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Abstract 
Digital terrain models and applied visibility analyses are widely used tools  

of geoinformatics. They have an irreplaceable position in landscape evaluation  

as well as in evaluation of individual interventions. Similarly, they can facilitate 

assessment of projects in the fields of landscape ecology, animal ecology, urban 

planning, architecture and civil engineering, urbanization, planning of tourist 

paths, lookout towers, etc. The present day modelling of terrain and visibility 

however faces a problem of existence of a large amount of input geodata  

of varying quality. 

The thesis consists of a set of three commented studies focused on selection and 

processing of data suitable for visibility analyses. The studies aim to identify spatial 

data that would lead to the most accurate results of visibility analysis. The accuracy 

of spatial data is affected by multiple factors such as the method of data 

acquisition, spatial scale and data processing. All these variables affect, along with 

the terrain characteristics and the degree of forestation, the accuracy  

of the visibility results. The three presented studies imply that the greatest effect 

on the accuracy of the result of visibility analysis can be attributed to the accuracy 

and spatial scale of the input geodata. This influence is so great that it by far 

exceeds the effect of other variables such as the degree of forestation, terrain 

complexity, the number of obstacles to visibility, buildings, etc.  

Data acquired through airborne laser scanning are the most suitable input data for 

visibility analysis. Use of fine scale vector data however may serve as an alternative 

where LiDAR data are not available. Coarsening the scale however leads  

to overestimating the visible areas and to the higher false positive rate,  

i.e., the error where the model predicts more pixels to be visible than really  

are, which is most likely caused by “flattening” the surface and reducing  

the number of obstacles when using coarser data. Another factor having a great 

effect on the accuracy of the digital models is the degree of pre-processing of input 

geodata. If using raw data that are specifically processed with the aim  

of the analysis in mind, the results are significantly better than when using  

ready-made data that are pre-processed with a general purpose algorithm as such 

data may suffer from processing flaws unknown to the researcher or with loss  

of detail information caused by an unsuitable processing method. 

  



- 8 - 
 

Abstrakt 
Analýzy viditelnosti využívající digitální model terénu jsou velmi rozšířený nástroj 

na poli geoinformatiky. Mají nezastupitelné místo v hodnocení krajiny jako celku, 

i při hodnocení jednotlivých krajinných zásahů. Stejně tak jsou uplatňovány  

při hodnocení projektů v krajinné ekologii, ekologii živočichů, v územním 

plánování, v architektuře, stavebnictví, při plánování turistických cest, rozhleden 

apod. Současné modelování terénu a následně analýz viditelnosti čelí problému 

velkého množství vstupních geodat, která mají rozdílnou kvalitu. 

Disertační práci tvoří komentovaný soubor tří studií, zaměřených na výběr  

a zpracování vhodných dat pro analýzy viditelnosti. Tématem studií je nalezení 

vhodných prostorových dat, na základě kterých bude provedená analýza 

viditelnosti nejpřesnější. Přesnost prostorových dat ovlivňuje několik faktorů, 

mezi které patří způsob pořízení dat, prostorové měřítko a zpracování dat. Veškeré 

tyto proměnné, rozšířené o charakteristiky terénu a míru zalesnění, se promítají  

do výsledné přesnosti analýzy viditelnosti. Ze tří předložených studií vyplývá,  

že nejvýznamnější vliv na výsledek analýzy má přesnost a měřítko vstupních 

geodat. Tento vliv je natolik značný, že upozadí vliv terénu, vliv vegetace i vliv 

dalších objektů, které se nacházejí na povrchu Země.  

Nejvhodnější data pro analýzy viditelnosti jsou data pořízená leteckým laserovým 

skenováním. Jako alternativu lze použít vektorová data velkých měřítek.  

S klesajícím měřítkem dochází k nadhodnocování viditelných míst a k vyšší 

četnosti false positive, kdy model predikuje více viditelných míst,  

než jich je ve skutečnosti. Nezanedbatelný vliv na přesnost digitálních modelů 

terénu má míra zpracování geodat. Prostorová data je nezbytné vybírat s vědomím 

účelu, ke kterému budou sloužit. Nejvhodnější je využití co nejméně zpracovaných 

surových dat, u kterých má uživatel jistotu, že neobsahují zásadnější 

zpracovatelskou chybu. Surová data také mohou obsahovat vice informací, které 

však byly ztraceny během nevhodně zvolené metody zpracování.  
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CHAPTER I 

Introduction 

I remember that when I was small, I liked looking at maps. I kept looking at them 

and imagining what must it look like for real. It might have ben one of the reasons 

why I pursued my Bachelorʼs degree in Geography and Cartography. When I 

progressed to the Masters studies, I was asked by Petra Šímová if I would like to 

work on my Masterʼs Thesis under her supervision and was offered a topic of 

visibility analyses, I had no clue that this topic would stay with me for another 

seven years. 

The principle of visibility analyses is to model the area visible from a particular 

point. Over time, this method has been refined almost to perfection and there are 

many sophisticated methods, all of which are however still based on the same 

principle. Visibility analyses find their place in many areas of science – from 

ecology and landscape ecology, through biology and archaeology up to narrow 

fields of information technology. To create a visibility model, however, there is a 

crucial prerequisite – spatial data. Its accuracy is a crucial factor for calculations of 

visibility analyses and to a large degree determines the reliability of the results. 

There are however many types of spatial data. We can classify them by scale, 

positional accuracy, by type of processing they were subjected to, by the type of 

model, etc. Such an unprecedented availability of geodata however often leads to 

a non-critical approach to the selection of data for a particular analysis. It is not 

uncommon to see data of global scale used for a local extent analysis just because 

they were freely available or, contrary, very expensive data were used for a study 

for which free data would be sufficient. 

Most visibility analyses use digital elevation models or digital surface model in a 

raster format as input data. As mentioned above, the result of the analysis thus 

depends on the accuracy of the raster, i.e., the used spatial data and processing 

methods. There are many approaches to creating a digital elevation raster and 

many studies and papers describing these have been published. Studies focusing 

on comparison and definition of suitable geodata for application in landscape 

ecology, namely in bird ecology and biotope modelling, are substantially more 

scarce. The presented thesis discusses the effect of the input data on visibility 

analyses, aiming to identify spatial data suitable for particular analyses both from 

the perspective of processing demands and acquisition costs. The aim of the 
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visibility analyses constituting a substantial part of this thesis is not to find a most 

suitable location for placement of a lookout tower or evaluate an effect of a 

proposed construction on the landscape. It can be actually said that visibility 

analyses are used here as a tool for evaluation of accuracy of digital terrain or 

surface models. The presented experiments do not change the way of calculating 

the visibility model – they compare models prepared in the same way based on 

different input (spatial) data.   

Three papers published in scientific journals, which are closely related to the topic 

of visibility analyses, represent the pillars of this thesis. The first two studies 

directly analyse the effect of input data on resulting visibility analyses. By 

comparing results obtained from various spatial data, they are trying to find 

optimal geodata that would be best suited for the purpose and the method of the 

analysis. The third paper is aimed at another crucial step of visibility analyses, 

namely at comparing the suitability of various the suitability of various data 

collection methods for creating a digital relief or surface model with maximum 

accuracy. 
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CHAPTER II  

Aims of the thesis 

The dissertation thesis aims to present and discuss visibility analyses in particular 

from the perspective of the effect of input data on the results of the analyses. The 

opposite is also true - as the input data are typically digital terrain or surface models 

that are inherently built from spatial data, this also comes hand in hand with 

evaluation of the accuracy and quality of the input data that were used for creating 

the digital models. The aims of the thesis were in particular to: 

A) Evaluate the suitability of various types of spatial data for analyses  

in landscape planning. 

Visual impact of wind turbines is a topic frequently discussed in association with 

visibility analyses. The effect of input data on the result of the analysis is however 

mostly neglected. Thus, we aimed at the evaluation of the reliability of results when 

using digital surface models at various scales. 

(i) Identify data most suitable for creating digital terrain models 

Digital terrain model can be in principle created from any spatial data 

containing information about elevation. Not every dataset however 

possesses a sufficient accuracy for creating a model suitable for the 

analysis in question. One of the aims of this thesis is therefore to find 

spatial data most suitable for visibility analysis. 

(ii) Can vector data compete with LiDAR? 

The gradual increase in usage of LiDAR data for creating digital terrain 

models has pushed the use of vector data into the background. Does the 

use of vector data still make any sense, or shall it be completely replaced 

with LiDAR data?  

B) Evaluate the effect of the terrain and forestation on the accuracy  

of visibility analyses 

The main goal is to evaluate the effect of different spatial data entering the visibility 

analysis on its results. Areas of interest are chosen to capture important types of 

features in the landscape, i. e. with emphasis on capturing a full representation of 

geomorphologic character of the landscape. The parameters were, in addition, 
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complemented by assigning various heights to the forest canopy to evaluate the 

effect of the height of the tree stands on visibility analyses. 

C) Evaluate the effect of input data processing on the accuracy of resulting  

digital terrain models. 

Despite the fact that geodata are the principal factor defining the accuracy of the 

performed analysis, little attention is paid to the quality of data and data processing 

methods in many studies. The presented study compared three available forms of 

the same LiDAR data – raw data, generalized point cloud and ready-made DTM 

and DSM. We used our own field measurements to complement those datasets by 

validation (true) data that were used for accuracy assessment. The aim of this study 

was to find out how the data processing methods affect the resulting terrain 

models. 

D) How much does the spatial scale affect the accuracy of data  

for visibility analysis? 

The degree of generalization as well as the accuracy of data collection generally 

affect the results of analyses. We aim to find whether it is necessary for the spatial 

scale of the data to correspond to the scale of the analysis. 
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CHAPTER III 

Theoretical Background 

Digital terrain models – definition and 

terminology 
Digital terrain models as we know them today have developed since their 

introduction in 1958 (Miller and LaFlamme), in particular from the perspective of 

their accuracy and level of detail. There have also been some development in the 

terminology of the models depending on what the particular model depicts. 

Hence, I believe it useful to clarified the terminology as used in this dissertation 

right here, at the beginning. 

Miller a LaFlame (1958) defined the digital terrain model as a statistical 

representation of the continuous surface of the ground by a large number  

of selected points with known xyz coordinates in an arbitrary coordinate field. 

Storing the DTM data in a way allowing it to be read by computers makes  

it available for computer analysis of a wide variety of terrain problems as well  

as for the evaluation of an unlimited number of independent solutions to each 

type of problem.  

A general definition of data model was given almost twenty years later  

by Tsichritzis and Lochovsky (1977) who defined it as “a set of guidelines for  

the representation of the logical organization of the data in a database consisting 

of named logical units of data and the relationships between them”. Goodchild 

(1992) however added that with few (if any) exceptions, the world which  

is represented in a spatial database is not composed of logical units, and thus must 

be abstracted, generalized of approximated in the process of creating a database. 

Podobnikar et al. (2009) define digital terrain model as a continuous surface that 

besides the grid with values of elevation (known as a digital elevation  

model — DEM), also consists of other elements that describe the topographic 

surface, such as slope or skeleton. 
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The DTM was therefore originally defined as a digital (numerical) representation 

of the terrain. Since Miller and Laflamme (1958) coined the original term, other 

alternatives have been brought into use. These include aforementioned digital 

elevation models (DEMs), digital height models (DHMs), digital ground models 

(DGMs), as well as digital terrain elevation models (DTEMs). These terms 

originated from various countries. The term DEM was widely used in America; 

DHM came from Germany; DGM was used in the United Kingdom; and DTEM 

was introduced and used by USGS and DMA (Defense Mapping Agency) (Petrie 

and Kennie, 1987). In practice, these terms (DTM, DEM, DHM, and DTEM) are 

often assumed to be synonymous and indeed this is often the case. Sometimes, 

however, they indeed refer to different products. That is, there may be slight 

differences between these terms. Li  (2004) has made a comparative analysis of 

these differences as follows: 

1. Ground: “the solid surface of the Earth”; “a solid base or foundation”;  

“a surface of the Earth”; “bottom of the sea”; etc. 

2. Height: “measurement from base to top”; “elevation above the ground  

or recognized level, especially that of the sea”; “distance upwards”; etc. 

3. Elevation: “height above a given level, especially that of sea”; “height above  

the horizon”; etc. 

4. Terrain: “tract of land considered with regard to its natural features, etc.”;  

“an extent of ground, region, territory”; etc. 

From these definitions, some of the differences between DGM, DHM, DEM,  

and DTM begin to manifest themselves. So, a DGM more or less has the meaning 

of “a digital model of a solid surface.” In contrast to the use of ground, the terms 

height and elevation emphasize the “measurement from a datum to the top”  

of an object. They do not necessarily refer to the altitude of the terrain surface, 

but in practice, this is the aspect that is emphasized in the use of these terms.  

The meaning of “terrain” is more complex and embracing. It may contain  

the concept of “height” (or “elevation”), but also attempts to include other 

geographical elements and natural features. Therefore, the term DTM tends  

to have a wider meaning than DHM or DEM and will attempt to incorporate 

specific terrain features such as rivers, ridge lines, break lines, etc. into the model 

(Li, 1990). 

In this thesis, the digital terrain model (DMT, DTM) is defined as a raster matrix 

with elevations. Digital terrain model is also perceived in this thesis as a term 
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superordinate to the digital surface model (DSM) and digital relief model/digital 

elevation model (DMR, DEM). DSM is a terrain model representing a real world 

including all real objects on the surface of the Earth (including e.g. canopy). DMR 

and DEM, on the other hand, depict only the bare ground without buildings or 

vegetation. 

The evolution of digital terrain models 
The aim of this short introduction is to outline the history and development  

in the field of digital view of the Earth surface. The attempts to depict the surface 

have been with the mankind from the beginnings and the efforts to depict the 

surface accurately and to model the uppermost geological layers will probably 

always be here. 

People have always strived to use all available means to find out representations 

of various terrain elements. Various pictures of the landscape originating in ancient 

ages may be considered the oldest representations (Maune et al., 2001). Such 

pictures show general information about terrain characteristics such as the shape 

and colour of the terrain, however the metrics and accuracy of such pictures were 

obviously extremely poor (Moore et al., 1991). As already mentioned, the first 

digital terrain model as we know them was created more than 50 years ago 

(Miller and LaFlamme, 1958). In the first decades, the focus was on the reliability 

of the models. The techniques commonly used for evaluating the quality  

and accuracy of the models were based on statistical comparison of the digital 

terrain models with small reference areas (Podobnikar, 2009). Till  

the end of 1990s, data for digital models originated usually from airborne 

photography and photogrammetry – the acquired stereoimages were manually 

processed. Another frequently used technique was represented by vectorisation of 

isohypses from existing maps (Li et al., 2004; Podobnikar, 2009). 

Since 1990s, the quality of available DTMs has increased considerably, in particular 

due to several important factors (Podobnikar, 2009). The first significant 

breakthrough was represented by development of new data sources, in particular 

those from satellites and airplanes (Maune et al., 2001). For coarse scales,  

the utilization of satellite radar interferometry increased while for finer mapping, 

airborne laser scanning/LiDAR has become a valuable and relatively widely 

available source (Kraus and Pfeifer, 1998). A separate chapter is represented  
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by installation of sensors on unmanned systems (unmanned aerial vehicles, 

UAVs). Thanks to the structure from motion (SfM) method, it is possible to create 

relatively accurate digital surface models from photographs acquired using 

consumer grade cameras. More sophisticated UAV platforms can even carry  

a LiDAR sensor. Models created from UAV data are more accurate than those 

from aforementioned platforms (Glowienka et al., 2017; Tulldahl and Larsson, 

2014). In addition, a multispectral or even hyperspectral camera can be mounted 

as a sensor on a UAV, thus providing additional information (Kaneko et al., 2014; 

Mårtensson and Reshetyuk, 2017; Pavelka et al., 2015). 

Another significant factor contributing towards the improvement in quality of the 

DTMs is a better availability of various data sources. Besides airborne imaging, 

radar imaging and isohypses, other datasets containing information about 

elevations and/or singularities became available. Such datasets include  

e.g. the anchor points of the geodetic network, boundary points of the cadastre, 

building databases, spot elevations and other additional information associated 

with building of high-rise buildings, line constructions, motorways, etc. 

(Mark A. Maloy and Dean, 2001).  

A major leap in landscape modelling came with the increasing availability of 

LiDAR data. Many countries have released their national point clouds representing 

a continuous model of the landscape for scientific or, even better, public use. In 

Europe, such countries include e.g. Poland and Finland (Glowienka et al., 2017; 

Valbuena et al., 2016). In the Czech Republic, the data release is very slow. 

Although a LiDAR-derived digital relief model as well as digital surface model are 

available for almost the entire area of the Czech Republic, the data are only 

available for sale. Users can purchase individual 2.5 km x 2.5 km mapping sheets; 

where the area of interest is large, many mapping sheets are needed, which makes 

the data relatively expensive in the end. Alternatively, users can obtain a raster 

model of both terrain and surface free of charge; unfortunately, the method of 

processing the original data and of creating the model is not clearly described, 

which carries doubts about usability of the models for particular analyses. 

Obtaining the original raw data is almost impossible for an ordinary user; the 

situation is somewhat better with the vector data that are available for purchase.  

The last but not least factor influencing the data quality is bringing the digital 

models closer to the public through various mapping geoportals, mapping 

applications and satellite navigations. We can name e.g. Google Earth, Google 

Maps and Microsoft Virtual Earth (Podobnikar, 2009).  Real digital models are 

also utilized in the computer gaming industry (Abraham, 2018). 
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Introduction to visibility analyses 
Digital terrain models serve as an essential input for various tasks in environmental 

and ecological modelling. In the field of applied ecology, modelling of areas that 

are visible or invisible from an observer point (visibility analyses) are a typical 

utilization of DTMs. Visibility analyses are a common method of evaluating  

the impact of buildings on the landscape (Lee and Stucky, 1998; Nijhuis and Van 

Der Hoeven, 2018),  designing landscape elements  (Chamberlain and Meitner, 

2013), tagging landscape photographs (Brabyn and Mark, 2011),  source  

for historical settlement studies (Sevenant and Antrop, 2007), placement of  

coastal aquaculture sites (Falconer et al., 2013), or military structures 

(Smith and Cochrane, 2011). In principle, two extremes are sought for by visibility  

analyses – either search for spots with maximum visibility (e.g. for placing  

an object that positively affects the landscape beauty) or with minimum visibility 

(to find a spot for an object ort construction that is detrimental for landscape 

beauty).   

