustion tubes were replaced by

100 ml glass flasks, heated on a heating plate instead of using a steam distiller.

The measured values represent the amount of the oxidisable carbon in the weight

percentage of the dry matter. The active soil reaction was determined using a pH

meter in the soil water suspension with a glass ion-selective electrode after the

suspension was previously shaken on a horizontal mechanical shaker for one hour

followed by one-hour rest. Just before the measurement itself, the suspension was

briefly stirred with a glass bar [76].

The measurements taken from each sampling location are modelled as the

functions of time distributed over a one-dimensional spatial domain. Using the

R package FDA [61, 63], raw monthly measurements were turned into the functional

observations through a projection over a cubic B-spline basis with the knots

placed at the data points (i.e., eight knots). The data were smoothed using the

penalized residual sum of squares criterion with the smoothing parameter λ = 10

selected by the generalized cross-validation [62].

Note that, the data measured at the ecotone were excluded from the data set.

Indeed, the ecotone is a sampling point having neither the properties of the forest
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soil nor of the field soil; moreover, its influence disappears at approximately 3 m

distance. Furthermore, the measurements from the growing seasons in the years

2015 and 2016 do not differ from the geochemical point of view; therefore, the

data can be analysed together.

4.8.1. Modelling the KCl pH

The KCl pH data set contains 20 functional observations, that is, 10 for the

field soil and 10 for the forest soil. For the KCl pH data, we consider the model

XKCl
s (t) = β0(t) + β1(t)soil(s) + δs(t), s ∈ D, t ∈ [3, 10], (4.50)

where the interval T = [3, 10] denotes the months from March to October,

D is a set of the sample spaces and soil(s) is an indicator function for the type

of soil, taking values of 0 for the observations from the field soil and 1 for the

observations from the forest soil, that is,

soil(s) =

{
0 for the field sample spaces,
1 for the forest sample spaces. (4.51)

The regression function β0(t) represents, ∀t ∈ [3, 10], the mean KCl pH for the

field observations. The regression function β1(t) can be interpreted, ∀t ∈ [3, 10],

as the difference between KCl pH from the field and the forest parts of the site.

To estimate the spatial structure of the data, the R package fdagstat [37]

can be used. The fitted model (4.50) for the drift using the OLS estimation

procedure and the semivariogram of the residuals, are displayed in Figure 4.7.

The residuals show a pure nugget structure, and thus, they can be considered

spatially uncorrelated [19].

As the next step, the homoscedasticity of the residuals from the field and the

forest is verified. Let m ∈ {A,B} denote the field and the forest parts of the site,

respectively. The hypothesis of homoscedasticity is tested using the permutation

procedure from Section 4.5. The global p-value of the test, estimated from 1000

random permutations, is equal to 0.001, and, consequently, the hypothesis of

homoscedasticity among the residuals is rejected. In fact, although the residuals
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Figure 4.7: Left: The fitted model (4.50) for the drift. Right: The semivariogram
of the residuals from model (4.50).

are spatially uncorrelated, the spatial position has an effect on the residuals in

terms of the variance. Hence, the residuals are not exchangeable over D, and the

inferential procedure based on the TOLS test would not be correct.

We thus opt for the heteroscedastic setting and decompose the residuals

δs(m)(t) as σ(m)εs(t), s ∈ D,m ∈ {A,B}, t ∈ [3, 10], where σ(m) is the standard

deviation for the m-th type of soil (Equation (4.27)), and εs(t), s ∈ D, t ∈ [3, 10],

are the standardized residuals, approximately exchangeable over D. We also

assume that σ(m),m ∈ {A,B}, are constant on the corresponding part of D.

In particular, the variances σ2
(m), m ∈ {A,B}, are estimated as σ̂2

(A) = 14.36

and σ̂2
(B) = 3.32. Note that, the variance of the observations from the field soil is

more than four times higher than that of the observations from the forest soil.

Having estimated the data variances under heteroscedasticity, model (4.50) is

fitted to the observations through the WLS method. The fitted model (4.50) can

be seen in Figure 4.8 (RMSE = 2.973 ,NRMSE = 0.074, and R2 = 0.707).

The effect of the type of soil on the KCl pH is tested using the permuta-

tion scheme for heteroscedastic data (Algorithm 4), based on 1000 permutations,

obtaining a p-value equal to 0. In conclusion, the type of soil has a significant

influence on the KCl pH, which tends to be more acidic in the forest part than

in the field part of the site (the mean KCl pH ranging from 3.23 to 3.29 in the

forest soil, and from 4.03 to 4.12 in the field soil; see Figure 4.8).

87



3.0

3.5

4.0

4.5

3 4 5 t0 6 7 8 9 10

month

pH

●
●

●

●

●

●

●
●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

●

● ● ● ● ●

3.0

3.5

4.0

4.5

−15 −12 −9 −6 −3 0 3 6 9 12 15
distance

pH

●●

●●

●●

field

forest

fitted values

Figure 4.8: The KCl pH data, weighted least-squares model (4.50). Left: The
original functional observations (red: field; blue: forest) and the fitted model
(black). Right: A view of the data in the space at a fixed t0 (specified by the
vertical line in the figure on the left). The points indicate the section of the
curves at t0, and are for clarity connected by lines

4.8.2. Modelling the H2O pH

For the H2O pH measurements, 20 functional observations are given, evenly

distributed on the field and the forest parts of the site. We consider the model

XH2O
s (t) = β0(t) + β1(t)soil(s) + δs(t), s ∈ D, t ∈ [3, 10], (4.52)

for the H2O pH observations. The fitted model (4.52) can be seen in Figure 4.9

(RMSE = 2.143, NRMSE = 0.045, and R2 = 0.910). The residuals δs(t) show the

pure nugget structure and can be considered spatially uncorrelated (not shown).

A preliminary test on the variances in the two groups shows that the setting is

homoscedastic in this case (p-value = 0.122). The overall variance of the data is

estimated as σ̂2 = 4.59. This result allows to test the effect of the type of soil via

the TOLS test, following the procedure in which directly the estimated residuals

δ̂s(t) are permuted (Algorithm 3). In total, 1000 permutations are performed,

leading to the global p-value equal to 0. In conclusion, the mean H2O pH is

significantly different in the field (range: 4.93-5.00) and forest (range: 3.65-3.83)

parts of the site (p-value = 0). Similarly as in case of the KCl pH, the H2O pH

is more acidic in the forest part than in the field part of the site
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Figure 4.9: The H2O pH data, ordinary least-squares model (4.52). Left: The
original functional observations (red: field, blue: forest) and the fitted model
(black). Right: A view of the data in the space at a fixed t0 (specified by the
vertical line in the figure on the left). The points indicate the section of the
curves at t0, and are for clarity connected by lines.

4.8.3. Modelling the percentage of organic carbon

Unlike in the previous cases, the carbon measurements are unbalanced. In

particular, the data set contains 15 functional observations, where 10 were mea-

sured in the field and five were measured in the forest. For the percentage of

carbon, consider the model

XC
s (t) = β0(t) + β1(t)soil(s) + β2(t)dist(s) + δs(t), s ∈ D, t ∈ [3, 10], (4.53)

where dist(s) ∈ {3, 6, 9, 12, 15} denotes the distance of the sampling point from

the ecotone. Unlike in the case of the pH observations, the indicator of the type

of soil itself is insufficient in capturing the spatial trend in the data in the case

of the carbon measurements. The results of the variography again show that

the data are not spatially correlated (not shown). The test for the equality of

the variances for the field and the forest parts of the site leads to the global

p-value of the test (4.29) equal to 0.055; thus, we cannot reject the hypothesis of

the equality of variances. However, in light of the simulation results, we opt for

considering a heteroscedastic modelling setting, the latter being more robust than

that based on the assumptions of homoscedasticity (see Section 4.6). We thus fit

the model (4.53) by WLS (RMSE = 2.945, NRMSE = 0.083, and R2 = 0.857).

Furthermore, we consider a permutation test based on the standardized residuals
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εs(t) = δs(m)(t)/σ(m), s ∈ D,m ∈ {A,B}, t ∈ [3, 10], where σ̂2
(A) = 10.85 and

σ̂2
(B) = 4.06.

On the basis of the permutational test for the significance of the covariates un-

der heteroscedasticity, we conclude that the percentage of carbon is significantly

affected by the covariates (p-value = 0), again displaying a significant difference

between the field and the forest parts of the site: The mean percentage of carbon

is approximately 1.4 times higher in the forest than in the field, and it decreases

by approximately 0.04% per 3 metres with the increasing distance from the eco-

tone in both parts of the site. Figure 4.10 reports the results for the estimated

model (4.53).
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Figure 4.10: The percentage of carbon data, weighted least-squares model (4.53).
Left: The original functional observations (solid lines) and the fitted model
(dashed lines). Each colour represents an observation from a different sample
point. Right: A view of the data in the space at a fixed t0 (specified by the ver-
tical line in the figure on the left). The points indicate the section of the curves
at t0, and are for clarity connected by grey lines. The fitted values are for clarity
connected by a dashed black line.

