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Summary 
This diploma thesis amplifies the theoretical bases required to design the recursive least 
squares algorithm and, in consequence, its application to the experimental data measured 
during test manoeuvre realized in 2001. A lateral dynamics of single-track planar model of 
vehicle was analyzed. It contains also a comparing of the results obtained by the recursive 
algorithm and Kalman filter algorithm. 

Abstrakt 
Tato diplomová práce nastiňuje teoretické základy pot řebné pro návrh algoritmu 
rekurzivní metody nejmenších čtverců a následně jeho aplikaci na experimentální data 
naměřená při testovacím manévru uskutečněném v roce 2001. Analyzována byla příčná 
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Chapter 1 

Introduction 

The goal of this thesis is to outline the theoretical basics needful for understanding the 
principle of adaptive filter behaviour and consequently its application to the real problem. 
More precise, we focus on the adaptive filter relied on the recursive least squares algorithm 
and its usage to analysis of vehicle driving conditions. For this purpose we design the 
flow diagram for processing of data obtained from the experimental measuring. 

The thesis is segmented into eight chapters except the introduction including a short 
motivation, conclusion, and appendix. Chapter 2 deals with the system identification, 
explains dynamic systems, the term of model with its classification, and the identification 
procedure. 

It is necessary to realize that almost every physical process is in fact a dynamic 
system. We must know the mathematical description of the dynamic system to express 
the evolution of its characteristic in time. Chapter 3 is thus devoted to the mathematical 
models both continuous-time and discrete-time of linear dynamic system description. The 
following chapter analyze these models with added random components, i.e. deals with 
the linear stochastic systems. Some required notes from probability theory are stated 
in this part, especially characteristics of random variables and processes, and discussion 
about the evolution of the expected value and covariance of the state and output vector. 

But, in dynamic system, we are not able to measure every time all magnitudes which 
we want to control. Hence, we have to estimate the state and output of the system which 
are function of the measuring. The estimation methods are specified in the chapter 5. 
The first mentioned method is the linear least squares method, subsequently the nonlinear 
and weighted least squares method. The least squares method was the first method for 
formulation of the optimal estimate from noisy data. Car l Friedrich Gauss is credited 
with developing the fundamentals of the basis for least-squares analysis in 1795 at the age 
of eighteen. Gauss did not publish the method until 1809 and the idea of least-squares 
analysis was also independently formulated by the Frenchman Adrien-Marie Legendre in 
1805, who was the first to publish the method, and the American Robert Adrain in 1808. 

Chapter 6 gives attention to the adaptive filter which relies on the recursive least 
squares algorithm. It contains the derivation of recursive algorithm, its initialization and 
also the choice of forgetting factor. This algorithm is used to find the filter coefficients that 
relate to recursively producing the least squares of the error signal (difference between the 
desired and the actual signal). This is contrast to other algorithms that aim to reduce the 
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4 CHAPTER 1. INTRODUCTION 

mean squared error. The difference is that recursive least squares filters are dependent 
on the signals themselves, whereas mean squared error filters are dependent on their 
statistics (specifically, the autocorrelation of the input and the cross-correlation of the 
input and desired signals). If these statistics are known, a mean squared error filter with 
fixed coefficients, i.e. independent of the incoming data, can be built. 

Chapter with the title Modeling of Vehicle Dynamics is divided into two parts. The 
first part deals with the tire model and explains which forces are generated as the tire 
rolls. The second one defines the term of the single-track model, also known as a bicycle 
model, which serves to investigate theoretically the lateral dynamics of the vehicle in the 
horizontal plane. This model wi l l be later used in M A T L A B simulation of experimental 
data. 

The following chapter describes the test car, defines the test track, and shows 
a measuring equipment utilize during the test manoeuver. This experiment was 
realized in 2001 by the Institute of Forensic Engineering of Brno University of 
Technology in conjunction with the Department of Transporting Technology of Brno 
University of Technology. This rubric also includes three graphs illustrating the evolution 
of the measured signals. The derived signals are stated in the appendix at the end of this 
thesis. 

Application of the Recursive Algori thm is the title of the last chapter, which consists of 
four basic sections. The beginning of the chapter treats primarily of the 
discretization of the single-track model and discuss a sampling period of measured time-
-variant variables that occurred in this bicycle model. Next section covers m-files with 
the recursive algorithm, and discretization of the single-track model. Also it contains 
illustrating figures of the output of created M A T L A B program. The most important 
part of this chapter and maybe of all this thesis is given as penultimate. This section 
summarize the results obtained by M A T L A B simulation and compare the evolutions of 
the filtered out (estimated) and measured outputs. The last part is a comparing of results 
acquired by two different algorithms, namely by our recursive algorithm and Kalman filter 
algorithm. 

1.1 Motivation 
Suppose that a signal y( t ) 1 is received with transmitter noise, more precisely with white 
noise. We wil l attempt to recover the desired signal y(t) by using an adaptive filter 
(chapter 7), 0 

y{t\0) = VT{t)0 = 0Tv{t)- (1-1) 

This expression is predicted output at time t, where the vector of regressors ip{t) has the 
form 2 

tp(t) = [u1(t) ... um(t) y(t-l) ... y(t-n)] 

1 We shall generally denote the inputs and outputs of the systems at time t by u(t) and y(t), respectively. 
2 This form can be expressed as ip(t) = [uT(t) y(t — 1) . . . y(t — n)] with the m x 1 input vector 

uT{t) = [u1{t) ... um{t)}. 
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and the unknown parameter 0 is following 

0 = [ai ... am bi ... bn\. 

In other words, the equation (1.1) expresses, that the predictor y(t\0) at time t is a 
linear combination of the inputs at time t, the outputs of previous iterations, and filter 
coefficients in vector 0. 

Our goal is to estimate the filter coefficients, i.e. vector 0, with the knowledge about 
the input-output data and by using the least squares method (chapter 5). 

When the parameter of the filter, 0, is estimated, at each time t we refer to the new 
least squares estimate 0t- As time evolves, we would like to avoid completely redoing the 
least squares algorithm to find the new estimate for 0t+i in terms of 0t. For this purpose 
we shall introduce the recursive least squares algorithm (chapter 6) and by using this we 
shall analyze the vehicle dynamics. 

Remark. We can call the model (1.1) as an archetypical problem. In our case the meaning 
of the word archetypical is that we described this original model like some prototype and 
this model wil l be used as representative over all this thesis. But, of course, we have to 
notify that this prototype can be modified for certain requirements. 
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Chapter 2 

Essential Knowledge for System 
Identification 

System identification deals with the problem of building mathematical models of 
dynamical systems based on observed data from the system. The subject is thus part of 
basic scientific methodology, therefore dynamical systems are abundant in our 
environment. The techniques of system identification have a wide area of application. 
A t the creation of this chapter we gathered especially from [8] and [13]. 

2.1 Dynamic Systems 
In loose terms a system is an object in which variables of different kinds interact 
and produce observable signals. The observable signals in which we are interested are 
usually called outputs and are measurable. The system is also affected and influenced 
by external stimuli. External signals that can be manipulated by the observer are called 
inputs, which are known or at least measurable and controllable. Others are called 
disturbances and can be divided into those that are directly measured and those that 
are only examined through their effect on the output. The distinction between inputs and 
measured disturbances is very often less important for process of modeling. 

Dynamic system consists of the state space and dynamic conditions. The 
coordinates of the state space give account of the system at a given time and dynamic 
conditions describe the change of the system. Then system state is described by the 
state vector that all lies in the state space. The dynamic conditions are often given by 
the system of differential or difference equations which give account of the change of the 
state vector at given time. Mathematical models are instrumental to obtain the solution 
that express the functional relation between the state variables and the initial conditions 
coupled with inputs. 

2.2 Term of A Model 
We can call the subject of research (the system) the original and his representation 
(which is also some system) is called a model. Each model is created for some purpose. 
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8 CHAPTER 2. ESSENTIAL KNOWLEDGE FOR SYSTEM IDENTIFICATION 

During the process of modeling we preserve only the components, properties, relationships 
of the system which are substantial for this purpose and we do not deal with those which 
do not play the important role in the system. 

Classification of Mathematical Models 

The basic classification of mathematical (analytical, computer) models is based on their 
behaviour at time. In light of this we recognize these two types of models 

• static (time-invariant) - these models do not have changes in time, 

• dynamic (time-variant) - this sort of models develops in time. 

Dynamic models we can be further distinguished into following types of models 

* without memory - in this case the state at posterior instant of time depends only 
on the current state (so called Markov models), 

• with memory - moreover, compared to the models without memory, depends on 
the state at some past instant of time or on the evolution of the model in former, 
times 

We can also differ the mathematical models according to kind (character) of the quantities 
and variables figuring in the model. First division is into 

o deterministic - there is no random quantity in the model, 

o stochastic - we can find at least one random quantity in the model. 

Second, and for us the most important, is following 

o continuous - the quantities take the values from some continuum, 

o discrete - the quantities take at most countable values. 

2.3 The System Identification Procedure 
In this section our goal is to describe the system identification loop. Especially, three 
basic entities, validation of the model and the reasons why the model can be deficient. 

2.3.1 Three basic items 

The construction of a model from input-output data involves three basic items: 

A data set. The input and output data are often recorded during a specifically designed 
identification experiment, where the user can determine which signals to measure, 
when to measure them and may also choose the input signals. The objective with 
experiment design is to make these choices so that the data wil l be maximally 
informative and illuminative, exposed to constraints that may be at hand. 
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A set of candidate models or the model structure. A set of candidate models 
is obtained by specifying in which collection of models we are going to look for a 
suitable one. This is without a doubt the most important and also the most difficult 
choice of the system identification procedure. 
Sometimes the set of candidate models is obtained after careful modeling. Then a 
model with some unknown physical parameters is constructed from basic laws of 
physics and other well-established relationships. This sort of model sets may be 
called gray box. 
In other cases linear models may be employed without mentioning of the physical 
background. Such a model set, which parameters do not reflect physical 
consideration in the system, is called black box. 

