VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA CHEMICKÁ

FACULTY OF CHEMISTRY

ÚSTAV CHEMIE POTRAVIN A BIOTECHNOLOGIÍ

INSTITUTE OF FOOD SCIENCE AND BIOTECHNOLOGY

VLIV ZVÝŠENÉ KONCENTRACE OXIDU UHLIČITÉHO A DUSÍKATÉHO HNOJENÍ NA OBSAH PROTEINŮ GLIADINOVÉ FRAKCE U OZIMÉ PŠENICE

IMPACT OF ELEVATED CARBON DIOXIDE CONCENTRATION ON PROTEIN CONTENT OF GLIADIN FRACTION IN WINTER WHEAT

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Adéla Šimíčková

VEDOUCÍ PRÁCE SUPERVISOR

PhDr. Miroslav Hrstka, Ph.D.

BRNO 2016

Vysoké učení technické v Brně Fakulta chemická Purkyňova 464/118, 61200 Brno

Zadání bakalářské práce

Číslo bakalářské práce: Ústav: Student(ka): Studijní program: Studijní obor: Vedoucí práce Konzultanti: FCH-BAK1036/2015Akademický rok: 2015/2016Ústav chemie potravin a biotechnologiíAdéla ŠimíčkováChemie a technologie potravin (B2901)Potravinářská chemie (2901R021)PhDr. Miroslav Hrstka, Ph.D.

Název bakalářské práce:

Vliv zvýšené koncentrace oxidu uhličitého a dusíkatého hnojení na obsah proteinů gliadinové frakce u ozimé pšenice

Zadání bakalářské práce:

Na základě studia literatury napsat pojednání o vlivu zvýšené koncentrace oxidu uhličitého na kvalitu pšeničného zrna. Zvláště se zaměřit na obsah proteinů gluteninové a gliadinové frakce. V experimentální části sledovat vliv zvýšené koncentrace oxidu uhličitého, dusíkatého hnojení a UV záření na obsah proteinů gliadinové frakce.

Termín odevzdání bakalářské práce: 20.5.2016

Bakalářská práce se odevzdává v děkanem stanoveném počtu exemplářů na sekretariát ústavu a v elektronické formě vedoucímu bakalářské práce. Toto zadání je přílohou bakalářské práce.

Adéla Šimíčková Student(ka)

PhDr. Miroslav Hrstka, Ph.D. Vedoucí práce

prof. RNDr. Ivana Márová, CSc. Ředitel ústavu

prof. Ing. Martin Weiter, Ph.D. Děkan fakulty

V Brně, dne 31.1.2016

ABSTRAKT

Cílem této bakalářské práce bylo studium vlivu zvýšené koncentrace CO₂, dusíkatého hnojení a UV záření na obsah gliadinové frakce u ozimé pšenice. Ozimá pšenice (*Triticum aestivum*) odrůdy Bohemia byla pěstována v podmínkách normální a zvýšené koncentrace CO₂, kde koncentrace dosahovala hodnoty 700 µmol mol⁻¹. K polovině vzorků byla přidána dusíkatá výživa (200 kg N ha⁻¹), zatímco druhá polovina zůstala nehnojena. Rostliny byly pěstovány ve sklenících jednak s odstíněným UV-B zářením, jednak s normální UV radiací. Prostředí s přirozeným množstvím srážek bylo jednotné pro všechny zmíněné varianty. Gliadiny byly extrahovány 2-chlorethanolem, separovány metodou A-PAGE a následně kvantifikovány počítačovou denzitometrií. Nejvýraznější vliv na množství gliadinových frakcí mělo dusíkaté hnojení za působení přirozeného UV záření při zvýšené i normální koncentraci CO₂, zatímco v prostředí s odstíněným UV-B zářením nebyl významný vliv dusíku pozorován. UV záření tedy působilo v kombinaci s dusíkatou výživou jako stimulační faktor. Naopak statisticky významný vliv zvýšené koncentrace CO₂ na obsah gliadinových proteinů nebyl prokázán.

ABSTRACT

The aim of this bachelor thesis was to study the impact of elevated CO_2 concentration, nitrogen fertilization and UV radiation on the content of gliadin fractions in winter wheat. Winter wheat (*Triticum aestivum*) var. Bohemia was cultivated in conditions with ambient and elevated (700 µmol mol⁻¹) CO_2 concentrations. Nitrogen nutrition (200 kg N ha⁻¹) was added to half of the samples, while the another half of samples remained unfertilized. Plants were grown in greenhouses both with shielded UV-B radiation and with normal UV radiation. Environment with natural rainfall was the same for all of these variants. Gliadins were extracted by 2-chlorethanol, separated by A-PAGE method and subsequently quantified by computer densitometry. Significant increase of gliadin proteins was noticed in conditions of nitrogen fertilization in natural UV radiation, both in elevated and ambient CO_2 concentrations, whereas in an eliminated UV-B radiation significant effect of nitrogen was not observed. Therefore UV radiation influenced in combination with nitrogenous nutrition as stimulative factor. However, statistically significant impact of evelated CO_2 concentration on gliadin content was not proved.

