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ÚSTAV MATEMATIKY

FACULTY OF MECHANICAL ENGINEERING

INSTITUTE OF MATHEMATICS

THE USE OF RECURSIVE LEAST SQUARES METHOD FOR
VEHICLE DYNAMICS ANALYSIS
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Summary
This diploma thesis amplifies the theoretical bases required to design the recursive least
squares algorithm and, in consequence, its application to the experimental data measured
during test manoeuvre realized in 2001. A lateral dynamics of single-track planar model of
vehicle was analyzed. It contains also a comparing of the results obtained by the recursive
algorithm and Kalman filter algorithm.

Abstrakt
Tato diplomová práce nastiňuje teoretické základy potřebné pro návrh algoritmu
rekurzivńı metody nejmenš́ıch čtverc̊u a následně jeho aplikaci na experimentálńı data
naměřená při testovaćım manévru uskutečněném v roce 2001. Analyzována byla př́ıčná
dynamika jednostopého rovinného modelu vozidla. Práce také obsahuje srovnáńı výsledk̊u
źıskaných jednak rekurzivńım algoritmem a dále i algoritmem Kalmanova filtru.
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Chapter 1

Introduction

The goal of this thesis is to outline the theoretical basics needful for understanding the
principle of adaptive filter behaviour and consequently its application to the real problem.
More precise, we focus on the adaptive filter relied on the recursive least squares algorithm
and its usage to analysis of vehicle driving conditions. For this purpose we design the
flow diagram for processing of data obtained from the experimental measuring.

The thesis is segmented into eight chapters except the introduction including a short
motivation, conclusion, and appendix. Chapter 2 deals with the system identification,
explains dynamic systems, the term of model with its classification, and the identification
procedure.

It is necessary to realize that almost every physical process is in fact a dynamic
system. We must know the mathematical description of the dynamic system to express
the evolution of its characteristic in time. Chapter 3 is thus devoted to the mathematical
models both continuous-time and discrete-time of linear dynamic system description. The
following chapter analyze these models with added random components, i.e. deals with
the linear stochastic systems. Some required notes from probability theory are stated
in this part, especially characteristics of random variables and processes, and discussion
about the evolution of the expected value and covariance of the state and output vector.

But, in dynamic system, we are not able to measure every time all magnitudes which
we want to control. Hence, we have to estimate the state and output of the system which
are function of the measuring. The estimation methods are specified in the chapter 5.
The first mentioned method is the linear least squares method, subsequently the nonlinear
and weighted least squares method. The least squares method was the first method for
formulation of the optimal estimate from noisy data. Carl Friedrich Gauss is credited
with developing the fundamentals of the basis for least-squares analysis in 1795 at the age
of eighteen. Gauss did not publish the method until 1809 and the idea of least-squares
analysis was also independently formulated by the Frenchman Adrien-Marie Legendre in
1805, who was the first to publish the method, and the American Robert Adrain in 1808.

Chapter 6 gives attention to the adaptive filter which relies on the recursive least
squares algorithm. It contains the derivation of recursive algorithm, its initialization and
also the choice of forgetting factor. This algorithm is used to find the filter coefficients that
relate to recursively producing the least squares of the error signal (difference between the
desired and the actual signal). This is contrast to other algorithms that aim to reduce the
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4 CHAPTER 1. INTRODUCTION

mean squared error. The difference is that recursive least squares filters are dependent
on the signals themselves, whereas mean squared error filters are dependent on their
statistics (specifically, the autocorrelation of the input and the cross-correlation of the
input and desired signals). If these statistics are known, a mean squared error filter with
fixed coefficients, i.e. independent of the incoming data, can be built.

Chapter with the title Modeling of Vehicle Dynamics is divided into two parts. The
first part deals with the tire model and explains which forces are generated as the tire
rolls. The second one defines the term of the single-track model, also known as a bicycle
model, which serves to investigate theoretically the lateral dynamics of the vehicle in the
horizontal plane. This model will be later used in MATLAB simulation of experimental
data.

The following chapter describes the test car, defines the test track, and shows
a measuring equipment utilize during the test manoeuver. This experiment was
realized in 2001 by the Institute of Forensic Engineering of Brno University of
Technology in conjunction with the Department of Transporting Technology of Brno
University of Technology. This rubric also includes three graphs illustrating the evolution
of the measured signals. The derived signals are stated in the appendix at the end of this
thesis.

Application of the Recursive Algorithm is the title of the last chapter, which consists of
four basic sections. The beginning of the chapter treats primarily of the
discretization of the single-track model and discuss a sampling period of measured time-
-variant variables that occurred in this bicycle model. Next section covers m-files with
the recursive algorithm, and discretization of the single-track model. Also it contains
illustrating figures of the output of created MATLAB program. The most important
part of this chapter and maybe of all this thesis is given as penultimate. This section
summarize the results obtained by MATLAB simulation and compare the evolutions of
the filtered out (estimated) and measured outputs. The last part is a comparing of results
acquired by two different algorithms, namely by our recursive algorithm and Kalman filter
algorithm.

1.1 Motivation

Suppose that a signal y(t)1 is received with transmitter noise, more precisely with white
noise. We will attempt to recover the desired signal y(t) by using an adaptive filter
(chapter 7), θ

ŷ(t|θ) = ϕT (t)θ = θTϕ(t). (1.1)

This expression is predicted output at time t, where the vector of regressors ϕ(t) has the
form2

ϕ(t) = [u1(t) . . . um(t) y(t− 1) . . . y(t− n)]

1We shall generally denote the inputs and outputs of the systems at time t by u(t) and y(t), respectively.
2This form can be expressed as ϕ(t) = [uT (t) y(t− 1) . . . y(t− n)] with the m× 1 input vector

uT (t) = [u1(t) . . . um(t)].
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and the unknown parameter θ is following

θ = [a1 . . . am b1 . . . bn].

In other words, the equation (1.1) expresses, that the predictor ŷ(t|θ) at time t is a
linear combination of the inputs at time t, the outputs of previous iterations, and filter
coefficients in vector θ.

Our goal is to estimate the filter coefficients, i.e. vector θ, with the knowledge about
the input-output data and by using the least squares method (chapter 5).

When the parameter of the filter, θ, is estimated, at each time t we refer to the new
least squares estimate θt. As time evolves, we would like to avoid completely redoing the
least squares algorithm to find the new estimate for θt+1 in terms of θt. For this purpose
we shall introduce the recursive least squares algorithm (chapter 6) and by using this we
shall analyze the vehicle dynamics.

Remark. We can call the model (1.1) as an archetypical problem. In our case the meaning
of the word archetypical is that we described this original model like some prototype and
this model will be used as representative over all this thesis. But, of course, we have to
notify that this prototype can be modified for certain requirements.
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Chapter 2

Essential Knowledge for System
Identification

System identification deals with the problem of building mathematical models of
dynamical systems based on observed data from the system. The subject is thus part of
basic scientific methodology, therefore dynamical systems are abundant in our
environment. The techniques of system identification have a wide area of application.
At the creation of this chapter we gathered especially from [8] and [13].

2.1 Dynamic Systems

In loose terms a system is an object in which variables of different kinds interact
and produce observable signals. The observable signals in which we are interested are
usually called outputs and are measurable. The system is also affected and influenced
by external stimuli. External signals that can be manipulated by the observer are called
inputs, which are known or at least measurable and controllable. Others are called
disturbances and can be divided into those that are directly measured and those that
are only examined through their effect on the output. The distinction between inputs and
measured disturbances is very often less important for process of modeling.

Dynamic system consists of the state space and dynamic conditions. The
coordinates of the state space give account of the system at a given time and dynamic
conditions describe the change of the system. Then system state is described by the
state vector that all lies in the state space. The dynamic conditions are often given by
the system of differential or difference equations which give account of the change of the
state vector at given time. Mathematical models are instrumental to obtain the solution
that express the functional relation between the state variables and the initial conditions
coupled with inputs.

2.2 Term of A Model

We can call the subject of research (the system) the original and his representation
(which is also some system) is called a model. Each model is created for some purpose.

7



8 CHAPTER 2. ESSENTIAL KNOWLEDGE FOR SYSTEM IDENTIFICATION

During the process of modeling we preserve only the components, properties, relationships
of the system which are substantial for this purpose and we do not deal with those which
do not play the important role in the system.

Classification of Mathematical Models

The basic classification of mathematical (analytical, computer) models is based on their
behaviour at time. In light of this we recognize these two types of models

• static (time-invariant) - these models do not have changes in time,

• dynamic (time-variant) - this sort of models develops in time.

Dynamic models we can be further distinguished into following types of models

? without memory - in this case the state at posterior instant of time depends only
on the current state (so called Markov models),

? with memory - moreover, compared to the models without memory, depends on
the state at some past instant of time or on the evolution of the model in former.
times

We can also differ the mathematical models according to kind (character) of the quantities
and variables figuring in the model. First division is into

� deterministic - there is no random quantity in the model,

� stochastic - we can find at least one random quantity in the model.

Second, and for us the most important, is following

� continuous - the quantities take the values from some continuum,

� discrete - the quantities take at most countable values.

2.3 The System Identification Procedure

In this section our goal is to describe the system identification loop. Especially, three
basic entities, validation of the model and the reasons why the model can be deficient.

2.3.1 Three basic items

The construction of a model from input-output data involves three basic items:

A data set. The input and output data are often recorded during a specifically designed
identification experiment, where the user can determine which signals to measure,
when to measure them and may also choose the input signals. The objective with
experiment design is to make these choices so that the data will be maximally
informative and illuminative, exposed to constraints that may be at hand.
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A set of candidate models or the model structure. A set of candidate models
is obtained by specifying in which collection of models we are going to look for a
suitable one. This is without a doubt the most important and also the most difficult
choice of the system identification procedure.
Sometimes the set of candidate models is obtained after careful modeling. Then a
model with some unknown physical parameters is constructed from basic laws of
physics and other well-established relationships. This sort of model sets may be
called gray box.
In other cases linear models may be employed without mentioning of the physical
background. Such a model set, which parameters do not reflect physical
consideration in the system, is called black box.

Determining the ”best” model in the set of candidate models, guided by the
data. In this entity we want determine the rule by which candidate models can
be assessed using the data. The assessment of the quality of the model is typically
based on how the models perform when they attempt to reproduce or refresh the
measured data.