Determining the "best" model in the set of candidate models, guided by the 
data. In this entity we want determine the rule by which candidate models can 
be assessed using the data. The assessment of the quality of the model is typically 
based on how the models perform when they attempt to reproduce or refresh the 
measured data. 

2.3.2 Validation of the model 
After our discussion on three basic entities and their clarifying, the next question arises: 
Is the chosen model "good enough"? Which means, whether it is valid for its purpose 
or not? This problem can be answered after some testing of this model. Such tests are 
known as model validation and they involve various procedure to establish how the model 
relates to observed data, to prior knowledge, and to its intended use. Deficient model 
behavior in these aspects make us reject the model, while good construction of the model 
wil l develop a certain confidence in it. A model can never be accepted as a final and as 
a true description of the system. Rather, a model can at best be regarded as a "good 
enough" performance of certain respects that are of particular interest to us. 

2.3.3 The System Identification Loop 

The system identification procedure which we described in two previous sections has a 
logical flow: first collect data, then choose a model set, then select the "best" model in 
this set, that best describes the data according to the chosen criterion (see figure 2.1). It 
is quite probable, that the model first obtained wil l not pass the validation process. This 
is the reason why we must go back and revise the various steps of the procedure. Let us 
denote the reasons for which the model may be deficient. 

o The set of input-output data was not illuminative and informative enough to provide 
guidance in assorting suitable models. 

o The criterion was not well chosen. 
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The numerical procedure failed to find the best model according to our criterion. 

The set of candidate models was not appropriate, in that it did not contain any 
"good enough" description of the system. 

Prior 
Knowledge 

Experiment 
design 

Input-output 
data 

A set of 
candidate 
models 

Selecting of 
criterion of 

fit 

Model Calculation 

Model Validation 
Not OK: Revision! 

OK: Application! 

Figure 2.1: The system identification loop 



Chapter 3 

Linear Dynamic Systems 

In the previous chapter we classified the dynamic system into two principal groups. The 
first one was continuous dynamic systems and the second one was discrete dynamic 
systems. In this chapter we wil l describe both of these systems. 

It is known the mathematical description of the dynamic system is divided into two 
basic groups, namely external and internal description. 

External description is the expression of the dynamic properties with the aid of the 
relation between the input and output variables. This description does not provide us 
with the information about the internal states of the system. B y measuring of the input 
and output magnitudes we can obtain only the external description of the system. 

Internal description is the relation between the input variables, the states of the system, 
and the output variables. Then we are talking about the state equations of the system. 

However, we have to also remind that the dynamic system consists of the state space 
and the dynamic conditions. Due to this fact, we shall introduce auxiliary state vector 
x(t). In the state-space form the relationship between the input u(t) and output y(t) 
signals is represented by a system of first-order differential or difference equations using 
this auxiliary state vector x(t). 

In the following table you can see the general mathematical models of continuous and 
discrete dynamic systems both in time invariant and time variant form. 

G E N E R A L Time-Invariant Time-Variant 

Continuous x(t) = f(x(t),u(t)) x(t) = f(t,x(t),u(t)) 

Discrete Xi(t) = /(a?j_i,itj_i) Xi{t) = /(i,£Cj_i,1tj_i) 

Table 3.1: General Mathematical Models of Dynamic Systems 

11 



12 CHAPTER 3. LINEAR DYNAMIC SYSTEMS 

3.1 Continuous-time Models 
For most physical systems it is suitable and easier to construct models with physical 
insight in continuous time than in discrete time, simply because most of physical laws 
(e.g. Newton's law of motion) are expressed in continuous time. 

At first we shall modify our first table 3.1. We wil l focus on the continuous part and 
will extend it by the addition of linear model. 

C O N T I N U O U S Time-Invariant Time-Variant 

General x(t) = f(x(t),u(t)) x(t) = f(t,x(t),u(t)) 

Linear x(t) = Fx(t) + Gu(t) x(t) = F(t)x(t) + G(t)u(t) 

Table 3.2: Continuous Mathematical Models of Dynamic Systems 

As we can see the modeling of the dynamic of system normally leads to a representation 

x(t) = F(t)x(t) + G(t)u(t) (3.1) 

where 

• x(t) is a r x 1 state vector, 

• F(t) is a r x r matrix of the system (sometimes so called a matrix of the dynamic 
coefficients), 

• u(t) is a m x 1 input vector, 

• G(t) is a r x m matrix interconnecting the input with the state of the 
system. 

Notice that both matrices F(t) and G(t) depend on time. We can thus talk about time-
- varying systems. Further we have to realize that the state variables are not measurable 
in contrast to inputs and outputs and we must deduce them from the input variables. We 
have to express the relationship between all three vectors of the dynamic system by the 
following so called measurement equation, again in matrix notation 

y(t) = H(t)x(t) + C(t)u(t) (3.2) 

where 

• y(t) is a n x 1 output vector or measurement vector, 

• H(t) is a n x r matrix of the measuring sensitivity, 

• C(t) is a n x m matrix interconnecting the input with the output. 
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Both matrices H(t), C(t) are known functions of the time. 
Finally, the model of the continuous linear dynamic system is formed by the equations 

(3.1) and (3.2), i.e. by the state equation and the measurement equation, respectively. 
The next question naturally arises: How to solve the state equation (3.1)? The first 

way is to solve it by standard technique for solving of the differential equations. Another 
way is to use the Laplace transform. 

The solution of the (3.1) obtained by the standard technique is following 

x(t) = t0)x(t0) + / *(*, T)G{T)U{T) dr. (3.3) 
Jtn 

We can note that in the previous expression figures the matrix $ ( t , r ) . This matrix 
represents a state transition matrix (because it transforms the solution at time t into 
the solution at time r ) and holds 

#(r , t) = * ( r ) * _ 1 ( t ) 

where <&(•) is the fundamental matrix. The fundamental matrix is the solution of 

x(t) = F(t)x(t), te(0,T), (3.4) 

i.e. the homogeneous part of the state equation (3.1), and satisfies 

= F(t)®{t), $(0) = / (3.5) 

where / is an identity matrix of the dimension r. Then the homogeneous solution implying 
from two previous formulations has form 

x(t) = &(t)x(0). 

This expression means that matrix <&(t) transform the initial state x(0) of the dynamic 
system into the corresponding state x{t) of the dynamic system at time t. 

If the elements of the matrix F(t) are continuous functions on the given time interval 
then we have guaranteed existence and regularity of the fundamental matrix &(t). If we 
start from the presumption that the fundamental matrix is regular then it is possible to 
write 

# _ 1(t)a:(t) = x(0), #(T)# _ 1(t)a:(t) = x(r). (3.6) 

Evidently, the second formula implies from the first one. If we substitute r instead of t 
into the first expression and equate them we obtain the second formalization. 

Properties of the state transition matrix: 

o #(r,0) = #(r) > 0 * { t 2 , t l M t u t o ) = * { t 2 M 

o # ( r , r ) = #(0) = I > m t ) (3.7) 

o #(r , t ) = * _ 1 ( t , r ) , dr 
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B y using &(r,t) = <&(r)<I> 1{t) we can modify the solution of the state equation (3.3) 
in the following way 

x(t) = Qit^itoWto) +#(*) f 3>-\T)G{T)U{T)&T. (3.8) 
Jtn 

Two cases can occur: 

F(t) = F The elements of the matrix of dynamic coefficients are constant. Keep in mind 
that in this case we are talking about time-invariant system and thus the matrix 
3>(£, t ) depends only on the difference t — r and we can write 

(t) = eF{t-to)x(t0) + f eF{T-R)G(T)u(r) d r = 
J to 

x(t0) + eF{t) f e F ( - r ) G ( r ) w ( r ) d r 
Jtn 

where 
T 

The term e^*, appearing in the above formulations, can be solved by the Laplace 
transform 

s I - F , 

where C~l is the operator of the inverse Laplace transform, s is the Laplace variable, 
and / denotes the identity matrix. 

General case In the time-variant case, there are many different functions that may 
satisfy the requirements (3.5), (3.7), and the solution is dependent on the structure 
of the dynamic system. We can use the numerical methods to obtain the solution 
of the homogeneous differential equation (3.4) such as Euler method or Backward 
Euler. But it is more convenient to apply higher order methods on this problem, 
for example Runge-Kutta methods. 

3.2 Discrete-time Models 
Discretization concerns the process of transferring continuous models and equations into 
discrete counterparts. This process is usually carried out as a first step toward making 
them suitable for numerical evaluation and implementation on computers. Discretization 
is often performed within the meaning of the forward difference 

Ax(ti) = x(ti+i) - x(ti), 

expressed as a function of all independent variables (including the value x(U) as the 
independent variable) 

x(ti+i) = f(ti,x(ti),u(ti)). 
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For the linear case of discrete-time dynamic system we can express this functional 
dependence in matrix notation 

x(U+i) = F{U)x{U) + G{U)u{U). (3.9) 

B y analogy, we obtain by discretization of (3.2) the discrete measurement equation 

y(ti) = H(ti)x(ti) + C(ti)u(ti). 

The solution of the discrete state equation (3.9) is 

x(U) = # ( t i , t i
_i)a ; ( t

i
_i)+ t &(U,T)G(T)u(T)dT (3.10) 

Jti-i 

where 4>(£j,£j_i) denotes the state transition matrix for the linear discrete-time dynamic 
system. 

If the value of the output U(T) = u at time interval (U-i, ti) then we can rewrite the 
solution as 

x{U) = Qfati-JxiU-!) + r ( t
i
_i )« ( t

i
_i) (3.11) 

with 

r(ti_i) = t *(ti,T)G(T)dT. 
Jti-1 

This solution has with the aid of short notation 

Xi = x(ti), Ui = u(ti), iji = y(ti), 

= ^ ( t i , ^ - ! ) , r^r(^), Hi = H(ti), Ci = c(ti) 
the following compact form 

Xi = $i_i£Ci_i + I V i 1 i j _ i . 

Finally, by modifying the introductory table 3.1 as before in the continuous-time 
models, we obtain the following table 3.3 for the discrete-time models. 