Nowadays, most geoinformation software is capable of performing such analyses. 

The viewshed tool is available in geographic programs or platforms such as ESRI, 

Grass GIS, SAGA GIS, Quantum GIS, etc. (Aben et al., 2018; Sang et al., 2016). 

A digital elevation model is typically used as an input raster, with a cell value usually 

corresponding to the elevation of the site. The user must also define the observer 

location (one or more observer points) and the target area for which the evaluation 

should be performed. The algorithm may take into account supplementary 

variables as well (Aben et al., 2018). The basic ones include setting of the height 

of the observer and of the target object. If, for example, the height of a wind 

turbine is calculated, the height of the cell where it is expected to be constructed 

is increased by the expected height of the turbine. It is also possible to limit  

the azimuth of observation, distance and area or the vertical angle for which  

the algorithm is expected to perform calculation (Fisher, 1993).  

Simple algorithms of visibility analysis are based on comparing elevations  

on the line connecting the observer’s location and the target cell or point (so-called 

line of sight). The elevation of all cells on the line is evaluated and if elevation  

of any pixel between the observer’s cell and target cell is above the connecting line, 

the target cell is invisible from the observer’s point. If visibility analysis  

is calculated for the entire area, this calculation is performed individually for every 

pixel in the area  (Kim et al., 2004a; Sang et al., 2016). More complex visibility 

analyses combine calculations of multiple lines of sight. Such an example  
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may be represented by viewshed analyses, i.e., calculations of areas that  

can be observed from the observer point. An analogical function is an extended 

viewshed tool titled “observer point”. This tool adds another layer of complexity 

– it allows several observer points and provides information about the individual 

observer points or combinations of points from where certain parts of raster can 

be seen (Caldwell and Mineter, 2003). Even more complex tools are represented 

by multiple viewshed/cumulative viewshed analysis that calculate mutual 

visibilities for all pixels in the area. The number of resulting visibility rasters  

is the same as the number of cells in the area of interest. All those binary rasters 

are then summed, forming a cumulative raster depicting the most and least 

exposed cells. (Danese et al., 2009; Fisher, 1996; Wheatley, 1995).  

Input data for viewshed analysis  
As soon as 1997, Dean (1997) referred that visibility analyses performed  

on the basis of a DEM/DMR only, i.e, ignoring the vegetation cover, cannot 

provide correct results in areas with vegetation. It is in accordance with results  

of Maloy and Dean (2001) who performed visibility analyses using a basic vector 

map of USA at a scale of 1:24,000 and showed a 56.7 % agreement with reality. 

Hence, to reach useful results of visibility analyses, it is necessary to use DSMs 

that model objects on the terrain accurately.  

When a ready-to-use DSMs (e.g. LiDAR-based DSMs provided in some countries) 

are not available, input data for visibility analyses can be prepared from vector 

datasets.  To create a DSM from a vector map, heights of objects such  

as vegetation and buildings must be added to the DEM interpolated from contour 

lines. Object heights are not standardized, however, and the assigned heights thus 

depend on an expert estimate of the user (Klouček et al., 2015; Wallentin et al., 

2008). The accuracy of visibility modelling therefore depends on the accuracy  

of the input surface model combining the accuracy of DTM with the accuracy  

of the object heights estimations (Lake et al., 2000a; Sander and Manson, 2007a). 

Canopy height models (CHMs) are a special type of the digital surface models 

prepared as a difference between the DTM and DSM after excluding  

non-vegetation objects such as buildings (where those are not excluded, the 

correct term is normalized digital surface model, nDSM). CHMs ha been primarily 

intended for imaging tree crowns (Lim et al., 2003; Lisein et al., 2013); a typical 
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shape of the deciduous tree resembles a canopy, which gave name to this type  

of model. Canopy height models have an important position in forestry where they 

can be used for estimation of the wood matter or carbon deposits (Corona and 

Fattorini, 2010; Steinmann et al., 2013), in agriculture (Næsset, 2002)  

or in ecosystem modelling. Moreover, they can also represent valuable input  

for visibility analyses in non-urbanized areas, providing a more realistic model  

of vegetation then a simple expert estimation of the vegetation height(s). 

As mentioned above, the term canopy height model is very close to another term 

– normalized digital surface model (nDSM). Both are created as the difference 

between the digital surface model and digital terrain model; nDSM however 

contains all objects present on the terrain including anthropogenic structures while 

canopy height model in the strict sense only shows the vegetation. As laser beams 

can penetrate under the tree crowns and branches, both DSM and DTM may  

be derived by point filtering from LiDAR data, which is one of advantages  

of LiDAR over photogrammetry. Various reflections originate at various levels  

of the vegetation cover, down to the level of the terrain, which allows the 

production of DSM, DTM and, in effect, CHM from the same data acquisition 

mission (Hyyppä et al., 2008; Lim et al., 2003). Also, it is possible to obtain 

information on the vertical structure of the vegetation under the level  

of the treetops in this way. When planning a LiDAR mission aimed at deriving  

a CHM, the choice of the season in which the mission is performed is very 

important. Such missions are often planned for the leaf-off period. Where this  

is true, the processed CHM does not represent a full canopy, rather only fragments 

of tree branches (Kim et al., 2009; Wasser et al., 2013a). On the other hand, 

a mission in the leaf-off period necessarily provides better information about  

the terrain as there are significantly more reflections from the ground than during 

the leaf-on season (Moudrý et al., 2019). 

Some studies attempted to use data from airborne or satellite imagery through 

photogrammetry (Bohlin et al., 2012; Huang et al., 2009; Mora et al., 2013; 

Nurminen et al., 2013; Véga and St-Onge, 2008), which can also provide a DSM 

suitable for visibility analysis. In comparison with LiDAR, it is however not 

possible to use the information about the terrain under the canopy (White et al., 

2013). Besides, merging individual images into a large complex imagery is quite 

difficult due to the amount of vegetation characteristics, repeated texture  

of vegetation, complicated work with ground control points, etc.  

(Baltsavias et al., 2008; Eisenbeiß et al., 2009; White et al., 2013). Photogrammetry 

and satellite imagery is therefore not suitable for creating CHM on itself. However, 

as many countries provide accurate DTMs derived from airborne LiDAR data 
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(Bohlin et al., 2012), it is possible to combine airborne or satellite photogrammetry 

with such DTMs, which results in creating an accurate and up-to-date model  

of vegetation. Such a combination therefore offers high spatial and temporal 

resolution. Studies published in the last years also demonstrated the use of UAVs 

for creating CHM (Dandois and Ellis, 2010; Moudrý et al., 2019). UAVs can 

capture a significantly smaller area during one mission than a manned airplane, 

they however provide spatial resolution in the order of centimetres. Another 

advantage is the possibility of frequently repeated measurements, which provides 

the information about the vegetation growth over time in the area of interest. 

Quality of spatial data 
The quality of spatial data used for modelling usually plays a crucial role not just 

in digital terrain modelling but in landscape ecology in general. Many studies that 

focused on environmental characteristics and/or relationships among individual 

components of the environment discussed the effect of the quality of input 

geodata on resulting models (Klouček et al., 2015; Kumi-boateng and Yakubu, 

2010; Li et al., 2012; Meek et al., 2013; Moudrý and Šímová, 2012; Sharma, 2009). 

The use of suitable data is as important in visibility analyses as in other fields of 

landscape ecology. Often, unfortunately, case studies utilize data that are readily 

available and appear suitable at the first sight. Worse, verification of the results  

is then often omitted or neglected and the poor fit with reality is therefore not 

even detected. This is discussed e.g. by Lecours (2016) who points out  

the importance of the selection of suitable data for ecological studies.  

If the selection of data and variables suitable for an analysis is left to a subjective 

opinion, the resulting accuracy of the analysis may suffer. In his earlier work, 

Lecour (2015b) also pointed out another frequent problem associated  

with the relationship between theoretical spatial resolution and positional 

accuracy. Researchers often settle with a sufficient spatial resolution of the input 

data, disregarding the positional accuracy, which can also lead to suboptimal 

results.  

In the ecological literature, three types of scales are usually distinguished – spatial, 

temporal and thematic (Lecours et al., 2015a). In various contexts, the term spatial 

scale was defined in several ways. Typically, it concerns spatial characteristics  

of the object or process including the level of detail and geographical extent 
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(Lechner et al., 2012). Similarly, temporal scale gives us information about the 

temporal level of detail, e.g. seconds, days, seasons, etc. Thematic scale, also called 

level of organization, organizational scale, or ecological organization, is associated 

with the level at which objects of study are described, for instance taxonomic 

resolution (Larsen and Rahbek, 2005). 

Speaking of the ever increasing utilization of LiDAR-based DSMs, it is necessary 

to also mention the processing of raw data. No matter how good the raw spatial 

data are, improper data processing can easily wreck much of the information the 

raw data contains. The quality of the resulting model is therefore not solely 

dependent on the density of the original raw point clouds. The computational 

algorithm (Khosravipour et al., 2016; Xiaoye Liu, 2008) as well as the selected 

interpolation method (Anderson et al., 2005; Guo et al., 2010) also play an 

important role. The maximum raw point density therefore does not necessarily 

warrant the maximum accuracy of the result (Anderson et al., 2006; Jakubowski et 

al., 2013; Ruiz et al., 2014). In other words, the use of different methods of raw 

data processing can lead to different quality of models. The difficulties associated 

with the raw data processing along with easy availability of ready-made LiDAR-

based raster DSMs however often steer the researchers in the environmental 

sciences towards using such “easy” data. However, as the ready-made data 

products (especially those created at the nationwide extent) are not being prepared 

in view of particular research needs or of particular analyses, the suitability of such 

models for studies and analyses at detail scales can be disputable (Mondino et al., 

2016) and bulk use of such data can in effect lead to errors in decision making  

in the field of environmental management. 

As mentioned above, very few papers have dealt with the effect of the spatial 

precision of input geodata on the reliability of results from visibility analyses, even 

though some authors had previously noted a potential effect (Fisher, 1992; Huss 

and Pumar, 1997) and input geodata’s influence on the results of spatial analyses 

has been demonstrated many times in other fields. In the case of visibility 

modelling, the accuracy of the resulting model, whether based on a basic viewshed 

algorithm or its more advanced variants, potentially depends on the precision  

of the input digital surface model (DSM), which combines the accuracy of a digital 

terrain model with the correct heights and spatial determination of objects within 

the model, particularly of vegetation and structures. Examples of rare studies 

dealing with input data precision were presented by (Lake et al., (2000b) and 

Sander and Manson (2007b) who focused on modelling structures representing 

vertical obstacles to visibility. 
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Visibility modelling in applied ecology 
Besides the use of visibility analyses for historic studies (Carter et al., 2019; 

Ogburn, 2006; Sevenant and Antrop, 2007); archaeological surveys  

and exploration (e.g., Paliou, 2011); landscape planning (De Montis and Caschili, 

2012); search for sites suitable for buildings that could impact the landscape 

character (Fernandez-Jimenez et al., 2015) or ski areas (Geneletti, 2008); placing 

military structures (Smith and Cochrane, 2011); tagging landscape photographs 

(Brabyn and Mark, 2011); or analysing effects of animal species introduction 

(Kizuka et al., 2014), visibility analyses have been lately applied to the sea surface 

(for example in a search of sources of “visual pollution” in the Baltic sea).  

Anthropogenic activity such as offshore wind farms development, shipping 

activity, resource extraction platforms or marine aquaculture can have adverse 

impacts on the visual quality of coastal landscapes (Depellegrin, 2016). Other 

studies have lately focused on the visual impact of the seashore on social aspects. 

Qiang et al. (2019)published a study, which showed that view of blue spaces  

(e.g. ocean, lake, and river) have positive effects on human health and mental  

well-being. The primary research originated from the use of the digital terrain 

model (in this case that of seashore and sea level) and the use of visibility analyses 

in GIS. Similar methods were applied by colleagues of Quiang who in their study  

Poudyal et al. (2010), investigated the effect of view of a forest on the market price 

of real estates serving as observer points. 

Jiang et al. (2014) also used results of visibility modelling as one of environmental 

variables when modelling distribution of the Siberian tiger (Panthera tigris altaica) 

and showed it to be a significant component of the resulting distribution model. 

Alonso et al. (2012) used visibility analysis as a significant factor for selection  

of nesting locations of the great bustard (Otis tarda). The aim of visibility analyses 

in such applications is not to investigate whether or not the individuals can see 

each other but rather to act as a surrogate of the risk of predation or availability  

of the prey for the predator. A study focused on this topic was published by Olsoy 

et al. (2015) who evaluated the visibility of potential predators from the perspective 

of their prey, and with the prey options to take cover from the perspective  

of predator viewpoints. While the previously mentioned works analysed visibility 

from animals’ perspectives, Kizuka et al. (2014) utilized for their prediction  

of species occurrence visibility modelled for a human observer. They predicted 

distribution of two invasive introduced fish species, namely the bluegill (Lepomis 

macrochirus) and largemouth black bass (Lepomis macrochirus) in water bodies  

in a Japanese agricultural landscape. As the connectivity of those water bodies was 
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low, they estimated the influence of human introduction on the presence of those 

fish in individual reservoirs. They found that the visibility of the reservoir from  

a road was a better predictor of the presence of those fish than distance from  

the road or population density in the area.  

A paper by Aben et al. (2018) literally calls for increased use of so-called viewshed 

ecology, i.e, the method of observing the world by animal eyes. If correct 

parameters and variables are known, we can use visibility analyses for this purpose. 

An ideal approach would be however represented by scene analysis rather than 

visibility analysis, i.e., by simulating the orientation in the terrain not on the basis 

of an elevation raster but rather on the basis of a complete 3D model  

of a landscape (Murgoitio et al., 2014a). A fictional observer would thus in effect 

look rather on a photograph-like image than a raster image. This has also been 

discussed in the work by Sang et al. (2016). At present, we are however limited  

by hardware capabilities. The data are becoming more accurate, available, with 

higher density, however the standard computational methods and algorithms  

are not sufficient to process the huge quantity of such data. Thus, it would  

be necessary to change the algorithms as well as hardware for such analyses 

(Xia et al., 2011; Zhao et al., 2013). 

Datasets usable as input data for 

visibility analyses in Czechia 
Mapping has a long history in Czechia, reaching as far as the beginning of the 

second millennium. The oldest surviving map of Czechia is Klaudyan’s map from 

1518 (Mikšovský and Zimová, 2006). Of course, the map accuracy and practical 

usability of maps has since increased immensely. This chapter describes datasets 

that are at present available in the Czech Republic and that are utilized in the 

individual studies constituting parts of the thesis. Those datasets include geodata 

acquired both by topographic mapping and by airborne laser scanning. 

ZABAGED 

ZABAGED (an acronym from Základní báze geografických dat České republiky 

– Basic dataset of geodata of the Czech Republic) is a digital geographical model 
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of Czechia.  The planimetric part of ZABAGED comprises at present 125 types 

of geographic objects including settlements, communications, distribution 

networks, water bodies, administrative areas, protected/nature conservation areas, 

vegetation and surface, terrain and selected survey control points. Objects  

are represented by a two-dimensional vector component and a descriptive 

component containing qualitative and quantitative information about the objects. 

The dataset scale is 1:10 000 (Šíma, 2016) 

National map on a 1:5,000 scale 

The national map on a 1:5,000 scale (SM 5) is a principal national mapping product 

of a fine scale. It depicts the entire area of Czechia in a continuous collection  

of mapping sheets – the entire area is recorded on 16,301 mapping sheets  

of 2x2.5 km. The dimensions and marking of the mapping sheets are derived from 

the mapping sheets of the National map on a 1:50,000 scale by dividing them into 

100 parts. The layout of the mapping sheets of the National map 1:50,000 is, unlike 

that of base maps at medium scales, parallel with the axes of the S-JTSK 

coordinate system (the National map 1:50,000 is, unlike the Base map of the Czech 

Republic, not published). SM 5 contains planimetry, altimetry and map lettering. 

It is the finest scale national mapping product containing altimetry. The principal 

source of planimetric data are cadastral maps, of altimetric data the Base map  

of the Czech Republic at a 1:10,000 scale. The map lettering comes from both  

the cadastral maps and a database of geographic names of the Czech Republic 

Geonames. SM 5 was available only as a fully analogue map prior to 2001,  

so-called National map (derived) (abbreviated SMO-5) for the entire Czechia.  

In 2001 to 2007, a vector version, SM-5, was created for approximately 30 %  

of the Czech Republic and complemented with raster files acquired by scanning 

of the original SMO-5 mapping sheets for the remaining 70% of the Czech 

Republic. In 2008-2009, an innovated SM 5 was prepared, including a change  

of technology, aiming at creating a product called “Vector data of new form SM 

5” (and its derived raster version) depending on the gradual digitalization  

of cadastral maps. The vector version of the new product provides the users with 

feature type signification, e.g. for spatial planning purposes (ČÚZK, 2019). 

DMÚ 25 

In the Military Geographic and Hydrometeorologic Office in Dobruska (MGHO), 

a Digital Model of the Territory  (DMÚ 25) is being prepared since 1991  
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as a complex of data and methods for acquisition, processing and updates of digital 

information about the territory, the principal part of which is the information 

about geographical objects acquired from digitalization of 85 sheets of amended 

topography map TM100 (the basic TM25 at a 1:25,000 scale was created  

and is updated based on direct mapping, i.e., field collection and verification of 

data with maximum utilization of airborne imaging; other topography maps  

up to the 1:1,000,000 scale were derived from it). When creating individual 

topographic maps of the TM series, the principal properties such as readability, 

clarity, or map key must be taken into account so when creating a coarser scale 

maps, the content is simplified – generalized – according to the needs of the 

particular map. Data are organized in seven logical layers: waters, communications, 

pipelines/power lines/communication lines, vegetation and land cover, 

settlements, industrial and other topographic objects, boundaries and fences, 

terrain relief. Those logical layers are further divided into 20 data layers. The level 

of the data accuracy and generalization correspond to the 1:25,000 scale (VTÚ, 

2019). 

ArcČR 500 

ArcČR 500 is a digital vector geographic database of Czechia at 1:500,000 scale.  

It follows up on similar databases created by the Esri Company. The database 

contains clearly arranged geographic information about the Czech Republic.  

The data allow a broad spectrum of spatial analyses and visualization as well  

as linking to statistical data. The geographical information in ArcČR 500  

are divided according to the thematic categories including basic geographical 

elements, layouts of national/state mapping products and administrative structure. 