4.9. Application: Analysis of the production of the
municipal waste in the Venice province

In this section, the methodology introduced in Chapter 4 is demonstrated on

a real data set including the yearly measurements of the per capita amount of the

municipal waste from the years 1997 to 2011 in 49 cities of the Venice province.
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The per capita municipal waste production from the years 1997 to 2011 was

preprocessed through a projection over a cubic B-spline basis with knots placed at

the sampling time (i.e., 15 knots) [62] using the R package fda [61, 63]. To further

smooth the data, the penalized residual sum of squares criterion was used with

the smoothing parameter λ = 1 chosen to be consistent with the previous study

on this data [15], obtaining the functional observations over time, distributed

over a two-dimensional geographical space.

Recall that, the same data set was used by [15], where the focus was on fitting

a spatiotemporal regression model with differential regularization [14, 46]. We

here focus on testing the significance of the covariates within a spatial functional

regression model inspired by that of [15], but fitted by GLS (Section 4.3). We

here model the production of the waste through the spatial coordinates, indicating

the location of the town centre, and also through the covariate accounting for the

tourism. For this purpose, we consider the proportion of the number of the beds

in the accommodation facilities to the number of the residents, averaged along

the years 1997-2011. It is of interest to evaluate the effect of these three covariates

on the amount of the produced municipal waste. We consider the model

Xs(t) = β0(t) + β1(t)latitude + β2(t)longitude + β3(t)Nbeds + δs(t), (4.54)

where s = [latitude, longitude] ∈ D, and t ∈ [1997, 2011]. Following the method-

ology from Sections 4.1 - 4.3, firstly, an OLS model is fitted to the data. This

is used to provide an initial guess of the spatial structure of the residuals, yield-

ing to an initial estimate of the empirical semivariogram using the R package

fdagstat [37]. Based on a visual inspection of the semivariogram of the resid-

uals, a Gaussian model with a nugget is chosen for the semivariogram. As the

residuals show a correlated structure, it would be inappropriate to further use the

OLS to fit the model, although this method is used as a comparison to the GLS

approach later in this section. Consistently with the evident spatial structure ex-

isting among the residuals, Algorithm 2 is used to fit the GLS model to the data.

The overview of the estimated model (4.54) is provided in Figures 4.11 and 4.12

(RMSE = 1120.521, NRMSE = 0.194, and R2 = 0.869).
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Figure 4.11: Top left: The amount of the municipal waste produced in the Venice
province (kg per resident) modelled as the functional observations. Top right:
The values fitted by the full model (4.54). Bottom left: The empirical semivar-
iogram together with the estimated Gaussian model for the semivariogram for
the spatial functional residuals from the full model (4.54). Bottom right: The
estimated residuals of the full model (4.54).
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Figure 4.12: Left: The generalized least-squares estimates of the regression func-
tions for the full model (4.54) for the amount of the municipal waste produced in
the Venice province (kg per resident). Right: A detailed view of the regression
functions β1(t), β2(t) and β3(t) for the full model (4.54).
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The effect of the covariates in model (4.54) is tested via the spatial functional

Freedman and Lane permutation scheme introduced in Section 4.4. Following

the SF-FLPerm Algorithm 5, the residuals are decorrelated, resampled, and then

are correlated back, obtaining the permuted responses. The focus is now on

the hypotheses (4.15) and (4.18) using the TGLS and T`
GLS test statistics. In

particular, the tested hypotheses are the following:

(i) H0 : β1(t) = β2(t) = β3(t) = 0 ∀t ∈ [1997, 2011], against

H1 : β`(t) 6= 0 for some ` ∈ {1, 2, 3} and some t ∈ [1997, 2011];

(ii) H1
0 : β1(t) = 0 ∀t ∈ [1997, 2011], against

H1
1 : β1(t) 6= 0 for some t ∈ [1997, 2011];

(iii) H2
0 : β2(t) = 0 ∀t ∈ [1997, 2011], against

H2
1 : β2(t) 6= 0 for some t ∈ [1997, 2011];

(iv) H3
0 : β3(t) = 0 ∀t ∈ [1997, 2011], against

H3
1 : β3(t) 6= 0 for some t ∈ [1997, 2011].

For the sake of the comparison, the same hypotheses are also tested under the

OLS settings using the TOLS and T`
OLS test statistics, following the standard

Freedman and Lane permutation scheme for homoscedastic data (Algorithm 3),

where directly the spatially correlated, and thus nonexchangeable, residuals are

resampled. The results for both approaches, based on 1000 permutations, are

summarized in Table 4.5. Starting with the GLS approach, the omnibus hypoth-

esis, as well as the hypothesis on the regression function β3(t), are rejected on

the level of significance α = 0.05. The hypotheses related to the spatial covari-

ates latitude and longitude are not rejected, concluding that when the covariate

Nbeds is included, the actual location of the city in the Venice province does not

have a significant effect on the amount of the produced municipal waste. Instead,

the relative number of the beds in the accommodation facilities significantly in-

creases the municipal waste production (β3(t) is positive ∀t ∈ [1997, 2011], see

Figure 4.12). In the OLS case, the omnibus, β2(t) and β3(t) tests lead to the
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Table 4.5: The global p-values of the TOLS,T
`
OLS,TGLS and T`

GLS tests based on
1000 permutations for a data set on the amount of the municipal waste produced
in the Venice province of Italy (kg per resident), model (4.54).

omnibus β1(t) β2(t) β3(t)
OLS 0 0.073 0.153 0
GLS 0 0.656 0.753 0

same result, while the hypothesis on the regression function β1(t) is rejected on

the level of significance α = 0.1. Note that, in the case of β1(t) and β2(t), the

global p-values for the OLS tests are very low, compared to the GLS results.

This finding is consistent with the conclusion from the simulation studies; the

OLS approach, under the assumption of a general variance-covariance matrix Σ,

shows a very liberal behaviour regarding the empirical size of the test (see Sec-

tion 4.7). The estimates of the regression functions in model (4.54) are shown in

Figure 4.12.

Based on these results, a final generalized least-squares model

Xs(t) = β0(t) + β1(t)Nbeds + δs(t), s ∈ D, t ∈ [1997, 2011] (4.55)

is proposed to model the amount of the produced municipal waste (Figure 4.13),

(RMSE = 1160.206, NRMSE = 0.201, and R2 = 0.860). One can see that

the relative number of the beds in the accommodation facilities is a signifi-

cant factor for the increase of the municipal waste production; β1(t) is positive

∀t ∈ [1997, 2011] (Figure 4.13).
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Figure 4.13: Left: The generalized least-squares estimates of the regression func-
tions for the final model (4.55) for the amount of the municipal waste produced
in the Venice province (kg per resident). Right: The values fitted by the final
model (4.55).
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Discussion and conclusion

This thesis introduced a novel approach to the nonparametric inference for

the functional data. The main focus was on the functional regression models,

where the testing for the significance of the regression functions was performed

by permuting the residuals of the model under the null hypothesis. In this setting,

the aim was to ensure the exchangeability of the residuals being permuted.

Chapter 1, by a form of the motivational examples, provided a brief intro-

duction of the real-world data sets concerned throughout this thesis. In Chapter

2, the basic aspects of functional data analysis were detailed, starting with turn-

ing the observed discrete data into functional observations by means of the basis

expansion. Consistently with the case studies concerned in this thesis, a cubic

B-spline basis, a common choice for fitting a nonperiodical functional observa-

tions, was described here in more detail. Secondly, the methods for smoothing the

functional data were discussed, focusing on a spline smoothing through a rough-

ness penalty method. Lastly, a random function was defined, as well as the basic

summary statistics widely used for describing the functional data.