2.3.2 Validation of the model

After our discussion on three basic entities and their clarifying, the next question arises:
Is the chosen model ”good enough”? Which means, whether it is valid for its purpose
or not? This problem can be answered after some testing of this model. Such tests are
known as model validation and they involve various procedure to establish how the model
relates to observed data, to prior knowledge, and to its intended use. Deficient model
behavior in these aspects make us reject the model, while good construction of the model
will develop a certain confidence in it. A model can never be accepted as a final and as
a true description of the system. Rather, a model can at best be regarded as a ”good
enough” performance of certain respects that are of particular interest to us.

2.3.3 The System Identification Loop

The system identification procedure which we described in two previous sections has a
logical flow: first collect data, then choose a model set, then select the ”best” model in
this set, that best describes the data according to the chosen criterion (see figure 2.1). It
is quite probable, that the model first obtained will not pass the validation process. This
is the reason why we must go back and revise the various steps of the procedure. Let us
denote the reasons for which the model may be deficient.

� The set of input-output data was not illuminative and informative enough to provide
guidance in assorting suitable models.

� The criterion was not well chosen.
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� The numerical procedure failed to find the best model according to our criterion.

� The set of candidate models was not appropriate, in that it did not contain any
”good enough” description of the system.

Prior 

Knowledge

Experiment 

design

Input-output 

data

A set of 

candidate 

models

Selecting of 

criterion of 

fit

Model Calculation

Model Validation
Not OK: Revision!

OK: Application!

Figure 2.1: The system identification loop



Chapter 3

Linear Dynamic Systems

In the previous chapter we classified the dynamic system into two principal groups. The
first one was continuous dynamic systems and the second one was discrete dynamic
systems. In this chapter we will describe both of these systems.

It is known the mathematical description of the dynamic system is divided into two
basic groups, namely external and internal description.

External description is the expression of the dynamic properties with the aid of the
relation between the input and output variables. This description does not provide us
with the information about the internal states of the system. By measuring of the input
and output magnitudes we can obtain only the external description of the system.

Internal description is the relation between the input variables, the states of the system,
and the output variables. Then we are talking about the state equations of the system.

However, we have to also remind that the dynamic system consists of the state space
and the dynamic conditions. Due to this fact, we shall introduce auxiliary state vector
x(t). In the state-space form the relationship between the input u(t) and output y(t)
signals is represented by a system of first-order differential or difference equations using
this auxiliary state vector x(t).

In the following table you can see the general mathematical models of continuous and
discrete dynamic systems both in time invariant and time variant form.

GENERAL Time-Invariant Time-Variant

Continuous ẋ(t) = f(x(t),u(t)) ẋ(t) = f(t,x(t),u(t))

Discrete xi(t) = f(xi−1,ui−1) xi(t) = f(i,xi−1,ui−1)

Table 3.1: General Mathematical Models of Dynamic Systems

11



12 CHAPTER 3. LINEAR DYNAMIC SYSTEMS

3.1 Continuous-time Models

For most physical systems it is suitable and easier to construct models with physical
insight in continuous time than in discrete time, simply because most of physical laws
(e.g. Newton’s law of motion) are expressed in continuous time.

At first we shall modify our first table 3.1. We will focus on the continuous part and
will extend it by the addition of linear model.

CONTINUOUS Time-Invariant Time-Variant

General ẋ(t) = f(x(t),u(t)) ẋ(t) = f(t,x(t),u(t))

Linear ẋ(t) = Fx(t) +Gu(t) ẋ(t) = F (t)x(t) +G(t)u(t)

Table 3.2: Continuous Mathematical Models of Dynamic Systems

As we can see the modeling of the dynamic of system normally leads to a representation

ẋ(t) = F (t)x(t) +G(t)u(t) (3.1)

where

• x(t) is a r × 1 state vector,

• F (t) is a r×r matrix of the system (sometimes so called a matrix of the dynamic
coefficients),

• u(t) is a m× 1 input vector,

• G(t) is a r × m matrix interconnecting the input with the state of the
system.

Notice that both matrices F (t) and G(t) depend on time. We can thus talk about time-
-varying systems. Further we have to realize that the state variables are not measurable
in contrast to inputs and outputs and we must deduce them from the input variables. We
have to express the relationship between all three vectors of the dynamic system by the
following so called measurement equation, again in matrix notation

y(t) = H(t)x(t) +C(t)u(t) (3.2)

where

• y(t) is a n× 1 output vector or measurement vector,

• H(t) is a n× r matrix of the measuring sensitivity,

• C(t) is a n×m matrix interconnecting the input with the output.
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Both matrices H(t), C(t) are known functions of the time.
Finally, the model of the continuous linear dynamic system is formed by the equations

(3.1) and (3.2), i.e. by the state equation and the measurement equation, respectively.
The next question naturally arises: How to solve the state equation (3.1)? The first

way is to solve it by standard technique for solving of the differential equations. Another
way is to use the Laplace transform.

The solution of the (3.1) obtained by the standard technique is following

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)G(τ)u(τ) dτ. (3.3)

We can note that in the previous expression figures the matrix Φ(t, τ). This matrix
represents a state transition matrix (because it transforms the solution at time t into
the solution at time τ) and holds

Φ(τ, t) = Φ(τ)Φ−1(t)

where Φ(·) is the fundamental matrix. The fundamental matrix is the solution of

ẋ(t) = F (t)x(t), t ∈ 〈0, T 〉, (3.4)

i.e. the homogeneous part of the state equation (3.1), and satisfies

Φ̇(t) = F (t)Φ(t), Φ(0) = I (3.5)

where I is an identity matrix of the dimension r. Then the homogeneous solution implying
from two previous formulations has form

x(t) = Φ(t)x(0).

This expression means that matrix Φ(t) transform the initial state x(0) of the dynamic
system into the corresponding state x(t) of the dynamic system at time t.

If the elements of the matrix F (t) are continuous functions on the given time interval
then we have guaranteed existence and regularity of the fundamental matrix Φ(t). If we
start from the presumption that the fundamental matrix is regular then it is possible to
write

Φ−1(t)x(t) = x(0), Φ(τ)Φ−1(t)x(t) = x(τ). (3.6)

Evidently, the second formula implies from the first one. If we substitute τ instead of t
into the first expression and equate them we obtain the second formalization.

Properties of the state transition matrix:

� Φ(τ, 0) = Φ(τ),

� Φ(τ, τ) = Φ(0) = I,

� Φ(τ, t) = Φ−1(t, τ),

� Φ(t2, t1)Φ(t1, t0) = Φ(t2, t0),

� ∂Φ(τ, t)

∂τ
= F (t)Φ(τ, t).

(3.7)
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By using Φ(τ, t) = Φ(τ)Φ−1(t) we can modify the solution of the state equation (3.3)
in the following way

x(t) = Φ(t)Φ−1(t0)x(t0) + Φ(t)
∫ t

t0
Φ−1(τ)G(τ)u(τ) dτ. (3.8)

Two cases can occur:

F (t) ≡ F The elements of the matrix of dynamic coefficients are constant. Keep in mind
that in this case we are talking about time-invariant system and thus the matrix
Φ(t, τ) depends only on the difference t− τ and we can write

x(t) = eF (t−t0)x(t0) +
∫ t

t0
eF (t−τ)G(τ)u(τ) dτ =

= eF (t−t0)x(t0) + eF (t)
∫ t

t0
eF (−τ)G(τ)u(τ) dτ

where

Φ(t, τ ) = eF (t−τ) =
∞∑
k=0

F k(t− τ)k

k!
.

The term eF t, appearing in the above formulations, can be solved by the Laplace
transform

Φ(t) = eF t = L−1
(

1

sI − F

)
where L−1 is the operator of the inverse Laplace transform, s is the Laplace variable,
and I denotes the identity matrix.

General case In the time-variant case, there are many different functions that may
satisfy the requirements (3.5), (3.7), and the solution is dependent on the structure
of the dynamic system. We can use the numerical methods to obtain the solution
of the homogeneous differential equation (3.4) such as Euler method or Backward
Euler. But it is more convenient to apply higher order methods on this problem,
for example Runge-Kutta methods.

3.2 Discrete-time Models

Discretization concerns the process of transferring continuous models and equations into
discrete counterparts. This process is usually carried out as a first step toward making
them suitable for numerical evaluation and implementation on computers. Discretization
is often performed within the meaning of the forward difference

∆x(ti) = x(ti+1)− x(ti),

expressed as a function of all independent variables (including the value x(ti) as the
independent variable)

x(ti+1) = f(ti,x(ti),u(ti)).
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For the linear case of discrete-time dynamic system we can express this functional
dependence in matrix notation

x(ti+1) = F (ti)x(ti) +G(ti)u(ti). (3.9)

By analogy, we obtain by discretization of (3.2) the discrete measurement equation

y(ti) = H(ti)x(ti) +C(ti)u(ti).

The solution of the discrete state equation (3.9) is

x(ti) = Φ(ti, ti−1)x(ti−1) +
∫ ti

ti−1

Φ(ti, τ)G(τ)u(τ) dτ (3.10)

where Φ(ti, ti−1) denotes the state transition matrix for the linear discrete-time dynamic
system.

If the value of the output u(τ) ≡ u at time interval 〈ti−1, ti〉 then we can rewrite the
solution as

x(ti) = Φ(ti, ti−1)x(ti−1) + Γ(ti−1)u(ti−1) (3.11)

with

Γ(ti−1) =
∫ ti

ti−1

Φ(ti, τ)G(τ) dτ.

This solution has with the aid of short notation

xi ≡ x(ti), ui ≡ u(ti), yi ≡ y(ti),

Φi−1 ≡ Φ(ti, ti−1), Γi ≡ Γ(ti), H i ≡H(ti), Ci ≡ C(ti)

the following compact form

xi = Φi−1xi−1 + Γi−1ui−1.

Finally, by modifying the introductory table 3.1 as before in the continuous-time
models, we obtain the following table 3.3 for the discrete-time models.

DISCRETE Time-Invariant Time-Variant

General xi = f(xi−1,ui−1) xi = f(i,xi−1,ui−1)

Linear xi = Φxi−1 + Γui−1 xi = Φi−1xi−1 + Γi−1ui−1

Table 3.3: Discrete Mathematical Models of Dynamic Systems
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Chapter 4

Stochastic Systems

This chapter deals with a stochastic systems where states and inputs are random processes.
A random (or stochastic) process is one whose behavior is non-deterministic, in that
a subsequent state of the system is determined both by the predictable actions of the
process and by a random element. The indeterminacy in a future evolution of a stochastic
process is described by probability distributions hence we shall place here needful notes
from probability theory. The second part of this chapter will be engaged in a very short
analysis of the linear stochastic systems. See [3], [4] and [10] for any more information.

