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Abstract 
The matter of this thesis is voice conversion. Voice conversion is taking speech of one speaker, 
that we call source speaker and transforming it into speech that sounds as the speech of 
another speaker, that we call target speaker. This is accomplished using voice conversion 
system described i n this thesis. A s the framework for speech analysis and synthesis, we are 
using tool called S T R A I G H T that was predominantly used i n Voice Conversion Challenge 
2016. Our voice conversion system is based on spectral conversion using feed-forward neural 
network and parallel t raining. 

Abstrakt 

Predmetom tejto p ráce je konverzia hlasu. Konverzia hlasu predstavuje preberanie reči 
j e d n é h o rečníka, k to r ého n a z ý v a m e zdro jový rečník a transformovanie tejto reči na reč k t o r á 
znie ako reč d r u h é h o rečníka, k t o r é h o n a z ý v a m e cieľový rečník. Toto je d o s i a h n u t é pomocou 
sys t ému pre konverziu hlasu, k t o r ý je p o p í s a n ý v tejto prác i . A k o framework pre ana lýzu a 
syn tézu reči p o u ž í v a m e S T R A I G H T , k t o r ý bol dominantne použ ívaný vo Voice Conversion 
Challenge 2016. Náš system pre konverziu hlasu je za ložený na konverzii spectra p o u ž i t í m 
doprednej neurónovej siete a pa ra l e lného t rénovan ia . 
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Rozšírený Abstrakt 
Konverzia hlasu predstavuje preberanie hlasu j e d n é h o rečníka (zdro jový rečník) a trans­
formovanie tohto hlasu na hlas d r u h é h o rečíka (cieľový rečn ík) . Konverzia hlasu je pod-
ka tegór ia väčšieho oboru tzv. t r a n s f o r m á c i a reči. V konverzii hlasu sa s ú s t r e d í m e na kval­
i t a t í vnu s t r á n k u reči, p r i čom l inguis t ický obsah p o n e c h á v a m e nezmenený . Pre konverziu 
hlasu potrebujeme vyvinúť s y s t é m pre konverziu hlasu, k t o r ý m sa z a o b e r á t á t o p ráca . 

Ú v o d do K o n v e r z i e H l a s u 

Konverzia hlasu je odvetvie, k t o r é je v súčas tnos t i v rozvojovom stave. S ú č a s t n ý stav 
vývo ja m o n ž n o sledovať napr. vo Voice Conversion Challenge, na k torom sa zúčas tňu jú 
vývojář i sy s t émov pre konverziu hlasu. S ú h r n Voice Conversion Challenge 2016 poskytuje 
p r ehľad z ú č a s t n e n ý c h sys t émov . V i d í m e že typicky je spektrum konver tované vo forme M e l 
ceps t rá lnych koeficientov alebo priamo ako celé spektrum. N a ana lýzu a syn t ézu reči sa 
veľmi čas to použ íva framework S T R A I G H T . 

T á t o p r á c a sa zemeriava na tzv. jedna k jednej konverziu tj . konvertujeme páry, k to ré po­
zos táva jú z hlasu p ráve j e d n é h o zdro jového rečníka na hlas p ráve j e d n é h o cieľového rečníka. 
A l t e r n a t í v n e k tomuto exis tu jú m n o h o z d r o j o v é sys t émy k t o r é konver tu jú akéhokoľvek zdro­
jového rečníka na j ed iného cieľového rečníka. 

Pre t r énovan ie p o u ž í v a m e n a h r á v k y použ i t é vo Voice Conversion Challenge 2016. Poskyt­
nu t í sú 4 zdrojoví a 4 cieľoví rečníci . Celková pr ib l ižná dĺžka n a h r á v o k j e d n é h o rečníka sú 4 
minuty. Využ ívame pa ra le lné t rénovacie data, kde t r énovan í rečníci p r e d n á š a j ú rovnaké vety. 
A l t e r n a t í v n e k tomu exis tu jú nepa ra l e lné sys témy, k t o r é m ô ž u byť t r é n o v a n é na rôznych 
ve t ách od zdro jového a cieľového rečníka. 

Mnohozdro jové a nepa ra l e lné s y s t é m y p rek raču jú rozsah tejto práce . 

P o u ž i t é N á s t r o j e 

Pre ana lýzu a syn tézu reči p o u ž í v a m e framework S T R A I G H T . V ý s t u p o m analýzi je spektro-
gram, z á k l a d n ý t ó n a aper iod ická mapa, p r i čom sa zameriavame na konverziu spektrogramu 
a z á k l a d n é h o tónu . 

PhnRec je fonémový rozpoznávač , k t o r ý p o u ž í v a m e pre rospoznanie foném, aby sme ich 
mohl i analyzovať a upravovať ich d ĺžku . V t r énovan í t a t k t i e ž použ i j eme v ý s t u p rozpoznávača 
na o d s t r á n e n i e ticha. 

K o n v e r z i a s p e k t r o g r a m u 

H l a v n ý m č l á n k o m s y s t é m u pre konverziu hlasu je p o d s y s t é m pre konverziu spektrogramu. 
Pred z a č a t í m konverzie m u s í m e vytor iť t rénovac í sy s t ém. Konverzia aj t r énovac í sy s t ém 
použ íva jú veľmi p o d o b n é techniky pre spracovanie spektrogramu. Tieto techniky musia 
mať reverzné operác ie pre prevedenie konver tovaného spektrogramu na spektrogram, k to rý 
je v h o d n ý na syn tézu . 

P r v ý m krokom pri t r énovan í je zarovnanie zdro jového a cieľového spektrogramu, tak 
aby fonémy vysky tu júce sa v spektrogramoch bol i na rovnakých indexoch. Nato sa použ íva 
Dynamic T ime Warp ing (dynamické bortenie ča su ) . D T W lokálne predlžuje spektrogram a 
v y t v á r a s ta t ické čas t i spektrogramu. Preto D T W je nas ledované d o d a t o č n ý m spracovan ím, 
tak aby zdro jový spektrogram bol zostal n e z m e n e n ý a cieľový spektrogram sa dosadil na 
ten zdrojový. 



Zarovnané spektrogramy sú nás l edne p revedené do M e l frekvenčnej škály. M e l f rekvenčná 
škála zvšuje rozlíšenie v n ízkych frekveniach a znižuje vo vysokých, tak aby p revedený spek-
trogram reprezentoval ľudské frekvenčné v n íman ie . Nás ledne sa apl ikujú A-váhy a logarim-
izuje sa výkon spektra. 

V spektrograme sa nás l edne normal i zu jú r á m c e spektrogramu na s t r e d n ú hodnotu, aby 
sme ods t rán i l i energiu r á m c a ako parameter, k t o r ý m u s í m e konver tovať. Nás ledne normal­
izujeme spektrogram napr i eč ča som na s t r e d n ú hodnotu a s m e r o d a t n ú odchylku. 

