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List of symbols 

Symbol Units Description 
 

Ai 1 asphere coefficients 
b 1 phenomenological parameter 
cp J·kg-1·K-1 specific heat 
E MPa elastic modulus 
G MPa shear modulus 
H J·mol-1 activation energy 
k W·m-1·K-1  thermal conductivity 
K 1 conic constant 
Mv 1 response function 
r m radius 
R J·mol-1·K-1 gas constant 
T °C temperature 
Tg °C transition temperature 
Tf °C fictive temperature 
Tref °C reference temperature 
t sec time 
v m3 volume 
wg 1 weights 
x 1 fraction parameter 
α K-1 coefficient of thermal expansion 
α1 K-1 liquid coefficient of thermal expansion 
αg K-1 solid coefficient of thermal expansion 
ε 1 strain 
η Pa·s viscosity 
σ MPa stress 
σV MPa viscous stress 
σ∞ MPa stress acting on spring 
ν 1 Poisson’s ratio 
ρ kg·m-3 density 
τ sec relaxation time 
τs sec stress relaxation time 
τv sec structural relaxation time 
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1. Introduction 
 

In the recent years, aspherical glass optics is widely chosen because of their superior optical 

properties, such as lesser aberration and lower birefringence, over spherical optics. The 

traditional lens manufacturing process is a multi-step process which requires a series of 

material removal processes. Although, there have been recent advances in optical 

fabrication techniques such as magnetorheological finishing and ion beam polishing, the 

complexity of these processes is such that the overall costs are high for medium to high 

volume production of aspheric optics. Furthermore, the process incurs environmental issues 

because of the use of grinding fluids and polishing slurries. 

A potential low-cost and fast method to produce precision glass optics is a compression 

molding process. In a lens molding process a glass gob is heated to a temperature above the 

glass transition temperature and is pressed between two molds having the required aspheric 

profile. The formed lens is then either cooled naturally or by forced convection to a room 

temperature resulting in its final geometry. If this entire process is designed correctly, it can 

be easily adopted for high volume production of precision aspherical glass lenses. 

Precision glass molding process is an attractive approach to manufacture small precision 

optical lenses in large volume over traditional manufacturing techniques because of its 

advantages such as low cost, fast time to market and being environment friendly. [9] 

A lens in the most fundamental terms can be defined as an optical device which transmits 

and refracts the light incident on it, resulting in the convergence or the divergence of the 

light beam. The surface profile of the lens is a crucial characteristic that governs the 

performance of an optical lens. The surface accuracy and finish should be precise. These 

kinds of lenses which require highly precise surface profiles and finish are known as precision 

lenses. 

Conventional lenses generally have either cylindrical or spherical profiles. These lenses are 

relatively easy to fabricate and design. However, these lenses have major drawbacks in their 

optical properties such as spherical aberration, coma astigmatism etc.  Aspherical lenses, on 

the other hand, have one or both surfaces that do not conform to a sphere and provide 

greater advantage over spherical lenses because of reduced light losses and aberrations, 

better image quality, and compact lens assemblies. Aspherical glass lenses are increasingly 

being used in consumer products like high power laser generators, digital cameras, 

projectors and scientific instruments. Manufacturing of standard quality spherical elements 

is cheap. On the other hand, mass production of aspherical elements using grinding and 

polishing is 3 to 10 times more expensive.  
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1.1.  Glass versus plastics as lens materials  
 

Glass has been and continues to be a material of choice for imaging optics. Different 

polymers, including acrylic, polystyrene and polycarbonate have been used for years to 

produce consumer level semi-precision optical system. Table 1.1 compares some of the 

relevant physical and optical properties of glass and plastics for use as lens materials. 

 

Table 1.1 Comparison of glass and plastic properties 

Property  Glass/Plastics 

Transparency Glass superior 

Impact strength Glass brittle 

Specific gravity Plastics≈1/3𝑟𝑑of the glass 

Scratch resistance Glass higher 

Moisture resistance Glass unaffected/Plastics low 

Thermal stability Thermal expansion coefficient of plastics ≈ 
10 times higher than glass 

Processing Plastics easier: can be mass produced 
 

The main advantages of plastics are their light weight and ease of mass production. Glass on 

the other hand has higher transparency and scratch resistance. The thermal expansion 

coefficient (𝛼) of a typical glass is approximately 7.1 ·  10−6𝐾−1 whereas for a thermoplastic 

and thermosetting plastic it lies in the range of 60 − 120 ·  10−6𝐾−1  [11]. In the design of 

high optical assemblies, such temperature dependent properties pose problems for the 

optical designer. Furthermore plastics offer a limited range of refractive index (𝜂), have a 

large negative change in refractive index with temperature (𝑇)(𝑑𝑛/𝑑𝑇), show coating 

instabilities and sometimes excessive surface irregularities which makes them unsuitable for 

precision applications. 

 

1.2.  Advantages and benefits 
 

Lens that are produced by process of compression molding have many desirable advantages 

over conventional manufacturing process. By using this method, lens that is produced has 

near the final shape and does not require any further finishing. It is a faster method because 

of the minimal amount of processes required as compared to the conventional machining 
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process. For the same reason, compression glass molding approach is much cheaper than 

the conventional manufacturing process which uses techniques like magnetorheological 

finishing, ion beam polishing etc. which are very expensive. 

Compression molding process is also environment friendly as it doesn’t require any polishing 

fluids or grinding slurries and doesn’t leave any glass debris that needs to be disposed off 

with care. Some asphere glass lenses contain hazardous elements like lead and arsenic; 

hence the disposal of the manufacturing glass debris needs to be done with care. 
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2. Research objectives 
 

The glass molding process can press glass perform into a shape of finished lens under high 

pressure and temperature conditions, and it is easy to achieve mass production. So, it has 

emerged as a promising alternative way to produce complex shape lens. However, there are 

inherent technical issues associated with the process that has prevented it from being widely 

used in the industry. The aim of this thesis is to understand the basic underlying physics of 

the glass molding process. It was also desired to develop a reliable process simulation model 

that can be utilized for making process predictions and accordingly design, optimize and 

improve its performance. 

More specific research objective of this work is to develop a relatively simple physics- based 

numerical method but yet accurate enough to model a compression glass molding process 

for manufacturing process, predict the final shape of the glass element at the end of the 

molding process, and to predict the critically important residual stresses at the end of the 

molding process. 

The specific objectives of the proposed research are to: 

1. Conduct experiments on a commercial machine to study process feasibility to mold a 

precision aspherical glass lens with the desired surface finish and curve accuracy as 

well as determine process repeatability. 

2. Perform a parametric experimental study to investigate the influence of different 

molding parameters on process performance. 

3. Develop a 2D FEM model of lens molding by incorporating viscoelastic stress and 

structural relaxation phenomenon of glass into the simulation. 

 

The fundamental purpose of the research is to understand the glass molding process and 

develop a relatively simple computational model to predict the same. 

The implications of developing such a tool would be prediction of the glass molding process 

and help in designing the process in a way that would result in the final desired optical 

element. It would help in prediction of the residual stresses and hence in the optimum 

design of the process parameters of the molding process. 
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3. Literature overview 
 

Increasing demand for high quality optical glass components such as aspherical lenses, make 

the need to develop an efficient and economic production process which is significant to the 

optics industry. High precision glass molding technologies have tremendous potential to 

fulfill the needs of economic complex shaped optical components. 