4.1 Short View into Probability Theory

Some fundamentals of probability theory which are necessary to gain insight into the
recursive algorithm shall sum up in this chapter. These concepts will also be instrumental
in describing random phenomena and properties of stochastic systems. The presentation
will be intentionally brief, assuming that the reader has already some general knowledge
with the subject.

4.1.1 Characteristics of Random Variable

In this subsection we introduce the characteristics of random variables. These results
are relevant for two reasons. First, since random variables can be found in almost any
practical application, it is important to be able to understand and manipulate random
variables. The second reason is that the characterization of random variables will serve
for our development of random processes in two following subsections.

1. Expected Value

E(X) =



∞∑
k=0

xkP (X = xk) if X is discrete random variable,

∞∫
−∞

xf(x) dx if X is continious random variable

where P (X = xk) and f(x) denotes probability function and density function,
respectively.

17
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2. Variance
Var(X) = E[(X − E(X))2] = E(X2)− E2(X) = σ2

X .

The square root of the variance, σX , is known as standard deviation.

3. Covariance

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− µXµY = cXY .

where µX = E(X) and µY = E(Y ) are the means (or expected values) of random
variables X, Y , respectively.

4. Correlation
rXY = E(XY ).

5. Correlation Coefficient

ρXY =
Cov(X, Y )√

Var(X)Var(Y )
=
rXY − µXµY

σXσY
, |ρXY | ≤ 1.

Theorem 4.1. Two random variables that satisfy E(XY ) = E(X)E(Y ) are said to be
uncorrelated.

In other words, X and Y will be uncorrelated if their covariance is zero, cXY = 0.

Theorem 4.2. Two random variables X and Y are said to be orthogonal if their
correlation is zero, rXY = 0.

Normal (Gaussian) Random Variables X ∼ N(µ, σ2)

Gaussian random variables play a central role in probability theory. A random variable, X,
taking values in (−∞,∞) with the following parameters µ ∈ (−∞,∞), and σ2 ∈ (0,∞),
is said to be Gaussian if its probability density function has form

f(x) =
1√

2πσ2
exp

{
−1

2

(
x− µ
σ

)2
}

(4.1)

where µ and σ2 are the mean and the variance, respectively. Such a normal random
variable is denoted by N(µ, σ2). The N(0, 1) random variable is called standard normal
random variable.

4.1.2 Parameter Estimation: Bias

Consider the problem of estimating the value of the parameter, θ, from a sequence of
random variables Xn, for n = 1, . . . , N . Since the estimate is a function of N random
variables, we will denote it by θ̂N . In general we would like the estimate to be equal, in
the sense of the expectation, to the true value. The difference between the expected value
of the estimate and actual value, θ, is called the bias, denoted by B,

B = θ − E(θ̂N).
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If the bias is zero, then the expectation of the estimate is equal to the true value

E(θ̂N) = θ

and the estimate is said to be unbiased. If B 6= 0, then θ̂N is said to be biased. If an
estimate is biased but the bias goes to zero as the number of observations, N , goes to
infinity

lim
N→∞

E(θ̂N) = θ

then the estimate is said to be asymptotically unbiased. In general, it is covetable
that an estimator be either unbiased or asymptotically unbiased.

4.1.3 Stochastic (Random) Processes and Their Characteristics

We shall deal with the characterization and analysis of random processes. Since a random
process is simply an indexed sequence of the random variables, we shall just extend the
concepts from the part 4.1.1 to random processes. In the second part of this subsection
we will summarize the characteristics of the stochastic processes.

Definition 4.1. A random process is a sequence of random variables {Xt; t ∈ T } or
{Xt}t∈T , where T is an index set, defined on a common probability space (Ω,B, P ).

Also in this case the random processes are divided into discrete-time and continuous-
-time stochastic processes, i.e.

� T ⊆ R - continuous-time random process,

� T ⊆ Z - discrete-time random process.

Characteristics of Random Process
Consider two stochastic processes {Xt}t∈T , and {Yt}t∈T both defined on the same
probability space.

1. Expected value µX(t) = E(Xt).

2. Variance σ2
X(t) = Var(Xt) = Cov(Xt, Xt).

3. Autocovariance cX(t1, t2) = Cov(Xt1 , Xt2).

4. Autocorrelation rX(t1, t2) = E(Xt1 , Xt2).

5. Cross-Covariance cXY (t1, t2) = Cov(Xt1 , Yt2).

6. Cross-Correlation rXY (t1, t2) = E(Xt1 , Yt2).

7. Autocorrelation Matrix
Consider X = [X1, X2, . . . , Xd]

T is a vector of d values of a process Xn, then the
outer product

XXT =


X1X1 X1X2 · · · X1Xd

X2X1 X2X2 · · · X2Xd
...

...
. . .

...
XdX1 XdX2 · · · XdXd


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is a d×d matrix. The corresponding autocorrelation matrix of the dimension d×d,
using rX(p) = rX(−p), has the form

RX = E(XXT )


rX(0) rX(1) · · · rX(d− 1)
rX(1) rX(0) · · · rX(d− 2)

...
...

. . .
...

rX(d− 1) rX(d− 2) · · · rX(0)

 .

8. Autocovariance Matrix CX = RX − µXµTX
where µX = [µX , µX , . . . µX ]T is a vector of length d containing the mean value of
the process.

Theorem 4.3. Two random processes Xt and Yt satisfying cXY (t1, t2) = 0 for all t1 and
t2 are said to be uncorrelated.

Theorem 4.4. Two random processes Xt and Yt are said to be orthogonal if their
cross-correlation is zero, rXY (t1, t2) = 0, for all t1 and t2.

Theorem 4.5. A continuous random process Xt is said to be uncorrelated if holds

cX(t1, t2) = Q(t1, t2)δ(t1 − t2)

where δ(t) is a unit impulse function (or the Dirac’s delta)

δ(t) =

{
∞, t = 0,
0, t 6= 0,

∫ ∞
−∞

δ(t) dt = 1.

Similar relation holds for a discrete random process, however for this case the unit impulse
function is replaced by unit sample function (or the Kronecker delta) ∆(i), i.e.

∆(i) =

{
1, i = 0,
0, i 6= 0.

Definition 4.2. A random process Xt is said to be white (or white noise) if its mean
and autocovariance function satisfy the following

µX(t) = µ, cX(t1, t2) =

{
σ2, t1 = t2,
0, k 6= l,

i.e. if it is a constant-mean process and its values Xt1 and Xt2 are uncorrelated random
variables for every t1 and t2, each having a variance σ2

X .

4.2 Linear Stochastic Systems

As we said at the beginning of this chapter the word ”stochastic” means ”pertaining to
chance”, and is thus used to describe subjects that contain some element of random (or
stochastic) behavior. For a system to be stochastic, one or more parts of the system has
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CONTINUOUS DISCRETE

ẋ(t) = F (t)x(t) +G(t)u(t) + v(t) xi = Φi−1xi−1 + Γi−1ui−1 + vi−1

y(t) = H(t)x(t) +C(t)u(t) +w(t) yi = H ixi +Ciui +wi

Table 4.1: Continuous and Discrete Mathematical Models of Linear Stochastic Systems

randomness associated with it. Unlike a deterministic system which we considered in the
chapter 3, for example, a stochastic system does not always produce the same output for
a given input. The table 4.1 contains both continuous and discrete time mathematical
models of the linear stochastic systems which we obtained from the deterministic models
by implementation of another random inputs to the system.

By reason of simplicity we shall consider that the deterministic input vector u, and
the stationary random processes v, w called the noise of process and measurement,
respectively, have the same probability distribution and are independent on the
previous values of the state and input. Both noises we shall consider as white, i.e. with
these following properties

� continuous-time case

E

([
v(t)
w(t)

])
= 0, Cov

([
v(t1)
w(t1)

]
,

[
v(t2)
w(t2)

])
=

[
Q S
ST R

]
δ(t2 − t1),

� discrete-time case

E

([
vi−1

wi

])
= 0, Cov

([
vi−1

wi−1

]
,

[
vj
wj

])
=

[
Q S
ST R

]
∆(i− 1− j).

4.2.1 Continuous-time Models

We shall study the linear continuous-time stochastic system modeled by equations

ẋ(t) = F (t)x(t) + G(t)u(t) + v(t),
y(t) = H(t)x(t) + C(t)u(t) + w(t).

(4.2)

The state equation can be expressed writing d
dt

instead of the dot

dx(t)

dt
= F (t)x(t) +G(t)u(t) +

db(t)

dt

where b(t) is called Wiener process or Brownian motion. Finally, multiplying by
”dt”

dx(t) = F (t)x(t)dt+G(t)u(t)dt+ db(t) (4.3)

we obtained the system of linear stochastic differential equations. The increment of the
Wiener process db(t) has the zero mean, covariance

Cov(db(t), db(t)) = E(db(t)dbT (t)) = Qdt,
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and the values of increments in nonoverlaping time intervals are independent.
The derivation of the Wiener process

v(t) =
db(t)

dt

does not exist. The exact definition of the continuous-time stochastic system therefore is
much more complicated than in the case of the discrete-time. This problem is analyzed
in detail in [2].

The solution of the state equation in (4.2) is determined by the following formula

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)G(τ)u(τ) dτ +

∫ t

t0
Φ(t, τ)v(τ) dτ. (4.4)

Now we shall focus on the evolution of the expectation and covariance of the state
and output vector of the system (4.2). Taking into account that the expectation of white
noises v(t), w(t) is equal to zero we find by virtue of (4.4) and the measurement equation
in (4.2) the following formulas for the mean of the system state and output vector, x(t),
and y(t), respectively,

µx(t) = Φ(t, t0)µx(t0) +
∫ t

t0
Φ(t, τ)G(τ)u(τ) dτ,

µy(t) = H(t)µx(t) +C(t)u(t).

As we can see the expectation value of the state and output vector of the stochastic system
evolves as well as in the case of deterministic system.