N a konverziu takto u p r a v e n é h o spektrogramu p o u ž í v a m e n e u r ó n o v ú sieť, k t o r á je nas­
t a v e n á na vykonávan ie regresie. A k o vstup p o u ž í v a m e zdro jový spektrogram, z k to r ého 
berieme kon tex tové okno so š írkou pr ib l ižne 45ms. A k o v ý s t u p t r é n u j e m e cieľový spektro­
gram, k t o r ý sme rovnako upravi l i r o v n a k ý m i technikami. 

Pre t r énovan ie neurónovej siete po iž ívame A d a m op t ima l i zá to r , k t o r ý je za ložený na 
stochastickom s p á d e gradientu. Tiež aplikuje a d a p t í v n ý s t u p e ň učenia a a d a p t i v n ě momen­
t ů m . 

K o n v e r z i a z á k l a d n é h o t ó n u 

P v r o t n é experimenty s konverziou z á k l a d n é h o t ó n u predpokladali použ i t i e neurónovej si­
ete s podobnou a r c h i t e k t ú r o u ako neu rónová sieť pre konverziu spektrogramu. Ukázalo sa 
že priebeh z á k l a d n é h o t ó n u od zdro jového a cieľového rečníka m á n ízku koreláciu, preto 
sa od neurónovej siete upustilo. Použ íva sa konverzia na zák lade normal izác ie (podľa 
zdro jového rečníka) konver tovaného z á k l a d n é h o t ó n u na nás lednej denormal izác ie (podľa 
cieľového rečníka) . 

Z m e n a D ĺ ž k y F o n é m 

Dĺžka s akou j edno t l i vý rečníci vyslovujú fonémy sa men í . Pomocou fonémového rozpoznávač 
m ô ž e m e analyzovať ich dĺžku. Trvanie fonémy j e d n é h o typu m á iné n o r m á l n e rozloženie 
u zdro jového a cieľového rečníka . N a zák lade tohto m ô ž e m e pr i konverzii zmeniť d ĺžku 
foném norma l i zován ím strednou hodnotou a s m ě r o d a t n o u odchylkou zdro jového rečníka a 
denorma l i zovan ím strednou hodnotou a s m ě r o d a t n o u odchylkou cieľového rečníka. 

E x p e r i m e n t y a V ý s l e d k y 

Pred p o u ž i t í m konverzie spektrogramu pomocou neurónovej siete sme experimentovali s 
konverziou pomocou t r ans fo rmačne j matice, k t o r á je v y p o č í t a n á ako m i n i m á l n e kvadra t i cké 
riešenie rovnice SX = T kde S je zdro jový spektrogram a T je cieľový spektrogram a 
X je t r a n s f o r m a č n á matica. Toto r iešenie nedokáza lo v y p o č í t a ť X pre t rénovacie data s 
d o s t a t o č n o u presnosťou, eš te horš ie general izovať pre eva luačně data. 

F iná lne riešenie použ íva júce n e u r ó n o v ú sieť dosahuje lepšie výsledky. Napriek tomu s tá le 
je čo zlepšovať. Vlas tnost i konver tovaného spektrogramu sú t aké , že syn te t i zovaná reč sa 
p o d o b á tej cieľového rečníka. Avšak konver tovaný spektrogram t r p í stratou detailu reči. To 
sa hlavne prejavuje n e v ý r a z n ý m i až ú p l n e v y t r a t e n ý m i formantami. V syntetizovanej reči sa 
strata formant prejavuje n ízkou kval i tou hlasu, ťažko z r o z u m e n u t e ľ n ý m i slovami a celkovou 
o tupenosťou . 

Dôvody t a k ý c h t o výsledkov m ô ž u byť rôzne . J e d n ý m z nich môže byť m a l ý obsah t r éno -
vacích d á t , k t o r é m a j ú len okolo 4 m i n ú t . Ďa l š ím d ô v o d o m môže byť charakter konverto­
vaných spektrogramov a to taký , že j edno t l ivé čas t i k t o r é sa na seba konver tu jú sú medzi 
sebou tak dekorelované, že neu rónová sieť nedokáže nájsť ideá lne riešenie. 
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Chapter 1 

Introduction 

Voice conversion is taking voice of one speaker (the source speaker) and transforming it into 
voice that sounds as the voice of another speaker (the target speaker). Voice conversion is 
subcategory of larger field called voice transformation. Voice transformation is broad range 
of modifications we can apply to the human voice. In voice transformation we focus on 
non-linguistic information in voice. In voice conversion, this means we focus on features 
that make voice of one speaker sound distinct from the voice of another speaker. 

1.1 Introduction Into the Voice Conversion 

The voice conversion is currently developing field i n the speech processing. Development of 
the voice conversion has potential to be ut i l ized i n different areas of the speech processing 
such as generating expressive speech, voice assistants and more. State-of-the-art of the 
voice conversion is well shown at the Voice Conversion Challenge [1]. The Voice Conversion 
Challenge summary and analysis [2] provides overview of the part icipat ing systems. The 
voice conversion systems usually use M e l cepstral coefficients as spectral envelope that is 
converted usually using Gaussian mixture models or deep neural networks. 

This thesis focuses on one-to-one voice conversion. Th is means, the voice conversion 
system w i l l be able to be trained for pairs of one source speaker and one target speaker 
for which we have to acquire speech. After training, the voice conversion wi l l be evaluated 
on evaluation speech. Our voice conversion system w i l l be trained on parallel t raining 
data meaning that both source and target speaker t raining speech need to uttered the 
same sentences. This k ind of voice conversion t raining and evaluation is inspired by Voice 
Conversion Challenge from which we have acquired t raining and evaluation data. 

There is an alternative form of t raining to the parallel t raining that is called non-parallel 
t raining. In non-parallel t raining we collect t raining speech of the source and target speaker 
that doesn't contain the same sentences. Instead we collect any sentences from the speakers 
and use e.g. cross-referencing training system. There is also alternative to the one-to-one 
voice conversion called any-to-one voice conversion i n which we can convert any source 
speaker that we haven't used in t raining and convert it into the target speaker. Non-parallel 
t raining and any-to-one voice conversion systems are beyond the scope i f this thesis. 
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1.2 Baseline System 
The design of our voice conversion system is following a simple scheme. The scheme con­
sists of three parts: analysis, modification and synthesis. The analysis 3 and synthesis are 
provided by S T R A I G H T framework. This is described in detail in separate chapter. 

