
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

SYSTEMS OF SEQUENTIAL GRAMMARS APPLIED
TO PARSING

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ REPÍK
AUTOR PRÁCE

BRNO 2014

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

SYSTEMS OF SEQUENTIAL GRAMMARS APPLIED
TO PARSING
SYSTÉMY SEKVENČNÍCH GRAMATIK APLIKOVANÝCH V SYNTAKTICKÉ ANALÝZE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ REPÍK
AUTOR PRÁCE

SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2014

Abstract
This thesis examines Grammar systems as the potentially more powerful tool for parsing
as the simple grammars. The intention is to adapt theoretical models of grammar systems
for parsing. New methods are introduced, with focus on determinism in order to prevent
backtracking during parsing. The basis for the parser is a cooperating distributed grammar
system. The implementation uses predictive, top-down parsing method, LL(1)Tables, and
recursion as well. The parser is universal, usable for any LL-Grammar and for any grammar
system based on them.

Abstrakt
Tato práce zkoumá Gramatické systémy jako potenciálně silnější nástroj pro syntaktickou
analýzu, nežli obyčejné gramatiky. Hlavním záměrem je aplikace teoretických modelů do
praxe, vytvoření syntaktického analyzátoru. Jsou zavedeny nové metody zaměřené na de-
terminizmus, a tím vyhnutí se zpětnému navracení při analýze. Základem analyzátoru je
CD gramatický systém. Implementace využívá metodu prediktivní syntaktické analýzy,
překlad řízený tabulkou a také rekurzi. Analyzátor je univerzální, použitelný pro jakékoliv
LL-Gramatiky a jakékoliv gramatické systémy na nich založené.

Keywords
LL-table, sequential grammar system, predictive parsing, determinism, compilers

Klíčová slova
LL-tabulka, sekvenční gramatický systém, prediktivní syntaktická analýza, determinizmus,
překladače

Citation
Tomáš Repík: Systems of Sequential Grammars Applied to Parsing, bachelor’s thesis, Brno,
FIT BUT, 2014

Systems of Sequential Grammars Applied to Pars-
ing

Declaration
Hereby, I declare; this thesis is my authorial work that have been created under supervision
of prof. RNDr. Alexander Meduna, CSc. All sources used during elaboration of this thesis
are properly cited in complete reference to the source.

. .
Tomáš Repík
May 19, 2014

Acknowledgements
I would like to thank Mr. Alexander Meduna, my thesis supervisor, for his willingness and
friendly approach during our collaboration. His professional advices always led me the right
way and helped me with reaching my goal. Big thank goes also to my family and friends
who supported me all the way through.

c© Tomáš Repík, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Organization . 3

2 Basic terms and definitions 5
2.1 Grammar Theory . 5

2.1.1 Aplhabet, String, Language . 5
2.1.2 Grammars . 6
2.1.3 Parse and Parse tree . 8
2.1.4 Ambiguity of Context-Free Grammars 9

2.2 Parsing methods . 11
2.2.1 Top-Down Parsing . 11
2.2.2 Bottom-Up Parsing . 14

2.3 LL(1)Table . 14
2.3.1 Set Empty . 15
2.3.2 Set First . 15
2.3.3 Set Follow . 16
2.3.4 Set Predict . 16
2.3.5 Construction of LL(1)Table . 17

3 Grammar Systems 18
3.1 Parallel Communicating Grammar Systems 18
3.2 Cooperating Distributed Grammar Systems 19

3.2.1 Blackboard Systems . 19
3.2.2 Derivation Modes . 20

4 Cooperating Distributed Grammar Systems Adapted for Parsing 21
4.1 Problems specification . 21
4.2 From Cooperating Distributed Grammar System to a Deterministic Parser 22

4.2.1 Symbol selection problem . 22
4.2.2 Grammar ambiguity problem . 22
4.2.3 Component work duration problem 22
4.2.4 Component selection problem . 22

4.3 Parsing Algorithm . 23
4.4 Properties of the new method . 26

1

5 Parser 27
5.1 Design . 27
5.2 Implementation . 27
5.3 Use . 28
5.4 LL(1)Table Generator . 28

6 Conclusion 29

A Class Diagram 32

B Grammar System File Specification 33

2

Chapter 1

Introduction

1.1 Motivation

In the world of information technology and computers, everything is either true or false, one
or zero, current or no current. Anything else is an error, undefined behavior, invalid data.
However, these data represent information from the real world, which are not necessarily
discrete and straightforward. The challenge is to transform complex information into much
more simple and discrete data. In our case, it is about conversion of text into some syntactic
structures that we can better work with. Thank to Avram Noam Chomsky, the pioneer and
the creator of the universal grammar theory, we are able to do this conversion. The main
purpose for creating such models is the human need to understand. For example the need
to understand a book that was written in a foreign language or the computers need for
understanding the humans. Improving the communication between humans and machines
is another target. These are the main reasons, why do we need compilers and translators.
It takes about two months for a human to translate an average book, but what if it could
be done automatically. We believe that one day it will take only few minutes or seconds,
by just pressing a button on your keyboard.

The main purpose of this work is bringing a theoretical model of grammar system to
life. By this, we mean to use the model in parsing and show that it is worth using. We
assume that implementation of these models, as they are, would not be possible. However,
by studying the properties of multi-grammar systems, we should find some ways to do it.
Actually, we could go deeper and search for opportunities for improvements in properties
of grammars or even parsing methods.

Our further targets are creating an effective parser with not loosing the power of the
theoretical models. It is easy to say but harder to achieve. Our assumptions are such
that the parser should be able to process some complicated syntactic structures, which are
non-context-free.

1.2 Organization

The whole work is split into chapters, which step by step apprise a reader with new ideas of
parsing. First chapter 2 introduces the grammar theory 2.1 and points out important facts
used later. The text is easy to follow, explaining formal definitions quite comprehensibly.
Section 2.2 briefly explores the most common parsing methods. It includes an algorithm
1 describing one method in detail. This algorithm is also used later. The construction of

3

LL(1)Table and all the necessary sets for its construction could be found in section 2.3.
Next chapter 3 examines properties of the two most common types of grammar systems.
The formal definitions are included as well. New ideas and their realizations are presented
in chapter 4. Modification of theoretical model is described step by step, so one can easily
understand the development of ideas. Chapter 5 describes the implementation, the process,
and substantiation of chosen methods. The conclusion chapter 6 just sums the whole work
up and discuss some opportunities for further development.

4

Chapter 2

Basic terms and definitions

In every field of science, there are certain terms you need to understand first in order
to get the idea of the whole work. This chapter should bring you into the plot and set
the scene for the upcoming performance. First we have here the Grammar Theory 2.1
that was introducedto the world by Mr. Chomsky, and is considered the headstone of
Formal languages and Compilers. With some minor modifications, it survived until today.
This theory is very clever, interesting, and sophisticated, but it also has an impact on
programming and practical informatics. This theory is used in parsing. Basic parsing
methods are described in section 2.2. These methods use supporting constructions, such as
LL(1)Table. How the table is used and constructed, is described in detail in the last section
2.3 of this chapter.