The covariance function of the state vector is given by the formula

cx(t1, t2) = Φ(t1, t0)cx(t0, t0)Φ(t2, t0) +
∫ min(t1,t2)

t0
Φ(t1, τ)QΦ(t2, τ) dτ.

While deriving this expression we remembered that the initial state x(t0) is
independent of the white noise v(t) at t > t0 and that Φ(t, τ) = 0 at τ > t. Due to
this the upper limit of integration is equal to min(t1, t2).

4.2.2 Discrete-time Models

The linear discrete-time stochastic system is described by the following model

xi = Φi−1xi−1 + Γi−1ui−1 + vi−1,
yi = H ixi + Ciui + wi.

(4.5)

Much like in the continuous-time models of the linear stochastic systems the evolution
of the expectation of the state and output vector is same for both deterministic and
stochastic systems

E(xi) = Φi−1E(xi−1) + Γi−1ui−1,

E(yi) = H iE(xi) +Ciui.
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For the evolution of the covariance function of the state we use the relation determining
the mean error of the state

x̃i = xi − E(xi) ⇒ E(xi) = xi − x̃i. (4.6)

By application of (4.6) into the expectation of the system state and output vector and by
deduction of (4.5) we get

x̃i = Φi−1x̃i−1 + vi−1,

ỹi = H ix̃i +wi,

and so

x̃ix̃
T
i = Φi−1x̃i−1x̃

T
i−1Φ

T
i−1 + Φi−1x̃i−1v

T
i−1 + vi−1x̃

T
i−1Φ

T
i−1 + vi−1v

T
i−1.

Again, taking into account that the expectation of white noises vi−1, wi is equal to
zero we obtain the expression for the evolution of the covariance function the following
formula

Cov(xi,xi) = E(x̃ix̃
T
i ) = Φi−1Cov(xi−1,xi−1)Φ

T
i−1 +Q.

Now we define for the covariance matrix this denotation

Kxi = Cov(xi,xi)

and overwrite the previous equation into the form

Kxi = Φi−1Kxi−1
ΦT
i−1 +Q.

In the same way it is possible to derive the relations for the joint covariance matrix of the
system state and output vector

Cov

([
xi
yi

]
,

[
xi
yi

])
=

[
Φi−1Kxi−1

ΦT
i−1 +Q Φi−1Kxi−1

HT
i + S

H iKxi−1
ΦT
i−1 + ST H iKxi−1

HT
i +R

]
.

If we consider both white noises v, and w as the Gaussian processes and the initial
state of the system with the Gaussian distribution, i.e. x0 ∼ N(µ, σ2), then also the
system state and output are the Gaussian processes fully characterized by equations for
the evolution of the expectation value and joint covariance matrix.
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Chapter 5

Parameter Estimation Methods

We are now in the situation that we have selected a certain model structure M , with
particular models M(θ) parameterized using the parameter vector θ ∈ DM ⊂ Rd. Then
the set of models is

M? = {M(θ)|θ ∈ DM}.

We have also collected the batch of data of the inputs and outputs from the system over
a time interval 1 ≤ t ≤ N

ZN = {y(1),u(1), y(2),u(2) . . . , y(N),u(N)}.

The problem we are faced with is to resolve upon how to use the information contained
in ZN to select a proper value θ̂N of the parameter vector, and hence a proper member
M(θ̂) in the set M?. More precise, we have to determine a mapping from the data set
ZN to the set DM

ZN → θ̂N ∈ DM. (5.1)

Such a mapping is a parameter estimation method.
We used some lines above the vector θ̂N . Now we should explain what indicates. The

estimate θ̂N is defined by minimization of the function of the model parameter θ

VN(θ, ZN), (5.2)

for given ZN , i.e.
θ̂N = θ̂N(ZN) = arg min

θ∈DM
VN(θ, ZN). (5.3)

Here the ”arg min” means the minimizing argument of the function, i.e. that value of
θ which minimizes VN . If the minimum is not unique, we let arg min denote the set of
minimizing arguments. The mapping (5.1) is thus defined implicitly by (5.3). The sources
[8] and [11] were worked up for taking in writing the sections of this chapter.

5.1 Linear Least Square Method (LLS)

The predictor
ŷ(t|θ) = ϕT (t)θ = θTϕ(t)

25
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is a scalar product between a known data vector ϕ(t) and the parameter vector θ. Such a
model is called a linear regression in statistics (linear in parameter θ). Recall the vector
ϕ(t) is known as the vector of regressors (chapter 2). It is of importance since powerful
and simple estimation methods can be applied for the determination of θ. We shall discuss
the linear least squares method for the estimation of θ in this section.

An approach is to select θ in (1.1) so as to fit the calculated values ŷ(t|θ) as well as
possible to the measured outputs by the least squares method

min
θ
VN(θ, ZN)

where

VN(θ, ZN) =
N∑
t=1

ε(t)2 =
N∑
t=1

(y(t)− ŷ(t|θ))2 =
N∑
t=1

(
y(t)−ϕT (t)θ

)2
. (5.4)

Since VN is quadratic in θ, we can find the minimum value easily by setting the
derivative to zero

d

dθ
VN(θ, ZN) = 2

N∑
t=1

ϕ(t)
(
y(t)−ϕT (t)θ

)
= 0

which gives
N∑
t=1

ϕ(t)y(t) =
N∑
t=1

ϕ(t)ϕT (t)θ

or

θ̂
LLS

N =

[
N∑
t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)y(t). (5.5)

Once the vectors ϕ(t) are known, or defined, the solution can be easily found by numerical
software, such as MATLAB.

The estimation (5.5) can be rewritten as

θ̂
LLS

N = R−1
ϕ (N)rϕy(N) (5.6)

with

Rϕ(N) =
N∑
t=1

ϕ(t)ϕT (t), (5.7)

so called a d× d deterministic autocorrelation matrix, and

rϕy(N) =
N∑
t=1

ϕ(t)y(t), (5.8)

so called a d× 1 deterministic vector of cross-correlation between y(t) and ϕ(t).

An alternative way how to view θ̂
LLS

N is as the solution of

Rϕ(N)θ̂
LLS

N = rϕy(N). (5.9)

These last equations are known as the normal equations. If the matrix of
autocorrelation Rϕ is positive definite, i.e. for any vector z must be satisfied zTRϕz > 0,



5.2. NONLINEAR LEAST SQUARES METHOD (NLS) 27

then the solution of the normal equations θ̂
LLS

N is a unique solution of the minimization
problem

θ̂
LLS

N = arg min
θ∈DM

VN(θ, ZN) = arg min
θ∈DM

N∑
t=1

(y(t)−ϕT (t)θ)2.

5.2 Nonlinear Least Squares Method (NLS)

The nonlinear least squares method is the form of the least squares analysis which is used
to fit a set of observations with a model that is non-linear in unknown parameters. It is
used in some forms of non-linear regression. The basis of the method is to approximate
the model by a linear one and to refine the parameters by successive iterations. There
are many similarities to linear least squares, but also some significant differences.

In the nonlinear case the predictor is given by the nonlinear equation (nonlinear in θ)

ŷ(t|θ) = g(ϕ(t),θ) (5.10)

where the parameter θ needs to be estimated. Subsequently, the corresponding prediction
error is

ε(t) = y(t)− g(ϕ(t),θ).

The principle is same as in the previous section. The criterion function VN has the
form

VN(θ, ZN) =
N∑
t=1

ε(t)2 =
N∑
t=1

(y(t)− ŷ(t|θ))2 =
N∑
t=1

(y(t)− g(ϕ(t),θ))2 . (5.11)

The minimum value of VN(θ, ZN) occurs when the gradient is zero

d

dθ
VN(θ, ZN) = 2

N∑
t=1

ε(t)
dε(t)

dθ
= 0. (5.12)

These gradient equations do not have a closed solution. The above nonlinear minimization
problem can be solved by locally linearizing the function g(ϕ(t),θ) and iteratively solving
for the parameter θ which minimizes (5.11).

The initial value must be chosen for the parameter θ. Then, the parameter is refined
iteratively, which means, the value is obtained by successive approximation

θ ≈ θt+1 = θt +4θ.

The vector of increments, 4θ, is known as the shift vector. At each iteration the model
is linearized by approximation to a first-order Taylor series expansion about θt

g(ϕ(t),θ ≈ g(ϕ(t),θt) +
∂g(ϕ(t),θt)

∂θ
4θ = g(ϕ(t),θt) +Dg|θt4θ.

In terms of the linearized model

∂ε(t)

∂θ
= −∂g(ϕ(t),θ)

∂θ
= −Dg|θt
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and the residuals are given by

ε(t) = y(t)− g(ϕ(t),θt)−Dg|θt4θ = 4y(t)−Dg|θt .

Substituting these expressions into gradient equations (5.12), they become

−2
N∑
t=1

Dg|θt(4y(t)−Dg|θt4θ) = 0.

After a rearrangement we obtain again the normal equations

N∑
t=1

Dg|θtDg|θt4θ =
N∑
t=1

Dg|θt4y(t).

Finally, for the vector of increments, 4θ, holds

4θ̂
NLS

= Dg|θt †4y(t) = Dg|θt †(y(t)− g(ϕ(t),θt))

with Dg|θt † as linear least square pseudo inverse of Dg|θt .
Each iteration step will be then

θ̂
NLS

t+1 = θ̂
NLS

t +Dg|θt †(y(t)− g(ϕ(t),θt)). (5.13)

Equation (5.13) is initialized with the initial value, θ̂
NLS

0 , and is iterated until the solution
converges.

Differences between linear and nonlinear least squares

� Many solution algorithms for NLS require the initial value for the parameter, LLS
does not.

� Many solution algorithms for NLS require that the gradient be calculated.
Analytical expressions for partial derivatives can be complicated. If analytical
expressions are impossible to obtain the partial derivatives must be calculated by
numerical approximation.

� In NLS non-convergence (non-convergence means failure of the algorithm to find a
minimum) is a common phenomenon whereas the LLS is globally concave and so
non-convergence is not a question at issue.

� NLS is usually an iterative process. The iterative process has to be terminated
when a convergence criterion is satisfied. LLS solutions can be computed using
direct methods.

� In LLS the solution is unique, but in NLS there may be multiple minima in the sum
of squares.
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5.3 Weighted Least Squares Method (WLS)

In most of modeling applications it may not be reasonable to assume that every
observation should be treated equally (because some observations are more important or
more precise than the others). Weighted least squares can often be used to maximize the
efficiency of parameter estimation. This is done by giving each observed data its proper
amount of influence by assignment of the weight over the parameter estimates.

