
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION S Y S T E M S

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

SYSTEMS OF SEQUENTIAL GRAMMARS APPLIED
TO PARSING

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ REPÍK
AUTOR PRÁCE

BRNO 2014

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION S Y S T E M S

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

SYSTEMS OF SEQUENTIAL GRAMMARS APPLIED
TO PARSING
SYSTÉMY SEKVENČNÍCH GRAMATIK APLIKOVANÝCH V SYNTAKTICKÉ ANALÝZE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ REPÍK
AUTOR PRÁCE

SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2014

Abstract
This thesis examines Grammar systems as the potential ly more powerful tool for parsing
as the simple grammars. The intention is to adapt theoretical models of grammar systems
for parsing. New methods are introduced, w i th focus on determinism in order to prevent
backtracking during parsing. The basis for the parser is a cooperating distr ibuted grammar
system. The implementat ion uses predictive, top-down parsing method, L L (l) T a b l e s , and
recursion as well . The parser is universal, usable for any L L - G r a m m a r and for any grammar
system based on them.

Abstrakt
Tato p r á c e z k o u m á G r a m a t i c k é s y s t é m y jako p o t e n c i á l n ě silnější n á s t r o j pro syntaktickou
ana lýzu , nežli obyčejné gramatiky. H l a v n í m z á m ě r e m je aplikace t eo re t i ckých m o d e l ů do
praxe, vy tvo řen í syn t ak t i ckého a n a l y z á t o r u . Jsou zavedeny nové metody z a m ě ř e n é na de­
terminizmus, a t í m v y h n u t í se z p ě t n é m u nav racen í př i ana lýze . Z á k l a d e m a n a l y z á t o r u je
C D g r a m a t i c k ý sys t ém. Implementace využ ívá metodu p red ik t i vn í syn tak t i cké analýzy,
p ř ek l ad ř ízený tabulkou a t a k é rekurzi . A n a l y z á t o r je un iverzá ln í , použ i t e lný pro jakékol iv
L L - G r a m a t i k y a jakékol iv g r a m a t i c k é s y s t é m y na nich založené.

Keywords
LL- tab le , sequential grammar system, predictive parsing, determinism, compilers

Klíčová slova
L L - t a b u l k a , sekvenční g r a m a t i c k ý sy s t ém, p r ed ik t i vn í s y n t a k t i c k á ana lýza , determinizmus,
p řek l adače

Citation
T o m á š Repík : Systems of Sequential Grammars A p p l i e d to Parsing, bachelor's thesis, Brno ,
F I T B U T , 2014

Systems of Sequential Grammars Applied to Pars­
ing

Declaration
Hereby, I declare; this thesis is my authorial work that have been created under supervision
of prof. R N D r . Alexander Meduna , C S c . A l l sources used during elaboration of this thesis
are properly cited i n complete reference to the source.

T o m á š R e p í k
M a y 19, 2014

Acknowledgements
I would like to thank M r . Alexander Meduna , my thesis supervisor, for his willingness and
friendly approach during our collaboration. His professional advices always led me the right
way and helped me wi th reaching my goal. B i g thank goes also to my family and friends
who supported me al l the way through.

© T o m á š Rep ík , 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulte in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Mot iva t i on 3
1.2 Organizat ion 3

2 Basic terms and definitions 5
2.1 Grammar Theory 5

2.1.1 Aplhabet , Str ing, Language 5
2.1.2 Grammars 6
2.1.3 Parse and Parse tree 8
2.1.4 Ambigu i ty of Context-Free Grammars 9

2.2 Pars ing methods 11
2.2.1 Top-Down Pars ing 11
2.2.2 B o t t o m - U p Parsing 14

2.3 L L (l) T a b l e 14
2.3.1 Set Empty 15
2.3.2 Set First 15
2.3.3 Set Follow 16
2.3.4 Set Predict 16
2.3.5 Const ruct ion of L L (l) T a b l e 17

3 G r a m m a r Systems 18
3.1 Para l le l Communica t ing Grammar Systems 18
3.2 Cooperat ing Dis t r ibuted Grammar Systems 19

3.2.1 Blackboard Systems 19
3.2.2 Der iva t ion Modes 20

4 Cooperat ing Distr ibuted G r a m m a r Systems A d a p t e d for Parsing 21
4.1 Problems specification 21
4.2 F rom Cooperat ing Dis t r ibuted Grammar System to a Determinist ic Parser 22

4.2.1 Symbol selection problem 22
4.2.2 Grammar ambiguity problem 22
4.2.3 Component work durat ion problem 22
4.2.4 Component selection problem 22

4.3 Parsing A l g o r i t h m 23
4.4 Properties of the new method 26

1

5 Parser 27
5.1 Design 27
5.2 Implementation 27
5.3 Use 2 8

5.4 L L (l) T a b l e Generator 28

6 Conclusion 29

A Class Diagram 32

B G r a m m a r System Fi le Specification 33

2

Chapter 1

Introduction

1.1 Motivation

In the world of information technology and computers, everything is either true or false, one
or zero, current or no current. A n y t h i n g else is an error, undefined behavior, inval id data.
However, these data represent information from the real world, which are not necessarily
discrete and straightforward. The challenge is to transform complex information into much
more simple and discrete data. In our case, it is about conversion of text into some syntactic
structures that we can better work wi th . Thank to A v r a m N o a m Chomsky, the pioneer and
the creator of the universal grammar theory, we are able to do this conversion. The main
purpose for creating such models is the human need to understand. For example the need
to understand a book that was wri t ten i n a foreign language or the computers need for
understanding the humans. Improving the communicat ion between humans and machines
is another target. These are the main reasons, why do we need compilers and translators.
It takes about two months for a human to translate an average book, but what i f it could
be done automatically. We believe that one day it w i l l take only few minutes or seconds,
by just pressing a but ton on your keyboard.

The ma in purpose of this work is bringing a theoretical model of grammar system to
life. B y this, we mean to use the model i n parsing and show that it is worth using. We
assume that implementat ion of these models, as they are, would not be possible. However,
by s tudying the properties of mult i -grammar systems, we should find some ways to do it.
Actual ly , we could go deeper and search for opportunities for improvements i n properties
of grammars or even parsing methods.

Our further targets are creating an effective parser w i th not loosing the power of the
theoretical models. It is easy to say but harder to achieve. Our assumptions are such
that the parser should be able to process some complicated syntactic structures, which are
non-context-free.

1.2 Organization

The whole work is split into chapters, which step by step apprise a reader w i th new ideas of
parsing. F i rs t chapter 2 introduces the grammar theory 2.1 and points out important facts
used later. The text is easy to follow, explaining formal definitions quite comprehensibly.
Section 2.2 briefly explores the most common parsing methods. It includes an algori thm
1 describing one method i n detail . Th is algori thm is also used later. The construction of

3

L L (l) T a b l e and al l the necessary sets for its construction could be found i n section 2.3.
Next chapter 3 examines properties of the two most common types of grammar systems.
The formal definitions are included as well . New ideas and their realizations are presented
in chapter 4. Modif ica t ion of theoretical model is described step by step, so one can easily
understand the development of ideas. Chapter 5 describes the implementation, the process,
and substantiation of chosen methods. The conclusion chapter 6 just sums the whole work
up and discuss some opportunities for further development.