KLÍČOVÁ SLOVA

ozimá pšenice, zvýšená koncentrace CO2, dusíkaté hnojení, lepek, gliadiny

KEYWORDS

winter wheat, elevated CO₂ concentration, nitrogen fertilization, gluten, gliadins

ŠIMÍČKOVÁ, A. *Vliv zvýšené koncentrace oxidu uhličitého a dusíkatého hnojení na obsah proteinů gliadinové frakce u ozimé pšenice*. Brno: Vysoké učení technické v Brně, Fakulta chemická, 2016. 41 s. Vedoucí bakalářské práce PhDr. Miroslav Hrstka, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že jsem bakalářskou práci vypracovala samostatně a že všechny použité literární zdroje jsem správně a úplně citovala. Bakalářská práce je z hlediska obsahu majetkem Fakulty chemické VUT v Brně a může být využita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a děkana FCH VUT.

podpis studenta

Poděkování:

Tímto bych ráda poděkovala vedoucímu mé bakalářské práce panu PhDr. Miroslavu Hrstkovi, Ph.D. za jeho podporu, vstřícnost a cenné rady při vypracování této práce a také paní Ing. Dominice Hamříkové za názornou ukázku provedení stěžejní metody v laboratoři a za poskytnuté rady s tím spojené. Zvláštní poděkování patří mé rodině za jejich podporu.

OBSAH

1	ÚV	OD .		. 6	
2	TEC	ORE	TICKÁ ČÁST	. 7	
	2.1	Glo	bální klimatická změna	. 7	
	2.1.	1	Změny klimatu v historii Země	. 7	
2.1.2 Současná změna kl2.2 Skleníkový efekt		2	Současná změna klimatu	. 7	
		Skle	eníkový efekt	. 8	
	2.3	Změ	ěny koncentrace CO ₂	. 8	
	2.3.	1	Vliv zvýšené koncentrace CO ₂ na rostliny	.9	
	2.3.	2	Vliv zvýšené koncentrace CO ₂ na pšenici1	11	
	2.4	Pšei	ničné proteiny1	12	
	2.4.	1	Albuminy, globuliny 1	13	
	2.4.	2	Lepek 1	13	
	2.4.	3	Gliadiny1	14	
	2.4.	4	A-PAGE	15	
3	EXI	PER	IMENTÁLNÍ ČÁST 1	16	
	3.1	Mat	eriál1	16	
	3.2	Star	novení obsahu gliadinové frakce metodou A-PAGE 1	17	
	3.2.	1	Přístroje 1	17	
	3.2.	2	Chemikálie 1	17	
	3.2.	3	Příprava roztoků 1	17	
	3.2.	4	Příprava polyakrylamidového gelu 1	18	
	3.2.	5	Příprava vzorku 1	18	
	3.2.	6	Elektroforéza 1	18	
	3.2.	7	Fixace a vizualizace bílkovin 1	19	
	3.2.	8	Vyhodnocení gelů 1	19	
4	VÝ	SLE	DKY	20	
5	DIS	DISKUSE		34	
6	ZÁ	ZÁVĚR			
	SEZ	SEZNAM POUŽITÝCH ZDROJŮ			
7					

1 ÚVOD

Od počátku průmyslové revoluce stoupá koncentrace CO_2 v atmosféře, což je negativním dopadem antropogenní činnosti. V důsledku zvyšující se koncentrace CO_2 dochází ke změnám klimatických parametrů, kterými jsou např. teplota, tlak, srážky, atp. Na základě globálního charakteru těchto změn lze proces obecně nazývat globální změna klimatu.

Vzhledem k tomu, že CO_2 slouží jako substrát pro fotosyntézu, hraje významnou roli ve fyziologických procesech rostlin. Zvýšená koncentrace CO_2 v atmosféře podporuje stimulaci rychlosti fotosyntézy, a to prostřednictvím intenzivnější fotosyntetické fixace tohoto skleníkového plynu. Na to rostliny reagují zvýšenou tvorbou asimilátů, zvýšenou rychlostí růstu a v neposlední řadě zvýšenou produkcí biomasy. Významný vliv má působení zvýšené koncentrace CO_2 také na dýchání, fotorespiraci a stomatální vodivost, přičemž různorodost účinků při interakci zvýšené koncentrace CO_2 s jednotlivými environmentálními faktory poukazuje na jejich komplexní propojení.

Zvyšující se atmosférická koncentrace CO_2 vede k zvýšené produkci biomasy, ale také ke změně složení rostlinných tkání, přičemž důležitou roli hraje obsah dusíku, jenž je nezbytný k tvorbě proteinů. Výsledky experimentů v tomto směru jsou rozporuplné. Někteří autoři naznačují, že při vyšší koncentraci CO_2 dochází ke snížení obsahu proteinů a nárůstu obsahu škrobu, zatímco jiné práce tento efekt nepotvrzují.