Weighted least squares reflects the behavior of the random errors in the model, and
it can be used with functions that are either linear or nonlinear in the parameter θ.
It works by incorporating extra nonnegative constants (weights) associated with each
observed data, into the criterion function. The size of the weight indicates the precision
of the information contained in the associated observation.

The weighted least square criterion for the linear predictor takes the form

VN(θ, ZN) =
N∑
t=1

β(N, t)ε(t)2 =
N∑
t=1

β(N, t)
(
y(t)−ϕT (t)θ

)2
(5.14)

where β(N, t) is the weight. Then the expression for the resulting estimate is quite
analogous to (5.5)

θ̂
WLS

N =

[
N∑
t=1

β(N, t)ϕ(t)ϕT (t)

]−1 N∑
t=1

β(N, t)ϕ(t)y(t). (5.15)
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Chapter 6

Adaptive Filtering

Filter is often described as device in the form of a piece hardware or software applied
to a set of noisy data in order to extract information about a prescribed quantity of
interest. The term filtering thus means the extraction of information about a quantity
of interest at time t by using data measured up to and including time t. By the adaptive
filtering we mean the device that is self-designing in that the adaptive filter relies on
a recursive algorithm. That makes it possible for the filter to perform satisfactorily in
an environment where complete knowledge of the relevant signal characteristics (a priori
statistical information) is not available.

Figure 6.1: Adaptive filter

The picture figures that basic operation involves two processes in adaptive filter,namely
a filtering process and adaptation process. The adaptation process includes adjusting
filter parameters to time-varying environment. In other words, the adaptation process is
updating the filter when new data arrives. The adaptation is controlled by error signal.
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The following section explains the recursive least squares method, which is based on
the weighted least squares method. For finding more details about the adaptive filters
and recursive least squares algorithm use [5] and [8].

6.1 The Recursive Least Squares Method (RLS)

The recursive least squares algorithm is one of the most popular adaptive algorithms and
can be easily and exactly derived from the normal equations. This algorithm may be
viewed as a special case of the Kalman filter. Our main mission in this section is to
develop the basic theory of the recursive least squares algorithm as an important tool for
linear adaptive filtering.

Let us consider the filter coefficients θt as our subject of interest that minimize, at
time t, the weighted least squares criterion

Vt(θ, Z
t) =

t∑
i=1

β(t, i)ε(i)2 =
t∑
i=1

β(t, i)
(
y(i)−ϕT (i)θ

)2
. (6.1)

Here, we introduced

Zt = (yt,ut) = {y(1),u(1), . . . , y(t),u(t)}

to denote the input-output measurements available at time t.
The weighting factor β(t, i) in equation (6.1) has the property

0 < β(t, i) ≤ 1, i = 1, 2, . . . , t.

The use of the weighting factor β(t, i), in general, is intended to ensure that the data in
the distant past are ”forgotten”. A special form of weighting that is commonly used is
the exponential weighting factor known also as forgetting factor defined by

β(t, i) = λt−i, i = 1, 2, . . . , t

where λ is positive constant close to, but less than, 1. When λ equals one, we have the
ordinary method of least squares.

By using the forgetting factor we obtain the exponentially weighted least squares
criterion

Vt(θ, Z
t) =

t∑
i=1

λt−i
(
y(i)−ϕT (i)θ

)2
. (6.2)

The estimated value of the vector of filter coefficients is defined with using (5.15) by

θ̂
RLS

t =

[
t∑
i=1

λt−iϕ(i)ϕT (i)

]−1 t∑
i=1

λt−iϕ(i)y(i). (6.3)

Again, the typical way how to see the equation (6.3) is the form given by the normal
equations, in matrix notation

Rϕ(t)θ̂
RLS

t = rϕy(t). (6.4)
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The d× d deterministic autocorrelation matrix Rϕ(t) is now defined by

Rϕ(t) =
t∑
i=1

λt−iϕ(i)ϕT (i). (6.5)

The d× 1 deterministic cross-correlation vector rϕy(t) between the regression vector and
the desired signal is correspondingly defined by

rϕy(t) =
t∑
i=1

λt−iϕ(i)y(i). (6.6)

For easier notation we set
θ̂
RLS

t = θ̂t.

6.1.1 Recursive Algorithm

SinceRϕ(t) and rϕy(t) both depend on time t, instead of solving the deterministic normal
equations directly, for each value of t, we will derive a recursive solution of the form

θ̂t = θ̂t−1 +4θ̂t−1

where 4θ̂t−1 is a correction that is applied to the solution at time t− 1. Because

θ̂t = R−1
ϕ (t)rϕy(t)

the recursion will be derived first by expressing rϕy(t), in terms of rϕy(t − 1), and then
by deriving a recursion that allows us to evaluate Rϕ(t) in terms of Rϕ(t− 1).

By isolating the term corresponding to i = t from the rest of the summation on the
right-hand side of the formalization (6.6), we can write

rϕy(t) =
t∑
i=1

λt−iϕ(i)y(i) =

=
t−1∑
i=1

λt−iϕ(i)y(i) + λ0ϕ(t)ϕT (t) =

= λ

[
t∑
i=1

λt−1−iϕ(i)y(i)

]
+ϕ(t)y(t).

(6.7)

However, by definition, the expression inside the square brackets on the right-hand side of
(6.7) equals the cross-correlation vector rϕy(t−1). Hence, we have the following recursion
for updating the value of the cross-correlation vector

rϕy(t) = λrϕy(t− 1) +ϕ(t)y(t) (6.8)

where rϕy(t − 1) is the ”old” value of the vector of cross-correlation, and the product
ϕ(t)y(t) plays the role of a correction term in the updating operation. Similarly, the
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autocorrelation matrix may be updated from Rϕ(t−1) and new input-output data vector
ϕ(t) using the recursion

Rϕ(t) = λRϕ(t− 1) +ϕ(t)ϕT (t). (6.9)

However, seeing that it is the inverse of Rϕ(t) in which we are interested, we may apply
Woodbury’s Identity to the expression (6.9) to get the desired recursion. Woodbury’s
identity is also referred to in the standard literature as the Matrix Inversion Lemma
and is expressed as

(A+ uv)−1 = A−1 − A
−1uvA−1

1 + vA−1u
.

Taking A = λRϕ(t− 1), u = ϕ(t), and v = ϕT (t) we obtain the following recursion for
the inverse of Rϕ(t)

R−1
ϕ (t) = λ−1R−1

ϕ (t− 1)−
λ−2R−1

ϕ (t− 1)ϕ(t)ϕT (t)R−1
ϕ (t− 1)

1 + λ−1ϕT (t)R−1
ϕ (t− 1)ϕ(t)

. (6.10)

To simplify last notation, we will let P (t) denote the inverse of autocorrelation matrix at
time t,

P (t) = R−1
ϕ (t) (6.11)

and determine what is referred to as the gain vector, g(t), as follows

g(t) =
λ−1P (t− 1)ϕ(t)

1 + λ−1ϕT (t)P (t− 1)ϕ(t)
=

P (t− 1)ϕ(t)

λ+ϕT (t)P (t− 1)ϕ(t)
. (6.12)

Incorporating the formulas (6.11), and (6.12) to the expression (6.10) gives

P (t) = λ−1
[
P (t− 1)− g(t)ϕT (t)P (t− 1)

]
. (6.13)

An useful expression for the gain vector may be derived from formalization (6.12) hereby,
cross-multiplying to eliminate the denominator on the right side of equation (6.12) we
obtain

g(t) + λ−1g(t)ϕT (t)P (t− 1)ϕ(t) = λ−1P (n− 1)ϕ(t).

Next, bringing the second term on the left to the right side of the equation leads to

g(t) = λ−1
[
P (n− 1)− g(t)ϕT (t)P (t− 1)

]
ϕ(t).

Finally, from expression (6.13) we can see that the term multiplying ϕ(t) is P (t) and we
have

g(t) = P (t)ϕ(t). (6.14)

The gain vector is thus the solution to the normal equations

Rϕ(t)g(t) = ϕ(t).

To complete the recursion, we must derive the time update equation for the vector of
filter coefficients θ̂. With

θ̂t = P (t)rϕy(t)
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it follows form the update for rϕy(t) (6.8) defined in (6.6) that

θ̂t = λP (t)rϕy(t− 1) + P (t)ϕ(t)y(t). (6.15)

By incorporating the update for P (t) given by (6.13) into the first term on the right hand
side of the last equation and substituting (6.14) we obtain

θ̂t =
[
P (t− 1)− g(t)ϕT (t)P (t− 1)

]
rϕy(t− 1) + g(t)y(t).

Finally, by recognizing that P (t− 1)rϕy(t− 1) = θ̂t−1 we obtain the recursion

θ̂t = θ̂t−1 + g(t)
[
y(t)−ϕ(t)θ̂t−1

]
(6.16)

which can be written
θ̂t = θ̂t−1 + ξ(t)g(t) (6.17)

with
ξ(t) = y(t)−ϕ(t)T θ̂t−1 (6.18)

the difference between y(t) and its estimation that is formed by applying the previous
vector of filter coefficients, θt−1, to the new data vector ϕ(t). This sequence, called the
a priori error is the error that would occur if the filter coefficients were not updated.
On the other hand, the a posteriori error is the error that occurs after the vector of
filter coefficients is updated, which means

ε(t) = y(t)−ϕ(t)T θ̂t.

Parameters: d = Filter order

λ = Forgetting factor

δ = Value used to initialize P (0)

Initialization: θ0 = 0

P (0) = δ−1I

Computation: For t = 1, 2, . . .

g(t) =
P (t− 1)ϕ(t)

λ+ϕ(t)TP (t− 1)ϕ(t)

ξ(t) = y(t)−ϕ(t)T θ̂t−1

θ̂t = θ̂t−1 + ξ(t)g(t)

P (t) = λ−1
[
P (t− 1)− g(t)ϕT (t)P (t− 1)

]

Table 6.1: The Recursive Least Squares Algorithm
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6.1.2 Initialization of RLS Algorithm

This subsection concerns the initialization of the RLS algorithm. Since the recursive
algorithm given by the table 6.1 involves the recursive updating of the vector of filter
coefficients θ̂t and the inverse autocorrelation matrix P (t), initial conditions for both of
these terms are required.