4

Chapter 2

Basic terms and definitions

In every field of science, there are certain terms you need to understand first i n order
to get the idea of the whole work. This chapter should br ing you into the plot and set
the scene for the upcoming performance. F i rs t we have here the Grammar Theory 2.1
that was introducedto the world by M r . Chomsky, and is considered the headstone of
Formal languages and Compilers . W i t h some minor modifications, it survived unt i l today.
This theory is very clever, interesting, and sophisticated, but it also has an impact on
programming and pract ical informatics. Th is theory is used i n parsing. Bas ic parsing
methods are described in section 2.2. These methods use support ing constructions, such as
L L (l) T a b l e . How the table is used and constructed, is described i n detail in the last section
2.3 of this chapter.

2.1 Grammar Theory

The following section consists of: technical terms and their definitions, specific symbols
and their meaning, and examples for better understanding. It takes concepts from [] and
summarizes a l l the basics of grammar theory.

2.1.1 A p l h a b e t , S t r i n g , L a n g u a g e

Definition 2.1.1 (Alphabet)
A n alphabet is a finite, not empty set of elements, which are called symbols.

We can jo in symbols together and form a string. In another words string is a sequence of
symbols.

Definition 2.1.2 (String)
Let E be an alphabet.

1. e is a string over E

2. if x is a string over X and a £ E then xa is a str ing over E

Note 1. e denotes the empty string that contains no symbols.

W i t h i n an alphabet, we are able to create infinite number of strings, as the definition is
recursive. To be able to work wi th strings reasonably, we group strings together to some sort
of categories. Natural ly , it is not appropriate to have a l l possible strings over an alphabet,

5

and neither a computer or a human could process such amounts. Strings consisting of
symbols of an alphabet grouped together form a language. One alphabet can provide its
symbols for many languages.

Definition 2.1.3 (Language)
Let E * denote the set of a l l strings over S . Every subset L C X * is a language over S.

Note 2. £ + denote the set £ * - {e}.

Languages are sets and could be rather finite or infinite. The finite language can be spec­
ified by enumeration of its strings, but w i th the infinite one it is not possible. Therefore,
we have some special tools for specification the infinite languages. These tools are also
languages, finite languages for specifying other infinite languages, so called metalanguages.
Two metalanguages, used as generators for infinite languages, are regular expressions and
grammars.

2.1.2 G r a m m a r s

The languages that we usually deal w i th are not just random symbols tagged together.
There are some rules and conventions we hold on to, when creating words and sentences
in a language. The arrangement of words and phrases to create well-formed sentences in a
language is called syntax. In other words, syntax of a language specifies the construction
of a sentence. To make it hundred percent clear; in natural languages we form words into
sentences, whereas in programming languages it is about forming symbols into strings.
A s mentioned before, one way to define a language are grammars. W h a t are grammars
and how do they define a language, we w i l l see later on. F i rs t of a l l , let us introduce
the notat ion. One of the two main notat ion techniques for grammars is the Backus-Naur
form. It contains two kinds of symbols. Terminal symbols, terminals, denote lexemes
and nonterminal symbols, nonterminals, represent syntactic structures. These symbols are
formed into productions, w i t h a nonterminal on the left hand side and a string of terminals
and nonterminals on right hand side. Nonterminals are usually words i n pointy brackets,
terminals are usually same as the lexeme they represent.

Example 1

p : (expression) —>• (term) + (expression)

• p : is a label of the product ion

• (expression) is the left hand side of the production, denoted as: lhs(p)

• (term) + (expression) is the right hand side of the production, denoted as: rhs(p)

• nonterminals i n this example are: (expression), (term)

• the only terminal is +

The arrow in the middle indicates that the left hand side is replaced wi th the right hand side
of the product ion. The replacement is called a derivation step. B y applying productions, we
derive one word from another. The derivation usually starts from a special start nonterminal
symbol. It comes to an end when only terminals appear i n the sentential form.

To br ing a bit formalism into play, we define a context-free grammar, the fundamental
model for context-free language, which is equivalent to the Backus-Naur form.

6

Definition 2.1.4 (Context-Free Grammar)
A context-free grammar is a quadruple G = (N, T, P, S), where

• iV is an alphabet of nonterminals

• T is an alphabet of terminals, N n T = 0

• P is a finite set of productions of the form A —>• x, where A G N, x G (iV U T) *

• S G AT is the start nonterminal

W h e n describing a grammar, we use following conventions:

• Cap i t a l letters from the start of alphabet represent nonterminals (A, B, C)

• The capi tal S represents the start symbol

• Noncapi ta l letters from the start of alphabet represent terminals (a, 6, c)

• Cap i t a l letters from the end of alphabet represent any symbol , either terminal or
nonterminal (W, X, Y, Z)

• Noncapi ta l letters from the end of alphabet represent a string of terminals and non­
terminals (w,x,y,z)

• Product ions are labelled wi th numbers

Formal definition of derivation ensues.

Definition 2.1.5 (Direct Derivation)
Let G = (N,T,P,S) be a context-free grammar, p G P, and x,y G (i V U T) * . Then ,
xlhs(p)y direct ly derives xrhs(p)y according to p i n G, denoted by

xlhs(p)y xrhs(p)y [p]

B y making more derivation steps consecutively, we perform a derivation. The derivation
may end in the phase, when no further derivation step is possible, and the derived word
consist only of terminals. Then , it is important to realize two facts:

• The word can be derived in finite number of derivation steps from the start symbol

• The word belongs to a sort of a set - generated language

Definition 2.1.6 (Generated Language)
Let G = (N, T, P, S) be a context-free grammar. If S w in G, then w is a word of G. A
word w, such that w G T* is a word generated by G. The language generated by G, L(G),
is the set of a l l words that G generates:

L{G) = {w :weT*,S^* w}

Sometimes we do not need to see the derivation step by step, and we can shorten the record:

• UQ =^ n un [p i . . -pn] represents a sequence of derivation steps Ui-i =^ n Ui [pj] for
i G { 1 . . .n}

7

• in square brackets we write a sequence of productions used i n derivation steps [p\ ... pn]

• v =4>+ w [TT] stands for v =4>N w [IT] where n > 1, meaning v properly derives w

• v =4>* w [TT] stands for v =4>N w [IT] where n > 0, meaning v derives w

• [ir] is used as a short of [pi • • • pn] representing a sequence of productions

Further up we had a definition 2.1.6 of any language. W h e n we talk about some special
languages, usually, they are generated by special grammars; so a context-free language
would be generated by a context-free grammar.

Definition 2.1.7 (Context-Free Language)
Let L be a language. L is a context-free language, i f there exist a context-free grammar
such that L = L(G).

2.1.3 Parse and Parse tree

One might easily get lost i n derivation steps, lose track of which symbol was derived from
which, and in which order productions were applied. Storing the order is almost necessity.
The string of product ion labels, which follows the order of product ion application, is called
a parse.

Definition 2.1.8 (Parse)
Let G = (N, T, P, S) be a context-free grammar, and S =^>* w [TT] be a derivation, where
w G T* and ir is a sequence of productions. T h e n TT is called a parse.

However, a parse does not provide us enough information; therefore, exists a graphical
representation of derivation. W i t h the use of parse tree, one can easily trace the derivation
steps. B u t firstly we define a production tree.