2.1 Grammar Theory

The following section consists of: technical terms and their definitions, specific symbols
and their meaning, and examples for better understanding. It takes concepts from [5] and
summarizes all the basics of grammar theory.

2.1.1 Aplhabet, String, Language

Definition 2.1.1 (Alphabet)
An alphabet is a finite, not empty set of elements, which are called symbols.

We can join symbols together and form a string. In another words string is a sequence of
symbols.

Definition 2.1.2 (String)
Let Σ be an alphabet.

1. ε is a string over Σ

2. if x is a string over Σ and a ∈ Σ then xa is a string over Σ

Note 1. ε denotes the empty string that contains no symbols.

Within an alphabet, we are able to create infinite number of strings, as the definition is
recursive. To be able to work with strings reasonably, we group strings together to some sort
of categories. Naturally, it is not appropriate to have all possible strings over an alphabet,

5

and neither a computer or a human could process such amounts. Strings consisting of
symbols of an alphabet grouped together form a language. One alphabet can provide its
symbols for many languages.

Definition 2.1.3 (Language)
Let Σ∗ denote the set of all strings over Σ. Every subset L ⊆ Σ∗ is a language over Σ.

Note 2. Σ+ denote the set Σ∗ − {ε}.

Languages are sets and could be rather finite or infinite. The finite language can be spec-
ified by enumeration of its strings, but with the infinite one it is not possible. Therefore,
we have some special tools for specification the infinite languages. These tools are also
languages, finite languages for specifying other infinite languages, so called metalanguages.
Two metalanguages, used as generators for infinite languages, are regular expressions and
grammars.

2.1.2 Grammars

The languages that we usually deal with are not just random symbols tagged together.
There are some rules and conventions we hold on to, when creating words and sentences
in a language. The arrangement of words and phrases to create well-formed sentences in a
language is called syntax. In other words, syntax of a language specifies the construction
of a sentence. To make it hundred percent clear; in natural languages we form words into
sentences, whereas in programming languages it is about forming symbols into strings.
As mentioned before, one way to define a language are grammars. What are grammars
and how do they define a language, we will see later on. First of all, let us introduce
the notation. One of the two main notation techniques for grammars is the Backus-Naur
form. It contains two kinds of symbols. Terminal symbols, terminals, denote lexemes
and nonterminal symbols, nonterminals, represent syntactic structures. These symbols are
formed into productions, with a nonterminal on the left hand side and a string of terminals
and nonterminals on right hand side. Nonterminals are usually words in pointy brackets,
terminals are usually same as the lexeme they represent.

Example 1

p : 〈expression〉 → 〈term〉+ 〈expression〉

• p : is a label of the production

• 〈expression〉 is the left hand side of the production, denoted as: lhs(p)

• 〈term〉+ 〈expression〉 is the right hand side of the production, denoted as: rhs(p)

• nonterminals in this example are: 〈expression〉, 〈term〉

• the only terminal is +

The arrow in the middle indicates that the left hand side is replaced with the right hand side
of the production. The replacement is called a derivation step. By applying productions, we
derive one word from another. The derivation usually starts from a special start nonterminal
symbol. It comes to an end when only terminals appear in the sentential form.

To bring a bit formalism into play, we define a context-free grammar, the fundamental
model for context-free language, which is equivalent to the Backus-Naur form.

6

Definition 2.1.4 (Context-Free Grammar)
A context-free grammar is a quadruple G = (N,T, P, S), where

• N is an alphabet of nonterminals

• T is an alphabet of terminals, N ∩ T = ∅

• P is a finite set of productions of the form A→ x, where A ∈ N , x ∈ (N ∪ T)∗

• S ∈ N is the start nonterminal

When describing a grammar, we use following conventions:

• Capital letters from the start of alphabet represent nonterminals (A,B,C)

• The capital S represents the start symbol

• Noncapital letters from the start of alphabet represent terminals (a, b, c)

• Capital letters from the end of alphabet represent any symbol, either terminal or
nonterminal (W,X, Y, Z)

• Noncapital letters from the end of alphabet represent a string of terminals and non-
terminals (w, x, y, z)

• Productions are labelled with numbers

Formal definition of derivation ensues.

Definition 2.1.5 (Direct Derivation)
Let G = (N,T, P, S) be a context-free grammar, p ∈ P , and x, y ∈ (N ∪ T)∗. Then,
xlhs(p)y directly derives xrhs(p)y according to p in G, denoted by

xlhs(p)y ⇒ xrhs(p)y [p]

By making more derivation steps consecutively, we perform a derivation. The derivation
may end in the phase, when no further derivation step is possible, and the derived word
consist only of terminals. Then, it is important to realize two facts:

• The word can be derived in finite number of derivation steps from the start symbol

• The word belongs to a sort of a set - generated language

Definition 2.1.6 (Generated Language)
Let G = (N,T, P, S) be a context-free grammar. If S ⇒∗ w in G, then w is a word of G. A
word w, such that w ∈ T ∗ is a word generated by G. The language generated by G, L(G),
is the set of all words that G generates:

L(G) = {w : w ∈ T ∗, S ⇒∗ w}

Sometimes we do not need to see the derivation step by step, and we can shorten the record:

• u0 ⇒n un [p1 . . . pn] represents a sequence of derivation steps ui−1 ⇒n ui [pi] for
i ∈ {1 . . . n}

7

• in square brackets we write a sequence of productions used in derivation steps [p1 . . . pn]

• v ⇒+ w [π] stands for v ⇒n w [π] where n ≥ 1, meaning v properly derives w

• v ⇒∗ w [π] stands for v ⇒n w [π] where n ≥ 0, meaning v derives w

• [π] is used as a short of [p1 . . . pn] representing a sequence of productions

Further up we had a definition 2.1.6 of any language. When we talk about some special
languages, usually, they are generated by special grammars; so a context-free language
would be generated by a context-free grammar.

Definition 2.1.7 (Context-Free Language)
Let L be a language. L is a context-free language, if there exist a context-free grammar
such that L = L(G).

2.1.3 Parse and Parse tree

One might easily get lost in derivation steps, lose track of which symbol was derived from
which, and in which order productions were applied. Storing the order is almost necessity.
The string of production labels, which follows the order of production application, is called
a parse.

Definition 2.1.8 (Parse)
Let G = (N,T, P, S) be a context-free grammar, and S ⇒∗ w [π] be a derivation, where
w ∈ T ∗ and π is a sequence of productions. Then π is called a parse.

However, a parse does not provide us enough information; therefore, exists a graphical
representation of derivation. With the use of parse tree, one can easily trace the derivation
steps. But firstly we define a production tree.