There are two ways how this initialization is typically performed. The first is to build
up the autocorrelation matrix recursively according to (6.9) and then evaluate the inverse
directly

P (0) =

 0∑
i=−t0

λ−iϕ(i)ϕT (i)

−1

.

The regression vector ϕ(i) is obtained from an initial block of data for −t0 ≤ i ≤ 0.
Computing the cross-correlation vector rϕy(0) in the same manner,

rϕy(0) =
0∑

i=−t0
λ−iϕ(i)y(i),

we may then initialize θ̂0 by setting θ̂0 = P (0)rϕy(0).
A simpler approach is to modify the expression slightly for the autocorrelation matrix

Rϕ(t) by writing

Rϕ(t) =
t∑
i=1

λt−iϕ(i)ϕT (i) + δλtI

where I is the d × d identity matrix, and δ is a small positive constant. Thus putting
t = 0 in the last expression, we have

Rϕ(0) = δI.

Correspondingly, for the initial value of P (t) equal to the inverse of the correlation matrix
Rϕ(t), we set

P (0) = δ−1I. (6.19)

It only remains for us to choose an initial value for the vector of filter coefficients. It is
common to set

θ̂0 = 0 (6.20)

where 0 is the d× 1 null vector.
The initialization procedure incorporating equations (6.19), (6.20) is referred to as a

soft-constrained initialization and was used in our simulations. The positive constant
δ is the only parameter required for this initialization and this fact is judged as the
advantage. The disadvantage of this approach is that it introduce a bias in the least
squares solution. However, with an exponential weighting factor, λ < 1, this bias go to
zero as t increases.
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6.1.3 Choice of the Forgetting Factor

As we said before, we need to select the forgetting factor so that criterion essentially
contains those measurements that are relevant for the current properties of the system.

For a system that changes gradually, the most customary choice is to take a constant
forgetting factor

λ(t) ≡ λ.

The constant λ is always chosen slightly less than 1 and we can write

λt−i = e(t−i) log λ ≈ e−(t−i)(1−λ).

This means that measurements that are older than inverse of 1− λ samples are included
in the criterion with a weight that is e−1 ≈ 36% of that of the most recent measurement.
Roughly speaking,

T =
1

1− λ
(6.21)

is a measure of the memory of the algorithm. If the system remains approximately
constant over T samples, a suitable choice of λ can then be made from (6.21). Typical
choices of λ are in the range between 0, 98 and 0, 995.

For a system that undergoes abrupt and sudden changes, an adaptive choice of λ could
be conceived. When a sudden change of the system has been detected, it is suitable to
decrease λ(t) to a small value for one sample, thereby ”cutting off” past measurements
from the criterion, and then to increase λ(t) to a value close to 1 again.
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Chapter 7

Modeling of Vehicle Dynamics

For the theoretical analysis of vehicle dynamics, the equations of motion have to be
known and the physical interactions between the various subsystems have to be written
in the form of mathematical equations. Two main approaches can be considered for the
construction of the vehicle model. If we want to obtain a model which is exact and precise
as possible, we use the methods of theoretical physics such as Lagrange or Euler. The
alternative approach is to attempt to model the vehicle as simply as possible and with
as little computing-time as possible. For this occasion emphasis is placed here on the
classical single-track model (also known as a bicycle model).

In this chapter we shall introduce two models, which are commonly used for vehicle
dynamics control. First we shall shortly deal with linear tire model which describes the
tire performance during a motion of a vehicle. Consequently we shall target bicycle model
by which the fundamental concept of vehicle lateral dynamics is explained.

7.1 Tire Model

The primary forces during lateral maneuvering, acceleration, and braking are generated
by tires. The linear tire model doesn’t consider longitudinal tire forces, hence it is
suitable for analyzing a stable vehicle behavior under the assumption of small steering
and acceleration.

The lateral forces, which serve for control the direction of the vehicle and are generated
by a tire, are a function of the slip angle. The slip angle, α, represents the angle containing
the velocity vector of wheel displacement (in another words, the tire’s direction of travel)
with its longitudinal axis.

As the tire rolls, the tire contact patch over the ground deflects by slip angle α and
deforms according to the direction of travel (see figure 7.1). This deformation and the
elasticity of the tire produce in the tire contact patch the lateral tire force. The dependence
of the lateral tire force on the slip angle is investigated experimentally. In the linear region
of the tire curve (0◦ ≤ α ≤ 3◦) the lateral force may be expressed by the following

Fy = −Cαα (7.1)

where the cornering stiffness, Cα, represents the slope of initial part of the tire curve
displayed in the figure 7.2.
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Figure 7.1: The rolling tire deformation and the lateral force

Figure 7.2: Tire lateral force and tire slip angle

This topic is more in detail described in [7] or [12] with tire self-aligning torque. For
our purpose this presented simplified model is sufficient.

7.2 Single-Track Model

We shall inquire into the vehicle steerability, i.e. the steering response at the
constant driving velocity. The figure 7.3 shows the vehicle-driver-road control loop, where
the steering response (the output of the schema) can be for example the yaw rate or
the lateral velocity. Next figure 7.4 illustrate for more clear visualization the vehicle in
co-ordinate system which has its origin at the vehicle center of gravity.

We shall theoretically investigate the lateral dynamics of the vehicle in the horizontal
plane. For this purpose the single-track model, or bicycle model is most often used
representation. This model gives good results for non-critical driving situation and is
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Figure 7.3: The standard vehicle-driver-road control loop

Figure 7.4: The vehicle in coordinate system

frequently applied for many test maneuvers. The first publication of this modeling dates
back to 1940. The states looming in this representation are states of the lateral velocity
and yaw rate. Detailed derivation and explanation can be found in many books, for
example in [12].

In the bicycle model the wheels on each axis are considered as a single unit. Because
of this, it is only possible to derive the one single tire slip angle for the left and right
wheels on the front axle, αf , and one for the wheels on the rear axle. The approximation
of angles

sinω ≈ ω, cosω ≈ 1 (7.2)

is applied to linearize the problem. The center of gravity (CG) of the vehicle lies at a
plane of a carriageway (or at road-level) hence we can vanish the suspension roll. On this
account we shall assume that the tire slip angles on the inside and outside wheels are
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approximately the same. For this planar bicycle model we shall not investigate the effect
of the side wind, the influence of the rear steering and we shall also consider absolutely
stiff steering.

In figure 7.5, Fy,f and Fy,r are the front and rear lateral tire forces, respectively, αf
and αr are corresponding tire slip angles, ux and uy are the longitudinal and the lateral
components of the vehicle velocity, and δ is the steering angle.

The following force and moment balances are a basis for derivation of the equation of
motion for the bicycle model

may = Fy,f cos δ + Fy,r,
Iz ṙ = aFy,f cos δ − bFy,r

(7.3)

where Iz is the yaw moment of inertia of the vehicle, m is the vehicle mass, a and b are
the distance of the front and rear axles from the center of gravity, and ay is the lateral
vehicle acceleration.

Figure 7.5: The single-track model

The state equation for the bicycle model can be written in the form u̇y,CG

ṙ

 =

 −Cαf−Cαr
mux,CG

−ux,CG −
Cαf a−Cαr b
mux,CG

−Cαf a−Cαr b
Izux,CG

−Cαf a
2−Cαr b2

Izux,CG


 uy,CG

r

+

 Cαf
mir
Cαf a

Izir

 δ (7.4)

where ir denotes the steering ratio.
For the front and the rear tire forces, Fy,f and Fy,r, respectively, by using the linear

tire model (7.1), hold formulas

Fy,f = −Cαfαf , Fy,r = −Cαrαr

with the total front and rear cornering stiffness, Cαf and Cαr , respectively. We have to
remind here that the assumption in the introduction of this section, that the slip angles
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are approximately the same for the inner and outer tires on each axle, still applies. We
shall also consider this supposition for the total cornering stiffness.

Using the linearization (7.2), we can write for the tire slip angles, αf and αr, the
following expressions

αf ≈
uy,CG + ar

ux,CG
− δ, αr ≈

uy,CG − br
ux,CG

.

The sideslip angle at the center of gravity is denoted by βCG (see the figure 7.5). The
sideslip angle, β, can be defined at any point on the vehicle body in two ways:

1. If the longitudinal and lateral velocities, ux and uy, are given at any point on the
vehicle body, we can express the sideslip angle by the following ratio

tan β =
uy
ux

⇒ β = tan−1
(
uy
ux

)
≈ uy
ux
.

2. The second way how to determine the sideslip angle at any point on the body is
as the difference between the direction of velocity, γ, and the vehicle yaw angle
(the angle between the longitudinal axis of the vehicle and the fixed axis of the
co-ordinate system), ψ, at that point, i.e.

β = γ − ψ.

For the determination of the actual vehicle position [x0, y0] at time t with regard to
the basic system of coordinates we use the following formulas

x0(t) =
∫ t

0
ux0 dτ =

∫ t

0
UCG cos (βCG + ψ) dτ =

∫ t

0
UCG cos γ dτ,

y0(t) =
∫ t

0
uy0 dτ =

∫ t

0
UCG sin (βCG + ψ) dτ =

∫ t

0
UCG sin γ dτ

where yaw angle can be obtained from the expression ψ̇ = r.
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Chapter 8

Experiment

For the practical application of the theoretical knowledge in the previous chapters we
have to describe the manoeuvre of the test vehicle and also measured signals. The
input-output data used for our numerical experiment were obtained in 2001. The
experiment was realized by the Institute of Forensic Engineering of Brno University of
Technology in conjunction with the Department of Transporting Technology of Brno
University of Technology.

The first section deals with the test vehicle, subsequent rubric aims to the test track
and the last one describes used measuring equipment. For deeper understanding you can
find more information in [1].

8.1 Test Car

The passenger vehicle was utilized for the test manoeuvre. The technical parameters of
this vehicle which are necessary for the numerical computation are summarized in the
following table.

Notation Parameter Measured value

m Mass of vehicle 1446 kg

a Distance between front axle and center of gravity 987 mm

a Distance between rear axle and center of gravity 1525 mm

ir Steering ratio 21

Iz Yaw moment of inertia 2319 kg ·m2

Cαf Total front cornering stiffness 88107, 7 N · rad−1

Cαr Total rear cornering stiffness 88107, 7 N · rad−1

Table 8.1: The technical specification of test vehicle
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8.2 Test Track

The test track was used in accordance with the ISO standard ISO/WD 3888-2 (see
[6]) which defines the dimensions of the test track for closed-loop control, specifically
determine the severe lane-change manoeuvre test for the obstacle avoidance performance
of a vehicle. It is applicable to passenger cars as defined in ISO 3833 and light commercial
vehicles up to a gross vehicle mass of 3,5 tonnes. The test track was passed along with
an approximately constant velocity.