D I S C R E T E Time- Invariant Time-Variant 

General Xi = f{Xi-UUi-i) Xi = f(i,Xi-i,Ui-i) 

Linear Xi = <&Xi-i + Tui-i Xi = *j_i£Cj_i + Ti-iUi-i 

Table 3.3: Discrete Mathematical Models of Dynamic Systems 
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Chapter 4 

Stochastic Systems 

This chapter deals with a stochastic systems where states and inputs are random processes. 
A random (or stochastic) process is one whose behavior is non-deterministic, in that 
a subsequent state of the system is determined both by the predictable actions of the 
process and by a random element. The indeterminacy in a future evolution of a stochastic 
process is described by probability distributions hence we shall place here needful notes 
from probability theory. The second part of this chapter wil l be engaged in a very short 
analysis of the linear stochastic systems. See [3], [4] and [10] for any more information. 

4.1 Short View into Probability Theory 
Some fundamentals of probability theory which are necessary to gain insight into the 
recursive algorithm shall sum up in this chapter. These concepts wi l l also be instrumental 
in describing random phenomena and properties of stochastic systems. The presentation 
wil l be intentionally brief, assuming that the reader has already some general knowledge 
with the subject. 

4.1.1 Characteristics of Random Variable 

In this subsection we introduce the characteristics of random variables. These results 
are relevant for two reasons. First, since random variables can be found in almost any 
practical application, it is important to be able to understand and manipulate random 
variables. The second reason is that the characterization of random variables wil l serve 
for our development of random processes in two following subsections. 

1. Expected Value 
oc 

XkP(X = Xk) if X is discrete random variable, 
, k=0 

E ( X ) = 
oo 
j xf{x) dx if X is continious random variable 

, - o o 

where P{X = x^) and f(x) denotes probability function and density function, 
respectively. 

17 
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2. Variance 

V a r ( V ) = E[(X - E(X))2] = E(X2) - E2(X) = a\. 

The square root of the variance, ax, is known as standard deviation. 

3. Covariance 

C o v ( V , Y) = E [ ( X - E(X))(Y - E{Y))\ = E(XY) - pxpY = cXY. 

where px = E ( X ) and py = E ( V ) are the means (or expected values) of random 
variables X, Y, respectively. 

4. Correlation 
rXY = E(XY). 

5. Correlation Coefficient 

C o v ( V , Y) rXY ~ VXVY i I , 
PXY = I = , \PXY\ < 1-

/Var (V)Var (V) axOY 

Theorem 4 .1 . Two random variables that satisfy E(XY) = E ( X ) E ( Y ) are said to be 
uncorrelated. 

In other words, X and Y wi l l be uncorrelated if their covariance is zero, CXY = 0. 

Theorem 4.2. Two random variables X and Y are said to be orthogonal if their 
correlation is zero, TXY = 0. 

Normal (Gaussian) Random Variables X ~ N(/j,, a2) 

Gaussian random variables play a central role in probability theory. A random variable, X , 
taking values in ( - co , oo) with the following parameters p G (—oo, oo), and a2 G (0, oo), 
is said to be Gaussian if its probability density function has form 

where p and a2 are the mean and the variance, respectively. Such a normal random 
variable is denoted by N(/j,, a2). The N(0,1) random variable is called standard normal 
random variable. 

4.1.2 Parameter Estimation: Bias 
Consider the problem of estimating the value of the parameter, 0, from a sequence of 
random variables X N , for n = 1 , . . . , N. Since the estimate is a function of N random 
variables, we wil l denote it by 0^. In general we would like the estimate to be equal, in 
the sense of the expectation, to the true value. The difference between the expected value 
of the estimate and actual value, 0, is called the bias, denoted by B, 

B = 0-E(0N). 
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If the bias is zero, then the expectation of the estimate is equal to the true value 

E (0 w ) = o 

and the estimate is said to be unbiased. If B ^ 0, then ON is said to be biased. If an 
estimate is biased but the bias goes to zero as the number of observations, N, goes to 
infinity 

l im E(0N) = 0 

then the estimate is said to be asymptotically unbiased. In general, it is covetable 
that an estimator be either unbiased or asymptotically unbiased. 

4.1.3 Stochastic (Random) Processes and Their Characteristics 

We shall deal with the characterization and analysis of random processes. Since a random 
process is simply an indexed sequence of the random variables, we shall just extend the 
concepts from the part 4.1.1 to random processes. In the second part of this subsection 
we wil l summarize the characteristics of the stochastic processes. 

Definition 4.1. A random process is a sequence of random variables {Xt;t G T } or 
{Xt}t€r, where T is an index set, defined on a common probability space (Q,B,P). 

Also in this case the random processes are divided into discrete-time and continuous-
-time stochastic processes, i.e. 

o T C R - continuous-time random process, 

o T C Z - discrete-time random process. 

Characteristics of Random Process 
Consider two stochastic processes {Xt}ter, and {Yt}t€r both defined on the same 
probability space. 

1. Expected value Hx{t) = E(Xt). 

2. Variance a\{t) = Vax(Xt) = Cov(Xt,Xt). 

3. Autocovariance Cx(ti,£2) = C o v ( X i l , X t 2 ) . 

4. Autocorrelation fx(ti,£2) = Xt2). 

5. Cross-Covariance Cxy(ti,h) = C o v ( X t l , Y t 2 ) . 

6. Cross-Correlation rxy(ti,fa) = E ( X t l , Y t 2 ) . 

7. Autocorrelation Matrix 
Consider X = [Xi,X2,... ,Xd]T is a vector of d values of a process Xn, then the 
outer product 

X\Xi X1X2 • • • XiXd 
X2X1 X2X2 • • • X2Xd 

XXT 

XdX\ x d x 2 • • • xdxd 
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is a d x d matrix. The corresponding autocorrelation matrix of the dimension d x d, 
using rx(p) = fx(—p), has the form 

R x = E(XXT) 

rx(0) 
rx(l) 

M i ) 
rx(0) 

rx(d-l) rx(d-2) 

rx(d-l) 
rx(d-2) 

rx(0) 

8. Autocovariance Matrix Cx = — f^xt^x 
where / n x = [/J-x, f-x, • • • f-x]T is a vector of length d containing the mean value of 
the process. 

Theorem 4.3. Two random processes Xt and Yt satisfying CxY(ti,t2) = 0 for all t\ and 
t2 are said to be uncorrelated. 

Theorem 4.4. Two random processes Xt and Yt are said to be orthogonal if their 
cross-correlation is zero, rxY(ti,t2) = 0, for all ti and t2. 

Theorem 4.5. A continuous random process Xt is said to be uncorrelated if holds 

cx(h,t2) = Q(h,t2)5(tl-t2) 

where 5(t) is a unit impulse function (or the Dirac's delta) 

Similar relation holds for a discrete random process, however for this case the unit impulse 
function is replaced by unit sample function (or the Kronecker delta) A(i), i.e. 

Mt) 
1, i = 0, 
0, i f 0. 

Definition 4.2. A random process Xt is said to be white (or white noise) if its mean 
and autocovariance function satisfy the following 

ßx(t) = (J,, cx(ti,t2 

a2, ti = t2, 
0, kfl, 

i.e. if it is a constant-mean process and its values Xtl and Xt2 are uncorrelated random 
variables for every t\ and t2, each having a variance o\. 

4.2 Linear Stochastic Systems 
As we said at the beginning of this chapter the word "stochastic" means "pertaining to 
chance", and is thus used to describe subjects that contain some element of random (or 
stochastic) behavior. For a system to be stochastic, one or more parts of the system has 
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C O N T I N U O U S D I S C R E T E 

x(t) = F(t)x(t)+G(t)u(t) + v(t) iXi-i + Ti-iUi-i + Vi-i 

y(t) = H(t)x(t) + C(t)u(t) + w(t) Vi = HiX% + Clul + wl 

Table 4.1: Continuous and Discrete Mathematical Models of Linear Stochastic Systems 

randomness associated with it. Unlike a deterministic system which we considered in the 
chapter 3, for example, a stochastic system does not always produce the same output for 
a given input. The table 4.1 contains both continuous and discrete time mathematical 
models of the linear stochastic systems which we obtained from the deterministic models 
by implementation of another random inputs to the system. 

B y reason of simplicity we shall consider that the deterministic input vector w, and 
the stationary random processes v , w called the noise of process and measurement, 
respectively, have the same probability distribution and are independent on the 
previous values of the state and input. Both noises we shall consider as white, i.e. with 
these following properties 

o continuous-time case 

E 
v(t) 
w(t) 

0, Cov Q s ' 
_ w{t2) _ ) - R 

5(t2-h), 

o discrete-time case 

E 
Vi-l 
w, 0, Cov 

Vi-l ) Q s ' 

. W i ~ 1 . r R 
1 J) 

4.2.1 Continuous-time Models 

We shall study the linear continuous-time stochastic system modeled by equations 

x(t) = F(t)x(t) + G(t)u(t) + v(t), 
y(t) = H(t)x(t) + C(t)u(t) + w(t). 

The state equation can be expressed writing ^ instead of the dot 

d x { t ) F(t)x(t) + G(t)u(t) + d 6 ( < ) 

(4.2) 

dt dt 

where b(t) is called Wiener process or Brownian motion. Finally, multiplying by 
"dt" 

dx(t) = F(t)x(t)dt + G(t)u(t)dt + db(t) (4.3) 

we obtained the system of linear stochastic differential equations. The increment of the 
Wiener process db(t) has the zero mean, covariance 

Cov(db(t),db(t)) = E(db{t)dbT{tj) = Qdt, 
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and the values of increments in nonoverlaping time intervals are independent. 
The derivation of the Wiener process 

v ; dt 

does not exist. The exact definition of the continuous-time stochastic system therefore is 
much more complicated than in the case of the discrete-time. This problem is analyzed 
in detail in [2]. 