Source voice: 
"Captain Nemo stood up" 

Target voice: 
"Captain Nemo stood up" 

Speech analysis 
Speech feature 

modification 

Ä 

Speech synthesis 

Figure 1.1: Voice conversion baseline system 
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Chapter 2 

Voice production 

Before we can extract and modify voice features we have to understand what k ind of features 
we deal wi th and how they matter in voice conversion. The most common way to understand 
speech product ion in the context of voice transformation is the use of source-filter model [3]. 

2.1 Source-filter theory model 

A s the name suggests, this model is composed of two parts: source and filter. The source 
(vocal cords) produces excitation signal that passes through t ime-varying filter (vocal tract) 
that damps, or emphases frequencies i n that signal, thus creates output signal (voice). 

Depending on k ind of phoneme being process, we distinguish two kinds of phonemes: 
voiced and unvoiced. Exc i ta t ion signal for voiced phonemes is composed of fundamental 
frequency and multiples of that frequency. For unvoiced phonemes, the excitation signal 
reminds white noise and fundamental won't be relevant for modification of the frames. 

2.1.1 E x c i t a t i o n s ignal 

A n accurate way to model the excitat ion signal is suggested by the family of speech repre­
sentations called sinusoidal models. This model suggests that the excitat ion signal e(t) is 
represented by a sum of sinusoids defined as follows: 

K(t) 

e(t) = J 2 M t ) e i M t \ (2.1) 
fc=0 

"where ak(t) and <fik(t) is are the instantaneous excitation amplitude and phase of the k-th 
sinusoid and K(t) is the number of sinusoids, which may vary in time" [3]. Now we can 
specify the most important feature of the excitat ion signal is pi tch that we w i l l refer to as 
fundamental frequency: fo(t). The fundamental frequency is added i n the sum of sinusoids 
as follows: 

Mt) = ^kf0(t), (2.2) 

The excitat ion signal therefore consists of fundamental frequency fo(t) and multiples of 
the fundamental frequency k, while the higher frequencies get gradually dumped. 
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2.1.2 F i l t e r m o d e l 

The filter that is provided by vocal tract is t ime-varying filter which creates distinct phonemes 
over t ime. Voice analysis is performed by frame-by-frame approach wi th frame size raging 
from 20ms to 50ms. In each frame we assume that voice characteristics including filter for 
excitation signal are stationary. 

2.1.3 O u t p u t s ignal 

Consider that i n a frame we have t ime invariant filter h(t). The output signal(voice) s(t) is 
then convolution of excitat ion signal e(t) and the impulse response of the vocal tract filter 
h(ty. 

(2.3) 

The voice product ion process can be visualized in the spectral domain as follows: 

Glottal excitation signal Vocal Track Filter Output Spectrum 

frequency (Hz) frequency (Hz) frequency (Hz) 

Figure 2.1: Source Fi l ter theory model 
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Chapter 3 

STRAIGHT 

S T R A I G H T is a tool for speech analysis, manipulat ing voice quali ty and speech synthe­
sis. S T R A I G H T was predominantly used tool in Voice Conversion Challenge 2016 [1] 
and systems using this tool achieved outstanding results. The main justification for us­
ing S T R A I G H T is its approach for voice speech analysis. 

S T R A I G H T decomposes speech into three components: fundamental frequency, ape-
riodici ty map and interference and fundamental frequency free spectrogram. These three 
components are used for speech synthesis: 

aperiodicity extraction 

input speech 
[ FO extraction 

T A N D E M spectrogram 

S T R A I G H T spectrogram 

speech 
synthesis 

Figure 3.1: Diagram of S T R A I G H T speech analysis and synthesis [4] 

S T R A I G H T allows us to set settings for speech analysis such as min imal and maximal 
fundamental frequency, fast Fourier transform size etc. Our system is using fit size 1024, 
and frame offset 3 milliseconds. 
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3.1 Fundamental frequency 
Fundamental frequency is the first component to be estimated, because aperiodicity esti­
mation and spectrogram depend on i t . S T R A I G H T estimates fundamental frequency for 
all frames including silent and unvoiced frames. Detection of silent and unvoiced frames is 
applied later. 

FQ extractor [4] uses division of two spectrums: T A N D E M spectrum and S T R A I G H T 
spectrum. However T A N D E M and S T R A I G H T spectra depend on fundamental frequency. 
Therefore FQ creates band table including frequencies throughout expected frequency range 
(typically 50Hz - 600Hz). Each frequency from band table is used as input frequency for 
T A N D E M and S T R A I G H T spectrum and spectra are divided. The closer the band fre­
quency is to the actual FQ the more power in divided spectrum we get. D iv ided spectra 
are cumulated and FQ candidates are extracted based on gradient of cumulative frequency. 
F i n a l FQ is acquired by auto-tracking FQ candidates. 

Fundamental frequency 

time (s) 

Figure 3.2: Fundamental frequency of speech: "Cap ta in Nemo stood up." 

3.2 Aperiodicity map 
Aper iodic i ty map is estimation that describes how how random is power ratio between 
periodic component(-Fo) and random component across spectrum. Parts of spectrum wi th 
low aperiodicity represent high presence of periodic excitation signal. Parts w i th of spectrum 
wi th high aperiodicity represent low presence of periodic excitat ion signal. Aper iod ic i ty map 
is necessary for speech synthesis i n order to create excitat ion signal. 
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0 0.5 1 1.5 
time <s) 

Figure 3.3: Aper iod ic i ty map of speech: "Cap ta in Nemo stood up." 

3.3 S T R A I G H T spectrogram 
Spectrogram extraction has two steps. Firs t T A N D E M spectrogram is extracted and then 
final S T R A I G H T spectrogram is estimated. T A N D E M spectrogram is composed of static 
power spectrum that has greatly reduced temporal variation. S T R A I G H T spectrogram 
builds on T A N D E M spectrogram and smoothens periodic component. 

3.3.1 T A N D E M s p e c t r o g r a m 

T A N D E M spectrogram(Pr(u>, r ) ) [4] removes temporal variat ion by using average spectrum 
of two complementary windows: 

S(u, T) = J X(T)W(T - t)e-jWTdT (3.1) 

p , s | S ( t M - r 0 / 4 ) | 2 + | s ( t M + r 0 / 4 ) | 2 , „ 9 . 
PT{W,T) = , (3.2) 

where x(t) and w(t) represent waveform and To represents reciprocal of fundamental 
period. 