ArcČR 500 was created in cooperation of ARCDATA PRAHA, s.r.o.,  

and the State Administration of Land Surveying and Cadastre. It was developed 

on the basis of maps and databases provided by the State Administration of Land 

Surveying and Cadastre. The raster digital relief model originates from SRTM data  

(ArcData, 2019).  

LiDAR datasets 

The use of laser as a tool for remote sensing has been around for approximately 

40 years. In 1960s and 1970s, many experiments demonstrated the use of reflected 

laser beam in mapping not just the Earth surface but even for study of the surfaces 

of Moon, Mars and Mercury (Smith et al., 1997; Sun, 2018). Due to the ever more 
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reliable sensors and ever improving resolution of LiDAR systems, LiDAR became 

one of the most prominent tools in remote sensing and mapping (Ackermann, 

1999). This compact and relatively affordable technology has been procured  

by numerous institutions and users (Klemas, 2015; Tulldahl and Larsson, 2014). 

The analysis performed by the State Administration of Land Survey and Cadastre 

of the Czech Republic in 2006 – 2008 led to a conclusion that the existing 

altimetric models of the Czech Republic originating  from the digitalization  

of topographic maps are not sufficient for the purposes of the state administration. 

For this reason, the State Administration of Land Survey and Cadastre prepared  

a project of creating a new altimetry model of the Czech Republic (ZÚ, 2008).  

In 2009, an agreement between ministries was signed detailing the cooperation  

on new altimetric mapping of the Czech Republic that was to take place in 2009-

2015. Airborne laser scanning (ALS) was chosen as the most suitable method  

for this purpose (CUZK, 2009). The resulting products of this project include  

the Digital Relief Model of the 4th Generation (DMR 4G), Digital Relief Model  

of the 5th Generation (DMR 5G) and a Digital Surface Model of the 1st Generation 

(DMS 1G). For the purposes of ALS, the Czech Republic was divided into three 

areas; the first scanned area was the Central Band in 2010 while in 2011 it was  

the West Band and in 2013, with a one year delay, the project was completed  

by scanning the East Band. The used reference coordinate system was  

UTM / WGS 84, Band 33. The ALS data were acquired using the Litemapper 

6800 system consisting of an airborne laser scanner RIEGL LMS Q-680,  

a recording device, an onboard GNSS system and an inertial measurement unit 

(IMU) by IGI company (Dušánek, 2014). 

To create a digital relief model, the point cloud had to be filtered to identify ground 

points and above ground objects.  The automatic filtering utilized the SCOP++ 

software with a robust filtering algorithm developed by the Technical University 

of Vienna. This algorithm works iteratively – it selects lowest points in cells of  

a regular grid and interpolates a digital terrain model based on such points.  

In the next step, weights are assigned to individual points – points that are too far 

from (high above) the first iteration of the terrain are assigned a zero weight and 

do not enter further analysis. The automatic filtering thus divides the point cloud 

into ground and above ground points; it is however not perfect and manual 

inspection and editing of the results of the automatic filtering was also performed.  

The processing resulted in three aforementioned models. DMR 4G was the first 

version created more or less automatically. The reason for releasing this model 

was to create the first version of the altimetry model required for creating 
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Orthophoto CR where the DMR 4G constituted the principal data  

for orthogonalization of airborne survey images. The input data for the DMR 4G 

were the automatically filtered LiDAR data mentioned above. From data that were 

identified by the robust filtering method as terrain points, the lowest point  

in a regular 5x5 m raster was selected. As the point cloud still contained errors 

caused by incorrect automatic classification, those were manually edited.  

Such an irregular network of points then served as a basis for interpolating  

an altimetry model by linear prediction in a 5x5 m raster. The interpolation was 

performed separately for the geodetic reference systems WGS 84/UTM  

and SJTSK. DMR 4G is a model provided as a regular grid at a 5x5 m resolution 

with the median error of 0.30m in the open terrain and 1.00 m in the terrain 

covered with vegetation (Bělka et al. 2010).  

The other digital relief model, DMR 5G, was prepared from data that underwent 

detailed manual inspection and editing. The final DMR 5G was derived by 

subsequent three-step model “flattening”. In the first step, the lowest point in 

every 1 x 1 m cell was selected, which reduced the number of points in spots where 

several blocs were connecting and remainders of the noise from the overlap of 

scanning bands were removed. In the second step, unwanted local unevenness 

(e.g. ploughed-up fields) was removed by adjusting the original point elevations by 

up to ±5 cm, which also flattened the surface. In the third step, the point cloud 

was diluted while maintaining the median elevation error (Bělka et al. 2012).  

The last model of this series is the digital surface model of the 1st generation, DMS 

1G (it is a first generation model as such a model was not available for the area of 

the Czech Republic before). DMS 1G was derived by automatic algorithms.  

It is in principle DMR 5G supplemented with the above ground objects. In the 

built-up areas, points that were identified as buildings by automatic filtering were 

added where they fit the building contours from the cadastre. As far as vegetation 

was concerned, only reflections that were above ground with a minimum area of 

25 m2 were included in the model (Dušánek et al. 2016). 
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Summary 
Digital terrain models and applied visibility analyses are widely used tools of 

geoinformatics. They have an irreplaceable position in landscape evaluation as 

whole as well as in evaluation of individual interventions. Similarly, they can 

facilitate evaluation of projects in the fields of landscape ecology, animal ecology, 

urban planning, architecture and civil engineering, urbanization, planning of 

tourist paths, lookout towers, etc. The present day modelling of terrain and 

visibility however faces an opposite problem than it has just a few decades ago – 

too much available input geodata that are of varying quality. When choosing input 

data for a particular analysis, it is therefore necessary to take the aims of the 

analysis into account and to consider the model accuracy required for the 

particular purpose. It is however not uncommon by far that we can see unsuitable 

selection of input geodata for various research or management purposes, which in 

turn leads to various misinterpretations and mistakes in the application of the data. 

The review above aimed at providing a brief summary of the current state of this 

scientific field and to bring a complex view on data sources, digital terrain models 

and visibility analyses.  
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Abstract 

Viewshed analysis is a GIS tool commonly used in a number of research and 

practical spatial analyses. Input data and their spatial uncertainty are important 

aspects affecting analysis reliability. Given that inappropriately selected input 

geodata can produce imprecise visibility models and as a result cause incorrect 

spatial decisions, quantifying the effect of this uncertainty on resulting visibility 

models is important for the models’ subsequent use. The objective of our study 

was to evaluate the suitability of digital surface models with varying levels of detail 

(a LiDAR-based model and models based upon vector data at differing scales) for 

simple (binary) viewshed analysis of wind turbines (three wind parks each 

containing 3–6 turbines). Visibility models based upon this input data were 

compared with actual visibility from 150 control points at random locations. The 

study results confirmed the prediction that the viewshed model based on more 

precise input data corresponded more closely to reality. Moreover, our study is the 

first to demonstrate that only the number of false positives (where the model 

predicts that an object is visible while in reality it is not) depended on input data 

precision, while input data did not affect the false negatives. In addition, all vector-

based models had far more false positives than false negatives, while the opposite 

was true for the LiDAR-based model. 

When we considered the same number of modeled and actually visible wind 

turbines as a model’s matching of reality, there were matches at 83.6–93.7% of 

control points (95% confidence interval) for the LiDAR-based model. For models 

based upon vector maps of various scales, the intervals were 68.4–82.2% 

(1:10,000), 59.1–74.2% (1:25,000), and 48.1–63.9% (1:500,000). We recorded false 

positives in 6 cases with the LiDAR-based model and 26, 39, and 59 cases, 

respectively, for vector-based models. 

Keywords 

Accuracy; Digital surface model; LiDAR; Uncertainty; Viewshed; Visibility 
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Introduction 

Viewshed analysis is a GIS tool in standard use for more than two decades  

(e.g., Fisher, 1992; Nagy, 1994; Sansoni, 1996) to perform numerous scientific  

and practical tasks. Such analyses enable detection of surfaces that are or are not 

visible from one or more observation locations, and, inasmuch as visibility  

is symmetrical, identification of surfaces from which certain objects on the Earth’s 

surface are visible. The wide range of possibilities for its use include, for example, 

planning telecommunications tower placement (De Floriani et al., 1994); 

constructing military structures (Smith and Cochrane, 2011), observation towers, 

and tourist routes (Chamberlain & Meitner, 2013; Lu, Zhang, Lv, & Fan, 2008); 

selecting sites for new photovoltaic power plants (Fernandez-Jimenez et al., 2015); 

applications in archaeological research (e.g., Paliou, 2011) and landscape planning 

(De Montis and Caschili, 2012); and tagging landscape photographs  

in combination with volunteer geographic information (Brabyn and Mark, 2011). 

Throughout the time that visibility analyses have been used, their limitations  

and inaccuracies have been discussed. Fisher (1992) noted two mistaken 

assumptions in visibility analysis: first, that the input digital elevation model  

is accurate, and second, that viewsheds constitute a Boolean phenomenon. This 

author (Fisher, 1996, 1995, 1994, 1992; Peter F. Fisher, 1993) as well as a number 

of later studies (e.g., Chamberlain & Meitner, 2013; Fernandez-Jimenez et al., 

2015; Ogburn, 2006) dealt with the possibilities and algorithms of fuzzy viewshed 

modeling and visual magnitude, the result of which is a raster giving the probability 

of visibility or degree of visibility, respectively, and not merely binary 

visible/nonvisible values. Such algorithms enable incorporation of the studied 

object’s distance from the observer, the observation’s solid angle, perspective,  

and so forth. Recent studies have suggested further procedures for individualizing 

the viewshed that take into account such aspects as solid angle, defined  

by Domingo-Santos et al. (2011) as the surface area of the observer’s retina 

covered by a given object, and the vertical dimension of terrain, which combines 

the slope of the visible surface, difference in elevation between the observer  

and the visible terrain, and relative aspect of the terrain in relation to the observer 

into a new Vertical Visibility Index (Nutsford et al., 2015). One field  

with particularly apparent efforts to bring visibility analyses closer to reality and 

human perception is that of assessing the visual impact of wind turbines (WTs). 

Here, in addition to the aforementioned improvements in GIS algorithms  

and creation of specialized software (Manchado et al., 2013), we encounter  

a number of other evaluation techniques. These include verbal questionnaires, 

photo-based questionnaires, questionnaires based on computer simulation,  
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and questionnaires completed while viewing actual landscapes (for a review of 

these methods’ use, see Molnarova et al., 2012). Research designed in this way 

(e.g., Betakova et al., 2015; Bishop & Miller, 2007) conveys information  

on distances from the observer at which WTs have the greatest visual impact, 

frequently in combination with such other parameters as the number of WTs, 

rotor movement, and the landscape’s scenic beauty. These results provide a solid 

foundation for planning studies focused on GIS viewshed analysis quality  

and selecting specific parameters (landscape character, number of WTs in the 

study area, viewshed distance, and so on). 

Based on the number of articles published, we can state that the study of those 

phenomena affecting visibility in terms of humans’ subjective perception  

and improvements to GIS viewshed algorithms constitute a rather frequent topic 

of research (e.g., Bishop & Miller, 2007; De Montis & Caschili, 2012; Domingo-

Santos et al., 2011; Germino et al., 2001; Kim, Rana, & Wise, 2004; Manchado et 

al., 2013). Very few papers, however, have dealt with the effect of the spatial 

precision of input geodata on the reliability of results from visibility analyses, even 

though some authors had previously noted a potential effect (Fisher, 1992; Huss 

and Pumar, 1997) and input geodata’s influence on the results of spatial analyses 

has been demonstrated many times in other fields. For example, a potentially 

analogous situation can be seen in ecology, where geodata’s spatial uncertainty  

is an established concept and its effect on analytical results is a known fact (for 

review see, e.g., Barry & Elith, 2006; Moudrý & Šímová, 2012). In the case  

of visibility modeling, the accuracy of the resulting model, whether based  

on a basic viewshed algorithm or its more advanced variants, potentially depends 

on the precision of the input digital surface model (DSM), which combines  

the accuracy of a digital terrain model with the correct elevation and spatial 

determination of objects within the model, particularly vegetation and structures. 

Examples of rare studies dealing with input data precision were presented by Lake 

et al. (2000) and Sander & Manson (2007), who focused upon modeling structures 

as vertical obstacles to visibility. In order to create a DSM, data at differing spatial 

scales are generally used and are based upon both remote sensing and ground 

mapping. Probably the most precise inputs are LiDAR-based surface models  

(see Castro et al. 2015; Lake et al., 2000; Murgoitio et al. 2014). At the same time, 

LiDAR data is also the most expensive as well as the most demanding in terms  

of processing the original point cloud into a raster or triangulated surface  

(a triangulated irregular network). Moreover, it frequently is unavailable for a given 

study location. A question thus arises as to the degree to which LiDAR-based 

surfaces can be replaced within visibility analysis by surfaces created through such 
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approaches as using contour lines with elevation values and objects with expertly 

assigned height, such as polygons of forests boundaries and structure footprints, 

as well as a question as to the effect that the scale of the data used has  

on the reliability of visibility analysis.  

Evaluating whether a viewshed model has identified visibility in accordance  

with reality, and therefore whether the tested algorithm and/or input data used are 

appropriate for the modeling purpose, requires comparison with a control model, 

a control simulation, or a control dataset. Various methods are used for model 

verification, including to compare the visible area with a reference visibility model 

(Lake et al., 2000a; Sander and Manson, 2007b), photographic documentation, or 

3D visualization (Germino et al., 2001; Mark A. Maloy and Dean, 2001). A rarely 

used approach is direct comparison of modeled visibility with actual visibility  

in the field using visual control from predefined locations, as seen in the work  

of (Meek et al., 2013). Even though other authors have used direct determination 

of visibility in the field (Lang et al., 2014), they did not use  

it to compare a model with reality, but rather as the primary method to determine 

visibility. This was due presumably to their having insufficiently accurate input 

data for the purpose of their study. Mark A. Maloy and Dean (2001) used 

viewpoints to obtain comparison photographs and not for direct visibility control. 

The visual impact of WTs is a frequently discussed topic in connection  

with visibility analyses. Given that, to the best of our knowledge, the effect of 

input data on the reliability of such analyses has not been resolved, we directed 

our attention to this issue. The objectives of our study were to evaluate the 

suitability of DSMs with various levels of detail (a LiDAR-based DSM and DSMs 

based on vector data at differing scales) for simple binary visibility analyses of WTs 

at three wind parks and to quantify the extent to which visibility models based  

on these inputs matched reality. We focused on both the overall extent to which 

the visibility models matched actual visibility in the field and the structure of those 

errors occurring, i.e., the occurrence of false positives (where the model predicts 

that an object is visible while in reality it is not) and false negatives (where  

the model predicts that an object is not visible while in reality it is).  

We hypothesized that (i) the extent to which a digital visibility model matched 

reality would depend on the detail of input DSMs, with more-detailed DSMs 

recording higher match rates, and (ii) the probability of false positives and false 

negatives would not be equal in visibility models based upon surface models 

differing in precision. 
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Matherial and Methods 

Study area and input data 

The study analyzed the visibility of WTs in the north of the Czech Republic (50°56' 

N, 15°08' E). The study area covering 300 km2 is characterized by a wide range of 

elevations (200–1,120 m a.s.l.) and closely related substantial heterogeneity of land 

cover. Homogenous spruce monocultures predominate at higher elevations and 

the percentage of forest stands diminishes with decreasing elevation in favor of 

agriculturally cultivated areas. The selected area therefore combines several 

landscape types which differ in terms of their conditions for visibility analysis. 

Within this broader study area, the evaluation focused on visibility in the 

surroundings of WTs at three wind parks, defined as a buffer with a radius of 5 

km around each WT (see Fig. 1). Wind parks with more than one WT (3–6 per 

park) and the evaluation distance were selected in view of the findings by Betakova 

et al. (2015). 

 

Figure 1. Study area: 5 km buffers around WTs, north Czech Republic. 
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The study area also has available geodata that differ not only by the method  

of their acquisition but also in scale and accuracy. Thus, they represent a cross 

section of products available in the Czech Republic potentially usable for visibility 

analysis (see Table 1 for details). We used four input datasets, which can be divided 

into two categories: LiDAR-based and vector-based. The most modern and most 

accurate is the 1st Generation LiDAR-based DSM of the Czech Republic (LSM), 

acquired progressively across the entire Czech Republic using airborne laser 

scanning. Vector-based datasets, within which we include standard, commonly 

used vector topographic maps, were represented within the study at various scales. 

Small-scale datasets are represented by a basic national map at a scale of 1:10,000 

(Map10). Medium-scale datasets are represented by a vector topographical map 

called Digital Model of Area 1:25,000 (Map25). Large-scale datasets  

are represented by a vector geodatabase of the Czech Republic at a scale  

of 1:500,000 (Map500). In all vector-based datasets, elevation is displayed  

by contour lines and topography by polygons representing the footprints  

of individual objects on the ground. 

Table 1. Description of input datasets 

 Acronym 

within 

study 

Czech 

acronym Scale 

Year of 

last 

update 

Elevation 

accuracy 

Planimetric 

accuracy Data description 

Li
DA

R-
ba

se
d 

da
ta

se
t 

LSM DMP 1G Density of 

elevation point 

cloud is >1 

point/m2 

2010 0.4–0.7 m 0.4–0.7 m Digital surface model 

represented by elevation 

point cloud from data 

acquired by aerial LiDAR 

covering part of the Czech 

Republic 

Ve
ct

or
-b

as
ed

 d
at

as
et

s 

Map10 ZABAGED 1:10,000 2011 0.7–5 m 0.5–1 m Small-scale vector database 

covering the entire Czech 

Republic 

Map25 DMU 25 1:25,000 1998 5–10 m 0.5–20 m Medium-scale vector 

database covering the entire 

Czech Republic 

Map500 ArcCR 

500 

1:500,000 2014 25–50 m up to 200 m Large-scale vector database 

covering the entire Czech 

Republic 

 



- 38 - 
 

GIS data processing 

All GIS analyses were conducted using ArcGIS 10.2 software (ESRI, CA, USA). 

Based on input geodata, we created four DSMs as inputs for visibility analyses. 