Definition 2.1.9 (Product ion Tree)
Let G = (N,T,P,S) be a context-free grammar, and p G P. The product ion tree pt(p),
corresponding to p is a labelled elementary tree, such that lhs(p) labels root(pt) node and
frontier nodes, fr(pt(p)) are defined as follows:

• if \rhs(p)\ = 0 (p is e-production), then fr(pt(p)) consist of only one node labelled e

• if \rhs(p)\ > 0, then fr(pt(p)) consist of \rhs(p)\ nodes labelled wi th the symbols
appearing in rhs(p) from left to right

Example 2
Consider the production,

p : (expression) —>• (term) + (term)

The product ion tree pt(p), corresponding to p, looks like this:

(expression)

(term) + (term)

8

Now we have the product ion tree for each product ion. A s a derivation is a sequence of
applied productions, a parse tree is a sequence of product ion trees joint together.

Definition 2.1.10 (Parse Tree)
Let G = (N, T, P, S) be a context-free grammar. A parse tree of G is a labelled tree t
satisfying two conditions:

• root{t) is labelled wi th a start symbol S

• each elementary subtree t' appearing in t represents the product ion tree pt(p) corre­
sponding to a product ion p € P.

Example 3
Consider the productions,

1 : {expression)
2 : {expression)

{expression) + {expression)
{term)

The parse tree pt(p), corresponding to derivation

{expression) = {expression) + {expression) [1]
{expression) + {term) [2]
{term) + {term) [2]

looks like this:

{expression)

{expression) {expression)

{term) + {term)

2.1.4 Ambiguity of Context-Free Grammars

Context-free grammar means that the grammar has no context. In particular, the deriva­
t ion proceed regardless of the succession of nonterminals - regardless of the context. A n y
product ion could be applied, as long as the left hand side of the product ion is in the current
sentential form. Thus, it may happen, that one string could be derived i n many different
ways. A s a consequence one string could have more parses. In the theoretical point of view,
there is no problem, but empirics would have their point. Context-free grammars and their
derivations are not deterministic. However, w i t h some restrictions, it should get better.
The a im is to have only one parse for each string. B y stating that grammar w i l l always
rewrite only the leftmost nonterminal, we get closer to the deterministic behavior.

Definition 2.1.11 (Leftmost Derivation)
Let G = (N, T, P, S) be a context-free grammar, u G T*, v G (N U T)* and p = A -> x G P.
Then, uAv direct ly derives uxv i n the leftmost way according to p i n G, wri t ten as

uAv =>lm UXv\p]

Note 3. Analogica l ly we could define the rightmost derivation.

9

The outcome of the leftmost derivation is called left parse. It might look like the leftmost
derivation solves the problem wi th determinism, but it does not. The reason is that the
grammar could be ambiguous. It means that there exist more than one left parses for one
sentential form. Example 4 illustrates that one word could be derived wi th in a grammar
differently. The parses and also the parse trees do not coincide.

Example 4
Consider the following context-free grammar G :

1 : (expression) —>• (expression) + (expression)
2 : (expression) —>• (term)

Let us t ry deriving the string (term) + (term) + (term)

Derivation 1

(expression)

W i t h the 7Ti = [11222]

Derivation 2

(expression)

W i t h the 7T2 = [12122]

(expression) + (expression) [1]
(expression) + (expression) + (expression) [1]
(expression) + (term) + (expression) [2]
(term) + (term) + (expression) [2]
(term) + (term) + (term) [2]

(expression) + (expression) [1]
(term) + (expression) [2]
(term) + (expression) + (expression) [1]
(term) + (term) + (expression) [2]
(term) + (term) + (term) [2]

A s we see 7Ti 7̂ 7T2. The first derivation was a general one wi th no order i n picking the
productions, whereas the second one was the leftmost derivation. The th i rd derivat ion is
an example showing the ambiguity of the current context-free grammar. The derivation is
also leftmost like the second one, but the parses remain different.

Derivation 3

(expression) =4> (expression) + (expression) [1]
(expression) + (expression) + (expression) [1]
(term) + (expression) + (expression) [2]

=> (term) + (term) + (expression) [2]
(term) + (term) + (term) [2]

W i t h the 7T3 = [11222]

10

The difference is more obvious when we construct the corresponding parse trees.

{expression)

{expression)

{term) + {term) + {term)

Parse tree £2

{expression)

{expression)

{term) + {term) + {term)

Parse tree £3

This exampie shows that aiso a ieftmost derivation couid produce different ieft parses
for one string. Sometimes it might be useful, but i n our case we w i l l t ry to avoid i t .

2.2 Parsing methods

This section discusses parsing methods based on [,]. Parser is a software that performs
the syntax analysis of a certain data (usually text). A s input it gets a str ing of tokens
(usually words), and its task is to decide whether the input string is val id according to
the language or its grammar. In fact parser tries to construct a parse tree between a start
symbol and an input string. Us ing productions and their product ion trees, it tries to fill
the gap between the root and the frontier of a parse tree. It is not an easy task, as the
parser knows only few information. Those information are: start symbol, input string
and productions. We describe parsing as a process of bui lding a parse tree, but in fact
the compiler does not necessarily need to bu i ld an explicit tree. It could carry out the
translat ion directly without the tree.

There are three main parsing methods: top-down, bot tom-up and universal parsers.
It is interesting that the universal algorithms can parse any grammar, but they are very
inefficient, complicated for long input strings; therefore, they are almost never used.

2.2.1 Top-Down Parsing

Top-down method is the easiest to follow. The construction of a parse tree starts at the
root and proceeds towards the leaves in order to match the frontier.

11

Equivalently, top-down parsing can be viewed as finding a leftmost derivation
for an input string. []

M e t h o d is d ivided into derivation steps. E a c h step consists of finding the leftmost non­
terminal to apply a product ion on, and the key is finding the right product ion for the
nonterminal. One nonterminal can natural ly appear in more left hand sides of productions.
After one is picked, a simple terminal matching follows. If everything is matching wi th
the input string, we are fine, but if not, we might have picked a wrong product ion. This
problem could be solved i n two ways: by use of backtracking or predictive parsing.

Recursive-Descent Parsing

Recursive-descent parsing is a method that uses very powerful weapon; recursion. Each
nonterminal is represented by a separate function. These functions are called mutual ly
according to productions. Execut ion begins w i th a function for the start symbol, which
halts and announces success i f its body scans the entire input string.

A function of a nonterminal starts w i th the choosing one product ion wi th the same left
hand side as the nonterminal . Then for each symbol of the right hand side it performs one
of two actions depending on the type of the symbol . The parser tries to match the symbol
wi th the first not matched symbol from the input string, i f it is terminal . A s long as these
two symbols do not coincide, an error is reported. The second possible act ion is call ing
other function for a nonterminal symbol . Th is action leads to the recursion.

Recursive descent could use both the backtracking and the predictive parsing method
to eliminate the problem of product ion picking stated i n the previous section.

Table-driven Parsing

This method, does not use the recursion and takes care of the pushdown itself. The role of
pushdown is holding the sentential form of nonterminal and terminal symbols. Accord ing

Figure 2.1: Top down parsing.

12

to the symbols in the pushdown, we can determine the state of the parsing. We use the
symbol $ to mark the bot tom of the pushdown. Ini t ia l ly contains there is the start symbol
of a grammar on top of the $ i n the pushdown. The input str ing needs to be appended wi th
the $ at the end as well . The parsing ends succesfully, the input str ing is accepted by the
parser, when the bo t tom of the pushdown, matches the end of the input string (both are $
symbols). Leaving aside the terminat ing symbol $, parser accepts an input string when the
whole is matched, and the pushdown is empty. Besides the pushdown and an input string,
the method works wi th a special table, tell ing, wi tch product ion to apply when. Therefore,
it is called table-driven parsing. The table w i l l be closely described i n section 2.3.

