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ABSTRACT 
The thesis presents, analyzes, and discusses the opt imizat ion of algori thms that re
construct images of unknown specif ic conduct iv i ty f rom data acquired via electrical 
impedance tomography. In this context, the author provides a brief mathemat ical de
scription of the forward and inverse tasks solved by using diverse approaches, charac
terizes relevant measurement techniques and data acquisit ion procedures, and discusses 
available numerical tools. Procedural ly, the initial working stages involved analyzing the 
methods for opt imiz ing those parameters of the model that influence the reconstruction 
accuracy; demonstrat ing approaches to the parallel processing of the algorithms; and out
l ining a survey of available instruments to acquire the tomographic data. The obtained 
knowledge then yielded a process for opt imiz ing the parameters of the mathemat ical 
model , thus al lowing the model to be designed precisely, based on the measured data; 
such a precondit ion eventually reduced the uncertainty in reconstruct ing the specif ic con
ductivi ty distr ibut ion. When forming the numerical model , the author investigated the 
possibil it ies and overall impact of combin ing the open and closed domains with various 
regularization methods and mesh element scales, considering both the character of the 
conduct iv i ty reconstruction error and the computat ional intensity. A complementary task 
resolved within the broader scheme outl ined above lay in parallel izing the reconstruction 
subalgori thms by using a mult i-core graphics card. The results of the thesis are directly 
reflected in a reduced reconstruction uncertainty (through an opt imizat ion of the initial 
conduct iv i ty value, placement of the electrodes, and shape deformation of the domains) 
and accelerated computat ion via parallelized algorithms. The actual research benefited 
from an in-house designed automated tomography unit. 

KEYWORDS 
Electr ical impedance tomography, opt imizat ion of domain parameters, electrode place
ment, current patterns, conductivi ty, data acquisit ion unit 



ABSTRAKT 
Tato disertační práce pojednává o opt imal izaci a lgor i tmů pro rekonstrukci obrazu ne
známé měrné vodivost i z měřených dat pořízených elektr ickou impedanční tomograf i í . 
Danou problematiku zde věcně vymezuje několik různých prvků, zejména pak stručný 
matemat ický popis dopředně a inverzní úlohy řešené různými přístupy, metodika měření 
a pořizování dat pro rekonstrukci a přehled dostupných numerických nástrojů. Uvedenou 
charakterist iku rozšiřuje rozbor opt imal izací parametrů modelu ovlivňujících přesnost re
konstrukce, způsoby paralelního zpracování algor i tmů a souhrn dostupných zařízení pro 
měření tomograf ických dat. Na základě získaných poznatků byla navržena opt imal izace 
parametrů matemat ického modelu, která umožňuje jeho velmi přesný návrh dle měřených 
dat. V té to souvislosti dochází ke snížení nejistoty rekonstrukce rozložení konduktivity. 
Pro zefektivnění procesu získávání dat bylo navrženo zařízení k automat izaci tomograf ie s 
důrazem na cenovou dostupnost a snížení nejistoty měření. V oblasti tvorby numerického 
modelu byly dále zkoumány možnosti užit í otevřených a uzavřených domén pro různé 
metody regularizace a hrubost sítě, a to s ohledem na velikost chyby rekonstruované 
konduktivi ty a výpočetní náročnost. Součástí práce je také paralelizace subalgori tmů re
konstrukce s využi t ím vícejádrové grafické karty. Předložené výsledky mají přímý vliv na 
snížení nejistoty rekonstrukce (opt imal izací počáteční hodnoty konduktivity, rozmístění 
elektrod a tvarové deformace domény, regularizačních metod a typu domén) a urychlení 
výpočtů paralelizací a lgor i tmů, přičemž výzkum byl podpořen vlastním návrhem jednotky 
pro automat izaci tomograf ie. 

KLÍČOVÁ SLOVA 
Elektrická impedanční tomograf ie, opt imal izace parametrů domény, rozmístění elektrod, 
proudové vzory, měrná kondukt iv i ta, měřicí jednotka 
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Introduction 
This doctoral thesis discusses current challenges in electrical impedance tomography 

(EIT) , a relatively new, non-destructive and non-invasive diagnostic method that, 

thanks to its properties and capabilities, is advantageously applied in various fields 

of technology. A n acceptable cost and practical design of the equipment then make 

E I T an inexpensive and effective data acquisition technique. 

From the historical perspective, E I T image reconstruction was invented in re

sponse to various needs of geophysical exploration. A t this point, two landmarks 

need to be mentioned: the first reconstruction and the proof of uniqueness. In the 

1930s, the ini t ial , regularization-based reconstruction was published by Tikhonov, 

who consequently received the Soviet state award for his efforts. More concretely, 

the scientist's research was focused on the detection of copper deposits, and the inno

vative algorithms paved the way for survey procedures that materialized successfully 

in the 1940s [1]. The other major breakthrough, namely, the proof of the uniqueness 

of an inverse ill-posed problem, was introduced by the Argentinian mathematician 

Albert Calderón in 1980 [1,2]. 

In functional terms, the method applies an A C current to an electrode system. 

The electrodes are usually placed equidistantly on the border of the examined object 

(domain), except in geophysical measurement. The voltage is commonly measured 

on the non-current carrying electrodes, and the relevant values correspond to the 

magnitude of the flowing current and the conductivity or impedivity distribution 

inside the domain. Based on the obtained results, the inverse task is processed and 

the inverse image calculated. Overall, the spatial resolution of the reconstructed 

image is improvable by increasing the number of electrodes. 

The outlined properties enable E I T to be employed in a variety of science and 

technology fields, such as biomedicine, material engineering, geophysical mapping, 

and monitoring of chemical processes. In biomedicine, E I T finds use in imaging 

centered on tissues and internal body structures. The imaging, i.e., the reconstruc

tion, is generally static or dynamic, and it facilitates detecting or monitoring blood 

clots [3], tumors, brain hemorrhages, lungs, oxygenation during the respiration cy

cle [4], and other issues or parts of the body. 

In material engineering, E I T has become popular thanks to its non-destructive 

character. B y extension, non-destructive diagnostics embodies one of the most con

venient approaches wherever the detection of inhomogeneous particles, cracks, de

fects, and corrosion is indispensable. E I T , however, also allows destructive inspec

tion of reinforced concrete beams to determine the strength limits and to detect 

cracks during stress tests [5]. 

In recent years, E I T has established itself firmly in chemistry, wi th some of the 
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most frequent applications being in the precise monitoring of chemical emulsions to 

perform process tomography; the method then enables the observation of various 

substances in emulsions on the one hand and facilitates the quantification of the 

conductivity distribution during mixing on the other [6]. 

W i t h i n geophysical mapping, E I T monitors or explores structurally the forma

tion of subsoils and observes underground watercourses or flood embankments. The 

detection of local subsoil inhomogeneities can highlight areas having a higher wa

ter content or different material composition and allows tracking the changes over 

time [7]. Another, albeit only experimental, target field is the monitoring of volca

noes [8]. 

One of the topical problems in E I T rests in optimizing algorithms wi th respect to 

image reconstruction; functionally, the optimization can be carried out through novel 

numerical methods (e.g., the non-iterative D-Bar method with scattering transfor

mation), precise F E M modeling (domain deformation, electrode placement, contact 

impedance), suppressing undesired changes in the tomographic domain (e.g., during 

breathing), and eliminating the measurement uncertainties (such as the stability 

of the current sources, and phase shift sensing). The thesis focuses on the precise 

FEM-based modeling, for which an optimization process using E I D O R S was de

signed. The numerical solution was correlated wi th diverse laboratory experiments 

to verify the optimization functionality. 

The thesis contains relevant experiments and results executed or otherwise ac

quired within cooperation between the Faculty of Electrical Engineering and Com

munication and the Faculty of C i v i l Engineering, Brno University of Technology. 

Additionally, the experimental chapters present the deterministic methods prac

tised during the author's internship at Netr ix (Net-Art) Reseach and Development 

center, Lubl in , Poland. 
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1 Electrical impedance tomography 
Electrical impedance tomography is a diagnostic method for estimating the conduc

t ivi ty or impedivity distribution in conductive objects. To illustrate the underlying 

concept in general terms, we can imagine a domain il having a pre-defined shape 

and material properties (Fig. 1.1). A s is shown in the figure below, selected pairs of 

electrodes on the domain border are fed with a current whose response is observable 

via voltage measurement. Naming and characterizing the main relevant procedures 

F ig . 1.1: The domain ft; the electrodes, current feeding, and voltage sensing [9]. 

requires us to note that the approximation of the conductivity inside the domain 

is referred to as image reconstruction and that, in E I T , this activity comprises two 

main processes: the forward and the inverse tasks [2, 10]. 

The forward task calculates the voltage on the electrodes wi th respect to the con

ductivity distribution inside a domain. The inverse task, by contrast, is a non-linear 

ill-posed problem which evaluates the estimated conductivity distribution from the 

measured voltages. The ill-posedness means that minor undesired changes or flaws 

occuring at the beginning of the process can produce markedly more significant er

rors in the final estimated conductivity. Thus, special numerical techniques have 

been invented to improve the stability of the inverse solution; these tools (and pro

cedures) are called regularizations. The central aims of a regularization include 

minimizing the spurious effects that accompany the construction of the model, re

ducing the numerical instability, and diminishing the impact of the measurement 

uncertainty. In practice, there exist problematic conductivity distribution cases, 

such as scenarios where the measured voltage values almost match those of the 

noise or where the model was constructed inaccurately. A n y acquired data affected 

by a high measurement uncertainty or wrong construction of the model can pro

duce differences between the results of the real conductivity and its estimated form 

delivered by the inverse task [11, 12]. 

14 



1.1 Mathematical formulation 

The mathematical model for E I T was derived from the first (Ampere's law, 1.1) and 

the second (Faraday's law of induction, 1.2) Maxwell 's equations in the differential 

form, reading 

V x H = J + — , (1.1) 

V x E = - ^ , (1.2) 

where H is a magnetic field strength, J denotes an electric current density, D rep

resents an electric induction, E stands for an electric field, and B is a magnetic flux 

density. 

The above equations, 1.1 and 1.2, are related through the vector quantities in

dicated below. In this context, equation 1.3 describes Ohm's law for the vector of 

the current density J , which equals a conductivity a and the vector of the electric 

field E ; equation 1.4 defines the vector of the electric induction D , which equals the 

vector of the electric field E and a permitt ivi ty e; and equation 1.5 characterizes the 

magnetic flux density B as equaling the intensity of the magnetic field strength H , 

and a permeability \i. The discussed equations 

J = a E , (1.3) 

D = eE, (1.4) 

B = /xH (1.5) 

are valid for a linear and isotropic system. In a system fed wi th a D C or an A C 

current at a low frequency, the change of the electric and the magnetic inductions in 

time can be considered vir tually negligible, almost equaling zero [11, 13], defined as 

w = 0, (1 .8) 

<9B , s 

a r = ° - ( L 7 ) 

Substituting eqs. 1.6 and 1.7 in the Maxwell 's equations (1.1 and 1.2) wi l l yield the 

statements 

V x H = J , (1.8) 

V x E = 0. (1.9) 

Of these, item 1.9 clearly indicates that the rotation of the electric field equals zero. 

Considering that the field has a quasistatic character, we can substitute the rotation 

wi th the gradient of the scalar potential (p, obtaining 

E = - V < / ? . (1.10) 
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After that, the Ohm's law from 1.3 is integrated in statement 1.8, and the diver

gence operator is applied. A t the last stage of the E I T formulation procedure, the 

vector of the electric field is replaced wi th the scalar potential from 1.10, through 

the following steps: 

V x H = a E , (1.11) 

V ( V x H ) = V(crE) , (1.12) 

V(crE) = 0, (1.13) 

- V ( o v V ) = 0. (1.14) 

The resulting statement (1.14), namely, the Laplace equation, describes the behavior 

of the electric potential inside the domain Q, and its solution is supposed to be in 

accordance wi th the Dirichlet and Neumann conditions on the domain's boundary. 

The boundary conditions are processed via the forward problem [13, 14]. 

16 



1.2 Forward problem 

The E I T physical model of the forward problem is based on describing the domain Q 

in an IR™, n = 1, 2, 3-dimensional space. We assume that the domain exhibits a 

smooth and continuous boundary, wi th the electrodes placed equidistantly on the 

domain's surface. A n A C current is injected into the volume of the domain through 

the electrodes; the flowing current then causes voltage drops, whose magnitude 

depends on the applied medium. The forward problem (or, by another definition, 

injecting the current and measuring the voltage on the electrodes wi th respect to 

the conductivity of the medium) is best illustrated by the complete electrode model 

( C E M ) , as follows: 

V(a(x)V<p(x)) = 0 , i 6 f i , (1.15) 

<p(x) + zla(x)^^- = Uhxe E h l e (1 ,L) , (1.16) 

a(x)^-dS = Ihle(l,L), (1.17) 
Ei <9n 

dip(x 
(Tlx 

L 

0,x e dtt\ | J Ei, (l.ii 
i=i dn 

£ / | = 0, (1 .19) 
1=1 

X> = 0, (1.20) 
1=1 

where x represents a coordinate of the domain Q; a(x) denotes the conductivity of 

the examined medium; tp(x) describes the electric potential inside the domain; [7j 

and Ii are the voltage and the current, respectively, on the electrodes /; z ; expresses 

the contact impedance between an electrode and the unknown conductivity; n stands 

for the normal vector wi th respect to the surface of the domain Q; and dS is the 

domain's surface. The last two equations, 1.19 and 1.20, express Kirchhoff's laws 

within the physical formulation of the forward problem [2, 13, 14]. 

The numerical calculation is stable and unambiguous, and the actual solution 

exploits discretization; the partial differential equations (PDEs) are then usually 

approximated with the finite element method ( F E M ) . B y extension, discretizing the 

problem via the F E M leads to the following equation: 

<P(x) = E E ^ , n ( x ) W e , n ( x , y ) , (1 .21) 
e n 

where (p(x) is the electric potential, ipejn(x) denotes the potential in the nodes of 

the mesh, and WetTL(x,y) represents a basis function to facilitate the approximation. 

Mult ip le basis functions are available, including, for example, the linear, quadratic, 

17 



and sine variants. The most common approach rests in the linear basis function 

(Fig. 1.2), which complies with the homogeneous boundary conditions 2 [15, 16]. 

V* 

1 
2/ = yj ť _l(x) 

V* 

1 

\ y = <f0{x) / 

\ / hi-i / hi \ h i + i \ j 

y - <Pn(x) 

0 = x 0 

i i . i i i r 
X\ • ' • Xi — 2 3Ci — l ' * ' *£n—1 *£"n ~= I % 

Fig . 1.2: A basis function for approximating via the F E M ; </?j denotes the approxi

mation function, and Xi is a node of the mesh [17]. 

The discretization using the above C E M equations, 1.15 - 1.20, could be per

formed via the F E M to yield the te rm 3 

;i.22) 

where K denotes the F E M matrix of the system (stiffness matrix), ip expresses the 

vector of the electric potential, and f represents the load vector [11, 17]. 

The equation can be rewritten to read 

;i.23) 

where (fix characterizes the vector of the electric potential on the mesh nodes, (fie 

denotes the potential measured on the electrodes, and i expresses the vector of the 

injected currents. The remaining matrix elements, i.e, G , B , C , D , are defined as 

G + B c </>x 0 

D i 

G aVWjVWidtt. 

i = i j E i 

hi 

D, 
Ei 

w 

'
l

i'J Z ; 
•(with i = j = I equaling 0), 

;i.24) 

;i.25) 

;i.26) 

;i.27) 

where W describes the linear basis functions, a denotes the conductivity, ž; char

acterizes the contact impedance between an electrode and the medium inside the 

domain, and | Ei \ stands for the surface of an electrode [13, 18]. 
1A linearly independent basis function. 
2The homogeneous boundary condition equals zero on the border of the domain ÍŽ. 
3The complete, step-by-step derivation of the formula is described within the monograph [2]. 

18 



1.3 Inverse problem: deterministic approaches 

Generally, the inverse problem is defined as an ill-posed mathematical task; in E I T , 

the relevant procedure consists in estimating the conductivity inside the domain fi. 

Unlike the forward problem, the inverse task is non-linear and difficult to solve, and 

it cannot produce an unambiguous result. 

Electrical impedance tomography comprises two main submethods for the in

verse solution: difference and absolute imaging. The former option reconstructs two 

different instances of measurement, each executed at either a particular time (time 

difference) or a modified frequency (frequency difference); selecting any of the sce

narios then enables us to compute relative changes of the conductivity. The latter 

alternative, by comparison, utilizes only a single measurement [19]. 

Principally, the inverse task seeks a conductivity matrix that satisfies the condi

tions set out in equation 1.15, and it also maintains the voltage and current values 

in the domain Q. In E I T , the problem is derived from the statement 

*(cr) = A f b , (1.28) 

where ^(cr) is the conductivity change vector, A denotes the system matrix (Jaco-

bian), and b represents the right-hand side vector (voltage error) [2]. 

After applying the Moore-Penrose inverse, we yield 

*(cr) = A f b = ( A T A ) - x A T b , (1.29) 

leading to a solution that exploits the least squares method (LSM) in the generalized 

form; thus, we have 

*(cr) = m i n x | | A x - b | | . (1.30) 

If the matrix A is badly conditioned, the least squares method may fail when com

puting the inverse task, and no outcome is delivered. For this reason, the L S M 

utilizes complementary regularizations, of which the most significant ones are dis

cussed on the final pages of this section. 

In E I T , the objective function for the inverse task is mathematically defined as 

(<r) = m i n ^ J2 l l U M - U F E M ( C T ) | | 2 , (1.31) 

where U M is the vector of the voltages measured on the boundary, and U F E M ( C ) 

denotes the vector of the voltage values computed via the forward task. The choice 

of the norm defines the rate in suppressing sharp changes, as penalization wi th the 

L2 norm is more effective than its Ll -based counterpart [10, 12]. 
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In the image reconstruction process, the conductivity vector a is sought wi th 

respect to minimizing the objective function ^(cr). For the given conductivity vec

tor a, the algorithm reads 

where cri+i stands for a novel approximation of the conductivity vector, <Tj represents 

the conductivity vector computed in the previous iteration, and J j denotes the 

Jacobian expressing the sensitivity of the electrode potentials to changes in the 

conductivity vector at the relevant mesh elements [2, 12]. 

Apply ing the bare L S M to the inverse problem is insufficient, especially due to 

the actual ill-conditioning; thus, increasing the stability and convergence of the re

construction requires a mathematical complement, namely, regularization. The best 

known regularization instruments, such as the Tikhonov, Laplace, and N O S E R tech

niques, range among deterministic methods; in addition to these, however, there are 

also stochastic techniques, which utilize neural networks or genetic algorithms [11]. 

