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ABSTRACT 
This bachelor's thesis is concerned with the development and evaluation of advanced 
methods for medical image segmentation in the context of limited training data. The 
study examines supervised learning techniques employing Convolutional Neural Networks 
(CNNs), transfer learning with pre-trained models, and semi-supervised learning strate­
gies. 
A supervised convolutional neural network (CNN) model based on the U-Net architecture 
was employed as the baseline, achieving a Dice coefficient of 77.6% and an intersection 
over union (loll) of 63.4%. The application of transfer learning using a ResNet34 
encoder pre-trained on ImageNet led to a notable improvement in performance, with a 
Dice coefficient of 81.9%, an loll of 69.3%, and an accuracy of 96.7%. 
Furthermore, semi-supervised learning strategies, including pseudo-labeling and denoising 
pretraining, were employed to enhance the model's performance. The pseudo-labeling 
approach yielded a Dice coefficient of 81.7% and an loll of 69.1%, thereby demon­
strating the efficacy of leveraging unlabeled data. The denoising pretraining approach 
demonstrated robust performance, achieving a Dice coefficient of 80.3% and an loll of 
67.0%, even in the presence of noisy and unlabeled data. 
These outcomes underscore the potential of transfer learning and semi-supervised meth­
ods to enhance segmentation accuracy in medical image analysis. They provide a robust 
foundation for future research in this field. 

KEYWORDS 
Medical Image Segmentation, Convolutional Neural Networks, Transfer Learning, Semi-
supervised Learning, Pseudo-labeling, Denoising Pretraining, U-Net, ResNet34, Retinal 
Images 



ABSTRAKT 
Tato bakalářská práce se zabývá vývojem a hodnocením pokročilých metod pro segmen­
taci lékařských snímků v kontextu omezených trénovacích dat. Studie zkoumá techniky 
učení pod dohledem využívající konvoluční neuronové sítě (CNN), přenosové učení s 
předtrénovanými modely a strategie učení s částečným dohledem. 
Jako základní model byl použit model konvoluční neuronové sítě (CNN) s dohledem 
založený na architektuře U-Net, který dosáhl koeficientu Dice 77,6% a průniku nad 
sjednocením (loU) 63,4%. Použití přenosového učení pomocí kodéru ResNet34 před-
trénovaného na síti ImageNet vedlo k výraznému zlepšení výkonu s koeficientem Dice 
81,9%, loU 69,3% a přesností 96,7%. 
Kromě toho byly ke zvýšení výkonu modelu použity strategie učení s částečným do­
hledem, včetně pseudoznačení a předtrénování denoizace. Přístup pseudoznačení přinesl 
koeficient Dice 81,7% a loU 69,1%, čímž prokázal účinnost využití neoznačených dat. 
Přístup před tréninkem denoizace prokázal robustní výkonnost a dosáhl koeficientu Dice 
80,3% a loU 67,0%, a to i v přítomnosti zašuměných a neoznačených dat. 
Tyto výsledky podtrhují potenciál transferového učení a poloprovozních metod pro zvý­
šení přesnosti segmentace při analýze lékařských snímků. Poskytují solidní základ pro 
budoucí výzkum v této oblasti. 

KLÍČOVÁ SLOVA 
Segmentace lékařských snímků, konvoluční neuronové sítě, učení s přenosem, učení s čás­
tečným dohledem, pseudoznačení, předtrénování denoisingu, U-Net, ResNet34, snímky 
sítnice 

Typeset by the thesis package, version 4.09; https://latex.fekt.vut.cz/ 

https://latex.fekt.vut.cz/


ROZŠÍŘENÝ ABSTRAKT 
Tato práce zkoumá potenciál konvolučních neuronových sítí (CNN) pro segmentaci 
lékařských snímků se zvláštním zaměřením na použití neoznačených dat. Přesná seg­
mentace sítnicových cév má zásadní význam pro diagnostiku diabetické retinopatie 
(DR), která je hlavní příčinou slepoty. Nástup konvolučních neuronových sítí (CNN), 
zejména architektury U-Net, změnil tuto oblast a umožňuje přesnější a automatizo­
vanější analýzu než tradiční metody strojového učení. 

Úvodní fáze studie zahrnuje přehled vývoje C N N a jejich rostoucího významu v 
analýze lékařských obrazů. Jako základ slouží model U-Net, který je známý svou 
účinností a přesností při biomedicínské segmentaci. Architektura U-Net, zahrnující 
kontrakční a expanzní cesty, umožňuje extrakci a lokalizaci detailních rysů, což z ní 
činí účinný nástroj pro segmentaci obrazu sítnice. 

Ústředním tématem této práce je zkoumání technik pro zvýšení výkonu C N N , 
zejména v kontextu omezených označených dat. To zahrnuje strategie učení s 
přenosem a částečně řízeného učení. Přenosové učení využívá kodér ResNet34 , 
který byl předem natrénován na datové sadě ImageNet, což výrazně zlepšuje seg-
mentační metriky. Model dosáhl koeficientu Dice 81,9%, Intersection over Union 
(IoU) 69,3% a přesnosti 96,7%, což dokazuje výhody využití předtrénovaných mod­
elů pro specializované lékařské úlohy. 

Tato práce rozsáhle analyzuje strategie učení s polopřímým dohledem. Využití 
pseudoznačení, které zahrnuje předem vycvičený model generující štítky pro neoz­
načená data, přineslo koeficient Dice 81,7% a IoU 69,1%. Použití předtrénování 
denoizace, které zahrnovalo trénování modelu k odstranění šumu z obrázků před 
jemným doladěním pro segmentaci, přineslo koeficient Dice 80,3% a IoU 67,0%. 
Tyto metody ukazují potenciál využití neoznačených dat ke zvýšení robustnosti a 
přesnosti modelu. 

Součástí práce je také komplexní analýza segmentace snímků sítnice z databáze 
High-Resolution Fundus Image Database (HRF), která obsahuje snímky s rozlišením 
3504x2336 pixelů. Model U-Net prokázal schopnost rozlišovat mezi cévními a necévními 
oblastmi s průměrnou přesností 95,9%. Metriky přesnosti (precision) a odvolání (re-
call) byly 82,6%, resp. 90,8%, s koeficientem Dice 77% a IoU 62,7%. Tyto hodnoty 
potvrzují účinnost modelu při vytváření přesných segmentací, které se přesně shodují 
s manuálními anotacemi. 

Integrace konvolučních neuronových sítí (CNN) do zobrazování sítnice před­
stavuje významný pokrok v lékařské diagnostice. Jejich schopnost zpracovávat 
složité obrazy a poskytovat přesné výsledky segmentace z nich činí účinný nástroj 
pro analýzu stavů, jako je diabetická retinopatie. Pokračující vývoj v této oblasti 
naznačuje, že konvoluční neuronové sítě (CNN) se mohou stát standardním nástro­
jem v lékařském zobrazování, který nabídne lepší diagnostické schopnosti a lepší 



výsledky pro pacienty. 
Závěrem tato práce poskytuje komplexní hodnocení metod založených na kon-

volučních neuronových sítích (CNN) pro segmentaci obrazu sítnice, přičemž se výrazně 
zaměřuje na využití neoznačených dat. Zejména strategie učení s přenosem a částečně 
řízeného učení prokázaly značný potenciál pro zvýšení segmentačního výkonu, což 
z nich činí cenné nástroje pro analýzu lékařských obrazů. Budoucí výzkum by se 
měl zaměřit na zdokonalení těchto metod, zkoumání hybridních modelů a optimal­
izaci parametrů učení s cílem dále zvýšit přesnost segmentace a použitelnost těchto 
metod v celé řadě úloh lékařského zobrazování. 
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Introduction 
The evolution of medical image segmentation has been profoundly influenced by ad­
vancements in machine learning, mainly through the development of Convolutional 
Neural Networks (CNNs). A significant milestone in this field was the introduction 
of the U-Net architecture by Ronneberger, Fischer, and Brox[4], designed explic­
itly for biomedical image segmentation. This model, characterized by its unique 
architecture that includes a contracting path to capture context and a symmetric 
expanding approach for precise localization, has been widely used due to its efficiency 
in various medical imaging applications, including retinal image segmentation. 

Diabetic Retinopathy (DR) is a primary application area for these advanced 
segmentation techniques. As a complication of diabetes, DR is a leading cause 
of vision impairment and blindness globally, particularly affecting the working-age 
population. Conventional methods for DR segmentation, primarily based on manual 
analysis, are not only time-consuming but also cause errors due to the complex 
nature of retinal images. The U-Net and similar C N N models offer an opportunity to 
automate and enhance the accuracy of this segmentation process, which is essential 
for early diagnosis and treatment. 