3.3.2 T A N D E M to S T R A I G H T s p e c t r o g r a m 

S T R A I G H T spectrogram removes fundamental frequency and its multiplications that are 
present i n T A N D E M spectrogram. That makes S T R A I G H T spectrogram ideal represen-
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ta t ion of vocal tract filter. S T R A I G H T spectrogram Psr(^,t) [4] is obtained by spectral 
smoothing of the T A N D E M spectrogram PT-

C{u,t) = / PT{X,t)dX (3.3) 
J u>L 

L(u, t) = ]n.(C(u + UQ/2, t) - C{uo - uQ/2, t)), (3.4) 

followed by consistent sampling: 

Psr(u,t) = exp(g~i(L(a; + u0,t) + L(UJ - u0,t)) + q0L(u,t)), (3.5) 

where CUQ represents fundamental angular frequency. <fn and q\ represent compensation 
constants calculated from auto-correlation of the Fourier transform [4]. 
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Chapter 4 

Phoneme Recognition 

A phoneme is the smallest unit of sound of language that can be distinguished by a listener. 
There are more phonemes than letters i n alphabet because some phonemes are created by 
combinations of mult iple letters. Phonemes can be represented by phonetic labels associated 
wi th example of the sound of that phoneme. Most common phonetic labels are I P A [5], 
Worldbet [5], and OGIbe t [5]. 

W h e n spoken, phonemes have different length, depending on the speed of speakers 
speech. Frequency of phoneme appearance can also change speaker to speaker. Those 
are features we want to observe and change i n the voice conversion system. 

4.1 Phoneme recognizer based on long temporal context 

Phoneme recognition is achieved using phoneme recognizer. Phoneme recognition is complex 
task deserving its own thesis. For this purpose, we were provided wi th phoneme recognizer 
based on long temporal context developed at Brno Universi ty of Technology, Faculty of 
Information Technology [6]. The phoneme recognizer is based on hybr id A N N / H M M ap­
proach, where artificial neural networks ( A N N ) are used to estimate posterior probabilities 
of phonemes from M e l filter bank log energies using the context of 310ms around the current 
frame [7]. 

4.1.1 P h o n e m e Recogn izer O u t p u t 

The recognizer provides 4 systems for 4 languages (Czech, Hungarian, Russian, English) . 
The output of the recognizer provides sequence of OGIbe t phonetic labels w i th their tempo­
ral positions and likelihood. Example of recognized phonemes wi th Engl ish system in speech 
"Tall, black Crosewood bookcases. " looks like: 

000000 1200000 pau -12.011214 

1200000 2300000 t -14.992387 

2300000 4000000 hh -42.520073 

4000000 4400000 1 -8.518959 

4400000 4800000 ah -9.891708 

4800000 5600000 m -14.068726 
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Chapter 5 

Spectrogram Conversion 

Spectrogram is the main feature that gives s speakers voice its characteristic. Changing 
spectrogram is the main focus of most of the voice conversion systems and usually it is the 
largest part, consisting of mult iple stages. A l l the stages are described i n separate chapter 6 

Target Source 
STRAIGHT STRAIGHT 

Spectrogram Spectrogram 

o o 
DTW + Smoothing 

Regresion Neural Network 

Figure 5.1: Diagram of the t raining system pipeline 

5.1 Training System 
Before we can proceed to the actual conversion, we have to collect information that wi l l 
provide data for the conversion system. The training system w i l l require t raining samples 
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of the source and target speaker i n order to collect information. We are developing parallel 
conversion system, meaning, we require that the t raining system gets accurate conversion 
parameter from the t raining samples consisting of speech of the pair of speakers speaking 
the same transcripts. 

5.1.1 T r a i n i n g S y s t e m P i p e l i n e 

Training is accomplished using training system is composed of similar components as the 
conversion system wi l l be composed. The input of the t raining is a pair of spectrograms 
(source and target). Dur ing the training, we save trained parameters, namely regression 
neural network weights, normalizat ion parameters (means and standard deviations). Each 
part of the pipeline is described in the following chapter 6. 

5.2 Spectrogram Conversion System 
Spectrogram conversion requires that we have accomplished training and saved parameters 
acquired during training. Spectrogram conversion w i l l use similar pipeline, however trained 
parameters w i l l be used to perform conversion. Also , the input for the pipeline is only source 
spectrogram that from the evaluation data-set. After conversion reversed operations wi l l be 
applied to get fully converted spectrogram ready for synthesis. 

Evaluation spectrogram 

Mel Filter Converted spectrogram 

A-weighting Reversed Mel Filter 

Si lence Removal A-weighting removal 

Normalization Silence addition 

Contextual Window Denormalization 

Regresion Neural Network 

Figure 5.2: Conversion pipeline 
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5.2.1 C o n v e r s i o n P i p e l i n e 

Conversion pipeline removes the pair of the spectrograms as the input since we are not 
performing training anymore. The regression neural network is set to perform prediction of 
the input. The output is converted spectrogram that we have to de-process. De-processing 
is composed of the same techniques however we apply them in the reversed order. A l so each 
technique must provide reversed operation. De-processed spectrogram is ready for synthesis. 
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Chapter 6 

Techniques for Spectrogram 
Conversion 

In order to make S T R A I G H T spectrogram suitable for conversion we need to apply number 
of modification to i t . This modifications focus on enhancing spectrogram into how it per­
ceived by human ear and adjusting it to be processed by voice conversion t raining subsystem. 
The techniques also need have inverse transformations used by voice conversion system. 

6.1 Alignment of Spectrograms 

Training data from source and target speaker that are passed to the t raining subsystems 
have to be aligned. More specifically we match indexes of the frames of the source and target 
spectrograms so that frames correspond to the same segment of the speech. Procedure we 
use is called dynamic t ime warping [8]. 

6.1.1 D y n a m i c T i m e W a r p i n g 

Since S T R A I G H T spectrum is only power spectrum that was processed to remove harmonic 
component, for dynamic t ime warping it has to be represented i n a form that reflects human 
perception of frequencies and magnitudes and also improves speech processing. 

Two essential steps that are used often i n the voice conversion system are applying M e l 
filter banks 6.3 and A-weight ing 6.4 or taking logari thm of M e l filter banks. This two steps 
must be applied to the S T R A I G H T spectrum before we can achieve good results w i th D T W . 

6.1.2 L o c a l D i s t a n c e M a t r i x 

A t first we calculate local distance matr ix . Loca l distance matr ix contains distance of each 
source frame compared to each target frame. Distance between frames is calculated as 
Eucl idean distance. 

15 



250 

Local Distance Matrix 

200 

in 
&150 •a c 

CT3 100 

50 

50 100 150 200 250 
Source Indexes 

300 

Figure 6.1: Loca l distances between all frames of source and target spectrograms 

6.1.3 C u m u l a t e d D i s t a n c e M a t r i x a n d B a c k t r a c k i n g M a t r i x 

W h i l e Loca l distance matr ix provides euclidean distance between frames without context, we 
need to track distance based on posit ion we come from. For this purpose we calculate cumu­
lated distance matr ix ( C D M ) using local distance matr ix and local path restrictions. C M D 
is calculated column by column from the place we start (indexes (1, 1)) and simultaneously 
we create backtracking matr ix we use later. Loca l path restrictions set three constraints: a) 
path for reaching new place b) coefficients paths c) path tagging. 