Table-driven parsing is based on predictive syntactic analysis, but i n some cases might
use backtracking method as well . One must use it wisely, because the actions wi th the
pushdown when backtracking are not t r i v i a l as the productions are applied vice versa.

A l g o r i t h m 1: T A B L E - D R I V E N P R E D I C T I V E P A R S I N G

1 pushdown.push($)
2 pushdown.push(start Symbol)
3 while pushdown. notEmpty() do
4 token = getNextToken()
5 if pushdownTop == $ then
6 if token == $ then
7 return true
8 else
9 return false

10 end if
n else if pushdownTop.isTerminal() then
12 if token == pushdownTop then
13 pushdown. pop()
14 else
15 return false
16 end if
17 else if pushdownTop.isNonterminal() then
18 if Tableftoken, pushdownTop].exist() then
19 product ion = Tableftoken, pushdownTop]
2 0 pushdown. pop()
2 1 pushdown.push(reverse(production.rightSide))
22 else
2 3 return false
24 end if
25 else
26 return false
27 end if
28 end while

13

2.2.2 Bot tom-Up Parsing

The bottom-up parsing starts the construction of derivation from the frontier and proceeds
towards the root. In fact, it is more powerful then the top-down parser. W i t h the bot tom-
up parser we can analyse much larger class of languages. It can handle a larger class of
grammars and translat ion schemes, so software tools for generating parsers directly from
grammars often use bottom-up methods.

Input string
Figure 2.2: Bot tom-up parsing.

Later on, we use the top-down predictive table-driven parsing method. Other methods
are mentioned as an i l lustrat ion.

2.3 LL(l)Table

Following section describes a l l the necessary steps of constructing the L L (l) T a b l e . Mos t of
the definitions and algorithms, presented in this section, are taken from [5, 1].

Let us say we have a grammar, the context-free one, and we would like to parse a
string using the top-down method. A l l context-free languages, languages of context-free
grammar, can be parsed wi th general parsing methods, but general parsing methods are
not deterministic, and that is what we t ry to avoid. Nevertheless, we s t i l l have an option and
that is to convert the context-free grammar to equivalent L L (l) G r a m m a r . There are two
methods for conversion: factorization and left recursion replacement. It needs to be stated
that not a l l context-free grammars can be converted. W i t h the use of L L (l) G r a m m a r , the
power is decreased, but determinism gained.

Note 4. The name of the L L (l) g r a m m a r might be confusing so the explanation follows.
The first „ L " stands for scanning the input string from left to right, the second „ L " stands
for performing the leftmost derivation, and the „1" stands for using one symbol from the
input string at each step to make parsing action decisions.

14

Theorem 2.3.1
Context-free grammars have more power than L L (1) Grammars

L L (1) Grammars C Context-free grammars

Actual ly , s t i l l one question needs to be answered: How do we know, which of the
productions should we apply? The answer is L L (l) T a b l e . The parser has two information
at the t ime of parsing. One being a symbol from input string and the second being the
top pushdown symbol . Based on this two facts, the parser should choose the next step of
analysis, next product ion to apply. A nonterminal symbol from the top of the pushdown and
a terminal symbol from the input string could be used as indexes to a table of productions.
The clue is to have only one product ion i n each table cell. Tha t is the reason why we need
L L (l) G r a m m a r (determinism) instead of a context-free one.

To determine, which product ion should be applied i n a certain state of parsing, i n other
words, which product ion should be i n which cell of the L L (l) T a b l e , we use special sets.

2.3.1 Set Empty

Empty(x) is a set that includes e i f x derives the empty string; otherwise, Empty(x) is
empty.

Definition 2.3.1 (Set E m p t y)
Let G = (N, T, P, S) be a context-free grammar. Empty(x) = {e} i f x =4>* e; otherwise,
Empty(x) = 0, where x G (N U T)*.

A l g o r i t h m 2: S E T E M P T Y

1 foreach a G T do
2 Empty(a) = 0
3 end foreach
4 foreach A <E N do
5 if A -> e G P then
6 Empty(A) = {e}
7 else
8 Empty (A) = 0
9 end if

10 end foreach
11 while one of Empty sets can be changed do
12 if A -> X\Xi... Xn € P and Empty (Xj) = {e} for alii = 1,.. ., n then
13 Empty(A) = {e}
14 end if
15 end while

2.3.2 Set First

First{x) is a set of a l l terminals that can begin a string derivable from x.

Definition 2.3.2 (Set Fi rs t)
Let G = (N, T, P, S) be a context-free grammar. For every x G (N U T)*, we define the set
First(x) as First(x) = {a : a G T, x ^* ay; y G (N U T)*} .

15

A l g o r i t h m 3: S E T F I R S T

1 foreach a G T do
2 First(a) = {a}
3 end foreach
4 foreach A G N do
5 Firsi(^l) = 0
6 end foreach
7 while one o/ F i r s t sets can be changed do
8 if A -> A i A 2 . . . A f c _ i A f c . . . I „ e P then
9 add a l l symbols from First(X\) to First(A)

10 if Empty(Xi) = {e} for all i = 1 , . . . , /c — 1, where k < n then
n add a l l symbols from First(Xk) to First{A)
12 end if
13 end if
14 end while

2.3.3 Set Fo//ou>

Follow (A) is a set of a l l terminals that can come right after A i n a sentential form of G.

Definition 2.3.3 (Set Follow)
Let G = (N, T, P, S) be a context-free grammar. For every A G N, we define the set
Follow(A) as FoZZow(,4) = {a: a G T, 5 ^ * x,4ay; x , y G (A U T)*} U {$: S ^* xA;x e
(NUT)*}.

A l g o r i t h m 4: S E T F O L L O W

1 Follow(S) = {$}
2 while one o/ Follow sets can be changed do
3 if A —> xBy G P then
4 if y 7̂ £ then
5 add a l l symbols from First(y) to Follow(B)
6 end if
7 if Empty(y) = {e} then
8 add a l l symbols from Follow (A) to Follow (B)
9 end if

io end if
l i end while

2.3.4 Set Predict

Predict(A —>• x) is a set of a l l terminals that can begin a string obtained by a derivation
started by using product ion A —>• x .

Definition 2.3.4 (Set Predict)
Let G = (A , T , P , 5) be a context-free grammar. For every A —>• x G P , we define the set
Predict(A —>• x) so that

16

• if Empty(x) = {e} then
Predict(A x) = First(x) U Follow(A)

• if Empty(x) = 0 then
Predict(A —>• x) = First(x)

A l g o r i t h m 5: S E T P R E D I C T

l foreach p G P do
2 if 4̂ —>• x G P then
3 add a l l symbols from First{x) to Predict(A —>• x)
4 if Empty{x) = {e} then
5 add a l l symbols from Follow (A) to Predict(A —>• x)
6 end if
7 end if
8 end foreach

After we have a l l the sets we can now formally define the L L (l) G r a m m a r .