Because of the complexities involved in a glass molding process and the precision that needs 

to be achieved, the glass molding process chain is driven by iterative cycles between mold 

designs, lens profile, residual stresses etc. Multiple cycles are necessary to reach the final 

accuracy of the lens profile and to determine the optimum cooling rate to have residual 

stresses within acceptable limits. Numerical simulation of the glass molding process can help 

to predict the final profile of the lens and most importantly predict the residual stresses at 

the end of the process. 

Although technologies for designing machines that perform the glass molding process have 

been developed significantly, limited work has been established in the field of numerical 

modeling of the glass molding process. This can be attributed to some major challenges such 

as modeling the material model of glass which is dependent on both time and temperature, 

time and temperature dependent boundary conditions, large deformations and contact 

phenomena, which in totality make the analysis highly nonlinear. It is possible to model all 

these characteristics using commercial software, but it would be an expensive alternative – 

monetarily and computationally. 

Jiwang Yan et al. [6] model the high temperature glass molding process by coupling heat 

transfer and viscous deformation analysis. He proposed two-step pressing process according 

to the non-linear thermal expansion characteristics of glass. The phenomenon of heat 

transfer was modeled by considering the temperature dependence of specific heat and 

thermal conductivity of glass. The author carried out experiments on an ultraprecision glass 

molding machine GMP211. Computer simulation of the glass molding process were carried 

out using a commercially available FEM program DEFORMTM-3D, the program which is 

capable of simulating large deformation of material flow under isothermal and non-

isothermal conditions. The author concluded that incomplete heating of glass not only 

causes sharp increase in pressing load at the beginning of the pressing, but also leads to non-

uniformity in viscous deformation and geometrical error of the glass component. The high-

temperature material flow of glass was simulated by a modified Newtonian fluid model, and 

the predicted pressing loads agree well with the experimental results. 

A. Jain et al. [3] dealt with some scientific issues associated with the glass lens molding 

process and the application of the technology for making optical elements for different 

application. Finite Element Method approach for studying and predicting has been 

described. Numerical simulations of the lens molding process were performed using a 
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commercial FEM code MSC Marc by modeling glass as a Newtonian fluid during the molding 

stage. Authors simulated annealing stage of molding process by implementing to different 

methods: 1) thermal expansion coefficient of glass and 2) characteristic structural relaxation 

model of glass as described by the Narayanaswamy theory. They also develop a new method 

of making micro lens arrays. This method is based on heating the glass to a temperature 

above its transition temperature and is then pressed into a micro-hole array located on the 

mold surface. Authors were able to obtain excellent results in comparing the predicted lens 

cure and actual lens geometry. 

Anurag Jain et al. [5] based his research on fundamental understanding of the lens molding 

process by adopting a combined experimental, analytical and numerical Finite Element 

Method approach. Author performed experiments which involved molding of a test 

aspherical glass lens on a commercial lens molding machine, and determined the effect of 

different molding parameters. Results from the experiments have showed that molding 

process is capable of producing precision glass lenses with shape and form accuracy 

comparable to lenses manufactured using conventional abrasive techniques. Numerical 

simulation was able to predict, residual stress in the glass lens as a function of process 

parameters, and proved that FEM can be used to predict, optimize and improve the 

performance of a lens molding process. 

Jiři Málek et al. [10] explored the evolution of As2Se3 glass volume below the glass transition 

temperature measuring it by dilatometry under isothermal and non-isothermal conditions. 

Experimental data were described by Tool-Narayanaswamy-Moynihan model for a single set 

of kinetic parameters. Experimental data for volume relaxation of Ae2Se3 glass were 

annealed sufficiently long time to achieve equilibrium at temperatures below Tg. They 

measured structural relaxation far below Tg and tested the evolution of volume based fictive 

temperature as a function of time. 

Shriram Palanthandalam Madapusi [8] based his research in developing physic-based 

computation tool to treat and quantify each individual process that occurs in the molding 

process such as heating, compressing and cooling and hence be able to predict the residual 

stresses and the final geometry of the glass element. He developed numerical method to 

model glass press molding process, and predicted the final shape of the glass at the end of 

process. 
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4. About the process 
 

The glass molding process is essentially performed in five cycles. The five cycles involved in 

the glass molding process are: 

1. Heating Cycle 

2. Soaking Cycle 

3. Pressing Cycle 

4. Gradual Cooling Cycle 

5. Rapid Cooling Cycle 

 

A typical glass press molding cycle is composed from the above five cycles sequentially; 

heating the glass and mold, soaking the glass to achieve uniform temperature, pressing the 

glass to obtain the deformed lens shape, gradually cool the lens to ensure uniform cooling 

and finally rapid cooling to room temperature.  

 

 

Figure 4.1  Placing of raw glass gob/ blank material on the lower mold, (b) Heating of the glass and mold 
assembly to the molding temperature, (c) Pressing (molding) of the glass material between the mold halves and 
(d) Forced cooling of the lens and mold assembly to near room temperature and lens release 
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4.1.  Heating cycle 
 

The heating is the first step in glass press molding. During this process, the molds and the 

glass gob are heated above the glass transition temperature. During the heating process the 

system is continuously purged with Nitrogen to prevent oxidation on the molds. The molds 

are heated to the commanded temperature by an induction heating system around the 

molds.  

Usually the molds do not undergo any compression during this cycle. Any compression will 

most likely destroy the glass sample. Typically, the commanded temperature is slightly above 

the glass transition temperature where the glass is soft enough for pressing. Typical values 

range from 5-10% above Tg. The molds and the glass sample expand during this cycle due to 

the thermal effects. 

 

4.2.  Soaking cycle 
 

The soaking cycle is necessary for the temperature of the glass and the molds to reach a 

steady state, where all the components are at a uniform temperature distribution. The 

controller maintains the commanded temperature for the duration of soaking cycle time. On 

large size molds and glass samples the soaking time can be on the order of few minutes to 

ensure that the temperature is uniform.  

 

4.3.  Pressing cycle 
 

The pressing cycle commences at the end of the soaking cycle. During this cycle the 

controller maintains the commanded temperature and will start moving the pressing axis to 

compress the glass sample. In the cycle, the controller can be either operated in position or 

force control. If operating in position control, the user must ensure that the expansion of the 

molds and glass material will not create excessive forces on the molds and glass. Since molds 

are highly rigid, even a slight inaccuracy in specifying the displacement or position can result 

in very high reaction forces. Hence the pressing process is generally performed under the 

force control mode where the amount of force to be applied is specified. Under force control 

mode, the expansion compensation is not necessary because the press will automatically 

move to maintain the commanded force. The molding area is enclosed with metal bellows to 

enable molding in a vacuum or inert gas environment. This will help to prevent oxidation 

damage to the mold surfaces at the elevated temperatures, and will help to prevent dust 

and other contaminants from collecting on the mold surfaces. The fully enclosed molding 

chamber with vacuum will help to minimize the convective and radiation heat losses. 
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4.4.  Gradual cooling cycle 
 

The gradual cooling is the fourth step in the glass press molding process. In this step the 

temperature of the molds and glass is gradually decreased to a desired temperature. Usually 

additional heat is required to ensure that the molds do not cool too fast. The gradual cooling 

is done by continuously injecting heat and Nitrogen gas to follow the specified temperature 

profile. During this phase it is possible to press again to give the glass a final shape and 

alignment. 