The aim of Chapter 3 was to define a regression model with the functional

covariate and the functional response and the inferential procedure for testing

the significance of the regression functions based on the Freedman and Lane

permutation scheme (see [31]) adapted to the functional setting [1]. Here, to

ensure the approximate exchangeability of the permuted objects, the residuals,

rather than the observations, are of interest. From the application viewpoint, the

objective was to analyse the data from the field of the transportation research,

consisting of the functional observations of the driving speed on six expressway
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ramps collected by a vehicle fleet on an interchange in Brno, Czech Republic. The

functional nature of the data enables to explore the data features by studying the

function’s behaviour in first or higher order derivatives. In particular, the original

data consist of the curves of the driving speed and the first derivative allows

to directly see the acceleration/deceleration in a specific part of the functional

domain (here representing the length of the ramp). Moreover, it was also of

interest to examine how the driving speed differs in the different groups in the

data. Such task can include detecting the differences in the driving speed of the

vehicles driving in a central lane, and thus not needing to change their speed

rapidly; and the vehicles driving in the merging or the exit lane, where there

may be often necessary to rapidly slow down and then speed up back in order

to merge into or exit the central lane. It is also of interest to detect the part

of the functional domain where the mean driving speeds of both groups become

indistinguishable, e.g., at which part of the functional domain do the vehicles

joining the central lane from the merging lane reach the same mean speed as

the vehicles driving in the central lane. The interval-wise testing procedure [60],

summarized in Chapter 3, provides the framework suitable for dealing with this

kind of the research questions. Indeed, a significant difference in the mean driving

speed was shown for the vehicles driving in the central lane and in the auxiliary

lane. Lastly, these findings were also confirmed by the testing performed in the

regression models where the presence of the auxiliary lane was included as one of

the explanatory variables, together with the curvature of the ramp (represented

by the radius of the circle fitted to a specific part of the ramp), evaluated by the

permutation-based test in a functional-on-functional regression model based on

the Freedman and Lane’s methodology. Similarly to the previous studies [22, 45],

the relationship between the driving speed and the ramp curvature represented by

the radius of the circle fitted to the specific part of the ramp by the least-square-

circle fit method was confirmed: on the less complex ramps the, relationship

between the speed and the radius was rather weak, which could be observed from

the results of testing for the significance of the radius as a regression function.
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The aim of Chapter 4 was to define a spatiotemporal regression model, to-

gether with an introduction of a novel inferential framework for testing in the

spatial functional regression model, accounting for the more complex structures

of the data. Firstly, concerning a testing procedure suitable for heteroscedastic

functional data, we propose to fit a weighted least-squares functional regression

model to the data, where the residuals are allowed to be characterized by het-

erogeneous variances across the groups. The permutational schemes of [1] and

[31] are thus extended to the standardized residuals of the model, obtained by

dividing the estimated residuals by the estimated standard deviation of the cor-

responding group of the data. Then, the standardized residuals obtained by this

procedure are assumed to be approximately exchangeable. With the purpose of

assessing the assumption of homoscedasticity, we also proposed a permutation-

based test for the equality of the variances in two groups of the data. Note that,

the proposed model and the testing procedures can be easily extended to any

number G ≥ 2 of groups. In this case, the mean term would be associated with

G − 1 dummy variables, and the testing procedure could be performed (jointly)

on the associated coefficients, similarly as detailed in this thesis. In this more

general situation, the heteroscedasticity among the groups may be expected; the

tests for heteroscedasticity could be developed by using an analysis of variance-

like setting, or the multiple pairwise tests with appropriate level corrections. The

performance of this proposed methodology was assessed by the extensive simula-

tion studies showing that the introduced WLS test performs well concerning the

empirical size and the power, especially in the case of the unbalanced designs.

In contrast, if the nonconstant variance in the data is neglected and an ordinary

least-squares approach is applied, the test is either too liberal or too conservative

whenever the two populations in the data have unequal sample sizes. Based on

the simulations, the empirical size of the OLS test could be more than 10 times

smaller, or almost five times greater than the nominal one. However, for the

balanced design, the OLS test performs well even under the presence of het-

eroscedasticity. These results are consistent with the previous studies pointing
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out that the effect of heteroscedasticity is stronger for the unbalanced designs

[16, 53]. In fact, one should pay close attention to the specific spatial structure of

the data during the model fitting, especially in the case of the unbalanced design.

Secondly, we focused on a case of the spatial correlation among the observa-

tions. Under this setting, the drift is estimated by a generalized least-squares

model and then the spatial correlation among the estimated residuals is assessed

by the variography with the purpose of a correct estimation of the variance-

covariance structure. The potential relationship between the spatial covariates

and the functional response is then assessed by the Spatial Functional Freedman

and Lane permutation scheme proposed here, based on permuting the estimated

residuals, spatially filtered through the pre-multiplication by the inverse square

root of the variance-covariance matrix, ensuring that the units to be permuted

are asymptotically exchangeable and that the procedure is properly conducted,

respecting the georeferenced nature of the data. The simulation studies intended

to evaluate the performance of this inferential procedure in terms of the em-

pirical size and the power show that the GLS test performs well whenever the

range of the spatial correlation is not too high (more than half of the size of

the spatial area). For the larger ranges, the procedure requires a larger sample

size. This is likely to be due to the difficulty of estimating the spatial covariance

structure when the range is large with respect to the study area D, which is

well-known in the literature of the spatial statistics [19]. On the other hand, the

ordinary least-squares approach shows very liberal behaviour whenever the data

are correlated in space. With the increasing range of the spatial correlation, the

test becomes even more liberal, its empirical size approaching to 1. Neglecting

the underlying spatial structure of the data thus leads to an inference based on

the non-exchangeable residuals and biases the results in terms of the empirical

size of the test. The empirical power of the test was therefore evaluated for the

GLS approach only. Three different models were considered: two-covariate, one-

covariate and a misspecified one, where the data were generated as a model with

one covariate, but a two-covariate model was assumed and fitted. The empirical
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power is similar for all three models.

The potential of the methodology for heteroscedastic and spatially correlated

functional data was shown on the real-world examples. Firstly, the introduced

methodology for testing heteroscedastic data was used to study the soil samples

collected in the growing seasons (March-October) of the years 2015 and 2016 at

a site located near Křtiny, Czech Republic, containing 11 sampling points equally

distributed on a straight line, perpendicular to the border between the field and

the forest. To compare the geochemical properties of the field and the forest soil,

a functional data on KCl pH, H2O pH, and the percentage of organic carbon

were considered. A balanced heteroscedastic, a balanced homoscedastic, and an

unbalanced heteroscedastic model, respectively, were fit to the data. Testing for

the significance of the regression functions enables to conclude that (i) KCl pH

is affected by the type of the soil and the variability is different with respect

to the type of the soil; (ii) values of H2O pH depend on the type of soil, but

the variability is not significantly different for the field and forest parts of the

site; and (iii) the percentage of carbon is associated with a more complex spatial

model, depending not only on the soil type but also on the distance from the

ecotone, with increasing values when getting closer to the ecotone.

Secondly, the methodology introduced for the spatially correlated data was

illustrated on the observations from the Venice province, containing the yearly

per capita amounts of the produced municipal waste. The functions of the waste

over the years were modelled using the scalar variable accounting for the tourism

in each town, as well as for the spatial coordinates, expressed as the latitude and

the longitude. As the residuals of the considered model were correlated in the

space, we considered a generalized least-squares model and the proposed Spatial

Functional Freedman and Lane permutation procedure to properly handle the

data. Here, we found out that the effect of the tourism is significant in explaining

the amount of the municipal waste, unlike the spatial covariates (longitude and

latitude). In contrast, considering an ordinary least-squares approach, neglecting

the spatial structure of the residuals leads to very liberal results failing to provide
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an effective model selection for the production of the waste.

In the current work, we propose the OLS, WLS, and GLS classical test statis-

tics integrated over the domain of interest, following the work of [1]. These test

statistics are coherent with the classical tests of the hypotheses in the linear re-

gression and they cover a wide variety of different tests (i.e., all tests of the linear

hypotheses on the regression functions of the model), and in the absence of any

information about the data-generative model, we suggest to use them. However,

since the nonparametric inference based on the permutation tests is performed,

this is not the only possible choice; an inference with the similar properties could

be performed using the different point-wise statistics, the weighted integrals (if

some information about the weighting is available), or the maximum values along

the domain. Some test statistics could achieve a higher power under the specific

alternatives. However, a thorough comparison between the different choices is out

of the scope of this thesis, but it would be an interesting future line of research.
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1. Abstract

This thesis proposes a novel nonparametric approach to the significance test-

ing of the null hypothesis in a functional linear model for data with a hetero-

geneous spatial structure. A permutation approach is introduced to test for the

effect of covariates in a spatial functional regression model with heteroscedastic

or spatially correlated residuals. The proposed methods account for the hetero-

geneous spatial structure of the data by grounding on the Freedman and Lane

permutation scheme for the estimated residuals of the functional regression model.

Indeed, due to the spatial dependence among the data, the residuals of the re-

gression model are not exchangeable, and the basic assumption of the Freedman

and Lane permutation scheme is violated. To overcome this issue in the case

of heteroscedasticity, we propose to fit a weighted least squares model to the

observations, and then to divide the estimated residuals by their corresponding

standard deviation, leading to asymptotically exchangeable residuals. In the case

of spatially correlated observations it is proposed here to estimate the variance-

covariance structure of the residuals by variography, remove this correlation by

spatial filtering of the residuals and base the permutation test on these approx-

imately exchangeable residuals. To evaluate the performance of the proposed

methods in terms of the empirical size and power, simulation studies are con-

ducted, examining the behaviour of the tests under different covariance settings.