The solution of the state equation in (4.2) is determined by the following formula 

x(t) = t0)x(t0) + f T)G(T)U(T) d r + f T)V(T) dr. (4.4) 
J to Jto 

Now we shall focus on the evolution of the expectation and covariance of the state 
and output vector of the system (4.2). Taking into account that the expectation of white 
noises v(t), w(t) is equal to zero we find by virtue of (4.4) and the measurement equation 
in (4.2) the following formulas for the mean of the system state and output vector, x(t), 
and y(t), respectively, 

fix(t) = to)(info) + [ *(*, T)G{T)U{T) dr, 

Hy(t) = H{t)nx{t) + C(t)u(t). 

As we can see the expectation value of the state and output vector of the stochastic system 
evolves as well as in the case of deterministic system. 

The covariance function of the state vector is given by the formula 

/ •min(t i , t 2 ) 

Pa>(ti,*2) = *(*i,*o)piB(*o,*o)*(*2,*o)+ / r)Q$(t2,r) dr. 
J t0 

While deriving this expression we remembered that the initial state x(to) is 
independent of the white noise v(t) at t > to and that &(t,r) = 0 at r > t. Due to 
this the upper limit of integration is equal to min( t 1 , t 2 ) -

4.2.2 Discrete-time Models 
The linear discrete-time stochastic system is described by the following model 

x{ = *j_ia?j_i + Ti_iUi_i + ,4 . 
Vi = HiXi + Clul + wl. 

Much like in the continuous-time models of the linear stochastic systems the evolution 
of the expectation of the state and output vector is same for both deterministic and 
stochastic systems 

E(ajj) = $i_iE(£Ci_i) + Ti-xUi-u 

E(y 4 ) = HiE(xi) + Ctut. 
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For the evolution of the covariance function of the state we use the relation determining 
the mean error of the state 

Xi = Xi - E(aij) => E(aij) = Xi - S j . (4.6) 

B y application of (4.6) into the expectation of the system state and output vector and by 
deduction of (4.5) we get 

Xi = Qi-iXi-i +Vi-U 

ifi = HiXi + wl, 

and so 

XixJ = Qi-iXi-ixJ^J^ + Qi-iXi-ivJ^ + Vi-ixJ^&J^ + Vi-ivJ_v 

Again, taking into account that the expectation of white noises Uj - i , W{ is equal to 
zero we obtain the expression for the evolution of the covariance function the following 
formula 

Cov(xi,Xi) = E(xixJ) = * j_ iCov(a j j_ i , a j j _ i )*? l 1 + Q. 

Now we define for the covariance matrix this denotation 

KXi = Cov(xi, Xi) 

and overwrite the previous equation into the form 

In the same way it is possible to derive the relations for the joint covariance matrix of the 
system state and output vector 

S i - i J i f ^ + Q &i-iKXilHf + S 
HiKXi_^_x + ST HiKXilHj + R 

If we consider both white noises v, and w as the Gaussian processes and the initial 
state of the system with the Gaussian distribution, i.e. Xq ~ N(/j,,a2), then also the 
system state and output are the Gaussian processes fully characterized by equations for 
the evolution of the expectation value and joint covariance matrix. 

Cov ) -
Vi ) Vi r 
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Chapter 5 

Parameter Estimation Methods 

We are now in the situation that we have selected a certain model structure A4 , with 
particular models A4(9) parameterized using the parameter vector 0 G 2?^ C M.d. Then 
the set of models is 

M* = {M(0)\0eVM}. 

We have also collected the batch of data of the inputs and outputs from the system over 
a time interval 1 < t < N 

ZN = { y ( l ) , « ( 1 ) , y ( 2 ) , u ( 2 ) y ( N ) , u ( N ) } . 

The problem we are faced with is to resolve upon how to use the information contained 
in ZN to select a proper value 0N of the parameter vector, and hence a proper member 
A4(0) in the set Ai*. More precise, we have to determine a mapping from the data set 
Z N to the set VM 

Z N -> 0N G VM. (5.1) 

Such a mapping is a parameter estimation method. 
We used some lines above the vector 0N. Now we should explain what indicates. The 

estimate 0^ is defined by minimization of the function of the model parameter 0 

VN(0,ZN), (5.2) 

for given ZN, i.e. 
0N = 0N(ZN) = arg min VN(0, ZN). (5.3) 

9&VM

 K 

Here the "argmin" means the minimizing argument of the function, i.e. that value of 
0 which minimizes VN- If the minimum is not unique, we let arg min denote the set of 
minimizing arguments. The mapping (5.1) is thus defined implicitly by (5.3). The sources 
[8] and [11] were worked up for taking in writing the sections of this chapter. 

5.1 Linear Least Square Method (LLS) 
The predictor 

y(t\0) = VT(t)0 = 0Tv(t) 

2 5 
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is a scalar product between a known data vector cp(t) and the parameter vector 0. Such a 
model is called a linear regression in statistics (linear in parameter 0). Recall the vector 
cp(t) is known as the vector of regressors (chapter 2 ) . It is of importance since powerful 
and simple estimation methods can be applied for the determination of 0. We shall discuss 
the linear least squares method for the estimation of 0 in this section. 

A n approach is to select 0 in (1.1) so as to fit the calculated values y(t\0) as well as 
possible to the measured outputs by the least squares method 

m i n l V ( 0 , ZN) 
0 

where 
N N N „ 

vN(e, zN) = £ e{tf = J2 (y(t) - me))2 = £ (y(t) - vT{t)e) . (5.4) 

Since V/v is quadratic in 0, we can find the minimum value easily by setting the 
derivative to zero 

J N 
^vN(0,ZN) = 2J2<f(t) (y(t) - vT(t)0) = o 

which gives 
N N 

t=i t=i 
or 

~LLS 
vN 

N -1 
(5.5) 

t=i .t=i 

Once the vectors y( t ) are known, or defined, the solution can be easily found by numerical 
software, such as M A T L A B . 

The estimation (5.5) can be rewritten as 
^ T T C 
ON =R-1(N)rvy(N) (5.6) 

with 
N 

R^N) = Y,<P(t)ipT(t), (5.7) 

so called a d x d deterministic autocorrelation matrix, and 
N 

rvy(N) = Y.V(t)y(t), (5.8) 
t=i 

so called a d x 1 deterministic vector of cross-correlation between y(t) and ip(t). 
* LLS 

A n alternative way how to view 0N is as the solution of 
~ LLS 

R^(N)0N = r w ( J V ) . (5.9) 

These last equations are known as the normal equations. If the matrix of 
autocorrelation is positive definite, i.e. for any vector z must be satisfied zTR^z > 0, 
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then the 
problem 

~ LLS 
then the solution of the normal equations 0N is a unique solution of the minimization 

~LLS N 

0N = a r g min VN(0, ZN) = arg min - cpT(t)0)2. 

5.2 Nonlinear Least Squares Method (NLS) 
The nonlinear least squares method is the form of the least squares analysis which is used 
to fit a set of observations with a model that is non-linear in unknown parameters. It is 
used in some forms of non-linear regression. The basis of the method is to approximate 
the model by a linear one and to refine the parameters by successive iterations. There 
are many similarities to linear least squares, but also some significant differences. 

In the nonlinear case the predictor is given by the nonlinear equation (nonlinear in 0) 

y(t\0) = g(ip(t),0) (5.10) 

where the parameter 0 needs to be estimated. Subsequently, the corresponding prediction 
error is 

e(t) = y(t)-g(<p(t),0). 

The principle is same as in the previous section. The criterion function VJV has the 
form 

vN(o, zN) = f: e(tf = f: (y(t) - me))2 = E (y(t) - g(v(t), e)f. (5.11) 

The minimum value of VN(0, ZN) occurs when the gradient is zero 

^ ( » , Z * ) = 2 g e W ^ = 0. (5.12, 

These gradient equations do not have a closed solution. The above nonlinear minimization 
problem can be solved by locally linearizing the function g(cp(t), 0) and iteratively solving 
for the parameter 0 which minimizes (5.11). 

The initial value must be chosen for the parameter 0. Then, the parameter is refined 
iteratively, which means, the value is obtained by successive approximation 

0 w 0t+1 = 0t + A0. 

The vector of increments, AO, is known as the shift vector. A t each iteration the model 
is linearized by approximation to a first-order Taylor series expansion about 0t 

g{<p{t),0 « g(<p(t),9t) + WvW'^AO = g(<p(t),9t) + Dg^AO. 

In terms of the linearized model 

de(t) dg((p(t),0) 
~W ~ 80 " ~ D 9 W 
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and the residuals are given by 

s(t) = y(t) - g(v(t),Ot) - Dg\6tAG = Ay(t) - Dg\0t. 

Substituting these expressions into gradient equations (5.12), they become 

N 

-2y£Dg\et(Ay(t)-Dg\etAO) = 0-
t=i 

After a rearrangement we obtain again the normal equations 

N N 

Y.Dg\etDg\etA0 = Y.D9\eAyit). 
t=i t=i 

Finally, for the vector of increments, AO, holds 

A9NLS = Dg\et *Ay(t) = Dg\9t\y(t) - g(<p(t), 9t)) 

with Dg\gt t as linear least square pseudo inverse of Dg\gt. 
Each iteration step wil l be then 

9t+1 =0t +Dg\et\y(t)-g(<p(t),Ot)). (5.13) 

Equation (5.13) is initialized with the initial value, 00 , and is iterated until the solution 
converges. 

Differences between linear and nonlinear least squares 

o Many solution algorithms for N L S require the initial value for the parameter, L L S 
does not. 

o Many solution algorithms for N L S require that the gradient be calculated. 
Analytical expressions for partial derivatives can be complicated. If analytical 
expressions are impossible to obtain the partial derivatives must be calculated by 
numerical approximation. 

o In N L S non-convergence (non-convergence means failure of the algorithm to find a 
minimum) is a common phenomenon whereas the L L S is globally concave and so 
non-convergence is not a question at issue. 

o N L S is usually an iterative process. The iterative process has to be terminated 
when a convergence criterion is satisfied. L L S solutions can be computed using 
direct methods. 

o In L L S the solution is unique, but in N L S there may be multiple minima in the sum 
of squares. 
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5.3 Weighted Least Squares Method (WLS) 
In most of modeling applications it may not be reasonable to assume that every 
observation should be treated equally (because some observations are more important or 
more precise than the others). Weighted least squares can often be used to maximize the 
efficiency of parameter estimation. This is done by giving each observed data its proper 
amount of influence by assignment of the weight over the parameter estimates. 