This cycle is the most critical cycle in the glass molding process. During the cooling, the outer 

surface of the glass cools faster than the inner surface which results in a non-uniform 

temperature distribution. During the temperature range where the phase changes, the outer 

surface approaches the elastic state while the inner core is still viscous. This non-uniform 

temperature distribution and the phase change results in residual stresses, which are 

detrimental to the performance of the optical element. Hence, the cooling has to be 

carefully controlled to minimize the non-uniform temperature distribution. This allows 

enough time for the stresses to relax and attain equilibrium with every step change in 

temperature. 

 

4.5.  Rapid cooling cycle 
 

Rapid cooling is the last cycle in the process and it takes the molds and glass temperature to 

ambient temperature. The cooling is accomplished using a high flow of nitrogen gas. After 

this cycle is completed the glass in unloaded from the molds and a new glass gob is loaded. 

The rapid cooling generally is started from the lower range of the glass transition range 

where the glass can be considered to be frozen into a solid. 
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5. Fundamental of glass rheology 
 

5.1.  Glass terminology 
 

Strain point: Temperature above which glass relieves stresses over time. It marks the low-

temperature end of the glass transition region. If a glass sample is cooled below the strain 

point, any remaining stress would be locked, i.e., stress would not relax.  

Annealing point: Temperature above which stresses rapidly relax. Annealing is generally 

carried out at a viscosity of 1012 𝑃𝑎 · 𝑠. 

Significance of annealing: Variations in cooling rates between the inside and outside regions 

of the glass induce thermal stresses. The inside region is comparatively at a higher 

temperature leading to expansion while the outside region contracts due to faster cooling. If 

the glass is cooled too fast, this expansion and contraction are locked into place leading to 

residual stresses. Thus, glass will eventually crack to relieve this built up stress. 

Softening point: Temperature above which glass extends/deforms due to its own weight.  

Viscosity: Viscosity is a measure of the materials resistance to deformation. Usually viscosity 

varies with temperature following the Arrhenius law, given by 

1

𝜂
= 𝐴𝑒

𝐻
𝑅𝑇 , 

 

(5.1.1) 

where  𝐴 is a constant, 𝐻 is the activation energy,  𝑅 is the gas constant and 𝑇 is the 

absolute temperature. 

 

5.2.  Glass transition temperature and its significance  
 

Before understanding the meaning of glass transition, it is important to know about 

crystalline, amorphous and semi-crystalline solids. Crystalline solids have long range atomic 

order with respect to their position of atoms whereas amorphous solids have no long range 

atomic order of their position of atoms. However they can have local arrangement of atoms 

at atomic length scale due to the nature of chemical bonding. Semi crystalline solids are a 

combination of both crystalline and amorphous parts. It is well known that glass is an 

amorphous solid. As shown in Figure 5.1, amorphous solids can be either in glassy or rubbery 

state based on the temperature. The temperature at which the transition from glassy state 

to rubbery state takes place in an amorphous solid is called the transition temperature [2]. 

Glass transition temperature is not a fixed parameter since glass phase in not in equilibrium. 

Important factors that affect the transition temperature value, Tg, are: (1) thermal history, 
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i.e., rate of cooling and heating, (2) age, (3) molecular weight, and (4) method employed to 

measure Tg. Figure 5.1 shows the definition of the transition temperature as the point of 

intersection of the tangents to the glassy and rubbery curves. Note that the transition 

temperature is different from the melting temperature, which is a characteristic of crystals 

while transition temperature is a characteristic of amorphous solids. 

 

Figure 5.1 Glass transition region 

 

The glass transition is a region of temperature in which the rearrangements occur at a 

molecular level to attain equilibrium on a scale of perceivable time of the order of minutes 

or hours and hence the change of properties occur at a rate that is easily observed. When 

subjected to mechanical load in the region, time dependent change in dimensions results. If 

a glass in the transition region is subjected to a sudden change in temperature, time 

dependent change in properties (like volume, density etc.) occurs which is known as 

structural relaxation. 
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5.3.  Viscoelasticity  
 

Viscoelasticity is a property of the material that exhibit both elastic and viscous behavior 

while undergoing deformation. These materials can be graphically and mathematically 

modeled by combining elements that represent these characteristics i.e. they can be 

represented as a combination of springs and dashpots. Many such models have been 

developed, for instance the Kelvin model, Voight model, Maxwell model etc.  

 

 

 

Figure 5.2 Spring and dashpot 

Mathematically, a spring demonstrates Hookean behavior for solids and dashpot 

demonstrates Newtonian law for liquids. According to Hooke’s law of solids, 

𝜀 =
𝜎

𝐸
 , 

 

(5.1.2) 

 

where 𝜀 is the strain, 𝜎 is the stress and 𝐸 is Young’s modulus of elasticity of the material at 

room temperature. 

The delayed version of the viscoelastic material demonstrates non-Hookean behavior and 

resembles Newtonian material where stress is proportional to the first derivative of strain. 

For an ideal Newtonian fluid, the shear stress is related to the rate of application of strain  

𝜎 = 𝜂
𝑑𝜀

𝑑𝑡
, 

 

(5.1.3) 

where 𝜂 is viscosity of the fluid. 

A viscoelastic material exhibits a response which is a combination of elastic response and 

viscous response. Hence there is an instantaneous response of a viscoelastic material to an 

applied mechanical load, followed by a time dependent viscous response. At molecular level, 
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when stress is applied to a viscoelastic material like glass or polymer, part of the long 

material chain change composition. This movement or rearrangement is known as creep. 

The material still remains as a solid material while these rearrangements happen in order to 

accompany the applied stress. This generates a back stress in the solid, and when the 

applied stress is taken away the back stress causes the material to return to its original form. 

Hence, the material creeps due to its viscosity (hence the prefix viscous) and as it eventually 

returns to its original form, the suffix elasticity. [8] 

Viscoelastic behavior of glass as already mentioned can be theoretically expressed using a 

suitable series/parallel configuration of springs and dashpots. Instantaneous elongation is 

represented using springs, which are meant to describe Hookean elastic behavior, and 

dashpots, comprising of piston, cylinder and the viscous fluid describing Newtonian 

behavior. Maxwell’s Model is proposed by James Clerk Maxwell in 1867, and it is a model 

that combines a purely elastic spring and a purely viscous damper connected in series.  

The standard linear model can be easily generalized to include an arbitrary number of 

Maxwell elements arranged in parallel – which is known as the generalized Maxwell model. 