8.3 Measuring Equipment

Two types of sensors were located on the test car and used for the measuring of some
dynamic parameters. More details about the first type of used sensors can be studied in
[14].

DATRON-CORRSYS GmbH

� HS-CE, V1 - vector sensors for a velocity measuring and slip angle measuring,

� MSW - a sensor for a steer angle measuring.

Marking device - an equipment for creating a water lane on the carriageway serving
for registering a trajectory of vehicle motion.

Figure 8.1: Vehicle with measuring devices

A sampling period of all sensors was hs = 0.1 s and the manoeuvre lasted T = 7 s. It
appears from this that every sensor recorded seventy measuring values. We can suspect,
by reason of low sampling frequency regarding time period T , that the results of the
adaptive filter application to this experiment will not be so obvious. We can assume that
this effect is caused by the little time period ( i.e. by low number of samples) for the
adaptation process of the filter.

As we can see on the figure 8.1 vector sensors HS-CE a V1 not lie in the center of
gravity. Therefore measured signals do not correspond with the vehicle dynamics in the
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center of gravity and consequently with the model and equations which we presented in
the previous chapter. Thus we have to know the position coordinates of this sensors in
the vehicle system of coordinates

[xHS−CE; yHS−CE, ] = [2, 109; −0, 027] ,
[xV 1; yV 1, ] = [−2, 760; −0, 379] .

Three graphs 8.3, 8.4, and 8.2 illustrate the evolution of the measured signals. From the
data obtained by vector sensors HS-CE and V1 may be derived other needful parameters,
namely a longitudinal and lateral velocity, ux and uy, respectively and yaw rate r. More
details of this derivation is possible to find in [12]. The evolutions of derived measured
signals are figured in appendix.

Figure 8.2: Steer angle δ
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Figure 8.3: Size of the velocity vector U

Figure 8.4: Slip angle α



Chapter 9

Application of Recursive Algorithm

In previous chapters we collected all necessary information for the final simulation. Now,
we have to define which variables represent the input, state and output of the system
and also determine which measured variables will be used for an implementation of the
recursive algorithm. The first section will deal with representation of the model and its
discretization. Next section will contain two m-files with the recursive algorithm and
discretization of state equation. The end of this chapter will cover the results of estimates
and their comparison with the measured data.

9.1 Model

In chapter 7 we introduced the single-track model for a description of vehicle lateral
dynamics. Forasmuch as we solve application of discrete adaptive filter for vehicle
dynamics analysis, it is necessary to transfer this continuous model

 u̇y,CG

ṙ

 =

 −Cαf−Cαr
mux,CG

−ux,CG −
Cαf a−Cαr b
mux,CG

−Cαf a−Cαr b
Izux,CG

−Cαf a
2−Cαr b2

Izux,CG


 uy,CG

r

+

 Cαf
mir
Cαf a

Izir

 δ
to the discrete one. For this purpose we use the common fourth order Runge-Kutta
method which overwrite the system of differential equation

ẋ = f(t,x) = F (t)x(t) +G(t)u(t)

to the system of difference equations by using the following expression

xi+1 = xi +
h

6
(k1 + 2k2 + 2k3 + k4)

with

k1 = f(ti,xi),

k2 = f(ti + h
2
,xi + h

2
k1),

k3 = f(ti + h
2
,xi + h

2
k2),

k4 = f(ti + h,xi + hk3)
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where h is step of numerical method given by formula h = ti+1 − ti. In our case we set
the step of numerical method h = 0, 01 s. By this discretization process we obtain the
following system of difference equations

xi+1 = Φixi + Γiui

where Φi is a matrix of dynamic coefficients and Γi is a matrix interconnecting the inputs
with the states. The corresponding measurement equation is expressed by representation

yi = H ixi

where matrix H i interconnecting the output with the state is an identity matrix

H i =

[
1 0
0 1

]
.

Whence it follows that the output and state vectors are equal.
The original model given by (7.4) then has a following discrete form[

uy,CGi+1

ri+1

]
= Φi

[
uy,CGi
ri

]
+ Γiδi (9.1)

and we can create the table which determine the input, state, output variables of the
system.

Input Variable State Variables Output Variables

steer angle δ lateral velocity uy,CG lateral velocity uy,CG

yaw rate r yaw rate r

Table 9.1: Mathematical Model for Implementation of Recursive Algorithm

In (9.1) can be found two time-variant variables, namely a longitudinal velocity ux,CG,
and steer angle δ. Both these variables were measured with the sampling period
hs = 0, 1 s. As was mentioned before, the step of the numerical method is h = 0, 01 s to
obtain the more accurately mathematical model. For the inputs of the system measured
with period hs = 0, 1 s we apply an implemented function in MATLAB called ’pchip’
(Piecewise Cubic Hermite Interpolating Polynomial) with syntax yi = pchip(x, y, xi).
This function returns vector yi containing elements corresponding to the elements of xi
and determined by piecewise cubic interpolation within vectors x and y. The vector x
specifies the points at which the data y is given. The time interval T = 7 s of the test
manoeuvre will thus be divided step-by-step corresponding to the step of numerical
method and in these points the values for the system input will be given by this
implemented method.

9.2 MATLAB Files

This part includes two m-files with the recursive algorithm, and the discretization of
the state equation 7.4. Also it contains figures illustrative an output of our MATLAB
program.
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9.2.1 M-file for Recursive Algorithm

As the title prompts, this subsection covers an m-file with the recursive least square
algorithm used for our simulation. The inputs and outputs applied in function ’rls’ are
explained in the comments with the corresponding dimensions of variables.

function [est,err,theta,evolt] = rls(inpo,outo,inp,y,ddelta,lam,maintitle)

% Inputs:

% inpo,outo = number of inputs and output feedback, dim 1x1,

% inp = input signal, dim Nx1,

% y = desired signal, dim Nx1,

% ddelta = initial value, P(0)=delta^ {-1}*I, dim 1x1,

% lam = forgetting factor, dim 1x1, default 0.999.

% Outputs:

% est = estimate, dim Nx1,

% err = estimate error, dim Nx1,

% theta = final value of filter coefficient, dim Mx1,

% evolt = evolution of filter coefficients, dim MxN.

d = inpo + outo; %filter order

N = size(y,1);

P = ddelta*eye(d);

% Initial weights

theta = zeros(d,1);

for n = inpo : N

phi = inp(n:-1:n-inpo+1); % inp(n),inp(n-1),...,inp(n-inpo+1)

outp = y(n-1:-1:n-outo); % y(n-1),y(n-2),...,y(n-outo)

phi = [phi ; outp];

g = (phi’ * P)’/(lam + phi’ * P * phi );

est(n) = theta’ * phi;

xi(n) = y(n) - est(n);

theta = theta + g * xi(n);

P = ( P - g * phi’ * P ) / lam;

evolt(1:d,n) = theta;

end

9.2.2 M-file for Discretization of State Equation

The previous section 9.1 was engaged with the discretization of the state equation
describing the lateral vehicle dynamics. As was mentioned before, for the dicretization of
model was chosen the fourth order Runge-Kutta method. Here, we shall state source
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code containing this dicretization method for the state equation. Again, in this code
the information about the inputs of the function ’stateEq’ is given in the comment
environment. This function makes use of another function of input, state, and noise
variable called ’bodydot’ which is in fact multiplied state equation (7.4).

function x1 = stateEq(x,u,v, h) %x state, u input, v noise, h step

%Discretization

k1 = h*bodydot(x,u,v);

k2 = h*bodydot(x+(h/2)*k1,u,v);

k3 = h*bodydot(x+(h/2)*k2,u,v);

k4 = h*bodydot(x+h*k3,u,v);

x1 = x + (k1+2*k2+2*k3+k4)/6;

function xdot = bodydot(x,u,v)

m = 1446;

Caf = 88107.7;

Car = 88107.7;

Iz = 2319;

a = 0.987;

b = 1.525;

ir = 21;

% x = [Uy r] u = [Delta Ux]

xdot=[-x(1)*((Caf+Car)/(u(2)*m)) + x(2)*((-Caf*a+Car*b-u(2)^ 2*m)/(u(2)*m))

+ u(1)*Caf/(m*ir) + v(1);

x(1)*((-Caf*a-Car*b)/(u(2)*Iz)) + x(2)*((-Caf*a^ 2-Car*b^ 2)/(u(2)*Iz))

+ Caf*a*u(1)/(ir*Iz) + v(2)];

Both these functions, namely ’rls’ and ’stateEq’, are applied in the m-file entitled
experiment.m. Hence, we can consider this file as a principle of our MATLAB
program whose output is represented in the following figure 9.1. This figure contains two
windows which appear by calling command experiment. The first one shows an estimate
of the system output without usage of the function ’pchip’ and the second one, on the
contrary, with the application of implemented MATLAB function ’pchip’. They figure
the evolutions of the system output, error signal, and filter coefficients.

Remark. The figure 9.1 illustrates the output of our program where an estimate pertains
to the first component of the state vector, i.e. the lateral velocity.
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Figure 9.1: Output of MATLAB program
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9.3 Results

In this section, we will discuss the results obtained by application of the recursive least
squares algorithm to the experimental data. We will compare filtered out state variables
with their measured values and also show in the graphs the evolution of corresponding
filter coefficients. We will use only the output of our MATLAB program, which does not
employ the ’pchip’ function.

9.3.1 Results for State Variables

The first two figures are related to the lateral velocity and the second two to the yaw
rate. In either event, the introductory figure from this pair illustrates the comparing of
measured and filtered out values of state variable and the following graph represents the
evolution of the corresponding filter coefficients.

In our simulations we used also another implemented MATLAB function called ’awgn’
(Add White Gaussian Noise) with the syntax y = awgn(x, snr,′measured′). This function
adds white Gaussian noise to the vector signal x and measures the power of x before adding
noise. The scalar snr specifies the signal-to-noise ratio per sample, in dB. For this reason
the output of our program (and of course the estimated output of the system) is erratic.