Tikhonov regularization 

The Tikhonov technique embodies one of the first regularization approaches ap

plied in inverse image reconstruction, and, importantly, it stil l remains a commonly 

employed tool. The general principles of this regularization procedure are charac

terized above, within objective function 1.31. In an expanded form, the method is 

defined as follows: 

where U M stands for the vector of the voltages measured on the border of the 

domain fl; UFEM(C") represents the vector of the voltages on the electrodes, obtained 

wi th the forward solution; a is the regularization parameter; and R denotes the 

regularization matrix [10, 20]. 

If we regularize the iterative algorithm from 1.32, the sought conductivity vector 

a wi l l take the following form: 

cr i + 1 = *i- ( J ^ J i + a R T R ) - 1 ( j 7 ( U M - U F EM(CX ; ) ) - a R T R c r i ) . (1.34) 

The Jacobian characterizes the sensitivity of the potentials on the electrodes wi th 

respect to the conductivity changes at the given mesh element; we have 

C j + l = CTj — (Jjji) 1 J ^ ( U M - U F E M ( C Í ) ) J 

r<9U! «9U„1 

d<j\ 

i dU. n 

da. n da. 
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The stability and sensitivity features of the Tikhonov approach depend on the 

regularization parameter a and also on the ini t ial conductivity value. W i t h i n the se

quential processing, computing the Jacobian is the most time-consuming activity be

cause the actual solution requires multiple results of the forward calculation [11, 20]. 

Total variation method 

The total variation method ( T V M ) constitutes another deterministic approach 

to regularize the inverse task. In addition to effectively suppressing the noise, this 

instrument facilitates detection of sharp inhomogeneity contours in the simulated 

system. The technique's regularization term reads aTVp and can be rewritten as 

TVP = J2 V / I I R ^ H 2 + ^ (1-36) 

where R denotes the regularization matr ix expressing the relationship between 

neighboring elements of the mesh, and (3 is the parameter that characterizes the 

smoothness of the course of the objective function *&(a). 

B y extension, the T V M subsumes an alternative concept, the primal-dual interior-

point method ( P D - I P M ) . This subsidiary tool combines together two algorithms, 

namely, the lagged diffusivity and the Newton methods; function-wise, the former is 

used at the beginning of the image reconstruction to reach close to the final image, 

while the latter allows us to perform the remaining stages of the procedure [2, 10, 11]. 

Newton 's one step error reconstructor (NOSER) 

The NOSER-based regularization relies on calculating only one step of the image 

reconstruction, uti l izing Newton 's method. Such an approach usually finds use in 

difference imaging. This type of imaging comprises three stages, namely, obtaining 

the reference voltage C/ r ef, which corresponds to the conductivity a r ef; measuring the 

voltage to acquire the unknown conductivity distribution a; and reconstructing the 

conductivity difference to yield 

5a = a — <7ref. (1-37) 

The method also assumes the conductivity of an inhomogeneity to be markedly 

dissimilar from that of the medium inside the domain. In the reconstruction of the 

conductivity 5a v ia difference imaging, we exploit the linearized model 

U « U ( a r e f ) + J(a - arei) + e, (1.38) 

where U ( a r e f ) denotes the matr ix of the voltage values obtained through the forward 

solution; J indicates the Jacobian, i.e., the sensitivity matrix of the forward task, 

and this in turn is evaluated at the conductivity <7ref; and e stands for a randomly 

generated value expressing the noise [20, 21]. 
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In difference imaging, the forward solution is substituted wi th measurement of 

the reference voltage U r e f [20, 21], allowing us to modify equation 1.38 into 

U - U r e f w J(er - a r ef) + e. (1.39) 

Laplace method 

Conceptually, the Laplace method consists in uti l izing a high pass filter of the 

second order. A s a rule, the technique operates in the form of an edge sensitive filter 

where a penalty term is computed for each element and its neighbors. The relevant 

regularization matrix is shown below, reading 

The element itself is weighted by D + 1, wi th D representing the dimension of the 

model. Each neighboring element is assigned the weighting of -1; this leads to a 

zero sum in the penalty term in smooth images. The method can be characterized 

as an edge sensitive filter, although the actual classification depends on the a priori 

knowledge of the reconstructed conductivity distribution. If the a priori information 

is not available, the inverse imaging via this method induces noise amplification and 

decreases the stability of the solution [22]. 

D + 1 if i = j 

- 1 if element % is adjacent to j 

0 otherwise. 
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1.4 Inverse problem: stochastic methods 

This chapter briefly discusses the artificial neural networks and genetic algorithms 

for inverse imaging. 

Artificial neural networks 

Artif icial neural networks (ANNs) constitute a stochastic tool that finds frequent 

use in E I T spatial conductivity reconstruction. Principally, a neural network relies 

on the excitation of neurons, a process identical wi th that which defines the func

tioning of a biological nervous system. Such a network embodies a novel algorithmic 

architecture (Fig. 1.3) enabling us to execute relevant basic functions, e.g., addition, 

multiplication, and Boolean logic operations to solve complex, ill-posed, and non

linear mathematical problems. A n A N N has a simple computational and algorithmic 

Output layer 4 

Hidden layer 3 

Hidden layer 2 

Input layer 1 

Fig . 1.3: A multilayer artificial neural network. 

structure but requires a long and complicated procedure of prior learning. A n op

t imal description and precise solution of a problem necessitate application of the 
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simplest A N N available. Generally, an A N N ensures a high level of parallelization 

to each neuron, i.e., network element [23, 24]. 

A n A N N possesses a pre-defined number of input neurons, depending on the 

count of variables in the problem being solved. Each input neuron has a particular 

weight affecting the whole computation. There exist several types of activation and 

transition functions, which influence both the convergence of the problem and the 

learning of the A N N . A n activation function is an output signal transferred to the 

neural network level; to name several examples, we can refer to the Heaviside step 

function and the linear, hyperbolic, and sigmoid activation functions [23]. 

The architecture of an A N N is topological, and the topology consists of individual 

layers. The smallest network constructible comprises one layer having one neuron; 

more complex architectures are then known as multilayer neural networks, and these 

enable E I T imaging. A multilayer network subsumes an input and an output layers, 

and several hidden ones. Each layer contains a pre-defined number of neurons, 

according to the target application. In recent years, diverse improvements and 

optimizations have been introduced into E I T neural networks, becoming a significant 

trend; one such tool is particle swarm optimization [25, 26]. 

A major methodological prerequisite for any successful use of a neural network 

rests in machine learning. The procedure cooperates with algorithms that evaluate 

the outputs in relation to weight changes, as these affect the results delivered by a 

network; the set of relevant algorithms includes, for instance, back projection and 

the dynamic neural network [24, 27]. 

A s regards the two last-named instruments and their principal capabilities, we 

can choose back projection to present several functional details. Basically, this 

technique reviews and classifies the outcomes acquired from the output layer; these 

outcomes are generated by the flow of the applied inputs through the neural system. 

The values obtained v ia the classification are then sent back across the network, 

leading to an adjustment of the weights in each input neuron. The entire learning 

scheme continues running unti l the required accuracy is achieved [27, 28]. 
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Genetic algorithms 

Genetic algorithms (GAs) embody the alternative to the classic A N N s when 

an optimal solution of complex problems is desired. In terms of the componential 

stages, G A s involve population initialization, selection, crossover, and mutation. 

The structure of a G A is shown in the figure below. 

Population initialization 

Evaluation 

Crossover and mutation 

Population evaluation 

I  

Fig . 1.4: A structural flowchart to illustrate a genetic algorithm. 

A s is obvious from the diagram, the individual phases are closely linked, and 

the actual execution unfolds as follows: Initially, a random population begins to be 

generated, and the eventual product is then subject to an evaluation that relies on 

correlating the results wi th the required function. In the next step, the convergence 

criterion is inspected. If this criterion is satisfied, the algorithm wi l l stop operating; 

otherwise, a new population-making cycle wi l l be launched, uti l izing the crossover 

mechanism to adopt portions of the previous population. Afterwards, during the 

mutation phase, the properties and characteristics of randomly selected individuals 

are adjusted to allow the final stage, namely, evaluating the survivors and their fit

ness. The algorithm repeats unti l the criterion has been met [28, 29]. In E I T , various 

G A s are available, including modified variants and adaptive differential algorithms 

wi th a circular topology [30, 31, 32]. 
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1.5 Inverse crime 

The inverse task comprises certain ill-posed features that limit the algorithms and 

their capability of delivering accurate reconstruction as well as adequate noise sup

pression. In this context, let us note that the noise level is partially adjustable 

through the forward solver integrated in an algorithm: Such a solver allows us to 

test the inverse task via the procedurally easiest approach, where the forward output 

data are generated without noise to enable smooth recovery of the conductivity. The 

only difficulty rests in the a priori assumptions and precision of the floating-point 

arithmetic. To outline the purpose of the fundamental test, we can stress, above all, 

that it facilitates verifying the designed algorithm's performance and effectivity [1]. 

Using different meshes 

Before solving a forward and an inverse tasks, we have to consider the fact that 

each of these requires a specifically configured mesh. This aspect, by extension, 

makes us realize that the relevant measurements can be performed and the desired 

experimental data obtained only wi th sufficiently precise equipment; under all other 

conditions, we need to rely solely on the simulated data from the forward task, thus 

obeying the most frequent scenario. This commonly applied option nevertheless 

requires us not to commit an inverse crime [33]. To obviate the issue, we can gener

ate two separate original models, bearing in mind that the forward and the inverse 

variants are differentiable in factors such as the mesh density or element shape. The 

reconstructed conductivity should then be represented on the inverse model mesh; 

by contrast, the forward model mesh wi l l likely remain unknown to the algorithm if 

the a priori information about the position of the inhomogeneity boundary was not 

employed [1, 34]. 

Simulation noise 

The noise in the simulated data and the measurement error in the experiments 

proved to have a major impact on the reconstruction. In this connection, and 

within this subchapter, we can illustrate the inverse crime on a case where the re

searchers added Gaussian noise to the input data by applying a mathematically 

trained pseudo-random number generator and subsequently calibrated the device(s) 

or software(s) to reduce the systematic error in a manner that left only the random 

processes (discretization of measurement and thermal noise). Averaging the multiple 

measurements then ensured a good approximation of the data error corresponding 

to the output from the number generator; moreover, the approximation was charac

terized as sufficient by the central limit theorem. Such a scenario nevertheless occurs 

very rarely in real-world experiments. Real phantom vessels comprise many sources 
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of flaws that are difficult to suppress, e.g., contact impedance, motion artifacts, and 

variable surface geometry. Further, we wi l l focus on the discretization error, whose 

simulation requires prior knowledge of the measurement setup. During the data 

acquisition stage, the signal is digitized in an A D C , which scales the input by using 

an amplifier. In the Sheffield-type adjacent pair drive system [35], the scale factor is 

defined by the position of the electrodes, allowing us to exploit the optimum range of 

the A D C . The multiple-drive system [36], by extension, relies on different strategies, 

and the values obtained via these strategies should ideally comprise noise uniformly 

distributed and scaled to the measured data. Generally, in the discussed context, a 

frequent flaw rests in an insufficient description of the simulated noise level [1, 34]. 

Pseudo-random numbers 

These sets of values involve two main negatives (and related precautionary steps) 

that may influence the outcomes. First , we have to consider the undesired impacts 

of using a pseudo-random number generator, as some of these softwares generate 

one and the same sequence of mock random numbers after each start of the pro

gram. Second, there appears the need to avoid assigning pseudo-random numbers 

the role of errors. Such a goal can be achieved by, for instance, generating a sequence 

of numbers to run a reconstruction and to determine its mean error and variance; 

the parameters are then evaluated also in the data fitting. Due to the non-linear 

character of an E I T inversion, introducing Gaussian error in the data wi l l not yield 

any Gaussian reconstruction error, and the overall distribution of errors has to be 

applied, wi th the assumption that small noise levels wi l l be linearly approximable. 

In practice, mock random numbers can produce an outlier that the experimenter 

might reveal v ia comparing the reconstruction error and its data counterpart. Such a 

possibility then most plausibly explains why some experimenters manage to sidestep 

the inverse crime while avoiding the use of pseudo-random numbers as a source of 

flaws [1, 34]. 

Additional tunning of the process 

The tuning is performable v ia "tweaking" the reconstruction parameters, includ

ing the number of iterations, smoothing level, constraints, and small variations in the 

algorithm. This approach stands in contrast with the regular scheme, where we can 

either acquire the value (e.g., a hyperparameter, retrievable by using the L-curve) 

and estimate the data error (Morozov's stopping criterion) or repeatedly simulate 

and measure various conductivities to seek the parameters that might deliver ac

ceptable results. In terms of the tuning, the classic inverse crime, as compared to a 

standard research case based on original data, rests in training a neural network and 

then conducting an experiment designed around the training set. To provide an-
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other convenient example, we can refer to testing an algorithm on an already known 

scenario involving a circular inhomogeneity which has not been verified by means of 

complex anomalies with varying contrasts. The best way to obviate the "tweaking" 

is to employ a bl ind sample when acquiring the simulated and the experimental 

data [34]. 

A revision of the entire chapter wi l l lead us to conclude that the inverse crime 

takes the following forms [1]: 

• using one and the same forward model in both simulating the data and exe

cuting the reconstruction; 

• not adding simulated noise to the synthetic data; 

• showcasing the reconstruction of a few special cases that produced reliable 

results and claiming these to represent the general performance; 

• tuning the reconstruction parameters manually, using prior knowledge of the 

correct answer, and not presenting any bl ind trials, where the parameters 

cannot be "tweaked" (e.g., teaching a neural network by uti l izing solely a 

training set). 
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1.6 Measurement strategies: current patterns 

In E I T , the data acquisition mode depends on the system of electrodes and the 

adopted feeding method. B y a narrower definition, this chapter presents the most 

common current patterns, al l classifiable into two main groups indicating whether 

the target application is in an open or a closed domain. 

The closed domain is defined as a system with electrodes placed equidistantly 

on the boundary. Such a setup can be fed v ia diverse strategies, a very traditional 

one being the adjacent stimulation pattern (ASP) . Here, the principle lies in in

jecting a current into two neighboring electrodes while leaving the others to carry 

out the voltage sensing. Thus, the feeding and the measuring electrodes shift along 

the boundary to cover all combinations possible, F ig . 1.5. The number of values 

measured in a 16-electrode system reaches 208; however, the count of independent 

voltage values obtainable wi th the A S P is only 104, due to a redundancy of the 

electrode pairs [10, 13, 37]. 

F ig . 1.5: The adjacent stimulation pattern [37]. 

Another current driving option for the closed domain is embodied in the oppo

site stimulation pattern (OSP) . Procedurally and configuration-wise, the technique 

installs the feeding electrodes on the opposite side, using the others to conduct the 

measurement. When the first sequence ends, the current source moves to the next 

pair, and the measurement protocol repeats (Fig. 1.6). The procedure provides 104 

independent voltage values in total [10, 37]. 

In addition to the A S P and the OSP, the means available comprise Sk ip-X pat

terns, where a selected number of electrodes X is skipped between the current-

carrying electrodes. This strategy combines the features of the opposite and the 

adjacent ones, and its best known variant is Skip-4. 
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Fig . 1.6: The opposite stimulation pattern [37]. 

To complement the single-source methods, experts in the field have designed 

multi-source driving, namely, the trigonometric stimulation pattern, which relies on 

multiple independent sources capable of creating a homogeneous current density 

inside the investigated domain. Measurement is performed on all of the electrodes, 

F ig . 1.7; generally, the pattern allows us to obtain 120 independent voltage values in 

a 16-electrode system. The stategy has not found wide application, due to a number 

of independent current sources [10, 37]. 

F ig . 1.7: Trigonometric driving [37]. 

Working with open domains is then facilitated by a different set of techniques, 

as presented below. First of all , let us note that the open domain is a system having 

infinitely approximable boundaries. This property can be demonstrated on geophys

ical measurement, in which the electrodes are pinned to the ground equidistantly in 
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a line or a matr ix but the first and the last electrode do not neighbor on each other. 

Open domain patterns are often exemplified through Wenner driving, a strat

egy that exploits dipole-dipole feeding and measurement, ut i l izing also a gradual 

movement and an increasing distance (value a in F ig . 1.8) between the electrodes to 

secure the possibility of underground mapping [13, 38]. 

<D-i 

a 
+h »+«-

a a 
Fig . 1.8: The Wenner scheme-based arrangement [13]. 

A n alternative approach is embodied in the Schlumberger method. Being a 

modified Wenner pattern, the concept shares some of its predecessor's features, such 

as the dipole-dipole feeding and measurement. Naturally, however, there are also 

major differences, including the fact that Schlumberger driving relies on symmetrical 

and non-equidistant electrode placement (Fig. 1.9). If an equidistant configuration is 

employed, the Schlumberger concept passes into the original Wenner scheme [13, 38]. 

V 

c 
na 

a c 
na 

Fig . 1.9: The Schlumberger approach in use [13]. 

Various feeding and measuring combinations in the Wenner and the Schlum

berger techniques are introduced in the tables below. The letters A and B represent 

the current-carrying electrodes, whereas M and N denote the measuring ones. In 
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Schlumberger driving, the sequence between the first and the twelfth measurements 

remains the same; Tab. 1.2 thus begins with the thirteenth cycle [13]. 

Tab. 1.1: The Wenner measurement sequence. 

Wenner 

Measurement 1 2 3 4 5 6 7 8 9 10 11 12 

A 1 2 3 4 5 6 7 1 2 3 4 1 
B 4 5 6 7 8 9 10 7 8 9 10 10 
M 2 3 4 5 6 7 8 3 4 5 6 4 
N 3 4 5 6 7 8 9 5 6 7 8 7 

Tab. 1.2: The Schlumberger measurement sequence. 

Schlumberger 

Measurement 13 14 15 16 17 18 19 20 21 

A 1 2 3 4 5 1 2 3 1 
B 6 7 8 9 10 8 9 10 10 
M 3 4 5 6 7 4 5 6 5 
N 4 5 6 7 8 5 6 7 6 

Other data acquisition patterns relating to the open and the closed domains are 

discussed in references [13, 38]. 
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1.7 EIDORS library 

The above-characterized numerical tools for E I T image reconstruction are imple

mented within several libraries, among which E I D O R S (Electrical Impedance To

mography and Diffuse Optical Tomography Reconstruction Software) stands out as 

a most common choice. Developed by A n d y Adler, W i l l i a m R. B . Lionheart, Nick 

Polydores, and other specialists, the library is executable in Mat lab or Octave and 

provides forward and inverse solvers [22]. 