New calculated distance g{m + l , n ) depends on value of the current location g(m,n) 
and values of the surrounding locations: g(m + l,n), g(m,n + l). New distance is the lowest 
value g. Also , we save tag of the associated path i n the backtracking matrix. 
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Figure 6.2: Different types of path restrictions [8]. We are using Type L a 

Cumulated Distance matrix 
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Source Indexes 

Figure 6.3: Cumula ted distances between all frames of source and target spectrograms 
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6.1.4 B a c k t r a c k i n g 

In backtracking we create two arrays of paired indexes based on backtracking matr ix . Cells of 
backtracking matr ix contain tag that says where we get to the given cell from. Backtracking 
starts from the end of the path (maximum indexes) and using tagged directions leads to 
beginning. The reversed arrays then represent the shortest path. 

Bactracking Matrix 

Source Indexes 

Figure 6.4: Backtracking M a t r i x indicates direction we approach cells from. Black cells 
are approached diagonally. Orange cells are approached from the bot tom. Whi t e cells are 
approached from the left. 
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Shortest Path: Index Pairs 

50 100 150 200 250 300 
Source Indexes 

Figure 6.5: Shortest Distance P a t h 

6.2 Postprocessing 

D T W provides shortest path between two spectrograms, however, it also creates redundancy 
i.e. duplicated frames that create s t i l l sequences of frames in the spectrogram. Duplicated 
frames extend spectrogram locally that creates representation not suitable for context de­
pendent t raining subsystems. For better representation of aligned spectrograms, we require 
that the source spectrogram is the same sequence of frames as the original spectrogram and 
the target spectrogram is aligned to fit the source spectrogram. 
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Figure 6.6: Spectrograms aligned using D T W . Static areas disrupt context e.g. the source 
spectrogram in the frames 25-50 or the target spectrogram i n the frames 50-100 are locally 
extended 

6.2.1 D u p l i c a t e d F r a m e s R e m o v a l 

The first step of postprocessing is removal of duplicated frames in both source and target 
arrays. The shortest pa th wi th removed duplicated frames now contains cuts in spectrogram 
opposed to the spectrogram where duplicated frames were removed and therefore this rep­
resentation is s t i l l not suitable for context-depended trained subsystem. The shortest path 
wi th removed duplicated frames contains only pairs of frames wi th the smallest distance. 
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Source Spectrogram 

Index 

Figure 6.7: Spectrograms aligned using D T W wi th removed duplicities. Lots of content is 
removed because dupl ici ty on one side also removes good frames on the other side 

6.2.2 S m o o t h i n g Shortest P a t h 

Ult imate ly we want to have unchanged source spectrogram and target spectrogram aligned 
to i t . We use shortest path wi th removed duplicated frames, from which we take set of 
index pairs, spaced by small distance, 40-60ms. Parts of target spectrogram are resized 
wi th interpolation so that distance between neighbor target indexes match distance between 
responding source indexes. 
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Source Spectrogram 

Time (s) 

Figure 6.8: Source spectrogram remains unchanged from the analysis. Parts of the target 
spectrogram were resized according to the extracted index pairs of the shortest path. 

6.3 M e l Filter Banks 
M e l filter banks transform power spectrum to M e l power spectrum that has different fre-
quential representation. M e l frequential representation allows further processing algorithms 
to process spectrum as if frequencies were perceived by human rather than fully linear rep­
resentation. 

6.3.1 M e l Scale 

H u m a n perception has higher frequential definition on lower frequencies than on higher 
frequencies. For instance two of musical notes (one octave apart) in low registers i.e. C\ 
and C2 are 32.70 Hz apart however same notes in higher registers i.e. C5 and CQ are 523.25 
Hz apart. Frequencies of the power spectrum w i l l be converted to the M e l scale [9]: 

F M e Z = 29591og 1 0 ( l + ^ ) (6.1) 

or: 

F M e Z = 11251n(l + ^ ) (6.2) 

For M e l to frequency we use following formula: 
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F H Z = 7 0 0 ( e x p ( F M e z / H 2 5 ) - 1) (6.3) 

6.3.2 F i l t e r B a n k s 

In order to rescale frequencies to M e l , we can take range of evenly spaced M e l scale values 
and convert them to frequencies. Linear spaced M e l values wi l l be nonlineary spaced on 
frequency scale, having smaller spaces at lower frequencies and bigger spaces at higher 
frequencies accounting for the human ear frequency definition. 

New M e l converted spectrum can be calculated by taking the sum of the power of the 
parts preserved by rescaled frequencies, therefore low M e l registers taking smaller parts 
of spectrum and high M e l registers taking bigger parts of spectrum. Resul t ing i n higher 
frequencies of spectrum being shrinked and lower frequencies of spectrum being enlarged. 
The most popular way to select preserved parts of spectrum is to use triangular shape filter. 

Each triangular filter spans over 3 rescaled frequencies (up slope on 1-2 and down slope 
on 2-3) so that the filters overlap. Each filter provides 1 value for M e l spectrum by summing 
parts of the spectrum it spans. The triangular shape is linear function that multiples the 
value it is spanning over, parts of the spectrum under the ends of bank being taken by 
smaller margin than value under the top of the bank. The max imum value of the filter can 
also by adjusted. The m a x i m u m value of the filter can be normalized by its width , wider 
banks being lower. This accounts for the size of the area of the spectrum so that wider 
banks don't get too high values. 

Normalized M e l filter banks are used during spectrum to M e l conversion. Denormalized 
M e l filter banks are used during backward conversion to full spectrum. Dur ing backward 
conversion we take value of each M e l banks and spread its value to the spectrum according 
to the shape of the bank. 

Mel 
0 500 1000 1500 2000 2500 3000 3500 

0.40-

0 2000 4000 6000 8000 10000 
Frequency (Hz) 

Figure 6.9: Normalized M e l Fi l ter Banks wi th 42 banks. Also shown wi th M e l scale on the 
top 
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Figure 6.10: Denormalized M e l Fi l ter Banks wi th 42 banks. Also shown wi th M e l scale on 
the top 

The M e l filter banks are stored as matr ix that is easily applied to the spectrogram for 
frequency to M e l conversion and also reversed M e l to frequency conversion. 