For vector-based datasets, the DSMs were always calculated as a sum of rasters 

comprising the terrain (a digital terrain model [DTM]) and objects on the terrain 

(a digital object model [DOM]). For details, see Table 2. DTMs were calculated  

by interpolating contour lines using the Topo to Raster method. To create DOMs, 

we added the estimated elevation of objects on the ground to individual polygons 

representing said objects and rasterized the polygons. Inasmuch as the study area 

contains only rural structures mainly comprising houses, we selected the height  

of 8 m for structures. We assigned the height of 20 m to forest stands as  

an estimate of the dominant height of forest stands in the area based on data from 

forest management. Where other woody vegetation types, such as young forests 

and orchards, were distinguished in the datasets’ attributes, we assigned them  

the height of 5 m. The DSM from the LSM was created by resampling  

the triangulated irregular network supplied by the State Administration of Land 

Surveying and Cadastre into a regular raster. All DSMs were created at 5 m 

resolution. 

Table 2. Creation of four digital surface models (DSMs) from input datasets. 

DSM  DTM – source elevation data  DOM – source planimetric data 

LiDAR-based surface 

model 

= elevation point cloud  elevation point cloud 

Vector-based surface 

model, 1:10,000 

= MAP10 (contour lines) + Map10:  forest (20 m), orchard (5 m), built-up 

area (8 m) 

Vector-based surface 

model, 1:25,000 

= MAP25 (contour lines) + Map25:  forest (20 m), orchard (5 m), built-up 

area (8 m) 

Vector-based surface 

model, 1:500,000 

= MAP500 (contour lines) + MAP500: forest (20 m), built-up area (8 m) 

 

We assigned the height of hubs (center of blade rotation) to points representing 

individual WTs according to the wind parks’ technical documentation at 40–95 m 

(OFFSETA parameter) and observer height at 1.8 m (OFFSETB parameter).  

The Observer Points tool was employed for all visibility analyses. This tool 
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identifies how many and which analyzed objects are visible from each raster 

location, and so the resulting rasters’ pixel values include the number of WTs 

visible from a given location. Each wind park was analyzed independently  

and the resulting layers were clipped by the 5 km buffer zones. As it is reasonable 

to assume that observers in the forest or among structures cannot see anything, 

we set the value for all forests and built-up zones to zero. The final visibility 

analysis output is four digital visibility models: a) a LiDAR-based visibility model, 

b) a vector-based visibility model at 1:10,000, c) a vector-based visibility model  

at 1:25,000, and d) a vector-based visibility model at 1:500,000 (see Fig. 2 for  

an example).  

Field data collection 

The aim of the field data collection and subsequent analysis was to evaluate  

and compare how digital visibility models matched actual visibility in the field. 

Prior to the fieldwork, we designated 50 random control points for each wind park 

(i.e., 150 in total). To avoid spatial autocorrelation of visibility conditions, the 

minimum distance between control points was set at 200 m. Due to minimal 

visibility from forest and built-up zones, points were generated only in open areas. 

At the random control points, the visibility of WT hubs was examined by human 

eye. Field data were collected in April 2014 under constant meteorological 

conditions. The weather was clear to partly cloudy, temperatures ranged around 

15°C, and wind speeds were under 5 m/s. A portable GPS receiver (Oregon 450t, 

Garmin) was used to navigate to the coordinates of individual points. 

Statistical analysis and evaluation of visibility models’ reliability 

To evaluate the accuracy of individual digital visibility models, we used as input 

data the values acquired by comparing visibility modeled at each control point  

and visibility determined at those points by field examination. We predicted that 

the LSM-based model would best correspond to reality, followed (in order)  

by the models based on MAP10, MAP25, and MAP500. We worked in two ways 

with the research hypothesis that the rate-modeled visibility’s match of reality 

would depend on input DSM precision. First (Section 3.1.), we focused  

on differences in the number of WTs visible at each control point in the model 

and in reality. We tested whether these differences between datasets were 

significant always for two “neighboring” datasets that is to say for the LSM-based 

model with the MAP10-based model, the MAP10-based model with the MAP25-

based model, and the MAP25-based model with the MAP500-based model.  

As the distribution of the tested values apparently differed from the normal 

distribution, we used the nonparametric Wilcoxon one-tail paired test.  
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To compensate for multiple comparisons, we adjusted the significance level for 

the three tests from p < 0.05 to p < 0.0167 using Bonferroni correction. 

 

 

Figure 2. Example of digital visibility models created from different DSMs (5 km buffer): (a) 
LiDAR-based visibility model, (b) vector-based visibility model at 1:10,000, (c) vectorbased 

visibility model at 1:25,000, (d) vector-based visibility model at 1:500,000 

 

The second way of comparing visibility models simulated situations when  

the absolute difference between modeled counts and actually visible counts  

of objects is not important for a landscape planning task and it is only important 

whether or not the model agrees with reality in a given way. These binary true  

and false values were defined in two ways. The first (Analysis 2a, Section 3.2.) 

worked with absolute accuracy, i.e., for the value to be true the same number  

of WTs must be visible from the control point as were given by the model.  

In the second case (Analysis 2b, Section 3.3.), the true value was defined less 

strictly, simulating such cases as when the visibility of even one WT would  

be considered as decreasing landscape beauty. For the value to be true,  

it was therefore enough for the model to determine that some (one or more) WTs 

were visible from the given location and for some actually to be seen or, 
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alternatively, for no WTs to be visible in both the model and reality. In both cases, 

we used a test for homogeneity with a binomial distribution to test whether  

the probability of success (i.e., achieving a value of true) was identical for visibility 

models based on various datasets. We compared each set with all others using 

Holm’s p-value adjustment method to compensate for multiple comparisons. All 

statistical analyses were done using R software (R Development Core Team, 2015). 

For both definitions of the model’s matching reality, we evaluated the character of 

errors, which is to say whether the studied datasets resulted in more false positives 

(a model overestimating visibility) or false negatives (a model underestimating 

visibility). For evaluation in accordance with Analysis 2a, we took into account the 

numbers of visible WTs. Cases where the model predicted more WTs than were 

seen in reality were considered false positives, and vice versa. According to error 

definition 2b, false positives occurred when the model predicted that at least one 

WT would be visible when none were visible in reality. Differences among datasets 

in terms of the representation of false positives were tested identically as were the 

total number of errors (test for homogeneity with a binomial distribution, Holm’s 

p-value adjustment method). 

Results 

Difference in the number of visible WTs 

A comparison as to the number of visible WTs by which a model based on a given 

dataset differed from reality confirmed the prediction that visibility models created 

based on more-detailed input data correspond more closely to actual visibility. The 

model based on the LSM provided more reliable results than did the model 

acquired based on vector data at the most detailed scale tested (i.e., MAP10, at a 

very strong significance level [p < 0.0001]). Pairs of models based on vector data 

at neighboring scales (i.e., MAP10 vs. MAP25 and MAP25 vs. MAP500) can be 

differentiated at a level of significance an order of magnitude weaker, although still 

very strong (p < 0.001). According to this comparison, the most precise visibility 

model was the one created from the LSM. Vector-based models’ reliability was in 

accordance with the scale of the input data and the tested datasets yielded 

significantly different results. 
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Model matches reality only when the number of visible WTs is the same in the 

model and in reality  

As seen in Table 3, the number of true values (i.e., the number of control points 

at which the model agreed with reality according to definition 2a) diminished with 

decreasing precision of input data. In the case of the LSM-based model, there was 

disagreement at 11.3% of control points, while the model based on MAP500 

disagreed in almost half of cases (44%). A similar trend results from mutual 

comparison of the reliability of models based on individual datasets using the test 

for homogeneity with a binomial distribution. The LSM-based model displayed 

significantly better results than did all vector-based models (the significance of the 

difference strengthened with decreasing vector dataset precision, see Table 4) and 

MAP10 was significantly better than was MAP500. For neighboring vector 

datasets, however, it cannot be said that the MAP10-based model provided results 

significantly different from those of the MAP25-based model; similarly, the 

reliability of the MAP25-based model did not differ significantly from that of the 

MAP500-based model. 

Table 3. Relative reliability of visibility models as the number and percentage of cases where the 
model matched reality. Match definition 2a (the number of visible WTs must agree), 

number of control points n = 150. 

 

Digital Visibility Model True False Relative accuracy (%) 95% confidence interval 

LiDAR-based visibility model 133 17 88.7 83.6–93.7 

Vector-based visibility model, 1:10,000 113 37 75.3 68.4–82.2 

Vector-based visibility model, 1:25,000 100 50 66.7 59.1–74.2 

Vector-based visibility model, 1:500,000 84 66 56.0 48.1–63.9 
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Table 4. Mutual comparison of reliability of visibility models according to match definition 2a 
(p-value of the test for homogeneity with a binomial distribution, Holm’s p-value adjustment). 

Significant values are in bold. 

 

LSM MAP10 MAP25 

    

MAP10 0.0129 
 

 

MAP25 < 0.0001 0.1507  

MAP500 < 0.00000001 0.0027 0.1507 

 

 

Model matches reality if at least one WT is visible in the model and in reality or 

none are visible in the model and in reality 

The numbers of control points at which the model agreed with reality according 

to definition 2b are given in Table 5. The number of true values recorded follows 

the same trend as in the previous case, as a more-detailed input data scale 

corresponded to increased matching between modeled visibility and actual 

visibility. The LSM-based model failed to match reality at only 3.3% of control 

points, whereas the MAP500-based model disagreed in almost one-third of cases 

(28%). As seen in Table 6, mutual comparison of model reliability shows that some 

model pairs were not significantly different. For match definition 2b, where  

the model agrees with reality in more cases than it does for the stricter match 

definition 2a, the LSM-based model was not significantly more accurate than was 

the MAP10-based model. The MAP10-based model, however, yielded better 

results than did the models created using MAP25 and MAP500. We can therefore 

say that for this very loose definition of matching between reality and model  

it is apparently possible to replace LiDAR-based data with vector data at a similar 

scale (1:10,000). There nevertheless was still a clear trend that visibility analysis 

using more-detailed data provided more reliable results. 
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Table 5. Relative reliability of visibility models as the number and percentage of cases where the 
model matched reality. Match definition 2b, number of control points n = 150.  

Digital viewshed model True False Relative accuracy (%) 95% confidence interval  

LiDAR-based visibility model 145 5 96.7 93.8–99.5 

Vector-based  visibility model, 1:10,000 138 12 92.0 87.7–96.3 

Vector-based  visibility model, 1:25,000 121 29 80.7 74.3–87.0 

Vector-based  visibility model, 1:500,000 108 42 72.0 64.8–79.2 

 

Table 6. Comparison of reliability of visibility models according to match definition 2b  
(p-value of the test for homogeneity with a binomial distribution, Holm’s p-value adjustment). 

Significant values are in bold. 

 

LSM MAP10 MAP25 

LSM  
 

 

MAP10 0.2062 
 

 

MAP25 < 0.001 0.0215  

MAP500 < 0.00000001 < 0.00001 0.2062 

 

Character of errors 

For both cases of model error definition (false values according to 2a and 2b),  

it is apparent at first sight that the number of false negatives recorded did not 

depend on input data precision (see Table 7). Regardless of how we defined true 

and false values for this study, the datasets used differed in the extent to which 

they overestimated visibility (false positives), with visibility overestimated more  

by models based on less-detailed data. All vector-based models, in addition, had 

more false positives than false negatives, while the opposite was true for the LSM-

based model. The occurrence of false positives in individual models mostly 

differed significantly between neighboring models, although, as in the evaluation 

of the total number of true and false values, there were cases where differences  

in the reliability of models versus neighboring datasets were not significant  

(see Table 8 for p-values). 
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Table 7. Structure (number of cases) of false positives and false negatives in models based  
on individual datasets. 2a false positive: the model predicts more WTs to be visible than  

are in reality. 2b false positive: the model predicts at least one WT to be visible while in reality 
none are visible. 

Digital viewshed model 

False negative 

(2a) 

False negative 

(2b) 

False positive 

(2a) 

False positive (2b) 

LiDAR-based visibility model 11 5 6 0 

Vector-based visibility model, 1:10,000 11 2 26 10 

Vector-based visibility model, 1:25,000 11 5 39 24 

Vector-based visibility model, 1:500,000 7 4 59 38 

 

Table 8. Mutual comparison as to occurrence of false positives in models based on individual 
datasets. 2a false positive: the model predicts more WTs to be visible than are in reality.  
2b false positive: the model predicts at least one WT to be visible while in reality none are 

visible. p-values, test for homogeneity with a binomial distribution, Holm’s p-value adjustment. 
Significant values are in bold. 

 LSM MAP10 MAP25 

2a false positive  
 

 

MAP10 0.011 
 

 

MAP25 < 0.000001 0.036  

MAP500 < 0.0000000001 < 0.00001 0.064 

2b false positive    

MAP10 0.001 
 

 

MAP25 < 0.0000001 0.093  

MAP500 < 0.0000000001 0.00017 0.039 

Discussion 

The results indicate that the reliability of visibility models depended on the scale 

(level of detail) of input data. This trend was particularly clear when we calculated 

how the number of objects modeled as visible differed from the number actually 

visible (Section 3.1.). In controlling at 150 random points, the visibility models 

created based on the tested datasets differed with very strong significance. 
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Therefore, if the purpose is to carry out a GIS viewshed analysis in such a manner 

as to minimize the difference between the number of objects visible in the model 

and in reality, then it is possible unequivocally to recommend using the most 

precise input data possible. Visual impact of WTs provides a good example of 

when large differences in modeled and actual numbers could be important, 

because, as demonstrated by Betakova et al. (2015), human perceptions of WTs 

depend on the number of objects seen. In the cases of some evaluation purposes 

for which GIS viewsheds are modeled, however, it may be more important  

to achieve a different type of match between model and reality. In our study,  

we worked with a scenario wherein the purpose of the analysis was not  

to minimize the difference in numbers, but rather to achieve the best possible 

match between the number of visible WTs in the model and in reality (2a), which  

is to say for the model to predict the correct number of visible objects. In contrast,  

the second scenario (2b) simulated a situation wherein matching numbers would 

not matter and the visibility of a single tall structure from the given location would 

be unacceptable (e.g., for a WT) or sufficient (e.g., for a radio mast). In both 

scenarios, therefore, match (true) and disagreement (false) between the model and 

reality were defined as binary. Such evaluation is more forgiving (in the case  

of Analysis 2b versus 2a) of model imprecision. In certain cases, therefore,  

the difference between neighboring datasets was not significant (e.g., based on the 

evaluation used in Analysis 2b, a LiDAR-based model can be replaced with a small-

scale vector-based model without losing precision). However, the results still 

clearly indicate a trend that a more precise input surface model leads to a more 

reliable visibility model. Moreover, it is possible that significant differences 

between neighboring datasets would have been achieved by increasing the number 

of control points (i.e., by boosting the test’s power). Therefore, the percentage  

of cases in which the model matched reality may be more interesting than  

is the significance of the differences. Tables 3 and 5 indicate that this relative 

accuracy depended on both the dataset used and the specific definition of a match 

between the model and reality, although the trend was identical for both match 

definitions used. When selecting input data for GIS viewshed analysis, therefore, 

it is necessary to take into account not only the scale but also the purpose  

of the analysis and the relative accuracy that suffices for the given purpose  

in landscape planning or other field. This study together with papers by other 

authors (e.g., Berry et al., 2005; Mark A. Maloy and Dean, 2001) can provide 

guidance as to the degree of accuracy that can be achieved in a given case. 

Nevertheless, specific accuracy values can, of course, differ under the effect  

of such factors as the configuration of the area of interest. 
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In terms of the distribution and structure of errors of individual models, vector-

based models tended to overestimate, to generate false positives (i.e., to predict 

that an object is visible from more locations than it is in reality). In contrast,  

the LiDAR-based model predominantly generated false negatives, which  

is in accordance with the results of (Meek et al., 2013). The occurrence of false 

negatives (i.e., predicting that a WT is not visible when it is visible in reality) was 

more or less identical for all models, whereas the number of false positives 

increased with decreasing input data detail (see Table 7). The dependence  

of the occurrence of false positives on input precision can be explained  

by a situation that models based on less-detailed datasets overestimate the extent 

of the total visible area (see Fig. 2). As suggested by Meek et al. (2013), who 

reported that a visibility model based on a LiDAR-based DSM originally contained 

predominantly false negatives but that the opposite situation was true after trees 

were removed, overestimation of visible area may be caused by inaccurate capture 

of objects on the ground in coarser-scale data, which causes fewer obstacles  

to visibility. The same effect may be caused by inaccurate capture of the terrain 

where the DTM is smother and models only large terrain obstacles. As visible area 

increases, however, nonvisible area within the study area diminishes  

and so the independence of the number of false negatives on data accuracy 

remains surprising in this explanation. 

Based on the structure of errors, it can be said that, looking at model accuracy  

in terms of areas from which a tall structure is not visible, the models display  

no essential differences. In such analyses, LiDAR-based models can be replaced 

by vector-based models or a detailed vector-based model by a less-detailed one. 

Therefore, if for landscape planning purposes we are searching for suitable 

locations to place a tall structure (e.g., a WT) with the requirement that  

the structure have the least visibility possible, then it is not a serious mistake to use 

a large-scale model and place the structure in a location designated as nonvisible. 

However, we must take into account that using models based on less-detailed data 

may lead us to overlook potentially suitable locations or not find any suitable 

locations. In contrast, if a visibility analysis is used that focuses on visible areas 

based on less precise vector-based models, then visibility is substantially 

overestimated. This can affect preventive assessment of structure placement in 

relation to its visibility as well as scenic beauty, where a structure is evaluated as 

visible from a location with a high aesthetic value and so as having a negative effect 

even though it would not be visible in reality. Another example of inaccurate 

modeling of visible areas having an economic impact is the placement of radio 

masts. 
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A number of studies mention LiDAR as a theoretically suitable data source  

for modeling visibility (e.g., Lake et al. 2000, Sander & Manson, 2007)  

and attention is currently dedicated to quantifying the accuracy of LiDAR-based 

visibility models (Castr et al., 2015; Murgoitio et al., 2014). In general, we can say 

that our study confirmed the prediction that LiDAR-based datasets are the most 

suitable input data for visibility analyses in terms of accuracy and that their 

accuracy exceeds that of vector-based datasets commonly used in practice. This 

fact is supported in particular by Analysis 1. If LiDAR data is not available for the 

study area, it is best to use DSMs created using vector data at the most detailed 

scale possible. In contrast to vector-based models, the accuracy of LiDAR-based 

models does not depend primarily on input data scale but rather on the density of 

the elevation point cloud and the resolution of the DSM created from it (Castro 

et al., 2015a; Murgoitio et al., 2014b). The provider of the data product used in 

this study stated a point cloud density greater than 1 point/m2 and the resolution  

of the DSM created was 5 m. The precision of our LiDAR-based model (88.7%) 

matches that of the model created by Berry et al. (2005) with a resolution of 1 m 

(88.5%). It is probable that if we decreased the pixel size of the DSM we would 

obtain an even more accurate visibility model, although this would increase 

computation time demands. The study was conducted in a study area  

with undulating relief 

where elevation ranged between 211 and 723 m a.s.l. It is possible that results 

could be slightly different in flat areas or in mountains with more dramatic relief. 