We show that neglecting the spatial structure of the residuals in the permutation

scheme, yields very liberal or conservative results, whereas the proposed proce-

dures are close to the nominal size of the test. The results of modelling and

testing on the case studies are shown and discussed on the data from geochem-

istry and tourism. Moreover, the potential of FDA methodology is shown in the

field of transportation research, focusing on the permutation-based inference in

a regression model with functional covariates and functional response.

Key words: Functional data analysis, functional regression models, per-

mutation tests, nonparametric inference, heteroscedasticity, spatial correlation,

functional geostatistics, spatially filtered residuals, exchangeability
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2. Abstrakt v českém jazyce

Cílem této disertační práce je představit nový neparametrický přístup k tes-

tování významnosti parametrů ve funkcionálním lineárním regresním modelu pro

prostorová data pro případ heteroskedasticity nebo prostorové korelace. Pro

testování významnosti regresních parametrů v prostorovém funkcionálním re-

gresním modelu navrhujeme využít metodiku založenou na permutačních testech.

Tyto metody jsou navrhnuty tak, aby bylo možno s jejich pomocí pracovat s daty

s heterogenní prostorovou strukturou a to na základě Freedmanova a Laneova

permutačního schématu. Přirozeně, vlivem prostorové závislosti mezi daty ne-

jsou residua regresního modelu permutovatelná, čímž je porušen základní před-

poklad Freedmanova a Laneova permutačního schématu. Abychom tento problém

vyřešili, navrhujeme v případě heteroskedasticity modelovat data pomocí vážené

metody nejmenších čtverců a poté vydělit odhadnutá residua jejich směrodat-

nou odchylkou, čímž získáme asymptoticky permutovatelná residua. V případě

prostorově závislých dat navrhujeme odhadnout varianční strukturu pomocí vari-

ogramu a poté dekorelovat odhadnutá residua a založit permutační test na těchto

přibližně permutovatelných residuích. Za účelem ohodnocení navrhovaných testů

z hlediska empirické velikosti a síly testu byly provedeny simulační studie zkou-

mající chování testů pro různé varianční struktury dat. Ukážeme, že zanedbání

varianční struktury residuí (tedy permutování přímo heteroskedastických či pros-

torově korelovaných dat) vede v permutačním testování k buďto velmi liberál-

ním, či velmi konzervativním výsledkům testů, zatímco empirická velikost námi

navrhovaných testů je v případě heteroskedasticity či prostorové korelace blízká

té nominální. Navrhované metody jsou též prezentovány na reálných datech

z oblastí geochemie a turismu. Mimo to je potenciál analýzy funkcionálních dat

ukázán na datech z oblasti dopravního výzkumu s důrazem na regresní model

s funkcionálním regresorem a funkcionální závisle proměnnou.

Klíčová slova: Analýza funkcionálních dat, funkcionální regresní modely,

permutační testy, neparametrická inference, heteroskedasticita, prostorová ko-

relace, funkcionální geostatistika, prostorově filtrovaná residua, permutovatelnost
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3. Introduction

In many practical tasks involving high-dimensional measurements, such as

curves or surfaces, it is convenient to treat the data not as a sequence of single

measurements taken one after another, but as the whole entities. Such approach

has developed into functional data analysis (FDA), where the basic elements of

the statistical analysis are the functional observations as a whole [19, 41]. In these

days, functional data occur in many scientific fields, such as an analysis of human

gait by means of linear models [1], and analysis of variance [47], modelling the

time trends and forecasting the future rates of age-specific breast cancer mortality

using time series models [16, 17], or predicting the risk of drought by principal

component logistic regression [18]. The overview of the recent trends in FDA can

be found in summary surveys [3, 4, 23].

Most FDA methods strongly rely on the assumption of independence among

the observations. Under the presence of spatial dependence, applying these meth-

ods is inappropriate, and the analysis could fail because of the consistency prob-

lems [25]. Spatial dependence needs to be properly treated; for this purpose,

the classical geostatistical methods can be extended to the functional framework

[9, 34, 35].

In the geostatistical framework, the functional observations can occur, e.g.,

as soil or weather measurements taken from the same site with possibly daily,

weekly or monthly frequency (see, e.g., [26, 41, 45]). In general, the extension of

the geostatistical methods to the functional setting is well-developed these days,

including ordinary or universal kriging [22, 33, 34, 35], or other aspects related

to spatial statistics, such as the change point analysis [29], clustering [46], tests

for detecting the spatial autocorrelation [21], or the regression with differential

regularization to model dependent functional data in space [6].

In functional data analysis, regression models play an important part of the

methods used. A thorough overview of the methodology with application can be

found in vast amount of the literature, see, e.g., [40, 41], focusing on situations

where at least the covariates, or the response, or both is functional. The cases
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of the concurrent model, as well as the functional-on-functional model, where

the functional domains of the covariate and the response differ, i.e., β(t1, t2) is

a function of these two domains, are detailed here. In the work of [25], the

methodology for models for independent, dependent, and spatially correlated

data is introduced. In the work of [19], the focus is on the analysis of nonpara-

metric functional data, including the models for such data. In the work of [28],

functional regression models, including the generalized models and models for

spatially correlated data, are concerned. An overview of recent trends in FDA

can be found in summary surveys [3, 4, 23], including also topics related to func-

tional regression models, see, e.g., the work on variables selection, such as [11], or

[8], where the variables selection is based on smoothed centred ridge regression

approach. In the work of [15], a nonparametric approach to the construction of

prediction bands in the multi-functional regression framework is concerned.

Focusing on the inference in the context of functional data, testing for the

significance can be performed by means of either parametric or nonparametric

methods. The nonparametric approach appears particularly promising, as it

allows for minimal assumptions on the data-generative model. In this context,

permutation tests have been recently successfully developed, leading to flexible

approaches for testing in FDA [1, 39]. Indeed, the permutation tests are only

based on the assumption of exchangeability between the units under the null

hypothesis [27, 32], meaning that, underH0, the data distribution does not change

if the units are randomly resampled [24, 38]. In practice, this is evaluated by

comparing the test statistic evaluated on the original data to the distribution of

the test statistics obtained from the permuted data. If the observed statistic lies

in the tail of this distribution, the null hypothesis can be rejected [7, 40].

In the framework of linear models, it is not possible to directly observe the

exchangeable quantities under the null hypothesis unless the model only contains

a single covariate. The permutation scheme can be adapted in different ways

to obtain the approximate exchangeability. In the work of [20], permuting the

estimated residuals from the model under the null hypothesis (also referred to as

7



the reduced model) was proposed; in the work of [48], permuting the residuals

of the full model was proposed; other authors, see [31, 37], proposed to permute

other quantities, such as the covariates’ values, or the responses. In the work of

[2], Freedman and Lane’s methodology (see [20]) and other approaches were com-

pared by a simulation study, concluding that the permutation scheme proposed

by Freedman and Lane [20], relying on the permutation of the estimated residuals

from the reduced model, gives the best empirical results in terms of the power

and the size of the test. From a theoretical point of view, since the estimated

residuals of the null model are asymptotically exchangeable, the obtained test

is asymptotically exact. In the work of [49], this approach was applied to the

multivariate case of testing for the differences between two sets of images; in the

work of [1], Freedman and Lane permutation scheme was adapted to testing in

a functional regression model for the knee movement.
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4. Recent state summary

4.1. Overview of the functional data

In the framework of functional data analysis, we assume that the observed

discrete data are generated by some unknown function, i.e., [41]

xg = y(tg) + ξg, g ∈ {1, . . . , G}, t ∈ T ⊂ [0,∞), (1)

where G is the number of discrete observations of the function y(t) and ξg is the

random error. Moreover, it is assumed that the underlying function is smooth,

therefore the two adjacent discrete data points are likely to be similar to each

other.

Assume now that i ∈ {1, . . . , n} functions were observed. Then, the i-th

function yi(t) can be represented by a linear combination of the known basis

functions and the unknown basis coefficients as [41]

yi(t) =

Ky,i∑

k=1

ckiφki(t) = φ′i(t)ci, i ∈ {1, . . . , n}, (2)

whereKy,i is the number of the basis coefficients of the i-th functional observation,

φki(t) are known basis functions and cki are unknown basis coefficients, which

can be estimated, e.g., by the least-squares method. The symbol ′ denotes the

transposition.

A better control over the smoothness can be provided by the roughness penal-

ties, where the roughness of a function can be quantified as its curvature, i.e., the

square of the second derivative: [D2yi(t)]
2. Then, the roughness can be measured

by an integrated squared second derivative [41]

PEN2(yi) =

∫

T

[D2yi(t)]
2dt. (3)

Note that, in general, one can assume the ν-th power of the ν-th derivative,

that is, [Dνyi(t)]
ν , ν ∈ {1, 2, 3, . . .}. Following Equation (2), Equation (3) can be

rewritten as c′iRy,ici, where Ry,i represents the roughness penalty matrix for the
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i-th function yi(t). The (j, k)-th entry of Ry,i is given as

Ry,i(j,k) =
∫
T
D2φji(t)D

2φki(t)dt. An optimal fit to the observed discrete data

is then found by the minimization of the penalized residual sum of squares crite-

rion [41]

PENSSEλi(yi|xi) = [xi − yi(t)]′[xi − yi(t)] + λy,ic
′
iRy,ici, (4)

where xi is a set of discrete observations of yi(t) and λy,i ≥ 0 is a smoothing

parameter controlling the smoothness of yi(t), which can be selected, e.g., by the

generalized cross-validation. Note that, in general, λy,i can vary from function to

function.