Definition 2.3.5 (LL(1)Grammar)
Let G = (N, T, P, S) be a context-free grammar. G is an L L (l) G r a m m a r , if for every a G T
and every A G iV there is no more than one A-produc t ion A —>• A i A 2 . . . A n G P such that
a G Predict(A ->• A i A 2 . . . A „)

2.3.5 Construction of L L (l) T a b l e

In order to fill the parsing table, we have to establish, what product ion should the parser
choose, i f it sees a nonterminal A on the top of its pushdown, and a symbol a as the actual
input symbol . We use these as the indexes to the table. For every product ion p G P we fill
one row of the table. The row wi th the index of lhs{p). For each a G T we fill the cell of
the row wi th the rhs(p) if a G Predict(p) or we leave the cell empty.

A l g o r i t h m 6: C O N S T R U C T I O N O F L L (1) T A B L E

1 foreach p G P do
2 foreach a G T do
3 if a G Predict{p) then
4 LL(l)Table[l / is(p)][a] = p
5 end if
6 end foreach
7 end foreach

If the table contains at most one product ion in each cell , then the parser always knows,
which product ion it has to use; therefore, it can parse without backtracking.

17

Chapter 3

Grammar Systems

To increase power and get more possibilities when parsing, we could use not only one, but
more grammars. System that is based on finite number of grammars is called a grammar
system. A grammar system is composed of components. In the simplest systems is the
component only a code name for an ordinary grammar. The work of the grammar system
itself consists of routine derivation and newly communicat ion between its components. The
communicat ion is pretty straightforward. We know two types of grammar systems: parallel
communicat ing (P C) and cooperating distr ibuted (C D) grammar systems. This chapter
takes concepts from [3, 2, 4].

3.1 Parallel Communicating Grammar Systems

A parallel communicat ing grammar system works parallel . Each component handles a sep­
arate part of an input string. In fact, components are grammars making derivation steps.
Usually, the first component is the main one, which generates the final language. W i t h the
help of the other components, of course. The system uses special query symbols to control
the parsing. These query symbols appear in sentential forms. Each symbol represents a
single component. Based on the posit ion i n the sentential form, the component determines
where to insert a sentential form of another component, corresponding to the query symbol .
Whenever a query symbol occurs, a l l components are suspended, and so called communi­
cation step is made. A l l query symbols i n current sentential forms of a l l components are
replaced wi th the corresponding components sentential form. The component, which has
sent its sentential form, could rather continue i n the current derivation or start the deriva­
t ion once again from the start symbol . Then the grammar system gets a tag returning.
There are many modifications to the main analysis method, see [2].

Definition 3.1.1 (Paral lel Communica t ing Grammar System)
A parallel communicat ing grammar system of degree n,n > 1, is a construct

T = (N,T, K, (S1,P1),...,(Sn,Pn))

where

• iV is an alphabet of nonterminals

• T is an alphabet of terminals, N n T = 0

• K is a finite set of query symbols, K = {Qi,..., Qn}

18

• Pi is a finite set of productions of the form A —>• x w i th A G iV and x G (iV U T U -f^)*,
for each i G { 1 , . . . , n}

• S i is the start symbol of the i - th component 5j G iV , for each i G { 1 , . . . , n}

• and the pair (P, , S^) is the component of T, for each i G { 1 , . . . , n}

Note 5. Sets iV, T , K are pairwise disjoint: N C\T = $, N C\ K = $ and T n i f = 0

3.2 Cooperating Distributed Grammar Systems

O n the other hand, cooperating distr ibuted grammar system works sequentially. System as
well has its components, but only one is making derivation step at the time. Unsurprisingly,
behind the term component is hidden a grammar. Components take turns and together
work on one sentential form. Selection of the component, which w i l l be making derivation
steps is not specified; therefore, it could be random. Number of steps a component makes,
un t i l it passes the control to another one, is determined by the mode of the component.
The end of derivation w i l l usually come when neither of the components could do a further
derivation step.

3.2.1 Blackboard Systems

In fact the research of cooperating grammar systems is connected wi th the blackboard
systems, blackboard problem solving and blackboard model, see [6].

Definition 3.2.1 (Blackboard Model)
The blackboard model is usually described as consisting of three major components:

1. The knowledge sources. The knowledge needed to solve the problem is part i t ioned
into knowledge sources, which are kept separate and independent.

2. The blackboard data structure. The problem-solving state data are kept i n a global
database, the blackboard. Knowledge sources produce changes to the blackboard
which lead incrementally to a solution to the problem. Communica t ion and interac­
t ion among the knowledge sources take place solely through the blackboard.

3. Control component. It makes runtime decisions about the course of problem solving
and the expenditure of problem-solving resources.

It is good to illustrate the blackboard system on an example.

Example 5
Let us have a room of people each w i t h some pieces of jigsaw they want to put together.
These are our knowledge sources. They have a frame for the jigsaw as the blackboard data
structure. Each person looks at his pieces and sees i f any of them fit into the pieces already
in the frame. Those w i t h the appropriate pieces go up to the blackboard and update the
evolving solution. The new updates cause other pieces to fall into place, and other people
to add their pieces. There is one extra person i n the room, the arbiter deciding who is
going to put a piece into the jigsaw. He is the control component of the blackboard system.
The knowledge sources can solve the jigsaw even without communicat ing wi th each other
because everybody knows when he should contribute.

19

Y o u might have noticed that the blackboard system is very similar to our cooperating
distr ibuted grammar system. The knowledge sources are i n grammar systems represented
by the components or grammars. The blackboard data structure is modelled by a senten­
t i a l form, in which the components of grammar system make their rewritings. Therefore,
cooperating distr ibuted grammar systems and their methods of parsing are used to solve
problems of blackboard systems. The problem is solved by grammars making derivation
steps and reaching the sentential form containing only terminals.

Definition 3.2.2 (Cooperat ing Disr ibuted Grammar System)
A cooperating distr ibuted grammar system of degree n,n > 1, is a construct

T = (N,T,S,P1,...,Pn)

where

• iV is an alphabet of nonterminals

• T is an alphabet of terminals, N n T = 0

• S is a start symbol

• Pi is a finite set of productions, called component of T, for each i G { 1 , . . . , n}

Note 6. The i - th grammar is Gi = (N, T, Pi, S)

3.2.2 Derivation Modes

A s mentioned before, cooperating distr ibuted grammar system works i n a certain mode.
These modes define how many derivation steps each component makes during its single
run. The usual ones are /c-step, at most fc-step and at least fc-step derivation modes. The
one that we are interested i n is the terminat ing mode. Each component of a cooperating
distr ibuted grammar system working in the terminat ing mode makes derivation steps unt i l
it can, un t i l there is a nonterminal that can be rewrit ten applying one of productions.

Definition 3.2.3 (Terminat ing mode)
For each i G { 1 , . . . , n} terminat ing derivation by the i - th component is

if

1. x ^* y i n Gi = (N, T, Pi, S) where y G (N U Tf and

2. y ^ z for a l l z G (i V U T) *

Notice that the sentential form y does not need to be a string of terminals. It can contain
some nonterminals, which other components are able to rewrite. A n d obviously, when one
of the components derives a string of terminals, it is the end of parsing. It depends on the
posit ion i n the input string, whether the parsing ends wi th success or w i th an error.