However, the reliance on extensively labeled datasets poses a significant limi­
tation in the broader application of these models. Creating such datasets is often 
resource-intensive and impractical, especially in medical fields where expert anno­
tation is required. That's why this thesis explores the potential of using unlabeled 
data for retinal segmentation in DR. Inspired by studies like Rubin et al.'s work[5] 
on T O P - G A N for cancer cell classification using deep learning with minimal labeled 
data, one of these thesis goals is to analyze and expand methods for effectively 
training C N N models with limited or no labeled data. 

The potential of using unlabeled data in deep learning could not only increase 
resource efficiency but also contribute to leveraging the vast amounts of unlabeled 
medical images that are currently underutilized. Studies have shown that models 
trained on large, diverse datasets, even if unlabeled, can achieve remarkable accuracy 
and generalization capabilities. This approach aligns with the current trend in 
deep learning, which emphasizes the importance of data quantity and diversity over 
extensive labeling. 

This thesis expands the domain of medical image analysis, particularly retinal 
segmentation for DR. As a result, a novel, efficient approach to retinal segmentation 
that could significantly impact the early detection and management of DR was 
developed. 

12 



1 Literature Review 

1.1 Theoretical Foundations of CNNs in 
Diabetic Retinopathy and Retinal Imaging 

The evolution of Convolutional Neural Networks (CNNs) has had a profound impact 
on medical image analysis. Originating in the 1970s, CNNs experienced a resurgence 
with the rise of deep learning technologies. This resurgence was marked by their en­
hanced capability to process and interpret complexutilization, surpassing traditional 
machine learning methods. The significance of CNNs in medical imaging, partic­
ularly in the segmentation of retinal images, is huge. They offer an automated, 
efficient, and accurate approach to image analysis, which is crucial in diagnosing 
conditions like Diabetic Retinopathy (DR).[6] 

DR, a direct consequence of vascular anomalies related to diabetes in the retina, 
is a leading cause of blindness. The segmentation of retinal blood vessels in fundus 
images is a critical step in diagnosing and treating DR. However, this process is chal­
lenging: variability in vessel size, low image contrast, and the presence of pathologies 
such as hemorrhages make segmentation a complex task. Traditional segmentation 
methods, including various machine learning and morphological approaches, have 
been used but with limitations in terms of accuracy and efficiency. [6] 

Deep learning, particularly through CNNs, has revolutionized retinal vessel seg­
mentation. These networks can autonomously learn from raw image data, making 
them well-suited for processing complex retinal images. Unlike traditional meth­
ods, which often involve manual feature coding, CNNs can automatically extract 
and process relevant features from retinal images. This capability significantly en­
hances the accuracy and efficiency of the segmentation process. Studies have shown 
that CNNs, when trained on large datasets, even outperforms existing algorithms 
in terms of classification accuracy and Area Under Curve (AUC) the Receiver Op­
erating Characteristic (ROC).[7] 

The advancements in CNN-based segmentation are evident in their superior 
performance on standard benchmarks such as the DRIVE, STARE, and C H A S E 
databases. [6] These networks demonstrate not only high accuracy but also the abil­
ity to generalize across different datasets, a crucial factor in medical diagnostics. 
However, there are challenges, such as the risk of overfitting when training on lim­
ited data. Data augmentation techniques, including geometric transformations and 
contrast adjustments, are commonly used to minimize this risk. Another key point 
is the computational efficiency of CNNs. While the training process can be time-
consuming, requiring substantial computational resources, the application of trained 
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models for new image segmentation is relatively fast, enhancing their practical use 
in a clinical area. [6] 

The application of CNNs in retinal vessel segmentation has expanded the re­
search and development area. The ability of these networks to detect fine structures 
like capillaries suggests their potential applicability in other areas of ophthalmologi-
cal imaging. The increasing availability of medical imaging data combined with the 
necessity for accurate and efficient diagnostic tools highlights the importance of con­
tinued research and development in this area. The opportunities provided by CNNs 
in medical imaging, particularly with the ongoing advancements in deep learning, 
suggest a future where their full potential in enhancing diagnostic capabilities and 
patient care is fully realized. [6] 

In conclusion, the integration of CNNs into the field of retinal imaging marks a 
significant advancement in medical diagnostics. Their ability to efficiently process 
complex images and provide accurate segmentation results makes them an outstand­
ing technology in the analysis of conditions like DR. The ongoing developments in 
this field point to a future where CNNs could become a standard tool in medical 
imaging, offering enhanced diagnostic capabilities and improved patient outcomes. 

1.2 Overview of Segmentation Techniques 

1.2.1 Supervised Learning Techniques 

In medical imaging, supervised learning is frequently employed for tasks that neces­
sitate high accuracy and specificity, such as blood vessel or tumour segmentation. 
The models utilised, such as U-Net, possess an encoder-decoder architecture with 
skip connections, which enables efficient processing of medical images even when the 
training datasets are limited. These models are trained on annotated data, which 
ensures high accuracy in distinguishing between regions of interest. However, the 
primary limitation of this approach is its dependence on the quantity and quality 
of manual annotation, which can be resource-intensive. These methods are most 
suitable for image processing tasks where the accurate extraction of anatomical 
structures or pathological changes is required [6]. 

A n illustrative case of supervised learning applied to retinal blood vessel seg­
mentation is presented by Liskowski and Krawiec[?]. Their research utilized a deep 
neural network based on the U-Net architecture to segment blood vessels in reti­
nal images from the DRIVE, STARE, and C H A S E databases. The network was 
trained on a substantial number of examples (up to 400,000), which underwent pre­
processing through global contrast normalization, zero-phase whitening, and were 
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augmented with geometric transformations and gamma corrections. The model no­
tably surpassed previous algorithms in terms of the area under the ROC curve and 
classification accuracy. This case highlights the effectiveness of supervised learning 
techniques in achieving precise segmentation in medical imaging tasks. 

• Features: Efficient training on small data. 
• Advantages: High accuracy and specificity. 
• Disadvantages: Dependent on high-quality annotation. 
• Applications: Segmentation of complex structures, e.g. in oncology or car­

diology. 

1.2.2 Techniques Utilizing Unlabeled Data for Segmentation 

Interactive Learning 

The Interactive Learning approach combines machine learning with graph-based 
segmentation algorithms such as Graph Cuts. This allows the learning and segmen­
tation process to be tailored in real time, taking into account the characteristics of 
a particular medical image. This interactivity is particularly valuable when deal­
ing with abnormal images, where standard methods may produce erroneous results. 
However, the disadvantage is the need for active user participation, which can in­
crease the time required to analyse the data[8]. 

A n illustrative example of using interactive learning in medical image segmen­
tation is presented by Wang et al.[8]. Their research introduced a deep learning-
based interactive segmentation framework that integrates CNNs with a bounding 
box and scribble-based segmentation process. The suggested approach includes 
image-specific fine-tuning to adapt the C N N model to a particular test image. This 
fine-tuning can be performed either unsupervised or supervised, with additional 
user-provided scribbles. The framework was utilized for 2D segmentation of various 
organs from fetal M R I slices and 3D segmentation of brain tumors from different 
M R sequences. The findings demonstrated that the model greatly enhanced seg­
mentation accuracy with fewer user interactions compared to conventional methods, 
establishing it as a robust and efficient solution for clinical applications. 

• Features: Highly adaptable to image features. 
• Advantages: Improved segmentation accuracy. 
• Disadvantages: Requires user interaction. 
• Applications: Use in complex clinical cases with non-standard pathology. 
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Weakly Supervised Learning 

Weakly supervised learning methods reduce the reliance on fully annotated data by 
utilising incomplete or inaccurate labels. This is particularly pertinent in contexts 
where the cost or time required to fully annotate data is prohibitive. While such 
methods may be less accurate than fully supervised methods, they offer significant 
advantages in terms of reducing the time and cost of data preparation[9]. 

Multiple-Instance Learning (MIL) represents a type of weakly supervised learn­
ing. In one investigation, MIL was applied to the examination of retinal images for 
the detection of diabetic retinopathy[9]. MIL algorithms are capable of learning from 
images that are labeled solely with a diagnosis, eliminating the necessity for precise 
manual segmentations. This method identifies relevant patterns in the images auto­
matically and utilizes them for overall classification, making it especially effective for 
large datasets where manual annotation is not feasible. The research showed that 
MIL not only streamlines the data preparation process but also enhances classifica­
tion accuracy when compared to conventional single-instance learning techniques. 

• Features: Use of incomplete labels. 
• Advantages: Reduced annotation costs. 
• Disadvantages: Potential reduction in accuracy. 
• Applications: Processing large amounts of medical data, image preprocess­

ing. 