To take into account the whole data set, define the diagonal basis func-

tions matrix Φ = diag(φ′1(t), . . . ,φ
′
n(t)), the set of all discrete observations

x = (x′1, . . . ,x
′
n)′, and a symmetric block-diagonal matrix

Ry = diag(λy,1Ry,1, . . . , λy,nRy,n). Then, the vector of the basis coefficients

c = (c′1, . . . , c
′
n)′ can be estimated as [40]

ĉ = (Φ′Φ + Ry)
−1Φ′x. (5)

Define further the total number of the basis coefficients Ky =
∑n

i=1Ky,i, the

Ky-dimensional column vector φ = (φ′1(t), . . . ,φ
′
n(t))′ and the n×Ky matrix of

the basis coefficients Ĉ = diag(ĉ′1, . . . , ĉ
′
n). Then, one can write ŷ = Ĉφ.

4.2. Functional-on-functional model specification

Assume that a sample of functions yi(t), i ∈ {1, . . . , n}, has been observed.

In the following, yi(·) represents an element of the Hilbert space of the square-

integrable functions L2(T ). We further assume that the functional observations

can be represented through the linear model [1]

y = Fβ + ε, (6)

where y = (y1(t), . . . , yn(t))′, t ∈ T, are the functional observations,

β = (β0(t), . . . , βL(t))′, t ∈ T, are the unknown regression functions, and
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ε = (ε1(t), . . . , εn(t))′, t ∈ T, are the random error functions. A known n×(L+1)

functional design matrix F can be symbolically expressed through a common no-

tation with the i-th row (1, fi1(t), . . . , fiL(t)), t ∈ T , where fi`(t), ` ∈ {1, . . . , L},
are the known covariates related to the i-th observation. As the covariates can in

general be functions, the element fi`(t) of the design matrix would in that case

represent a functional covariate.

4.3. Estimation of the regression functions

Express now the unknown regression functions through the basis expansion

[40, 41]

β`(t) =

Kβ,`∑

k=1

bk`θk`(t) = θ′`(t)b`, ` ∈ {0, 1, . . . , L}, (7)

where Kβ,` is the number of the basis coefficients of the `-th regression function,

θk`(t) are the known basis functions and bk` are the unknown coefficients. In

this way, the problem of estimating the functions β`(t) reduces to estimating the

coefficients bk` by, e.g., the least-squares method.

In order to express the model (6) with respect to the basis expansion (7),

define the total number of the basis coefficients of the regression functions, i.e.,

Kβ =
∑L

`=0Kβ,`, and stack the vectors b` vertically to obtain a Kβ-dimensional

column vector b = (b′0,b
′
1, . . . ,b

′
L)′. By defining an (L + 1) × Kβ matrix

Θ = diag(θ′1(t), . . . ,θ
′
L(t)) and an n × Kβ matrix F̃ = FΘ, model (6) can be

formally transformed to a constant coefficient linear model as [41]

y = F̃b + ε. (8)

Following the general assumption that the roughness penalty term

PEN2(β`) =
∫
T

[D2β`(t)]
2dt can be different for each regression function

β`, ` ∈ {0, 1, . . . , L}, one can, following Equation (7), write

PEN2(β`) = b′`Rβ,`b`, where Rβ,` =
∫
T
D2θ`(t)D

2θ′`(t)dt represents the rough-

ness penalty matrix. Then, a symmetric block-diagonal Kβ × Kβ matrix

11



Rβ = diag(λβ,0R0, . . . , λβ,LRL), where λβ,`, ` ∈ {0, 1, . . . , L}, are the smooth-

ing parameters, can be created. The penalized least-squares estimator of the

regression coefficients b is then defined as [41]

b̂ =

[ ∫

T

F̃′(t)F̃(t)dt+ Rβ

]−1 ∫

T

F̃(t)′Cφ(t)dt. (9)

Then, β = (β0(t), . . . , βL(t))′, t ∈ T , can be estimated as β̂ = Θb̂.

4.4. Spatial functional model specification

Let the spatial domain of interest be denoted as D ⊂ Rd. Let s be a point in

D and denote by Xs(t) an observation at location s ∈ D at time t ∈ T = [t1, t2].

From this point, we assume that for the fixed location s, the random function

Xs(·) is an element of the Hilbert space L2(T ) of the square-integrable functions.

The set

{Xs(t), t ∈ T, s ∈ D ⊂ Rd} (10)

is called the functional random field of the time-varying entity, defined on L2.

In the following, we assume that the functional random field (10) is second-

order stationary and isotropic in the sense of the work of [35], i.e.,

1. Second-order stationarity

• E(Xs(t)) = µs(t),∀s ∈ D,

• Cov(Xsi ,Xsj) = E(〈Xsi −msi ,Xsj −msj〉) = C(h),∀si, sj ∈ D,
h = si − sj, h ∈ D, and si, sj, h are d-dimensional vectors,

2. Isotropy

• Cov(Xsi ,Xsj) = E(〈Xsi − µsi ,Xsj − µsj〉) = C(‖h‖D),∀si, sj ∈ D,
h = si − sj, h ∈ D, and si, sj, h are d-dimensional vectors,

where ‖ · ‖D is a norm over D and 〈·, ··〉 denotes the inner product in L2. This

means that, only the mean E(Xs(t)) is a function of the location s, whereas the
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global covariances Cov(Xsi ,Xsj) do not depend on the locations si, sj, but only

on ‖h‖D, the distance between these locations [13, 25, 35].

Following the work of [35], we assume that the random field can be modelled

as

Xs(t) = ms(t) + δs(t), s ∈ D, t ∈ T, (11)

where ms(t) is the drift and δs(t) are the residuals, the realizations of a zero-

mean, second-order stationary and isotropic random process. The drift captures

a non-constant mean variation in space D and can be represented by a linear

model

ms(t) = β0(t) +
L∑

`=1

β`(t)f`(s), s ∈ D, t ∈ T, (12)

where β`(t), ` ∈ {0, . . . , L}, are the unknown regression functions, independent

on the location in space D, and f`(s), ` ∈ {1, . . . , L}, s ∈ D, are the known

functions of the spatial variable s ∈ D.

Model (11) can be rewritten into the matrix form as

X = Fβ + δ, (13)

where X = (Xs1(t), . . . ,Xsn(t))′, t ∈ T , is a matrix of the functional observa-

tions at the spatial points s1, . . . , sn ∈ D,Fi = (1, f1(si), . . . , fL(si)), si ∈ D,

i ∈ {1, . . . , n}, is an i-th row of a known n × (L + 1) design matrix F,

β = (β0(t), . . . , βL(t))′, t ∈ T , are the unknown regression functions, and

δ = (δs1(t), . . . , δsn(t))′, s1, . . . , sn ∈ D, t ∈ T , are the spatially correlated residu-

als with an unknown variance-covariance structure represented by the matrix Σ.

Note that, Σ is constant over T .

4.5. Analysis of the spatial correlation

From here, to avoid a heavy notation, we directly set h = ‖si − sj‖D.
A covariance function of a second-order stationary and isotropic random field

(10) can be typically parametrized as

C(h) = σ2ρ(h), h ≥ 0, ρ(0) = 1, (14)
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where ρ(h) is a correlation function measuring the linear relationship between

the observations at the distance h. Under these assumptions, the (i, j)-th entry

of the variance-covariance matrix Σ is given as

Σij = Cov(δsi , δsj) = C(h), si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n}. (15)

The spatial dependence among the residuals can be also specified by means of

the (functional) semivariogram

γ(h) =
1

2
Var

(
δsi − δsj

)
=

1

2
E[‖δsi − δsj‖2], si, sj ∈ D, h = ‖si − sj‖D , (16)

where ‖·‖ is the L2-norm. Note that, one can define the variogram as 2γ(h). The

relationship between the semivariogram (16) and the covariance function (14) can

be expressed as

γ(h) = C(0)− C(h), si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n}. (17)

The functional semivariogram is estimated by the empirical functional semi-

variogram [34, 35]

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi − δsj‖2, si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n},

(18)

where N(h) is the set of all pairs of the observations at a distance approximately

h and |N(h)| is the cardinality of this set.

Similarly to the scalar case [12], the shape of the trace-variogram can be used

to determine if Σ is diagonal. Indeed, the uncorrelated residuals δsi are associated

with a pure nugget model for a variogram, that is, a constant trace-variogram

function.