Note 7. The t ime while a component is active, while it performs derivation, is called a
component run. D u r i n g the parsing one component can run several times. A component
run can end in different ways:

• w i th empty pushdown

• w i th a not matched terminal at the top of the pushdown

• lacking a product ion for a nonterminal at the top of the pushdown

20

Chapter 4

Cooperating Distributed Grammar
Systems Adapted for Parsing

In previous chapters we explained a l l necessary knowledge about grammars, grammar sys­
tems and parsing. W h a t we want to do now, is to take a cooperating grammar system and
implement a parser based on it . If we were t ry ing to do it based on the definition 3.2.2, we
would run into some difficulties.

4.1 Problems specification

Firs t of a l l , the system has to select a component which should start parsing. There
is no rule for it , so any component could start. After the start component finishes its
work, once again it is not specified, which component should continue. Th is is the first
problem of component selection. D o we know when to end one components work and
pass control to another? Tha t is the second problem of component work durat ion. A s we
know, components of grammar system are grammars most often context-free grammars.
Pure context-free grammar can potential ly rewrite any symbol of the sentential form. The
only restriction is that there has to be a product ion for each symbol . Not knowing which
symbol to rewrite is the th i rd problem of symbol selection. A s we discovered i n example 4
context-free grammars are ambiguous, meaning that one sentential form could be reached
in different ways, it can have different parse trees. The fourth problem is then the grammar
ambiguity.

A n d why do we want to avoid these problems? We want a fully deterministic parser
which goes only forward and does not need backtracking. The main problem of backtracking
that we are not satisfied wi th , is the fact, that when a parser does not know how to
continue, it throws away al l his work and goes back. The machine t ime spent on analysis
is irretrievably lost.

To sum this section up, here are the four ma in problems of cooperating distr ibuted
grammar system:

1. Component selection problem

2. Component work durat ion problem

3. Symbol selection problem

4. Grammar ambiguity problem

21

4.2 From Cooperating Distributed Grammar System to a
Deterministic Parser

In this section we start w i th the cooperating distr ibuted grammar system defined i n section
3.2. B y some li t t le modifications and restrictions we are going to solve problems 4.1 and
get a deterministic parser.

4.2.1 Symbol selection problem

Actua l l y the solution is pretty simple, as in section 2.1, we can restrict the context-free
grammar to rewrite always the leftmost nonterminal . Each grammar performs the leftmost
derivation 2.1.11.

4.2.2 Grammar ambiguity problem

The context-free grammar could be ambiguous and to make sure it is not, we t ry to convert
it to the L L (l) G r a m m a r , defined 2.3.5 before. It can generate less languages, so the power
is decreased, but there is no other choice. B y having L L (l) G r a m m a r we w i l l use top-down
table-driven predictive parsing method. A l i t t le inconvenience is the need to construct a
L L (l) T a b l e . The construction is closely described i n section 2.3.

4.2.3 Component work duration problem

The cooperating distr ibuted grammar system has its components working sequentially, w i th
only one performing derivation at a t ime. Al te rna t ion of components is very crucial . If
we set an exact number of steps each component could make i n one run, some compo­
nents might be handicapped. The most proper behavior we get, when we use cooperating
distr ibuted grammar system i n the terminat ing mode 3.2.3.

4.2.4 Component selection problem

Before the actual parsing starts, parser has to choose from the components, which one w i l l
start. It would make no sense to choose a component, which cannot rewrite the start symbol
of a grammar system. O n l y a component having a product ion wi th the start symbol on its
left hand side, can start. It is possible that more components are able to rewrite the start
symbol. Then we could completely rule this case out, but the power of a system would
decrease. Instead, the parser selects one of possible start components and add the start
symbol to i t . However it has to be done for each component of a system, while the problem
wi th selection would arise once again, after the start component finishes its run. Each
component has to have a unique start symbol to ensure determinism. If this uniqueness is
not secured, the method w i l l not work. A l l start symbols merged together create a set of
switch symbols, shortly switchers.

W h e n a switcher appears at the top of the pushdown, a component switch is about to
come. Basically, it is the same as i n terminat ing mode of cooperating distr ibuted gram­
mar system. The control grammar can not continue but according to the switcher it can
choose only one component to continue. The advantage is obvious, rigorously deterministic
behavior of the system. Al though , there is one more problem to solve.

W h a t i f a component ends its run and there is no switcher at the top of the pushdown?
Presumably, the parser should end wi th an error and rejection of the input string. Instead

22

of returning an error, the component could return control to the one, which invoked its
run. Here withstands the possibil i ty to recursively plunge deeper and deeper. W i t h this
specification of behavior, the system has more power, and once again is able generate much
larger class of languages.

The start component can be promoted to the control component. Tha t means, the
component controls the whole parsing. Selecting a component to run after one ends and
making the decision of acceptance the input string, are two task of the control component.

The following example illustrates the functioning of such system.

Example 6
Let G i , G2, G3 some L L (l) G r a m m a r s and Si, S2, S3 their start symbols. The Si is the start
symbol for the whole system so the Gi grammar is the control grammar. Start component
begins its run and reaches the switcher S2. Cont ro l is handed to the G2 grammar. The
parsing continues un t i l the switch symbol S3 appears at the top of the pushdown. There
goes the G3 grammar and takes control. It reaches a symbol, not from the set of switchers
and there is no product ion to apply on i t . The control is returned to the G2 grammar. G2
could continue parsing or hand back control to the G\. It depends on the top symbol of
the pushdown. If there is a product ion G2 can use it continues, i f not control is returned
to the control grammar G\.

Definition 4.2.1 (Cooperat ing Dis t r ibuted G r a m m a r System wi th Switchers)
A cooperating distr ibuted grammar system wi th switchers of degree n, n > 1, is a construct

T = (N,T,S, (Pi,Si),...,(Pn,Sn))

where

• N is an alphabet of nonterminals

• T is an alphabet of terminals

• S is the system start symbol, S G T and S G {Si,..., Sn}

• Pi is a finite set of L L productions (for every a G T and every A G N there is no
more than one A-produc t ion A —>• X1X2 • • • Xn G Pi such that a G Predict(A —>
X1X2 • • • Xn)), for each i G { 1 , . . . , n}

• Si is a switcher, Si G N, for each i G { 1 , . . . ,n)

• and the pair (Pi, Si) is called a component of T, for each i G { 1 , . . . ,n)

Note 8. W h e n generating a parse the productions are labelled wi th the number of com­
ponent and the number of product ion. Four th product ion of th i rd component would be
labelled 3.4 and 5.1 would mark the first product ion of fifth component. In the parse these
labels are separated by semicolons [3.4; 5.1; 5.4].

4.3 Parsing Algorithm

The ini t ia l izat ion phase consist of several steps. F i rs t , the pushdown of symbols is prepared,
so the system start symbol S is on its top and the terminat ing symbol $ is on its bot tom.
Then according to the system start symbol a start component is selected. The system start

23

symbol is same as the component start symbol, Si = S. Now the actual process of parsing
can start.

The program cycles, while the pushdown is not empty. It is an infinite loop as we find
out later. D u r i n g the loop the process can end wi th an error or success. In other words,
it can accept or reject the input string. Fi rs t , the next symbol from input string is loaded.
Accord ing to the type of the pushdown-top symbol , there are three possible scenarios.

W h e n the symbol equals to $, it is the terminat ing symbol, we are at the bo t tom of
the pushdown. The actual input symbol should be $ as well . In this case the process ends
successfully and the input str ing is accepted by the system, w G L(T). Otherwise it is an
error and the string is not accepted, w G" L(T).