Definition 2.1.9 (Production Tree)
Let G = (N,T, P, S) be a context-free grammar, and p ∈ P . The production tree pt(p),
corresponding to p is a labelled elementary tree, such that lhs(p) labels root(pt) node and
frontier nodes, fr(pt(p)) are defined as follows:

• if |rhs(p)| = 0 (p is ε-production), then fr(pt(p)) consist of only one node labelled ε

• if |rhs(p)| > 0, then fr(pt(p)) consist of |rhs(p)| nodes labelled with the symbols
appearing in rhs(p) from left to right

Example 2
Consider the production,

p : 〈expression〉 → 〈term〉+ 〈term〉

The production tree pt(p), corresponding to p, looks like this:

〈expression〉

〈term〉+〈term〉

8

Now we have the production tree for each production. As a derivation is a sequence of
applied productions, a parse tree is a sequence of production trees joint together.

Definition 2.1.10 (Parse Tree)
Let G = (N,T, P, S) be a context-free grammar. A parse tree of G is a labelled tree t
satisfying two conditions:

• root(t) is labelled with a start symbol S

• each elementary subtree t′ appearing in t represents the production tree pt(p) corre-
sponding to a production p ∈ P .

Example 3
Consider the productions,

1 : 〈expression〉 → 〈expression〉+ 〈expression〉
2 : 〈expression〉 → 〈term〉

The parse tree pt(p), corresponding to derivation

〈expression〉 ⇒ 〈expression〉+ 〈expression〉 [1]
⇒ 〈expression〉+ 〈term〉 [2]
⇒ 〈term〉+ 〈term〉 [2]

looks like this:

〈expression〉

〈expression〉

〈term〉+

〈expression〉

〈term〉

2.1.4 Ambiguity of Context-Free Grammars

Context-free grammar means that the grammar has no context. In particular, the deriva-
tion proceed regardless of the succession of nonterminals - regardless of the context. Any
production could be applied, as long as the left hand side of the production is in the current
sentential form. Thus, it may happen, that one string could be derived in many different
ways. As a consequence one string could have more parses. In the theoretical point of view,
there is no problem, but empirics would have their point. Context-free grammars and their
derivations are not deterministic. However, with some restrictions, it should get better.
The aim is to have only one parse for each string. By stating that grammar will always
rewrite only the leftmost nonterminal, we get closer to the deterministic behavior.

Definition 2.1.11 (Leftmost Derivation)
Let G = (N,T, P, S) be a context-free grammar, u ∈ T ∗, v ∈ (N ∪ T)∗ and p = A→ x ∈ P .
Then, uAv directly derives uxv in the leftmost way according to p in G, written as

uAv ⇒lm uxv[p]

Note 3. Analogically we could define the rightmost derivation.

9

The outcome of the leftmost derivation is called left parse. It might look like the leftmost
derivation solves the problem with determinism, but it does not. The reason is that the
grammar could be ambiguous. It means that there exist more than one left parses for one
sentential form. Example 4 illustrates that one word could be derived within a grammar
differently. The parses and also the parse trees do not coincide.

Example 4
Consider the following context-free grammar G:

1 : 〈expression〉 → 〈expression〉+ 〈expression〉
2 : 〈expression〉 → 〈term〉

Let us try deriving the string 〈term〉+ 〈term〉+ 〈term〉

Derivation 1

〈expression〉 ⇒ 〈expression〉+ 〈expression〉 [1]

⇒ 〈expression〉+ 〈expression〉+ 〈expression〉 [1]

⇒ 〈expression〉+ 〈term〉+ 〈expression〉 [2]

⇒ 〈term〉+ 〈term〉+ 〈expression〉 [2]

⇒ 〈term〉+ 〈term〉+ 〈term〉 [2]

With the π1 = [11222]

Derivation 2

〈expression〉 ⇒ 〈expression〉+ 〈expression〉 [1]

⇒ 〈term〉+ 〈expression〉 [2]

⇒ 〈term〉+ 〈expression〉+ 〈expression〉 [1]

⇒ 〈term〉+ 〈term〉+ 〈expression〉 [2]

⇒ 〈term〉+ 〈term〉+ 〈term〉 [2]

With the π2 = [12122]

As we see π1 6= π2. The first derivation was a general one with no order in picking the
productions, whereas the second one was the leftmost derivation. The third derivation is
an example showing the ambiguity of the current context-free grammar. The derivation is
also leftmost like the second one, but the parses remain different.

Derivation 3

〈expression〉 ⇒ 〈expression〉+ 〈expression〉 [1]

⇒ 〈expression〉+ 〈expression〉+ 〈expression〉 [1]

⇒ 〈term〉+ 〈expression〉+ 〈expression〉 [2]

⇒ 〈term〉+ 〈term〉+ 〈expression〉 [2]

⇒ 〈term〉+ 〈term〉+ 〈term〉 [2]

With the π3 = [11222]

10

The difference is more obvious when we construct the corresponding parse trees.

〈expression〉

〈expression〉

〈expression〉

〈term〉+

〈expression〉

〈term〉+

〈expression〉

〈term〉

Parse tree t2

〈expression〉

〈expression〉

〈term〉+

〈expression〉

〈expression〉

〈term〉+

〈expression〉

〈term〉

Parse tree t3

This example shows that also a leftmost derivation could produce different left parses
for one string. Sometimes it might be useful, but in our case we will try to avoid it.

2.2 Parsing methods

This section discusses parsing methods based on [5, 1]. Parser is a software that performs
the syntax analysis of a certain data (usually text). As input it gets a string of tokens
(usually words), and its task is to decide whether the input string is valid according to
the language or its grammar. In fact parser tries to construct a parse tree between a start
symbol and an input string. Using productions and their production trees, it tries to fill
the gap between the root and the frontier of a parse tree. It is not an easy task, as the
parser knows only few information. Those information are: start symbol, input string
and productions. We describe parsing as a process of building a parse tree, but in fact
the compiler does not necessarily need to build an explicit tree. It could carry out the
translation directly without the tree.

There are three main parsing methods: top-down, bottom-up and universal parsers.
It is interesting that the universal algorithms can parse any grammar, but they are very
inefficient, complicated for long input strings; therefore, they are almost never used.

2.2.1 Top-Down Parsing

Top-down method is the easiest to follow. The construction of a parse tree starts at the
root and proceeds towards the leaves in order to match the frontier.

11

Equivalently, top-down parsing can be viewed as finding a leftmost derivation
for an input string. [1]

Method is divided into derivation steps. Each step consists of finding the leftmost non-
terminal to apply a production on, and the key is finding the right production for the
nonterminal. One nonterminal can naturally appear in more left hand sides of productions.
After one is picked, a simple terminal matching follows. If everything is matching with
the input string, we are fine, but if not, we might have picked a wrong production. This
problem could be solved in two ways: by use of backtracking or predictive parsing.

Input string

a b c

S

d e f g

a

E

C

A

D

B

GF

Figure 2.1: Top down parsing.

Recursive-Descent Parsing

Recursive-descent parsing is a method that uses very powerful weapon; recursion. Each
nonterminal is represented by a separate function. These functions are called mutually
according to productions. Execution begins with a function for the start symbol, which
halts and announces success if its body scans the entire input string.

A function of a nonterminal starts with the choosing one production with the same left
hand side as the nonterminal. Then for each symbol of the right hand side it performs one
of two actions depending on the type of the symbol. The parser tries to match the symbol
with the first not matched symbol from the input string, if it is terminal. As long as these
two symbols do not coincide, an error is reported. The second possible action is calling
other function for a nonterminal symbol. This action leads to the recursion.