It might logically be assumed that merely slightly undulating landforms will require 

more detailed data to describe all elevation subtleties, while less detailed datasets 

could be sufficient for visibility in the mountains. To the best of our knowledge, 

however, such assumption has not yet been definitively proven and its testing 

would require systematically selecting a set of sample study areas varying  

in elevation range from flat land to mountains. 

Conclusion 

The results of our study confirmed the prediction that the reliability of GIS 

visibility analyses depends on the input data’s level of detail. This dependence was 

demonstrated through the example of assessing the visibility of tall structures, 

specifically WTs. Considering the difference between the number of WTs visible 

from random control points as predicted by GIS visibility models and the number 

that are visible in reality, the most suitable data input is unequivocally a LiDAR-

based DSM. The suitability of visibility models for which the input was surface 



- 49 - 
 

models created using vector data (contour lines, woody vegetation, and buildings) 

can be ranked according to input data scale. A similar trend can be observed  

in the case of the binary evaluation of match and disagreement between modeled 

visibility and reality, although in certain cases the differences between individual 

datasets were not unequivocal and depended on how the model’s match  

with reality was specifically defined. 

In terms of the reliability of visibility models, none of the input datasets tested 

differed in the number of recorded false negatives (i.e., cases where the model 

underestimated WT visibility as compared to reality). Differences consisted in the 

numbers of false positives (i.e., overestimation of modeled visibility as compared 

to reality). For both definitions of true and false values, the LiDAR-based model 

provided the best results. All models based on vector data significantly 

overestimated visibility compared to the LiDAR-based model and this 

overestimation was greater for data from less-detailed scales. 

In conclusion, we can state that (i) as predicted, more-detailed input data led to 

more reliable visibility analysis results; (ii) the vector-based models used had more 

false positives, while the LiDAR-based model had more false negatives; (iii) only 

the number of false positives depended on input data precision, while  

the occurrence of false negatives was similar for all datasets used; and (iv) the 

trends determined are therefore valid also for various definitions of the  

model’s matching of reality. Our conclusions are valid for analyses at a detailed 

evaluation scale. 
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Abstract 

Viewshed analysis is a GIS tool in standard use for more than two decades to 

perform numerous scientific and practical tasks. The reliability of the resulting 

viewshed model depends on the computational algorithm and the quality of the 

input digital surface model (DSM). Although many studies have dealt with 

improving viewshed algorithms, only a few studies have focused on the effect of 

the spatial accuracy of input data. Here, we compare simple binary viewshed 

models based on DSMs having varying levels of detail with viewshed models 

created using LiDAR DSM. The compared DSMs were calculated as the sums of 

digital terrain models (DTMs) and layers of forests and buildings with expertly 

assigned heights. Both elevation data and the visibility obstacle layers were 

prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 

1:500,000) as well as using a combination of a LiDAR DTM with objects 

vectorized on an orthophotomap. All analyses were performed for 104 sample 

locations of 5 km2, covering areas from lowlands to mountains and including 

farmlands as well as afforested landscapes. We worked with two observer point 

heights, the first (1.8 m) simulating observation by a person standing on the 

ground and the second (80 m) as observation from high structures such as wind 

turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all 

height estimations, all of the vector-based DSMs used resulted in overestimations 

of visible areas considerably greater than those from the LiDAR DSM. In 

comparison to the effect from input data scale, the effect from object height 

estimation was shown to be secondary. 

Keywords 

LiDAR, Spatial uncertainty, Digital surface model, Viewshed, Data quality 
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Introduction 

Defining the visibility of objects in the landscape has been important for historical 

studies (e.g., Ogburn, 2006; Sevenant and Antrop, 2007) and has found application 

also in a number of areas of current interest, such as seeking locations to place 

objects potentially harming scenic beauty like photovoltaic power plants 

(Fernandez-Jimenez et al., 2015), coastal aquaculture sites (Falconer et al., 2013), 

and ski areas (Geneletti, 2008); placing military structures (Smith and Cochrane, 

2011); tagging landscape photographs (Brabyn and Mark, 2011); analyzing  

the effects of introducing animal species (Kizuka et al., 2014); and modeling 

predation risk in animal ecology (Alonso et al., 2012; Olsoy et al., 2015). The basic 

algorithm implemented in most GIS software produces a binary detection of areas 

that are visible or nonvisible from a point of observation or identifies areas from 

which a given object in the landscape is or is not visible. Combining several such 

binary viewsheds created from multiple observation points or from all cells in  

the raster of the study area creates a cumulative viewshed describing the visual 

exposure of the study area. As a number of factors may play roles in visibility 

modeling and using only a binary attribute (0 or 1) constitutes a drastic 

simplification (Fisher, 1992), other algorithms have been under development  

for a number of years, such as fuzzy viewshed and visual magnitude (Brent C. 

Chamberlain and Meitner, 2013; Fernandez-Jimenez et al., 2015; Fisher, 1996, 

1995, 1994, 1993, 1992; Ogburn, 2006), as well as visibility indices such  

as the Vertical Visibility Index (Nutsford et al., 2015), which enrich the model  

with further parameters and so are used to bring it closer to reality. Due to their 

simplicity and implementation in common GIS software, however, binary  

and cumulative viewsheds are still used in a number of studies (Alonso et al., 2012; 

Falconer et al., 2013; Olsoy et al., 2015; Rosa, 2011; Schirpke et al., 2013). 

In addition to the computational algorithm, the reliability of the resulting visibility 

model also depends on the quality of the input digital surface model (DSM) 

(Klouček et al., 2015; Lake et al., 2000b; Sander and Manson, 2007a), and Fisher 

(1992) previously noted that it would be an error to assume the input DSM  

to be accurate. Although many studies have dealt with improving algorithms, only 

a few studies have focused on the effect the spatial accuracy of input data has  

on the reliability of results from visibility analyses, even though, as can been seen 

in older visibility studies (Fisher, 1992; Huss and Pumar, 1997) and spatial 

uncertainty research in other areas (for review see Barry and Elith, 2006; Moudrý 

and Šímová, 2012), it is highly probable that decreased data quality correlates  

with decreased quality of results. DSMs for visibility analyses are mostly created  

as combinations of digital terrain models (DTMs) depicting the bare earth surface 
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plus layers of objects on that surface, particularly structures and vegetation.  

As such layers rarely contain the attribute object height, the height for creating  

the DSM is estimated based on knowledge of the area or such sources as published 

works on vegetation in the location, as was done by Schirpke et al. (2013). The 

accuracy of this estimate represents an additional potential source of DSM 

inaccuracy beyond the scale of elevation and planimetric data. In extreme cases, 

objects are entirely omitted from the surface and visibility is modelled based only 

upon a DTM, even though Dean (1997b) has already demonstrated the logical 

expectation that using DSM results in higher-quality visibility models.  

Examples of rare studies dealing with input data precision have been presented  

by Lake et al. (2000) and Sander & Manson (2007), who focused upon modeling 

structures as vertical obstacles to visibility. Some authors have focused  

on modelling vegetation for visibility analysis, but they did not evaluate the effect 

of such models’ precision on the precision of the visibility model (e.g., Domingo-

Santos et al., 2011; Liu et al., 2010). Problems with implementing vegetation  

and structures into DSMs do not arise when using LiDAR-based surface models, 

which already contain objects on the surface and are considered by many authors 

to be currently the most accurate data input for visibility analyses (see Castro et 

al., 2015b; Lake et al., 2000b; Murgoitio et al., 2013). Using the example of wind 

turbine visibility and comparing modelled visibility with actual visibility in the field, 

Klouček et al. (2015) demonstrated that use of a LiDAR-based DSM can result  

in a ca 90% match rate with reality while use of DSMs based on vector layers  

of various scales resulted in only 50–80% match rates. Unfortunately, LiDAR-

based DSMs cannot yet be used for all study areas due to their high prices, because 

of the difficulty in processing a point cloud into a raster DSM, and not least  

for the reason that LiDAR data is not yet available for a number of areas. For 

these reasons, it is necessary to know how visibility models based on other data 

differ from LiDAR-based models and whether these differences depend  

on the quality of the vegetation height estimation and other variables. 

While focusing on the immediate vicinity of observer points, the aim of our study 

was to evaluate the effects that input data accuracy, terrain configuration, number 

of visual obstacles such as forests and buildings, and the quality of expertly 

assigned obstacle height (particularly of forests) have on the results of simple 

binary viewshed analysis. 
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Matherial and Methods 

Sampling locations 

We analyzed visibility at 104 sampling locations in the Czech Republic.  

One location corresponded to a single page of a national map at a scale of 1:5,000 

(i.e., a rectangle of 2.5 × 2 km). Selecting locations in this manner provided 

sufficient areas for visibility analyses at a detailed scale while still enabling 

acquisition of input data for a sufficient number of locations. The locations (map 

pages) were selected by stratified random sampling from that section of the Czech 

Republic which had available DTMs as well as DSMs created from airborne laser 

scanning data. This section forms a north–south band in the center of the country 

(Fig. 1) covering elevations ranging from lowlands to mountains  

(141 to 928 m a.s.l.) and various landscape types from agricultural to forest. 

Random sampling of locations was stratified so that it would include as equally  

as possible combinations of variously forested areas (three categories according  

to the proportion of forest at the location: 0–9%, 10–24%, and 25–60%)  

and various terrain configurations (three categories according to elevation 

differences in the area expressed as the standard deviation of elevation  

in the location: <10, 11–30, >30 m). Another condition was excluding selection 

of adjacent map pages. 
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Figure 1. Sampling locations. 

Input data and GIS processing 

All GIS analyses were conducted using ArcGIS 10.2 software (ESRI, CA, USA). 

For all viewshed analyses, we used five input DSMs varying in scale and accuracy 

(see Table 1 for overview). The most accurate was the 1st Generation  

LiDAR-based DSM of the Czech Republic (hereinafter LiDAR). It was also the 

only dataset that was available directly as a DSM for the sampling locations.  

The remaining DSMs were created as sums of rasters comprising the terrain 

(DTMs) and objects on the terrain (digital object models [DOMs]).  
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Table 1. Description of input datasets. 

Acronym 

within 

study Czech acronym Scale 

Year of 

last 

update 

Elevation 

accuracy 

Planimetric 

accuracy Contour interval Data description 

LiDAR DMP 1G Density of 

elevation 

point cloud 

is 1–2 

points/m2 

2009–

2013 

0.4–0.7 m 0.4–0.7 m No contour Digital surface model 

represented by 

elevation point cloud 

from data acquired by 

aerial LiDAR covering 

part of the Czech 

Republic 

LidOrth DMR 5G Density of 

elevation 

point cloud 

is 1–2 

points/m2  

2009–

2013 

0.18–0.3 m Only 

elevation 

dataset 

No contour Digital terrain model 

represented by 

elevation point cloud 

from data acquired by 

aerial LiDAR covering 

part of the Czech 

Republic 

Orthophotomap Pixel 

resolution 

= 0.5 m 

2013 Only 

planimetric 

dataset 

0.25–0.5 m  Orthophotomap 

covering the entire 

Czech Republic 

Map5 SM 5 1:5,000 2001–

2014 

0.7–5 m 0.5–1 m 1, 2, or 5 m 

depending on 

the character of 

the terrain 

Large-scale vector 

database covering part 

of the Czech Republic 

Map25 DMU 25 1:25,000 1998 5–10 m 0.5–20 m 5 m Medium-scale vector 

database covering the 

entire Czech Republic 

Map500 ArcCR 500 1:500,000 2014 25–50 m up to 200 m 50 m Small-scale vector 

database covering the 

entire Czech Republic 

 

Working in this manner, one of the inputs combined a LiDAR-based DTM  

with a vectorization of forests and built-up areas on the actual orthophotomap 

(hereinafter LidOrth). The remaining DSMs were based on vector topographic 

maps at scales of 1:5,000 (hereinafter MAP5), 1:25,000 (MAP25), and 1:500,000 

(MAP500) (see Table 2 for overview). In all these datasets, elevation was depicted 

by contour lines and topography by polygons representing the footprints  

of individual objects on the ground. DTMs were calculated by interpolating 



- 57 - 
 

contour lines using the topo to raster method. To create DOM rasters,  

we added estimated values of heights to polygons of visual obstacles and rasterized 

the layers. Inasmuch as forests were the most important visual obstacles within 

the locations, we tested five values of forest height (15, 20, 25, 30, and 35 m)  

to evaluate the effect of the DOMs’ height estimates on viewshed results.  

These values represent a range of mature forest types under various ecological 

conditions in the Czech Republic. Other woody vegetation types, such as young 

forests and orchards, were assigned the height of 5 m. We assigned the height  

of 8 m to buildings and built-up areas as an estimate of the average height of rural 

structures within the locations. 

Table 2. Creation of five digital surface models (DSMs) from input datasets. 

DSM  DTM – source elevation data  DOM – source planimetric data 

LiDAR = elevation point cloud = elevation point cloud 

LidOrth = elevation point cloud + vectorization on actual orthophotomap: forest 

(15–35 m), orchard (5 m), built-up area (8 m) 

MAP5 = MAP5 (contour lines) + Map5: forest (15–35 m), orchard (5 m), built-up 

area (8 m) 

MAP25 = MAP25 (contour lines) + Map25: forest (15–35 m), orchard (5 m), built-up 

area (8 m) 

MAP500 = MAP500 (contour lines) + MAP500: forest (15–35 m), built-up area (8 m) 

 

The ArcGIS Viewshed tool, which creates simple binary layers distinguishing 

between visible and nonvisible areas, was employed for GIS visibility analyses  

and the process was automatized using a Python script. Within each sampling 

location, we generated one random point as the location of an observer.  

We processed a set of viewshed analyses with all of the DSMs and with two heights 

assigned to the observer point as the OFFSETA parameter within the Viewshed 

tool. The height of 1.8 m simulated observation of the landscape by a person 

standing on the ground (ground variant). The second variant used the height  

of 80 m, which can be interpreted as visibility from an observation tower  

or as visibility from a tall structure such as a wind turbine in the landscape 
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(approximately, disregarding height of the observer; tower variant). In this way,  

we created 2 x 21 viewshed models for each sampling location. 

Statistical analysis 

We used an R (R Core Team, 2015) script for the nonparametric Friedman’s 

ANOVA with repeated measures design and post-hoc test (available from 

http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-

code/) to analyze potential differences among visibilities modeled with different 

forest heights. The response variable was the amount of visible area as a percent 

of the location obtained from the viewshed models for each dataset and the forests 

heights were designed as repeated measures at the same location. The identical 

procedure was used to analyze differences among visibilities obtained from 

individual datasets. In this case, the response variable was the percent of visible 

area modeled with the forest height of 25 m and the datasets were taken  

as repeated measures at the location. Similarly, we used this design  

and the Friedman test to test the significance of spatial differences among 

modelled visibilities. In accordance with previous studies (Castro et al., 2015; 

Klouček et al., 2015; Lake et al., 2000; Murgoitio et al., 2014), we considered  

the model based on the LiDAR DSM to be the most accurate (as best matching 

reality). Hence, the response variable was calculated as the spatial difference 

between LiDAR visibility and visibility modeled with an individual dataset. 

Results 

As can be seen in Table 3, using a tower as the observation point or observed 

object leads, as expected, to larger viewsheds modelled based on each dataset  

in comparison to the area visible to a ground-level observer, although the trend  

of differences among datasets is similar for both observer point heights.  
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Table 3: Sizes of visible area as a percent of the sampling location standard deviation modelled 
on basis of individual datasets for observation from ground level (ground) and from a height of 

80m (tower). 

  
Forest height 

DSM Level 
15 m 20 m 25 m 30 m 35 m 

LiDAR Ground --------------------------------------- 6.76 ± 6.88 --------------------------------------- 

tower ------------------------------------- 51.40 ± 16.89 -------------------------------------- 

LidOrth ground 12.04 ± 10.07 11.75 ± 9.90 11.50 ± 9.77 11.32 ± 9.68 11.29 ± 9.64 

tower 71.46 ± 15.64 69.80 ± 15.80 68.16 ± 16.03 66.56 ± 16.31 65.01 ± 16.66 

MAP5 ground 16.35 ± 12.85 16.01 ± 12.76 15.72 ± 12.73 15.49 ± 12.71 15.34 ± 12.66 

tower 73.59 ± 15.57 71.92 ± 15.74 70.27 ± 16.02 68.65 ± 16.34 67.06 ± 16.71 

MAP25 ground 16.18 ± 13.92 15.48 ± 13.71 14.97 ± 13.63 14.56 ± 13.53 14.24 ± 13.41 

tower 72.36 ± 15.94 70.12 ± 16.26 67.95 ± 16.74 65.89 ± 17.25 64.00 ± 17.56 

MAP500 ground 37.33 ± 22.61 36.74 ± 22.53 36.20 ± 22.47 35.74 ± 22.43 35.36 ± 22.41 

tower 86.37 ± 14.60 85.29 ± 14.97 84.22 ± 15.49 83.18 ± 16.13 82.25 ± 16.65 

 

The smallest average size of visible area in sampling locations came from using  

the LiDAR DSM, while using all of the remaining datasets led to considerable 

overestimations in the resulting viewshed (see Fig. 2 for an illustration). For both 

observer point heights, the viewshed size given by the LiDAR-based model (on 

average 6.76% of the location when observing from the ground and 51.40% from 

80 m) clearly differed from the sizes calculated using the other datasets.  
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Figure 2. Overestimation of visible area depending on input DSM scale and observer point 
height_an example of one sampling location (A) Digital surface model. (B) Visibility 

model_ground variant. (C) Visibility model_tower variant. 

 

For the ground-level variant, the results closest to those of the LiDAR-based 

model were achieved by the model combining the LiDAR DTM  

with the vectorized orthophotomap, followed by the models based on MAP25 

and MAP5, which had average visibility similar to one another. For the observer 

point height of 80 m, there were minimal differences among results acquired using 

LidOrth, MAP5, and MAP25. For both variants, the model based on MAP500 

produced the largest viewshed overestimations. For ground-level observation, 

the LidOrth-based model produced visible areas ca 70% larger than those 

produced by the LiDAR-based model. The MAP5- and MAP25-based models 

resulted in visible areas more than twice as large and the MAP500-based model 

more than five times as large as those produced by the LiDAR-based model. 