The forward task is computed via the F E M , while the inverse problem can be 

resolved through absolute of difference reconstruction. The library contains a variety 

of algorithms, such as the Gauss-Newton, conjugate gradient, G R E I T (the Graz 

Consensus Reconstruction Algor i thm for E I T ) , back projection, and Ka lman filter 

methods, all facilitating dynamic imaging [22, 39]. 

Besides inverse techniques, various regularization options are available, including, 

for instance, the Tikhonov, Laplace, N O S E R , and total variation-based ones. The 

library also offers a function to support domain triangulations and to deliver pre

defined F E M models in biomedicine or industry (Fig. 1.10) [22, 39], where displaying 

the thorax or the head in 3D and circular objects in 2D is desired. E I D O R S coop

erates with several mesh generators, in particular Distmesh (2D), Netgen (2D/3D) , 

and G M S H (3D). 

X[AU] 

Fig . 1.10: Sample FEM-based models wi th inserted electrodes: A 2D and a 3D 

domains generated via Distmesh and Netgen, respectively [39]. 

In the figure above, the left-hand sector shows the mesh of a 2D domain contain

ing 16 equidistantly distributed point electrodes, and the right-hand zone introduces 

a 3D model comprising two levels of rectangular electrodes; the first of these elec

trodes is highlighted in light green. 
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To present further details, F ig . 1.11 visualizes sample F E M meshes. The smooth 

model on the left-hand side comprises electrodes, the ini t ial conductivity, and an 

inhomogeneity, while the coarse one in the right-hand area defines a reconstruction 

scenario where the conductivity distribution was evaluated from the init ial layout. 

F ig . 1.11: The init ial model wi th an inserted inhomogeneity (left) and the recon

structed conductivity distribution (right) [39]. 
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1.8 Domain meshing 

This chapter outlines diverse methods for domain meshing in geophysical applica

tions. To start the discussion, we can point out that most of the domains that serve 

E I T imaging exploit simple 2D models involving mesh refinement around the elec

trodes. Another relevant effect, namely, domain extension 4 , is visualized in F ig . 1.12. 

F ig . 1.12: A n extended 2D mesh of a geophysical domain [13]. 

The extension provides additional elements affected by diffusion; these, however, are 

placed rather far from the investigated area. A s a result, the diffusion has a neg

ligible impact wi thin the examined space. In the given context, it might be useful 

to illustrate the usability of 3D modeling instead of the standard 2D approach; we 

therefore propose the water dam domain in F ig . 1.13 as a convenient example [7]. 

0 10 20 30 40 50 60 70 80 90 100 X [m] 

Fig . 1.13: A simple 3D domain to allow water dam imaging [7]. 

4The domain is extended due to the diffusion accompanying the actual solution. 
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B y contrast, more complex models are employed very rarely in image recon

struction [8, 40]; the reasons lie in the ill-posedness of the inverse problem, requiring 

precise meshes, and the high number of elements, causing a rapid rise in the com

putational cost. A n inaccurate domain mesh can produce an error greater than 

those of the reconstruction-based numerical solution and the related measurement 

uncertainty combined together. 

A l t i t u d e (m) 

1300 1400 1500 1600 1700 1800 

Fig . 1.14: A complex geophysical 3D domain for E R T imaging [40]. 

Generating the meshes displayed in F ig . 1.14 exploits algorithms that enable 

geophysical surface mapping. To supply relevant details, the top image displays an 
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experimentally made, Netgen and GMSH-generated complex 3D mesh comprising 

electrodes, and the bottom one presents a cross-section of the domain on which the 

conductivity is reconstructed. In the latter mesh, the electrodes are represented as 

points to ensure correctly proportional dimensions. Advantageously, sophisticated 

3D models are often converted into 2D ones during the reconstruction to reduce 

both the complexity of the solution and the time cost [8, 40]. 

X [AU] 

150 

Fig . 1.15: A n image reconstruction domain generated wi th E I D O R S [13]. 

Returning to mesh refinement, we can now refer to F ig . 1.15 and the region near 

the surface of the electrodes. The effect observable on the top plane of the object in 

the upper image renders the inversion more precise; however, the surface electrode 

does not suit real-world geophysical survey, where the electrodes are burrowed in 

the ground. In practice, an electrode convenient for the purpose is manufactured 

in a single piece or can be assembled from multiple components, namely, smaller 

vertical electrodes that interfere wi th the domain [7, 13]. 

In E I T imaging research, domain meshing is matched in importance by resolv

ing the Jacobian [13] as an instrument to correct the solution wi th respect to the 

movement of the electrodes. To demonstrate this, the authors of the referenced 

article performed operations such as evaluating artifacts which occur through elec

trode bending. Other interesting subprovinces are, for instance, reconstruction in 

2^D space to reduce the memory requirements [18] or evaluation of inverse image 

artifacts arising from the actual forward task (Fig. 1.16) [41]. 

37 
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Fig . 1.16: The impact of precise inhomogeneity meshing [41]. 

A n ini t ial conductivity distribution discretized v ia a mesh is shown in F ig . 1.16. 

The precision of the domain model comprises also the precision of the inhomogeneity 

shape, as is shown in the top left object. Refining the mesh and specifying the 

border and shape correspondingly to the inhomogeneity enhance the quality of the 

final solution; conversely, each inaccuracy produced by the forward model affects 

the results of the forward and the inverse tasks [41]. 
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1.9 Complete electrode model parameters 

The number of parameters accurately estimable during a reconstruction cycle is 

small, due to the ill-posedness of the inverse problem and the increased computa

tional cost. Thus, the individual parameters can be evaluated through an a priori 

operation, using a forward solver together with a clearly defined physical and numer

ical model. Further, optimizing each domain parameter before launching the image 

reconstruction brings an advantage for the subsequent non-linear inverse ill-posed 

task. The parameters that affect the inverse imaging include boundary deformation, 

innacurate electrode placement, imprecise electrode surface, and contact impedance; 

their character and impact on the reconstructed image are briefly described below. 

The first item on the list, an imperfect boundary shape, influences the potential 

on the electrodes significantly, even more than inhomogeneities. To expose this 

effect, let us have an elliptically or otherwise deformed circular domain, where the 

distortion leads to marked changes in the product of the forward task. In concrete 

terms, the faulty boundary can result in image blurring, incorrect localization, and 

wrong recognition of an inhomogeneity. Viewing the issue from the perspective of 

data acquisition then shows that the boundary deformation causes more imaging 

errors in the single-source patterns (ASP, OSP, and Skip-X) than in trigonometric 

driving [42]. 

Next let us focus on electrode misplacement, another major source of incorrect 

imaging that arises from an inaccurate model. In difference imaging, such flawed 

positioning does not generate artifacts, because the errors are subtracted from two 

identical mesh designs. B y contrast, the misplacement significantly affects the static 

reconstruction, rendering the image very sensitive to this type of modeling fault. 

Placing an electrode imprecisely may introduce an error greater than that produced 

through all uncertainties given by the measurement system. The mismodeling even

tually causes image blurring, wrong recognition of an inhomogeneity, and artifacts, 

i.e., difficulties of which some were already noted above. These spurious effects are 

suppressible by strong regularization; the procedure, however, materializes at the 

cost of losing information about the absolute conductivity value. The impact of 

the misplacement is generally more prominent in the single-source patterns than in 

trigonometric driving [42]. 

Another one of the important domain model parameters rests in an inaccurate 

electrode surface. The actual role of such a surface in the imaging depends on the 

applied current pattern. Single source driving is overall not sensitive to electrode 

mismodeling, as the measuring electrodes conduct a low-level current, stemming 

from the high impedance of the amplifier. In the trigonometric pattern, by com

parison, any small change on the surface has a marked influence upon the imaging, 
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mainly due to the induced ring artifacts. A t this point, we can also stress that the 

surface mismodeling error is inversely proportional to that generated by an incorrect 

contact impedance value [42]. 

Regarding the above-outlined set of adverse factors, the last item to be discussed 

is contact impedance. This effect remains negligible in single-source patterns, thanks 

to the level of the current being kept low by the high impedance of the amplifier; 

the exception lies wi th the feeding pair of electrodes, where the measured potential 

is affected by the contact impedance and, at the same time, the current injected 

from the source. In the trigonometric pattern, the contact impedance exerts a 

serious impact on the measurement, owing to the current-carrying electrodes; such 

a condition then produces image blurring and ring artifacts [42]. 

The domain parameters and current distributions as related to the stimulation 

patterns [43] are summarized in the table below. 

Tab. 1.3: Comparing the stimulation patterns in terms of the individual parameters 

and current injection requirements [42, 43]. 

Parameter Adjacent Opposite Trigonometric 

Sensitivity at domain boundary / / 

Sensitivity in the middle of the domain / / 

Required V C C S output voltage Lower Higher Higher 

Sensitivity to electrode position High High M i d 
Impact of contact impedance Negligible Negligible High 
Sensitivity to domain shape High High M i d 

Sensitivity to electrode surface Low Low High 

Electrode noise interference High High Low 
Uniform current density / 

Signal to noise ratio Low Low High 

Multiple current sources / 

A s is shown, the measurement results reflect diverse effects, of which some are 

suppressible via a convenient choice of the current pattern. 
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1.10 Approaches to solving the domain parameters 

In the real-world environment, most of the individual parameters are unknown; 

some, however, can be directly measured or computed before or during the image 

reconstruction. The concepts currently available for evaluating the domain param

eters are outlined below, through a selective insight into major research subtopics 

and outcomes relevant to this particular segment of the field. 

The compensation of skin contact impedance was studied in article [44], whose 

authors compared the two- and four-electrode methods, designing a three measure

ment technique to carry out the compensation. Generally, the aim of the project lay 

in determining the contact impedance and suppressing its impact v ia a novel con

struction of the electrodes. To reach the desired result, the researchers fabricated 

compound electrodes, in which the feeding and the sensing components operate sep

arately wi thin one compact unit (Fig. 1.17). The electrodes were built according to 

the four-electrode method and then successfully verified. 

v=V c d v = v a b 

Fig . 1.17: The design and equivalent diagrams of a compound (a,b) and a simple 

(c,d) electrodes [44]. 

The effect of unknown contact impedance was further investigated in sources 

[45, 46], wi th a focus on the possibility of estimating the impedance by util izing 

the C E M . The proposed procedure was compared with a measurement involving an 

Oxford Brookes ( O X B A C T ) and a Kuopio impedance ( K I T 4) tomographs. The 

distribution of the conductivity and contact impedance was reconstructed v ia real 

data within five different experiments. The results showed that the two quantities 

rule, inseparable and cannot be estimated without a measurement using a 

uniform conductive medium. 

The unknown boundaries and contact impedance in relation to clinical applica

tions were examined in article [47], which discussed these issues as a potential source 

of systematic errors during the reconstruction. The authors' novel approach allowed 

challenging the inaccuracies numerically to successfully reduce the errors (Fig. 1.18). 
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In procedural terms, interestingly, the original image was based on a measurement, 

but the deformation was only simulated. 

0.2 16.06 0.55 8.23 

Fig . 1.18: Top left: The measurement setup. Top right: Reconstructing the isotropic 

conductivity. Bo t tom left: Reconstructing the isotropic conductivity by using an in

correct model. Bot tom right: The uniformly anisotropic conductivity in a deformed 

domain. The displayed quantity is r\ [AU] [47]. 

A method for compensating variable electrode contact was introduced through a 

Boverman et al. article of 2009 [48]. The researchers developed a hybrid nonlinear-

linear reconstruction algorithm, uti l izing the C E M ; the algorithm exploited the 

Levenberg-Marquardt optimization wi th analytical computation of the Jacobian 

matrix. In terms of overall capabilities, the procedure indicates and significantly 

reduces artifacts caused by poor contact. The functional testing was performed on 

a set of clinical data. 

Another technique to reduce the modeling error associated wi th unknown domain 

boundaries was characterized in reference [49]. Generally, the concept exploits the 

Bayesian approximation error approach and is applicable to problems that arise from 
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coarse discretization or domain truncation. Regarding the experiment, the image 

reconstruction using original and mapped models at unknown domain boundaries 

took 14 to 210 seconds in 2D models (Fig. 1.19) and 65 to 383 seconds in 3D 

meshes. The results showed that the method ensures efficient compensation, and 

this outcome was also verified through an experimental measurement wi th a K I T 4. 

Estimate Forward 
model 

Reconstruction Nn C P U time 

Actual conductivity 
(arbitrary units) 

Lungs = 1.2 
Background = 2 
I leart = 3.6 

M A P - C E M t/j(ff,7) 

M A P - C E M UfM) 

M A P - C E M Uhfaj) 

11.01 4818 210s 

34.52 1596 47 s 

36.62 551 17 s 

M A P - A R M Ug{a^) 

M A P - A E M UhM) 

e 

19,67 1596 45 s 

19.56 551 14 s 

1.2 3.6 

Fig . 1.19: Various M A P estimates wi th simulated data; Aa denotes the relative 

errors, and Nn represents the number of nodes in the mesh 
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A n innovative scheme for optimizing the electrode position based on different 

domain shapes was devised by Darde et al. [50]. The method allowed fine-tuning the 

electrodes, involving the localization and surface problems. To tackle the imperfect 

nature of the electrode information, the authors utilized the Frechet derivative of the 

C E M , incorporating it into the output of the least squares method. The proposed 

modification of the Newton-type reconstruction algorithm facilitated reconstructing 

simultaneously the conductivity distribution and electrode locations. The overall 

feasibility was verified on a two-dimensional domain. 

(a) Model object. (b) Known electrode locations. 

(c) Incorrect fixed electrode locations. (d) Simultaneous retrieval. 

Fig . 1.20: The concurrently reconstructed conductivity distribution and electrode 

location, as compared wi th the fixed placement [50]. 

A fast and simultaneous statistical estimation of the conductivity and electrode 

contact impedances in a 2D disc was formulated within a 2011 article by Demidenko 

et al. [51]. The method exploited Toeplitz matrices to identify bad contact, employ

ing a Toeplitz matrix as a Neumann-to-Dirichlet map in linearizing v ia the gapZ 
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model. The technique performed successfully and was validated via an experimental 

measurement on a homogeneous vessel. After that, the experts applied their con

cept in an estimation of contact impedance in breast, relying on Dartmouth E I T 

hardware. 

Various electrode placement options were studied in a Hyvonen et al. article 

of 2014 [52]. The researchers proposed an optimality criterion derived from the 

Bayesian approach, approximating the posterior density of the conductivity localiza

tion by linearizing the current-to-voltage map of the C E M . The discussed optimiza

tion algorithm was of the steepest descent type. Based on the Frechet derivatives 

of the C E M , the electrode locations were numerically simulated (Fig. 1.21). The 

optimization process was evaluated on a homogeneous conductivity distribution, 

wi th white noise added. The method is suitable for circular and irregular boundary 

shapes. 

F ig . 1.21: The electrode placement computed through the Bayesian approach, uti

l izing Fréchet derivatives for non-circular shapes [52]. 

A further research on imprecise electrode modeling, electrode movement arti

facts, and surface movement reconstruction was detailed in source [13], whose au

thor, A . J . S. Boyle, carried out simulations to compare the compensation proce

dures (naive, minimal , rank-one update perturbation, and Fréchet derivative) via 

E I D O R S library. A s regards the perturbation method, the results were unstable at 

small contact impedances, depending on the perturbation magnitude. The Fréchet 

derivative approach proved inappropriate at such impedances and exhibited a sensi

t iv i ty to coarse meshes. The Fréchet derivative and the rank-one update techniques 

are very fast and computationally effective. In addition to comparing the compen

sation methods, Boyle performed a concurrent reconstruction of the resistivity and 
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surface movement on an open domain and discussed the limitations of the process. 

The applied solution was verified by using real and reproduced data sets. 

A simultaneous reconstruction of time-varying images and contact impedances 

was outlined in article [53], including an algorithm designed via general singular 

value decomposition and a dual-mesh F E M framework to allow real-time recon

struction of the contact impedance and the admitt ivi ty image. This concept led to 

an effective suppression of artifacts due to electrode drift and motion. After being 

evaluated, the method was verified on reconstructed (clinical) data acquired with a 

G E G E N E S I S system. 

Another procedure for optimizing the electrode position was introduced by Smyl 

and L i u [54], who employed an artificial neural network to resolve electrode mis

placement, exploiting E I D O R S . The algorithm was validated by means of noisy 

simulated voltage measurements (Fig. 1.22). 

(a) 

(b) 

Fig . 1.22: Opt imizing the electrode placement wi th a neural network [54]. 

Considering the above research projects and outcomes, we prepared optimiza

tion wi th genetic algorithms to resolve the boundary inaccuracies, ensure a precise 

electrode placement, and compute the ini t ial conductivity before the actual recon

struction. 
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1.11 Algorithm parallelization 

The parallel processing of algorithms embodies a most important field of interest 

wi thin E I T inverse imaging. Various reconstruction algorithms are contained in 

E I D O R S library, which has frequently been used as the reference to compare di

verse results and is characterized in subsection 1.7 hereabove. The library has also 

constituted a basis for creating sets of parallel processing algorithms. One of the 

instruments in this group is SuperSolver, an algorithm comprising preconditions 

and enabling effective computation. A precondition denotes a transformation or 

relates to including special conditions in a given problem to simplify the calcula

tions executed through numerical methods. The increasing mesh complexity and 

rising amounts of elements make users employ a sparse matrix format to reduce 

the memory requirements. In a parallel computation of the Jacobian, P A R D I S O l i 

brary can prove useful, yielding a considerable speed increase via graphical processor 

units [55, 56, 57, 58]. 

A further algorithm to perform parallel E I T image reconstruction is P E I T S (Par

allel E I T Software). This instrument stems from the Dune, a C + + based tool for 

solving partial differential equations; the Dune ensures mesh discretization to exe

cute parallel processing. Besides P E I T S , options such as P E T S c are available for 

the processing; P E T S c , by definition, is a set of algorithm extensions containing 

preconditioning and transformations [59]. 

Domain discretization-based parallel processing consists in dividing the mesh into 

elements, of which each has its own nodes. The elements comprise an item on the 

border and another one on the boundary; this means that, for N elements, N nodes 

and N boundaries are created in the unified diagram, delivering the requirements 

for the parallel processing. Assigning weights to each element guarantees that an 

overall stability of the solution is gradually achieved [57, 59]. 

To curb the computational intensity in E I T image reconstruction, users often rely 

on transformations, such as the transformation into a multilayer network. Here, two 

main options stand out: a geometrical and an algebraic multilayer network. The 

former alternative needs a uniform mesh to produce the solution; this prerequi

site, however, is unavailable in many deformations and irregular shapes. Compared 

to a geometrical network, the algebraic type allows calculation also with irregular 

meshes [57, 59]. 
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1.12 Instrumentation and devices 

This subsection outlines the general structure of an E I T system, introducing the 

main components through the block diagram in F ig . 1.23 and the related explica

tion. Incorporated in the discussion is also an insight into presently available data 

acquisition units that facilitate a fundamental portion of E I T processes [60, 61]. 