Recursive descent could use both the backtracking and the predictive parsing method
to eliminate the problem of production picking stated in the previous section.

Table-driven Parsing

This method, does not use the recursion and takes care of the pushdown itself. The role of
pushdown is holding the sentential form of nonterminal and terminal symbols. According

12

to the symbols in the pushdown, we can determine the state of the parsing. We use the
symbol $ to mark the bottom of the pushdown. Initially contains there is the start symbol
of a grammar on top of the $ in the pushdown. The input string needs to be appended with
the $ at the end as well. The parsing ends succesfully, the input string is accepted by the
parser, when the bottom of the pushdown, matches the end of the input string (both are $
symbols). Leaving aside the terminating symbol $, parser accepts an input string when the
whole is matched, and the pushdown is empty. Besides the pushdown and an input string,
the method works with a special table, telling, witch production to apply when. Therefore,
it is called table-driven parsing. The table will be closely described in section 2.3.

Table-driven parsing is based on predictive syntactic analysis, but in some cases might
use backtracking method as well. One must use it wisely, because the actions with the
pushdown when backtracking are not trivial as the productions are applied vice versa.

Algorithm 1: Table-driven predictive parsing

1 pushdown.push($)
2 pushdown.push(startSymbol)
3 while pushdown.notEmpty() do
4 token = getNextToken()
5 if pushdownTop == $ then
6 if token == $ then
7 return true
8 else
9 return false
10 end if
11 else if pushdownTop.isTerminal() then
12 if token == pushdownTop then
13 pushdown.pop()
14 else
15 return false
16 end if
17 else if pushdownTop.isNonterminal() then
18 if Table[token, pushdownTop].exist() then
19 production = Table[token, pushdownTop]
20 pushdown.pop()
21 pushdown.push(reverse(production.rightSide))
22 else
23 return false
24 end if
25 else
26 return false
27 end if
28 end while

13

2.2.2 Bottom-Up Parsing

The bottom-up parsing starts the construction of derivation from the frontier and proceeds
towards the root. In fact, it is more powerful then the top-down parser. With the bottom-
up parser we can analyse much larger class of languages. It can handle a larger class of
grammars and translation schemes, so software tools for generating parsers directly from
grammars often use bottom-up methods.

Input string

a b c

S

d e f g

a b c

A
B C

D

ε

Figure 2.2: Bottom-up parsing.

Later on, we use the top-down predictive table-driven parsing method. Other methods
are mentioned as an illustration.

2.3 LL(1)Table

Following section describes all the necessary steps of constructing the LL(1)Table. Most of
the definitions and algorithms, presented in this section, are taken from [5, 1].

Let us say we have a grammar, the context-free one, and we would like to parse a
string using the top-down method. All context-free languages, languages of context-free
grammar, can be parsed with general parsing methods, but general parsing methods are
not deterministic, and that is what we try to avoid. Nevertheless, we still have an option and
that is to convert the context-free grammar to equivalent LL(1)Grammar. There are two
methods for conversion: factorization and left recursion replacement. It needs to be stated
that not all context-free grammars can be converted. With the use of LL(1)Grammar, the
power is decreased, but determinism gained.

Note 4. The name of the LL(1)grammar might be confusing so the explanation follows.
The first

”
L“ stands for scanning the input string from left to right, the second

”
L“ stands

for performing the leftmost derivation, and the
”
1“ stands for using one symbol from the

input string at each step to make parsing action decisions.

14

Theorem 2.3.1
Context-free grammars have more power than LL(1)Grammars

LL(1)Grammars ⊂ Context-free grammars

Actually, still one question needs to be answered: How do we know, which of the
productions should we apply? The answer is LL(1)Table. The parser has two information
at the time of parsing. One being a symbol from input string and the second being the
top pushdown symbol. Based on this two facts, the parser should choose the next step of
analysis, next production to apply. A nonterminal symbol from the top of the pushdown and
a terminal symbol from the input string could be used as indexes to a table of productions.
The clue is to have only one production in each table cell. That is the reason why we need
LL(1)Grammar (determinism) instead of a context-free one.

To determine, which production should be applied in a certain state of parsing, in other
words, which production should be in which cell of the LL(1)Table, we use special sets.

2.3.1 Set Empty

Empty(x) is a set that includes ε if x derives the empty string; otherwise, Empty(x) is
empty.

Definition 2.3.1 (Set Empty)
Let G = (N,T, P, S) be a context-free grammar. Empty(x) = {ε} if x ⇒∗ ε; otherwise,
Empty(x) = ∅, where x ∈ (N ∪ T)∗.

Algorithm 2: Set Empty

1 foreach a ∈ T do
2 Empty(a) = ∅
3 end foreach
4 foreach A ∈ N do
5 if A→ ε ∈ P then
6 Empty(A) = {ε}
7 else
8 Empty(A) = ∅
9 end if
10 end foreach
11 while one of Empty sets can be changed do
12 if A→ X1X2 . . . Xn ∈ P and Empty(Xi) = {ε} for all i = 1, . . . , n then
13 Empty(A) = {ε}
14 end if
15 end while

2.3.2 Set First

First(x) is a set of all terminals that can begin a string derivable from x.

Definition 2.3.2 (Set First)
Let G = (N,T, P, S) be a context-free grammar. For every x ∈ (N ∪ T)∗, we define the set
First(x) as First(x) = {a : a ∈ T, x⇒∗ ay; y ∈ (N ∪ T)∗}.

15

Algorithm 3: Set First

1 foreach a ∈ T do
2 First(a) = {a}
3 end foreach
4 foreach A ∈ N do
5 First(A) = ∅
6 end foreach
7 while one of First sets can be changed do
8 if A→ X1X2 . . . Xk−1Xk . . . Xn ∈ P then
9 add all symbols from First(X1) to First(A)
10 if Empty(Xi) = {ε} for all i = 1, . . . , k − 1, where k ≤ n then
11 add all symbols from First(Xk) to First(A)
12 end if
13 end if
14 end while

2.3.3 Set Follow

Follow(A) is a set of all terminals that can come right after A in a sentential form of G.

Definition 2.3.3 (Set Follow)
Let G = (N,T, P, S) be a context-free grammar. For every A ∈ N , we define the set
Follow(A) as Follow(A) = {a : a ∈ T, S ⇒∗ xAay;x, y ∈ (N ∪ T)∗} ∪ {$: S ⇒∗ xA;x ∈
(N ∪ T)∗}.

Algorithm 4: Set Follow

1 Follow(S) = {$}
2 while one of Follow sets can be changed do
3 if A→ xBy ∈ P then
4 if y 6= ε then
5 add all symbols from First(y) to Follow(B)
6 end if
7 if Empty(y) = {ε} then
8 add all symbols from Follow(A) to Follow(B)
9 end if
10 end if
11 end while

2.3.4 Set Predict

Predict(A → x) is a set of all terminals that can begin a string obtained by a derivation
started by using production A→ x.