Mel f i l ter banks matr ix Mel f i l ter banks matr ix 

0 2000 4000 6000 8000 10000 
Frequency (Hz) 

0 2000 4000 6000 8000 10000 
Frequency (Hz) 

(a) Normalized matrix for frequency to Mel con- (b) Denormalized matrix for Mel to frequency 
conversion 

The M e l filter bank matr ix is applied as: 

= ST
FMT, (6.4) 

ST
F = ST

MM, (6.5) 

where is spectrogram in normal frequency, SM is spectrogram is M e l scale and M is 
the M e l filter bank matrix. 
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Mel Converted Spectrogram 

Time <s) 

Figure 6.12: The first spectrogram has M e l filter banks applied. The second one has been 
reversed from M e l spectrogram 

6.4 A-weighting 
Power spectrum that is provided by the S T R A I G H T framework and/or M e l spectrum 
doesn't represent the loudness perceived by human ear. Power spectrum is perceived i n 
logarithmic fashion. Also sensitivity varies along different frequencies. Standard [10] pro­
vides standards for measurement of sound pressure, including A - , B - , C - and D - weightings. 
A frequency weighting can be achieved using parameterized filter[11] HA thats defined as: 

H A U ) =

 (/ + ^ i )
2

( / + ^2)(/ + o;3)(/ + a;4)
2 ( 6

'
6 ) 

Coefficients for A-weight ing cvn are: w i = 20.598997, cv2 = 107.65265, u; 3 = 737.86223, 
W 3 = 12194.217. Fu l l A-weight ing is finished using frequency logari thmizat ion done by using 
common formula: 

A ( / ) = 2 0 1 o g 1 0 ( # A ( / ) ) + 2 (6.7) 
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Figure 6.13: Showcase of A-Weight ing weights across the frequencies 

Inverse transformation of A-weight ing is applied as: 

AR(f) = 10^r, 

HARU) 
HA(fV 

where A r ( / ) is reversed logari thmizat ion and HAR{J) is reversed A-weightings. 

(6.8) 

(6.9) 

6.5 Silence Removal 

In speech processing, the silence feature thats undesired to be processed. In the voice conver­
sion silence is feature that won't be converted. Tra in ing usually contain 15-25% of silence. 
Training using silence w i l l lead the conversion system to be performing input regression on 
the regular phonemes and input propagation on the silent frames, therefore compromising its 
parameters for the sake of unnecessary conversion. We remove the silence using recognized 
phonemes (see section 4.1) where silence is recognized as pau. Silence removal is performed 
on aligned spectrograms. W h e n we remove silence in the source spectrogram we have to 
remove same part i n the target spectrogram as well not to mismatch the alignment. 

6.6 Normalization 
Before we feed spectrum (that we have filtered using male banks and applied A-weighting 
and logarithmic transformation) into our conversion subsystem, we optimize input i.e. the 
prepared spectrum. Input opt imizat ion is the last step before input is fed into the conversion 
subsystem. Opt imiza t ion w i l l enable the conversion subsystem to fully focus on relevant 
information and information w i l l be provided in expected zero-mean, unit-variance format. 
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6.6.1 E n e r g y N o r m a l i z a t i o n 

In the spectrogram, same phonemes appear w i th different energy, meaning the have different 
mean value. The conversion subsystem would have to be trained to convert same phonemes 
wi th difference energy, therefore increasing variabil i ty of the input that could have the same 
transformation. We normalize energy by subtracting mean value \x of each frame x( t ) . 

6.6.2 S p e c t r u m N o r m a l i z a t i o n 

W h e n we feed spectrogram into the conversion subsystem each input is receiving series 
of one part of the spectrum across the time. A l l series have different mean values and 
standard deviation. If we normalize spectrum across the t ime the conversion subsystem wi l l 
be receiving more balanced input . A t first we normalize mean values of the spectrum x(t): 

Xi(t) = Xi(t) - m (6.10) 

Then we normalize standard deviation of the spectrum x(t): 

Xi(t) = ^ (6.11) 

After conversion, the spectrogram has to be denormalized by inverse formula: 

Xi(t) = Xi(t)(Ti + m (6-12) 

6.7 Regression Neural Network 
A s a spectrum conversion subsystem we use feed forward neural network that is set up for 
regression. Topology for the neural network is inspired by DNN-based auto-encoder for 
speech enhancement, dereverberation and denoising [12]. The input of the neural network 
is a series of source speaker frames. Output is one target speaker frame. 

6.7.1 N e u r a l N e t w o r k T o p o l o g y 

A s the input for the Neural Network (NN) we provide contextual window of the pre-processed 
source spectrum. The specific frame that is being converted may depend on surrounding 
frames and contextual window provides couple upcoming and forthcoming frames for the 
input. Usually, the contextual window spans 15 frames, 7 frames to the left and 7 frames to 
the right w i th one central frame that has the same index as the target frame. Therefore we 
have 15 frames in the input. 

The output is target spectrum we have aligned to the source spectrum i n previous chap­
ter. Target spectrum is also pre-processed. 

The N N has 3 densely-connected layers: input layer, hidden layer and output layer. 
Act iva t ion functions for the input and hidden layer are hyperbolic tangent activation function 
(tanh). Tanh is zero centered and output values are i n range from -1 to 1. This is makes 
it suitable for the regression task. The output layer uses linear activation function that 
provides converted frame. 
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Figure 6.14: Scheme of the regression neural network 

6.7.2 N e u r a l N e t w o r k T r a i n i n g 

The N N training is performed i n epochs. Dur ing one epoch al l t raining data are passed 
through the N N exactly once. The whole data usually takes to much memory, therefore it is 
divided into batches. Dur ing one epoch batches are passed throughout the N N in iterations. 
After each epoch, a t raining algori thm based on stochastic gradient descent updates the N N 
weights. 

Loss function 

In order for stochastic gradient descent based training algorithms to converge, the loss 
function is required to evaluate output accuracy during training. The loss function is non-
negative value and its value decreases as the accuracy of the output increases. The loss is 
represents difference between training value y and the predicted value y. 

For the purpose of regression task we use mean square error ( M S E ) loss function. M S E is 
ideal for the task of regression because it represents the distance of the t raining value y and 
the predicted value y by subtracting and squaring them and taking mean of al l distances. 
Squaring the distance makes distance parabolic and the N N w i l l converge faster. 

1 " 
MSE = - J2(Vi ~ m? (6-13) 
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6.7.3 T r a i n i n g D a t a 

A s training data we acquired t raining data [13] used in Voice Conversion Challenge 2018. 
This data-set provides data for both parallel and nonparallel t raining. We w i l l use parallel 
data-set that provides 4 source speakers (2 male and 2 female) and 4 target speakers (2 male 
and 2 female), thus providing 16 conversion pairs. There are 81 sentences provided by each 
speaker and overall speech length is about 4 minutes. 