Transfer Learning 

Transfer learning involves the application of models that have been pre-trained on 
large and diverse datasets to specific medical imaging tasks. The advantage of this 
approach is that it utilises generalised features, which can significantly enhance the 
accuracy of models on limited or specific medical data. However, additional task-
specific model tuning may be required[10]. 

The application of transfer learning in medical image segmentation is exemplified 
by the study on retinal vessel segmentation using DeepLabv3+[10]. This study fine-
tuned a pre-trained DeepLabv3+ model for the task of segmenting blood vessels 
in retinal images from the D R I V E dataset. The network was modified to accept 
single-channel images and perform two-class pixel-based classification (vessel and 
non-vessel). The segmented output images were then refined using a morphological 
closing operation. The results demonstrated that the proposed method achieved 
high accuracy, sensitivity, and specificity, outperforming many other methods in the 
field. 

• Features: Use of pre-trained models. 
• Advantages: Improved performance on specific tasks. 
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• Disadvantages: Need for model customisation. 

• Applications: Improvement of existing models for specialised medical tasks. 

Semi-supervised Learning 

Semi-supervised learning is a distinctive approach that integrates the strengths of 
supervised and unsupervised learning. It utilises both annotated and unannotated 
data to train models, enabling the training of models on a greater volume of data. 
This is particularly advantageous in medical imaging, where annotation can be costly 
and time-consuming. Techniques such as the use of pseudo-labels can increase the 
number of training examples and improve the generalisability of the model without 
the need for additional annotation costs[ll]. 

A semi-supervised framework based on U-Net was developed with the objective 
of reducing the workload associated with data annotation. The framework comprises 
three distinct stages: 

1. Training the U-Net with enhanced ground truth labels. 
2. Using the trained network to predict unlabeled data and taking the filtered 

prediction results as pseudo-labels. 
3. Combining data amplification and dropout strategies to update the training 

set, iterating until the predetermined number of iterations is reached. 
The framework demonstrated enhanced performance in comparison to fully su­

pervised learning with an equivalent quantity of labelled data, thereby substantiating 
its efficacy in reducing the burden of data labelling while maintaining a high degree 
of segmentation accuracy[11]. 

• Features: Using a combination of annotated and unannotated data. 
• Advantages: Expand the training dataset without additional cost. 
• Disadvantages: There may be lower reliability of annotations due to the use 

of not fully validated data. 
• Applications: Suitable for scenarios with limited annotation budget but large 

amount of raw data, e.g., pre-filtering large medical image sets. 

Self-supervised Learning 

Self-supervised learning is an approach that allows models to learn without standard 
annotations, using instead tasks that the model can perform on its own by creating 
its own labels. This can include tasks such as reconstruction or predicting the next 
state based on the current input. This method is particularly useful in medical 
imaging for pre-training models on large amounts of unlabelled data, allowing the 
extraction of rich data representations that can then be used for refinement with 
fewer annotated examples [12]. 
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A self-supervised framework was developed using multimodal data to generate 
training labels automatically. In particular, vessel maps were generated from an­
giography images using straightforward image processing techniques. Subsequently, 
the generated vessel maps were employed to train a convolutional neural network 
(CNN) with the objective of segmenting vessels in retinal images. This method per­
mitted the utilisation of a substantial quantity of unlabelled data, thereby markedly 
expanding the training dataset without the necessity for manual annotation. The 
results demonstrated that the self-supervised approach achieved competitive seg­
mentation performance on public datasets such as D R I V E and STARE, thereby 
illustrating the potential of self-supervised learning to enhance segmentation accu­
racy in medical imaging [12]. 

• Features: Training without explicit annotations, using internally generated 
labels. 

• Advantages: Reduced reliance on annotated data. 
• Disadvantages: Requires careful selection of pre-tasks to ensure usefulness 

of extracted features. 
• Applications: Pre-training models on large medical datasets before perform­

ing finer tuning on smaller annotated subsets. 

Unsupervised Learning 

In the field of medical imaging, unsupervised learning frequently employs techniques 
such as Generative Adversarial Networks (GANs) for the purpose of segmentation. 
These techniques are particularly advantageous in the identification of hitherto un­
known patterns or anomalies in the data, without the necessity for labelled training 
data. GANs, in particular, are capable of generating high-resolution images and can 
be employed to enhance image quality and segmentation accuracy by learning the 
underlying distribution of the data. 

The use of Generative Adversarial Networks (GANs) has been demonstrated 
to enhance the resolution of optical coherence tomography (OCT) images, thereby 
improving the accuracy of retinal layer segmentation. The G A N model generates 
high-resolution images from low-resolution inputs, which are then segmented using 
either traditional or deep learning-based segmentation methods. This approach not 
only improves the quality of the images but also significantly enhances the segmen­
tation performance, providing clearer and more detailed structures for analysis. [13]. 

Another illustrative example is the utilisation of GANs for the classification of 
cancer cells free from stains. This technique involves training a G A N to generate 
high-fidelity synthetic images of cancer cells, which are then used to augment the 
training dataset for a classification model. The GAN-generated images facilitate the 
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model's learning of more effective features, even when there is a limited quantity of 
real, labelled data. This results in an improvement in the accuracy of cancer cell 
classification. [5]. 

• Features: Exploration of data without pre-labelling, using GANs for data 
enhancement and segmentation. 

• Advantages: Ability to detect unknown or unexpected patterns, improve 
image resolution, and enhance segmentation accuracy. 

• Disadvantages: Lack of control over the quality of the generated data, po­
tential for misleading artifacts. 

• Applications: Research tasks, pre-diagnosis, analysis of complex or poorly 
understood medical conditions, such as enhancing OCT images for better seg­
mentation of retinal layers and generating synthetic training data for cancer 
cell classification. 
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2 Theoretical description of the algorithm 
components 

2.1 CNN architecture 

The field of biomedical research has witnessed a profound transformation in the 
past decade, largely due to the advent of deep learning, with convolutional neural 
networks (CNNs) playing a pivotal role. Among the plethora of C N N architectures, 
the U-Net model, designed with medical segmentation tasks in mind, has emerged 
as a particularly noteworthy example[14]. 

Main CNN architectures in medical segmentation 

A plethora of C N N architectures have been employed in the field of medical segmen­
tation, including specialized models such as SegNet and DeepLab. Each architecture 
has demonstrated the capacity to utilise distinctive image processing techniques. 
However, U-Net stands out for its ability to process high-resolution data with a 
relatively small amount of training data. This is achieved through a distinctive 
structural configuration that enables accurate localization and utilization of the 
context at all depth levels[14]. 

U-Net architecture 

Fig. 2.1: U-Net Architecture. [1] 

20 



The U-Net convolutional neural network has been designed to handle small amounts 
of data and requires fewer training examples through the use of data augmentation. 
The U-Net architecture comprises two main parts: the compressive path (encoder) 
and the extensional path (decoder) [14]. As illustrated in Figure 2.1, the architecture 
effectively processes the input image through these paths to generate an accurate 
segmentation map. 

The encoder is comprised of repeating modules, each of which includes two 
convolutions, an activation function (typically ReLU) and subsampling (max pool­
ing). This allows the network to progressively reduce the spatial dimensions of the 
image and increase the depth of context. 

Decoder: The U-Net expansion path is constituted by a sequence of layers 
that perform an upsampling operation on the previous feature maps. This involves 
the application of transpose convolution or up-convolution operations, which serve 
to recover the details and spatial dimensions of the image. A crucial element is 
the utilisation of skip connections, which transfer information from the compressive 
path directly to the corresponding layers of the expanding path. This ensures the 
preservation of context and the accuracy of localisation. 

The final component of the architecture is a convolutional layer that classifies 
each pixel of the image, thereby generating a segmentation map. 

Features: 

• U-Net uses a skip-join mechanism to preserve the context of information at 
different depth levels, which is critical for accurate segmentation. 

• Asymmetric structure with a deeper encoder and a shallower decoder, which 
optimizes both computational resources and segmentation quality. 

• Efficient data utilisation due to augmentation, making U-Net particularly suit­
able for training on small datasets[14]. 

Advantages: 

• Excellent generalisation ability, allowing the model to perform well even with 
limited data. 

• High accuracy in segmentation tasks, thanks to accurate reconstruction of 
object locations. 

• Flexibility in use, U-Net can be adapted for different medical segmentation 
tasks by changing only the input layers and loss functions. 

Disadvantages: 

• Difficulty in training at very large image sizes due to memory limitations. 
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• Need for careful tuning of the training process to achieve optimal results. 
• Possibility of overtraining on overly detailed local features without proper 

regularisation or augmentation. 

Applications: 

• Medical segmentation: U-Net is widely used for segmentation tasks of var­
ious types of medical images, such as segmentation of tumours, blood vessels, 
and other tissues. It can also be used for other image-to-image applications, 
such as denoising and modality translation. 