Although the differences in visible area did not come to such large multiples  

for the tower variant, the visibility modelled based on various datasets differed  

by more percentage points and the differences therefore concerned a larger 

proportion of the area. The LidOrth-, MAP5-, and MAP25-based models 

produced visible areas almost 20 percentage points larger than did the LiDAR-

based model, and the MAP500-based model produced visible areas about  

30 percentage points larger (Table 3). This simple overview of percentages  

also corresponds to the results of the Friedman test for models using a forest 
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height of 25 m (Table 4). For both observer point heights, there were no significant 

differences in visibility modelled based on the MAP5 and MAP25 datasets.  

In addition, there was no significant difference for the tower variant between  

the LidOrth-based and MAP25-based models. All remaining differences among 

datasets were significant, and frequently very highly so (see Table 4). 

 

Table 4. Significance of size differences among visible areas modelled based on individual 
datasets using a forest height of 25mfor ground and tower variants. Friedman test with repeated 

measures design and post-hoc test. Significant values are in bold. 

 LidOrth MAP5 MAP25 MAP500 

 ground tower ground tower ground tower ground tower 

LiDAR <0.002 <1e−9 <1e−16 <1e−16 <1e−11 <1e−16 <1e−16 <1e−16 

LidOrth   <2e−5 <0.0002 <0.01 0.051 <1e−16 <1e−16 

MAP5     0.554 0.455 <1e−9 <1e−9 

MAP25       <5e−14 <1e−14 

 

Spatial differences between visibility based on individual datasets and LiDAR-

based visibility were larger than were the differences from numerically subtracting 

visible areas, although numerical and spatial differences displayed the same trend 

(the Spearman correlation coefficient for numerical and spatial differences varied 

between 0.845 and 0.957). In terms of spatial differences, the LidOrth-based 

model differed in resulting visibility from the LiDAR-based model by 8.05 

percentage points in the ground variant and by 25.75 percentage points in the tower 

variant. The spatial differences between other models and the LiDAR-based 

model were significantly greater than was that for the LidOrth-based model  

(see Table 5 for p-values). The differences between the remaining datasets  

and the LiDAR-based model expressed as percentage points were (ground, tower): 

MAP5 12.52, 26.56; MAP25 12.44, 26.62; and MAP500 32.5, 35.29. Similarly  

as for the analyses focused on total visible area (Table 4), the spatial difference 

analysis also resulted in no significant differences from the LiDAR-based model 

for visibilities calculated based on MAP5 and MAP25 (Table 5). Visibility based 

on MAP500 again very significantly differed from that based on all of the others.  



- 62 - 
 

Table 5. Overestimations by individual models when compared to LiDAR results. 

Model based on: LiDAR LidOrth MAP5 MAP25 MAP500 

Difference Ground (1.8m) 0 8.05 12.52 12.44 32.5 

Difference Tower (80m) 0 25.75 26.56 26.62 35.29 

 

In general, it can be concluded from the analysis as to effect of dataset used  

on resulting visibility that viewshed models calculated using a combination  

of a LiDAR-based DTM with vectorization on an orthophotomap provide similar 

results as do models created based on maps at scales 1:5,000 to 1:25,000, although 

modelled visibility is strongly overestimated in comparison to models based  

on LiDAR-based DSMs. 

Looking at the effect of forest height (Table 3), it is clear that visible area decreases 

with taller forest height. Other effects of forest height are demonstrated  

in the LidOrth dataset, representing datasets giving similar visible area values 

(LidOrth, MAP5, and MAP25), and the MAP500 dataset as the dataset giving  

the most different results (see Table 6). For the ground variant, visible area extent 

was in most cases significantly different when the forest height was changed by 10 

m, while a change of 5 m was sufficient in the tower variant. All of the heights 

produced results significantly different from those of the LiDAR-based model. 

The significance of all of the differences had a decreasing tendency with coarser 

scale and tended to be lower for the ground variant than for the tower variant.  

Table 6. Significance of spatial differences among modelled visibilities. The response variable 
was calculated as the spatial difference between LiDAR visibility and the visibility modeled by 

an individual dataset. Friedman test with repeated measures design and post-hoc test. 
Significant values are in bold. 

 MAP5 MAP25 MAP500 

 ground tower ground tower ground tower 

LidOrth <5e−8 <0.005 <5e−7 <0.0001 <1e−16 <1e−16 

MAP5   0.998 0.852 <5e−16 <1e−16 

MAP25     <1e−16 <5e−15 

 

For the combination of all effects, the difference from the LiDAR-based model 

was least apparent for the ground model with MAP500 as the input dataset  
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and forest height of 35 m (p = 0.048). Given the overall overestimation of visibility 

by all datasets, however, it cannot be stated that the tallest forest height estimate 

is the most suitable for calculating viewshed. Despite their statistical significance, 

percentage differences in visible area size caused by changes in forest height were 

minimal in comparison to those caused by input data accuracy. It can therefore  

be stated that the effect of data detail on modelled visibility is dominant and that 

when using surfaces not based on LiDAR object height accuracy has  

only a secondary effect on the accuracy of the result.  

How spatial differences between the visibility modelled with a given dataset  

and LiDAR-based visibility depended on terrain configuration and number  

of obstacles cannot be generalized, because individual datasets in combination 

with the ground and tower variants produced varying results. 

Discussion 

This study compares the results of visibility models based on data of various spatial 

accuracy with models based on a LiDAR-based dataset, the latter of which most 

closely matches reality according to the field comparison of modelled visibility  

by Klouček et al. (2015). Based on our results, all of the other models considerably 

overestimated visibility in comparison to the LiDAR-based model. We had 

expected that, with the exception of the LidOrth dataset combining a LiDAR-

based DTM with objects digitized on an actual orthophotomap, the smallest 

difference would appear in visibility modelled on basis of the most detailed vector 

data (i.e., MAP5). Surprisingly, however, MAP5 provided similar results as did 

MAP25, whether working with numerical or spatial differences in visible areas.  

In addition to the fact that MAP5 is at a more detailed scale than is MAP25, MAP5 

is the only tested dataset that depicts individual buildings and not just outlines  

of built-up areas. In accordance with the results of Sander and Manson (2007), 

who stated that generalizing building locations has a significant effect on the 

resulting viewshed model and that this effect is more important than is that from 

imprecise building height determination, we predicted that MAP5 would produce 

a more precise viewshed model. However, Sander and Manson (2007) analyzed 

visibility in cities and our results indicate that in locations in the countryside, where 

buildings occur to a lesser extent and are predominantly part of smaller 

municipalities as in our study, then generalizing buildings does not have  

a significant effect on visibility modelling results. For all variants evaluated, 

visibility modelled on the basis of MAP500 differed the most from the other 

visibility models. This result corresponds to the low reliability of visibility models 
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based on this dataset (48.1–63.9%) found by Klouček et al. (2015). Data 

generalized to such an extent as is found in maps at a scale of 1:500,000 therefore 

cannot be used at such a detailed scale (areas of 5 km2) for modelling visibility, not 

even when objects on the surface are included from the planimetric layers of such 

a map.  

In relation to the findings of this study and those of Klouček et al. (2015), it can 

be difficult to understand the results of studies that do not describe in detail the 

input data used to model visibility. This is a problem for certain applied studies 

that do not have as their primary objective to study the effect of geodata  

on the results. For example, Geneletti (2008) modelled the visibility of ski areas in 

a range of 5 km, which means within the zone of greatest visual effect  

(e.g., Betakova et al.), based on a DSM, but that author did not state how and from 

what data the DSM was assembled. Etherington and Alexander (2008) stated the 

scale of the digital elevation model (1:20,000) and the resolution of the raster (30 

m) used for their viewshed model, but it is not clear whether this raster included 

vegetation. Given that the scale of data used has a dominant effect on visibility 

results, all future studies should describe the input data so that the applicability  

of the study results can be evaluated. 

According to our results, therefore, it cannot be stated unequivocally that the rate 

of spatial overestimation by datasets would be, say, higher in flat or mountainous 

terrain or in areas that are more or less forested. Our work considered obstacles 

to visibility to be opaque. This is not necessarily the case, however, and particularly 

not in the case of forest stands. Therefore, searches are underway for techniques 

to model forests more realistically than as solid polygons with uniform tree height 

(Domingo-Santos et al., 2011; Liu et al., 2010). Such forest models work with 

individual trees and thereby take into account both stand density and set crown 

height, with stands having crown height set higher being more transparent.  

Our results indicate, however, that at the given evaluation scale (locations of 5 

km2) such labor-intensive modelling of stands is not significant for the results,  

as the effect of input data scale is dominant. This can be seen in the fact that all  

of the datasets used produced overestimations in comparison to the LiDAR-based 

model. Making forest stands transparent would result in a higher percentage  

of visible area at a given location (i.e., even greater overestimations) and thus 

increasing the accuracy of obstacle models would paradoxically further add  

to viewshed model inaccuracy.  

The LiDAR-based DSMs used in this study originate from nationwide imaging 

which did not have as its primary objective to create DSMs in non-built-up areas. 
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The fact that the imaging took place also outside of the growing season can, 

together with the low point cloud density, lead to inaccuracy in the DSMs, 

particularly in places with broadleaf vegetation. It is therefore possible that use of 

more detailed LiDAR captured during the growing season would reveal even 

greater spatial overestimation of visibility by all tested datasets. 

Conclusion 

This comparison of visibilities modelled using the LiDAR-based DSM and DSMs 

based on vector datasets or on a combination of the LiDAR DTM  

and an orthophotomap indicates that all of the other models considerably 

overestimated visibility in comparison to the LiDAR-based model.  

The overestimation rate was greater in absolute numbers with a higher observer 

point, although trends in overestimations were identical in models simulating 

observation from the ground and those simulating observation from a tower.  

In both cases, it can be stated that none of the other datasets with any set height 

for obstacles to visibility approached the accuracy of the LiDAR-based visibility 

model and that the established obstacle height had a minor effect on resulting 

visibility in comparison to the effect of the dataset. 
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Abstract 

The quality of spatial data plays a crucial role in environmental modelling  

and management, especially in local scale studies needing a detail mapping  

of vegetation elements in a mosaic, near-natural landscape.  One of the sources  

of spatial data for such modelling is airborne LiDAR. Although LiDAR-based 

vegetation and terrain models are often considered accurate, their quality  

is dependent on the density of the original raw point clouds and the computation 

algorithm. The aim of this study was to answer a question of how the method  

of LiDAR raw data processing affects the accuracy of the resulting canopy height 

models of shrubs in the mosaic landscape consisting of herbaceous plants  

and shrub formations. We hypothesize that using raw LiDAR data in conjunction 

with a suitable algorithm, we can obtain a more accurate shrub model than that 

acquired from the same raw LiDAR data through a general all-purpose processing 

used for computation of nationwide digital surface models. The comparison  

of vertical accuracy of individual models with reference field data showed  

that combining raw LiDAR data with an algorithm suitable for the studied area 

could lead to creating better shrub vegetation models than those available from 

the governmental products. Besides, our results also imply that even data  

with relatively low point cloud density that are not primarily intended for creating 

digital models of vegetation can yield a good canopy height model eligible  

for shrub detection if processed in a suitable way. 

Keywords 

Raw data, LiDAR, Digital Surface Model, Canopy Height Model, LAS data 
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Introduction 

The quality of spatial data used for modelling usually plays a crucial role in studies 

focused on environmental characteristics and/or relationships among individual 

components of the environment (Li et al., 2012; Moudrý and Šímová, 2012).  

The need for detailed spatial data correctly reflecting the reality increases with 

smaller scale of the research – for example, for local scale modelling aiming  

to capture small elements in a scattered vegetation landscape. One of the sources 

of spatial data for environmental modelling in such scale is airborne LiDAR (Wu 

et al., 2006), the availability of which is growing. LiDAR-based digital surface 

models (DSMs), i.e., detailed landscape models including buildings and vegetation, 

are used e.g. in the studies on modelling the visibility (Klouček et al., 2015)  

or on the solar potential assessment on the local scale, taking into account shadows 

cast on the roofs by surrounding vegetation (Fogl and Moudrý, 2016). LiDAR-

based DSMs capturing the horizontal and vertical structure of vegetation (also 

called canopy height models, CHMs) have been for a long time used  

as an important source of data for forest ecology, forestry management, biomass 

estimation, estimates of carbon uptake or as a source of explanatory variables  

in animal ecology (Melin et al., 2016). 

While many studies have discussed the issue of the quality of CHMs in the forest 

environment, only a few studies have focused on the use of LiDAR for detection 

of shrub vegetation in an open landscape. The shrub vegetation however plays 

an important role in the environment, constituting an important habitat for many 

animals, and the knowledge of its structure can be crucial for land management. 

Most studies on this topic published so far concentrated on semi-arid areas. Other 

studies were focused on accuracy of techniques for estimating shrub height  

in a similar environment (Glenn et al., 2011) or on determination of the shrub 

biomass volume (Estornell et al., 2011). More recent studies use LiDAR  

(in conjunction with spectral remote sensing) for example for mapping of invasive 

shrub species in the urban environment (Chance et al., 2016) or for mapping  

of shrub habitats in the arctic tundra (Boelman et al., 2016). Creating CHMs  

for the open landscape of the temperate zones is however a challenge that has  

not been sufficiently explored so far.  

The aim of this study is to answer a question of how the method of LiDAR raw 

data processing affects the accuracy of the resulting CHM of shrubs in the mosaic 

landscape consisting of herbaceous plants and shrub formations. In the area  

of interest, the real (manually measured) height of shrubs is compared to (i) 

LiDAR-based models available for the entire area of the Czech Republic created 
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through general all-purpose processing without any special attention to recording 

shrubs and (ii) a model created from the same input LiDAR raw data designed to 

capture shrub vegetation at the studied site. We hypothesize that using raw LiDAR 

data in conjunction with a suitable algorithm, we can obtain a more accurate shrub 

model than that acquired from the same raw LiDAR data through a general all-

purpose processing used for computation of a nationwide CHM. 

Matherial and Methods 

Study area 

Study area (20 km2) is located in the west of the Czech Republic (Central Europe) 

in Doupovske hory (50°18' N, 13°8' E; Figure 1). It is a part of a military area used 

for NATO military exercises. Human activities (other than military) in this area 

are strictly limited to forestry and game management and, to a lesser extent, 

ecological and forestry research. Within the territory of the Czech Republic, this 

area is specific in its character, consisting of a mosaic of herbaceous and shrub 

vegetation with some remnants of forest vegetation. The predominant shrub 

species are slow-growing shrubs (approx. 20cm per year) such as the blackthorn 

(Prunus spinosa), hawthorn (Crataegus oxycantha) and dog rose (Rosa canina).  

 

Figure 1. The area of interest (20 km2) is located in the western part of the Czech Republic, in 
Doupovske hory (Hradiste military area). 

Field data collection 

The aim of the field data collection was to obtain reference data on the real shrub 

vegetation height in the area of interest. The measurements took place in August 

2015 at 78 shrub locations, which were randomly selected from an orthophoto  
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of the studied area. A portable GPS receiver (Oregon 450t, Garmin) was used to 

navigate to the selected points. The shrub height was measured using  

an ultrasound tree height meter (Vertex IV). 

LiDAR data 

The airborne LiDAR data was acquired for the entire area of the Czech Republic 

by the State Administration of Land Surveying and Cadastre (CUZK) using 

LiteMapper 6800 (IGI mbH) system combined with a RIEGL LMS-Q680 scanner 

within a framework of a national project undertaken between 2009 – 2013.  

The area of interest was scanned in March 2011. This data exists in three formats: 

(1) raw LiDAR - original raw LiDAR dataset in LAS format, (2) TIN XYZ - 

discrete points dataset represented by a triangle irregular network (TIN) with 3D 

coordinates in XYZ ASCII format, (3) DEM raster - freely available LiDAR 

derived digital elevation models in raster format (see Table 1 for details).  

TIN XYZ and DEM rasters are provided free of charge for non-commercial 

purposes while the raw LiDAR data can only be procured on request for scientific 

purposes. 
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Table 1. Description of input datasets. 

Acronym used 

throughout study 
Spatial resolution Data format 

Vertical 

accuracy 
Availability Data description 

Raw LiDAR 
minimum 1 - 2 

points/m2 
LAS not specified scientific 

Dataset represented by raw 

elevation point cloud from data 

acquired for the entire Czech 

Republic 

TIN XYZ 1 - 2 point/m2 XYZ ASCII 

terrain 

accuracy 

(0.18 - 0.30 

m) object 

accuracy 

(0.40 - 0.70 

m) 

commercial/ 

anybody 

Dataset represented by generalized 

elevation point cloud created from 

raw airborne LiDAR  data 

(processed by CUZK),  covering the 

entire area of the Czech Republic 

DEM raster 2 m raster 

terrain 

accuracy 

(0.18 - 0.30 

m) object 

accuracy 

(0.40 - 0.70 

m) 

Free for anybody 

Datasets represented by digital 

elevation models created from raw 

airborne LiDAR data (processed by 

CUZK),  covering the entire area of 

the Czech Republic 

CUZK = State Administration of Land Surveying and Cadastre 

 

LiDAR data processing 

From each of the three available datasets (raw LiDAR, TIN XYZ, DEM raster),  

a canopy height model (CHM) was created: (1) Raw LiDAR data were processed 

in a specialized LiDAR software LAStools. The points in the cloud were classified 

as either ground or vegetation and subsequently, the entire point cloud  

was normalized (the altitude values were replaced with relative elevation above  

he terrain). After that, the canopy height models were generated using the las2dem 

tool. For the best results, spike-free algorithm [11] integrated into las2dem tool was 

used to generate the CHM. (2) Data for TIN XYZ were processed in a similar 

way. To achieve a correct classification of terrain points and vegetation points, two 

available datasets (digital terrain model and digital surface model) were merged 

into a single point cloud. The resulting point cloud was processed in the way 

described for raw LiDAR data, yielding a second CHM. Finally, (3) the last dataset 

(DEM raster) was processed in ArcGIS (version 10.4) and the CHM was obtained 

by subtracting DTM raster from DSM (See Figure 2 for the full data processing 
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scheme). In total, three canopy height models were therefore obtained: (a) Raw 

LiDAR CHM, (b) TIN XYZ CHM, (c) DEM raster CHM, see Figure 3. 