A real viscoelastic material does not conform to the response as predicted by the standard 

linear model but instead conforms to the generalized Maxwell model which leads to a 

distribution of relaxation times. This in turn produces a relaxation spread over a much longer 

time than can be modeled accurately with a single relaxation time. [8] 

 

 

 

Figure 5.3 Standard Maxwell linear model for viscoelasticity 
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Figure 5.4 Generalized Maxwell model for viscoelasticity 

 

In this arrangement, the Maxwell arm and the parallel spring 𝐺∞ experience the same strain, 

and the total stress σ is the sum of the stresses in each arm as in Equation  

𝜎 = 𝜎𝑉 + 𝜎∞, (5.1.4) 
 

where 𝜎𝑉 denotes the viscous stress in the Maxwell arm and 𝜎∞ is the stress acting on the 

spring with constant 𝐺∞. If the total strain is ε, by equilibrium we have: 

𝜎 = 𝐺∞ε + 𝜎𝑉 
 

(5.1.5) 

 

For detailed explanation of general Maxwell model and accompanying equations, see [8]. 

 

 

5.4. Stress relaxation and creep  
 

The property of viscoelasticity induces non-linearity into the behavior of material. This non-

linearity can be defined by both stress relaxation and creep. Stress relaxation can be defined 

as time dependent decrease in stress under a constant strain or deformation in the 

viscoelastic region. In other words, it is the stress decay during creep in transition region. 

Stress relaxation is shown on Figure 5.5.  

Contrary to stress relaxation, creep refers to the study of strain behavior on application of 

constant stress. Creep-recovery experiments are comparatively easier than perform stress 
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relaxation experiments. Creep recovery experiments are considered advantageous over 

stress relaxation experiments due to the fact that it is possible to extract high sensitive 

creep-recovery data when compared to low sensitive stress decay measurement from stress 

relaxation tests. Stress relaxation and creep are complimentary. Creep is shown on Figure 

5.6. 

When a body is subjected to a constant strain, there is a gradual decay in the stress known 

as stress relaxation. This is achieved through position control, i.e., the specimen is 

compressed or extended by a known distance resulting in a predetermined stress. Now the 

stress due to applied strain followed by the decayed stress is estimated from the load and 

position at the desired temperature in the glass transition region. Strain is maintained 

constant by keeping the displacement/position constant. [2] 

 

Figure 5.5 Stress relaxation vs. time 

 

Figure 5.6 Creep vs. time 
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5.5. Structural relaxation 
 

Structural relaxation is the phenomenon of time dependent change of a property, like a 

volume, when a viscoelastic material, like glass, is subjected to a sudden step change in 

temperature.  

The process of structural relaxation is more complex than the process of viscoelastic stresses 

relaxation, because in the first case there is a variation of temperature and so, there is a 

change in the viscosity value that affects the relaxation times of the process. So, there are 

many cases where the viscoelastic relaxation process is linear, but the structural relaxation 

process is inherently non-linear due to the variation of viscosity with temperature. 

Narayanaswamy and Moynihan [12] proposed a model for predicting the heating and 

cooling differential scanning calorimetry (DSC) curves which represent the structural 

relaxation phenomena in the proximity of the glass transition temperature.  

Suppose a viscoelastic material is at equilibrium at temperature 𝑇1 which is suddenly cooled 

to temperature 𝑇2, then the properties will change as shown in Figure 5.7. The 

instantaneous change in volume is characterized by 𝛼𝑔 which is the coefficient of thermal 

expansion at the glassy state and the total change after equilibrium corresponds to 𝛼1  which 

is the coefficient of thermal expansion at the liquid state [8]. 

 

 

a) 
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b) 

Figure 5.7  Phenomenon of structural relaxation a) Viscoelastic material subjected to a step change in 
temperature b) Corresponding response of a property like volume for e.g. with time when subjected to a step 
change in temperature 

 

In the transition region, the response of a property to a small change in temperature from 𝑇1 

to  𝑇2 is defined by the response function 𝑀𝑣(𝑡) given in Equation 5.1.6. 

𝑀𝑣(𝑡) =
𝑉(𝑡) − 𝑉2(∞)

𝑉2(0) − 𝑉2(∞)
=

𝑇𝑓(𝑡) − 𝑇2

𝑇1 − 𝑇2
, 

 

(5.1.6) 

where the subscripts 0 and ∞ represent the instantaneous and long term values of volume 

(V), following the step temperature change. This function represents the fraction of the 

volume change that has not yet occurred. 

The quantity 𝑇𝑓 is defined as fictive temperature – the actual temperature of an equilibrium 

state that corresponds to the given non-equilibrium state. Hence if a liquid were equilibrated 

at 𝑇𝑓 (𝑇1) and then instantaneously cooled to  𝑇1, it would change along the line with slope 

𝛼𝑔  as no structural rearrangement would occur. The fictive temperature 𝑇𝑓  is found by 

extrapolating a line from 𝑉(𝑇𝑖) with a slope 𝛼𝑔  to intersect a line from 𝑉(𝑇0) with slope α1 

as illustrated in Figure 5.8. 
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Figure 5.8 Volume vs. temperature behavior for a viscoelastic material like glass 

 

The experimentally measured shape of the response function is described by Equation 5.1.7. 

𝑀𝑣(𝑡) = 𝑒𝑥𝑝[−(𝑡/𝜏𝑣)𝑏], 
 

(5.1.7) 

where b is a phenomenological parameter whose value lies between 0 and 1 and is typically 

equal to 0.5 [8] and 𝜏𝑣 is structural relaxation time.  Alternatively, the experimental data can 

be fitted more accurately by using a spectrum of relaxation times and weights as expressed 

in Equation 5.1.8. 

𝑀𝑣(𝑡) = ∑ 𝑤𝑖exp (−𝑡/𝜏𝑣𝑖),

𝑁

𝑖=1

 

 

 
(5.1.8) 

where 𝑤𝑖 corresponds to the weight associated with each 𝑖𝑡ℎ component and ∑ 𝑤𝑖 = 1. 

Structural relaxation times and stress relaxation times are strongly temperature dependent. 

In order to estimate the variation of these quantities with temperature, we assume glasses 

to exhibit thermorheologically simple behavior.  
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5.6.  Linearity and thermorheological simplicity  
 

Linearity is the property of instantaneous and delayed elastic responses being linearly 

proportional to the applied stress. Linearity is manifested in all glasses as long as the applied 

stresses are sufficiently low, i.e., creep curves are independent of applied stresses. This 

concept is also applicable to complicated glasses such as borosilicate glass. [2]  

By thermo-rheological simplicity we mean that the effect of temperature leads to a shift of 

the relaxation curve on the log scale without change in shape, i.e., the curves are parallel to 

each other as shown in Figure 5.9 and equation 5.1.9. 

 

 

Figure 5.9 Thermo-rheological simple behavior 

 

− log 𝑎 = 𝐴 +
𝐵

𝑇
, 

 

(5.1.9) 

 

where 𝐴 and 𝐵 are given by 

𝐴 = −𝑙𝑜𝑔
𝜏𝑟

𝜏0
 

 
(5.1.10) 

 

𝐵 =
∆𝐻

𝑅
, 

 
(5.1.11) 
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where, ∆𝐻 is the activation energy, 𝑅 is the gas constant, 𝜏 is relaxation time and 𝑇 is the 

absolute temperature. If stress relaxation time follows the Arrhenius equation for viscosity, 

then viscosity is proportional to relaxation times and is given by: 

𝜏 = 𝜏0𝑒𝑥𝑝 (
∆𝐻𝑖

𝑅𝑇
) 

 
(5.1.12) 

In this case the curves demonstrate thermorheologically simple behavior. 
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6. Lens molding experiments 
 

This chapter describes the experimental lens molding work that was performed on a 

commercial lens molding machine (Model No. 140 GPM, Nanotech, USA) presented on 

Figure 6.1. 