6.7.4 D a t a Set P r e p a r a t i o n 

Pre-processed data from previous chapter are divided into t raining data and validat ion data 
wi th split 0.2 (80%training data, 20%validation). Tra in ing data are data used to calculate 
loss and update weights. Val ida t ion data serve to compute validat ion loss after each epoch. 
Val ida t ion loss indicates abi l i ty of the N N to predict unseen testing data. Divergence of the 
validation loss allows us to detect overfitting of the N N and adjust optimizer. 

6.7.5 A d a m o p t i m i z e r 

A d a m [14] is optimizer using stochastic gradient descent opt imizat ion. The name is de­
rived from adaptive moment estimation. It builds on two popular optimizes: A d a G r a d and 
R M S P r o p . 

A d a G r a d optimizer stands for adaptive gradient. It introduces adaptive learning rate 
based on the parameters. Each parameter is updated wi th different learning rate. The 
infrequent parameters are updated wi th bigger learning rate. The frequent parameters 
are updated wi th smaller learning rate. This approach works great for tasks wi th sparse 
gradients. 

R M S p r o p optimizer introduces use of the momentum during gradient descent. Momen­
t u m restricts oscillation i n non-convergent direction in the steps during the gradient descent. 
This allows us to user greater learning rate. 

The recommended settings for A d a m optimizer are: a(learningrate) : 0.001, j3\ : 0.9,/?2 : 
0.999 (Exponential decay rates for the moment estimates) and e = l e - 8 . 

6.7.6 T r a i n i n g Resu l t s 

Training session is considered successfully when validat ion loss is converging along wi th 
t raining loss. If t raining loss diverges t raining is stopped. The epoch wi th the min imal 
t raining loss is taken wi th its N N wights for the conversion as it has the best abil i ty to 
generalize unseen input. 
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Figure 6.15: Val ida t ion and training loss during training 
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Chapter 7 

Fundamental Frequency Conversion 

Firs t attempts to perform fundamental frequency fo(t) conversion involved conversion using 
the similar neural network conversion system as we use for the spectrogram conversion. 

7.1 Fundamental Frequency Preprocessing 

Before performing the conversion we perform preprocessing on the source fundamental fre­
quency fo(i)s and the target fundamental frequency fo(t)t that is similar to the spectrogram 
preprocessing. The fo(t)t is aligned to the fo(t)s based on the shortest path and postpro­
cessing of the shortest path that we have computed during spectrogram alignment. 

S T R A I G H T analysis provides a vector of hard decision (either 0 or 1) weather the 
analysed frame is voiced or unvoiced/silent. Similar to the silence removal i n the spectrogram 
conversion, we remove unvoiced or silent frames from fo(t)s and fo(t)t, since we are not 
interested i n t raining or converting those data. 

7.2 Problems W i t h Conversion using N N 

The results were compromised by the training. The validat ion loss couldn't reach satisfying 
levels. The conversion tests provided output that couldn't be recognized as fo(t), due to 
having too much noise and appearing to have random variance. The reason for this behavior 
might inconsistencies of the components variation. In another words the variance of the 
source fo(t) has no correlation wi th the variance of the target fo(t). 

7.3 Simplified Fundamental Frequency Conversion 

If the fo(t) can't be fully converted we can at least we can observe mean and standard 
deviation in both source and target fo(t). Then we can denormalize the fo(t) that we are 
converting using the source fo(t) mean /is and standard deviation as and then denormalize 
using target mean fj,t and standard deviation at: 

fo{t)c = crt + IH (7.1) 
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Chapter 8 

Phoneme Length Change 

Phonemes pronounced by the speakers have different durat ion and variance of the duration. 
The slower the speaker pronounces the speech the longer the phonemes have to last and vice 
versa. Slower speakers also makes longer pauses. Different speaker pronounce at different 
speed and we want to reflect that in the voice conversion. 

8.1 Phoneme Duration and Variance 

Using the phoneme recognizer (see section 4.1) we can get phonemes from all t raining data 
and analyze them. Some of the most common phoneme are pau and m. If we measure mean 
duration and standard deviation of the durat ion of both source and target speaker we see 
the difference: 

' pau ' p h o n e m e durat ion d ist r ibut ion ' m ' p h o n e m e durat ion distr ibut ion 

Duration(s) Duration(s) 

(a) The mean duration of pause is 0.1816s and (b) The mean duration of pause is 0.0771s and 
standard deviation is 0.0884 standard deviation is 0.0237s 

The mean durat ion (0.1816s) and standard deviation (0.0884s) of the source speaker 
pause is greater than that of the target speaker (0.1656s, 0.0777s). The mean durat ion 
(0.0883s) and standard deviation (0.0311s) of the source speaker m is also greater than that 
of the target speaker (0.0771s, 0.0237s). 
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8.2 Changing Phoneme Length 
In changing phoneme length, we util ize the features of the S T R A I G H T framework. After 
analysis, S T R A I G H T provides array of the temporal positions matching the size of the other 
parameters (spectrogram and aperiodicity). The temporal positions mark the t ime of the 
event. Changing the temporal posit ion w i l l change the t ime of the event i n the synthesis 
e.g. mul t ip ly ing the temporal posit ion by two w i l l make synthesized speech twice as long. 

8.2.1 C h a n g i n g the T e m p o r a l Pos i t ions 

K n o w i n g the means and standard deviations of phoneme durations we have gained by ana­
lyzing phonemes of al l the source and target t raining data, we can change the durat ion of the 
phonemes during conversion. The temporal positions w i l l be changed locally by normalizing 
the durat ion of the phoneme being converted tc by the source speaker mean [is a n d standard 
deviation as and denormalizing it by the target speaker mean fit and standard deviation at-

n 1 1 1 1 r 
0 200 400 600 800 1000 

Index 

Figure 8.2: Converted temporal points show that converted speech is shorter (6.569s) than 
the original source speaker speech (7.704s) 
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Chapter 9 

Implementation 

Out conversion system consists of mult iple systems, mainly feature extraction and synthesis 
system ( S T R A I G H T ) and training and conversion system. Due to this inconvenience there 
are mult iple programing languages used. Different systems also have to be individual ly 
executed by user. 

9.1 S T R A I G H T 

S T R A I G H T framework was developed i n Ma t l ab code. We have successfully used S T R A I G H T 
source codes without modifications using G N U - O c t a v e . It was required to use signal package 
to execute al l functions used by S T R A I G H T . S T R A I G H T is very t ime consuming framework 
for repeatedly analyzing training data, therefore we save intermediate results on the disk i n 
Ma t l ab format, version 6. The voice conversion system was developed on L inux operating 
system however used programing languages are used and the voice conversion system should 
be able to run on different platforms. 

9.2 PhnRec 

Phoneme recognizer was provided both as a C + + source code and Windows executable. 
Source code compilat ion was unsuccessful, therefore Windows executable was used i n L i n u x 
environment using W i n e A P I translator. 