Definition 2.3.4 (Set Predict)
Let G = (N,T, P, S) be a context-free grammar. For every A → x ∈ P , we define the set
Predict(A→ x) so that

16

• if Empty(x) = {ε} then
Predict(A→ x) = First(x) ∪ Follow(A)

• if Empty(x) = ∅ then
Predict(A→ x) = First(x)

Algorithm 5: Set Predict

1 foreach p ∈ P do
2 if A→ x ∈ P then
3 add all symbols from First(x) to Predict(A→ x)
4 if Empty(x) = {ε} then
5 add all symbols from Follow(A) to Predict(A→ x)
6 end if
7 end if
8 end foreach

After we have all the sets we can now formally define the LL(1)Grammar.

Definition 2.3.5 (LL(1)Grammar)
Let G = (N,T, P, S) be a context-free grammar. G is an LL(1)Grammar, if for every a ∈ T
and every A ∈ N there is no more than one A-production A→ X1X2 . . . Xn ∈ P such that
a ∈ Predict(A→ X1X2 . . . Xn)

2.3.5 Construction of LL(1)Table

In order to fill the parsing table, we have to establish, what production should the parser
choose, if it sees a nonterminal A on the top of its pushdown, and a symbol a as the actual
input symbol. We use these as the indexes to the table. For every production p ∈ P we fill
one row of the table. The row with the index of lhs(p). For each a ∈ T we fill the cell of
the row with the rhs(p) if a ∈ Predict(p) or we leave the cell empty.

Algorithm 6: Construction of LL(1)Table

1 foreach p ∈ P do
2 foreach a ∈ T do
3 if a ∈ Predict(p) then
4 LL(1)Table[lhs(p)][a] = p
5 end if
6 end foreach
7 end foreach

If the table contains at most one production in each cell, then the parser always knows,
which production it has to use; therefore, it can parse without backtracking.

17

Chapter 3

Grammar Systems

To increase power and get more possibilities when parsing, we could use not only one, but
more grammars. System that is based on finite number of grammars is called a grammar
system. A grammar system is composed of components. In the simplest systems is the
component only a code name for an ordinary grammar. The work of the grammar system
itself consists of routine derivation and newly communication between its components. The
communication is pretty straightforward. We know two types of grammar systems: parallel
communicating (PC) and cooperating distributed (CD) grammar systems. This chapter
takes concepts from [3, 2, 4].

3.1 Parallel Communicating Grammar Systems

A parallel communicating grammar system works parallel. Each component handles a sep-
arate part of an input string. In fact, components are grammars making derivation steps.
Usually, the first component is the main one, which generates the final language. With the
help of the other components, of course. The system uses special query symbols to control
the parsing. These query symbols appear in sentential forms. Each symbol represents a
single component. Based on the position in the sentential form, the component determines
where to insert a sentential form of another component, corresponding to the query symbol.
Whenever a query symbol occurs, all components are suspended, and so called communi-
cation step is made. All query symbols in current sentential forms of all components are
replaced with the corresponding components sentential form. The component, which has
sent its sentential form, could rather continue in the current derivation or start the deriva-
tion once again from the start symbol. Then the grammar system gets a tag returning.
There are many modifications to the main analysis method, see [2].

Definition 3.1.1 (Parallel Communicating Grammar System)
A parallel communicating grammar system of degree n, n ≥ 1, is a construct

Γ = (N,T,K, (S1, P1), . . . , (Sn, Pn))

where

• N is an alphabet of nonterminals

• T is an alphabet of terminals, N ∩ T = ∅

• K is a finite set of query symbols, K = {Q1, . . . , Qn}

18

• Pi is a finite set of productions of the form A→ x with A ∈ N and x ∈ (N ∪ T ∪K)∗,
for each i ∈ {1, . . . , n}

• Si is the start symbol of the i-th component Si ∈ N , for each i ∈ {1, . . . , n}

• and the pair (Pi, Si) is the component of Γ, for each i ∈ {1, . . . , n}

Note 5. Sets N,T,K are pairwise disjoint: N ∩ T = ∅ , N ∩K = ∅ and T ∩K = ∅

3.2 Cooperating Distributed Grammar Systems

On the other hand, cooperating distributed grammar system works sequentially. System as
well has its components, but only one is making derivation step at the time. Unsurprisingly,
behind the term component is hidden a grammar. Components take turns and together
work on one sentential form. Selection of the component, which will be making derivation
steps is not specified; therefore, it could be random. Number of steps a component makes,
until it passes the control to another one, is determined by the mode of the component.
The end of derivation will usually come when neither of the components could do a further
derivation step.

3.2.1 Blackboard Systems

In fact the research of cooperating grammar systems is connected with the blackboard
systems, blackboard problem solving and blackboard model, see [6].

Definition 3.2.1 (Blackboard Model)
The blackboard model is usually described as consisting of three major components:

1. The knowledge sources. The knowledge needed to solve the problem is partitioned
into knowledge sources, which are kept separate and independent.

2. The blackboard data structure. The problem-solving state data are kept in a global
database, the blackboard. Knowledge sources produce changes to the blackboard
which lead incrementally to a solution to the problem. Communication and interac-
tion among the knowledge sources take place solely through the blackboard.

3. Control component. It makes runtime decisions about the course of problem solving
and the expenditure of problem-solving resources.

It is good to illustrate the blackboard system on an example.

Example 5
Let us have a room of people each with some pieces of jigsaw they want to put together.
These are our knowledge sources. They have a frame for the jigsaw as the blackboard data
structure. Each person looks at his pieces and sees if any of them fit into the pieces already
in the frame. Those with the appropriate pieces go up to the blackboard and update the
evolving solution. The new updates cause other pieces to fall into place, and other people
to add their pieces. There is one extra person in the room, the arbiter deciding who is
going to put a piece into the jigsaw. He is the control component of the blackboard system.
The knowledge sources can solve the jigsaw even without communicating with each other
because everybody knows when he should contribute.

19

You might have noticed that the blackboard system is very similar to our cooperating
distributed grammar system. The knowledge sources are in grammar systems represented
by the components or grammars. The blackboard data structure is modelled by a senten-
tial form, in which the components of grammar system make their rewritings. Therefore,
cooperating distributed grammar systems and their methods of parsing are used to solve
problems of blackboard systems. The problem is solved by grammars making derivation
steps and reaching the sentential form containing only terminals.

Definition 3.2.2 (Cooperating Disributed Grammar System)
A cooperating distributed grammar system of degree n, n ≥ 1, is a construct

Γ = (N,T, S, P1, . . . , Pn)

where

• N is an alphabet of nonterminals

• T is an alphabet of terminals, N ∩ T = ∅

• S is a start symbol

• Pi is a finite set of productions, called component of Γ, for each i ∈ {1, . . . , n}
Note 6. The i-th grammar is Gi = (N,T, Pi, S)

3.2.2 Derivation Modes

As mentioned before, cooperating distributed grammar system works in a certain mode.
These modes define how many derivation steps each component makes during its single
run. The usual ones are k-step, at most k-step and at least k-step derivation modes. The
one that we are interested in is the terminating mode. Each component of a cooperating
distributed grammar system working in the terminating mode makes derivation steps until
it can, until there is a nonterminal that can be rewritten applying one of productions.