The Nanotech 140GPM is a glass press molding machine designed for precision glass optic 

applications. This machine compliments the Nanotech 450UPL or 350FG which can be 

configured for ultra-precision grinding of WC (tungsten carbide) and SiC (silicon carbide) 

mold components.  

 

 

Figure 6.1 Nanotech 140GPM 
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Lens molding experiments were performed to study the capability of the molding process to 

make a precision lens to the desired figure accuracy and surface finish as well as process 

repeatability. Preliminary simulations were performed using a commercially available 

nonlinear FEM program MARC, which is suitable for viscoelastic modeling of materials.  

Geometry of parts used in press molding is shown on the next figure. It consists of ring, 

bottom and top guides (molds) and inserts. 

 

Figure 6.2 Geometry of parts used in press molding 

 

 

6.1.  Material of glass 
 

Type of glass used in experiments is chalcogenide glass. Chalcogenide glass is a glass 

containing one or more chalcogenide elements sulfur, selenium and tellurium, but excluding 

oxygen. Such glasses are covalently bonded materials and may be classified as covalent 

network solids. Polonium is a chalcogenide but is not used because of its strong radioactivity 

and high price. Chalcogenides materials behave rather differently from oxides, in particular 

their lower band gaps contribute to very dissimilar optical and electrical properties. 

The classical chalcogenide glasses (mainly sulfur-based ones such as As-S or Ge-S) are strong 

glass-formers and possess glasses within large concentration regions. Glass-forming abilities 

decrease with increasing molar weight of constituent elements; i.e., S > Se > Te. 
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Chalcogenide compounds such as AgInSbTe and GeSbTe are used in rewritable optical disks 

and phase-change memory devices -they are fragile glass-formers; by controlling heating and 

annealing (cooling), they can be switched between an amorphous (glassy) and a crystalline 

state, thereby changing their optical and electrical properties and allowing the storage of 

information. 

These types of glasses have received particular attention because of their transmission in the 

middle-infrared. Due to this ability, they have been used in infrared cameras optics and 

optical fiber in order to carry signals emitted by thermal sources or by a laser such as CO2 

laser. Chalcogenide glasses, in particular TAS glass (ternary system  𝑇𝑒2𝐴𝑠3𝑆𝑒5), are used in 

evanescent wave spectroscopy of biomolecules in human lung cells, IR signatures being 

recorded in order to measure the impact of toxic agents on cell health for example. But most 

of chalcogenide glasses such as 𝐺𝑒𝑥𝑆𝑒1−𝑥 or 𝑇𝑒 − 𝐴𝑠 − 𝑆𝑒 exhibit poor mechanical 

properties. Moreover, due to their low glass transition temperature (Tg), they behave 

viscoelastically at room temperature.  

The exact type of chalcogenide glass used for experiments is IG6- As40Se60. IG-6 features 

excellent transmittance and low thermal change in refractive index and dispersion. IG-6 is 

ideal for applications in combination with other IR material for color corrected designs and 

infrared optical systems without thermal defocusing in the 2-12 µm spectrum. Molding, 

classical polishing or Single-Point-Diamond-Machining permits the production of optical 

components with flat, spherical and/or aspherical shaped surfaces for the infra-red and 

optoelectronics industries. Antireflection coatings further improve transmission by reducing 

the reflection at the air-glass interfaces. 

Table 6.1 Material properties 

IG-6 

Density 4630 kg·m-3 

Thermal expansion [20°C-
100°C] 

20.7 10-6·K-1 

Specific heat capacity 360 Jkg-1·K-1 

Thermal conductivity 0.24 W·m-1·K-1 

Transition temperature 185 °C 

Softening point 236 °C 

Young’s Modulus 18.3 GPa 

Poisson’s ratio 0.3 (1) 
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The lens before experiment had diameter of 25 mm with a thickness of 1.3 mm.  

Table 6.2 shows typical glasses used for glass press molding. 

 

Table 6.2 Typical glasses used for glass press molding 

Manufacturer Glass Tg [°C] 

Hoya BACD5 620 
Hoya TAF1 663 
Hoya TAF3 638 
Hoya BAFD8 610 

Schott N-BK7 525 
Schott N-FK5 446 
Schott N-FK51 420 
Schott N-PSK57 497 
Schott N-LAF33 600 
Ohara S-LAL12 652 
Ohara S-NPH1 552 
Ohara S-LAL18 685 

 

 

6.2.  Molds and ring 

 

Form base (ring, bottom and top guide) are made from stainless steel 1.4305. The ring is 

made in several height variants, due to different glass height. EN 1.4305 is a free-machining 

austenitic stainless steel. The excellent machinability is due to its sulphur content of 

between 0,15 - 0,30 %. It has good resistance to atmospheric corrosion and many organic 

and inorganic chemicals. It is non-magnetic in the annealed condition but may become 

slightly magnetic due to the introduction of martensite or ferrite at the cold working or 

welding stages. 

Table 6.3 Material properties of stainless steel 1.4305 

Stainless steel 1.4305 
Temperature [°𝐶] 20 100 200 400 600 800 

Density [𝑘𝑔 · 𝑚−3] 7900      

Modulus of elasticity [𝐺𝑃𝑎] 200 195 185 175 155 135 

Mean coeff. of thermal expansion  [𝑥 10−6 · 𝐾−1] - 17.0 17.5 18.5 19.0 19.5 

Specific heat [𝐽 · 𝑘𝑔−1 · 𝐾−1] 440 480 520 560 590 630 
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6.3. Inserts  
 

There are three different types of inserts (same dimensions - diameter 30 mm, height 5 

mm), that provides shape and surface for molding. All three are coated by 𝐴𝑙2𝑂3 in nm 

thickness as an anti-sticking surface. 

1. NiP coated (cca. 20 μm) stainless steel 1.4305 

2. Classic brass for automatic machining CW607N (CuZnPb) 

3. Alloy  Elmendur X (CuCrZr) 

 

Table 6.4 Material properties of Elmendur X 

Elmendur X 
Chemical composition 
(reference values in %) 

Cr Zr Cu 

0.8 0.08 balance 

Material properties Precipitation hardened copper alloy with excellent hardness 
and high electrical and thermal conductivity. 

Density [𝑘𝑔 · 𝑚−3] 8900 

Modulus of elasticity [𝐺𝑃𝑎]  108 

Specific heat  [𝐽 · 𝑘𝑔−1𝐾−1] 0.376 

Thermal conductivity 
[𝑊 · 𝑚−1 · 𝐾−1] 

320 

 

Table 6.5 Material properties of brass 

CW607N 
Chemical composition 
(reference values in %) 

Cu Al Fe Ni Pb Sn Zn Others 

60.0- 
60.1 

max. 
0.05 

max. 
0.20 

max. 
0.30 

0.80-1.60 
max. 
0.20 

rest max. 
0.20 

Material properties Highly suitable for hot formed parts, e.g. profiles. 