• Different image modalities: It effectively handles different types of medical 
images, including MRI , CT, and ultrasound images. 

Conclusion 

The U-Net model exhibits remarkable efficiency and versatility in medical segmenta­
tion tasks. It consistently achieves high levels of segmentation accuracy and quality 
under a range of conditions, making it a preferred choice for numerous clinical appli­
cations where the processing of medical images in an accurate and expedient manner 
is of paramount importance. 

2.2 Data augmentation 

Theoretical introduction to data augmentation 

The augmentation of data is a crucial aspect of the training of convolutional neural 
networks, particularly in the context of medical imaging applications where data 
volumes may be limited. This process entails the generation of modified copies of the 
original images, thereby artificially expanding the training dataset. Techniques such 
as rotation, scaling, changing illumination, and the addition of noise facilitate the 
diversification of the data without the necessity of collecting additional images [15]. 

Types of data augmentation 

The two main types of augmentation used in this study include pixel transformations 
and affme transformations: 

• Pixel Transformations : These methods change the intensity and colours 
of pixels in an image. These methods include contrast correction, saturation, 
noise addition and blurring. These transformations help the model to better 
adapt to variations in the data that may occur due to differences in lighting 
or image quality [15]. 
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• Affine transformations: Include rotating, reflecting, shifting, and rescaling 
images. These methods distort the image in a geometric sense, which allows 
the model to be trained to be invariant to the orientation and scale of objects 
in the images [15]. 

Importance of data augmentation 

The application of data augmentation is of significant importance in improving the 
generalisability of the model and preventing overfitting, particularly when the avail­
able amount of data is limited. In the context of medical images, where each pixel 
may contain important diagnostic information, augmentation allows the model to 
better adapt to real-world clinical conditions. This is of particular importance in or­
der to ensure diagnostic accuracy under varying imaging conditions and differences 
in patient characteristics[15]. 

Use of augmentation in U-Net 

The U-Net architecture incorporates data augmentation techniques to enhance the 
accuracy of retinal vessel segmentation. These techniques, including contrast en­
hancement and noise addition, enable the model to more effectively recognise both 
thick and thin vessels, which is crucial for the accurate diagnosis of diseases such as 
diabetic retinopathy and glaucoma[15]. 

Empirical evidence demonstrates that data augmentation is an effective approach 
for significantly improving segmentation quality[15]. Studies have shown that the 
combined use of pixel and affinity augmentation methods can lead to notable im­
provements in segmentation performance. The combined use of pixel and affme 
transformations can achieve greater accuracy and model robustness, enabling the 
segmentation of medical images acquired under a wider range of conditions. 

Key points of data augmentation in U-Net 

Using U-Net for retinal vessel segmentation, data augmentation improves model 
training in several ways: 

1. Increased data diversity: Augmentation allows the model to see images in 
different variations, which is crucial for training deep neural networks working 
with medical data. 

2. Improved generalisability: The model becomes less sensitive to specific 
features of the training dataset, which reduces the likelihood of overtraining 
and improves its ability to deal with new, previously unseen images. 
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3. Fine vessel segmentation: Particularly important for conditions where reti­
nal structure needs to be accurately determined. Data augmentation, espe­
cially methods that increase contrast and add noise, help in training the model 
to recognise thin and difficult to discern vessels 

Conclusion 

The application of data augmentation not only expands the size and diversity of the 
training set without the need for additional data collection costs, but also facilitates 
the training of more efficient and versatile models for medical segmentation. In the 
context of U-Net and retinal vascular segmentation, this is particularly valuable as 
it provides high diagnostic accuracy in a variety of clinical settings. The utilisation 
of combined augmentation methods, such as pixel and affine transformations, has 
been demonstrated to yield superior outcomes, enabling the model to adapt to the 
intricacies of medical images and enhancing its capacity to segment both thick and 
thin vessels. These attributes render data augmentation a pivotal tool in contempo­
rary deep learning techniques, particularly in the domain of medical imaging, where 
the quality and accuracy of outcomes can be of paramount importance. 

2.3 Loss Functions 

Introduction to loss functions 

The role of loss functions in the training of neural networks is of particular impor­
tance in the context of medical image segmentation tasks. The accuracy and ability 
of the model to discriminate between classes can have a significant impact on clini­
cal outcomes. The measurement of the error between the predicted output and the 
actual labels allows the training process to be guided towards the minimisation of 
this error. The choice of an appropriate loss function is of critical importance in 
order to achieve high segmentation accuracy and specificity[16]. 

The main types of loss functions 

In the context of medical image segmentation, the principal types of loss functions 
can be classified as follows: 

1. Distribution-based losses: These functions, such as cross-entropy, mea­
sure the discrepancy between predicted probabilities and true labels based on 
information theory. 
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2. Region-based losses: Loss functions such as Dice loss evaluate the similarity 
or overlap between predicted and true segmented regions, which is particularly 
useful in medical segmentation. 

3. Boundary-based losses: These functions, such as Euclidean or Hausdorff 
distance based functions, focus on minimising the distances between the bound­
aries of predicted and true labels. 

4. Compound losses: Combinations of the previous types, such as combin­
ing Dice and cross-entropy, can account for several aspects of segmentation 
errors [16]. 

Importance of selecting a loss function 

The selection of an appropriate loss function is of paramount importance in the 
context of managing problems such as unbalanced classes. In such cases, certain 
classes may be less represented in the data, which may result in an undertrained 
model. In order to address this issue, loss functions can be adapted or weighted to 
increase the importance of sparse classes during the training process. This approach 
helps to achieve a more balanced performance of the model in different classes[16]. 

Impact of loss functions on model performance 

The utilisation of weighted loss functions has been demonstrated to markedly en­
hance the efficacy of segmentation in scenarios characterised by a high degree of 
class imbalance. In particular, loss functions that have been adapted to incorporate 
distance or predictive probability have exhibited superior performance in compari­
son to traditional loss functions, such as cross-entropy and Dice, in contexts where 
the accurate segmentation of sparse classes is a necessity[16]. 

Specific Loss Functions Used 

In the practical part of this Bachelor's thesis, the following specific loss functions 
will be utilized: Dice Loss, Focal Loss, BCEWithLogits Loss, and M S E Loss. These 
functions are selected based on their suitability for various aspects of medical image 
segmentation and enhancement tasks. 

Dice Loss: The Dice Loss function is particularly effective for medical image seg­
mentation tasks, especially when the objective is to maximize the overlap between 
the predicted and actual segmented regions. Its effectiveness is highlighted by its 
ability to handle imbalanced class distributions commonly found in medical datasets. 
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1 - 2 E i = i 0»Pt (2.1) 

where gi is the binary ground truth value (0 or 1) for pixel i, Pi is the predicted 
probability for pixel i, and TV is the total number of pixels. 

Focal Loss: This loss function is beneficial in addressing class imbalance by fo­
cusing on hard-to-classify examples, thus improving the model's performance on 
minority classes. It was chosen for its top ranking in binary-class segmentation 
tasks as highlighted in the referenced study[16]. 

where at is a weighting factor for class t, pt is the predicted probability for the 
class t, and 7 is a focusing parameter that adjusts the rate at which easy examples 
are down-weighted. 

BCEWithLogitsLoss: This function is preferred for scenarios involving pseudo-
labeling, as it combines a sigmoid layer and the binary cross-entropy loss in a single 
class. It effectively bridges the gap between probability outputs and ground truth 
labels, facilitating better model performance in semi-supervised learning contexts. 

1 N 

LBCEWithLogits = -jrYsidi log(o-fe)) + (1 - gi) log(l - a(pi))] (2.3) 
i=l 

where a (pi) is the sigmoid of the predicted probability for pixel i, g^ is the binary 
ground truth value for pixel i, and TV is the total number of pixels. 

MSELoss: This loss function is employed during the denoising pre-training phase, 
ensuring a cleaner dataset for subsequent training stages. It calculates the mean 
squared error between predicted and actual values, thus optimizing the model for 
noise reduction. 

where pi is the predicted value for pixel i, g^ is the ground truth value for pixel 
i, and TV is the total number of pixels. 

(2.2) 

(2.4) 
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Conclusion 

The selection of the loss function and its weighting strategy should be based on the 
specific task requirements and data characteristics. Experimental results demon­
strate that the integration of adapted loss functions can significantly enhance seg­
mentation quality, resulting in higher accuracy and reliability in medical applica­
tions. Therefore, the design and selection of suitable loss functions represents a 
pivotal task in machine learning, particularly in the context of medical imaging[16]. 

2.4 Performance measures 
The evaluation of a model's performance in the context of medical image segmen­
tation is based on the use of several key metrics. The following section provides a 
detailed description of each of these metrics. 