Definition 3.2.3 (Terminating mode)
For each i ∈ {1, . . . , n} terminating derivation by the i-th component is

x⇒t
i y

if

1. x⇒∗ y in Gi = (N,T, Pi, S) where y ∈ (N ∪ T)∗ and

2. y 6⇒ z for all z ∈ (N ∪ T)∗

Notice that the sentential form y does not need to be a string of terminals. It can contain
some nonterminals, which other components are able to rewrite. And obviously, when one
of the components derives a string of terminals, it is the end of parsing. It depends on the
position in the input string, whether the parsing ends with success or with an error.

Note 7. The time while a component is active, while it performs derivation, is called a
component run. During the parsing one component can run several times. A component
run can end in different ways:

• with empty pushdown

• with a not matched terminal at the top of the pushdown

• lacking a production for a nonterminal at the top of the pushdown

20

Chapter 4

Cooperating Distributed Grammar
Systems Adapted for Parsing

In previous chapters we explained all necessary knowledge about grammars, grammar sys-
tems and parsing. What we want to do now, is to take a cooperating grammar system and
implement a parser based on it. If we were trying to do it based on the definition 3.2.2, we
would run into some difficulties.

4.1 Problems specification

First of all, the system has to select a component which should start parsing. There
is no rule for it, so any component could start. After the start component finishes its
work, once again it is not specified, which component should continue. This is the first
problem of component selection. Do we know when to end one components work and
pass control to another? That is the second problem of component work duration. As we
know, components of grammar system are grammars most often context-free grammars.
Pure context-free grammar can potentially rewrite any symbol of the sentential form. The
only restriction is that there has to be a production for each symbol. Not knowing which
symbol to rewrite is the third problem of symbol selection. As we discovered in example 4
context-free grammars are ambiguous, meaning that one sentential form could be reached
in different ways, it can have different parse trees. The fourth problem is then the grammar
ambiguity.

And why do we want to avoid these problems? We want a fully deterministic parser
which goes only forward and does not need backtracking. The main problem of backtracking
that we are not satisfied with, is the fact, that when a parser does not know how to
continue, it throws away all his work and goes back. The machine time spent on analysis
is irretrievably lost.

To sum this section up, here are the four main problems of cooperating distributed
grammar system:

1. Component selection problem

2. Component work duration problem

3. Symbol selection problem

4. Grammar ambiguity problem

21

4.2 From Cooperating Distributed Grammar System to a
Deterministic Parser

In this section we start with the cooperating distributed grammar system defined in section
3.2. By some little modifications and restrictions we are going to solve problems 4.1 and
get a deterministic parser.

4.2.1 Symbol selection problem

Actually the solution is pretty simple, as in section 2.1, we can restrict the context-free
grammar to rewrite always the leftmost nonterminal. Each grammar performs the leftmost
derivation 2.1.11.

4.2.2 Grammar ambiguity problem

The context-free grammar could be ambiguous and to make sure it is not, we try to convert
it to the LL(1)Grammar, defined 2.3.5 before. It can generate less languages, so the power
is decreased, but there is no other choice. By having LL(1)Grammar we will use top-down
table-driven predictive parsing method. A little inconvenience is the need to construct a
LL(1)Table. The construction is closely described in section 2.3.

4.2.3 Component work duration problem

The cooperating distributed grammar system has its components working sequentially, with
only one performing derivation at a time. Alternation of components is very crucial. If
we set an exact number of steps each component could make in one run, some compo-
nents might be handicapped. The most proper behavior we get, when we use cooperating
distributed grammar system in the terminating mode 3.2.3.

4.2.4 Component selection problem

Before the actual parsing starts, parser has to choose from the components, which one will
start. It would make no sense to choose a component, which cannot rewrite the start symbol
of a grammar system. Only a component having a production with the start symbol on its
left hand side, can start. It is possible that more components are able to rewrite the start
symbol. Then we could completely rule this case out, but the power of a system would
decrease. Instead, the parser selects one of possible start components and add the start
symbol to it. However it has to be done for each component of a system, while the problem
with selection would arise once again, after the start component finishes its run. Each
component has to have a unique start symbol to ensure determinism. If this uniqueness is
not secured, the method will not work. All start symbols merged together create a set of
switch symbols, shortly switchers.

When a switcher appears at the top of the pushdown, a component switch is about to
come. Basically, it is the same as in terminating mode of cooperating distributed gram-
mar system. The control grammar can not continue but according to the switcher it can
choose only one component to continue. The advantage is obvious, rigorously deterministic
behavior of the system. Although, there is one more problem to solve.

What if a component ends its run and there is no switcher at the top of the pushdown?
Presumably, the parser should end with an error and rejection of the input string. Instead

22

of returning an error, the component could return control to the one, which invoked its
run. Here withstands the possibility to recursively plunge deeper and deeper. With this
specification of behavior, the system has more power, and once again is able generate much
larger class of languages.

The start component can be promoted to the control component. That means, the
component controls the whole parsing. Selecting a component to run after one ends and
making the decision of acceptance the input string, are two task of the control component.

The following example illustrates the functioning of such system.

Example 6
Let G1, G2, G3 some LL(1)Grammars and S1, S2, S3 their start symbols. The S1 is the start
symbol for the whole system so the G1 grammar is the control grammar. Start component
begins its run and reaches the switcher S2. Control is handed to the G2 grammar. The
parsing continues until the switch symbol S3 appears at the top of the pushdown. There
goes the G3 grammar and takes control. It reaches a symbol, not from the set of switchers
and there is no production to apply on it. The control is returned to the G2 grammar. G2

could continue parsing or hand back control to the G1. It depends on the top symbol of
the pushdown. If there is a production G2 can use it continues, if not control is returned
to the control grammar G1.

Definition 4.2.1 (Cooperating Distributed Grammar System with Switchers)
A cooperating distributed grammar system with switchers of degree n, n ≥ 1, is a construct

Γ = (N,T, S, (P1, S1), . . . , (Pn, Sn))

where

• N is an alphabet of nonterminals

• T is an alphabet of terminals

• S is the system start symbol, S ∈ T and S ∈ {S1, . . . , Sn}

• Pi is a finite set of LL productions (for every a ∈ T and every A ∈ N there is no
more than one A-production A → X1X2 . . . Xn ∈ Pi such that a ∈ Predict(A →
X1X2 . . . Xn)), for each i ∈ {1, . . . , n}

• Si is a switcher, Si ∈ N , for each i ∈ {1, . . . , n}

• and the pair (Pi, Si) is called a component of Γ, for each i ∈ {1, . . . , n}

Note 8. When generating a parse the productions are labelled with the number of com-
ponent and the number of production. Fourth production of third component would be
labelled 3.4 and 5.1 would mark the first production of fifth component. In the parse these
labels are separated by semicolons [3.4; 5.1; 5.4].