 

Figure 2. Diagram showing the preparation of individual CHM models. 
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Figure 3. CHM model examples: (a) Raw LiDAR  CHM; (b) TIN XYZ CHM and (c) 
DEM raster. 

Statistical analysis  

Thus acquired CHMs were compared to the results measured manually during  

the field data collection. For each reference point, the maximum height within  

a 2m buffer space in the CHM was recorded, which ensured the capture  

of the highest point of the shrub even if the exact position of reference point was 

not on the top of the shrub. The accuracy of the models was then evaluated 

through Root Mean Square Error (RMSE). The differences between models were 

tested by Friedman rank sum test and subsequent paired comparisons using 

Conover's test for a two-way balanced complete block design. All statistical 

analyses have been performed in R software (R Development Core Team., 2017). 

Results 

Friedman rank sum test revealed that all models differed both mutually (P < 0.001) 

and from the real field measurements (P < 0.001). A comparison of the vertical 

accuracy of CHM with the real vegetation heights showed that the root mean 

square error (RMSE) for Raw LiDAR model was 1.59m. The results for DEM 
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raster (RMSE 2.50m) and TIN XYZ (2.60m) were inferior to the Raw LiDAR 

dataset.  

Table 2.  Basic statistical parameters of models: Mean difference between field measurements 
and model-derived values, and root mean square error in differences between measured and 

modelled values. 

 Raw LiDAR DEM raster TIN XYZ 

Mean difference (m) -1.18 -1.95 -2.28 

RMSE (m) 1.59 2.50 2.60 

 

The basic descriptive characteristics mentioned above show an obvious trend  

of underestimating the vegetation height when compared to the real life values 

(Figure 4). The Raw LiDAR model evaluation was the closest to the real data 

(mean difference -1.18m) while the TIN XYZ was the furthest from the real data 

(mean difference -2.28 m), see Table 2. A higher system error was therefore 

recorded for the models based on derived datasets than the model based  

on raw data. 
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Figure 4. A box plot of differences between results obtained from individual canopy height 
models and true heights of shrubs (median, quartiles, range without outliers and outliers defined 

as more than 2/3 times of upper quartile). 

This trend was confirmed through a more detailed analysis of the elevation errors. 

Raw LiDAR model overestimated the shrub height in four cases only, DEM raster 

in five and TIN XYZ derived model just once.  Raw LiDAR model also correctly 

detected the shrubs (predicted a height greater than zero) for 72 shrubs, DEM 

raster for 63 and TIN XYZ for 4 shrubs only. However, only 67 % (48/72)  

of shrubs were detected to be over 0.5m tall, which dropped to 10 % (6/63)  

in case of DEM derived model and 25 % (1/4) in TIN XYZ, see Table 3.  

 

Table 3. CHM deviations from reality, focused on vertical height overestimation and shrub 
detection. 

 Raw LiDAR DEM raster TIN XYZ 

Height overestimation  4/78 (5.1%) 5/78 (6.4%) 1/78 (1.2%) 

Shrub detection 72/78 (92.3%) 63/78 (80.7%) 4/78 (5.1%) 

 

Discussion 

The comparison of the vertical accuracies of individual canopy height models 

confirms the original hypothesis that models based on raw data are more accurate 

than those based on pre-processed datasets. The most precise CHM with  

the lowest RMSE values was the model created from raw LiDAR data. The 

accuracies of CHMs derived from pre-processed DEM Raster and TIN XYZ data 

were substantially lower as the original method of processing led to a partial loss 

of spatial and vertical information, in particular the part capturing low vegetation. 

Such a loss of information was probably caused by using a general unified method 

applied to the entire area of the Czech Republic within the framework of a state-

funded project, which is, according to our expectations, not the most suitable for 

such a specific location. 

The comparison of CHMs and real life heights of the shrub vegetation clearly 

shows a trend of underestimating the tree heights in the models. This  
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is undoubtedly associated with the 4 year difference between the LiDAR and field 

data collection (2011 and 2015). Taking into account the shrub growth, we could 

be mislead to the conclusion that the model showing the greatest heights in 2015 

(closest to the 2015 reality) could be the one most overestimating the 2011 heights, 

and therefore the least accurate. It is however unlikely to be the case. It has been 

repeatedly shown that LiDAR-based CHMs have a general tendency  

to underestimate the real heights (Wasser et al., 2013b), and it is therefore unlikely 

that the 2011 values would be systematically overestimated. The reason for such 

tendency to underestimate the heights is logical – the LiDAR beam can miss the 

tallest part of the shrub and penetrate deeper before finding an obstacle, especially 

where the density of the raw point cloud is as low as in our study (1 - 2 points/m2) 

and where the LiDAR data collection was performed in the leafless period  

of the year. Under the conditions of the study area, the recorded shrub species 

count among the slow growing ones, with average annual growth of approximately 

20cm. Hence, we can conclude that, despite the several years difference between 

the aerial recording and field measurement, the model closest to the 2015 reality 

was at the same time the closest to the 2011 reality and, therefore, that  

the best CHM was derived from the raw LiDAR data.  

The comparison of raw LiDAR and TIN XYZ suggests that unlike the CHM 

created from derived data, the raw data model utilizes the full potential  

of all available LiDAR reflections. The processing for all-purpose datasets can lead 

to both the generalization of the input data and to dilution of the original points 

below a level required for a study of the vegetation cover.  Jakubowski et al. (2013), 

report such a threshold value to be 1 point per square meter in their study dealing 

with the issue of point cloud filtering.  

The CHM derived from the DEM raster, which was created by subtracting  

the digital terrain raster from digital surface raster, is burdened with a high amount 

of noise mimicking low vegetation. This model appears at the first glance  

to be more accurate than the model created from a filtered cloud point (TIN XYZ) 

and the two models are statistically significantly different. However, after a closer 

look at the individual errors, it is apparent that the errors are in the magnitude of 

centimetres and the registered difference therefore has no real impact on the 

practical usability of the models; it can be safely stated that both models derived 

from the pre-processed data are of equal quality. For creation of raw LiDAR and 

TIN XYZ based CHMs, the spike-free algorithm (Khosravipour et al., 2016) was 

used; this algorithm is one of the few methods described in the literature 

calculating vegetation models directly from the point cloud instead  

of its translation into individual vertical raster layers and their summation.  
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The algorithm therefore allows to utilize the maximum amount of information 

present in the LiDAR data. The LiDAR data used in the study was not primarily 

intended for the creation of DSMs but of DTMs. Hence, the LiDAR scanning was 

performed in winter (March), which, being a leafless period, potentially reduces its 

value for creating CHMs while, on the other hand, facilitating a better terrain 

detection thus allowing a more precise DTM calculation. Performing two  

scans – one in winter and another in summer – would be of course optimal from 

the accuracy point of view but it would be more time consuming and problematic 

from the economic point of view. Our results imply that using a suitable 

processing method can allow us to use even suboptimal raw data for tasks  

as demanding and sensitive as creating CHMs of shrub vegetation. The raw data 

from this state funded project is unfortunately not freely available  

and its procurement is restricted by numerous conditions (scientific purposes only, 

limited area, etc.). Our results thus indirectly support the conclusions  

of Turner et al. (2015) that free availability of environmental raw data would 

constitute a major contribution to the environmental research and management. 

Conclusions 

Study results show that combining raw LiDAR data with an algorithm suitable  

for the studied area can lead to creating better shrub vegetation models than those 

freely available from the governmental products. The uniform processing of such 

raw data used for creating these national datasets leads to loss of information, 

especially where low vegetation such as shrubs is concerned. Besides, our results 

also imply that even data with relatively low point cloud density that are  

not primarily intended for creating digital models of vegetation can yield a good 

canopy height model eligible for shrub detection if processed in a suitable way. 

Such models may somewhat underestimate the real height of the shrub vegetation 

but the error is sufficiently low. Study results also highlight the importance of using 

raw geodata, which is applicable (besides environmental science) in multiple fields 

employing LiDAR data for spatial analyses. 
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CHAPTER VII 

Discussion and Conclusion 

Study 1 compared the modelled situation with reality. The field validation was 

performed on 150 control points randomly generated before the study. Besides 

proving that more accurate input data lead to more accurate results, we were  

the first to introduce the terms false positives and false negatives into visibility 

modelling. False positives mean errors in the model when the observed point can 

be seen from the control point in the model while this is not true in reality.  

By analogy, false negatives mean the opposite, i. e. the situation when according 

to the model, the observed point cannot be seen while in reality, it can. In principle, 

false positive appears at the first sight to be a less damaging mistake for a user 

utilizing a visibility analysis e.g. for evaluation of the impact of the construction 

on the landscape character. The evaluated construction would be in reality visible 

from a smaller area than what has been modelled and the reality will therefore look 

“better” than predicted. In reality, however, there is a major downside to this from 

the investor’s point of view. If the investor needs to submit an environmental 

impact assessment (EIA), the false positive impact damages his cause. If the model 

predicts the visibility from a larger area than the reality, it may lead to rejection  

of the project by the administration. It is also unfortunate for the administration 

that rejected the project on the basis of an incorrect analysis as it can lead  

to lengthy appeals or even legal proceedings. This type of error was reduced when 

using more accurate data in our study. The false negative error is however also 

damaging for visibility analysis. In this type of error, however, we have  

not detected a significant difference in the error rate when using input datasets 

with different accuracies.  

We can thus conclude that better accuracy of input data led to an overall 

improvement in accuracy of the visibility analyses; this improvement was however 

predominantly in the false positive type of error while false negatives were not 

improved. The probable explanation lies in the fact that more accurate and detailed 

data capture the objects on the ground that may represent obstacles to visibility 

better than coarser data. Coarser data have a tendency to “flatten” the surface and, 

hence, to erroneously remove obstacles present in the real landscape. A similar 

effect may be observed when using data with lower accuracy of the digital terrain 

model as such data would only capture more pronounced features than more 
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accurate data. The fact that the false negative error does not depend on the 

accuracy of the input data is quite interesting from this point of view. 

The study 2 was not a case study; as it was performed after the first one, it built 

on data from the first paper. The model based on LiDAR data proved to be better 

than any models based on vector DTM with assigned expert heights in this study. 

While the first study was aimed at validation of the predicted visibility of  

a particular object (wind turbines), the second one was more focused  

on the differences among models with various input datasets in various terrain 

types (differing in ruggedness) including lowlands, hills and mountains. Areas with 

different representations of forest were selected for analysis – mapping sheets that 

included only minimum of forests as well as those that were almost completely 

forested were represented among the study areas. In addition, the tree heights  

in the areas of study were different, which also affected the results. While  

in LiDAR data, the tree height is clearly specified by the beam reflection, vector 

databases do not contain the vegetation height. We have assigned multiple heights 

to the vegetation and analysed which one would yield results closest to the LiDAR 

data. In addition, we have calculated the visibility models from two points above 

the terrain – observer height (human height) and a lookout tower height.  

The results again confirmed the trend of overestimating the visible area when 

using less accurate data. We can thus say that LiDAR data have a better 

information value for visibility modelling than data from topographic mapping.  

It is necessary to say that vector data of various scales that have however a similar 

degree of generalization appropriate to the size of the area of interest provide 

similar results. If the scale is however not sufficient to show details and is strongly 

generalized, the results of visibility analysis are only indicative.  

The Studies 1 and 2 demonstrated that LiDAR data are the most suitable  

for visibility analyses. In addition, the availability of LiDAR data is growing. Many 

countries have released their national data for scientific purposes as well as for  

the use by general public. The provided data can however often be pre-processed 

in various ways, generalized and such processing may have a negative impact  

on the results of the analysis. Thus, the Study 3 evaluated the accuracy of CHMs 

derived from LiDAR data (that can subsequently serve as inputs for visibility 

analyses) in relation to the processing methods. A canopy height model was 

chosen as an example. The results imply that the best fit of the model elevations 

to reference field measured elevations can be achieved when using raw data  

and processing them in view of the purposes of the study. However, surprisingly, 

we also found that even partially generalized and processed data (in an XYZ 

format) that were originally created for coarse scale digital terrain models  
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had a good agreement with reality and could be therefore in effect successfully 

used for very detailed analyses. The poorest results when compared with reality 

were obtained from the ready-made final product, which lost a lot of information 

contained in the raw data. 

The accuracy of input data  
Results of Studies 1 and 2 demonstrate that the accuracy of resulting models  

is always dependent on the accuracy of input data. If unsuitable data are used for 

analysis, the results may be insufficient for the purposes of applied ecology. Ideally, 

we should use raw, unprocessed data as this is the only way to make sure that  

the data was not affected by processing flaws. If we work with data pre-processed 

by another party, so-called spatial data uncertainty enters the equation. This term 

was mentioned by Moudrý a Šímová (2012) and is associated with the suitability 

of data for a particular purpose. The data selection must always correspond  

with the purpose of the analysis (Lecours et al., 2015a, 2015b).  

Data uncertainty is closely related to data accuracy. It can be affected by the type 

and spatial resolution of the used sensor, temporal resolution, spectral resolution, 

etc. All these variables can become a source of a potential spatial error and if such 

errors occur, they make the data less suitable or less accurate for the purposes  

of landscape or visibility analyses. When planning any research, it is thus crucial  

to consider all possible sources of potential errors and to try to eliminate them 

(Podobnikar, 2009).  

Results of the Studies 1, 2, 3 are in accordance with the above mentioned findings. 

The dependence of the reliability of visibility analyses on the quality of input data 

has been demonstrated on the example of visibility assessment of wind turbines 

in the Study 1 and partially in the Study 2. Based on our results, the best model for 

visibility analyses is undoubtedly the LiDAR-based digital surface model. This  

is in accordance with studies by Cramer et al. (2018); Hopkinson et al. (2005) Melin 

et al. (2016). If LiDAR data are for some reason not available, a digital relief model 

based on interpolation of isohypses supplemented with surface objects of assigned 

height can be also used for visibility analyses but the level of accuracy will depend 

on the level of detail of data collection (cartographic scale of the original vector 

map). Studies 1 and 2 as well as a study by Mark A Maloy and Dean (2001) confirm 

that there is a surprisingly low level of difference in the quality of analyses based 
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on scales of 1:5,000 and 1:25,000. On the other hand, the difference of results 

obtained from those two scales and that of 1:500,000 is enormous (which was 

however expected considering that the areas of the individual analysed units were 

in the order of kilometres). If calculating an analysis for the entire area of Europe, 

even data at a scale of 1:500,000 could be usable but for detailed studies  

(e.g. for local landscape planning), such data are indicative only.  

An interesting fact is the overestimation of the results of visibility analyses when 

using less accurate data. This is implied by the fact that LiDAR data exactly depict 

every tree, every single obstacle in visibility while when using vector data, forests 

and buildings are only roughly modelled from polygons with assigned heights.  

As the overestimation results predominantly from the false positive error, the 

model incorrectly shows too many locations from which the evaluated objects are 

visible. The opposite error, i.e., false negative, is almost equally represented  

in all datasets. If drawing conclusions for practical visibility assessment, the above 

findings mean that less accurate data provide “more strict” results – the false 

negative error (i.e. failure to correctly say that the construction will be visible)  

is similar regardless of data accuracy and worse data accuracy leads predominantly 

to the increase of the area from which the model predicts visibility, although  

in reality, it would not be visible.  

Airborne laser scanning is at present probably the most accurate data source for 

fine scale studies where detailed information about elevation is needed. Airborne 

LiDAR offers a suitable compromise between requirements on data processing, 

accuracy and size of the area of interest (Alonso et al., 2012). From the perspective 

of applied ecology, LiDAR data represent a valuable source due to the broad scale 

of their possible use. Their advantages include high vertical and horizontal 

accuracy allowing the acquisition of both the digital surface and digital terrain 

model from the same mission. It is also capable of providing information about 

the vertical structure of vegetation, which can be very important e.g. in species 

distribution modelling (Murgoitio et al., 2014a). LiDAR data can be acquired both 

at the nationwide level and, if need be, as very fine data for local studies 

(Koska et al., 2017).    

It can be generally said about spatial data originating from a point cloud (most 

LiDAR data) that the denser the point cloud, the more accurate the result  

of any analysis using it as input data (Anderson et al., 2006; Xiaoye Liu, 2008). On 

the other hand, the Study 3 partially disproves that opinion as it showed that even 

low density LiDAR data can be successfully used for modelling of shrubs  

on a small scale if proper processing methods and algorithms are utilized.  
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Raw data utilized in the Study 3 originated from the nationwide scanning with  

a minimum density of 1-2 points per square meter. Unlike many end users of the 

products, however, the authors of this study were aware of the low density  

and the study aimed to determine the success rate of shrub identification. It can 

be often observed that authors use available data for their research without 

critically evaluating the suitability of the data.  

All the above leads to the same conclusions. Before using any data for analysis, 

the researcher must critically consider the properties of the data along with  

the purpose of the analysis, consider the extent of the area of interest and what  

is the purpose of processing the data. Data accuracy is a relative term and it always 

depends on the requirements of the particular application. While a certain accuracy 

can be sufficient for one analysis, it can be insufficient for another purpose and 

unnecessarily good for yet another. 

The effect of the terrain and the surface 
Many studies have proved that objects on the surface have a significant effect  

on the result of the visibility analysis (Lake et al., 2000b; Lecours et al., 2015b; 

Sander and Manson, 2007a). This was one of the reasons why we have focused  

on this topic, especially in the Study 2, in more detail. We were surprised to find 

that the terrain ruggedness and the effect of surface objects has a smaller effect  

on the accuracy of visibility analyses than the quality of the spatial data. It however 

again depends on the particular conditions of an individual study. In the study by 

Sander and Manson (2007), the results of which we have partially built upon, 

performed their visibility analysis in a highly urbanized area. In our study, however, 

we performed analysis in a rural landscape where the buildings are much more 

scarce and smaller. Our studies have demonstrated that in such a landscape, 

generalization of the heights of buildings does not have a significant effect  

on the outcomes of visibility analyses.  

Similarly, it cannot be simply said that the rate of error would be higher  

in a flat or mountainous landscape, in forested areas or those without forests.  

For explanation of this phenomenon, it is necessary to again mention the principal 

difference between LiDAR and vector data. LiDAR-based surface models provide 

information about individual trees that may act as obstacles while in the case  

of polygon vector layers, we perceive any tall vegetation as a homogenous, 



- 83 - 
 

completely opaque obstacle with strictly defined shapes. In LiDAR data, a partial 

transparency of such trees is possible. This is one of the reasons while researchers 

are looking for new methods allowing modelling of individual trees in a way 

corresponding to reality as much as possible (Domingo-Santos et al., 2011; Liu et 

al., 2010). In the results of visibility analyses, the opacity of such obstacles when 

using polygon vector layers leads to the aforementioned overestimation  

of the visibility as false positives.  