If the pushdown-top symbol belongs the set of terminals, pushdown-top G T , the be­
havior is very similar. The system compares the symbol w i t h the actual input symbol, and
when these symbols coincide the pushdown-top is removed. Obviously not matching the
input symbol leads to an error and end of the analysis, w G" L(T).

The th i rd option is that the symbol belongs to the set of nonterminals, pushdown-top G
N. Then, it is the right t ime to use L L (l) T a b l e , to look for a product ion that can be
applied. If there is a record for the couple [input symbol , pushdown-top] i n the table, the
parser performs a derivation step. The pushdown-top, same as the left hand side of the
production, is replaced wi th the right hand side of the production, found i n the table.
Important is to push symbols from the right hand side of the product ion i n right order. So
that, after the operation, there is the leftmost symobol on the top of the pushdown. To
make it clear, symbols are pushed to the pushdown i n reverse order.

If there is no product ion for the couple [input symbol , pushdown-top] i n the current
table, the parser should look into another, by switching to another component. The next
step is checking, whether the pushdown-top is equal to one of the switchers. If the parser
finds accordance, it stores the actual component to a component-stack i n order to come
back to it later. T h e n the control is passed to the component having the start symbol
coinciding wi th the pushdown-top, and parsing continues.

If the pushdown-top symbol does not belong to any set, it is not an error yet. The parser
looks at the component-stack for a component, which invoked its run. The component from
the top of the component-stack regains control and tries to continue.

A n d finally, if even the component-stack is empty, there is no possibil i ty to continue,
parser announces an error, and rejects the input string.

24

A l g o r i t h m 7: C O O P E R A T I N G D I S T R I B U T E D G R A M M A R S Y S T E M W I T H S W I T C H E R S

1 pushdown.push($)
2 pushdown.push.(systemStartSymbol)
3 component = g e t C o m p o n e n t W i t h S t a r t S y m b o l (s y s t e m 5 t a r t 5 y m & o £)
4 while pushdown. notEmpty() do
5 symbol = getNext lnput Symbol ()
6 if pushdownTop == $ then
7 if symbol == $ then
8 return true
9 else

1 0 return false
n end if
12 else if pushdownTop. is Terminal() then
13 if symbol == pushdownTop then
14 pushdown. pop()
15 else
16 return false
17 end if
18 else if puhdownTop.isNonterminal() then
19 if tablefsymbol, pushdownTop]'. exist() then
2 0 product ion = tablefsymbol, pushdownTop]
2 1 pushdown. pop()
2 2 pushdown.push(reverse(production.rightHandSide))
2 3 else if pushdownTop.isSwitcher() then
24 stack, push (component)
2 5 component = getComponentWithStar tSymbol(pushdownTop)
26 else if stack.notEmpty() then
27 component = stack.pop()
28 else
2 9 return false
30 end if
31 else
32 return false
33 end if
34 end while

25

4.4 Properties of the new method

This section examines properties of the new parsing method and compares it w i th the
standard methods. One of our targets was modifying the parsing method without loosing
power. To find out if the power was not decreased we tr ied generating some complex
syntactic structures such as anbncn.

Example 7

This is an example of the system, which possibly could generate the anbncn string:

= ({S, A, B, C}, {a, b, c}, S, (P 1 ; S), (P 2 , A), (P 3 , C))

1. S ^ e

2. S^AC

1. A -> aB

2. C^cD

1. B ^ AB

2. B ->• b

3. D

4. D
Let us create parse trees for two input strings: aabbcc and aabbc

S S

CD

£

A

a B c D

A B

a B b

A

a B c D

C D

c e

A B

a a b b c c

a B b

b

a a b b c

A s we see the system accepts both strings; therefore, we can only state it generates
anbncm.

Each modification of standard parsing methods, using only one grammar, brings the parser
closer to determinism, what usually reflects i n loss of power. It seems like systems wi th
mult iple grammars inherit this behavior. W i t h more determinism the system looses power.

26

Chapter 5

Parser

This chapter speaks about the implementat ion of cooperative distr ibuted grammar system
wi th switchers. Here are the ma in properties we concentrated on during the design and
implementation itself:

• universality

• s implic i ty

• implementat ion representing the theoretical model

• no backtracking

• prepared for further modifications

5.1 Design

Fi r s t ly we wanted an universal parser, which does not depend on any specific grammar.
Therefore, a predictive table-driven method was the clear choice. In any t ime one can
just change the table and parse completely different languages or syntactic structures. The
parser remains the same. A s for the simplicity, we wanted the parser to be as simple as
possible. There is no lexical analysis or code generation, the focus is fully on the parsing.
Next th ing we wanted, was the implementat ion of the actual model. A l l the theoretical
structures like sets of symbol , productions, tables etc. are represented alike i n the program.
This should help people, who are not that into programming, understand what is happening,
and where to look i f they want to find something specific. We have explained why and how to
avoid the backtracking i n section 4.1. The whole system is designed to be easily modifiable,
i n case the research progresses and someone would like to add new features.

5.2 Implementation

We choose to implement the parser i n Java, because it is mult i-platform, object oriented and
provides many useful data abstractions. The parsing algori thm itself 4 was no a problem.
The method start takes an input str ing as a parameter and returns true or false according
to the result of analysis. A side product of analysis is the parse printed to the standard
output. Actua l ly , the harder part is bui ld ing the data structures necessary for parsing.
These are represented as a complex hierarchy of objects, t ry ing to follow the theoretical

27

model. The Grammar System object encapsulates a l l these data structures. For example
it contains its sets of nonterminals N and terminals T, represented as Set objects in Java,
behaving like a real sets. Another important object is a Component containing so needed
parse-table. LLTable is also a separate object an the implementat ion can be reused in other
parsers. In in i t ia l iza t ion phase the table can be s imply copied from the input file or can
be generated from the productions. More on that i n section 5.4. The Production object
provides methods returning left hand side, right hand side and even a reversed right hand
side of a product ion. If the system contains only one component, it works as a standard
single grammar parser. Details of class dependencies of the system are can be viewed in
Append ix A .

5.3 Use

The parser performs syntactic analysis according to a grammar system. The system is
loaded from a file, which has to be prepared i n advance. A path to the file is the one and
only argument a user has to enter when running the parser. A detailed specification of the
grammar system file can be found i n Append ix B . If the parser is run without arguments,
then an impl ic i t grammar system is used. After the ini t ia l izat ion, system prints out the
specification of a grammar system loaded, and it awaits a str ing of input symbols del imited
by spaces and terminated by a newline. Analyzer prints its parse and true on success and
a par t ia l parse wi th false on failure. E i ther of results do not terminate the parser. O n l y
an empty input string does that.

5.4 LL(l)Table Generator

The construction of L L(l) T a b l e is not easy and takes some t ime. In order to save this t ime,
an automatic construction was implemented. A user just has to provide productions and
the start symbol, the system does a l l the hard work for h im . The generator creates a special
Symbol object for each unique symbol appearing i n productions and holds information about
the symbol . Methods of Component object: createSymbols, createEmpty 2, createFirst
3, createFollow 4, createPredict 5 and the last createTable 6, encapsulating a l l the
previous, follow the algorithms i n section 2.3. Sets of terminals and nonterminals are also
generated automatically.

Note 9. The first component in the file is considered the start one.