Weighted least squares reflects the behavior of the random errors in the model, and 
it can be used with functions that are either linear or nonlinear in the parameter 0. 
It works by incorporating extra nonnegative constants (weights) associated with each 
observed data, into the criterion function. The size of the weight indicates the precision 
of the information contained in the associated observation. 

The weighted least square criterion for the linear predictor takes the form 

where (3(N,t) is the weight. Then the expression for the resulting estimate is quite 
analogous to (5.5) 

(5.14) 
t=i t=i 

WLS 
9 N £ ß(N, tMt)cpT(t) J2 ß(N> t)<p(t)y(t). (5.15) 

u=i J t=i 
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Chapter 6 

Adaptive Filtering 

Filter is often described as device in the form of a piece hardware or software applied 
to a set of noisy data in order to extract information about a prescribed quantity of 
interest. The term filtering thus means the extraction of information about a quantity 
of interest at time t by using data measured up to and including time t. B y the adaptive 
filtering we mean the device that is self-designing in that the adaptive filter relies on 
a recursive algorithm. That makes it possible for the filter to perform satisfactorily in 
an environment where complete knowledge of the relevant signal characteristics (a priori 
statistical information) is not available. 

g(t) 

filter inpul 

filler OLilpul y(t|0) 

error desired nigral 

Figure 6.1: Adaptive filter 

The picture figures that basic operation involves two processes in adaptive filter,namely 
a filtering process and adaptation process. The adaptation process includes adjusting 
filter parameters to time-varying environment. In other words, the adaptation process is 
updating the filter when new data arrives. The adaptation is controlled by error signal. 

31 
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The following section explains the recursive least squares method, which is based on 
the weighted least squares method. For finding more details about the adaptive filters 
and recursive least squares algorithm use [5] and [8]. 

6.1 The Recursive Least Squares Method (RLS) 
The recursive least squares algorithm is one of the most popular adaptive algorithms and 
can be easily and exactly derived from the normal equations. This algorithm may be 
viewed as a special case of the Kalman filter. Our main mission in this section is to 
develop the basic theory of the recursive least squares algorithm as an important tool for 
linear adaptive filtering. 

Let us consider the filter coefficients 0t as our subject of interest that minimize, at 
time t, the weighted least squares criterion 

Vt(0, Z*) = £ 0(t, t)e(t)2 = £ 0(t, i) (yii) - ^T(t)0)2. (6.1) 
i=i i=i 

Here, we introduced 

Zt = {yt,ut) = {y{l),u{l),...,y{t),u{t)} 

to denote the input-output measurements available at time t. 
The weighting factor j3(t,i) in equation (6.1) has the property 

0 < / 3 ( M ) < l , i = l,2,...,t. 

The use of the weighting factor j3(t,i), in general, is intended to ensure that the data in 
the distant past are " forgotten". A special form of weighting that is commonly used is 
the exponential weighting factor known also as forgetting factor defined by 

0{t,i) = Xt~i, i = l,2,...,t 

where A is positive constant close to, but less than, 1. When A equals one, we have the 
ordinary method of least squares. 

B y using the forgetting factor we obtain the exponentially weighted least squares 
criterion 

Vt(0,Zt) = J:\t-*(y(z)-ifi

T(l)0)2. (6.2) 
i=i 

The estimated value of the vector of filter coefficients is defined with using (5.15) by 

E A * - V ( » ) y ( 0 - (6-3) 
i=l 

Again, the typical way how to see the equation (6.3) is the form given by the normal 
equations, in matrix notation 

R^(t)0fLS = r w ( t ) . (6.4) 

0 
RLS 

.1=1 
'-V(0v T(») 
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The d x d deterministic autocorrelation matrix Rv(t) is now defined by 

flv(t) = E A * - V ( » ) v T ( » ) - (6-5) 
i=l 

The d x 1 deterministic cross-correlation vector r^yit) between the regression vector and 
the desired signal is correspondingly defined by 

r w ( * ) = EA*-V ( » M » ) - (6-6) 
i=l 

For easier notation we set 
~RLS -
et = et. 

6.1.1 Recursive Algorithm 

Since Rpit) and r w ( t ) both depend on time t, instead of solving the deterministic normal 
equations directly, for each value of t, we wil l derive a recursive solution of the form 

et = 0
t
_x + A 0

t
_j 

where A 0 t _ i is a correction that is applied to the solution at time t — 1. Because 

the recursion wil l be derived first by expressing in terms of r w ( t — 1), and then 
by deriving a recursion that allows us to evaluate Ry>(t) in terms of R^[t — 1). 

B y isolating the term corresponding to i = t from the rest of the summation on the 
right-hand side of the formalization (6.6), we can write 

r w ( * ) = E * * " V ( » ) y ( » ) = 
i=l 

= E A * - V ( » ) y ( » ) + A V ( * ) v T ( * ) = (6-7) 
j=l 

t 

£ At_1"V(«)z/(« 
.i=i 

However, by definition, the expression inside the square brackets on the right-hand side of 
(6.7) equals the cross-correlation vector — 1). Hence, we have the following recursion 
for updating the value of the cross-correlation vector 

rvy(t) = Xrvu(t-l) + <p(t)y(t) (6.8) 

where rw(t — 1) is the "old" value of the vector of cross-correlation, and the product 
ip{t)y{t) plays the role of a correction term in the updating operation. Similarly, the 
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autocorrelation matrix may be updated from R^[t — 1) and new input-output data vector 
if(t) using the recursion 

Rv{t) = \Rv{t-l) + <p{t)<pT{t). (6.9) 

However, seeing that it is the inverse of R^,(t) in which we are interested, we may apply 
Woodbury's Identity to the expression (6.9) to get the desired recursion. Woodbury's 
identity is also referred to in the standard literature as the Matrix Inversion Lemma 
and is expressed as 

(A + uv) l = A l - - ——. 

Taking A = XRv(t — 1), u = (p(t), and v = <pT(t) we obtain the following recursion for 
the inverse of Rv(t) 

i i , v A " 2 ^ " 1 ^ - l)cp(t)cpT(t)R~1(t -1) , N 

« ? w = A - J 5 ' ( t - i ) — • ( 6 ' 1 0 ) 

To simplify last notation, we wil l let P(t) denote the inverse of autocorrelation matrix at 
time t, 

P(t) = R-\t) (6.11) 

and determine what is referred to as the gain vector, g(t), as follows 

n ( f ] _ x-'Pjt-iMt) _ Pjt-iMt) 
9 { ) i + \-i<pT(t)P(t-i)<p(t) \ + <pT{t)p{t-i)<p{ty { - ' 

Incorporating the formulas (6.11), and (6.12) to the expression (6.10) gives 

P(t) = A " 1 [P(t - 1) - g(t)cpT(t)P(t - 1)] . (6.13) 

A n useful expression for the gain vector may be derived from formalization (6.12) hereby, 
cross-multiplying to eliminate the denominator on the right side of equation (6.12) we 
obtain 

g(t) + \-lg{t)ifT{t)P{t - l)<p(t) = \~lP{n - l)<p(t). 

Next, bringing the second term on the left to the right side of the equation leads to 

g(t) = A " 1 [P(n - 1) - g(t)cpT(t)P(t - 1)] cp(t). 

Finally, from expression (6.13) we can see that the term multiplying (f(t) is P(t) and we 
have 

g(t) = P(t)<p(t). (6.14) 

The gain vector is thus the solution to the normal equations 

Rv(t)g(t) = <p(t). 

To complete the recursion, we must derive the time update equation for the vector of 
filter coefficients 6. W i t h 

9t = P(t)r^(t) 
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it follows form the update for r w ( t ) (6.8) defined in (6.6) that 

9t = \P{t)rw{t - 1) + P{t)ip{t)y{t). 
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(6.15) 

B y incorporating the update for P(t) given by (6.13) into the first term on the right hand 
side of the last equation and substituting (6.14) we obtain 

0t = [P(t - 1) - g(t)cpT(t)P(t - l)j r w ( t - 1) + g(t)y(t). 

Finally, by recognizing that P(t — l)rvy{t — 1) = 0t-i we obtain the recursion 

et = et.1 + g{t) [y(t) - <p(t)dt-i] 

which can be written 
0t = Ot-i + £(t)g(t) 

with 

t(t) = v(t)-<p(tyo-. t-i 

(6.16) 

(6.17) 

(6.18) 

the difference between y(t) and its estimation that is formed by applying the previous 
vector of filter coefficients, 6t-i, to the new data vector (p(t). This sequence, called the 
a priori error is the error that would occur if the filter coefficients were not updated. 
On the other hand, the a posteriori error is the error that occurs after the vector of 
filter coefficients is updated, which means 

e(t) = y(t) - ip(t)Tet. 

Parameters: d = Filter order 

A = Forgetting factor 

5 = Value used to initialize P(0) 

Initialization: 6>o = 0 

P(0) = 5-1! 

Computation: For t = 1,2,. . . 

git)- ^ - W ) 
A + ip(t)TP(t — l)(p(t) 

at) = y(t)-<p(t)To t-i 

Gt = Gt.l + i{t)git) 

P( t ) = A " 1 [P{t-l)-g{t)ipT{t)P{t-l\ 

Table 6.1: The Recursive Least Squares Algori thm 
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6.1.2 Initialization of RLS Algorithm 
This subsection concerns the initialization of the R L S algorithm. Since the recursive 
algorithm given by the table 6.1 involves the recursive updating of the vector of filter 
coefficients 0t and the inverse autocorrelation matrix P(t), initial conditions for both of 
these terms are required. 