F ig . 1.23: The elements forming an E I T data acquisition system. 

A n E I T system is generally constructed around a microcontroller or an F P G A , 

whose central task rests in communicating with a P C , generating an injection sig

nal, and collecting data from an A D C . The feeding segment comprises a D D S and 

a D A C , both usually connected to a voltage to current controlled source ( V C C S ) . 

The V C C S delivers a constant A C current, injecting it to the tomograph electrodes 

through a filter. The output of the A C source is limited by the measured impedance, 

which is expected to correspond to the current amplitude and power supply of the 

analog circuit. The measuring segment contains a high-pass filter, and a low-noise 

programmable-gain amplifier ( P G A ) to offset the large difference between the mea

sured voltages on the paired electrodes. Further, the amplified output is connected 

to an A D C , where the signal is sampled wi th a pre-defined precision and resolution 

to be sent to the microcontroller or F P G A . The feeding and sensing segments are 

interconnected wi th a tomograph v ia a multiplexer. The requirements on the mult i

plexer include, above all , the following factors: (a) low resistance and small parasitic 

capacitance to minimize the amplitude and the phase shift errors, respectively, and 

(b) fast switching [60, 61]. 

Some of the major E I T systems marketed since 2005 are surveyed in Tab. 1.4, 

exposing the most important parameters and information, such as the name of the 

system, number of electrodes, injection current range, source specification (single 

(SFEIT) or multiple-frequency ( M F E I T ) ) , controller type, frequency range, A D C 

resolution, year of completion, and original reference [60, 61]. 
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Tab. 1.4: The most widely favored E I T systems/devices. 

System/device name Electrodes Injection current Source Controller Frequency range A D C Year Ref. 

FIC 16 Max. 30 mA 2ch. 4x DSP 10 kHz - 500 kHz 12 bits 2005 [62] 
U C L H Mk 2.5 64 0.3 mA Single DSP 20 Hz - 1 MHz - 2006 [63] 

K I T 4 80 0 - 5 mA 16 ch. NI -PXI 6713 1 kHz - 120 kHz 14 bits 2008 [64] 
O X B A C T - 5 64 0.4 mA 16 ch. F P G A 1 kHz - 100 kHz 14 bits 2008 [65] 

- 64 - 16 ch. DSP + F P G A 10 kHz - 1 MHz 15 bits 2008 [66] 
Voltage-applied E R T 16 Max. 320 mA Single - 10 kHz - 2010 [67, 68] 

L C T 2 16 - Single Altera M A X 7000S Max. 1 MHz 16 bits 2010 [69] 
Parallel EIT 16 2.5 mA Single F P G A 50 kHz - 2012 [70] 

K H U Mark 2.5 EIT 16 - 4 ch. DSP + F P G A 10 Hz - 500 kHz 12 bits 2014 [71, 72] 
EIT Soc 32 0 .1-1 mApp Single ASIC 10; 50; 100; 200 kHz - 2014 [73] 

EIT D A Q 16 D C / A C Single NI-CompactRIO-9024 - 24 bits 2015 [74] 

- 32 Max. 5 mApp Single NI -PXI 1082e 100 Hz - 10 MHz 14 bits 2015 [75] 
Z-meter IV Max. 256 Max. 50 mA Single DSP 100 Hz - 200 kHz 12 bits 2016 [76] 
Open EIT 32 - Single ADuCM350 80 Hz - 75 kHz 16 bits 2018 [77] 

Portable EIT 16 0.1 mA Single A R M + F P G A 0 - 100 kHz - 2018 [78] 
SWEIT 16 0.1 - 10 mA 5 ch. F P G A 1 kHz - 1.1 MHz - 2020 [79] 

The table contains devices from various application fields, including biomedical engineering; process, industrial, and geophysical tomographies; 
and laboratory experimentation. 



2 Aims and objectives 
The practical section of the thesis contributes to electrical impedance tomography 

in the following research subdomains, problems, and tasks: 

• Reducing the uncertainty of reconstructed conductivity distribution by optimiz

ing the mathematical model 

— Designing a precise physical model 

— Creating relevant parametric F E M models 

— Computing the domain parameters, including shape deformation, mis

placement of the electrodes, and init ial conductivity 

— Analyz ing the sensitivity of the mathematical models with respect to the 

measurement-based inverse imaging 

• Accelerating the data acquisition process relating to unknown conductivities in 

laboratory and field conditions 

— Improving the parameters in view of the existing solutions 

— Collecting the open data to be made accessible to the E I T community 

• Optimizing the parameters of the closed and the open domain models 

— Explor ing innapropriately constructed domain borders in the closed and 

the open domains and examining their impact on the reconstructed con

ductivity distribution 

— Determining the relationship between mesh density, number of elements, 

and computational effort 

— Analyz ing the convergence error according to the selected regularization 

approach 

• Decreasing the image reconstruction time via parallelizing the algorithms 

— Parallelizing the individual image reconstruction steps 
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3 Experiments 
This chapter discusses the contribution and outcomes of the thesis. The first subsec

tion presents an optimization procedure to precisely evaluate the individual domain 

parameters by using E I D O R S . This procedure originates from a laboratory measure

ment on a tomograph, and its purpose is to demonstrate the impact of the individual 

parameters. The subsequent subsection, 3.2, describes the designing and properties 

of a device to facilitate effective data acquisition; this device includes, among other 

components, a low impedance multiplexer and a data acquisition unit. Part 3.3 

outlines the impact of an extended domain (an improved parametric model), evalu

ates the convergence over the mesh element scale, and classifies the normalized error 

convergence of the selected regularization methods. The last portion of chapter 3 

then characterizes the parallelization of the algorithm, delivering also a comparison 

of the C P U and G P U processes. 
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3.1 Optimizing the domain parameters 

The sensitivity of the inverse image in terms of setting up the parameters is discussed 

in subsections 1.9 and 1.10, including the relevant research and available options. 

This chapter (3.1) outlines a novel approach to optimizing the domain parameters; 

in this context, we characterize the relevant numerical modeling and simulation, 

together wi th the laboratory measurement and applied instrumentation. 

Opt imizing the geometry of the model, regularity, and electrode placement fun

damentally affects the image reconstruction [80]. The actual solution then lies in 

specifying and determining the parameters that are critical in terms of the accurate 

results, image artefact reduction, and computational effort. A l l of the items can be 

optimized during the inverse task, albeit at the expense of a higher computational 

intensity; for this reason, we decided to define in advance as many parameters as 

possible, v ia pre-calculation before launching the inverse solver [81]. 

In view of the purpose, the Nelder-Mead algorithm (Fig. 3.1) was employed 

as the procedure to adjust an imprecise domain setup by means of homogeneous 

sensing. The designed approach allowed us to verify the physical and the numerical 

F E M models, delivering a match between the resulting vectors of the simulated and 

the measured voltages. The heuristically based method facilitated solving nonlinear 

optimization problems where the derivative of the function is unknown. In such 

cases, the algorithm computes the relationship between the measured voltages and 

the properties of the domain. The method was implemented by using E I D O R S 

library and the relevant Mat lab optimization toolbox. The procedure had been 

designed to improve the reconstruction accuracy and to reduce the artefacts in 

inverse images [81]. 

Start A simplex of n+l 
points 

Reflection or 
expansion or 
contraction 

(outside/inside) 

Replace one point 

End 

- N o > Shrink 

Replace points 

< 

Fig . 3.1: The Nelder-Mead method [81]. 
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The algorithm enables us to solve the listed parameters via the simplex. The 

simplex is defined as a geometrical shape in an IR™ space with n + 1 points; one of 

these points embodies the origin, and the others specify the direction of the space 

vector. When we have set the point of origin, the other n points are generated 

through several operations (reflection, expansion, and outside/inside contraction). 

Subsequently, the simplex moves and reshapes its geometry wi th respect to the 

performed operation, thus transforming itself; then, the worst vertex of the simplex 

is replaced wi th a better one after each iteration. Compared to the alternatives, this 

algorithm features easy implementability, ensuring a highly effective search for the 

local minimum; the innovative approach therefore finds use especially in adjusting 

the domain parameters [82, 83]. 

Principally, the algorithm relies on transforming the simplex. A t the init ial stage, 

we select the first point, on which an n-dimensional topology is formed. Next, the 

individual vertices, X\ to xn+i, are sorted wi th respect to the optimization function 

gradient, f(xi) being the best point and f(xn+i) its worst counterpart. The iteration 

then results in generating a new point to substitute for the worst item. If the shrink 

operation launches, the substitution of n new points, except for xi, is performed 

and computed as the input to the subsequent iteration [82, 83, 84]. To facilitate the 

optimization, we defined the minimization function of the Nelder-Mead algorithm, 

yielding 

where f(p) is the minimization term of the least squares method, U M represents the 

vector of the voltage measured on the physical model of the laboratory tomograph, 

and U F E M ( P ) stands for the voltage on the electrodes, computed via the forward 

task. The relevant domain is parametrized by p [81]. 

To visualize the implementation of the procedure, we can employ the diagram in 

F ig . 3.2. A s indicated therein, the input comprises one or more selected parameters, 

including: 

• parametric deformation of the domain boundary (in our case, circular/ell iptical 

deformation); 

• evaluation of the init ial conductivity; 

• electrode location on the border of the domain. 

In addition to the input parameter/s, the optimization requires the vector of the 

measured voltages, which depends on the given current pattern; in this particular 

experiment, the sequence is measured on the non-excited electrodes. Exploi t ing the 

preset parameters and the voltage vector, the process initiates Netgen to generate 

the parametric F E M model. This model is computed via the forward task by uti

l izing E I D O R S library [22]. The end solution then yields the voltage vector of the 
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Fig . 3.2: The flowchart of the optimization procedure based on the measured dataset 

and selected parameters [81]. 

simulated numerical model, and the vector is evaluated by means of the optimiza

tion. If the sum of the squares reaches the convergence criterion, the optimization 

stops, and the return value of the function indicates the nearest possible value of the 

parameter preset by the user within the selected tolerance; otherwise, a new F E M 

model is generated and calculated via the forward task [81]. 

Where the procedure handles multiple unknown parameters p simultaneously, 

the computational time becomes longer, and the algorithm may not find a correct 

solution. To validate the functionality of the optimization, we employed a laboratory 

model wi th an inserted homogeneous medium; this step allowed us to verify the 

results physically. In addition to estimating the listed optimization parameters, the 

procedure has a potential to approximate the contact impedance by evaluating the 

sensing on the current-carrying electrodes. The actual impact of the parameters is 

demonstrated on inverse images that include inhomogeneities [81]. 

In the experiment, we used a laboratory tomograph and a corresponding numer

ical model (Fig. 3.3). The height and the diameter of the tomograph equaled 35.5 

and 19 cm, respectively. The physical model also contained electrodes equidistantly 

distributed along its perimeter. The individual levels were located at 13.6, 21.6, 

and 29.6 cm above the bottom plane of the vessel; each stage involved 16 electrodes 

(stainless steel bolts) wi th the diameter of 9 m m and the height of 6 m m [81]. 
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Fig . 3.3: The tomograph and the related Netgen-based numerical model [81]. 

To demonstrate the impact of the individual parameters on the inverse imaging, 

we set up an 8-electrode configuration. For the purposes of the optimization, we 

then prepared a corresponding, FEM-based model containing approximately 15,000 

elements. The unused electrodes allowed us to form an irregular placement pattern 

on the domain boundary [81]. 

Initial conductivity 

A n optimal ini t ial conductivity value to facilitate the image reconstruction con

stitutes a factor that potentially simplifies the convergency of the inverse solution 

and reduces the computational intensity. We employed potable water as the medium 

to optimize the ini t ial conductivity. The input data were embodied in a vector of 

voltages measured via two current patterns (adjacent and opposite) and in two to

mograph shapes (a regular circle and an elliptic deformation of approximately 2 %). 

The init ial model to enable the optimization was designed with respect to the real 

dimensions, namely, the height and the regular diameter of 0.316 m (water level) 

and 0.19 m, respectively; the axis diameters of X = 0.186 m and Y = 0.194 m, 

capturing the elliptic deformation; the electrode placement level of 0.296 m above 

the bottom; and the contact impedance of 10 mQ, equaling the E I D O R S default 

value. The sensing on the non-excited electrodes was accompanied by a small cur-
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rent and thus a low voltage drop, leading to the conclusion that the impact of the 

contact impedance is, in general terms, almost negligible. The injected current was 

2.002 m A at the frequency of 1,007 Hz. To start the optimization, we employed a 

T D S (total dissolved solids) conductometer, obtaining the ini t ial conductivity value 

of 47.2 m S / m . The setup to acquire the data is shown in F ig . 3.4 [81]. 

F ig . 3.4: The data acquisition setup [81]. 

The overall information is completed wi th the images below, which indicate a) the 

minimization function; b) the course of the conductivity value. 

2 3 4 5 

Iteration 

(a) 

2 3 4 5 

Iteration 

(b) 

F ig . 3.5: The variation of the (a) minimization function, and (b) conductivity value 

during the optimization [81]. 
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The variations of the minimization function and the conductivity value in an 

iteration are visualized in F ig . 3.5, images a) and b), respectively; the conductivity 

estimation converges very close to the real value in the 3 r d iteration. In this state, 

the optimization generated new simplexes, which did not outperform the best result, 

and the algorithm stopped the process. The outcomes of the ini t ial conductivity 

optimization, related to the stimulation patterns and domain shapes, are presented 

in the table below [81]. 

Tab. 3.1: Comparing the stimulation patterns in terms of the actual parameters and 

current injection values [81]. 

Current pattern Domain shape Conductivity [mS/m] 

Adjacent Circular 54.4 
Adjacent Elliptic 53.7 
Opposite Circular 54.9 
Opposite Elliptic 54.2 

I = 2.002 mA; / = 1,007 Hz. 

A s indicated in Tab. 3.1, the optimization delivers the ini t ial conductivity values 

associated with the current patterns and domain shapes. The variation of the val

ues can be caused by the measurement uncertainty, noise, or limitations stemming 

from the F E M model deformation. The computational intensity of the optimization 

reached 7 s at the maximum, while the generation of the F E M model took 3.5 s [81]. 

Shape deformation 

A s already emphasized in subsection 1.9, the shape deformation influences the 

quality of the inverse imaging in all of the current patterns. To resolve this problem, 

we redesigned and extended the applied procedure; in addition, we prepared the 

same setup as that employed in optimizing the conductivity. The procedure enabled 

us to evaluate the shape deformation in the diameters X , Y . W i t h i n the ini t ial step 

to run the optimization, we assigned the value of 19 cm (in each axis), thus starting 

wi th a circular shape. The variation of the diameters during the process is displayed 

in F ig . 3.6, together wi th the inhomogeneous reconstruction setup [81]. 
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(a) (b) 

F ig . 3.6: (a) The variation of the diameters on the axes X and Y , relating to the 

O S P in the non-optimized (solid lines) and optimized (dotted lines) scenarios, and 

(b) the tomograph containing water and an inserted aluminum pipe [81]. 

In F ig . 3.6a, we characterize two different optimization scenarios: A non-opti

mized model, where the algorithm has found the diameters of the elliptic deforma

tion (solid lines) of the circle, and an optimization of the original, or true, setup 

(dotted lines) to demonstrate the convergence ability and to specify the error of 

the algorithm. Based on the outputs of the homogeneous measurement, which were 

compared with the resulting vector of simulated voltages produced by the forward 

task, we calculated the shape deformation. The estimates of the optimized axis 

diameter equaled X = 18.62 cm, Y = 19.35 cm in the adjacent and X = 18.66 cm, 

Y = 19.35 cm in the opposite driving options. The values are very close to the 

real dimensions [18.6; 19.4]. The outcomes delivered by the opposite pattern show 

that the algorithm exhibits very good robustness. The error of the diameter values 

attained 0.1 %, corresponding to 0.2 m m on the absolute scale. The inaccuracy of 

the results may have arisen from insufficient precision in measuring the diameter 

or the voltage uncertainty. The deformation took between 205 and 250 s to opti

mize. The resulting diameters were employed as the inputs to perform the image 

reconstruction by means of a laboratory measurement of the potable water wi th an 

inserted aluminium object (Fig. 3.6b) [81]. 

To demonstrate the impact of an inaccurate domain boundary, we reconstructed 

the invalid and the true models, applying the adjacent and the opposite patterns 

(Fig. 3.7). The init ial conductivity had been selected from within Tab. 3.1, wi th the 

regularization parameter set to 0.001 [81]. 
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(c) (d) 

F ig . 3.7: The conductivity distribution in the water wi th an inserted aluminum 

object, obtained through the A S P (top) and the O S P (bottom). The tomograph's 

axial dimensions equal X = 18.6 cm and Y = 19.4 cm; (a,c) wrongly selected circular 

shapes, and (b,d) the true model of the elliptic domain [81]. 

The reconstructed images show the effect of the original domain model, where 

the imprecise domain boundary led to an incorrect localization of the inhomogeneity 

(Fig. 3.7a). B y comparison, the optimized model (Fig. 3.7b) localized the aluminium 

object better but still did not deliver a flawless result. This problem could be elim

inated by a more parametrizable model, namely, one conveniently deformable in 

multiple dimensions and shapes [81]. 

The conductivity images obtained via opposite feeding and sensing provided a 

higher sensitivity to the shape deformation. The imprecise boundary diameters 

(Fig. 3.7c) caused the inhomogeneous areas to rotate, unlike the conditions in the 

optimized model (Fig. 3.7d). Further, the inverse image exposed two higher con-

59 



ductivity regions, and these corresponded to the original object and artefact. The 

mirroring of the object had been induced by the selected sensing configuration, 

wi th each of the paired electrodes measured twice to yield the same value at dif

ferent polarities. The same effect had been recognized and described in references 

[85, 86]. The object mirroring is preventable via either an additional measurement 

to complement the opposite sensing pattern or another measuring configuration [81]. 

Misplaced electrodes 

Together wi th the boundary deformation, misplaced electrodes embody a major 

source of artefacts and inverse imaging errors in our experiment. To analyze the 

problem, we set the tomograph in such a manner that the 6 t h electrode was shifted 

one step nearer the 7 t h one (Fig. 3.8a). Before running the optimization, we decided 

to utilize both homogeneous water to find the position of the electrode and a het

erogeneous medium to demonstrate the impact exerted by the misplacement on the 

reconstructed image (Fig. 3.8b). The experiment was conducted identically to that 

used in optimizing the ini t ial conductivity [81]. 

(b) the circular tomograph filled wi th water, comprising an aluminum object [81]. 