9.3 Conversion Techniques 

D T W function was provided by Jan Cernocky 1 , wri t ten for in Mat l ab code, successfully 
executed i n G N U - O c t a v e . D T W is also t ime consuming, therefore we save intermediate 
results on the disk. The finishing steps of D T W (spectrogram smoothing) are implemented 
in Python3.6. The rest of the spectrogram processing pipeline is also implemented i n 
Python3.6. Very often used are P y t h o n libraries for scientific computing: Numpy, Sc iPy 
and Matp lo t l ib . 

x

http://www.fit.vutbr.cz/study/courses/ZRE/public/labs/05_dtw_hmm/ 
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9.4 Neural Network Implementation 
The Neural Network was implemented in Python3.6 using popular l ibrary Keras. Keras is 
high-level wrapper for lower-level computat ion libraries. The low-level computat ional l ibrary 
of choice for the task of machine learning is TensorFlow. TensorFlow provides options to 
use G P U as a computat ion unit , however due to the unavailabil i ty of hardware that's up to 
date means we only ut i l ized C P U . 
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Chapter 10 

Experiments and Results 

The testing data were also obtained from V C C 2016 database [13]. Testing data contain 
about 1.5 minutes of the source speaker speech. 

Lots of effort was put into finding opt imal setup for the t raining system. Also , different 
techniques that the neural network were attempted, mainly linear regression using trans­
formation matr ix X that is obtained as least-squares solution to a linear matr ix equation 
S X = T that is converting source spectrogram S to target spectral T . This approach turned 
out not to adapt well to the t raining data, even such a small data-set as we use. 

Thanks to the s implici ty of fundamental frequency conversion and phoneme length 
change, those techniques achieve anticipated results as it was demonstrated i n their chapters 
(7, 8). 

10.1 Spectrogram Conversion Results 

The main struggle wi th the neural network was to get good results w i th t raining and espe­
cially validation loss. We were unable to decrease validation loss below certain point. This 
results in inaccurate conversion. W h i l e overall frequential characteristic of the converted 
spectrogram reminds that of the target spectrogram, it looses lots of detail . The most 
important detail that is lost are formants. Formants are result of the acoustic resonance 
during voice production. Such spectrogram when synthesized sounds on average as the tar­
get speaker should, the speech sounds dul l and sometimes hardly understandable. Converted 
samples i n .wav format are available on attached D V D in folder /samples/converted. Those 
samples were converted from evaluation samples in /samples/eval. There are samples of 
the source and target speaker to get the sense of their voices in folders /samples/source 
and /samples/target. 
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Chapter 11 

Conclusions and Future Work 

11.1 Spectrogram Conversion Conclusion 
Spectrogram conversion doesn't achieve satisfactory results. There are multiple solutions 
for current voice conversion system to consider to improve spectrogram conversion: 

• Acqui r ing larger t raining data-set. 

• Redefining loss function to represent formants better i n the loss 

• A d d i n g new parameter to the neural network input to decorrelate parts of source 
spectrogram that look same, might to be aligned wi th parts of the target spectrogram 
that look different 

• Use of different representation of the spectrum such as M e l cepstral coefficients 

11.2 Future Work 

Based on experience gained during this thesis, the main areas of voice conversion that 
require attention are matching of the t raining data and using suitable spectrogram conversion 
techniques. 

11.2.1 N o n p a r a l l e l T r a i n i n g 

Nonparal lel t raining allows the training system to use training speech that doesn't contain 
same sentences from the speakers. Nonparal lel t raining would unlock possibili ty to use any 
training speech of the speakers, therefore being able to use more t raining data and opt imizing 
the data cross-referencing. In parallel training, we are restricted by the parallel data that 
has to be aligned. Al igned data might contain l i t t le defects that spoil D T W . 

11.2.2 F u n d a m e n t a l F r e q u e n c y Di scuss ion 

We were unable to collect meaningful information for the fundamental frequency conversion 
by analyzing fundamental frequency only. Therefore we have to look at other features 
affecting it such as entire spectral envelope. Another features to look at are linguistic and 
sentence context. Speakers usually modulate fundamental frequency i n such way as there 
are frequency spikes throughout middle of the sentences and frequency decreases at the end 
of the sentence. 
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Chapter 12 

Appendices 

The attached D V D contains following content: 

• P D F version of this thesis 

• Latex sources for this thesis 

• source-codes for the voice conversion system 

• voice samples of: source speaker, target speaker, test/evaluation speaker, converted 
voice 

• R E A D M E . m d that contains detailed description of the D V D content and manual for 
the voice conversion system 

12.1 Manual 

This section provides manual for using the voice conversion system that is stored in src 
folder. 

12.1.1 C r e a t i o n of Intermediate Resu l t s of Speech A n a l y s i s a n d D T W 

S T R A I G H T is quite t ime consuming framework. Folders train_source, train_target and 
eval store t raining and evaluation speech i n .wav format, sampled at 22050Hz wi th 16-bit 
signed integer P C M encoding. The results of speech analysis of those files are stored in folders 
mat_source, mat_target and mat_eval. Analys is is done by executing save_f eatures .m 
Mat l ab script. If executed in G N U - O c t a v e , then signal package is required. Note that anal­
ysis takes 1-2 hours and intermediate results take about 2 .5GB on the hard-drive. Shortest 
path calculation is executed using save_dtw.m and takes about 1 hour. 

12.1.2 P h o n e m e R e c o g n i t i o n 

Phoneme recognition on L i n u x uses W i n e program to run P h n R e c executable and scripts i n 
scripts are wri t ten for L inux bash. In case of not being able to run these steps, phonemes 
recognition is already pre-computed i n folders rec_*. Phoneme recognition is done in two 
steps: 
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1. Convert ing .wav files to .raw files used by PhnRec using make_raw. sh. The .raw files 
are stored in raw_* folders. 

2. Recognit ion itself done by save_phonemes . sh. The . rec are stored in rec_* folders. 

12.1.3 T r a i n i n g a n d C o n v e r s i o n 

Training is implemented using python scripts. Required packages are: 

• N u m P y 

• matplot l ib 

• Keras 

• Sc iPy 

• TensorFlow 

• P i l low 

Training of the neural network and fundamental frequency is done by executing two 
scripts: train_nn.py and train_f0.py. 

Results of t raining are stored i n models and normalization folders. 
After that conversion can be executed by convert .py. Intermediate results of conversion 

are stored i n mat_converted folder. Intermediate results are synthesized by executed Ma t l ab 
script convert_mat. m. After that results of the voice conversion are available i n converted 
folder as .wav files sampled at 22050Hz wi th 16-bit signed integer P C M encoding. 
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