There are two ways how this initialization is typically performed. The first is to build 
up the autocorrelation matrix recursively according to (6.9) and then evaluate the inverse 
directly 

o 
P(0) E A V W v 

i=-t0 

The regression vector cp(i) is obtained from an initial block of data for —to < i < 0. 
Computing the cross-correlation vector r w ( 0 ) in the same manner, 

r w ( 0 ) = E A - V ( t ) y ( t ) , 
i=-t0 

we may then initialize do by setting 0O = P(0)TVy(0). 
A simpler approach is to modify the expression slightly for the autocorrelation matrix 

Rtpft) by writing 
t 

i=i 

where / is the d x d identity matrix, and 5 is a small positive constant. Thus putting 
t = 0 in the last expression, we have 

i ^ ( 0 ) = 51. 

Correspondingly, for the initial value of P(t) equal to the inverse of the correlation matrix 
R<fi(t), we set 

P(0) = 5~lI. (6.19) 

It only remains for us to choose an initial value for the vector of filter coefficients. It is 
common to set 

00 = 0 (6.20) 

where 0 is the d x 1 null vector. 
The initialization procedure incorporating equations (6.19), (6.20) is referred to as a 

soft-constrained initialization and was used in our simulations. The positive constant 
5 is the only parameter required for this initialization and this fact is judged as the 
advantage. The disadvantage of this approach is that it introduce a bias in the least 
squares solution. However, with an exponential weighting factor, A < 1, this bias go to 
zero as t increases. 
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6.1.3 Choice of the Forgetting Factor 
As we said before, we need to select the forgetting factor so that criterion essentially 
contains those measurements that are relevant for the current properties of the system. 

For a system that changes gradually, the most customary choice is to take a constant 
forgetting factor 

AO) = A. 

The constant A is always chosen slightly less than 1 and we can write 

y t - i = e(t-i) log A _ e - ( t - i ) ( i - \ ) 

This means that measurements that are older than inverse of 1 — A samples are included 
in the criterion with a weight that is e _ 1 ~ 36% of that of the most recent measurement. 
Roughly speaking, 

T = (6.21) 

is a measure of the memory of the algorithm. If the system remains approximately 
constant over T samples, a suitable choice of A can then be made from (6.21). Typical 
choices of A are in the range between 0,98 and 0,995. 

For a system that undergoes abrupt and sudden changes, an adaptive choice of A could 
be conceived. When a sudden change of the system has been detected, it is suitable to 
decrease A(t) to a small value for one sample, thereby "cutting off' past measurements 
from the criterion, and then to increase X(t) to a value close to 1 again. 
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Chapter 7 

Modeling of Vehicle Dynamics 

For the theoretical analysis of vehicle dynamics, the equations of motion have to be 
known and the physical interactions between the various subsystems have to be written 
in the form of mathematical equations. Two main approaches can be considered for the 
construction of the vehicle model. If we want to obtain a model which is exact and precise 
as possible, we use the methods of theoretical physics such as Lagrange or Euler. The 
alternative approach is to attempt to model the vehicle as simply as possible and with 
as little computing-time as possible. For this occasion emphasis is placed here on the 
classical single-track model (also known as a bicycle model). 

In this chapter we shall introduce two models, which are commonly used for vehicle 
dynamics control. First we shall shortly deal with linear tire model which describes the 
tire performance during a motion of a vehicle. Consequently we shall target bicycle model 
by which the fundamental concept of vehicle lateral dynamics is explained. 

7.1 Tire Model 
The primary forces during lateral maneuvering, acceleration, and braking are generated 
by tires. The linear tire model doesn't consider longitudinal tire forces, hence it is 
suitable for analyzing a stable vehicle behavior under the assumption of small steering 
and acceleration. 

The lateral forces, which serve for control the direction of the vehicle and are generated 
by a tire, are a function of the slip angle. The slip angle, a, represents the angle containing 
the velocity vector of wheel displacement (in another words, the tire's direction of travel) 
with its longitudinal axis. 

As the tire rolls, the tire contact patch over the ground deflects by slip angle a and 
deforms according to the direction of travel (see figure 7.1). This deformation and the 
elasticity of the tire produce in the tire contact patch the lateral tire force. The dependence 
of the lateral tire force on the slip angle is investigated experimentally. In the linear region 
of the tire curve (0° < a < 3°) the lateral force may be expressed by the following 

Fy = -Caa (7.1) 

where the cornering stiffness, C a , represents the slope of initial part of the tire curve 
displayed in the figure 7.2. 

39 
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SIDEVIEW 
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T 

Figure 7.1: The rolling tire deformation and the lateral force 
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Figure 7.2: Tire lateral force and tire slip angle 

This topic is more in detail described in [7] or [12] with tire self-aligning torque. For 
our purpose this presented simplified model is sufficient. 

7.2 Single-Track Model 
We shall inquire into the vehicle steerability, i.e. the steering response at the 
constant driving velocity. The figure 7.3 shows the vehicle-driver-road control loop, where 
the steering response (the output of the schema) can be for example the yaw rate or 
the lateral velocity. Next figure 7.4 illustrate for more clear visualization the vehicle in 
co-ordinate system which has its origin at the vehicle center of gravity. 

We shall theoretically investigate the lateral dynamics of the vehicle in the horizontal 
plane. For this purpose the single-track model, or bicycle model is most often used 
representation. This model gives good results for non-critical driving situation and is 
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Figure 7.3: The standard vehicle-driver-road control loop 
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Figure 7.4: The vehicle in coordinate system 

frequently applied for many test maneuvers. The first publication of this modeling dates 
back to 1940. The states looming in this representation are states of the lateral velocity 
and yaw rate. Detailed derivation and explanation can be found in many books, for 
example in [12]. 

In the bicycle model the wheels on each axis are considered as a single unit. Because 
of this, it is only possible to derive the one single tire slip angle for the left and right 
wheels on the front axle, a / , and one for the wheels on the rear axle. The approximation 
of angles 

sinw «ui , cos to ~ 1 (7.2) 

is applied to linearize the problem. The center of gravity (CG) of the vehicle lies at a 
plane of a carriageway (or at road-level) hence we can vanish the suspension roll. On this 
account we shall assume that the tire slip angles on the inside and outside wheels are 

file:///wheel*
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approximately the same. For this planar bicycle model we shall not investigate the effect 
of the side wind, the influence of the rear steering and we shall also consider absolutely 
stiff steering. 

In figure 7.5, Fyj and FVtT are the front and rear lateral tire forces, respectively, a / 
and ar are corresponding tire slip angles, ux and uy are the longitudinal and the lateral 
components of the vehicle velocity, and 5 is the steering angle. 

The following force and moment balances are a basis for derivation of the equation of 
motion for the bicycle model 

may = Fy 

Lr = 

7yJ COS 5 + Fyy, 
aFyj cos 5 — bFy:T 

(7.3) 

where Iz is the yaw moment of inertia of the vehicle, m is the vehicle mass, a and b are 
the distance of the front and rear axles from the center of gravity, and ay is the lateral 
vehicle acceleration. 

Figure 7.5: The single-track model 

The state equation for the bicycle model can be written in the form 

Uy,CG 

r 

muXjCG 

Ca f (X—Car b 
-Ux CG 

—CoLfCi —Carb 
x,CG 

Uy,CG 

+ mir 
GQ J: d 

r 

(7.4) 

where ir denotes the steering ratio. 
For the front and the rear tire forces, Fyj and Fyr, respectively, by using the linear 

tire model (7.1), hold formulas 

F. v,f F„ -Caar 

with the total front and rear cornering stiffness, Caj and Car, respectively. We have to 
remind here that the assumption in the introduction of this section, that the slip angles 
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are approximately the same for the inner and outer tires on each axle, still applies. We 
shall also consider this supposition for the total cornering stiffness. 

Using the linearization (7.2), we can write for the tire slip angles, a / and ar, the 
following expressions 

uY,CG + ar . UyTCG - br 
ctf ~ — o, ar ~ — . 

ux,CG ux,CG 

The sideslip angle at the center of gravity is denoted by (3CG (see the figure 7.5). The 
sideslip angle, j3, can be defined at any point on the vehicle body in two ways: 

1. If the longitudinal and lateral velocities, ux and uy, are given at any point on the 
vehicle body, we can express the sideslip angle by the following ratio 

tan/5 = ^L => /5 = t a n " 1 ( ^ ) « ^ . 

2. The second way how to determine the sideslip angle at any point on the body is 
as the difference between the direction of velocity, 7 , and the vehicle yaw angle 
(the angle between the longitudinal axis of the vehicle and the fixed axis of the 
co-ordinate system), ifj, at that point, i.e. 

0 = j-ip. 

For the determination of the actual vehicle position [xo,yo] & t time t with regard to 
the basic system of coordinates we use the following formulas 

x0(t) = [ uxodr= [ UCG cos (f3CG + i>) d r = / UcGCOS^/dr, 
Jo Jo Jo 

2/o(t) = [ uyodr= f UCG sin {(3CG + tp) d r = / UCG^I^T 
Jo Jo Jo 

where yaw angle can be obtained from the expression tp = r. 
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Chapter 8 

Experiment 

For the practical application of the theoretical knowledge in the previous chapters we 
have to describe the manoeuvre of the test vehicle and also measured signals. The 
input-output data used for our numerical experiment were obtained in 2001. The 
experiment was realized by the Institute of Forensic Engineering of Brno University of 
Technology in conjunction with the Department of Transporting Technology of Brno 
University of Technology. 

The first section deals with the test vehicle, subsequent rubric aims to the test track 
and the last one describes used measuring equipment. For deeper understanding you can 
find more information in [1]. 

8.1 Test Car 
The passenger vehicle was utilized for the test manoeuvre. The technical parameters of 
this vehicle which are necessary for the numerical computation are summarized in the 
following table. 

Notation Parameter Measured value 

m Mass of vehicle 1446 kg 

a Distance between front axle and center of gravity 987 mm 

a Distance between rear axle and center of gravity 1525 mm 

ir Steering ratio 21 

h Yaw moment of inertia 2319 kg • m 2 

caf Total front cornering stiffness 88107, T N - r a d " 1 

c Total rear cornering stiffness 88107, T N - r a d " 1 

Table 8.1: The technical specification of test vehicle 
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8.2 Test Track 
The test track was used in accordance with the ISO standard I S O / W D 3888-2 (see 
[6]) which defines the dimensions of the test track for closed-loop control, specifically 
determine the severe lane-change manoeuvre test for the obstacle avoidance performance 
of a vehicle. It is applicable to passenger cars as defined in ISO 3833 and light commercial 
vehicles up to a gross vehicle mass of 3,5 tonnes. The test track was passed along with 
an approximately constant velocity. 