Density [𝑘𝑔 · 𝑚−3] 8400 

Modulus of elasticity [𝐺𝑃𝑎]  102 

Heat capacity  [𝐽 · 𝑘𝑔−1𝐾−1] 377 

Thermal conductivity 
 [𝑊 · 𝑚−1 · 𝐾−1] 

109 
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Figure 6.3 Ring, guide and insert  

 

6.4.  Experiment 
 

Experiments were done with chalcogenide glass IG6. The heating is the first step in glass 

press molding. Before the heating process starts the system is purged with Nitrogen to 

remove any oxygen from the environment. Nitrogen purge is set in seconds. At the end of 

the purge cycle the heating cycle commences. Usually there is no compression of the molds 

during this cycle. Typically, the commanded temperature is slightly above the glass transition 

temperature where the glass is soft enough for pressing. The molds and the glass sample 

expand during this cycle due to the thermal effects. After heating the molds and glass to 

predefined temperature, pressing cycle starts, where upper and lower mold are moved in 

order to obtain desired shape. The gradual cooling is next step in the glass press molding 

process. In this step the temperature of the molds and glass is gradually decreased to a 

desired temperature. As mentioned earlier, usually additional heat is required to ensure that 

the molds do not cool too fast. The gradual cooling is done by continuously injecting heat 

and Nitrogen gas to follow the specified temperature profile. During this phase it is possible 

to press again to give the glass a final shape and alignment. Last step of glass molding 

process is rapid cooling cycle where glass and molds are cooled to the room temperature.  
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Figure 6.4 Molding setup  

Figure 6.5 shows a variation of the molding temperature, mold position and molding force 

with time during the experiment. 

 

Figure 6.5 Process sheet showing the variation of mold temperature, position and molding force as a       
function of time during the experiment 
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On the previous diagram it is visible that the force is applied after sufficient amount of time, 

when it is assumed that the temperature is evenly distributed in the molds and glass.  

Figure 6.6 is made according to the Figure 6.5 and cycles described at Chapter 4 to show 

different cycles of glass press molding. 𝑇1 represents heating time, 𝑇2 soaking time, 𝑇3 

pressing time, 𝑇4 gradual cooling time and 𝑇5 rapid cooling time. 

 

Figure 6.6 Different cycles in glass molding process 

 

The process parameters used in the molding process were also used in the FE simulation.  

Determination of a suitable temperature for pressing is an essential issue for glass molding. 

If pressing is performed above yielding point [6] and held on to keep the shape of the lens 

during cooling, the volume expansion around yielding point will lead to a sharp increase in 

pressing load, and in turn, adhesion of glass to molds. On the contrary, if pressing is done 

below yielding point of glass, a high pressing load will be required because glass is not 

sufficiently softened at this temperature range. In this case, significant residual stresses will 

occur in the glass lens, and the high pressing load may also shorten service life of the molds. 

Heating time determines the uniformity of temperature in glass, and affects the pressing 

load too. One of the phenomenon caused by non-uniformity of temperature in glass is that 

the initially cylindrical glass preform, after pressing, will be deformed to be an isosceles 

trapezoid where the diameter of the bottom surface is bigger than the top surface. Choosing 

a suitable heating time is not only an important issue for prolonging the service life of molds, 

but also an essential step for improving accuracy and optical property of the molded lenses. 
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6.5.  Light white interferometry 
 

Shape of inserts and glass used in molding is measured by light white interferometry.  White 

light interferometry is an extremely powerful tool for optical measurements. It is a non-

contact optical method for surface height measurement on 3-D structures with surface 

profiles varying between tens of nanometers and a few centimeters. While white light 

interferometry is certainly not new, combining rather old white light interferometry 

techniques with modem electronics, computers, and software has produced extremely 

powerful measurement tools. 

Currently most interferometry is performed using a laser as the light source. The primary 

reason for this is that the long coherence length of laser light makes it easy to obtain 

interference fringes and interferometer path lengths no longer have to be matched as they 

do if a short coherence length white light source is used. The ease with which interference 

fringes are obtained when a white light source is used is both good and bad. It is good that it 

is easy to find laser light interference fringes, but it can be bad in that it can be too easy to 

obtain interference fringes and any stray reflections will give spurious interference fringes. 

Spurious interference fringes can result in incorrect measurements. 

Optical profilers from ZYGO are white light interferometer systems, offering fast, non-

contact, high-precision 3D metrology of surface features. All optical profilers include 

proprietary data analysis and system control software. Choosing the right surface 

measurement system depends on the application's requirements, including precision, speed, 

automation, configuration flexibility, and vertical range. 

The performance and capability of any optical profiler is largely dependent on the lens 

objectives it uses. Objectives determine the magnification, working distance, slope 

capability, and field of view of the profiler, so choosing the right objective(s) is very 

important in achieving metrology goals. 

Following figures are the result of shape measurement with light white interferometry of 

inserts before and after molding and shape of the glass after molding. 
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Figure 6.7 Shape of the CuZnPb insert (coated with Al2O3) before molding 

 

b) 

Figure 6.8  Shape of the CuZnPb insert (coated with Al2O3) after molding 

 

Figure 6.9 Shape of the NiP coated stainless steel insert before molding  
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Figure 6.10 Shape of the NiP coated stainless steel insert after molding 

 

Figure 6.11 Shape of the glass (CuZnPb side) after molding 

 

Figure 6.12 Shape of the glass (NiP side) after molding 
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7. Numerical simulation 

 

Numerical Finite Element Method (FEM) has routinely been used in the manufacturing 

industry to study, analyze, develop, improve and optimize, manufacturing process 

performance. With the advent of the advanced commercial FEM codes and computing 

hardware it is possible to realistically simulate and observe process variables that are 

difficult or even impossible to measure from experiments, for example in case of lens 

molding it includes among others: glass flow behavior/ flow front position with time, 

temperature distribution in glass, residual stress distribution, glass-mold contact behavior, 

lens shape change during cooling, etc. [5] 

Computer simulations of the glass molding process were carried out using a commercially 

available nonlinear FEM program MARC, which is suitable for viscoelastic modeling of 

materials. The main objective of performing these simulations was to implement the 

viscoelastic material model of glass with stress and structural relaxation into FEM. The 

implementation of the structural relaxation model would enable the prediction of residual 

stresses in the lens at the end of cooling. Figure 7.1 shows the 2D-axysymmetric numerical 

simulation model of lens and molds in Marc. 

Four node quadrilateral elements have been used all throughout the simulation. Because of 

rotational symmetry of most of the optical devices, the entire simulation was modeled as an 

axisymmetric formulation for computational simplicity. This simplification can help by 

greatly reducing the number of calculations required, saving computational space and time. 

Molds, each, are meshed with 600 elements, while glass is meshed with 100 elements. 
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Figure 7.1 Geometry of glass and molds modeled in MSC Marc 

 

7.1.  Inputs 

7.1.1. Materials 

 

First step was to choose correct material model for simulation. This part is one of the most 

important parts, since inadequate parameters of the material can lead to complete incorrect 

results. Modeling the material model of glass is quite complicated since it is dependent on 

both time and temperature, has time and temperature dependent boundary conditions, 

large deformations and contact phenomena, which in totality make the analysis highly 

nonlinear. 