Accuracy 

The degree of accuracy is determined by the proportion of correct predictions and 
is calculated using the following formula: 

j n—1 

accuracy(y, y) = - ^ = yt), (2.5) 

where: 
• y — true labels, 
• y — predicted labels, 
• n — number of samples in the data, 
• l(yi — yi) — indicator function that is 1 when the predicted label iji is equal 

to the true label yi, and 0 otherwise. 
Alternatively, accuracy can also be expressed in terms of true positives, true 

negatives, false positives, and false negatives using the following formula: 

TP+TN . . 
a C C U r a C y = TP + TN + FP + FN' ( 2 - 6 ) 

where: 
• TP — True Positives (correctly predicted positive cases), 
• TN — True Negatives (correctly predicted negative cases), 
• FP — False Positives (incorrectly predicted positive cases), 
• FN — False Negatives (incorrectly predicted negative cases). 
The metric of accuracy is of paramount importance in evaluating the overall 

performance of a model in medical image segmentation. This metric indicates the 
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proportion of correctly classified instances out of the total instances. High accu­
racy is essential for ensuring reliable predictions, which is particularly important in 
medical applications where incorrect predictions can lead to misdiagnosis or inap­
propriate treatment decisions, potentially having serious consequences for patient 
health. 

Precision and Recall 

Precision and recall are defined as follows: 

TP „ TP 
precision = —— ——, recall 

TP + FP1 TP + FN' 

where: 

• TP — True Positives (correctly predicted positive cases), 
• FP — False Positives (incorrectly predicted positive cases), 
• FN — False Negatives (incorrectly predicted negative cases). 
It is evident that the metrics of precision and recall are crucial for the process 

of medical diagnosis. Precision is defined as the proportion of selected objects that 
are, in fact, relevant. Recall, in turn, indicates the proportion of actual relevant 
objects that were selected by the model. 

Jaccard Index or loll 

The Jaccard index is a measure of the degree of overlap between the predicted and 
actual segmentation areas. j(y,')=H-
where: 

• \y n y\ — the number of elements in the intersection of the ground truth and 
predicted sets, 

• \yUy\ — the number of elements in the union of the ground truth and predicted 
sets. 

This metric is of particular importance in segmentation tasks, as it directly 
reflects the quality of matching of segmented regions, whereas the absolute number 
of correctly classified background pixels is not considered. Consequently, this metric 
is more relevant than simple precision. 

F l score or S0rensen-Dice coefficient 

Fl-score represents the harmonic mean of precision and recall: 

precision • recall 
precision + recall' 
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where: 
• precision — the ratio of the number of true positives to the sum of true posi­

tives and false positives, 
• recall — the ratio of the number of true positives to the sum of true positives 

and false negatives. 
The Fl-score can also be expressed in terms of true positives (TP), false positives 

(FP), and false negatives (FN) as follows: 

TP 
Fx 2TP + FP + FN 

Another equivalent form, known as the S0rensen-Dice coefficient, using set op­
erations is: 

\y\ + \y\ 

where: 
• \y\ — the number of elements in the ground truth set, 
• \y\ — the number of elements in the predicted set, 
• \y n y\ — the number of elements in the intersection of the ground truth and 

predicted sets. 
In the context of medical segmentation, this metric is of paramount importance as 

it considers both accuracy and completeness. The metric strikes a balance between 
detecting all relevant cases (high completeness) and minimising false positives (high 
accuracy). This is of particular importance in the context of medical applications, 
where the omission of pathology can have serious consequences for patient health. 
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3 Practical part 

3.1 Supervised CNN Implementation 

Practical Application of CNN Architecture The research model is based on the 
U-Net framework and includes standard components to ensure high efficiency and 
precision in segmentation tasks. The model architecture was adapted to manage the 
high-resolution and complex nature of fundus images effectively. 

Implementation of U-Net Architecture: The U-Net model employed in this study 
incorporates standard components designed to enhance the extraction and segmen­
tation of features. 

• Double Convolution Block (DoubleConv): Each DoubleConv block con­
sists of two consecutive convolution operations followed by batch normalization 
and ReLU activation. This configuration enhances feature extraction by inten­
sifying the convolutional processing, which allows the model to capture more 
intricate details within the image data, crucial for accurate medical diagnos­
tics. 

• Downscaling Block (Down): This block integrates max pooling with a 
DoubleConv block to reduce the spatial dimensions of the input images while 
simultaneously deepening the feature maps. The reduction in dimensionality 
is essential for abstracting complex features at lower resolutions, facilitating a 
more comprehensive analysis of potential pathologies. 

• Upscaling Block (Up): For spatial expansion, the model employs either bi­
linear upscaling or transposed convolution, coupled with a DoubleConv block. 
This arrangement is crucial for reconstructing higher resolution feature maps 
from the condensed feature representations, ensuring precise localization and 
delineation of segmentation targets. 

• Output Convolution Block (OutConv): Features a single convolution 
layer with a kernel size of 1, designed to transform the deep feature represen­
tations into the final segmentation output, mapping directly to the required 
number of output classes. This block plays a critical role in delivering clear, 
actionable segmentation results. 

• U-Net Core (UNet): The core of the model comprises an encoder (down-
scaling path) and a decoder (upscaling path), interconnected via a bottleneck. 
This setup utilizes the Down, Up, and OutConv blocks in a symmetric lay­
out, ensuring that comprehensive feature capture and efficient segmentation 
are achieved across various image conditions. The model supports adjustable 
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input channels and output classes, making it versatile across different segmen­
tation challenges. 

These components and configurations align with the standard U-Net architec­
ture, ensuring robustness and accuracy in segmenting high-resolution fundus images. 

Materials 

Dataset Description: The research employs the High-Resolution Fundus (HRF) 
Image Database[17] for the purpose of retinal segmentation. This database is se­
lected specifically for its high-resolution images, measuring 3504x2336 pixels, which 
align with clinical standards. The dataset comprises 45 images in total, categorized 
into three groups: 15 images of healthy eyes, 15 images of eyes affected by diabetic 
retinopathy (DR), and 15 images of eyes with glaucoma. This varied collection sup­
ports a thorough comparative analysis and a robust assessment of the segmentation 
techniques used, highlighting the efficacy of each method across different patho­
logical conditions. Figure 3.1 illustrates examples of the images along with their 
corresponding binary gold standards. 

Significance of the Dataset: The H R F Image Database plays a crucial role in im­
proving the precision of identifying key retinal structures, including the optic disc, 
macula, and blood vessels. It has been used in the past to evaluate other segmenta­
tion techniques, demonstrating its dependability and significance in medical image 
analysis. The high-resolution images facilitate advanced automated methods for 
extracting both vascular and non-vascular tissues, which are essential for training 
deep learning models. Additionally, the dataset offers a robust objective foundation 
for comparing automated segmentation outcomes with the benchmarks established 
by ophthalmology specialists. 
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(a) 

(b) 

Fig. 3.1: Examples of (a) images and (b) binary gold standards from the used dataset 

Implementation Details of Data Augmentation 

Data augmentation plays a pivotal role in enhancing the robustness and perfor­
mance of the segmentation model, particularly given the complex nature of fundus 
images. The augmentation process is designed to introduce a realistic variability 
in the images, simulating conditions that the model will encounter in real-world 
medical settings. 
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Preprocessing and Augmentation Techniques: Initially, all images in the dataset 
undergo preprocessing using the AspectRatioPreservingResize class. This class ad­
justs each image to a target dimension of 1024 pixels while preserving the original as­
pect ratio. The resizing employs the high-quality L A N C Z O S algorithm[18], ensuring 
that clarity and detail are maintained, which is crucial for subsequent segmentation 
tasks. 

Following resizing, the HRFDataset class implements a robust augmentation 
strategy: 

• Random Cropping: The dataset is expanded by extracting multiple 128x128 
pixel segments from each image. This random cropping not only increases the 
number of training samples by a factor of ten but also ensures that the model 
encounters a wide array of image segments, enhancing its ability to generalize 
across different retinal conditions. 

• Geometric Transformations: Images are subjected to random horizontal 
and vertical flips with a 20% probability. Additional affine transformations 
include rotations (±10 degrees), translations (up to ± 5 % of the image size), 
scaling (between 90% and 110%), and shearing (±5 degrees). These transfor­
mations are critical for training the model to be invariant to the orientation 
and scale of anatomical features in the images. 

• Photometric Adjustments: Adjustments to brightness and contrast are 
made, with levels varying between 90% and 110%. A Gaussian blur is applied 
using a 3x3 kernel with a 30% probability. These adjustments mimic variations 
in image quality due to different clinical imaging conditions. 