8.3 Measuring Equipment 
Two types of sensors were located on the test car and used for the measuring of some 
dynamic parameters. More details about the first type of used sensors can be studied in 
[14]. 

D A T R O N - C O R R S Y S G m b H 

o H S - C E , V I - vector sensors for a velocity measuring and slip angle measuring, 

o M S W - a sensor for a steer angle measuring. 

Marking device - an equipment for creating a water lane on the carriageway serving 
for registering a trajectory of vehicle motion. 

Figure 8.1: Vehicle with measuring devices 

A sampling period of all sensors was hs = 0.1s and the manoeuvre lasted T = 7s. It 
appears from this that every sensor recorded seventy measuring values. We can suspect, 
by reason of low sampling frequency regarding time period T, that the results of the 
adaptive filter application to this experiment wil l not be so obvious. We can assume that 
this effect is caused by the little time period ( i.e. by low number of samples) for the 
adaptation process of the filter. 

As we can see on the figure 8.1 vector sensors H S - C E a V I not lie in the center of 
gravity. Therefore measured signals do not correspond with the vehicle dynamics in the 
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center of gravity and consequently with the model and equations which we presented in 
the previous chapter. Thus we have to know the position coordinates of this sensors in 
the vehicle system of coordinates 

[XHS-CE; VHS-CE, } = [2,109; -0 ,027] , 
[xvi,yvi,] = [-2,760; -0 ,379] . 

Three graphs 8.3, 8.4, and 8.2 illustrate the evolution of the measured signals. From the 
data obtained by vector sensors H S - C E and V I may be derived other needful parameters, 
namely a longitudinal and lateral velocity, ux and uy, respectively and yaw rate r. More 
details of this derivation is possible to find in [12]. The evolutions of derived measured 
signals are figured in appendix. 
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Figure 8.2: Steer angle 5 
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Figure 8.3: Size of the velocity vector U 
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Figure 8.4: Slip angle a 



Chapter 9 

Application of Recursive Algorithm 

In previous chapters we collected all necessary information for the final simulation. Now, 
we have to define which variables represent the input, state and output of the system 
and also determine which measured variables wi l l be used for an implementation of the 
recursive algorithm. The first section wil l deal with representation of the model and its 
discretization. Next section wil l contain two m-files with the recursive algorithm and 
discretization of state equation. The end of this chapter wil l cover the results of estimates 
and their comparison with the measured data. 

9.1 Model 
In chapter 7 we introduced the single-track model for a description of vehicle lateral 
dynamics. Forasmuch as we solve application of discrete adaptive filter for vehicle 
dynamics analysis, it is necessary to transfer this continuous model 

Uy,CG 

f 

muXjCG 

- CCL J *X — f t 

C OL y d C OL b 
mux CG 

~ Cc± j a — Cct r b 

Uy,CG 
+ mir 5 

r L hir \ 

to the discrete one. For this purpose we use the common fourth order Runge-Kutta 
method which overwrite the system of differential equation 

x = f(t,x) = F(t)x(t) + G(t)u(t) 

to the system of difference equations by using the following expression 

h 
x i + 1 = Xi + - ( f c i + 2k2 + 2k3 + k4) 

b 

with 

ki 

f \ti, Xi), 

f(ti + \ ,Xi + k4 f(U + h,Xi + hk3) 
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where h is step of numerical method given by formula h = U+i — U. In our case we set 
the step of numerical method h = 0,01 s. B y this discretization process we obtain the 
following system of difference equations 

where <&i is a matrix of dynamic coefficients and T{ is a matrix interconnecting the inputs 

with the states. The corresponding measurement equation is expressed by representation 

Vi = H.x, 

where matrix Hi interconnecting the output with the state is an identity matrix 

1 0 
H, 

0 1 

Whence it follows that the output and state vectors are equal. 
The original model given by (7.4) then has a following discrete form 

UV,CGI+1 

uy,CGt + TÍÓÍ (9.1) 

and we can create the table which determine the input, state, output variables of the 
system. 

Input Variable State Variables Output Variables 

steer angle S lateral velocity UV:CG lateral velocity UV:CG 

yaw rate r yaw rate r 

Table 9.1: Mathematical Model for Implementation of Recursive Algorithm 

In (9.1) can be found two time-variant variables, namely a longitudinal velocity UXICG, 

and steer angle 5. Both these variables were measured with the sampling period 
hs = 0,1 s. As was mentioned before, the step of the numerical method is h = 0, 01 s to 
obtain the more accurately mathematical model. For the inputs of the system measured 
with period hs = 0,1s we apply an implemented function in M A T L A B called 'pchip' 
(Piecewise Cubic Hermite Interpolating Polynomial) with syntax yi = pchip(x, y, xi). 
This function returns vector yi containing elements corresponding to the elements of xi 
and determined by piecewise cubic interpolation within vectors x and y. The vector x 
specifies the points at which the data y is given. The time interval T = 7 s of the test 
manoeuvre wil l thus be divided step-by-step corresponding to the step of numerical 
method and in these points the values for the system input wil l be given by this 
implemented method. 

9.2 M A T L A B Files 
This part includes two m-files with the recursive algorithm, and the discretization of 
the state equation 7.4. Also it contains figures illustrative an output of our M A T L A B 
program. 
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9.2.1 M-file for Recursive Algorithm 
As the title prompts, this subsection covers an m-file with the recursive least square 
algorithm used for our simulation. The inputs and outputs applied in function 'rls' are 
explained in the comments with the corresponding dimensions of variables. 

function [est,err,theta,evolt] = rls(inpo,outo,inp,y,ddelta,lam,maintitle) 

% Inputs : 
% inpo ,ou to = number of inpu ts and output feedback, dim l x l , 
% inp = input s i g n a l , dim N x l , 
% y = d e s i r e d s i g n a l , dim N x l , 
% d d e l t a = i n i t i a l v a l u e , P (0 )=de l t a~{ -1}*I , dim l x l , 
% lam = f o r g e t t i n g f a c t o r , dim l x l , de fau l t 0 .999. 

% Outputs: 
% est = es t imate , dim N x l , 
% e r r = est imate e r r o r , dim N x l , 
% t h e t a = f i n a l va lue of f i l t e r c o e f f i c i e n t , dim M x l , 
% e v o l t = e v o l u t i o n of f i l t e r c o e f f i c i e n t s , dim MxN. 

d = inpo + outo; % f i l t e r order 
N = size(y,1) ; 
P = ddelta*eye(d); 

% I n i t i a l weights 
theta = zeros(d,l); 

for n = inpo : N 

phi = inp(n:-1:n-inpo+l); % i n p ( n ) , i n p ( n - l ) , . . . , i n p ( n - i n p o + l ) 
outp = y(n-1:-1:n-outo); % y ( n - l ) , y ( n - 2 ) , . . . , y ( n - o u t o ) 
phi = [phi ; outp]; 

g = ( p h i ' * P)'/(lam + p h i ' * P * p h i ) ; 
est(n) = t h e t a ' * phi; 
xi(n) = y(n) - est(n); 

t h e t a = t h e t a + g * xi(n); 
P = ( P - g * phi' * P ) / lam; 

e v o l t(l:d , n ) = t h e t a ; 
end 

9.2.2 M-file for Discretization of State Equation 

The previous section 9.1 was engaged with the discretization of the state equation 
describing the lateral vehicle dynamics. As was mentioned before, for the dicretization of 
model was chosen the fourth order Runge-Kutta method. Here, we shall state source 
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code containing this dicretization method for the state equation. Again, in this code 
the information about the inputs of the function 'stateEq' is given in the comment 
environment. This function makes use of another function of input, state, and noise 
variable called 'bodydot' which is in fact multiplied state equation (7.4). 

function xl = stateEq(x ,u ,v, h) %x s t a t e , u i n p u t , v n o i s e , h step 

" / D i s c r e t i z a t i o n 
kl = h*bodydot(x,u,v); 
k2 = h*bodydot(x+(h/2)*kl,u,v); 
k3 = h*bodydot(x+(h/2)*k2,u,v); 
k4 = h*bodydot(x+h*k3,u,v); 
xl = x + (kl+2*k2+2*k3+k4)/6; 

function xdot = bodydot(x,u,v) 

m = 1446; 

Caf = 88107.7; 

Car = 88107.7; 

Iz = 2319; 

a = 0.987; 

b = 1.525; 

i r = 21; 

% x = [Uy r] u = [De l ta Ux] 
xdot=[-x(l)*((Caf+Car)/(u(2)*m)) + x(2)*((-Caf*a+Car*b-u(2)"2*m)/(u(2)*m)) 

+ u(l)*Caf / (m*ir) + v ( l ) ; 

x(l)*((-Caf*a-Car*b)/(u(2)*Iz)) + x(2)*((-Caf*a~ 2-Car*b~ 2) /(u(2)*Iz)) 
+ Caf*a*u(l)/(ir*Iz) + v(2)]; 

Both these functions, namely 'rls' and 'stateEq', are applied in the m-file entitled 
experiment.m. Hence, we can consider this file as a principle of our M A T L A B 
program whose output is represented in the following figure 9.1. This figure contains two 
windows which appear by calling command experiment. The first one shows an estimate 
of the system output without usage of the function 'pchip' and the second one, on the 
contrary, with the application of implemented M A T L A B function 'pchip'. They figure 
the evolutions of the system output, error signal, and filter coefficients. 

Remark. The figure 9.1 illustrates the output of our program where an estimate pertains 
to the first component of the state vector, i.e. the lateral velocity. 
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Figure 9.1: Output of M A T L A B program 



54 CHAPTER 9. APPLICATION OF RECURSIVE ALGORITHM 

9.3 Results 
In this section, we wil l discuss the results obtained by application of the recursive least 
squares algorithm to the experimental data. We wil l compare filtered out state variables 
with their measured values and also show in the graphs the evolution of corresponding 
filter coefficients. We wil l use only the output of our M A T L A B program, which does not 
employ the 'pchip' function. 