We also had to set the values of parameters occurring in the recursive algorithm. For
its initialization δ is only the required parameter. Further, we chose the constant value for
the forgetting factor because the system changes gradually and does not undergo abrupt
variances. We elected following values for this two parameters

δ = 102, λ = 0, 999.

In the picture 9.2, we can see that the filtered out values of the lateral velocity do
not copy completely the curve of the measured values. Nevertheless the estimated lateral
velocity catches approximately the evolution of the measured state variable, though the
filter does not react on the small velocity changes. Similar effect can be remarked also in
the figure 9.4. Here it seems, that the evolution of filtered out values of yaw rate is shifted
(or delayed) from around the thirty-fifth sample about two to three samples. This feature
brightly matches the curve illustrating the evolvement of corresponding filter coefficients
in the figure 9.5. The values of filter coefficients from the mentioned moment are located
above one around the value 1,3. We should point out that from the substance of the
recursive filter (see the motivation and especially the formula (1.1)) allows that the filter
coefficients should move about the value one in the ideal case. This phenomenon can be
seen in the figures 9.3 and 9.5 from the number of somewhere thirty samples. But, the
values of this parameters are not as close to one as we wish. That is why the estimated
values do not duplicate precisely the measured values of state variables.
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Figure 9.2: Comparing of measured and filtered out values of lateral velocity

Figure 9.3: Evolution of the filter coefficients for the recursive least squares estimation of
lateral velocity



56 CHAPTER 9. APPLICATION OF RECURSIVE ALGORITHM

Figure 9.4: Comparing of measured and filtered out values of yaw rate

Figure 9.5: Evolution of the filter coefficients for the recursive least squares estimation of
yaw rate
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9.3.2 Derived Vehicle Position from Estimated State Variables

For the determination of the actual vehicle position we need to know the following velocity
components in the basic coordinate system[

ux0

uy0

]
=

[
cosψ − sinψ
sinψ cosψ

] [
ux
uy

]
(9.2)

where the yaw angle ψ can be obtained by integration of the yaw rate. By integration of
the velocity components ux, uy we get the position data in the basic system of coordinates.
Forward Euler was used for these numerical integrations.

The figure 9.6 represents comparison of vehicle position measured by marking device,
computed from estimated state variables and rotated derived position. As we can see,
the trajectory derived from filtered out state variables (the green curve in 9.6) is slightly
rotated, which can be caused by shoulder of sensors on the vehicle. The coordination
system of the sensor could be small angled with respect to the coordinate system of the
vehicle and as the result was the displacement of the derived trajectory. The discordant
direction of vehicle raid on the test track could be another reason. In this case the
coordinate system of the vehicle is angled regarding the basic system of coordinates. The
red curve in graph 9.6 is the derived trajectory from estimated variables, which is angled
by 1, 9◦.

Figure 9.6: Comparing of the position given by marking device, derived from the state
variables, and by angular rotation of derived position

9.4 Comparison with Kalman Filter Results

This section compares two algorithms which are based on different estimation methods.
As we know, the least squares method is the deterministic method which minimizes the
squares of the error signal (the difference between the desired and actual signal) and is
fundamental for the recursive algorithm. On the contrary, the Kalman filter algorithm
is the stochastic method, which is founded on the minimizing of the mean squared error
(least mean squares method). More information about Kalman filter can be looked up in
the source [7]. Following figures serve to trade both these algorithm off.
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Figure 9.7: Comparing of measured lateral velocity with estimated by the recursive
algorithm and by Kalman filter algorithm

Figure 9.8: Comparing of measured yaw rate with estimated by the recursive algorithm
and by Kalman filter algorithm

In the figures 9.7 and 9.8 it is apparent that Kalman filter is more sensitive to the
small changes in the evolution of state variables and copies almost exactly the curve of
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measuring. Thus we can say that Kalman filter is preferable to our recursive algorithm
to these experimental data.

The comparison of computed vehicle position from the states estimated by the
recursive algorithm and by Kalman filter algorithm is represented by the last figure in
this chapter. The derived trajectories angled by 1, 9◦ are used for this confrontation.
The trajectory measured by marking device is placed between the estimated curves. The
red colored trajectory illustrating the vehicle position derived by Kalman filter algorithm
renders better the measured vehicle position which arises from the last conclusion that
the Kalman filter algorithm is much better estimation method than the recursive least
squares algorithm.

Figure 9.9: Comparing of measured trajectory with derived from state variables estimated
by the recursive algorithm and by Kalman filter algorithm
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Chapter 10

Conclusion

The goal of this thesis was to initiate readers into the theory of adaptive filters and their
application in the automotive practice. For this purpose the mathematical description of
dynamic systems was mentioned in the introductory chapters of this work. The models of
dynamic systems form the basis of the description of the stochastic systems, whose states
we estimated with the help of the adaptive filter relied on the recursive least squares
algorithm. So, we focused on the optimal filtering of noisy data in the stochastic systems
analysis. The weighted least squares method, stated in the chapter titled Parameter
Estimation Methods, then was fundamental for defining of the recursive least squares
method and for deriving of the recursive algorithm.

This algorithm with the pieces of knowledge about its initialization and choice of
forgetting factor were consequently employed in software solution in the numerical
computing environment MATLAB.

The utilization of derived recursive algorithm equations in the automotive practice was
mainly aimed at the test car driving manoeuvre analysis. For the description of lateral
vehicle dynamics we chose the planar single-track model vehicle and investigated the
steering response at the constant driving velocity (steerability). We applied the derived
algorithm to the experimental data measured during the lane-change manoeuvre test
realized in 2001.

At the close of this thesis the results of the recursive algorithm application were
compared with results obtained by Kalman filter application. From the evolutions of
the estimated state variables we could come to a conclusion that the Kalman filter is
preferable estimator to the recursive algorithm and is more sensitive to small changes of
measured signals.

A realization of the recursive least squares algorithm in the interactive environment
MATLAB and its application to the vehicle test manoeuvre, even if the description of
vehicle dynamics was considerably simplified, are the good principle of the applications
for the test manoeuvres exploiting more complicated models.
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Appendix A

Evolutions of Derived Measured
Signals

This appendix states the completive graphs with the evolutions of derived measured
signals, namely longitudinal and lateral velocity and yaw rate. As was mentioned in
the chapter with the title Experiment the details about derivation are described in [12].
Wittingly, the curve colors are differentiated accordance with type of variable. In the
concrete, the curves illustrating the evolutions of the input variables are colored in red
and evolutions of the measured state variables are represented by the blue color.

Figure A.1: Longitudinal velocity ux
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Figure A.2: Lateral velocity uy

Figure A.3: Yaw rate r



Bibliography
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The List of Used Shortcuts and
Symbols

CG Center of Gravity

LLS Linear Least Squares

NLS Nonlinear Least Squares

RLS Recursive Least Squares

WLS Weighted Least Squares

u system input

x system state

y system output

ϕ vector of regressors

θ vector of filter coefficients

d number of filter coefficients (dimension of the filter coefficients vector)

ŷ(t|θ) predictor

F matrix of system

G, Γ matrix interconnecting the input with the state of the system

H matrix of measuring sensitivity

C matrix interconnecting the input with the output of the system

Φ fundamental matrix

Φ(t, τ) state transition matrix

I identity matrix
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L Laplace operator

E(X),µX expectation value of random variable X

Var(X),σ2
X variance of random variable X

Cov(X, Y ), cXY covariance of random variables X and Y

cXY (t1, t2) cross-covariance of random variables X and Y

CX autocovariance matrix of random process X

rXY correlation of random variables X and Y

rXY (t1, t2) cross-correlation of random variables X and Y

ρXY correlation coefficient of random variables X and Y

RX autocorrelation matrix of random process X

B bias

δ Dirac delta in chapter 4, constant for initialization in chapter 6,
steering angle in chapter 7

∆ forward difference in chapter 3, Kronecker delta in chapter 4

v noise of process

w noise of measurement

b Brownian motion (Wiener process)

M model structure

M? set of models

ZN batch of data of the inputs and outputs over the time interval
1 ≤ t ≤ N

θ̂ estimate of filter parameters

VN(θ, ZN) criterion function

ε predictor error (a posteriori error)

ξ a priori error

β weight in chapter 5, sideslip angle in chapter 7

λ forgetting factor

P inverse of autocorrelation matrix R
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g gain vector

Fy lateral tire force

α slip angle

Cα cornering stiffness

Fy,f front lateral tire force

Fy,r rear lateral tire force

αf front slip angle

αr rear slip angle

ux longitudinal velocity

uy lateral velocity

Iy yaw moment of inertia

m vehicle mass

a distance of the front axle from the center of gravity

b distance of the rear axle from the center of gravity

ay lateral vehicle acceleration

r yaw rate

ψ yaw angle

Cαf total front cornering stiffness

Cαr total rear cornering stiffness

γ direction of velocity

x0, y0 data position in basic system of coordinates

U size of the velocity vector in the center of gravity

ir steering ratio

hs sampling period

h step of Runge-Kutta method


	Introduction
	Motivation

	Essential Knowledge for System Identification
	Dynamic Systems
	Term of A Model
	The System Identification Procedure
	Three basic items
	Validation of the model
	The System Identification Loop


	Linear Dynamic Systems
	Continuous-time Models
	Discrete-time Models

	Stochastic Systems
	Short View into Probability Theory
	Characteristics of Random Variable
	Parameter Estimation: Bias
	Stochastic (Random) Processes and Their Characteristics

	Linear Stochastic Systems
	Continuous-time Models
	Discrete-time Models


	Parameter Estimation Methods
	Linear Least Square Method (LLS)
	Nonlinear Least Squares Method (NLS)
	Weighted Least Squares Method (WLS)

	Adaptive Filtering
	The Recursive Least Squares Method (RLS)
	Recursive Algorithm
	Initialization of RLS Algorithm
	Choice of the Forgetting Factor


	Modeling of Vehicle Dynamics
	Tire Model
	Single-Track Model

	Experiment
	Test Car
	Test Track
	Measuring Equipment

	Application of Recursive Algorithm
	Model
	MATLAB Files
	M-file for Recursive Algorithm
	M-file for Discretization of State Equation

	Results
	Results for State Variables
	Derived Vehicle Position from Estimated State Variables

	Comparison with Kalman Filter Results

	Conclusion
	Evolutions of Derived Measured Signals