28

Chapter 6

Conclusion

This work was focused on systems of sequential grammars and their adaptation for parsing.
In another words, the a im was to create and later implement an effective parser based on
these systems. B y studying the properties of context-free grammars, parsing methods and
mainly the grammar systems, we identified some issues leading to possible need of back­
tracking during the parsing. In our parser we wanted to avoid the backtracking; therefore,
we brought up some restrictions and modifications to the general methods. B y using the
L L (l) T a b l e w i t h table-driven predictive parsing method, we eliminated grammar ambiguity
and mult iple parse trees and parses for one analysed string. A d d i n g special "switch" sym­
bols to each component of a grammar system solved indecision, when selecting component.
Eventually, we managed to create a fully deterministic parser based on grammar systems.

The model was implemented and successfully tested. We have made a remarkable dis­
covery thanks to implementat ion of L L (l) T a b l e generator. The newly introduced switchers
were considered as nonterminal symbols. However, it is not that clear. In some components
a switcher acts like a terminal symbol, and i n some it acts like a nonterminal symbol . One
could have a point that it is not acceptable, but i n fact it is the only way because the
switcher in one component can not be rewritten, and i n another one it is the start symbol .
However, when we take the system as a whole, switcher belongs definitely to the set of
nonterminal symbols.

Ta lk ing about the properties of these new methods, we found out that the system is
able to generate only context-free languages. The power of cooperating distr ibuted grammar
systems was not reached, but for most compilers it does not matter. The reason why, is
because programming languages are context-free, and it should work well . O n the other
hand, the new method brings some positives. Backt racking was completely eliminated.
Components have smaller L L (l) T a b l e s , than a single grammar would have. W h e n the
parser is looking for a production, it has less space to search.

After some more testing and investigation of the parser, we got some new ideas for the
parser improvement. Some component runs are mostly the same, so the parser could some­
how remember them and reuse later. Therefore, it does not have to search the L L (l) T a b l e ,
work wi th the pushdown, and generate a parse once again. Instead, a stored parse or parse
tree would be used. It must be remembered that we are using recursion. Some syntactic
structures could lead to cyclic component switching, deadlock. One component is call ing
for other to perform derivation while the other component is asking the first one to run.
W h a t if we could detect and avoid being stuck i n an infinite loop?

To increase power of the parser we looked closer at the example 7. The work wi th the
pushdown could be upgraded as well . W h a t if a component w i l l not give up the control when

29

it reaches first nonterminal, which it can not rewrite. Maybe , it could rewrite some symbols
deeper i n the pushdown. B y allowing components to look deeper into the pushdown and
rewrite a l l symbols they know, we assume the power w i l l increase. The following example
shows once again the analysis of string anbncn.

Example 8

s s s

A C A C A C

a a A B a

The difference is i n firstly rewri t ing C before switching to the th i rd component and rewrit ing
B.

It is upon further research to implement this variat ion of grammar system and test it
properly. If one can prove that the system is generating larger group of languages than
context-free languages, it would be very interesting.

30

Bibliography

[1] A . V . A h o , M . S . L a m , J . D . U l l m a n , and R . Sethi. Compilers: Principles, Techniques,
and Tools. Pearson Educat ion , 2011.

[2] M . Č e r m á k . Formal Systems Based upon Automata and Grammars. P h D thesis,
Universi ty of Technology, Brno , may 2012.

[3] E . Csuhaj-Varju . Grammar Systems: A Grammatical Approach to Distribution and
Cooperation. Topics i n computer mathematics. Gordon and Breach, 1994.

[4] R . L u k á š . Multigenerativní gramatické systémy. P h D thesis, Univers i ty of Technology,
Brno , June 2006.

[5] A . Meduna . Automata and Languages: Theory and Applications. Springer London ,
2000.

[6] H . Yenny N i i . B lackboard systems. Technical Report STAN-CS-86-1123 , Department
of Computer Science, Stanford University, 1986.

31

Appendix A

Class Diagram

class Parser /

GrammarSystem

N: Set<String>
T: Set<String>
S : String
C: Component

GrammarSystem(String, String, String, String)
GrainmarSystein(String)
isTerminal(String): boolean
isNonterminal(String) : boolean
isSwitcher(String, Str ing): boolean
findComponent(String): Component
printSystem() : void
start(String): boolean
addNonterminals(Component): void
addTerminals(Component) : void

Production

Ihs: String
rhs: List<String>
Predict: Set<String>
p: int

Production(String, int)
getRight() : List<String>
getRevRight(): List<String>
getLeft(): String
getl_abel{) : int
getPredictf) : Set<String>
printProduction() : void
printPredict() : void
addPredict(Set<String>)
createPredict(Set<String>)

Component

P: Production
S: String
T: LLTable
Syms: Symbol
Num: int

Component(String, String, String, int)
Component(String, int)
getProduction(int) : List<String>
getRevProduction(int): List<String>
getStart(): String
getProductionFromTable(String, String) : int
printComponentQ : void
createTable(): void
createSymbols() : int
createEmpty(): void
createFirstQ : void
Empty(List<String>) : boolean
First(List<String>) : Set<String>
createFollow(): void
createPredict() : void
getNonterminals{): Set<String>
getTerminalsQ : Set<String>
getNumberf) : int

LLTable

Terminals: String
Nonterminals: String
Table: int

LLTable(String, String, String)
LLTable(Production, Set<Symbol>)
printTable{) : void
isTerminal(String): boolean
isNonterminal(String) : boolean
getProduction(String. String) : int
getTerminals{) : Set<String>
getNonterminals(): Set<String>

+Syms m -

Symbol

Empty: boolean
S : String
First: Set<String>
Follow: Set<String>

Symbol(String)
isEmptyO : boolean
setEmpty(): boolean
addFirst(String) : void
copyFirst{Set<String>): boolean
getFirst(): Set<String>
addFollow(String) : void
copyFollow{Set<String>) : boolean
getFollow{): Set<String>

Figure A . l : Class Diagram.

32

Appendix B

Grammar System File Specification

The file w i th the specification grammar system has a specific format. It consist of compo­
nent specifications del imited by ' ~ ' character. E a c h component specification begins w i th
its start symbol and a semicolon ' ; ' right after it , followed by a list of productions. Each
component has to have at least one product ion. A product ion definition starts w i th a left
hand side nonterminal w i th symbols ' = > ' immediately after. The right hand side symbols
are separated by spaces ' ' and follow immediately after the arrow symbol . A product ion
definition is always terminated wi th a semicolon. A s for the epsilon productions, no special
symbol is needed for epsilon, leaving the right hand side of the product ion empty is enough
(empty means at least one space).

Syntax of the file defines the following B N F :

(file) —>• (component) (nextC omponent)

(nextcomponent) —>• ~ (component) (nextComponent) \ e

(component) —>• s tar tSymbol; (productions)

(productions) —>• (production) (nextProduction)

(nextProduction) —>• (production) (nextProduction) \ e

(production) —>• Symbo l=> (rightHandSideSymbols);

(rightHandSideSymbols) —>• Symbol(nextSymbol) | (space)

(nextSymbol) —>• (space) Symbol (nextSymbol) \ e

33

Example 9
Here is an example of a grammar system file:

S;

S = > i = E S';

S = > f E t S e S S';

S=>r E ;

S'=>S;

S'=>$;

E :

E = > (E) ;

E = > i E ' ;

E ' = > o E ;

E ' = > ;

Y o u could have noticed that some newlines were included for a better overview. The
parser ignores them during the ini t ia l izat ion of a grammar system.

34