4.6. Estimation of the regression functions in the spatial
functional model

Let the residuals be either homoscedastic, heteroscedastic, or spatially corre-

lated, and let their spatial variance-covariance matrix be invertible.
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When the conditions rank(F) = L + 1 ≤ n and rank(Σ) = n hold, the

regression functions β in the model (13) can be estimated as follows.

For the case of homoscedastic and uncorrelated residuals, the

variance-covariance matrix is of the form Σ = σ2I, where I is an identity ma-

trix, and the estimator of the regression functions β simplifies to the ordinary

least-squares (OLS) one [35] as

β̂OLS = (F′F)−1F′X . (19)

The OLS estimator is the best linear unbiased estimator and is associated with

the variance-covariance matrix Var(β̂OLS) = σ2(F′F)−1. The parameter σ2 is

usually unknown and is simply estimated from the estimated residuals as

σ̂2 =
1

n

n∑

i=1

‖δ̂i(t)‖2, (20)

where δ̂ = X − Fβ̂OLS is a vector of the estimated functional residuals.

For the case of heteroscedastic and uncorrelated residuals, the

variance-covariance matrix Σ is a diagonal matrix. Let W = Σ−1 be a diag-

onal matrix of the weights. In general, the weight wii, i ∈ {1, . . . , n}, can differ

for each observation. However, in the following, we shall assume that the weights

are constant within the groups and possibly different between the groups in the

data. The regression functions β can be estimated through the weighted least-

squares (WLS) estimator as

β̂WLS = (F′WF)−1F′WX . (21)

Assuming W is a diagonal matrix, the WLS estimator is the best linear unbiased

estimator and is associated with the variance-covariance matrix

Var(β̂WLS) = (F′WF)−1.

For the case of spatially correlated residuals, a general

variance-covariance matrix Σ is associated with the residuals, and the regres-

sion functions β can be estimated through the generalized least-squares (GLS)
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estimator [35] as

β̂GLS = (F′Σ−1F)−1F′Σ−1X , (22)

The GLS estimator is the best linear unbiased estimator and is associated with

the variance-covariance matrix Var(β̂GLS) = (F′Σ−1F)−1.

In practice, the variance-covariance matrix Σ describing the spatial depen-

dence is usually unknown, so that the GLS estimator is not available. The general

variance-covariance matrix Σ can be estimated, e.g., from the estimated resid-

uals by the semivariogram through an iterative two-step procedure for the GLS

estimates of the regression functions. Particularly, with respect to Equations (14)

and (17), the (i, j)-th entry of Σ is estimated as

Σ̂i,j = σ̂2 − γ̂(h), si, sj ∈ D, h = ‖si − sj‖D, i, j ∈ {1, . . . , n}, (23)

where σ̂2 and γ̂(h) are given by Equations (20) and (18), respectively.

In the case of the diagonal variance-covariance matrix Σ = W−1, under the

presence of groups in the data where the variances are assumed to be constant

within each group and possibly different between the groups, the estimation of

the diagonal matrix W is as follows. Assume δsi(m)(t), si ∈ D, i ∈ {1, . . . , nm},
m ∈ {A,B}, are the two groups of the functional residuals from the model

specified in Equations (11) and (12), where i is the unit index and m is the

population index. Let σ2
(A) and σ2

(B) be the global variances (constant over T )

of these two populations. The variances are estimated separately for each group

by Equation (20), and their estimates σ̂2
(A) and σ̂2

(B) are indeed the estimates

of the reciprocal diagonal elements wii(A) and wii(B) of the matrix of weights

W, i.e., ŵii(m) = 1/σ̂2
(m), i ∈ {1, . . . , n},m ∈ {A,B}. The rest of the procedure is

analogous to the GLS case.

The two-step iterative procedure for the estimation of β by the GLS or the

WLS is as follows. Firstly, the estimated residuals δ̂, are obtained by the OLS

(Equation (19)). Then, the variance-covariance matrix Σ (or W) is estimated

from the estimated residuals δ̂ and the regression functions β are estimated by

the GLS (or the WLS) by plugging in Σ̂ (or Ŵ) into Equation (22) (or Equation
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(21)). As the next step, the estimated residuals δ̂ are obtained as δ̂ = X −Fβ̂GLS

(or as δ̂ = X −Fβ̂WLS). In both cases, this estimation procedure of β should be

repeated few times until the convergence is reached [35]. The iterative procedure

is stopped when the change of the estimates of the residuals in two consecutive

steps is sufficiently small, i.e., if

‖δ̂si,l − δ̂si,l−1‖ < given value, si, sj ∈ D, i ∈ {1, . . . , n}. (24)

Here, δ̂si,l denotes the estimate of the residual δsi in the l-th step.
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5. Thesis objectives

The aim of this thesis is to introduce a novel approach to the inference in

functional regression models, aiming also at more complex data structures. In

particular, a testing procedure for a regression model with functional covariate

and functional response, based on a Freedman and Lane permutation scheme is

outlined, being a novel approach in the field of transportation research, grounding

on a real-world task from this research area.

Extending this methodology from homoscedastic [1, 42] to the space-time set-

ting, both the observed data and the residuals are likely to be heterogeneous

by virtue of their geographical closeness and thus treating them as exchange-

able may bias the results. Firstly, a case of heteroscedasticity among the spatial

observations is concerned [44]. Under the presence of more groups in the data,

an interesting research question is whether these groups have different properties.

Assuming the same variance within the groups and the different variance between

the groups, a permutation testing procedure based on a spatial regression model

is here proposed. To deal with the nature of spatial observations, which depend

on their spatial coordinates, we propose to permute the residuals of the spatial

regression model and not the observations themselves. For this purpose, the per-

mutation scheme by Freedman and Lane (see [20]) is adapted here. An emphasis

shall be given to the exchangeability of the residuals, since this assumption can

be easily violated whenever the data are heteroscedastic.

Secondly, a case of spatially correlated observations is concerned [43]. To

ensure the approximate exchangeability of the units being permuted, a spatial

filtering of the residuals of the functional linear model is proposed. More pre-

cisely, the spatial covariance of the residuals is estimated through the functional

variography [25] and then the residuals are de-correlated by using the inverse-

square root of the estimated variance-covariance matrix, eventually obtaining

approximately exchangeable residuals, suitable for using the Freedman and Lane

permutation scheme. A similar approach can be found in [5], where the spatial

covariance is estimated through the trace variogram and used to fit the functional
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analysis of variance model with GLS. Then, the inference is based on an approx-

imate chi-squared distribution of the test statistic, that is derived based on the

assumption of normality of the residuals, whereas a nonparametric permutational

approach is proposed in this work.

To summarize the previous paragraphs, the aims of this thesis are to

1. model functional data and to set up the methodology for spatiotemporal

observations, including the estimation of the spatial relationship among the

observations through variography,

2. introduce a novel approach to the inference in spatial functional regression

models based on a permutation scheme by Freedman and Lane [20], aiming

at the inference in case of (i) heteroscedastic and (ii) spatially correlated

functional observations,

3. apply the proposed methodology to real-world spatiotemporal data,

4. show a potential of FDA framework in the field of transportation research,

focusing on the inference in functional-on-functional regression models.
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6. Theoretical framework and applied methods

6.1. The global permutation tests for the effect of the co-
variates in the spatial functional regression model

This section focuses on the problem of testing for the significance of the re-

gression functions in model (12). Recall a compact matrix form of the linear

hypotheses about the effects of covariates as

H0 : Cβ = 0, against H1 : Cβ 6= 0, (25)

where C is an h× (L+ 1) matrix of constants and 1 ≤ h ≤ L+ 1 is a number of

linearly independent hypotheses. An important special case is the omnibus test

considering

H0 : β1(t) = . . . = βL(t) = 0 ∀t ∈ T, against (26)

H1 : β`(t) 6= 0 for some ` ∈ {1, . . . , L} and some t ∈ T, (27)

to compare the full and the null models. In this case, C is an L× (L+ 1) block-

matrix partitioned as C = (0|I), where 0 is a vector of zeros of length L and I is

an (L×L) identity matrix. In the case of testing the effect of a single regression

function β`(t), ` ∈ {1, . . . , L}, through the hypothesis

H`
0 : β`(t) = 0 ∀t ∈ T, against H`

1 : β`(t) 6= 0 for some t ∈ T, (28)

the matrix C is reduced to a unit row vector with 1 on the `-th entry and zeros

otherwise, i.e, C` = (0, . . . , 0, 1, 0, . . . , 0).

If the variance-covariance matrix has the form Σ = σ2I, one can use the test

statistic [44]

TOLS =

∫

T

1

σ̂2

(
Cβ̂OLS

)′ [
C(F′F)−1C′

]−1 (
Cβ̂OLS

)
dt (29)

for testing the hypothesis (25). The test of a single regression function β`(t),

` ∈ {1, . . . , L}, expressed through the hypothesis (28), can be run using the test
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statistic

T`
OLS =

∫

T

(
C`β̂OLS

)2

σ̂2C`(F′F)−1C′`
dt. (30)

Without the presence of spatial correlation and under homoscedasticity, a de-

cision about the hypotheses (26) and (28) can be made by the Freedman and Lane

permutation scheme (see [20]) suitably adapted to the functional data as in [1].