Impact of Augmentation on Model Training: Each augmentation technique is 
applied with specific probabilities, ensuring a balanced modification of the training 
dataset. This controlled variability prevents model overfitting and enhances its 
adaptability to diverse imaging scenarios encountered in clinical practice. 
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Image Label 

(c) 

Fig. 3.2: Examples of images and binary gold standards cutouts with augmentation. 

The results of these steps are illustrated in Figure 3.2, showing examples of 
images and binary gold standards cutouts with augmentation. This visualization 
helps in understanding the diversity and quality of the training samples created 
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through these augmentation techniques. 

Practical Training and Validation 

Training Setup and Parameters: The segmentation model leverages the A D A M 
optimizer[19], known for its efficacy in deep learning tasks. Training commenced 
with a learning rate of 0.01, adjusted over time through a decay schedule to enhance 
learning efficiency. Specifically, we used the following settings: 

• Optimizer: A D A M with an initial learning rate of 0.01. 
• Learning rate scheduler: MultiStepLR[20] with milestones at 20, 40, 60, 

and 80 epochs, and a decay factor (gamma) of 0.1. 
• Loss function: Dice Loss 2.1 (binary mode) from the pytorch-toolbelt library [21]. 
• Batch size: 16. 
• Number of epochs: 100. 
The U-Net architecture was trained using these settings, balancing computa­

tional resources and effective learning progression. 

Dataset Utilization and Augmentation: As described in Section 3.1, the High-
Resolution Fundus (HRF) Image Database was systematically partitioned for train­
ing, validation, and testing. 70% of the images were used for training to expose the 
model to a broad spectrum of scenarios, enhancing its robust segmentation capa­
bility. The rest of the dataset was split evenly between validation and testing to 
thoroughly assess the model's performance. 

Data augmentation, as detailed in Section 3.1, played a critical role in model 
training 

Monitoring and Adjustments: Throughout the training process, which spanned 
100 epochs, performance metrics were closely monitored. Adjustments were made 
responsively to optimize the training parameters, ensuring that the model's per­
formance remained robust across all phases. Checkpoints were strategically used 
to save the best-performing models based on validation loss. The progression of 
training and validation loss over 100 epochs using the Dice Loss (2.1) function is 
illustrated in Figure 3.3. 
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Fig. 3.3: Training and Validation Loss Progression of 100 epochs using the Dice 
Loss function. 

Evaluation of Model Performance 

The model's performance was rigorously evaluated upon completion of the 100th 
epoch. Metrics such as Dice coefficient, Intersection over Union (IoU), Accuracy, 
Recall, and Precision were computed to assess the quality of the segmentation re­
sults. The following table summarizes the obtained metrics: 

Table 3.1: Performance metrics at the 100th epoch 

Metric Dice IoU Accuracy Recall Precision 
Value 0.776 0.634 0.960 0.912 0.832 

Additionally, a comparison was made between the results of models trained using 
Dice Loss (2.1) and Focal Loss (2.2) over 50 epochs. The results are summarized in 
the following table: 

Table 3.2: Performance metrics using Dice Loss and Focal Loss at the 50th epoch 

Loss Function Dice IoU Accuracy Recall Precision 
Dice Loss 0.738 0.585 0.953 0.910 0.828 
Focal Loss 0.707 0.547 0.952 0.909 0.827 

These metrics indicate a robust segmentation capability of the model, which 
demonstrates particularly high accuracy and recall. The Dice coefficient and IoU 
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values provide evidence of the model's efficiency in the overlap between the predicted 
and actual segmentation, essential for reliable medical image analysis. 

Discussion: The high Dice coefficient and IoU values are particularly noteworthy 
as they directly reflect the model's ability to produce segmentations that closely 
match the ground truth. A Dice coefficient of 0.776 and an IoU of 0.634 (as shown 
in Table 3.1) indicate a high level of overlap between the predicted and actual 
segmented areas, which is crucial for accurate medical diagnoses and treatment 
planning. 

Comparing the results using Dice Loss and Focal Loss, as shown in Table 3.2, 
we observe that the Dice Loss outperforms the Focal Loss across most metrics. 
Specifically, the Dice coefficient and IoU are higher when using Dice Loss (0.738 and 
0.585, respectively) compared to Focal Loss (0.707 and 0.547, respectively). 

In terms of Accuracy, Recall, and Precision, Dice Loss also shows slightly bet­
ter performance, with Accuracy at 0.953, Recall at 0.910, and Precision at 0.828, 
compared to Focal Loss which achieved Accuracy at 0.952, Recall at 0.909, and 
Precision at 0.827. Although the differences are marginal, they further support the 
effectiveness of Dice Loss in providing a more reliable segmentation. 

The higher Dice and IoU values obtained with Dice Loss underscore its superior­
ity in ensuring that the predicted segmentation areas have a significant overlap with 
the actual areas. This is essential in medical applications, where precise segmenta­
tion of anatomical structures can significantly impact clinical decisions and patient 
outcomes. The results demonstrate that using Dice Loss leads to more accurate and 
reliable segmentation performance, making it a preferred choice for medical image 
analysis. 

3.2 Transfer Learning Enhancement 

Practical Application of Transfer Learning The segmentation model leverages 
transfer learning to enhance its performance by using a pre-trained encoder. Specif­
ically, the ResNet34[22] architecture, pre-trained on the ImageNet dataset[23], was 
used to improve feature extraction capabilities, which is crucial for effective segmen­
tation of medical images. Examples of images from the ImageNet dataset are shown 
in Figure 3.4. 
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Fig. 3.4: Examples of images in ImageNet dataset[2] 

Modifications to the U-Net Architecture: The U-Net model was modified by 
replacing its encoder with the ResNet34 pretrained on the ImageNet dataset. This 
modification enhances the model's ability to extract features from high-resolution 
fundus images, improving the accuracy and efficiency of the segmentation tasks. 

Training Setup and Parameters: The training setup and parameters were the 
same as described in Section 3.1. 

Dataset Utilization and Augmentation: The same dataset utilization and aug­
mentation techniques described in Section 3.1 were applied. 

Monitoring and Adjustments: The monitoring and adjustment techniques were 
also consistent with those described in Section 3.1. 

Comparison of Different Encoders A n evaluation of multiple encoders was per­
formed to identify the best architecture for segmentation tasks. The Table 3.3 
presents the performance metrics for various encoder models. The metrics for each 
encoder were derived using Focal Loss, highlighting the advantage of Dice Loss when 
compared with the results in Table 3.4. 

Table 3.3: Comparison of Different Encoder Models 

Encoder Dice IoU Accuracy Recall Precision 
ResNet34 0.796 0.661 0.963 0.908 0.824 
ResNet50 0.782 0.642 0.958 0.906 0.822 
ResNetl52 0.782 0.643 0.958 0.902 0.814 
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Evaluation of Model Performance The performance of the model was thoroughly 
assessed with the metrics outlined in Section 3.1. The table below presents the 
gathered metrics: 

Table 3.4: Performance metrics at the 100th epoch with ResNet34 encoder 

Metric Dice IoU Accuracy Recall Precision 
Value 0.819 0.693 0.967 0.921 0.849 

Discussion: The results demonstrate that the pre-trained model on ImageNet with 
the ResNet34 encoder provides significant improvements over the previous setup 
described in Section 3.1. With a Dice coefficient of 0.819 and an IoU of 0.693. 
the ResNet34 encoder outperformed the custom U-Net model. Additionally, the 
model achieved a higher accuracy of 0.967 and a recall of 0.921, indicating enhanced 
capability in identifying relevant features within the images. The precision of 0.849 
also suggests a robust reduction in false positives compared to the previous approach 
(see Table 3.4). 

A comparison of different encoders, as shown in Table 3.3, further highlights 
the effectiveness of the ResNet34 encoder. It achieved higher Dice and IoU values 
compared to ResNet50 and ResNetl52, demonstrating its superior performance in 
terms of segmentation accuracy and overlap with ground truth areas. 

Relative to the supervised C N N approach outlined in Section 3.1, employing 
the pre-trained model on ImageNet with the ResNet34 encoder through transfer 
learning demonstrates significant improvements in all performance metrics. This 
underscores the utility of transfer learning in utilizing pretrained models to boost 
outcomes, particularly in medical image segmentation where there is a scarcity of 
labeled data. 

When comparing the results obtained using Dice Loss and Focal Loss, as dis­
cussed earlier, the Dice coefficient and IoU are consistently higher with Dice Loss. 
This further emphasizes the advantage of using Dice Loss for medical image segmen­
tation tasks, as it optimizes for overlap-based metrics which are crucial for accurate 
segmentation. 