4.3 Parsing Algorithm

The initialization phase consist of several steps. First, the pushdown of symbols is prepared,
so the system start symbol S is on its top and the terminating symbol $ is on its bottom.
Then according to the system start symbol a start component is selected. The system start

23

symbol is same as the component start symbol, Si = S. Now the actual process of parsing
can start.

The program cycles, while the pushdown is not empty. It is an infinite loop as we find
out later. During the loop the process can end with an error or success. In other words,
it can accept or reject the input string. First, the next symbol from input string is loaded.
According to the type of the pushdown-top symbol, there are three possible scenarios.

When the symbol equals to $, it is the terminating symbol, we are at the bottom of
the pushdown. The actual input symbol should be $ as well. In this case the process ends
successfully and the input string is accepted by the system, w ∈ L(Γ). Otherwise it is an
error and the string is not accepted, w 6∈ L(Γ).

If the pushdown-top symbol belongs the set of terminals, pushdown-top ∈ T , the be-
havior is very similar. The system compares the symbol with the actual input symbol, and
when these symbols coincide the pushdown-top is removed. Obviously not matching the
input symbol leads to an error and end of the analysis, w 6∈ L(Γ).

The third option is that the symbol belongs to the set of nonterminals, pushdown-top ∈
N . Then, it is the right time to use LL(1)Table, to look for a production that can be
applied. If there is a record for the couple [input symbol,pushdown-top] in the table, the
parser performs a derivation step. The pushdown-top, same as the left hand side of the
production, is replaced with the right hand side of the production, found in the table.
Important is to push symbols from the right hand side of the production in right order. So
that, after the operation, there is the leftmost symobol on the top of the pushdown. To
make it clear, symbols are pushed to the pushdown in reverse order.

If there is no production for the couple [input symbol, pushdown-top] in the current
table, the parser should look into another, by switching to another component. The next
step is checking, whether the pushdown-top is equal to one of the switchers. If the parser
finds accordance, it stores the actual component to a component-stack in order to come
back to it later. Then the control is passed to the component having the start symbol
coinciding with the pushdown-top, and parsing continues.

If the pushdown-top symbol does not belong to any set, it is not an error yet. The parser
looks at the component-stack for a component, which invoked its run. The component from
the top of the component-stack regains control and tries to continue.

And finally, if even the component-stack is empty, there is no possibility to continue,
parser announces an error, and rejects the input string.

24

Algorithm 7: Cooperating Distributed Grammar System with Switchers

1 pushdown.push($)
2 pushdown.push(systemStartSymbol)
3 component = getComponentWithStartSymbol(systemStartSymbol)
4 while pushdown.notEmpty() do
5 symbol = getNextInputSymbol()
6 if pushdownTop == $ then
7 if symbol == $ then
8 return true
9 else
10 return false
11 end if
12 else if pushdownTop.isTerminal() then
13 if symbol == pushdownTop then
14 pushdown.pop()
15 else
16 return false
17 end if
18 else if puhdownTop.isNonterminal() then
19 if table[symbol, pushdownTop].exist() then
20 production = table[symbol, pushdownTop]
21 pushdown.pop()
22 pushdown.push(reverse(production.rightHandSide))
23 else if pushdownTop.isSwitcher() then
24 stack.push(component)
25 component = getComponentWithStartSymbol(pushdownTop)
26 else if stack.notEmpty() then
27 component = stack.pop()
28 else
29 return false
30 end if
31 else
32 return false
33 end if
34 end while

25

4.4 Properties of the new method

This section examines properties of the new parsing method and compares it with the
standard methods. One of our targets was modifying the parsing method without loosing
power. To find out if the power was not decreased we tried generating some complex
syntactic structures such as anbncn.

Example 7
This is an example of the system, which possibly could generate the anbncn string:

Γ1 = ({S,A,B,C}, {a, b, c}, S, (P1, S), (P2, A), (P3, C))

P1

1. S → ε

2. S → AC

P2

1. A→ aB

2. C → cD

P3

1. B → AB

2. B → b

3. D → CD

4. D → ε

Let us create parse trees for two input strings: aabbcc and aabbc

S

C

D

D

ε

C

c

c

c

c

A

B

B

b

b

A

B

b

b

a

a

a

a

S

C

D

ε

c

c

A

B

B

b

b

A

B

b

b

a

a

a

a

As we see the system accepts both strings; therefore, we can only state it generates
anbncm.

Each modification of standard parsing methods, using only one grammar, brings the parser
closer to determinism, what usually reflects in loss of power. It seems like systems with
multiple grammars inherit this behavior. With more determinism the system looses power.

26

Chapter 5

Parser

This chapter speaks about the implementation of cooperative distributed grammar system
with switchers. Here are the main properties we concentrated on during the design and
implementation itself:

• universality

• simplicity

• implementation representing the theoretical model

• no backtracking

• prepared for further modifications

5.1 Design

Firstly we wanted an universal parser, which does not depend on any specific grammar.
Therefore, a predictive table-driven method was the clear choice. In any time one can
just change the table and parse completely different languages or syntactic structures. The
parser remains the same. As for the simplicity, we wanted the parser to be as simple as
possible. There is no lexical analysis or code generation, the focus is fully on the parsing.
Next thing we wanted, was the implementation of the actual model. All the theoretical
structures like sets of symbol, productions, tables etc. are represented alike in the program.
This should help people, who are not that into programming, understand what is happening,
and where to look if they want to find something specific. We have explained why and how to
avoid the backtracking in section 4.1. The whole system is designed to be easily modifiable,
in case the research progresses and someone would like to add new features.

5.2 Implementation

We choose to implement the parser in Java, because it is multi-platform, object oriented and
provides many useful data abstractions. The parsing algorithm itself 4 was no a problem.
The method start takes an input string as a parameter and returns true or false according
to the result of analysis. A side product of analysis is the parse printed to the standard
output. Actually, the harder part is building the data structures necessary for parsing.
These are represented as a complex hierarchy of objects, trying to follow the theoretical

27

model. The GrammarSystem object encapsulates all these data structures. For example
it contains its sets of nonterminals N and terminals T, represented as Set objects in Java,
behaving like a real sets. Another important object is a Component containing so needed
parse-table. LLTable is also a separate object an the implementation can be reused in other
parsers. In initialization phase the table can be simply copied from the input file or can
be generated from the productions. More on that in section 5.4. The Production object
provides methods returning left hand side, right hand side and even a reversed right hand
side of a production. If the system contains only one component, it works as a standard
single grammar parser. Details of class dependencies of the system are can be viewed in
Appendix A.

5.3 Use

The parser performs syntactic analysis according to a grammar system. The system is
loaded from a file, which has to be prepared in advance. A path to the file is the one and
only argument a user has to enter when running the parser. A detailed specification of the
grammar system file can be found in Appendix B. If the parser is run without arguments,
then an implicit grammar system is used. After the initialization, system prints out the
specification of a grammar system loaded, and it awaits a string of input symbols delimited
by spaces and terminated by a newline. Analyzer prints its parse and true on success and
a partial parse with false on failure. Either of results do not terminate the parser. Only
an empty input string does that.