Symmetry axis 
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There are several methods to evaluate the viscoelastic properties of glass. The most 

common method is to fit the experimental data with analytical or mathematical constitutive 

model using method of nonlinear regression analysis or be the method of least squares [8]. 

Creep and stress relaxation tests are the most commonly used methods to determine the 

viscoelastic properties of materials like glass etc. In these tests, instantaneous strain (or 

displacement) or stress (or force) is applied and the corresponding decay of the other 

quantity is noted.  

Time should be invested in studying and implementing these methods which can be used for 

obtaining correct viscoelastic values of material in question [5]. Using and implementing 

those kind of methods, goes beyond the scope of this thesis. 

From viscosity data for chalcogenide glass in [10] we were able to calculate necessary 

viscoelastic parameters by fitting the viscosity curve with Equation 5.1.1. Presenting 

mentioned viscosity data in excel, and connecting the points with linear trend line we get 

equation 7.1.1. 

𝑦 = 15.317𝑥 − 22.902 
 

(7.1.1) 

By fitting Equation 7.1.1 and Equation 5.1.1 we obtain value for gas activation energy 𝐻 

listed in the Table 7.3. 

Shear modulus was calculated using following equation 

𝐺 =
𝐸

2 · (1 + 𝜈)
 , 

 

(7.1.2) 

where 𝐸 is Young’s modulus, and 𝜈 is Poisson’s coefficient. Value of the share modulus 

obtained is 𝐺 = 7038 𝑀𝑃𝑎. 

Number of Maxwell arms used in simulation is 3, and according to that number in Table 7.1 

are listed values of relaxation times and shear constants. The sum of shear constants must 

be equal to shear modulus calculated with equation 7.1.2. Ratios for shear constants and 

values for relaxation times are obtained from molding software provided by the 

manufacturer of glass press molding machine.  

Table 7.1 Relaxation times and shear constants 

Relaxation times [sec] Ratios Shear constants [MPa] 

1·10-6 0.3 2111.4 
1·10-4 0.25 1759.5 
1·10-1 0.45 3167.1 

 

Weighting factors and time constants were obtained by using a special program utilizing a 

Lavenberg-Marquardt optimization for the viscosity data mentioned above. Values are listed 

in the Table 7.2. 
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Table 7.2 Weighting factors and time constants 

Weights wi Time constants 

8.4127·10-3 1.3749·10-4 

3.9607·10-2 2.4389·10-3 

1.4337·10-1 1.7462·10-2 

4.1893·10-1 7.8545·10-2 

3.8916·10-1 2.2631·10-1 

5.0304·10-4 22.7299 

 

Table 7.3 shows viscoelastic parameters used in simulation. It should be noted that the 

parameters from Table 6.1 were also used in simulation. 

Table 7.3 Viscoelastic properties of IG-6 

Viscoelastic properties of IG-6 

Number of Maxwell elements 3 (1) 
Shear Modulus 7038 MPa 
Reference temperature 175 °C 
Gas activation energy 38 kK 
Fraction parameter [10] 0.71 (1) 
 

 

7.1.2. Boundary conditions 

 

In order to have a working simulation, boundary conditions need to be applied. Boundary 

conditions applied in our model, are according to the done experiment.  Figure 7.2 shows 

applied B.C.  

Displacement of the nodes of lower mold is fixed in 𝑥 direction. Position, which is obtained 

from experiment, is applied on the upper mold, so when the mold moves it presses the glass. 

Finally nodal temperature that corresponds to temperature from experiment is applied to all 

nodes of the model. 
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Figure 7.2  a) Fixed displacement in x-direction applied on lower mold b) Change in position applied on upper 
mold 

 

On the Figure 7.3 are presented values of temperature and position implemented in the 

simulation. It should be noted that, both of these conditions are simplified, but yet are good 

approximation of values obtained in the experiment.  

Both molds and glass are heated up to a temperature of 240°C (well above glass transition 

temperature) during experiment. Here in the simulation, initial temperature is set to be 

240°C in order to simplify the process, so the pressing starts almost immediately. 



44 
 

 

a) 

 

b) 

Figure 7.3  Boundary conditions applied on the geometry in the simulation a) Position of upper mold b) 
temperature of glass and molds 
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7.2. Cycles in simulation 
 

Heating cycle 

Due to thermal expansion that takes place during the heating cycle, the profile of glass and 

the mold changes. It is important to quantify the change in mold profile so as to obtain the 

accurate pressing surface for the molding. The objective at the end of this cycle was to 

capture the thermal expansion of the mold profile and the expansion of glass 

Pressing cycle 

During the pressing cycle, the upper mold is pressed over the soft glass to achieve the 

desired imprint of the lower and upper molds. Molding temperature is achieved for this 

cycle, and that temperature is held constant while pressing i.e. the pressing process is 

essentially isothermal.  

Cooling Cycle 

Objectives 

During the cooling or annealing of the formed glass lens from the pressing temperature to 

the room temperature it is important to make sure that the residual stresses that result are 

minimum due to the non-uniform cooling and phase change of glass from the pressing 

temperature to the room temperature. The presence of residual stresses leads to an 

inhomogeneous refractive index which will deteriorate the optical performance of the lens. 

Hence the objective of this cycle is to capture the residual stresses that arise during the 

cooling of the glass and also estimate the shrinkage of the glass that would give the final 

profile of the glass at the end of the molding process. As a consequence we will also be able 

to predict the temperature distribution during the rapid and at the end of the gradual 

cooling phases. 

Figure 7.4 shows the different stages of the lens molding process simulation in Marc. Figure 

7.4 a) shows the initial glass and molds configuration during the heating stage, Figure 7.4 b) 

shows the molding stage in which the glass is pressed between upper and lower molds. 

Figure 7.4 c) shows the stage where glass is already cooled below its transition temperature 

and gained its molded shape. It should be noted that the geometry of both molds and glass 

is simplified for this simulation. Inserts were not taken into account, and molds are 

presented as two rectangles. 
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Figure 7.4 Different stages during MARC lens molding simulation (a) heating stage, (b) pressing stage, (c) 

cooling and lens release 
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7.3. Results 
 

This part will be dealing with the results obtained from simulation with the geometry 

presented earlier. Focus is set on residual stresses and shape change influenced by most 

important part of press molding process, cooling. 

 

Figure 7.5 Component σxx of stress during heating, gradual cooling and rapid cooling stage  

 

Figure 7.6 Component σxx of stress at the beginning of gradual cooling. end of gradual cooling and end of rapid 
cooling cycle  
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Figure 7.5 is representing how the value of 𝜎𝑥𝑥 component of stress, measured at node 

1365, changes during the glass press molding cycles. As it is visible from Figure 7.5, stress at 

the end of the rapid cooling cycle approaches the value of 0, which is the aim of this process. 

Gradual cooling cycle is the most critical part, because if we cool the glass too fast, the value 

of residual stress would be much higher. 