This procedure allows one to estimate the distribution of the test statistics under

the random permutations by Monte Carlo techniques. In particular, the residuals

ε̂ of model (6) are estimated from the reduced model (i.e., the model fitted under

the null hypothesis) and they are permuted at each iteration, each time creating

a permuted data set over which the test statistic is evaluated. Under H0, the

distribution of the test statistic is asymptotically invariant to permutations. The

asymptotical invariance is a consequence of performing the test on the estimated

and therefore asymptotically exchangeable residuals. Finally, one can compute

the global p-value of the test statistic as the proportion of permutations leading

to a value of the test statistic that is higher than or equal to the statistic from

the observed data.

Under the presence of heteroscedasticity or spatial correlation, a modification

of the testing procedure is necessary to account for the heterogeneous structure

of the estimated residuals δ̂ which are no longer asymptotically exchangeable if

characterized by a heteroscedastic or spatial structure.

Without the presence of spatial correlation and under heteroscedasticity, the

hypothesis (25) can be tested using a test statistic accounting for the covariance

structure of the residuals,

TWLS =

∫

T

(
Cβ̂WLS

)′ [
C(F′ŴF)−1C′

]−1 (
Cβ̂WLS

)
dt, (31)

where β̂WLS is the weighted least-squares estimator of β, obtained using the two-

step iteration procedure for the estimation of the regression functions. One can

proceed analogously in the case of the test of a single regression function (see
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hypothesis (28)), using the test statistic

T`
WLS =

∫

T

(
C`β̂WLS

)2

C`(F′ŴF)−1C′`
dt. (32)

Define the vector ε = W1/2δ, as

εsi = w
1/2
ii δsi , si ∈ D, i ∈ {1, . . . , n}. (33)

Clearly, Cov(ε) = I, and {εsi}, si ∈ D, i ∈ {1, . . . , n}, are exchangeable. In

principle, one may specify any model for the weights wii, i ∈ {1, . . . , n}, without
substantial modifications of the method here proposed.

In this case, we propose to consider for the permutation scheme the stan-

dardized residuals ε, which can be obtained from the estimated residuals δ̂ as

ε̂ = Ŵ1/2δ̂. Assuming the homoscedasticity within the groups and the het-

eroscedasticity between the groups, the variance σ2
(m) in the m-th group can be

estimated via the sample variance within this group (Equation (20)). The esti-

mated standardized residuals ε̂ are then randomly permuted, and the correspond-

ing permuted responses are used similarly as in the case of homoscedasticity. This

permutation scheme is a new proposal for the case of heteroscedasticity among

the observations.

Similarly to the case of heteroscedasticity, the residuals δ̂ are no longer asymp-

totically exchangeable if characterized by a spatial correlation. As an approach to

dealing with this issue, we propose a modification of the testing procedure which

will be here referred to as the spatial functional Freedman and Lane Permuta-

tion scheme (SF-FLPerm). In the spatial functional setting, assuming a global

variance-covariance matrix Σ, the test statistic can be formulated as

TGLS =

∫

T

(
Cβ̂GLS

)′ [
C(F′Σ̂

−1
F)−1C′

]−1 (
Cβ̂GLS

)
dt, (34)

where β̂GLS is the generalized least-squares estimator of β, obtained using the

two-step iteration procedure for the estimation of the regression functions. One

22



can analogously proceed when testing the hypothesis (28), using the test statistic

T`
GLS =

∫

T

(
C`β̂GLS

)2

C`(F′Σ̂
−1

F)−1C′`

dt. (35)

Define the vector of spatially filtered residuals ε as

ε = Σ−1/2 δ, (36)

where Σ−1/2 is a symmetric square root of Σ−1 [27]. Clearly, Cov(ε) = I, and

{εsi}, si ∈ D, i ∈ {1, . . . , n}, are exchangeable.

The key difference of the SF-FLPerm scheme, compared to the Freedman

and Lane scheme (see [20]) is that the inference is based on the permutations of

the spatially filtered residuals ε̂ instead of on the permutations of the correlated

residuals δ̂. In more detail, at each iteration, the residuals δ̂ are de-correlated by

using the inverse-square root of the residual spatial covariance Σ̂, i.e., ε̂ = Σ̂
−1/2

δ̂.

The spatially filtered residuals ε̂ are permuted and then re-correlated by using the

square root of Σ̂, i.e., δ̂ = Σ̂
1/2
ε̂, to create the permuted data set. That is, the

distribution of the TGLS (T`
GLS) test statistic under the permutations is estimated

in a similar manner as in the homoscedasticity or heteroscedasticity cases, but

through the estimated approximately exchangeable spatially filtered residuals ε̂.

The SF-FLPerm scheme is a generalization of the Freedman and Lane scheme

and can properly perform the inference procedure under the presence of spatial

correlation. The detailed overview of the spatial functional Freedman and Lane

Permutation scheme is provided by Algorithm 1 which is designed for testing the

general linear hypothesis about the effect of the covariates, extending the scheme

for heteroscedastic observations proposed in [44] to the more complex structures

of the data. Note that, to avoid repetition, an algorithm is not shown for OLS

and WLS cases and for the single-hypothesis testing, but Algorithm 1 can be

adapted to these cases as well.
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Algorithm 1 Spatial functional Freedman and Lane permutation scheme for
hypothesis (25).

1. Compute the test statistic Tdata
GLS from the original data.

2. During the e-th permutation, e ∈ {1, . . . , E},

(a) Determine the estimated residuals δ̂si,r of the reduced model
Xsi,r = β0 + δsi,r using the iterative two-step procedure. Obtain
β̂0, Σ̂r, δ̂si,r, si ∈ D, i ∈ {1, . . . , n}.

(b) Determine the exchangeable estimated spatially filtered residuals ε̂r
from δ̂r as ε̂r = Σ̂

−1/2
r δ̂r.

(c) Permute the estimated exchangeable spatially filtered residuals
ε̂s1,r, . . . , ε̂sn,r, obtaining ε̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(d) Compute the permuted responsesX ∗r through the fitted reduced model
and the permuted estimated spatially correlated residuals δ̂

∗
r = Σ̂

1/2

r ε̂∗r
as X ∗si,r = β̂0 + δ̂∗si,r, si ∈ D, i ∈ {1, . . . , n}.

(e) Estimate the regression functions β of the full model from the per-
muted responses X ∗r by the GLS (Equation (22)) using the iterative
two-step procedure. Obtain β̂

∗
GLS, δ̂

∗
p(t), Σ̂p.

(f) Compute the test statistic T∗eGLS as

T∗eGLS =
∫
T

(
Cβ̂

∗
GLS

)′ [
C(F′Σ̂

−1
p F)−1C′

]−1 (
Cβ̂

∗
GLS

)
dt.

3. Compute the global p-value of the TGLS test as the proportion of all per-
mutations for which T∗eGLS ≥ Tdata

GLS, e ∈ {1, . . . , E}.

6.2. Assessment of the model assumptions under heterosce-
dasticity

As was outlined earlier, three possible scenarios may occur under the spatial

setting. Which approach to choose can be decided by the shape of the semi-

variogram. Firstly, the concave shape, where the semivariogram increases in the

beginning part and then becomes constant or non-decreasing, is associated with

the spatial correlation and a general variance-covariance matrix Σ. Secondly, the

constant shape of the semivariogram (i.e., the pure nugget structure) is associ-

ated with a diagonal variance-covariance matrix (Σ equals either σ2I, or W).
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However, even for the case of spatially uncorrelated residuals, one still needs to

verify the assumption of homoscedasticity, as this determines the exchangeability

of the residuals. For this reason, we employ a test based on the same permuta-

tions as described in Sections 3.4, 3.5, and 4.4, but with a test statistic specifically

aiming at detecting the differences in variances. Note that, using the multiple

comparison principles, the test can be extended to the case of more populations.

Let δsi(m)(t), si ∈ D, i ∈ {1, . . . , nm},m ∈ {A,B}, be two groups of the

functional residuals from model in Equations (11) and (12), where i is the unit

index and m is the population index. Let σ2
(A) and σ

2
(B) be the global variances

(constant over T ) of these two populations, that is, σ2
(m) = E[‖δsi(m)‖2]. The

latter can be estimated by Equation (20), restricted to them-th group in the data.

Note that, by construction, the overall residual sample mean is zero; furthermore,

the residual sample mean within the groups is zero if the dummy variables are

included among the covariates (i.e., in a functional analysis of covariance setting).