5.4 LL(1)Table Generator

The construction of LL(1)Table is not easy and takes some time. In order to save this time,
an automatic construction was implemented. A user just has to provide productions and
the start symbol, the system does all the hard work for him. The generator creates a special
Symbol object for each unique symbol appearing in productions and holds information about
the symbol. Methods of Component object: createSymbols, createEmpty 2, createFirst
3, createFollow 4, createPredict 5 and the last createTable 6, encapsulating all the
previous, follow the algorithms in section 2.3. Sets of terminals and nonterminals are also
generated automatically.

Note 9. The first component in the file is considered the start one.

28

Chapter 6

Conclusion

This work was focused on systems of sequential grammars and their adaptation for parsing.
In another words, the aim was to create and later implement an effective parser based on
these systems. By studying the properties of context-free grammars, parsing methods and
mainly the grammar systems, we identified some issues leading to possible need of back-
tracking during the parsing. In our parser we wanted to avoid the backtracking; therefore,
we brought up some restrictions and modifications to the general methods. By using the
LL(1)Table with table-driven predictive parsing method, we eliminated grammar ambiguity
and multiple parse trees and parses for one analysed string. Adding special “switch” sym-
bols to each component of a grammar system solved indecision, when selecting component.
Eventually, we managed to create a fully deterministic parser based on grammar systems.

The model was implemented and successfully tested. We have made a remarkable dis-
covery thanks to implementation of LL(1)Table generator. The newly introduced switchers
were considered as nonterminal symbols. However, it is not that clear. In some components
a switcher acts like a terminal symbol, and in some it acts like a nonterminal symbol. One
could have a point that it is not acceptable, but in fact it is the only way because the
switcher in one component can not be rewritten, and in another one it is the start symbol.
However, when we take the system as a whole, switcher belongs definitely to the set of
nonterminal symbols.

Talking about the properties of these new methods, we found out that the system is
able to generate only context-free languages. The power of cooperating distributed grammar
systems was not reached, but for most compilers it does not matter. The reason why, is
because programming languages are context-free, and it should work well. On the other
hand, the new method brings some positives. Backtracking was completely eliminated.
Components have smaller LL(1)Tables, than a single grammar would have. When the
parser is looking for a production, it has less space to search.

After some more testing and investigation of the parser, we got some new ideas for the
parser improvement. Some component runs are mostly the same, so the parser could some-
how remember them and reuse later. Therefore, it does not have to search the LL(1)Table,
work with the pushdown, and generate a parse once again. Instead, a stored parse or parse
tree would be used. It must be remembered that we are using recursion. Some syntactic
structures could lead to cyclic component switching, deadlock. One component is calling
for other to perform derivation while the other component is asking the first one to run.
What if we could detect and avoid being stuck in an infinite loop?

To increase power of the parser we looked closer at the example 7. The work with the
pushdown could be upgraded as well. What if a component will not give up the control when

29

it reaches first nonterminal, which it can not rewrite. Maybe, it could rewrite some symbols
deeper in the pushdown. By allowing components to look deeper into the pushdown and
rewrite all symbols they know, we assume the power will increase. The following example
shows once again the analysis of string anbncn.

Example 8
S

CA

Ba

a

S

CA

B

BA

a

a

S

C

Dc

A

Ba

a

The difference is in firstly rewriting C before switching to the third component and rewriting
B.

It is upon further research to implement this variation of grammar system and test it
properly. If one can prove that the system is generating larger group of languages than
context-free languages, it would be very interesting.

30

Bibliography

[1] A.V. Aho, M.S. Lam, J.D. Ullman, and R. Sethi. Compilers: Principles, Techniques,
and Tools. Pearson Education, 2011.

[2] M. Čermák. Formal Systems Based upon Automata and Grammars. PhD thesis,
University of Technology, Brno, may 2012.

[3] E. Csuhaj-Varjú. Grammar Systems: A Grammatical Approach to Distribution and
Cooperation. Topics in computer mathematics. Gordon and Breach, 1994.

[4] R. Lukáš. Multigenerativní gramatické systémy. PhD thesis, University of Technology,
Brno, june 2006.

[5] A. Meduna. Automata and Languages: Theory and Applications. Springer London,
2000.

[6] H. Yenny Nii. Blackboard systems. Technical Report STAN-CS-86-1123, Department
of Computer Science, Stanford University, 1986.

31

Appendix A

Class Diagram

Figure A.1: Class Diagram.

32

Appendix B

Grammar System File Specification

The file with the specification grammar system has a specific format. It consist of compo-
nent specifications delimited by ‘∼’ character. Each component specification begins with
its start symbol and a semicolon ‘;’ right after it, followed by a list of productions. Each
component has to have at least one production. A production definition starts with a left
hand side nonterminal with symbols ‘=>’ immediately after. The right hand side symbols
are separated by spaces ‘ ’ and follow immediately after the arrow symbol. A production
definition is always terminated with a semicolon. As for the epsilon productions, no special
symbol is needed for epsilon, leaving the right hand side of the production empty is enough
(empty means at least one space).

Syntax of the file defines the following BNF:

〈file〉 → 〈component〉〈nextComponent〉

〈nextcomponent〉 → ∼ 〈component〉〈nextComponent〉 | ε

〈component〉 → startSymbol; 〈productions〉

〈productions〉 → 〈production〉〈nextProduction〉

〈nextProduction〉 → 〈production〉〈nextProduction〉 | ε

〈production〉 → Symbol=> 〈rightHandSideSymbols〉;

〈rightHandSideSymbols〉 → Symbol〈nextSymbol〉 | (space)

〈nextSymbol〉 → (space) Symbol 〈nextSymbol〉 | ε

33

Example 9
Here is an example of a grammar system file:

S;

S=>i = E S’;

S=>f E t S e S S’;

S=>r E;

S’=>S;

S’=>$;

∼

E;

E=>(E);

E=>i E’;

E’=>o E;

E’=> ;

You could have noticed that some newlines were included for a better overview. The
parser ignores them during the initialization of a grammar system.

34

	Introduction
	Motivation
	Organization

	Basic terms and definitions
	Grammar Theory
	Aplhabet, String, Language
	Grammars
	Parse and Parse tree
	Ambiguity of Context-Free Grammars

	Parsing methods
	Top-Down Parsing
	Bottom-Up Parsing

	LL(1)Table
	Set Empty
	Set First
	Set Follow
	Set Predict
	Construction of LL(1)Table

	Grammar Systems
	Parallel Communicating Grammar Systems
	Cooperating Distributed Grammar Systems
	Blackboard Systems
	Derivation Modes

	Cooperating Distributed Grammar Systems Adapted for Parsing
	Problems specification
	From Cooperating Distributed Grammar System to a Deterministic Parser
	Symbol selection problem
	Grammar ambiguity problem
	Component work duration problem
	Component selection problem

	Parsing Algorithm
	Properties of the new method

	Parser
	Design
	Implementation
	Use
	LL(1)Table Generator

	Conclusion
	Class Diagram
	Grammar System File Specification