The variation of the minimization function error value over the individual opti

mization iterations and the changing position of the electrode related to the function 

count obtained via the simplex are shown in F ig . 3.9a, 3.9b [81]. 
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Fig . 3.9: Opt imizing the electrode misplacement: (a) the error associated wi th the 

minimization function, varying wi th iteration; (b) the function count [81]. 

A s regards the graphical representation above, F ig . 3.9a characterizes the vari

ation of the optimization error over multiple iterations wi th respect to the location 

of the electrode and shows that the true electrode position is almost found in the 

3 r d iteration. F ig . 3.9b then visualizes the electrode shift, correspondingly to the 

changing value of the angle on the domain perimeter during the count of the opti

mization operations (Each optimizing iteration contains several steps, as explained 

at the beginning of this subchapter). The electrode moves along the domain bound

ary within the range of 225° - 260° and converges to 247.6°. The discussed procedure 

took between 90 and 110 s. The results of optimizing the electrode positions via 

adjacent driving are presented in F ig . 3.10 [81]. 

The images in the figure offer a top view of the domain models, featuring both 

the circular and the elliptic shapes. Each of the models was solved successfully, 

wi th the 6 t h electrode shifted in the same manner as in the original model (Fig. 3.8), 

where the misplaced electrode is highlighted with a yellow number. In addition to 

optimizing the position of the electrode through the adjacent pattern, we performed 

the experiment also by means of opposite sensing; the outcomes relevant to this 

latter option are shown in F ig . 3.11 [81]. 
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(a) (b) 

F ig . 3.10: A top view of the optimized domain meshes, focusing on the electrode 

shift in the (a) circular and (b) elliptic shapes [81]. 

-0.05 0 0.05 X[m] -0.05 0 0.05 X [m] 

(a) (b) 

F ig . 3.11: A top view of the opposite sensing-optimized models, focusing on the 

electrode misplacement. The images display a duality of the solution, wi th either 

(a) the 2 n d or (b) the 6 t h electrode shifted [81]. 

In the referenced figure, the drawings represent two comparable optimization 

results, which, although equal in terms of the vector of measured voltages, differ 

in correctness. The mesh on the left-hand side (Fig. 3.11a) contains the 2 n d elec

trode evaluated at the angle of 68° wi th respect to the 1 s t electrode. The other 

mesh (Fig. 3.11b), by comparison, shifts the 6 t h electrode to 248°, the ini t ial value 
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being 225°. Bo th of the F E M models are verified via the forward task, and the sim

ulated voltages exhibit almost identical values. The detected duality meant that the 

optimization procedure had not yielded an acceptable result. Eventually, we found 

opposite sensing inconvenient for evaluating the electrode misplacement; the impact 

of such imprecise electrode positioning was thus reconstructed only wi th adjacent 

driving (Fig. 3.12) [81]. 

a [S/m] (T [S/m] 

- 0 . 0 5 0 0 . 05 X [m] - 0 . 0 5 0 0 .05 X[m] 

(a) (b) 

F ig . 3.12: The reconstructed conductivity distributions in the (a) inaccurate regular 

electrode setup and (b) correct placement of the 6 t h electrode [81]. 

A n incorrect placement of the electrode is presented in F ig . 3.12a, together 

wi th the resulting inverse image. The reconstructed inhomogeneity was recognized 

wrongly, near the boundary between the 6 t h and the 7 t h electrodes. Compared to the 

imprecise model, the correct domain (Fig. 3.12b) includes the conductivity at the 

presumed position, localizing it satisfactorily. The randomly distorted conductivity 

areas in the reconstructed images could arise from an insufficient image resolution, 

l imited by the number of active electrodes [81]. 
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Error evaluation 

To evaluate in the reconstructed images the conductivity distributions with re

spect to the original setup, we sampled the images at the resolution of 256 x 256 

pixels. The accuracy was calculated v ia the relative root mean square error, by 

using the following equation [87]: 

RRMSE(a) 
\ £ £ i ( W 0 ) 2 

where RRMSE(a) denotes the total error in the sampled inverse image; px char

acterizes the number of pixels; o~(i) stands for the reconstructed conductivity in a 

pixel; and aOTig(i) is the original conductivity of the F E M model, corresponding to 

the real measurement setup [81]. 

The area of the inhomogeneous object was evaluated through comparing the 

F E M model that represented the setup of the experiment with the one expressing 

the reconstructed conductivity distribution. To estimate the space of the object, 

we preset the experimentally established threshold to 66 % of the maximum con

ductivity, thus obtaining the mask to effectively separate the background from the 

inhomogeneity. This allowed us to compare the individual inhomogeneity areas, 

calculated v ia the equation 

TAP _ Td=]X^nJj^ /r* r*\ 

Ei=l(°"Fwd^)) 

where IARq66 is the area ratio between the original and the reconstructed conduc

t ivi ty regions of the inhomogeneity in the cross-sectional image, ainv(i) denotes the 

conductivity in the reconstructed image, and o"Fwd(0 represents the conductivity 

distribution in the F E M model that corresponds to the real laboratory setup [81]. 

The above equations enabled us to classify the actual impacts on the domain 

shape optimization process as regards the computed conductivity distribution. The 

outcome of the procedure is summarized in Tab. 3.2 [81]. 

Tab. 3.2: The image errors in the boundary deformations [81]. 

Current pattern Domain shape RRMSE{a) [%} IARom [-] 

Adjacent Circular 34.59 0.658/2.542 

Adjacent Elliptic 28.43 0.768/1.905 

Opposite Circular 51.99 0.274/5.947 

Opposite Elliptic 40.41 0.763/3.504 

The measurement was performed on the elliptically deformed domain. 

The RRMSE(a) values show decreasing error rates, wi th a drop of 6.16 % and 

11.58 % in adjacent and opposite driving, respectively; in the former, the decrease 

64 



stemmed from a more accurate position of the inhomogeneity, while in the latter we 

had excluded the mirrored object as a systematic error due to the method and sup

pressed the deformation-induced rotation of the inverse image. The adjacent driving 

option brought an enhanced inhomogeneity area ratio of the complete domain model 

and a better match of the original object position, the relevant improvement rates 

being 0.637 and 0.11, respectively. The other technique then produced a (significant) 

drop by 2.443 in the complete image, with the inhomogeneity, by contrast, rising 

from 0.274 to 0.763. Based on these results, we can then conclude that the opposite 

feeding and sensing approach was more sensitive to the shape deformations. The 

outcomes relating to the impact of an incorrectly placed electrode are outlined in 

Tab. 3.3 [81]. 

Tab. 3.3: The image errors and electrode positioning [81]. 

Electrode position RRMSE(a) [%} JARo.66 [-] 

Equidistant 
6 t h shifted 

52.73 
40.04 

0.000/1.483 
0.667/3.124 

The measurement was performed by applying adjacent driving in the elliptically deformed 
domain, utilizing the non-equidistant electrode setup (shifted 6 t h electrode). 

In the given context, the table also presents the values characterizing the overall 

error of the inverse image (Fig. 3.12). The optimized model reduced the relative 

error by 12.69 %, while the inhomogeneity area ratio of the whole domain increased 

by 1.641, and the presumed space of the object rose from 0 to 0.667 in the shifted 

6 t h electrode. Regarding the equidistant setup, the inhomogeneity did not match 

wi th the correct position [81]. 
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Summary 

The init ial conductivity was optimized wi th potable water, yielding between 53.7 

and 54.9 m S / m in dependence on the actual combination of the current pattern and 

domain deformation (Tab. 3.1). The task converged very fast (Fig. 3.5), and the 

evaluation of the procedure took 7 s at the maximum [81]. 

In addition, the optimizing process evaluated the boundary deformation of the 

circular domain in terms of the variation of the diameter on the axes X and Y . To 

verify the designed procedure with real data, we had employed a clamp in the labo

ratory model to obtain a deformation of 2 %. The estimated modified diameters of 

the domain shapes equaled X = 18.62 cm and Y = 19.35 cm in the adjacent driving 

option and X = 18.66 cm and Y = 19.35 cm in the opposite pattern. Considering 

the real axial dimensions {18.6; 19.4} of the tomograph, the optimization delivered 

acceptable results. Evaluating the boundary deformation took 205 to 250 s, wi th 

a significant portion of the computational effort allocated to the generation of the 

meshes. The impact of the imprecise boundary modeling was demonstrated via 

reconstructing the image from the data measured on the elliptical domain. We per

formed the experiment on the accurate and the incorrect circular models (Fig. 3.7). 

The results show an imperfect localization of the inhomogeneity compared to its 

original position. In both of the driving techniques, the optimized model reduced 

the overall conductivity distribution errors by 6.16 % and 11.58 %. In the expected 

region of the object, the inhomogeneity area ratio defined through equation 3.3 in

creased from 0.658 to 0.768 (11.0 %) in the adjacent driving option and rose from 

0.274 to 0.763 (48.9 %) in the opposite pattern, the latter change being especially 

remarkable. The area of the object in the space of the tomograph was also eval

uated by applying the inhomogeneity area ratio, wi th the inhomogeneity volume 

in the inverse image diminishing from 2.542 to 1.905 in the adjacent driving ap

proach and falling from 5.947 to 3.504 in the opposite pattern. The outcome of the 

optimization then lay in that the opposite option was considerably more sensitive 

to the shape deformations (Tab. 3.2). We also demonstrated the mirroring effect 

of opposite sensing to propose a solution which requires either complementing the 

measurement or selecting another sensing strategy [81]. 

The optimization procedure also facilitated evaluating the electrode misplace

ment, namely, another important source of errors in the inverse image. For this 

reason, we prepared the model containing the shifted 6 t h electrode. Observing the 

design of the experiment, we measured on an accurate (shifted) and an incorrect 

(regular, or equidistant) electrode setup of the model, v ia both adjacent and op

posite driving. The optimization had to be supported by the dataset of the ho

mogeneous conductivity measurement; taking into account the means available, the 

adjacent pattern proved convenient because, unlike opposite sensing, it does not de-
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liver unacceptable duality. In this context, the duality means that the two different 

optimization products (the shifted 2 n d and 6 t h electrodes) provide identical voltage 

values, which are interchangeable in the forward task (Fig. 3.11). Based on such an 

outcome, we decided to exclude the opposite pattern from the optimization of the 

electrode misplacement. We demonstrated the impact of an inaccurate electrode 

location via reconstructing the conductivity distribution wi th the adjacent pattern. 

The relationship between the recognition of the object and changes in the position 

of the electrode is exposed in the inverse images above. The relative root mean 

square error dropped by 12.69 %, and the inhomogeneity localization improved sig

nificantly, from a zero match to the similarity of 0.667 (in Tab. 3.3). The time 

required to compute the electrode misplacement ranged between 90 and 110 s [81]. 

The entire procedure was implemented by using the Mat lab optimization tool

box, E I D O R S tool, and Netgen mesh generator; the last of these softwares allowed 

us to generate the three-dimensional models. The designed scheme is suitable for 

adjusting the unknown parameters of the real laboratory model to create a cor

responding numerical model for a precise image reconstruction. A t present, the 

optimization solves only one parameter per run, this being one of the deficiencies; 

the other l imitat ion consists in that the computational intensity grows wi th an in

creasing number of the degrees of freedom, which are computed simultaneously. The 

optimization concept is universal, bringing a potential to include another parameter, 

such as contact impedance; this capability is important in analyzing the current-

carrying electrodes and multisource strategies. The procedure is independent of the 

applied mesh generator and can utilize multiparameter models compatible wi th the 

E I D O R S tool [81]. 

Hardware and software 

The experiment exploited the following devices and software [81]: 

. C P U : Intel Core i3-6098P (3.6 GHz) ; 16 G B R A M ; 

operating system: Windows 10 (x64); 

. Mat lab R2016b (x64); E I D O R S version 3.9; 

• Keysight 34450A multimeter; Agilent D S O - X 3014A oscilloscope; 

• P L I E I T system version 0.1. 
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3.2 Hardware for the tomographic measurement 

This section presents the hardware design options relating to the experimental E I T 

measurement. More concretely in this respect, the focus is on a current source, a 

multiplexer, and a data acquisition unit; the devices (with the sole exception of the 

unit) then facilitated both the experimental imaging and the optimization process. 

Specifications of the measurement system 

To perform an appropriate tomographic measurement, we assembled and set 

up convenient hardware equipment. Based on the information outlined above in 

section 1.12, a prototype Precise Low-Impedance (PLI) system [81, 88] was designed, 

wi th a structure as follows: 

EIT 

Fig . 3.13: The P L I E I T system [88]. 

A s indicated in F ig . 3.13, the electrodes are connected to the multiplexer, which 

also wires them to the current source and the differential amplifiers as desired. In 

our case, the source was voltage-controlled and completed wi th a grounded shunt 

to measure the voltage gap by using another differential amplifier. The voltage gap 

on the shunt enabled us to control the A C current amplitude and to evaluate the 

frequency and phase shift of the signals. The other amplifier monitored the voltage 

on the electrodes of the tomograph [88]. 

Additionally, in the scheme being discussed, bandpass filters are installed be

hind the amplifiers to prevent voltage drifts and instability; the filters also suppress 

aliasing. The filtered signal passes to an A D C . The feeding part, by extension, com

prises a low-pass filter and a D A C . The circuit is controlled by a microprocessor 
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including a digital generator (DDS) to precisely produce a harmonic signal to feed 

the tomograph [88]. 

The actual hardware is made up of three main items: 

• a current source; 

• a multiplexer; 

• a measuring unit. 

A s regards the parameters of the components, the most important specifications are 

summarized in the table below. 

Tab. 3.4: The ideal parameters of the equipment. 

Parameter Range 

Frequency 
Phase shift resolution 

Measured voltage range 
Switching voltage 

Multiplexer on-state resistance 
Switching points per plane 

Injection current 

10 Hz - 400 kHz 
1° 

1 mV - 10 V * 
± 30 V 
< io n 

16* 
0 - 3 mApp 

The symbol * indicates parameters in which further expansion is desirable. 

Based on the above knowledge, we specified the limit values of the individual 

desired parameters (Tab. 3.4). The current source was to be designed to operate at 

the frequency range between 10 Hz and 400 kHz , exhibiting the peak to peak value 

of 3 mApp for the load of 20 k f i ; the corresponding voltage supply was supposed to 

equal ± 30 V . Presumably, these parameters should enable us to measure soils in 

the laboratory tomograph. Further, from the overall perspective, the requirements 

on the multiplexer involve 16 electrodes per plane; easy extendability; very low on-

state resistance (smaller than 10 Q); switching voltage of ± 30 V at the minimum; 

and suitable cost. A low on-state resistance decreases the load of the current source, 

which could otherwise affect the measurement of the low impedance medium. The 

measuring unit is expected to operate at frequencies up to 400 kHz and voltages of 

1 m V to 10 V ; such parameters should allow the device to evaluate, at a precision of 

1°, the phase shift of the harmonic signal between the current supply and the voltage 

sensing electrodes. A l l of the components ought to be selected wi th respect to easy 

assembly and repairs in a flat package. The measuring system wi l l be connectable 

to standard laboratory instruments, such as a multimeter or an oscilloscope, and 

wi l l also facilitate data acquisition by the assembled processor. 
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Current source 

The first major requirement on the current source(s) is a high precision and 

stability over the frequency range. A n ideal E I T current source should provide an 

infinite output impedance and be frequency-independent. Such prerequisites, how

ever, are unrealistic due to the frequency-dependent characteristics of the individual 

components, stray capacitances, wide bandwidth, tolerance, and other aspects. The 

demands placed on a current source differ in terms of the target application: In vari

ous traditional industrial sectors, for example, the goal is to process and monitor the 

material, while fields such as biomedicine involve also additional safety issues [89]. 

F ig . 3.14: The dual op-amp Howland current source. 

For the soil monitoring purposes, we employed a Howland current pump includ

ing two amplifiers (Fig. 3.14). This circuit provides many advantages: Compared to 

the basic Howland current source, the dual op-amp pump ensures a low power con

sumption and a higher output swing. Moreover, when confronted wi th an improved 

Howland current pump, the selected circuit delivers a higher output impedance and a 

wider frequency range. Considering the amplifiers, one operates as a basic Howland 

source, and the other is connected as a voltage follower [89]. The correct functioning 

of this voltage-to-current converter is necessary to ensure the following resistor ratio 

equality condition: 

f = J T ( 3 ' 4 ) 

Here, the output current is given by the difference of the voltage between the inputs 

and resistor R3, v ia the relationship 
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IOVT = (3.5) 

The above equation shows that the output current amplitude can be set by changing 

the value of resistor R3 or applying a different amplitude of input voltage £/TN-

This circuit enables us to increase the output current amplitude in the lower load 

impedances at the same input voltage. A brief comparison of the amplifiers is 

outlined in Tab. 3.5. 

Tab. 3.5: Some of the amplifiers for the dual op-amp Howland current source. 

Name C M R R Bandwidth Slew rate Supply max / O U T / L O A D * 

ADA-4700 108 dB 3.5 MHz 20 V/us ± 5 - 50 V 30 mA 2.5 mA 
LT6018 124 dB 15 MHz 30 V/us ± 3 - 15 V 50 mA 0.9 mA 
LM7301 88 dB 4 MHz 1.25 V/us ± 2.2 - 16 V 20 mA 1.0 mA 
OP285 106 dB 9 MHz 22 V/us ± 4.5 - 22 V 30 mA 1.5 mA 

^LOAD* specifies the estimated currents up to the load of 20 kCt. 

The presented table characterizes the ADA-4700 amplifier as the best candi

date in terms of the specified requirements. The selected amplifier provides a good 

C M R R , slew rate, and output current; thus, despite having the lowest bandwidth, 

the ADA-4700 appears to be fully sufficient for our purposes. The power supply 

exhibits a relatively high range ( ± 5 - 50 V ) , allowing us to increase the current 

injected into the high load impedance. 

Multiplexer 

The multiplexer constitutes another major component of the analog design to 

facilitate data acquisition in E I T . The requirements include, above all , switchability 

between the 16 electrodes at ± 30 V , and the smallest possible on-state resistance. 

A brief overview of currently marketed multiplexers is proposed in Tab. 3.9 [88, 90]. 

Tab. 3.6: Selected multiplexers and their parameters. 

Name Configuration Resistance Voltage supply Package 

ADG1406 16:1 9.5 n ± 5 - 15 V T S S O P / L F C S P 
ADG706 16:1 2.5 n ± 2.5 V TSSOP 
MUX506 16:1 125 n ± 5 - 18 V TSSOP/SOIC 
CD4067B 16:1 125 0 ± 2.5 - 10 V TSSOP/SOIC 

A s is shown in the table, all of the multiplexers have narrow operating ranges, 

l imited by the voltage supply. For this reason, we decided to create a discrete 

multiplexer from single, galvanically separated switches. We applied a T L P 3 5 4 5 A 
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photorelay, which enabled us to switch 60 V and also provided a very low on-state 

resistance (40 mQ) in the DIP-6 package. The switching logic was controlled by an 

H V 5 5 3 0 P G - G shift register (32 channels at 12 V ) . We opted for this component to 

yield the possibility of easily extending the multiplexer via chain connection. The 

configuration of the switching photorelays is represented in F ig . 3.15 [88, 90]. 