The goal is now to test the hypothesis

H0 : σ2
(A) = σ2

(B), againstH1 : σ2
(A) 6= σ2

(B). (37)

For this purpose, we propose as a test statistic the absolute value of the log-

proportion of variances, as follows:

TVar =

∣∣∣∣log
(
σ̂2
(A)

σ̂2
(B)

)∣∣∣∣. (38)

To perform the test, we consider a permutation scheme similar to those discussed

previously. Under H0, the residuals are approximately exchangeable, and the

permutation procedure from [1] can be applied. The testing procedure is as fol-

lows. During each permutation, the function’s indices are ordered as 1, 2, . . . , nA

(group A), and nA+1, nA+2, . . . , nA+nB (group B). Then, the estimated resid-

uals δ̂si(m), m ∈ {A,B}, i ∈ {1, . . . , n}, from both groups are permuted together,

obtaining the permuted estimated residuals δ̂∗s1 , . . . , δ̂
∗
snA

, belonging to group A,

and the permuted estimated residuals δ̂∗snA+1
, . . . , δ̂∗snA+nB

, belonging to group B.
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Using the permuted estimated residuals, the group variances σ̂∗2(A) and σ̂∗2(B) are

estimated (Equation (20)). Then, the test statistic TVar is calculated (Equation

(38)). Finally, the global p-value of the TVar test (37) is computed as the propor-

tion of the permutations leading to a value of TVar higher than or equal to the

one observed in the data. The results can be used to establish which permuta-

tion strategy should be used to test the significance of the regression functions.

Note that, the proposed statistical inference concerning homoscedasticity is only

approximate due to its definition on the estimated residuals.

6.3. The global permutation tests for the effect of the co-
variates in functional-on-functional regression model

The omnibus hypothesis (26) can be equivalently written as

H0 : b1 = b2 = . . . = bL = 0, against H1 : b` 6= 0 for some ` ∈ {1, . . . , L},
(39)

or in a matrix form as

H0 : Cb = 0, against H1 : Cb 6= 0, (40)

where C is a (
∑L

`=1Kβ,`) × Kβ block matrix of the form C = (0|I), where 0 is

a
∑L

`=1Kβ,`×K0-dimensional matrix of zeros and I is an (
∑L

`=1Kβ,`×
∑L

`=1Kβ,`)

identity matrix. To verify the omnibus hypothesis, one can use the test statistic

T =
1

σ̂2
b̂′C′

[
C(F̃′F̃ + Rβ)−1C′

]−1
Cb̂. (41)

The test for the significance of a single regression function β`(t), ` ∈ {1, . . . , L},
through the hypothesis

H`
0 : b` = 0, against H`

1 : b` 6= 0, (42)

can be run using the test statistic

T` =
1

σ̂2
b̂′`(F̃

′
`F̃` + Rl)b̂`, (43)

where F̃` denotes the block-diagonal part of F̃ corresponding to b`.
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7. Original results and summary

This thesis introduced a novel approach to the nonparametric inference for

the functional data. The main focus was on the functional regression models,

where the testing for the significance of the regression functions was performed

by permuting the residuals of the model under the null hypothesis. In this setting,

the aim was to ensure the exchangeability of the residuals being permuted.

The first aim was to define a regression model with the functional covariate

and the functional response and the inferential procedure for testing the signifi-

cance of the regression functions based on the Freedman and Lane permutation

scheme (see [20]) adapted to the functional setting [1]. Here, to ensure the ap-

proximate exchangeability of the permuted objects, the residuals, rather than the

observations, are of interest. From the application viewpoint, the objective was

to analyse the data from the field of the transportation research, consisting of the

functional observations of the driving speed on six expressway ramps collected

by a vehicle fleet on an interchange in Brno, Czech Republic. Moreover, it was

also of interest to examine how the driving speed differs in the different groups

in the data, such as between the main and the auxiliary (merging or exit) lane.

This assumption of the difference was confirmed by the testing performed in the

regression models where the presence of the auxiliary lane was included as one of

the explanatory variables, together with the curvature of the ramp (represented

by the radius of the circle fitted to a specific part of the ramp), evaluated by the

permutation-based test in a functional-on-functional regression model based on

the Freedman and Lane’s methodology. Similarly to the previous studies [14, 30],

the relationship between the driving speed and the ramp curvature represented by

the radius of the circle fitted to the specific part of the ramp by the least-square-

circle fit method was confirmed: on the less complex ramps the, relationship

between the speed and the radius was rather weak, which could be observed from

the results of testing for the significance of the radius as a regression function.

The second aim was to define a spatiotemporal regression model, together

with an introduction of a novel inferential framework for testing in the spatial
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functional regression model, accounting for the more complex structures of the

data. Firstly, concerning a testing procedure suitable for heteroscedastic func-

tional data, we propose to fit a weighted least-squares functional regression model

to the data, where the residuals are allowed to be characterized by heterogeneous

variances across the groups. The permutational schemes of [1] and [20] are thus

extended to the standardized residuals of the model, obtained by dividing the

estimated residuals by the estimated standard deviation of the corresponding

group of the data. Then, the standardized residuals obtained by this procedure

are assumed to be approximately exchangeable. With the purpose of assessing

the assumption of homoscedasticity, we also proposed a permutation-based test

for the equality of the variances in two groups of the data. Note that, the pro-

posed model and the testing procedures can be easily extended to any number

G ≥ 2 of groups. In this case, the mean term would be associated with G − 1

dummy variables, and the testing procedure could be performed (jointly) on the

associated coefficients, similarly as detailed in this thesis. In this more general

situation, the heteroscedasticity among the groups may be expected; the tests

for heteroscedasticity could be developed by using an analysis of variance-like

setting, or the multiple pairwise tests with appropriate level corrections. The

performance of this proposed methodology was assessed by the extensive simula-

tion studies showing that the introduced WLS test performs well concerning the

empirical size and the power, especially in the case of the unbalanced designs.

In contrast, if the nonconstant variance in the data is neglected and an ordinary

least-squares approach is applied, the test is either too liberal or too conserva-

tive whenever the two populations in the data have unequal sample sizes. Based

on the simulations, the empirical size of the OLS test could be more than 10

times smaller, or almost five times greater than the nominal one. However, for

the balanced design, the OLS test works well even under the presence of het-

eroscedasticity. These results are consistent with the previous studies pointing

out that the effect of heteroscedasticity is stronger for the unbalanced designs

[10, 36]. In fact, one should pay close attention to the specific spatial structure of
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the data during the model fitting, especially in the case of the unbalanced design.

Secondly, we focused on a case of the spatial correlation among the observa-

tions. Under this setting, the drift is estimated by a generalized least-squares

model and then the spatial correlation among the estimated residuals is assessed

by the variography with the purpose of a correct estimation of the variance-

covariance structure. The potential relationship between the spatial covariates

and the functional response is then assessed by the Spatial Functional Freedman

and Lane permutation scheme proposed here, based on permuting the estimated

residuals, spatially filtered through the pre-multiplication by the inverse square

root of the variance-covariance matrix, ensuring that the units to be permuted

are asymptotically exchangeable and that the procedure is properly conducted,

respecting the georeferenced nature of the data. The simulation studies intended

to evaluate the performance of this inferential procedure in terms of the em-

pirical size and the power show that the GLS test performs well whenever the

range of the spatial correlation is not too high (more than half of the size of

the spatial area). For the larger ranges, the procedure requires a larger sample

size. This is likely to be due to the difficulty of estimating the spatial covariance

structure when the range is large with respect to the study area D, which is

well-known in the literature of the spatial statistics [12]. On the other hand, the

ordinary least-squares approach shows very liberal behaviour whenever the data

are correlated in space. With the increasing range of the spatial correlation, the

test becomes even more liberal, its empirical size approaching to 1. Neglecting

the underlying spatial structure of the data thus leads to an inference based on

the non-exchangeable residuals and biases the results in terms of the empirical

size of the test. The empirical power of the test was therefore evaluated for the

generalized least-squares approach only. Three different models were considered:

two-covariate, one-covariate and a misspecified one, where the data were gener-

ated as a model with one covariate, but a two-covariate model was assumed and

fitted. The empirical power is similar for all three models.

In the current work, we propose the OLS, WLS, and GLS classical test statis-
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tics integrated over the domain of interest, following the work of [1]. These test

statistics are coherent with the classical tests of the hypotheses in the linear re-

gression and they cover a wide variety of different tests (i.e., all tests of the linear

hypotheses on the regression functions of the model), and in the absence of any

information about the data-generative model, we suggest to use them. However,

since the nonparametric inference based on the permutation tests is performed,

this is not the only possible choice; an inference with the similar properties could

be performed using the different point-wise statistics, the weighted integrals (if

some information about the weighting is available), or the maximum values along

the domain. Some test statistics could achieve a higher power under the specific

alternatives. However, a thorough comparison between the different choices is out

of the scope of this thesis, but it would be an interesting future line of research.
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