The assigned forest height affects the outcomes of visibility analyses. It is not 

surprising that with increasing forest height, visible areas are growing smaller.  

It however again depends on the coarseness of data and rate of generalization. 

When using data of the coarse scale, the forest height has practically not affected 

the results while when using the finest scale, even the difference of five meters 

played a role. The best agreement with the LiDAR data was registered where  

the assigned tree height was 35 metres. As the vector data however generally tend 

to overestimate the visibility, it cannot be simply said that assigning a high height 

to the obstacles makes the data more realistic; while the overall visibility  

is the closest to LiDAR data when assigning the maximum heights to the obstacles, 

the “distribution of visibility”, i.e., the exact locations visible according to LiDAR 

data and according to vector data with assigned vegetation heights, will likely 

differ.  

The Study 2 originally also evaluated the effect of the distance of the obstacle  

on the result of visibility analysis. This assessment was not included in the final 

paper due to its complexity and length of the paper. It was not possible  

to generalize the relationship between the visibility modelled with a given 

dataset/LiDAR-based visibility and terrain configuration/number and distance of 

obstacles because individual datasets produced varying results. The only common 

features were that no effect of the distance to obstacle on the accuracy was found 

in any of the generalized linear models and that in the instances where the effect 

of the number of obstacles or terrain configuration was significant, this explained 

a relatively low proportion of variability in the response variable. As the line-of-

sight principle indicates, the distance of obstacles to visibility from the observer 

point is essential to the resulting visibility, particularly if this point is low above  

the terrain (e.g. Nagy, 1994). In our study, the distance to the nearest obstacle did 

however not have a significant effect on how much other modelled visibilities 

spatially differed from the LiDAR-based model. This result does not negate  

the fact that closer obstacles have a greater effect on visibility. The finding merely 

demonstrates that the distance to the nearest obstacle has no effect on the accuracy 

of the visibility model. Some previous studies (Kim et al., 2004a) have indicated  
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a possible effect of terrain configuration and number of obstacles on the resulting 

visibility, which is why we tested whether these variables affect the sensitivity  

of the visibility model to uncertainties in input data. When evaluating the rate  

of spatial overestimation of visibility when using various datasets and comparing 

it to the LiDAR-based model in our study, these variables did not usually have  

a significant effect. According to our results, therefore, it cannot be stated 

unequivocally that the rate of spatial overestimation by datasets is higher e.g.  

in flat or mountainous terrain or in areas that are more or less forested. 

It is often impossible to say that a visibility obstacle is completely opaque  

or completely transparent. This is especially true about forest stands and 

techniques are being developed for a more realistic representation of forest stands 

than a simple polygon with a unified tree height as is most often the case at present 

(citace). Such models of forests consider individual trees and thus take into 

account both the density of the forest stand and the height where the tree crown 

begins as the forest is much more transparent below the crowns. Our results 

however imply that in the scale we used, such a laborious process does not bring 

any significant benefit for the validity and accuracy of the visibility model  

as the scale of the input data plays a much greater role. This is supported by a fact 

that apart from LiDAR, all used digital surface models significantly overestimated 

the visible areas. If making the forest stands more transparent, we would achieve 

an even higher percentage of the visible area, i.e. even greater overestimation.  

In other words, the model inaccuracy would probably get even worse if the 

obstacles were modelled in a more detailed way.   

In all, LiDAR data have provided better overall results than vector data. There  

is however one more fact that should not be forgotten, namely the season in which 

the LiDAR data were acquired. While vector data are usually only updated once  

in a long time, LiDAR data can be acquired more often. A possible problem lies 

in detection of tree leaves. We can assume that if we compared data from winter 

LiDAR scanning against data from summer LiDAR scanning, the results would 

likely be different. The reason is that if data were acquired in the winter season, 

LiDAR scanning would underestimate the tree heights as the beam enters deep 

into the tree crown before being reflected. It is therefore necessary to find out  

if the scanning was performed during leaf-on or leaf-off season. This is also 

confirmed by the study Wasser et al. (2013).  

Despite all statistical evaluations, we can only confirm the original hypothesis that 

in the case of vector data, the effect of the terrain complexity and assigned 

vegetation height on the accuracy is negligible and does not have a major impact 
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on the results of the visibility analyses. Contrary, the greatest impact  

on the visibility analyses can be attributed to the quality of the spatial data and  

it is necessary to pay great attention to their selection for the particular purpose.  

Use of raw data 
Raw data acquired in the field in an appropriate way with a suitable sensor possess 

accuracy that is being reduced with every subsequent processing step. This is true 

of any data including those acquired by LiDAR. In the Studies 1 and 2, we were 

searching for the most suitable dataset for maximizing accuracy of visibility 

analyses. The best dataset was that acquired by airborne LiDAR scanning.  

In the Czech Republic, raw LiDAR data have been obtained for the entire area, 

they have however not been released. They are available either commercially  

(to be procured) or as a processed raster format, which is however generalized to 

a great degree and it is difficult to acquire information about the processing 

methods used for creating the product. Verification of suitability of such 

generalized data for a particular example of ecological analysis was the principal 

reason for undertaking Study 3.  

The answer is simple. The more general pre-processing is applied on the data,  

the greater deviation from reality. The comparison of vertical accuracy  

of individual digital models confirmed the hypothesis that models based on raw 

unprocessed data are more accurate than those based on pre-processed data.  

The most accurate model in our study was based on raw LiDAR data. Both  

the commercially and freely available data were less accurate than raw data as a 

partial loss of both the spatial and vertical information occurred during processing. 

This loss was most likely caused by a use of a general processing method that was 

applied on the entire area of the Czech Republic. It is therefore not surprising that 

when using such data processed using a general algorithm for analysis of a much 

smaller area, the processed data are not sufficient. Our findings are in accordance 

with those by Mondino et al.(2016) who also concluded that pre-processed data 

may not be suitable for special analyses.  

Comparison of raw LiDAR data and derived pre-processed models demonstrates 

that the model from raw data uses the full potential of all available laser reflections. 

The use of already generalized data may however lead to dilution of the original 

number of reflections below the level necessary for the detailed identification  
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of the vegetation cover. Jakubowski et al. (2013) reported 1 point per square meter 

to be a threshold density for study of vegetation cover; our Study III confirms  

that result. Our results however show that when using a suitable processing 

method, even pre-processed input data that were originally not intended for such 

analysis and have a small density of reflection points can be utilized with relative 

success. It is however again necessary to mention the effect of the vegetation 

season of LiDAR data collection. 

Further work 
I dare say that the visibility analyses are, as far as researchers’ interest is concerned, 

past their prime. In recent years, not many studies have been published that would 

deal with this topic and go into the principles of the method. Of late, most studies 

utilising visibility analyses are case studies where the visibility analysis serves  

as a tool for some discovery, often related to the historical development of the 

area (e.g. Carter et al., 2019; Paliou, 2011). A tendency to move from the dry land 

to analysing visual pollution on the surface of seas and oceans is also apparent 

(Depellegrin, 2016; Qiang et al., 2019; Robert, 2018). Attention is also paid  

to the development of visibility analyses and suitable data for realistic visibility 

modelling in the urban environment or to use visibility analyses for creating 

automatic views and landscape evaluation not only from the bird perspective  

but also as simulations of real view of the landscape from the perspective  

of an observer (e.g. Sahraoui et al., 2016; Yamagata et al., 2016). From time  

to time, a study is published that offers a way to improve and optimize the data 

processing methods in a faster way, in a way allowing processing of a larger area 

or allowing the use of more detailed and accurate data (e.g. Xia et al., 2011; Zhao 

et al., 2013).  

Personally, I believe there is still a great potential in combining the visibility 

analyses and raw LiDAR data where the visibility would be calculated directly from 

a point cloud rather than from derived models. This would help resolve  

the problems associated with opaque or (partially) transparent obstacles.  

Of course, such a method would require overcoming of the problem  

with the points having no size. The point clouds do not need to originate  

from LiDAR data, either. The ever increasing use of UAVs corresponds  

with the ever increasing utilization of the structure from motion algorithm. While 
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preparing orthomosaics from the individual images, identical points are searched 

for in the images and subsequently used for creating a point cloud. Such a point 

cloud could also be used for visibility analysis.  

Another type of visibility analysis is a calculation of so-called Sky-view factor. 

Simply said, it is a cumulative visibility analysis providing information for every 

pixel about the relative size of the sky visible from the particular point. 

(see for more information e.g. Middel et al., 2018; Štular et al., 2012; Zakšek et al., 

2011).This method is especially used in archaeology and in research of historic 

settlement. The view of the world through airborne images can capture even 

remnants of the landscape from the past including extinct settlements and other 

proofs of the human presence. If suitable geodata and methods of detection  

are chosen (and visibility analyses undoubtedly represent one of such methods), 

we acquire a valuable tool for reconstruction of the historic landscape.  

Conclusion 
Visibility analyses represent a powerful and widely used tool (not only)  

in landscape ecology. While the methods of the analysis has in principle reached 

their maximum efficiency, the question of selecting the proper spatial data  

for visibility analyses is far from concluded. This thesis compared various spatial 

input data to find out the most suitable data for creating digital terrain models and 

subsequent visibility analyses. At the beginning, the size of the problem was not 

so apparent but gradually, we began to appreciate the huge amount of available 

spatial data. Although airborne laser scanning has recently become the principal 

source of data, the quality of vector datasets is still sufficient for replacing LiDAR 

data for some types of analyses. 

It is not possible to simply say what data are the best. There are no ideal data that 

would be suitable for any purpose without any or with only a minimum processing. 

It is true that airborne LiDAR has a lot of advantages – high horizontal and vertical 

accuracy, the possibility to acquire custom data for any area size, and penetration 

of the canopy by the laser beam, which results in the possibility of creating a digital 

terrain model in addition to the digital surface model even in inaccessible areas. 

The downside is however the relatively complicated processing of such data 

(unless using a pre-processed digital terrain/surface model). Vector data  

are usually obtained as a ready-made product that can be subsequently easily 
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interpolated using several simple steps to create a digital terrain model. If using 

LiDAR data, especially raw LiDAR data, we have to perform a number  

of sophisticated steps and classifications to obtain a worthwhile model. Therefore, 

although LiDAR data are more suitable for creating digital terrain models  

in landscape ecology, vector data can be used with only a minor loss of accuracy 

if LiDAR data are unavailable. I do not expect cessation of the use of vector data 

due to increase in utilization of LiDAR data; there are many fields where a line 

cannot be replaced with a point cloud. New maps will still be created and updated, 

the records of private property will still be kept by the cadastral bureaus, drivers 

will still drive with the help of SatNavs... Here, LiDAR can help with mapping  

but cannot replace vector maps.  

The effect of data accuracy on the result of the analysis is so great that  

it can completely suppress the influence of other factors. One of the aims  

of my thesis was to find out how much the complexity/ruggedness of the terrain 

and the degree of forestation influence the accuracy of visibility analysis. We found 

out that the effect was minimal. I have to admit that this finding was very 

surprising for me. I guessed that in a complex terrain, visibility analyses will be less 

accurate and that the same would be true about areas with a high degree  

of forestation. On the other hand, this finding is in accordance  

with the proposition that when using accurate data, the analysis captures all 

significant phenomena in the area and it does not matter how complex the terrain 

is. Visibility is of course also affected by the distance from the obstacle; our 

research however showed that as long as the obstacle is recorded in the input data, 

the distance of the obstacle has no notable effect on the accuracy of the analysis.  

Our results obviate that when using any input data, the best results can be achieved 

when using data with a minimum degree of pre-processing or, ideally, to process 

the data individually in view of the purpose of its usage. My supervisor likes  

to say that she does not trust any statistics that she has not done herself  

and I believe that the same can be true about processing input data. If using pre-

processed data, we usually have no information about the method by which  

the product was created, what methods and algorithms have been used, what data 

was removed and what the remaining data actually represent. It is often possible 

to find at least partial answers to those questions from metadata that should  

be provided together with the product.  Such information is however often less 

than accurate and not completely reliable. In our study, we utilized a ready-made 

raster digital terrain model, its text version in the x,y,z format and raw LiDAR 

data. After processing and comparison of the results, we found out that the model 

created from the raw data contained the most information while the pre-processed 
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ready-made raster model carried the least information. One can ask why the ready-

made raster did not contain the information that we were able to extract from  

the raw data. The reason is quite simple – the LiDAR data and, consequently,  

the ready-made DTM were product of a nationwide campaign covering the entire 

Czech Republic and the acquisition and processing was thus not intended  

for analyses of sites as small as (in our case) several hectares. Another question can 

be posed – why have we even tested data that were apparently not intended for 

such detailed analyses and so might have seemed unsuitable? We wanted to test 

what information can be mined from the same data if we process them ourselves 

with the purpose of the analysis in mind. And the result is very  

interesting – although the raw data was on a nationwide scale, we managed to 

perform an accurate analysis at the level of individual shrubs when carefully 

processing the raw data – at the level that is not even indicated in the ready-made 

raster product. A regular user who utilizes the ready-made product therefore does 

not have any idea how great data he could have at his disposal if the part  

of information was not lost during processing.  

The above mentioned example obviates that even data acquired for a rough scale 

can carry information sufficient for the studies on a local scale. At the same time, 

we however have to mention that this was rather an exception than a rule.  

In general, it can be said that the data mostly correspond with their scale as far as 

the level of generalization and detail are concerned and that we should always 

critically evaluate the data and consider its use for a particular analysis. Our studies 

showed that there was not a major difference between results of visibility analyses 

at 1:5,000 and 1:25,000 scales while the difference between those two datasets  

and that with a scale of 1:500,000 was immense. We can even say that  

the difference was so huge that the latter scale is only suitable for indicative 

purposes, not for drawing any firm conclusions. It can be also said that vector 

datasets overestimate the result of visibility analyses in comparison with a LiDAR 

dataset and this overestimation grows with coarsening the scale. For analyses  

in the landscape ecology in general and in practice, there are efforts to minimize 

the overestimation. An interesting phenomenon has arisen when evaluating 

control points of visibility analysis of a wind farm. With coarsening the scale, the 

false positives rate (i.e. instances when the model states that the wind farm  

is visible while in reality, it is not) grows. The number of false negatives (i.e. 

situations when the farm is visible but the model states it is not) however remains 

practically unchanged when using geodata of various scales.  

Any data have their limits. As mentioned before, it is therefore necessary  

to critically evaluate the geodata in view of the analysis for which they shall serve. 
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This is especially true in the landscape ecology. If the circumstances allow, the best 

solution is to use raw data. This is the only way to make sure that a previous 

processing has not led to an unintended loss of spatial information. If we have 

LiDAR data at our disposal, the best solution for creating the digital terrain  

or surface model that shall serve as an input for the visibility analysis is to use such 

data. If, however, LiDAR data are not available, we can utilize vector data  

of a scale corresponding with the extent of the analysis and the area of interest. 

Usually, it is better to use finer scale data as such data come with a better chance 

of accurately depicting all terrain phenomena and objects that in the end form  

a terrain model with the best fit to reality. And, as also mentioned above,  

the accuracy of the visibility analysis will be closely related with the accuracy  

of the input digital model.  

Although visibility analyses may be on the verge of scientific interest at present, 

they are far from obsolete. There are many possible applications of the visibility 

analyses in the landscape ecology, although it is unlikely that we should see  

any major breakthrough in the near future. Still, the input spatial data will always 

form the basis for those analyses and it is always necessary to critically consider 

the use of a particular input dataset. If the scale corresponds with the scale  

of the analysis, if we know the way in which the data were processed and if we use 

a proper algorithm for preparing a digital terrain model, we can assume that  

the resulting analysis will be of sufficient quality. This is not only true in landscape 

ecology but in all studies using spatial data as their inputs.  
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Since 2014:  Member of the Prague 22 district council 

 

Publications: 
Moudrý, V., Beková, A., Lagner, O. 2019. Evaluation of a high resolution UAV 

imagery model for rooftop solar irradiation estimates. Remote Sensing 

Letters, 10(11), 1077-1085 

Lagner,O., Klouček, T., Fogl. M., 2019. The signifikance of using raw data: A case 

study with canopy height models of shrubs. SGEM2019 Conference 

Proceedings, ISBN 978-619-7408-79-9, ISSN 1314-2704, vol. 19, Issue 

2.1. 1089-1098 pp. 

Klouček, T., Moravec, D., Komárek, J., Lagner, O., & Štych, P. (2018). Selecting 

appropriate variables for detecting grassland to cropland changes using 

high resolution satellite data. PeerJ, 6, e5487. 

Lagner, O., Klouček, T., & Šímová, P. (2018). Impact of input data (in) accuracy 

on overestimation of visible area in digital viewshed models.  

PeerJ, 6, e4835. 

Klouček, T., Lagner, O., & Šímová, P. (2015). How does data accuracy influence 

the reliability of digital viewshed models? A case study with wind 

turbines. Applied Geography, 64, 46-54. 
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Grants and project: 

National grants 

2018 - 2019:  Early Detection of Forest Infestation by Bark Beetle  

(Ips Typographus) Using Unmanned Aerial Vehicles  

(principal investigator (2018) co-investigator (2019)). 

2015 - 2016: Norway grants: The Reduction of Habitat Fragmentation 

Consequences in Various Types of Landscape in the Czech 

Republic (co-investigator). 

Internal grants 

(Founded by Internal Grant Agency of the University/Faculty) 

2018 - 2019:  Remote Sensing: an Effective Tool for the Study of Spatial 

Dynamics of Bark Beetles at Krkonoše Mountains National Park 

(co-investigator). 

2017 - 2018:  Influence of Remote Sensing Data Resolution in Evaluating 

Ecological Measures (co-investigator). 

2015 - 2017:  Usability of Modern Geodata in Ecology and Landscape Ecology 

(principal investigator). 

2015 - 2016:  Usability of Digital Surface Models for Selected Tasks in Animal 

and Landscape Ecology (co-investigator). 

2013 - 2013  Influence of Input Geodata on Visibility Analysis of Wind 

Turbines (co-investigator). 

 

Teaching activities 
Since 2014  Lecturer of GIS, Cartography, Remote Sensing using UAVs 

Since 2014  Supervisor and reviewer of 2 Bachelor and 4 Master Thesis  

(GIS applications, Landscape ecology) 

 