1 

o <> \<!> ľ l 

|0| 
Fig . 3.15: The photorelay switching of the current source and the voltmeter [88] 

The actual design is presented in F ig . 3.15, where Z12 stands for the impedance 

of the medium in the tomograph between two electrodes (1 and 2). To connect the 

current source and a voltmeter or an A D C , eight analog switches are required; the 

complete 16-electrode multiplexer thus contains 128 photorelays. 

Measuring unit 

Another two operations to be executed by the data acquisition unit consist in the 

actual measurement and the data conversion. A n ideal measuring unit is expected 

to contain a programmable gain amplifier, an A D C , and a hysteresis comparator; 

all of the components should be galvanically separated from the controller. The 

requirements placed on the design were specified above, Tab. 3.4. To ensure the 

desired parameters, Tabs. 3.7, 3.8, and 3.9 summarize the most convenient options 

available in designing the individual parts. 

Tab. 3.7: A selection of suitable amplifiers. 

Name C M R R Bandwidth Slew rate Supply Gain Package 

AD8253 100 dB 550 kHz* 12 V/us* ± 5 - 15 V 1 - 1,000 M S O P 
AD8221 80 dB 100 kHz* 2 V/us* ± 2.3 - 18 V 1 - 1,000 M S O P 
AD8231 80 dB 7 MHzt 1.1 V/ust ± 1.5 - 2.5 V 1 - 128 L F C S P 
AD620 100 dB 120 kHz* 1.2 V/us* ± 2.3 - 18 V 1 - 10,000 DIP 

* Gain = 100; * Gain = 128. 
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A s regards the amplifier that best satisfied our needs, we selected the AD8253, 

which generally provides a good common-mode rejection ratio (100 dB) , together 

wi th a sufficient bandwidth (550 kHz) and slew rate (12 V / u s ) at a hundred-fold 

amplification of the input signal. The integrated circuit can be supplied wi th a max

imum of ± 15 V and features variable gain, from 1 to 1,000 by decade; furthermore, 

the M S O P package facilitates simple assembly and reworking of the component. 

Compared to the other products, the AD8253 appears to embody the truly optimal 

choice. 

Tab. 3.8: A selection of suitable A D C s . 

Name Bandwidth Sampling rate [/IN range Resolution Package 

AD7322 22 MHz 1 MSPS ± 10 V 13 bit TSSOP 
AD7825 10 MHz 2 MSPS 0 - 2.5 V p p 8 bit TSSOP 
AD7922 8.5 MHz 1 MSPS 0 - 5.25 V 12 bit M S O P 

AD7091R-2 1.5 MHz 1 MSPS 0 - 5.25 V 12 bit L F C S P 
ADS8920B 23 MHz 1 MSPS ± 5 V 16 bit V Q F N 

ADS8861 30 MHz 1 MSPS ± 5 V 16 bit VSSOP 

The list in Tab. 3.8 comprises A D C s that conveniently satisfy the design criteria. 

To equip the measuring unit, we chose the AD7322: This model has the widest input 

voltage range, compatible wi th the output of the amplifier; delivers a good sampling 

rate (1 M S P S ) with respect to the frequency range requirements (400 kHz); ensures 

a sufficient resolution to evaluate the voltage on the electrodes; and operates wi thin 

an ample bandwidth. The other options, by comparison, offer lower input voltage 

ranges or no-lead packages (and such packages are not easily reworkable). 

Tab. 3.9: A selection of convenient comparators. 

Name [/IN range [/IN offset Time response Package 

LM211 30 V 0.7 mV 115/165 ns SOIC-8 
LM397 30 V 2 mV 900/940 ns SOT-23 
LM339 30 V 2 mV 1300/300 ns SOIC, SSOP 
LM393 36 V 1 mV 1300 ns SOIC, D S B G A 

In Tab. 3.9, we evaluate applicable comparators to measure the phase shift in 

harmonic signals between the feeding and the sensing branches (wings). The most 

advantageous parameters, i.e., the lowest input voltage offset and the shortest time 

response, are guaranteed by the LM211 as the item of our choice. 

The figure below characterizes the design of the measuring unit including the 

above-described integrated circuits. In the diagram, only one sensing wing is visu

alized because the other has the same structure. 
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MCU 

Fig . 3.16: The measuring branch containing a programmable gain amplifier, a filter, 

an A D C , and a hysteresis comparator. 

The measuring unit relies on two supply values: 12 V to feed the P G A , A D C , 

and hysteresis comparator, and 5 V for the comparator reference. The inputs of 

the amplifier are directly connected to the outputs of the multiplexer; between the 

amplifier inputs, a T V S diode is placed to prevent damage to the circuit. The in

dicated resistor R4 forms the D C feedback of the amplifier inputs with respect to 

the power supply. Behind the amplifier, we inserted an R C filter as an aliasing filter 

having a bandwidth adjusted to aproximately 440 kHz . The output of the filter is 

connected in parallel to the A D C and the hysteresis comparator. The comparator 

facilitates detecting the frequency, and also the phase shift of the signal (however, 

the device has to cooperate wi th another, identical circuitry to monitor the injected 

current). Of the remaining resistors, R2 and R3 enable us to set the value of the 

voltage hysteresis to avoid noise-induced oscillations. Based on evaluating the fre

quency and using the A D C , the applied M C U determines precisely the time to read 

the signal at the amplitude. The A D C then measures the amplitude multiple times, 

and the final voltage value is specified as the mean of the individual measurements 

in the pre-defined time frame. The communication between the P G A , A D C , and 

comparator is expected to be galvanically separated by IS07741 digital isolators. 

The microcontroller (STM32F103RCT6) handles the gain of the instrumentation 

amplifier, reads the digitized information of the voltage value, and evaluates the fre

quency and the zero cross time to compute the phase shift of the signals. The power 

supply is supposed to exploit isolated D C / D C converters to avoid ground loops, wi th 

an inserted L C filter on the output to suppress ripple and noise; alternatively, the 
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device can be battery-powered. The circuit design is expected to include test points 

to interconnect wi th laboratory devices such as a voltmeter or an oscilloscope, the 

purpose being functionality verification. 

In general terms, the measuring unit wi l l enable us to evaluate the required signal 

conditions, which are described at the beginning of this section. The combination 

of P G A gain and A D C resolution wi l l facilitate processing low-level signals (1 mV) , 

together wi th their amplification (1 V ) and digitizing at the step of 0.24 m V (corre

spondingly to 12-bit conversion). The phase shift of the signals is to be evaluated at 

a precision of 1°. The only drawback of the design rests in that the voltage reading 

uncertainty depends also on the quality of the frequency evaluation given by the 

hysteresis comparator and the integrated microcontroller counter. 

Results 

The device is stil l being developed at present; thus, this section discusses only a 

partially assembled prototype of the Precise Low-Impedance E I T system ( P L I E I T , 

F ig . 3.17). 

F ig . 3.17: The P L I E I T prototype [88]. 

A s outlined in the previous chapter, the prototype contains a low impedance 

multiplexer; a shunt resistance; a microcontroller that manages pairs of switching 

electrodes through commands generated by a Lab View-based software; and an ex

ternal V C C S . The resistance of the multiplexer was verified via brief impedance 

measurement over two channels connected in series (Fig. 3.18). 
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Fig . 3.18: The frequency characteristics of the multiplexer's resistance, reactance, 

impedance, and phase. 

The measurement of the multiplexer's parasitic parameters indicates a very low 

resistance and reactance in the monitored range. The first characteristics show that 

the reactance starts to grow at 1 kHz , rising gradually and then steeply up to about 

0.35 il at 100 kHz . The bottom image in F ig . 3.18 represents the impedance and 

phase shift variations wi th respect to the frequency; as is obvious, the impedance 

begins to increase at 10 kHz and rises from 0.40 il to 0.54 fl at 100 kHz . The phase 

of the impedance then jumps from 0 to 40 degrees between 1 and 100 kHz . The 

multiplexer's impedance can be considered very low (smaller than 1 il), and the 

relevant parasitic impact on the measured values is almost negligible [88, 90]. 
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Experimental reconstruction using the PLI EIT prototype 

To launch the reconstruction procedure, we employed a tomograph and the 

above-discussed P L I E I T prototype (the V C C S and multiplexer), which was sup

ported by applicable laboratory devices (a function generator, digital multimeters, 

and an oscilloscope). The images display a diagram of the voltage and phase shift 

measurement circuit and visualize the setup for customizing the inhomogeneous 

conductivity distribution. 

Channel A Channel B 

Oscilloscope 

(a) (b) 

Fig . 3.19: (a) A diagram characterizing the voltage and phase shift measurement 

circuit; (b) the tomograph wi th an inserted graduated cylinder [91]. 

In F ig . 3.19a, we introduce the feeding and sensing wings, which are galvanically 

separated. The symbols Zi2 and Z 3 4 represent the impedances between electrodes 

1-2 and 3-4. The feeding part of the circuit comprises an A C source including a 

function generator, and a V C C S as a voltage-to-current converter. To conduct the 

experiment, the A C source output was connected wi th the excitation electrodes of 

the tomograph through a shunt resistance (Z& = 10 SI), to which we wired the 

voltmeter, differential amplifier, and one channel of the oscilloscope. The voltmeter 

enabled us to evaluate, verify, and control the amplitude of the injection current. 

Combining the amplifier and the oscilloscope then ensured the measurement of the 

phase shift between the feeding current and the voltage measured in the second 

branch [91]. 

The measuring wing of the circuit contained the above impedance Z34, where the 

voltmeter indicated the voltage between a concrete pair of electrodes. Furthermore, 

the differential amplifier and the oscilloscope channel B , interconnected in series, 

were wired in parallel to the impedance; thus, we scanned the harmonic signal to 

measure the phase shift for the purposes of admitt ivi ty evaluation [91]. 

77 



The setup of the experiment is depicted in F ig . 3.19b, with the images show

ing the water-filled tomograph and the graduated cylinder inserted to generate an 

inhomogeneity having a pre-defined shape [91]. 

In the experiment, we utilized 8 electrodes arranged on a single level. The 

injection and sensing pattern relied on the A S P ; this configuration allowed us to 

carry out 40 measurements. The injected current (JB) equaled 2.008 m A at 1,007 Hz, 

and the excitation current was measured on the shunt resistance {ZB)- B y extension, 

we measured the sequences of the voltage and the phase shift of the signals monitored 

under homogeneous and inhomogeneous conductivity distributions (Fig. 3.20) [91]. 
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0 5 10 15 20 25 30 35 40 N [-] 
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Fig . 3.20: The sequences of (a) the voltage and (b) the phase shift of the signals 

between the pairs of excitation and measuring electrodes. The sensing of the homo

geneous and the inhomogeneous media is illustrated by the blue and the red teeth, 

respectively [91]. 

78 



The voltage and the phase shift measured in the water-filled tomograph are char

acterized by the blue teeth in F ig . 3.20a and 3.20b. The variation of the voltage 

values (which is most apparent at the local maxima) could be caused by an impre

cise placement of the electrodes or the contact impedances between an electrode and 

the measured medium. The patterns of the values obtained on the perimeter corre

spond to the assumption, namely, that the voltage loss wi l l decrease wi th increasing 

distance. The phase shift between the injected and the measured signals rose wi th 

increasing distance to reach 2.6° - 3.2°. The variation had likely originated from 

the magnitude of the voltage, this being approximately 10 mV; the oscilloscope, 

however, offers a resolution of only 1 m V [91]. 

The follow-up measurement was performed wi th the graduated cylinder inserted 

in the tomograph. The relevant voltage sequence displayed by the red tooth ex

hibited an inhomogeneity between the 3 r d and the 6 t h electrodes. Compared to the 

homogeneous state, the discussed region showed a step increase of the voltage val

ues in the range from 40 m V to 47 mV. Changes in the voltage values were clearly 

observed also in some of the other electrodes, where, for example, the shape of the 

voltage pattern did not correspond to the exponential form (the 3 8 t h value). The 

measured phase shifts of the signals (Fig. 3.20b) did not differ markedly from those 

of the homogeneous sequence. In both cases, the phase shift values ranged between 

0° and 3°, probably due to the phase noise and measurement uncertainty. The 

measuring procedure exposed that the non-conductive object inside the tomograph 

had increased the voltage values on the closest electrodes, and it also revealed a 

negligible drop in the phase shift between the feeding and the sensing signals [91]. 

When reconstructing the image, we employed Netgen to prepare a mesh including 

17,708 elements. In the F E M model, the mesh was refined near the electrodes and 

boundaries, allowing us to compute the admitt ivi ty distribution more accurately. 

The actual reconstruction accuracy was given by the fineness of the electric field 

values and the mesh resolution in the vicinity of the electrodes. The reconstruction 

was performed v ia a difference inverse algorithm uti l izing the objective function, and 

this algorithm involved the Gauss-Newton method complemented wi th a Tikhonov 

regularization term. The reconstructed admitt ivi ty components are visualized in 

F ig . 3.21 [91]. 
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F ig . 3.21: The reconstructed difference in the admitt ivi ty distribution: three-

dimensional cross-sectional images (top), and two-dimensional cross-sections at the 

electrode level (bottom) [91]. 

The cross-sectional images (Fig. 3.21a, 3.21c) of the conductivity indicate an 

inhomogeneity region around the coordinates [-0.01; -0.04]. Unlike the conductive 

water (46.4 m S / m , measured wi th a T D S conductometer), the reconstructed inho

mogeneity was non-conductive. The three-dimensional cross-section comprises the 

vertical expansion; this effect was expectable, as the 3D reconstruction process uti

lizes only one level of electrodes, and the object then extends beyond the scanning 

plane [91]. 

The imaginary part of the admit t ivi ty is represented in F ig . 3.21b and 3.21d, 

where the three-dimensional cross-section resembles that characterizing the conduc

tivity. Thus, the imaginary component too exhibits a major vertical expansion, 
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mainly due to the actual concept of the experiment. In view of the reconstruc

tion results, the object can be described as weakly capacitive (see the red band). 

The cross-section at the electrode level (Fig. 3.2Id) contains weakly inductive areas 

represented by blue patterns; these elements arise from the measurement error. In 

addition, the resulting cross-section includes a randomly distributed capacitive area 

near the original position of the object; generally, this capacitive region appears to 

be shapeless, meaning that its form does not entirely match that of the inserted 

cylinder. Such an error is most probably caused by the small phase difference be

tween the measured phase values of the homogeneous and the inhomogeneous states 

on the one hand and the character of the graduated cylinder, which acts as an in

sulator, on the other. Another factor probably rests in the non-shielded cables that 

connected the tomograph and multiplexer [91]. 

The reconstructed cross-sectional images were defined at the electrode level and 

then evaluated by using the Jaccard index and the mean absolute value. The Jaccard 

index characterized the location of the inhomogeneity. In the specific conductivity, 

the values of the index and the mean square error equaled 0.8498 and 1902.5, respec

tively, while those of the imaginary component corresponded to 0.5837; 8994.7 [91]. 

The experiment showed that the P L I system is suitable for data acquisition in 

E I T . Despite such an outcome, the device can sti l l be improved in terms of, for 

example, the shielded cables and active electrodes. Furthermore, the overall results 

also revealed that the conductivity has a major impact on determining the position 

and approximate size of the object. B y comparison, the imaginary component does 

not possess such a capability, meaning that it cannot provide enough position-related 

information; this deficiency stems from several factors, including but not l imited to 

the amplitude and frequency of the excitation current and the different electrical 

properties of the medium and the inserted cylinder. Such factors cause the phase 

between the injected current and the measured voltage to be almost unmeasurable, 

making the reconstruction of the imaginary part very problematic [91]. 

The sensing sequence, involving 40 voltage values, took approximately 90 sec

onds. The most time-consuming activity lay in the measurement performed wi th the 

applied laboratory devices (2 seconds per value). In the 16-electrode configuration, 

which we had not used practically, the assumed data acquisition time reached ap

proximately 500 - 550 s. Thus, by contrast to the manual cycle characterized within 

the Preliminary results, chapter A , the time to obtain the data was theoretically 

reduced from 3 hours to less than 10 minutes, improving the process significantly. 
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To enable the discussed experiment, we utilized the following hardware: 

. P L I E I T version 0.1 (multiplexer, V C C S ) ; 

• Agilent 33220A function waveform generator; 

— voltage range: 10 m V p p to 10 V p p ; 

— voltage uncertainty: ± 1 % of range + 1 m V p p ; 

— frequency resolution: 1 uHz; 

— frequency range: 1 uHz to 20 M H z ; 

• Keysight 34450A 5%digit multimeter; 

— input impedance 1 Míl ± 2 % + 100 pF; 

— frequency measurement range: 20 Hz to 100 kHz; 

— A C measurement accuracy of 0.2 % from the measured value + 0.1 % of 

the range; 

• Agilent D S O - X 3014A four channel oscilloscope; 

— sampling frequency 4 GSa/s ; 

— cut-off frequency 100 M H z ; 

— horizontal resolution 2.5 ps; 

— measurement accuracy (2 % + 0.5 %) of the range; 

— input impedance 1 MQ ± 1 % + 14 pF . 
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3.3 Error exploration in the open and closed domains 

A correct mesh model is of fundamental importance in E I T imaging because all 

the calculations are performed v ia the F E M . The main challenge lies in selecting 

elements sufficiently small to recover the original conductivity but not excessively 

tiny to rapidly increase the computational cost. The error estimation over the mesh 

element size constitutes, together wi th the computational time, a major factor in 

designing the domain and the imaging procedures. For this reason, we evaluated 

the a posteriori convergence of the imaging algorithms; the mesh element size; and 

the computational effort for the open and the closed domains. 

This section explores the convergence of the measurement error wi th respect to 

the mesh scale to obtain the limits where the additional mesh did not compen

sate for the time spent. The relevant analysis was performed by using E I D O R S , 

which comprises the Gauss-Newton algorithm and regularizations. The error was 

evaluated via a minimum mean square error, a sum squared error, and the Jaccard 

distance [92]. 