Figure 7.7 and Figure 7.8 represent component 𝜎𝑦𝑦 component of stress, measured at the 

same node as  𝜎𝑥𝑥 component of stress, during the cycles of glass press molding. Similar like 

in previous case, from these it is visible that at the end of the process value of residual stress 

approaches zero. 

 

 

Figure 7.7 Component σyy of stress during heating, gradual cooling and rapid cooling stage 
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Figure 7.8 Component σyy of stress at the beginning of gradual cooling, end of gradual cooling and end of rapid 
cooling cycle  

 

Figure 7.9 shows the change of the shape, measured at arc length of upper part of the glass, 

at the end of process of glass press molding. 

 

Figure 7.9 Change of the shape at the end of process of the upper part of glass 
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7.4. Numerical simulation of molding of aspheric lens 
 

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration. 

Spherical aberration results from using a spherical surface to focus or collimate light. In 

other words, all spherical surfaces suffer from spherical aberration independent of 

alignment or manufacturing errors; therefore, a non-spherical, or aspheric surface, is needed 

to correct for it. 

7.4.1. Aspheric geometry   

 

Conventional lenses generally have either cylindrical or spherical profiles. These lenses are 

relatively easy to fabricate and design. Asphere lenses have a profile which is neither 

completely cylindrical nor spherical. Aspherical lenses have one or both surfaces that do not 

conform to a sphere and can theoretically focus all the incoming monochromatic light rays 

on to a single point on the lens axis. Aspherical lenses are therefore more efficient since they 

do not need additional error-correcting lenses. Fewer lenses help make the device lighter, 

smaller and even cheaper. 

 

Its profile is mathematically expressed by what is known as the asphere equation. An 

asphere lens can consist of multiple segments hence giving more flexibility to design the lens 

profile. The segments can be asphere, flat, spherical etc. 

 

The profile of the upper mold used in simulation is described by an asphere shape. Equation 

7.1.3 describes the asphere curve of the upper mold profile. 

 

𝑍 =
𝑌2

𝑟(1 + √1 − (1 + 𝐾)𝑌2/𝑟2)
+ 𝐴2𝑌2 + 𝐴4𝑌4 + 𝐴6𝑌6 + 𝐴8𝑌8 + 𝐴10𝑌10 

 

(7.1.3) 

 

where 𝑟 is the radius, 𝐾 is the conic constant, and 𝐴2,  𝐴4,  𝐴6,  𝐴8 and 𝐴10  are the asphere 

coefficients. 

 

Parameters for the equation 7.1.3 are given in the Table 7.4 

Table 7.4 Aspheric coefficients 

 r K A2 A4 A6 A8 A10 

S1 PLANO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

S2 1.586014 -2.062694 0.000000 4.968263E-2 -6.116114E-3 1.717442E-3 -4.643557E-4 
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7.4.2. Materials 

 

Type of glass used in this simulation is D-ZLaF52LA. Parameters of glass used in this 

simulation are represented in Table 7.5. Molds are modeled with the same material like in 

numerical simulation for test lens described in Chapter 6.2. Parameters for stainless steel 

1.4305 from Table 6.3 were used in simulation. 

Table 7.5 Properties of glass 

D-ZLaF52LA 

Density 4560 kg·m-3 
Young’s modulus 11506 MPa 
Poisson’s ratio 0.3 (1) 
Glass transition temperature 546 °C 
Shear modulus 4427 MPa 
 

 

In Table 7.6 are shown glasses equivalent with glass used in this simulation, and their 

manufacturer. 

Table 7.6 Equivalent glasses 

Manufacturer   Glass 

Hoya M-NBFD130 
Ohara L-LAH53 
Sumita K-VC89 

 

Advanced solution feature, global remeshing, is used in this simulation in order to improve 

accuracy of the results. Type of remeshing used here is global remeshing, which is used for 

problems exhibiting very large strains and mesh distortion. 
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On the Figure 7.10 is shown geometry made in Marc, for molding the aspheric lens.  

 

 

Figure 7.10 Geometry of molds and glass 
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7.4.3. Results 

 

In this part the results obtained by simulation will be presented. On Figure 7.11 it is shown 

the value of 𝜎𝑥𝑥 component of stress, measured at node 1111. As it is visible from the graph, 

value of residual stress towards the end of process approaches zero. Similarly, on Figure 7.12 

it is shown the value of 𝜎𝑦𝑦 component of stress, measured at the same node. 

 

Figure 7.11 Value of σxx component of stress 

 

Figure 7.12 Value of σyy component of stress 
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It should be noted that the peaks that are showing up on figures Figure 7.11 and Figure 7.12 

are due to the remeshing used in simulation, which was mentioned earlier in this chapter. 

On Figure 7.13 it is represented the final shape of the glass, obtained by simulation, with the 

mold that has aspheric profile. 

 

Figure 7.13 Final shape of the glass at the end of simulation 

On Figure 7.14 it is represented the comparison between the aspheric profile of the glass at 

the end of the simulation, and the initial shape of the aspheric surface of the mold. As it is 

visible from the figure, these two profiles are in a good agreement with each other. 

 

Figure 7.14 Comparison of the aspheric shape of glass and mold 
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8. Conclusion and future work 
 

This research was used to show possibility of numerical modeling of glass press molding 
process. We were able to develop material model for simulation that shows good agreement 
with experimental results.  
 
Experiments were performed on commercial glass press molding machine, and parameters 
from experiments were used to run the simulation. FEM model was developed firstly for test 
element, and then it was used to perform simulation on real element. Results from 
simulations are in a good agreement with the theory of process of glass press molding.  
 
The progress in numerical prediction of the glass molding process opened doors to the 
volume production of precision asphere lenses. This method replaces expensive and time 
consuming traditional methods. The main goal of glass molding process is to manufacture 
precise aspherical optics for reasonable price. This goal could not be achieved without deep 
knowledge of the thermomechanical processes, without detailed data of thermomechanical 
properties of used materials and without possibility to perform numerical simulation. 
Advantage is also that numerical simulations save time and costs of inserts which can be 
pretty expensive if they are made from hard stiff materials like WC (wolfram carbide) or SiSiC 
(siliconized silicon carbide).  
 
FEM approach can be used to study different process phenomenon which are difficult or 
sometimes impossible to observe from real experiments such as glass material flow 
behavior, stress variation in glass during the molding cycle and residual stress distribution in 
a molded lens for a given set of conditions. It is important to minimize residual stresses as 
much as possible, because they influence optical properties and are detrimental to proper 
function of the lens. 
 
In order to obtain more accurate results as mentioned earlier, experiments for obtaining 
exact material parameters should be conducted. Without correct parameters for material 
model, simulation will not show good results. Because of that, emphasis should be put on 
experiments such as compression tests, beam bending test etc.  
 
Special attention should be put on things which we can improve in the future. Among them 
are: 

1. We need to be able to measure material properties, and to determine material 
parameters. 

2. We need to be able to manufacture inserts from CW. 
3. We need to develop coatings. 
4. For large elements it is necessary to manufacture pre-molds; usually by classical 

technology. 
5. We need to focus in reducing the time of the cycle, and by using numerical simulation 

we can obtain optimal parameters for our experiments. 
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