The findings emphasize the importance of adopting transfer learning to enhance 
accuracy, recall, and the quality of segmentation overall. The higher Dice and IoU 
values obtained with the pre-trained model on ImageNet with the ResNet34 encoder 
indicate that it is particularly effective in ensuring that the predicted segmentation 
areas have a significant overlap with the actual areas. This is essential in medical 
applications, where precise segmentation of anatomical structures can significantly 
impact clinical decisions and patient outcomes. Overall, the results demonstrate 

39 



that using the pre-trained model on ImageNet with the ResNet34 encoder leads to 
more accurate and reliable segmentation performance, making it a preferred choice 
for medical image analysis. 

3.3 Semi-supervised Learning Strategy Based On Pseudo-
labels 

Practical Application of Semi-supervised Learning The model employs semi-
supervised learning to enhance its performance by integrating both labeled and 
unlabeled data. This approach entails training the model on labeled data, generating 
pseudo-labels for unlabeled data, and then retraining the model using both labeled 
and pseudo-labeled data (as illustrated in Figure 3.5). 

labeled data l. train the model 
with labeled data 

unlabeled data 

2. use the trained model 
to predict labels for the 

unlabeled data 

pseudo-labeled data labeled data 

a J> • • • • • \ / •••• 
3. retrained the 
model with the 

pseudo and 
labeled datasets 

together 

Fig. 3.5: Illustration of the semi-supervised learning process based on pseudo-
labels [3] 
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Dataset for Pseudo-labeling: The Retinal Fundus Multi-Disease Image Dataset 
(RFMiD) [24] was chosen for the experimental application of unlabeled data due to its 
extensive collection of retinal images (example illustrated in Figure 3.6). The dataset 
includes 3,200 high-resolution images captured across diverse patient groups using 
various fundus cameras. It offers a broad spectrum of clinical scenarios, providing 
a solid basis for comparative analysis of various retinal diseases . 

Fig. 3.6: Example of image from the R F M i D dataset 

Pseudo-label Generation: To generate pseudo-labels, a pre-trained U-Net model 
from Section 3.1 was used. The following steps were taken: 

1. Patch Extraction: Unlabeled retinal images were segmented into 128-pixel 
patches. 

2. Model Prediction: Each patch was passed through the pre-trained model 
to predict the label. 

3. Reconstruction: The predicted labels for each patch were reassembled to 
form pseudo-labeled images that match the original dimensions of the retinal 
images. 

The generated pseudo-labels were saved for further processing (as shown in Fig­
ure 3.7 and 3.8). 

Filtering Pseudo-labels: Since some pseudo-labeled images were suboptimal (see 
Figure 3.8), a filtering mechanism was implemented to ensure quality. The pseudo-
labels were filtered based on the proportion of white pixels indicating confidence in 
the prediction. This process involved: 
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Fig. 3.7: Example of pseudo-label from filtered Pseudo-Labeled Dataset. 

1. White Pixel Count: Counting the number of white pixels in each pseudo-
label. 

2. Quality Threshold: Only pseudo-labels with a white pixel proportion within 
a computed optimal range were retained. 

As a result, a refined dataset of 803 high-quality pseudo-labeled images was 
obtained (as shown in Figure 3.7). 

Fig. 3.8: Example of unsuccessful pseudo-label. 
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Retrain Stage: The retraining stage utilized a combined dataset of 310 real-labeled 
image crops and 803 pseudo-labeled image crops, totaling 1113. The same augmen­
tation strategies used during the initial model training on real labels were applied to 
both datasets, ensuring consistency in the model's learning experience. Validation 
data consisted of 80 random crops from the real-labeled dataset, maintaining the in­
tegrity of the evaluation process. While most parameters were kept consistent with 
those used during the initial training phase, the loss function was changed to B C E -
WithLogitsLoss (2.3) to better handle the pseudo-labeled data. This approach to 
retraining, which utilizes a mixed dataset, is semi-supervised and designed to max­
imize the model's predictive performance by leveraging both verified and inferred 
label data. 

Training Setup and Parameters: For the semi-supervised training with pseudo-
labels, the model was trained using the following setup: 

• Optimizer: A D A M with an initial learning rate of 0.001. 
• Learning rate scheduler: MultiStepLR with milestones at 20, 40, and 60 

epochs, and a decay factor (gamma) of 0.1. 
• Loss function: BCEWithLogitsLoss (2.3). 
• Batch size: 16. 
• Number of epochs: 50. 

Comparison of Ratios Between Real and Pseudo-labeled Crops: To further 
analyze the effect of different ratios of real to pseudo-labeled crops, additional re­
training experiments were conducted for 20 epochs with varying ratios. The Table 
3.5 summarizes the performance metrics for different ratios. 

Table 3.5: Performance metrics for different ratios of real to pseudo-labeled crops 

Ratio Dice IoU Accuracy Recall Precision 
0.5 0.817 0.691 0.959 0.902 0.814 
0.6 0.789 0.652 0.963 0.912 0.831 
0.75 0.780 0.639 0.964 0.922 0.850 

Table 3.6: Performance metrics before and after retraining 

Metric Dice IoU Accuracy Recall Precision 
Before Retraining 0.776 0.634 0.960 0.912 0.832 
After Retraining 0.817 0.691 0.959 0.902 0.814 
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Results: The performance of the model before and after retraining on the com­
bined dataset showed remarkable improvements. Initial training on a purely labeled 
dataset achieved an accuracy of 96%, a Dice coefficient of 77.6%, and an Intersec­
tion over Union (IoU) of 63.40% (see Table 3.6). After incorporating the combined 
dataset, the model showed improved performance metrics: accuracy slightly de­
creased to 95.90%, the Dice coefficient increased to 81.70%, and the IoU improved 
to 69.10%. Precision slightly decreased from 83.17% to 81.40%, while recall slightly 
decreased from 91.20% to 90.20%. 

Discussion: The results indicate that the semi-supervised learning strategy using 
pseudo-labels has proven to be an effective method for improving the performance of 
the segmentation model. By leveraging unlabeled data, the model was able to better 
generalize and achieve higher accuracy and segmentation quality. This approach can 
be further refined by improving the quality of pseudo-labels and exploring different 
architectures and training parameters. 

Comparing these results to the Transfer Learning Enhancement discussed in 
Section 3.2, the semi-supervised approach also shows competitive performance. The 
Transfer Learning model with ResNet34 and ImageNet achieved a Dice coefficient 
of 81.9% and an IoU of 69.3% (see Table 3.4), which are slightly higher than those 
obtained with semi-supervised learning. However, the semi-supervised approach still 
demonstrates substantial improvements over the purely supervised model, making 
it a valuable method in scenarios where additional unlabeled data is available. 

Retraining experiments showed that different ratios of real to pseudo-labeled 
crops affected the model's performance. As demonstrated in Table 3.5, a higher 
ratio of real to pseudo-labeled data generally led to better performance. Specifically, 
the 0.5 ratio provided the best balance, resulting in a Dice coefficient of 81.7% and 
an IoU of 69.1%. This suggests that a balanced dataset with a sufficient number 
of high-quality pseudo-labels is crucial for optimal results. Further refinement and 
experimentation with different ratios and quality thresholds can help in achieving 
even better performance. 

Overall, the findings emphasize the importance of adopting semi-supervised 
learning to enhance accuracy, recall, and the quality of segmentation, particularly 
in medical image analysis where labeled data is often scarce. The comparison with 
both the supervised C N N approach and the Transfer Learning Enhancement high­
lights the potential of semi-supervised methods to bridge the gap between limited 
labeled data and high-performance segmentation models. 
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3.4 Semi-supervised Denoising Pretraining 

Practical Application of Semi-supervised Denoising Pretraining The model 
training process included a pre-training stage using denoising tasks to improve the 
extraction of features before the final segmentation task. This approach leverages a 
semi-supervised learning strategy to enhance the model's performance in handling 
noisy and unlabeled data, which is common in medical imaging. 

Dataset for Denoising: The same dataset described in Section 3.3 was used. Syn­
thetic noise was added to these images to simulate various real-world imaging con­
ditions. The noise types included Gaussian, salt-and-pepper, and speckle noise. 
This preparation helps the model learn to identify and mitigate noise during the 
pre-training phase. 

Implementation Details of Pretraining: The pretraining was implemented using 
a custom DenoisingDataset class, which generates noisy images and their corre­
sponding clean targets. The noise types used were: 

• Gaussian Noise: Additive Gaussian noise with a standard deviation scaled 
to the image intensity range. 

• Salt-and-Pepper Noise: Randomly set pixels to 0 (salt) or 1 (pepper) with 
a probability proportional to the noise level. 

• Speckle Noise: Multiplicative noise where random values are added to pixel 
intensities. 

These noisy images were used to train the model to predict the clean image from 
the noisy input, thereby improving its robustness to noise. 