To carry out the analysis, we used an original and a reconstructed images, quan

tizing the original image into an unstructured "fine" mesh to obtain an accurate 

forward solution. To avoid an inverse crime (section 1.5), we conducted the recon

struction on an unstructured "coarse" mesh refined near the electrodes and bound

aries. The "fine" and "coarse" meshes were quantized into a regular mesh by means 

of standard interpolation methods to prepare the same data structure for evaluation 

through the selected error methodology. The convergence was examined in both the 

closed domains, where the electrodes had been placed equidistantly on the domain 

boundaries (Fig. 3.22), and the open ones, with the electrode placement similarly 

regular but the boundaries extended to infinity; the latter arrangement is found in, 

e.g., geophysical or subsurface exploration (Fig. 3.23) [92, 93]. 
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Fig . 3.22: The unstructured mesh for the closed domain, including the point elec

trodes and two square subspaces to accommodate the inhomogeneities [92, 93]. 
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Fig . 3.23: The unstructured open domain mesh. The left-hand image shows a detail 

of the domain; this detail corresponds to the closed domain. O n the right-hand 

side, we display a domain extension wi th the side length 10 times greater than in 

the closed domain [92, 93]. 

Generally, the E I T imaging procedure comprises several sources of errors, such 

as the measurement process and the definition of the model. More concretely, the 

errors occur in the discretization of the space generated by the selected mesh or 

during the computation; in the latter case, the error arises from the methods of 

the non-linear forward and inverse tasks. A n example of the discretization error is 

shown in F ig . 3.24 [92]. 

Man DE: 0.06 

Hi 4 
<(m) 

F ig . 3.24: A n example of the discretization error differences between a regular and 

an "ugly" optimized adaptive mesh [94]. 

The mesh quality affects the convergence and stability, which determine the 

simulation error in the forward solution. Another relevant factor then consists in 

comparing the real problem data wi th the simulation results (Fig. 3.24). In the two 

images above, the main difference is between a regular square mesh and a deformed 

mesh wi th an adaptive algorithm. In the former case, the discretization error was 
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higher than in the latter one [94]. Based on this example, it is possible to claim 

that the quality of the mesh cannot be evaluated only from the geometry, and the 

following factors have to be considered: 

• overlapping the volumes and surfaces; 

• sizes of the elements and their comparison; 

• element surfaces on the borders of the explored domain; 

• critical parts of the mesh, such as sharp corners; 

• similarity between the sufraces of the mesh and the tested domain. 

To evaluate the convergence error, we designed the procedure in F ig . 3.25, wi th 

the domains generated by using E I D O R S and a compatible G M S H tool [92]. 

Start 

Load domain 

(fine mesh) 

MMSE, SSE 

End 

Fig . 3.25: The individual stages in evaluating the domains [92]. 

In the ini t ial phase, we generated an unstructured fine mesh to constitute the 

original domain. This domain was processed via the forward task to obtain the 

data of the homogeneous medium. After completing the computation, we inserted 

an inhomogeneity into the original domain and calculated the inhomogeneous data. 

These operations were performed separately because we employed a difference in

verse solver to carry out the reconstruction. To avoid an inverse crime, we pre

pared a coarse mesh. The models were then adapted to the requirements of the 

85 



E I D O R S tool, which allowed us to apply the Gauss-Newton method expanded wi th 

the Laplace, N O S E R , and Tikhonov regularizations; thus, we obtained the results 

that facilitated a comparison of the algorithms. The reconstructed and the orig

inal domains were quantized and saved as an image having a regular grid. The 

results were evaluated by means of the selected error functions, namely, the Jaccard 

distance, the sum of squared errors (SSE), and the minimum mean square error 

( M M S E ) . This error methodology had been employed to compare the algorithms in 

the experiment [92]. 

Before the simulation, we fixed the forward solver and random noise for all the 

domains and methods to ensure comparable results. This step enabled us to yield 

from the forward solution one and the same sequence of voltage values. The closed 

domain mesh covered the range of 62 to 20,408 elements, and the open domain 

encompassed 160 to 19,958 elements. Examples of the closed and the open domain 

designs wi th inserted inhomogeneities and reconstructed conductivities are shown 

in F ig . 3.26 [92]. 
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Fig . 3.26: The reconstruction in the closed (top) and the open (bottom; zoomed to 

detail at the regions of interest) domains, executed via the Gauss-Newton method 

including the Tikhonov penalty. The left-hand column shows the original closed 

and open domains (4,463 and 4,734 elements) wi th inserted inhomogeneities; the 

right-hand column then presents an inverse image computed on a mesh of 3,433 and 

2,712 items relating to the closed and the open domains, respectively [92]. 
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The relationship between the computational time and the mesh element scale 

wi th respect to the Gauss-Newton method and the different regularizations, observed 

in both the open and the closed domains, is illustrated in F ig . 3.27. 

10° 10 1 10 2 

time[s] 

Fig . 3.27: The relationship between the number of mesh elements and the compu

tational time in the selected reconstruction methods [92]. 

A s is shown in F ig . 3.27, the applied regularization technique does not have a 

significant impact on the computational intensity. The difference between the open 

and the closed domain models was almost negligible. Based on these results, the 

selected regularization and the mesh design appear to be stable for the purposes 

of the Gauss-Newton inversion. B y extension, the image above also relates the 

convergence behavior of the inversion to the increasing number of elements and 

mesh complexity given by the specific hardware. The actual convergence estimation 

normalized into the range of 0 to 1 is shown in F ig . 3.28. The detailed absolute 

values of the individual error metrics are presented in Tab. 3.10 [92]. 
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Fig . 3.28: The error convergence estimates normalized in the range of 0 to 1, char

acterizing the closed (left-hand column) and the open (right-hand column) domains 

and considering the numbers of mesh elements and regularizations 
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Tab. 3.10: The Jaccard distance, M M S E , and SSE: The values over the mesh element 

scale provided by the selected regularization methods [92]. 

Closed domain 

Elements Tikhonov N O S E R Laplace 

N Jacc M M S E SSE Jacc M M S E SSE Jacc M M S E SSE 

62 0.463 0.113 658.97 0.596 0.160 768.53 0 625 0.230 1046.84 

139 0.489 0.092 542.65 0.478 0.067 465.75 0 607 0.232 1080.25 
334 0.415 0.040 261.70 0.451 0.079 555.48 0 650 0.259 1110.02 

679 0.358 0.029 254.81 0.452 0.080 544.24 0 654 0.265 1084.12 
1302 0.422 0.050 367.28 0.450 0.081 557.67 0 668 0.279 1064.15 
2213 0.384 0.039 310.75 0.447 0.082 562.88 0 663 0.281 1072.11 

3433 0.387 0.038 316.86 0.446 0.079 544.52 0 670 0.276 1032.98 
4401 0.393 0.037 308.84 0.446 0.080 559.04 0 672 0.284 1042.27 
6417 0.343 0.030 302.96 0.443 0.078 552.26 0 663 0.276 1060.65 
9750 0.363 0.043 370.67 0.451 0.071 514.26 0 653 0.259 1116.03 
11871 0.342 0.041 356.35 0.464 0.066 477.68 0 612 0.249 1139.40 
16026 0.307 0.036 349.64 0.477 0.060 428.87 0 591 0.228 1086.07 
20408 0.287 0.031 313.84 0.477 0.057 394.73 0 588 0.222 1057.01 

Open domain 

Elements Tikhonov N O S E R Laplace 
N Jacc M M S E SSE Jacc M M S E SSE Jacc M M S E SSE 

160 0.511 0.1277 746.31 0.538 0.1361 835.74 0 616 0.216 1023.85 
273 0.429 0.0581 444.93 0.493 0.0854 602.63 0 589 0.192 947.74 

548 0.380 0.0538 519.32 0.474 0.0825 615.08 0 596 0.198 941.17 
960 0.364 0.0439 422.84 0.466 0.0819 578.91 0 599 0.205 961.19 
1654 0.325 0.0434 442.59 0.461 0.0851 607.38 0 605 0.244 1038.60 
2712 0.286 0.0294 351.31 0.460 0.0862 611.53 0 609 0.248 1012.10 
3926 0.369 0.0576 520.35 0.462 0.0870 611.87 0 622 0.266 1020.97 
6460 0.330 0.0398 408.75 0.455 0.0836 602.03 0 605 0.254 1006.50 
9616 0.363 0.0576 551.52 0.455 0.0851 605.90 0 623 0.271 1022.84 
14012 0.310 0.0336 384.59 0.454 0.0860 612.13 0 620 0.269 1018.79 
19958 0.319 0.0335 376.65 0.453 0.0847 606.54 0 622 0.269 1011.36 
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Closed domain: Jaccard 

The pattern of the Jaccard distance over the mesh element scale in the closed do

main secured the best stability for N O S E R . The Jaccard distance increased slightly 

wi th the rising number of elements. Compared to N O S E R , the Tikhonov method 

exhibited the smallest absolute value of the Jaccard distance; the dispersion was nev

ertheless higher. The Jaccard distance decreased over the generated set of meshes. 

The Laplace regularization yielded the smallest similarity of the images, meaning 

that the Jaccard distance produced the highest one. A l l of these methods then 

exhibited markedly higher error rates at low numbers of elements, due to an insuffi

cient amount of the elements and, thus, their excessive sizes. The methods delivered 

a satisfactory stability over the mesh scale [92]. 

Closed domain: MMSE 

The variation of the M M S E over the mesh element scale in a normalized manner 

is shown in F ig . 3.28, and the absolute value of the error is presented in Tab. 3.10. 

According to the results, the M M S E decreased significantly in Tikhonov and N O S E R 

but remained stable in Laplace. W i t h N O S E R , we obtained the best stability over 

the tested meshes. The Tikhonov method exhibited a relatively high error variation 

over the mesh element scale, performing somewhat worse than N O S E R in stability 

terms. The Tikhonov regularization gave the smallest absolute error value in the 

explored range, but the error rate markedly depended on the mesh. The Laplace 

technique showed a stable growth of the M M S E up to the limit of 8,000 elements; 

after that, the rate decreased sharply [92]. 

Closed domain: SSE 

The last technique employed in evaluating the closed domain was sum squared 

error (SSE). A s indicated in Tab. 3.10, the SSE value decreased rapidly when the 

limit of 500 elements had been reached in the Tikhonov and the N O S E R options. B y 

comparison, the Laplace grew slightly. The N O S E R tool provided a good stability 

between 500 to 8,000 elements; beyond the latter l imit , the error started to decrease. 

In the Tikhonov regularization, the computed S S E was relatively unstable, involving 

significant variation; within the given range (500 to 8,000), however, the absolute 

value was smaller than that delivered by N O S E R . The Laplace procedure exhibited 

the highest absolute SSE value, ensuring a stability inferior to that obtained from 

the Tikhonov method [92]. 

Open domain: Jaccard 

The pattern of the Jaccard distance over the mesh element scale in the open 

domain is shown in F ig . 3.28 (the right-hand column). During the ini t ial phase, the 
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Jaccard distance decreased in all of the methods. A t the l imit of 200 elements, the 

Jaccard distance began to increase in a stable manner, while Tikhonov and N O S E R 

remained low. The smallest absolute value was determined in Tikhonov; the stability 

nevertheless worsened gradually in the band beyond 4,000 elements. B y comparison, 

N O S E R decreased slightly, from 0.5 to 0.45. The Laplace regularization delivered 

the highest Jaccard distance value. The best stability over the mesh element scale 

was then observed in N O S E R [92]. 

Open domain: MMSE 

In a l l of the methods, the M M S E exhibited a significant decrease with the ris

ing amounts of elements, starting from the bottom limit of 160. A t 300 items, the 

Laplace method began to grow in an irregular manner, eventually reaching 0.27 

(Tab. 3.10); N O S E R remained stable at around 0.08; and Tikhonov, while falling 

lower than N O S E R , brought a comparatively volatile error value [92]. 

Open domain: SSE 

The Tikhonov method exhibited the smallest SSE value but, similarly to the 

M M S E , was not sufficiently stable; by comparison, N O S E R delivered a slightly 

higher S S E rate but ensured a very good stability. The Laplace regularization pro

duced the highest error value and sharp variations. Each of the verified methods 

contained a peak at approx. 200 elements, probably due to the discretization [92]. 

Summary 

In the closed domains, the opt imum range to enable the Tikhonov inversion was 

identified between 500 and 1,000 elements; here, the Jaccard distance, M M S E , and 

SSE achieved the best results in terms of the computational intensity. Generally, in 

the same context, N O S E R proved to be more stable and suitable for a wider range 

of mesh element scales, albeit only at the cost of a decreased quality of the inverse 

image. The Laplace regularization then delivered the worst results. A s regards the 

open domain, the most convenient method was Tikhonov, especially if employed 

in the area of 2,700 elements, where it ensured acceptable computational intensity. 

A good compromise lay wi th N O S E R : This algorithm offered a stability markedly 

better than Tikhonov's and operated in a wider range of selected meshes, but the 

inversion accuracy did not match the results delivered by Tikhonov in this respect. 

In the Laplace method, we observed a high variation of the normalized error scale, 

and, by extension, the highest absolute value [92]. 

The discussed experiment was calculated on a standard computer wi th an Intel 

Core i3-6089P 3.60 G H z processor and 4 G B R A M . The software, i.e., the E I D O R S 

tool and G M S H mesh generator, ran on OS W i n 10 x64, under Mat lab R2016a [92]. 
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3.4 Parallelization 

One of the most prominent challenges in E I T imaging lies in reducing the com

putational intensity of the final solution. This task can be accomplished with, for 

example, the approaches for shortening the reconstruction time that were discussed 

in the theoretical part. A t the beginning of this chapter, we characterize the C P U -

based processing of the inverse problem by using Tikhonov regularization. The 

relevant algorithm was designed by Vauhkonen in Mat lab [95], and its flowchart is 

graphically presented below. 

Number of 
elements, nodes 

Calculating 
regularization matrix 

Jacobian solution 

i 

Updating FEM matrix 
Solving o 

(Gauss-Newton method) 

1 

Computing forward solution 
Resolving regularization 

parameter a 

1 

False 

Reconstructed 
image 

End 

Fig . 3.29: The flowchart of the forward and the inverse tasks [96]. 

F ig . 3.29 characterizes the individual functional software blocks that allow us to 

reconstruct the original image. The introductory stage of the computation involves 

a data input derived from the characteristics of the domain mesh; the relevant pa

rameters include the coordinates, the number of elements, and the count of nodes. 

When the mesh parameters have been specified, we set the ini t ial conductivity and 

select the elements that determine the inhomogeneity. After that, the conductivity 

and voltage values are computed via the forward solution supported by the F E M . In 

addition to the forward task, we calculate the Tikhonov regularization matrix. The 

Update F E M matrix function processes the boundary voltage values on the elec

trodes to produce the vector £/FEM(C) representing the conductivity values at the 
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nodes of the mesh. Subsequently, we compute the Jacobian, which is then substi

tuted in the Gauss-Newton method. This entire step yields the conductivity vector 

for the given iteration of the procedure. A t the end of the cycle, the regularization 

parameter a is reduced. The actual computation is l imited to 150 iterations [96]. 

In our case, the first procedural phase involved computing the Jacobian, a pre

condition for running the Gauss-Newton iteration method; the reason rested in that 

the Jacobian generally embodies the most time-consuming part of the calculation. 

A t the next stage, we replaced the sequential C P U code in the parallel solution via 

the C U D A function, which was then processed by the G P U . The difference between 

the full and the partial implementations of the C P U and the G P U , respectively, is 

shown in F ig . 3.30 [96]. 

A) Start 

Input: 
3x2D arrays 

Multiplying of input 
2D arrays 

Reshaping to ID vector 

Inserting to 
output 2D matrix 

1 
Input: 

3x2D arrays 

Reshaping to ID vector 

ID vector 
multiplication 

ID vector 
multiplication 

Inserting to 
output 2D matrix 

End 

ID vector 
multiplication 

End 

Fig . 3.30: The flowcharts of the A ) sequential and B) the parallel implementations 

of the Jacobian [96]. 

A s is indicated, the input data of the Jacobian consist of three matrices; their 

original embodiments are computed vectorally and sequentially in Mat lab. A l l of 

the matrix multiplications were implemented in a for-loop, whose properties had 

followed from the sizes of the matrices. Compared to the sequential approach, 

the novel parallelized technique relies on separating the matrix into vectors; these 

vectors are then multiplied in parallel v ia 300 threads in the G P U . The resulting 

matrix is concatenated from the individual threads to form the original dimension 

of 240 x 300 elements. Thus, we obtain a matrix identical with that solved in the 
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sequential processing. The relevant computational time intensity rates are compared 

in Tab. 3.11. The resulting values show that the parallel processing is approximately 

twenty times faster than the sequential approach [96]. 

Tab. 3.11: Comparing the Jacobian computing procedures [96]. 

Hardware Time [ms] 

C P U : Intel Core i5-4460 (3.2 GHz; x64; 8 G B R A M ) 
G P U : N V I D I A G T X 970 (1.215 GHz; memory 4 GB) 

5 
0.25 

Based on the results specified above, we decided to run the whole E I T image 

reconstruction process on a C U D A platform to reduce the time cost. In the inverse 

task, multiple computations of the forward task are invariably required. The most 

time-consuming stage of the image reconstruction then lies in evaluating the Ja

cobian, a step that we successfully implemented in the previous phase, for which 

we had selected the well-known Gauss-Newton approach including the Tikhonov 

penalty. The C P U and GPU-based options are visualized in F ig . 3.31 [97]. 

A) 
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I T Z 
Number of 

elements, nodes 

Calculating 
regularization matrix 

4 
Updating FEM matrix 

4 
Computing forward 
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Reconstructed 
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End 
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Number of 
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Reconstructed 
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1 
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CUDA solution 
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~r~ 
Resolving regularization 

parameter a 

CPU-based 
computation 

Fig . 3.31: The flowcharts of the differently processed forward and inverse tasks [97]. 

The images in the same figure also visualize the GPU-based implementation of 

the inner computation loop. This loop comprises the following procedures: calcu

lating the regularization matrix; updating the FEM matrix; computing the forward 

solution; calculating the Jacobian; solving the conductivity via the Gauss-Newton 
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method; and resolving the regularization parameter a. In our experiments, this type 

of implementation required the initialization to be corrected where the data had 

been relocated between the R A M and the V R A M [97]. 

The parallelized code contains the whole process, except for the symamd func

tion; this function computes a symmetric definite matrix. Disadvantageously in this 

context, however, Mat lab does not have an equivalent feature uti l izing G P U sup

port. The additional data transfer between the R A M and the V R A M increases the 

time intensity, as determined through relevant testing and evaluated for each part 

of the algorithm. The actual intensity values are compared in Tab. 3.12 [97]. 

Tab. 3.12: The computational times in the individual reconstruction steps: the 

C P U - and GPU-based procedures [97]. 

Process C P U time [ms] G P U time [ms] 

Calculating the regularization matrix 1.6 1.3 
Updating the F E M matrix 4.3 0.9 

Forward solution 0.7 6.0 
Computing the Jacobian 20.6 0.1 

Solving a with the Gauss-Newton method 1.6 7.5 

Total time per iteration 28.8 15.8 

A s indicated, the G P U option is superior in terms of the total time per iteration. 