9.3.1 Results for State Variables 

The first two figures are related to the lateral velocity and the second two to the yaw 
rate. In either event, the introductory figure from this pair illustrates the comparing of 
measured and filtered out values of state variable and the following graph represents the 
evolution of the corresponding filter coefficients. 

In our simulations we used also another implemented M A T L A B function called 'awgn' 
(Add White Gaussian Noise) with the syntax y = awgn(x, snr,' measured'). This function 
adds white Gaussian noise to the vector signal x and measures the power of x before adding 
noise. The scalar snr specifies the signal-to-noise ratio per sample, in dB. For this reason 
the output of our program (and of course the estimated output of the system) is erratic. 

We also had to set the values of parameters occurring in the recursive algorithm. For 
its initialization 5 is only the required parameter. Further, we chose the constant value for 
the forgetting factor because the system changes gradually and does not undergo abrupt 
variances. We elected following values for this two parameters 

J = 10 2, A = 0,999. 

In the picture 9.2, we can see that the filtered out values of the lateral velocity do 
not copy completely the curve of the measured values. Nevertheless the estimated lateral 
velocity catches approximately the evolution of the measured state variable, though the 
filter does not react on the small velocity changes. Similar effect can be remarked also in 
the figure 9.4. Here it seems, that the evolution of filtered out values of yaw rate is shifted 
(or delayed) from around the thirty-fifth sample about two to three samples. This feature 
brightly matches the curve illustrating the evolvement of corresponding filter coefficients 
in the figure 9.5. The values of filter coefficients from the mentioned moment are located 
above one around the value 1,3. We should point out that from the substance of the 
recursive filter (see the motivation and especially the formula (1.1)) allows that the filter 
coefficients should move about the value one in the ideal case. This phenomenon can be 
seen in the figures 9.3 and 9.5 from the number of somewhere thirty samples. But, the 
values of this parameters are not as close to one as we wish. That is why the estimated 
values do not duplicate precisely the measured values of state variables. 
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Figure 9.3: Evolution of the filter coefficients for the recursive least squares estimation of 
lateral velocity 
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Figure 9.4: Comparing of measured and filtered out values of yaw rate 

Figure 9.5: Evolution of the filter coefficients for the recursive least squares estimation of 
yaw rate 
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9.3.2 Derived Vehicle Position from Estimated State Variables 
For the determination of the actual vehicle position we need to know the following velocity 
components in the basic coordinate system 

Ux0 
COS ip — sin ip 

sin ip cos ip Uy 
(9.2) 

where the yaw angle ip can be obtained by integration of the yaw rate. B y integration of 
the velocity components ux, uy we get the position data in the basic system of coordinates. 
Forward Euler was used for these numerical integrations. 

The figure 9.6 represents comparison of vehicle position measured by marking device, 
computed from estimated state variables and rotated derived position. As we can see, 
the trajectory derived from filtered out state variables (the green curve in 9.6) is slightly 
rotated, which can be caused by shoulder of sensors on the vehicle. The coordination 
system of the sensor could be small angled with respect to the coordinate system of the 
vehicle and as the result was the displacement of the derived trajectory. The discordant 
direction of vehicle raid on the test track could be another reason. In this case the 
coordinate system of the vehicle is angled regarding the basic system of coordinates. The 
red curve in graph 9.6 is the derived trajectory from estimated variables, which is angled 
by 1,9°. 
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Figure 9.6: Comparing of the position given by marking device, derived from the state 
variables, and by angular rotation of derived position 

9.4 Comparison with Kalman Filter Results 
This section compares two algorithms which are based on different estimation methods. 
As we know, the least squares method is the deterministic method which minimizes the 
squares of the error signal (the difference between the desired and actual signal) and is 
fundamental for the recursive algorithm. On the contrary, the Kalman filter algorithm 
is the stochastic method, which is founded on the minimizing of the mean squared error 
(least mean squares method). More information about Kalman filter can be looked up in 
the source [7]. Following figures serve to trade both these algorithm off. 
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Figure 9.7: Comparing of measured lateral velocity with estimated by the recursive 
algorithm and by Kalman filter algorithm 

Figure 9.8: Comparing of measured yaw rate with estimated by the recursive algorithm 
and by Kalman filter algorithm 

In the figures 9.7 and 9.8 it is apparent that Kalman filter is more sensitive to the 
small changes in the evolution of state variables and copies almost exactly the curve of 
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measuring. Thus we can say that Kalman filter is preferable to our recursive algorithm 
to these experimental data. 

The comparison of computed vehicle position from the states estimated by the 
recursive algorithm and by Kalman filter algorithm is represented by the last figure in 
this chapter. The derived trajectories angled by 1,9° are used for this confrontation. 
The trajectory measured by marking device is placed between the estimated curves. The 
red colored trajectory illustrating the vehicle position derived by Kalman filter algorithm 
renders better the measured vehicle position which arises from the last conclusion that 
the Kalman filter algorithm is much better estimation method than the recursive least 
squares algorithm. 

Figure 9.9: Comparing of measured trajectory with derived from state variables estimated 
by the recursive algorithm and by Kalman filter algorithm 
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Chapter 10 

Conclusion 

The goal of this thesis was to initiate readers into the theory of adaptive filters and their 
application in the automotive practice. For this purpose the mathematical description of 
dynamic systems was mentioned in the introductory chapters of this work. The models of 
dynamic systems form the basis of the description of the stochastic systems, whose states 
we estimated with the help of the adaptive filter relied on the recursive least squares 
algorithm. So, we focused on the optimal filtering of noisy data in the stochastic systems 
analysis. The weighted least squares method, stated in the chapter titled Parameter 
Estimation Methods, then was fundamental for defining of the recursive least squares 
method and for deriving of the recursive algorithm. 

This algorithm with the pieces of knowledge about its initialization and choice of 
forgetting factor were consequently employed in software solution in the numerical 
computing environment M A T L A B . 

The utilization of derived recursive algorithm equations in the automotive practice was 
mainly aimed at the test car driving manoeuvre analysis. For the description of lateral 
vehicle dynamics we chose the planar single-track model vehicle and investigated the 
steering response at the constant driving velocity (steerability). We applied the derived 
algorithm to the experimental data measured during the lane-change manoeuvre test 
realized in 2001. 

At the close of this thesis the results of the recursive algorithm application were 
compared with results obtained by Kalman filter application. From the evolutions of 
the estimated state variables we could come to a conclusion that the Kalman filter is 
preferable estimator to the recursive algorithm and is more sensitive to small changes of 
measured signals. 

A realization of the recursive least squares algorithm in the interactive environment 
M A T L A B and its application to the vehicle test manoeuvre, even if the description of 
vehicle dynamics was considerably simplified, are the good principle of the applications 
for the test manoeuvres exploiting more complicated models. 
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Appendix A 

Evolutions of Derived Measured 
Signals 

This appendix states the completive graphs with the evolutions of derived measured 
signals, namely longitudinal and lateral velocity and yaw rate. As was mentioned in 
the chapter with the title Experiment the details about derivation are described in [12]. 
Wittingly, the curve colors are differentiated accordance with type of variable. In the 
concrete, the curves illustrating the evolutions of the input variables are colored in red 
and evolutions of the measured state variables are represented by the blue color. 

Figure A . l : Longitudinal velocity u. 
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Figure A.2 : Lateral velocity u. 

Figure A .3 : Yaw rate r 
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The List of Used Shortcuts and 
Symbols 

C G Center of Gravity 

L L S Linear Least Squares 

N L S Nonlinear Least Squares 

R L S Recursive Least Squares 

W L S Weighted Least Squares 

u system input 

x system state 

y system output 

ip vector of regressors 

9 vector of filter coefficients 

d number of filter coefficients (dimension of the filter coefficients vector) 

ý(t\6) predictor 

F matrix of system 

G , r matrix interconnecting the input with the state of the system 

H matrix of measuring sensitivity 

C matrix interconnecting the input with the output of the system 

<& fundamental matrix 

<&(i,r) state transition matrix 

i " identity matrix 

67 



68 

C Laplace operator 

E(X),/j,x expectation value of random variable X 

V a r ( X ) , o~\ variance of random variable X 

Cov(X, Y),CXY covariance of random variables X and Y 

CXY(ti,t2) cross-covariance of random variables X and Y 

Cx auto covariance matrix of random process X 

rXY correlation of random variables X and Y 

r X y (£1,̂ 2) cross-correlation of random variables X and Y 

PXY correlation coefficient of random variables X and Y 

Rx autocorrelation matrix of random process X 

B bias 

5 Dirac delta in chapter 4, constant for initialization in chapter 6, 
steering angle in chapter 7 

A forward difference in chapter 3, Kronecker delta in chapter 4 

v noise of process 

w noise of measurement 

b Brownian motion (Wiener process) 

Ad model structure 

M* set of models 

ZN batch of data of the inputs and outputs over the time interval 
1 < t < N 

9 estimate of filter parameters 

VN(0,ZN) criterion function 

e predictor error (a posteriori error) 

£ a priori error 

(3 weight in chapter 5, sideslip angle in chapter 7 

A forgetting factor 

P inverse of autocorrelation matrix R 
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9 gain vector 

Fy lateral tire force 

a slip angle 

Ca 
cornering stiffness 

FyJ front lateral tire force 

1 y,r rear lateral tire force 

front slip angle 

ar rear slip angle 

Ux longitudinal velocity 

Uy lateral velocity 

h yaw moment of inertia 

rn vehicle mass 

a distance of the front axle from the center of gravity 

b distance of the rear axle from the center of gravity 

ay lateral vehicle acceleration 

r yaw rate 

$ yaw angle 

c 
i 

total front cornering stiffness 

total rear cornering stiffness 

7 direction of velocity 

xo,yo data position in basic system of coordinates 

u size of the velocity vector in the center of gravity 

steering ratio 

hs sampling period 

h step of Runge-Kutta method 