Training Setup and Parameters: For the denoising pretraining, the model was 
trained using the following setup: 

• Optimizer: A D A M with an initial learning rate of 0.01. 
• Learning rate scheduler: MultiStepLR with milestones at 20, 40, 60, and 

80 epochs, and a decay factor (gamma) of 0.1. 
• Loss function: Mean Squared Error (MSE) Loss (2.4) for the pretraining 

phase. 
• Batch size: 16. 
• Number of epochs: 100. 
The model architecture used in this phase was based on the U-Net framework, 

modified to handle the denoising task. 
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Dataset Utilization and Augmentation: The dataset was divided into two dis­
tinct sets: a training set and a validation set. The ratio of the two sets was 80/20. 
No additional data augmentation techniques were employed during the denoising 
pretraining phase. 

Monitoring and Adjustments: The performance of the model during the pre­
training phase was monitored using loss values in both training and validation sets. 
Checkpoints were saved based on the best validation loss to ensure optimal weights 
for the subsequent fine-tuning phase. 

Fine-tuning for Segmentation 

After the denoising pretraining, the model was fine-tuned for the segmentation task 
using the same U-Net architecture. 

Training Setup and Parameters: For the fine-tuning phase, the following param­
eters were used: 

• Optimizer: A D A M with an initial learning rate of 0.01. 
• Learning rate scheduler: MultiStepLR with milestones at 20, 40, 60, and 

80 epochs, and a decay factor (gamma) of 0.1. 
• Loss function: Dice Loss (binary mode) from the pytorch-toolbelt library. 
• Batch size: 16. 
• Number of epochs: 100. 

Dataset Utilization and Augmentation: The same dataset utilization and aug­
mentation techniques described in Section 3.1 were applied during the fine-tuning 
phase. 

Monitoring and Adjustments: The monitoring and adjustment techniques were 
also consistent with those described in Section 3.1. 

Evaluation of Model Performance 

The fine-tuned model was evaluated on the test set after 100 epochs. The following 
table summarizes the metrics obtained: 

Table 3.7: Performance metrics at the 100th epoch after fine-tuning 

Metric Dice IoU Accuracy Recall Precision 
Value 0.803 0.670 0.961 0.907 0.823 
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Discussion: Comparing results to the supervised C N N approach outlined in Sec­
tion 3.1, the denoising pre-training approach shows comparable, if not slightly im­
proved, performance. The supervised C N N approach achieved a Dice coefficient 
of 77.6% and an IoU of 63.4%(as shown in Table 3.1), whereas the denoising pre-
training approach achieved a Dice coefficient of 80.3% and an IoU of 67.0%(as shown 
in Table 3.7). This demonstrates the effectiveness of incorporating semi-supervised 
denoising pretraining to enhance the model's robustness and segmentation perfor­
mance. 

The high accuracy of 96.1% and recall of 90.7% further highlight the model's 
ability to accurately identify relevant features within the images. While the precision 
value of 82.3% suggests that there is still room for improvement in reducing false 
positives, the overall metrics indicate a well-balanced performance. 

Overall, the semi-supervised denoising pretraining strategy has proven beneficial 
in enhancing the model's robustness and performance in medical image segmentation 
tasks, making it a valuable approach in scenarios where labeled data is scarce and 
the quality of segmentation is crucial for clinical decision-making. The comparison 
with the supervised C N N approach underscores the potential of this strategy to 
achieve high-performance segmentation results. 
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4 Evaluation and Results 
In this chapter, the results of various practical approaches for medical image seg­
mentation, as implemented and tested in the previous chapters, are compared and 
analyzed. The performance metrics of each method are discussed in detail to high­
light their strengths and weaknesses, providing a comprehensive evaluation of their 
effectiveness in the context of retinal image segmentation. 

4.1 Comparison of Approaches 

To facilitate a clear comparison, the performance metrics of all approaches are sum­
marized in Table 4.1. 

Table 4.1: Comparison of Performance Metrics for Different Approaches 

Approach Dice IoU Accuracy Recall Precision 
Supervised C N N 77.6% 63.4% 96.0% 91.2% 83.2% 
Transfer Learning 81.9% 69.3% 96.7% 92.1% 84.9% 
(ImageNet + ResNet34) 
Semi-supervised Learning 81.7% 69.1% 95.9% 90.2% 81.4% 
(Pseudo-labels) 
Denoising Pretraining 80.3% 67.0% 96.1% 90.7% 82.3% 

4.2 Discussion 
Supervised CNN vs. Transfer Learning Enhancement: The transfer learning 
approach using the ResNet34 encoder pre-trained on ImageNet showed significant 
improvements over the supervised C N N approach. The Dice coefficient and IoU 
values were higher, indicating better overlap and segmentation quality. The higher 
accuracy and recall further support the superior performance of the transfer learn­
ing approach in identifying relevant features within the images. 

Supervised CNN vs. Semi-supervised Learning Based on Pseudo-labels: The 
semi-supervised learning approach using pseudo-labels demonstrated notable im­
provements in Dice coefficient and IoU after retraining. While the accuracy 
slightly decreased, the overall segmentation quality improved, highlighting the ef­
fectiveness of leveraging unlabeled data to enhance model performance. The semi-
supervised approach also showed competitive performance compared to the transfer 
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learning enhancement, making it a valuable method in scenarios with additional 
unlabeled data. 

Supervised CNN vs. Semi-supervised Denoising Pretraining: The semi-supervised 
denoising pretraining approach achieved comparable performance to the supervised 
C N N approach, with slightly improved Dice coefficient and IoU values. This 
strategy proved beneficial in enhancing the model's robustness and segmentation 
performance, particularly in handling noisy and unlabeled data. 

Overall Comparison: Among the approaches tested, the transfer learning enhance­
ment with the ResNet34 encoder pre-trained on ImageNet achieved the best overall 
performance. The semi-supervised learning strategies, both based on pseudo-labels 
and denoising pretraining, also demonstrated substantial improvements over the 
purely supervised C N N approach. These findings underscore the potential of trans­
fer learning and semi-supervised methods to enhance the accuracy, recall, and 
quality of segmentation in medical image analysis. 
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Conclusion 
The comprehensive evaluation and comparison of various approaches for medical 
image segmentation in this thesis have revealed significant advancements and prac­
tical implementations in the field of retinal image analysis. The study investigated 
the efficacy of supervised convolutional neural networks (CNNs), transfer learning, 
and semi-supervised learning strategies, which collectively enhance the accuracy and 
efficiency of medical image segmentation. 

The supervised C N N approach, constructed upon the robust U-Net architec­
ture, served as a baseline, exhibiting substantial segmentation capabilities with high 
accuracy and recall. However, the necessity for extensive labeled datasets places lim­
itations on the scalability of the approach in environments with scarce annotated 
data. 

Transfer learning, which employs a pre-trained ResNet34 encoder trained on 
ImageNet, emerged as the most effective method. This approach demonstrated a 
notable enhancement in performance metrics across all evaluated categories, thereby 
substantiating the efficacy of leveraging pre-trained models to enhance feature ex­
traction and segmentation accuracy. The efficacy of this approach underscores the 
significance of employing generalized features derived from expansive, heterogeneous 
datasets to address specific medical imaging tasks. 

The implementation of semi-supervised learning, through the use of pseudo-
labeling and denoising pretraining, also demonstrated promising results. These 
strategies effectively incorporated unlabeled data, thereby expanding the training 
dataset and improving model generalization. The pseudo-labeling method demon­
strated particularly notable improvements in the Dice coefficient and IoU, indicating 
enhanced segmentation quality even in the context of a reduction in the depen­
dence on labeled data. The denoising pretraining strategy additionally enhanced 
the model's robustness, particularly in the context of handling noisy and variable 
imaging conditions that are commonly encountered in clinical practice. 

In conclusion, this thesis provides a comprehensive analysis of different segmenta­
tion techniques, demonstrating the potential of advanced methodologies to overcome 
the limitations of traditional supervised learning. The transfer learning approach, 
which has demonstrated superior performance, is particularly recommended for med­
ical image segmentation tasks. Furthermore, semi-supervised learning strategies, 
which are capable of leveraging unlabeled data, also present valuable alternatives, 
especially in data-scarce environments. 

Future research should concentrate on the refinement of these advanced tech­
niques, the exploration of hybrid models that combine the strengths of multiple ap­
proaches, and the optimization of training parameters with the objective of further 
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enhancing segmentation performance. Furthermore, extending the scope to encom­
pass other medical imaging modalities and conditions can facilitate the generation 
of more comprehensive insights and the development of more versatile applications. 
Ultimately, this will contribute to the creation of more effective diagnostic tools and 
to enhanced patient outcomes. 

The findings of this thesis demonstrate the necessity of adopting innovative and 
advanced learning strategies in medical image segmentation, thereby paving the way 
for future developments and improvements in clinical diagnostics. 
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