The properties, performances, and impacts of the processes can then be character

ized in the following manner: calculating the regularization matrix slightly reduced 

the overall time consumption by mult iplying the one-dimensional vector and the 

regularization matrix; updating the FEM matrix proved to be faster, and greater 

differences are assumable at increasing numbers of elements; forward solution signif

icantly slowed down in the parallel processing, the reason being the R A M - V R A M 

data transfer, whose speed was hampered by the symamd function running; the 

CUDA-based code of the Jacobian was computed very effectively, at a pace almost 

two hundred times quicker than that of the original C P U processing; and solving a 

with the Gauss-Newton method significantly increased the computational intensity, 

due to the matrix division to compute the system of linear equations A x = b. The 

sequential behavior of the system of linear equations embodied the factor that had 

most prominently decelerated the GPU-based implementation [97]. 

The hardware and software components included an Intel Core i5-4460 C P U 

(3.2 G H z ; x64; 8 G B R A M ) , an N V I D I A G T X 970 G P U (1.215 G H z ; memory 

4 G B ) , Windows 10 (version x64), and Mat lab R2016a. 
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Discussion 
Preliminary results 

The preliminary results outlined in the Appendix capture the experimental mea

surement and reconstruction of the two material combinations, clay x sand and 

water x glass. The conductivity distribution images were obtained via the Gauss-

Newton method including the Tikhonov penalty term. In the case of the soil sample, 

the clay was located slightly below the center, F ig . A . l b . The other type of measure

ment, namely, the arrangement wi th water encompassing a glass cylinder, showed 

that the conductivity distribution reflects the original position of the object bet

ter than the reconstructed permittivity. A similar experiment, ut i l izing modified 

electrical impedance spectrometry [98], was performed by means of a Z-meter [76]. 

The researchers employed the common two-wire connection approach to the feeding 

and sensing, and the presented outcomes are thus affected by error due to the con

tact impedance between the electrodes and the analyzed material. Moreover, the 

resulting conductivity maps were created only via simple graphical representation 

of the measured cross-electrode impedance values, exploiting the Surfer 8 software, 

and the authors did not solve the inverse task to estimate the conductivity maps 

as accurately as possible. The outcomes were used to predict the positions of un

known objects in the heterogeneous environments. The actual data collection was 

performed within project F A S T / F E K T - J - 1 8 - 5 3 8 5 [99, 100]. 

Optimization 

The applied optimization procedure can reduce the image reconstruction un

certainty in three different ways, depending on the choice. The first step rests in 

evaluating the ini t ial conductivity from the sequence of measured voltages. For this 

reason, we prepared a corresponding cylidrical F E M model containing approximately 

15,000 elements and 8 electrodes. The init ial conductivity value reached between 

53.7 and 54.9 m S / m . The designed procedure converges very fast and, wi th the 

computer and experiment employed in this thesis [81], takes 7 s at the maximum. 

In addition, the proposed approach also facilitates calculating the boundary de

formation of the elliptical domain, considering the dimensions of the { X , Y } axes. 

The designed procedure was verified on real data acquired from a laboratory tomo

graph deformed wi th a clamp. B y optimizing the shape deformation, we yielded 

the centimeter lengths of {18.62, 19.35} and {18.66, 19.35} in adjacent and opposite 

driving, respectively. In the real axial dimensions of X = 18.6 cm and Y = 19.4 cm, 

our approach delivered acceptable results (the relative axis value errors amounted to 

{0.31 %, -0.25 %}). The impact of an innacurately modeled shape was also demon

strated on an image reconstruction involving wrongly constructed circular and true 
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elliptical domain shapes, where the relative root-mean-square error dropped by 6.2 % 

and 11.6 % in the adjacent and the opposite current patterns, respectively [81]. 

The optimization also allowed evaluating the electrode position on the domain 

boundary. For this reason, we prepared a model containing a shifted 6 t h elec

trode, which was then monitored with the adjacent and the opposite patterns. The 

optimization produced suitable results in the adjacent measurement and a non-

acceptable duality in the opposite sensing strategy. The duality had arisen from the 

two possible electrode placement options (the shifted 2 n d and 6 t h electrodes), where 

the forward solver provided a sequence with the same, interchangeable voltage val

ues (Fig. 3.11). Thus, we present the impact of an electrode misplacement only on 

the adjacent pattern, v ia inverse images (Fig. 3.12) of the innacurate and the correct 

models. The optimization reduced the relative root-mean-square error by 12.7 %; 

the inhomogeneity localization was significantly improved too, from a mismatch to 

the Dice similarity of 0.667 [81]. 

The procedure was implemented by using the Mat lab Optimizat ion toolbox, the 

E I D O R S tool, and the Netgen mesh generator. Overall, the approach is suitable 

for adjusting the unknown parameters of the real laboratory model to create a 

corresponding numerical model that wi l l enable precise image reconstruction. The 

current limitations rest in that only one parameter is solvable per run and that the 

computational intensity markedly increases due to the rising number of degrees of 

freedom being computed simultaneously. The optimization design is universal and 

yields a potential to include another parameter, such as contact impedance [81]. 

Newly proposed system 

Accelerating the data acquisition process in laboratory and other in- and out

door conditions is based on identifying and exploring a device for automatized data 

collection. The first step to reach this goal lies in specifying the key parameters of 

such a device. To reduce the time to obtain the tomographic data of the laboratory 

model, we proposed a setup comprising a multiplexer, a voltage-controlled current 

source, and a microcontroller-regulated circuit to operate the feeding and the sensing 

branches. The multiplexer was materialized in a discrete manner, ut i l izing a shift 

register connected into a combination of photorelays wi th a low on-state resistance 

(lower than 1 Q). The V C C S was built on a multirange Howland current pump. 

This design enabled us to control the injection current either through the amplitude 

of the input voltage or manually, by switching the resistors placed before the voltage 

follower. The presented multiplexer and V C C S were verified via an experimental 

measurement on a laboratory tomograph that allowed the actual image reconstruc

tion. The results showed that the assembled device is suitable for obtaining E I T 

imaging data. The setup facilitated research into the optimization procedure and 
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reduced the time required to obtain the tomographic data from hours to minutes. 

The device for effective data acquisition in E I T (a precise, low impedance E I T sys

tem) is being refined within diverse Bachelor's projects supervised by the author of 

this thesis [88, 90, 91]. 

Error exploration in the open and the closed domains 

The experiment centered on designing the open and the closed domains was per

formed by using E I D O R S library, which contained different regularizations, namely, 

Tikhonov, N O S E R , and Laplace. To explore the errors, we generated domain meshes 

consisting of 62 to 20,408 elements. The computational time for the specified mesh 

element scale remained stable (0.4 s - 0.5 s) between 60 and 1,000 elements but then 

began to rise (0.5 s to 300 s), wi th a gradual increase in the number of elements 

from 1,000 to 20,000 [92]. 

The reconstructions for the domains were performed by uti l izing the results of 

the a priori calculated forward solution and the fixed random seed facilitating the 

noise data generation. The Jaccard distance, minimum mean square error, and sum 

squared error were selected to evaluate the inverse images. The results of the de

signed simulation process relating to the above-mentioned regularization approaches 

are summarized in Tab. 3.13. 

Tab. 3.13: The regularization approaches compared in terms of the Jaccard distance, 

M M S E , and S S E over the mesh element scale. 

Regularization Jaccard distance M M S E SSE Mesh element range 

Tikhonov 
N O S E R 
Laplace 

0.30 - 0.40 
0.44 - 0.48 
0.60 - 0.65 

0.03 - 0.06 
0.06 - 0.09 
0.19 - 0.28 

300 - 550 
400 - 600 

950 - 1,150 

2,000 - 16,000 
500 - 20,000 
60 - 20,000 

The table presents the Tikhonov method as the one wi th the smallest values of 

the error metrics; the stability, however, was not perfect. A good alternative to 

the Tikhonov option was found in N O S E R , whose capabilities ensured an enhanced 

stability at a wider scale of mesh elements. This tool nevertheless also produced a 

slightly higher error than the Tikhonov procedure. Considering the selected tech

niques, the worst results were delivered by the Laplace term; the reason apparently 

lies in that the output depends on the a priori conductivity information, which had 

not been involved in the experiment. Such conditions then yielded amplified noise 

and decreasing solution stability in the Laplace regularization [92]. 

In terms of the computational effort (approximately 0.5 s), the best area for the 

image reconstruction involving the close domains was identified in the vicinity of 

800 elements. The open domain model provided the best results in the range of 
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2,600 to 3,000 elements, considering the inverse image quality and time consump

tion (between 1 s and 2 s). The experiment was performed on a standard personal 

computer, described in detail at the end of section 3.3 [92]. 

Parallelizing the algorithms 

The parallelization of the algorithm created by Vauhkonen [95] indicates that the 

GPU-based implementation is positively faster than the original sequential Mat lab 

code. To compare these two options, we employed a F E M model containing 300 

elements, 167 nodes, and 16 electrodes. The experiment was carried out by ap

plying trigonometric driving and the injection current of 1 m A . The final compu

tational time reached 28.8 s and 15.8 s in the C P U and the GPU-based variants, 

respectively. The most significant improvement in the inverse task processing was 

eventually achieved in the Jacobian, wi th the time intensity falling from 20.6 s to 

0.1 s. The individual procedural steps had comprised functions not supported by the 

G P U processing, and these slowed down the computation. In the given context, the 

forward solution proved to be hampered by the data transfer between the R A M and 

the V R A M , namely, the unsupported symamd function, and solving the conductiv

ity of the Gauss-Newton iteration appeared problematic due to the matrix division 

performed during the solution of the system of linear equations. Further explo

ration generated the possibility of another decrease in the computational effort; the 

potential to reduce this factor lies in the G P U implementation of the unsupported 

symamd function [96, 97]. 
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Conclusion 
The results outlined in the thesis, the Discussion chapter in particular, contribute 

significantly to E I T research worldwide, especially by 

• decreasing the uncertainty of the reconstructed conductivity dis

tribution via optimizing the mathematical model through a set of 

laboratory measurements [80, 81]; 

• accelerating the data acquisition in laboratory and other in- and 

outdoor conditions [88, 90, 91]; 

• optimizing the parameters of the closed and the open domain models 

(mesh density, computational effort, and analysis of the convergence 

error) [92, 93]; 

• improving the time intensity of the image reconstruction via paral

lelizing the individual algorithm steps [93, 96, 97]. 

The central target fields and activities comprise, above al l , multidisciplinary 

provinces such as geophysical mapping and exploration, laboratory equipment de

sign and testing, and the optimization or analysis of multiparametric models to re

duce the uncertainty in reconstructed conductivities. The newly obtained concepts 

are applicable in automating data acquisition tasks and conducting diverse labo

ratory practicals at technical universities, inclusive of the specialized measurement 

and electromagnetic field modeling courses delivered at the Faculty of Electrical 

Engineering and Communication, Brno University of Technology. 

The outcomes presented herein relate back to the author's internship at Netr ix 

(NetArt) S.A. Research and Development Center, Lubl in , Poland, and his participa

tion in science seminars at University of Economics and Innovation in Lub l in and at 

Warszaw University of Technology. B y extension, the thesis contains the products 

of a project (junior grant F A S T / F E K T - J - 1 8 - 5 3 8 5 ) executed in cooperation with the 

Department of Water Structures, Faculty of C i v i l Engineering, Brno University of 

Technology. The relevant research involved experimental measurement of inhomo-

geneities inserted in water and soil, and the findings were published in [99, 100]. 

The future efforts wi l l be pursued in collaboration with the above-specified in

stitutions, the target fields and activities being effective data sensing, exploration of 

the open domain models, application of neural networks to the E I T problem, and im

provement of the existing optimization procedure to include the contact impedance 

parameter and a multiparametric model wi th irregular boundaries. 

The results of the experiments were published in the M D P I Sensors journal 

(impact factor 3.275 (Q2) [81]), Elektrorevue peer-reviewed journal [100], and in

ternational and national conference proceedings (Eureka [80, 90, 99], I C U M T [88], 

Mechatronika [91], I I P h D W [92, 97], E E I C T [93], P I E R S [96]). 
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List of Symbols 
V a Gradient operator 

V • A Divergence operator 

V x A C u r l operator 

A - 1 M a t r i x inverse 

A T Ma t r i x transpose 

A* Moore-Penrose pseudoinverse: A* = ( A T A ) _ 1 A T 

A System matrix 

b Right-hand side vector 

B Magnetic flux density 

D Electric flux density 

D Mode l dimension 

dS Surface of the domain fl 

dQ Boundary of the domain Q 

E Electric field density 

e Randomly generated value 

Ei | Surface of the /-th electrode E 

f Frequency 

f Load vector 

f{p) Optimizat ion function including a parameter (initial conductivity, 

electrode placement, domain shape deformation) 

H Magnetic field strength 

/ Electric current 

i Vector of injected currents on the boundary through the electrode 

IT Exci ta t ion current on the electrode / 
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J Current density 

J j Jacobian 

K Stiffness matrix 

L Number of electrodes 

n Dimension of space 

n Boundary normal vector in the domain Q 

px Number of pixels 

R Electrical resistance 

R Regularization matrix 

TV/3 Regularization term of the total variation method 

t T ime 

U Voltage 

U F E M Vector of voltages computed via the forward task 

Ui Voltage on the electrode / 

U M Vector of measured voltages on the boundary of the domain Q 

W F E M basis function 

x Vector of an unknown quantity 

x 0 Vector containing the ini t ial value of an unknown quantity 

X Reactance 

Xi Simplex vertex 

z; Contact impedance 

Z Impedance module 

a Regularization parameter 

f3 Parameter of the total variation characterizing the smoothness of the 

objective function ^(<j) 
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^ Part ia l derivative with respect to x 

8a Difference between the original and reconstructed conductivities 

A Difference of the specified reconstructed quantity given by the 

difference inverse algorithm 

e Permit t ivi ty 

H Permeability 

o~{x) Conductivi ty in the space of domain Vt 

if Phase shift of signals 

(p(x) Electrical potential in the space of domain Q, 

ty(a) Objective function related to the conductivity 

u Angular frequency 

fi Domain, the region of interest 
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List of Abbreviations 
2 D Two-Dimensional 

3 D Three-Dimensional 

A D C Analog to Digi ta l Converter 

A N N Ar t ic iha l Neural Network 

A S P Adjacent Stimulation Pattern 

C E M Complete Electrode Model 

C P U Central Processing Uni t 

C M R R Common Mode Rejection Ratio 

C U D A Compute Unified Device Architecture 

D A C Digi ta l to Analog Converter 

D D S Direct Digi ta l Synthesis - function generator 

D I P Dua l In-line Package 

D S B G A Die-Size B a l l G r i d Array 

E I D O R S Electrical Impedance and Diffuse Optics Reconstruction Software 

E I T Electrical Impedance Tomography 

E R T Electrical Resistive Tomography 

F E M Fini te Element Method 

F P G A Field-Programmable Gate Array 

G A Genetic Algor i thm 

G P U Graphical Processing Uni t 

G R E I T Graz consensus Reconstruction algorithm for E I T 

I A R Inhomogeneity Area Rat io - ratio between the original and 

reconstructed conductivity areas of the inhomogeneity 

K I T 4 Kuopio Impedance Tomograph 4 
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L F C S P Lead Frame Chip Scale Package 

L S M Least Square Method 

M C U Microcontroller Uni t 

M F E I T Mult ip le Frequency E I T 

M M S E M i n i m u m Mean Square Error 

M S O P M i n i Small Outline Package 

N O S E R Newton's One Step Error Reconstructor 

O S P Opposite Stimulation Pattern 

O X B A C T Oxford Brookes Tomograph 

P A R D I S O Parallel Sparse Direct Solver 

P E I T S Parallel E I T Software 

P E T S c Portable, Extensible Toolkit for Scientific Computation 

P D - I P M Pr imar-Dual Interior-Point-Method 

P D E Part ia l Differential Equation 

P G A Programmable Ga in Amplifier 

P L I E I T Precise, Low Impedance E I T system - measuring unit 

R A M Random Access Memory 

R R M S E Relative Root Mean Square Error 

S F E I T Single Frequency E I T 

S N R Signal to Noise Rat io 

S O I C Small Outline Integrated Circui t 

S O T Small Outline Transistor 

S S E Sum Square Error 

S S O P Shrink Small Outline Package 

T D S Total Dissolved Solids - conductometer 
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T S S O P T h i n Shrink Small Outline Package 

V C C S Voltage-Controlled Current Source 

V S S O P Very thin Shrink Small Outline Package 

V Q F N Very thin Quad-Flat No-leads package 

V R A M Video Random Access Memory 
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A Preliminary results 
This final chapter briefly summarizes the outcomes of an experimental measurement 

of a soil sample and a glass inserted in water. The data and results were created 

within project F A S T / F E K T - J - 1 8 - 5 3 8 5 . 

Reconstructing the soil sample 

The bl ind reconstruction experiment utilized a sample consisting of sand and 

clay. The data were collected via adjacent driving, the excitation current being 

0.3 m A at 1 kHz . In the image reconstruction, we exploited the Gauss-Newton 

method adopted from the E I D O R S toolbox, relying on Tikhonov regularization as 

the supporting procedure. The applied tomograph, filled with sand wi th clay, and 

the reconstructed conductivity distribution are presented in F ig . A . l [99]. 

(a) (b) 

F ig . A . l : (a) The setup of the experiment; (b) the conductivity distribution of the 

soil sample, computed via a difference inverse algorithm [99]. 

The image reconstruction positioned the clay slightly below the center of the 

sand. Such an erroneous location can be attributed to material displacement due to 

gradual compaction of the soil; measurement; and reconstruction error [99]. 
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Reconstructing the glass inserted in water 

We filled the tomograph wi th water and inserted a glass cylinder, setting the 

excitation current to be 0.3 m A at 1 kHz . A s regards the configuration and the 

measuring pattern, we employed 16 electrodes and adjacent driving, respectively. 

The measurement setup and the corresponding difference of the reconstructed ad-

mit t iv i ty distribution obtained through the Gauss-Newton method (expanded to 

involve a Tikhonov penalty) are visualized in F ig . A . 2 [100]. 

X [AU] X [ A U ] 

(b) (c) 

F ig . A . 2 : (a) The setup of the experiment, and the reconstructed differences of the 

(b) real and the (c) imaginary parts of admitt ivi ty [100]. 

In the reconstructed admitt ivi ty images, the real part could be localized precisely 

near the 1 1 t h electrode, while the imaginary component was situated farther from 

the boundary. The difference between the admitt ivi ty components had probably 

been caused by the uncertainty and the error in measuring the signal phase shift. 

The measurement was performed manually and took 3 hours [100]. 

123 