V této bakalářské práci je studován vliv různých pěstebních podmínek na obsah gliadinových frakcí proteinů u ozimé pšenice. Ozimá pšenice odrůdy Bohemia byla vystavena působení zvýšené koncentrace CO₂, dusíkatému hnojení a také UV záření, přičemž cílem bylo posoudit, jakým způsobem a zda vůbec jednotlivé faktory nebo jejich interakce ovlivňují množství obsažených gliadinů.

2 TEORETICKÁ ČÁST

2.1 Globální klimatická změna

Pojem globální klimatická změna značí dlouhodobou odchylku klimatických parametrů Země, jakými jsou např. srážky, teplota, rychlost větru, od průměrů a trendů, které jsou charakteristické pro naši planetu téměř do počátku 20. století [1]. Tyto změny jsou v úzké souvislosti s činností člověka a hlavním projevem antropogenního vlivu na globální klimatické změny je uvolňování značného množství skleníkových plynů. Rychlost uvolňování těchto plynů je výrazně vyšší než změny probíhající přirozeně za období minimálně 20 000 let [2].

2.1.1 Změny klimatu v historii Země

Klimatické podmínky se mění po celou dobu vývoje Země v důsledku přirozených faktorů, jakými jsou např. pohyby tektonických desek, vulkanická činnost, tání a rozrůstání ledovců, proměnlivost kvality a kvantity slunečního záření pronikajícího do atmosféry, dopad komet a meteoritů, změny v cirkulaci a složení atmosféry a v neposlední řadě změny suchozemské a vodní bioty [2]. Mezi hlavní složky atmosféry v dávné minulosti Země patřil amoniak, dusík, methan, oxid uhličitý, vodík a jiné plyny, ale o obsahu kyslíku nebyla ani zmínka [3]. Kyslík se stal součástí atmosféry až s vývinem jednobuněčných fotosyntetizujících organismů - sinic, což nastalo před třemi miliardami let. V tuto dobu byla zaznamenána tvorba ozonové vrstvy, která sloužila jako ochrana Země před ultrafialovým zářením, čímž se vytvořily ideální podmínky pro život suchozemských organismů. Začalo docházet ke zvyšování koncentrace O2 až na 21 %, zatímco obsah CO2 postupně klesal k hodnotám kolem 280 µmol mol⁻¹ v dobách meziledových a v dobách ledových dokonce pod 200 µmol mol⁻¹ [3]. Ke střídání dob ledových a meziledových docházelo ve čtvrtohorách. Jako základní faktory způsobující střídání výše zmiňovaných období můžeme uvést změny v množství skleníkových plynů a energie vyzařované Sluncem, která byla rozhodující pro celkový objem ledovců. Teplotní výkyvy byly způsobeny snižující se a zvyšující se koncentrací CO₂ a celkově měnícím se složením tehdejší atmosféry. Z období konce pleistocénu není koloběh uhlíku dobře znám, avšak v období 18 000 až 10 000 př. n. l. se koncentrace CO₂ pohybovala v rozmezí 200–280 µmol mol⁻¹ a v posledních 650 000 letech nebylo zaznamenáno více než 310 μ mol mol⁻¹ [2]. Podle Hönische et al. [4] současná koncentrace CO₂ dosahuje nejvyšších hodnot za posledních 2,1 milionu let.

2.1.2 Současná změna klimatu

Od počátku průmyslové revoluce dochází k postupnému zvyšování množství skleníkových plynů v atmosféře, konkrétně množství CO_2 v ovzduší se od poloviny minulého století zvyšuje o 1 µmol mol⁻¹ za rok [3]. Změny v kvantitě CO_2 se projevují v důsledku minimalizace lesních oblastí především v tropických oblastech a používání fosilních paliv. Tyto zákroky člověka do přírody a také nárůst populace Země narušují přirozený koloběh uhlíku na Zemi.

Současná koncentrace CO_2 v atmosféře činí 390 µmol mol⁻¹ (stav v roce 2010) [3], zatímco v posledních stoletích se tato hodnota pohybovala okolo 280 µmol mol⁻¹. Nárůst globální koncentrace zmiňovaného skleníkového plynu dokládá řada literárních údajů, díky kterým můžeme porovnat nárůst v letech 1970–1979, jenž byl stanoven na 1,3 µmol mol⁻¹, zatímco v rozmezí let 2000–2006 to bylo 1,9 µmol mol⁻¹ (NOAA 2007) [2]. Změny obsahu koncentrace CO_2 můžeme vnímat jako tzv. globální oteplování, které můžeme definovat jako postupný růst průměrné teploty klimatického systému Země.

2.2 Skleníkový efekt

Základem skleníkového efektu je existence tzv. skleníkových plynů, které ovlivňují zářivou bilanci Země. Do této skupiny plynů neodmyslitelně patří, s lidskou činností spojený, oxid uhličitý, oxidy dusíku, jež jsou uvolňovány při průmyslové činnosti, methan, který je produktem metabolismu velkých přežvýkavců a také freony, které byly v minulosti uvolňovány z chladících zařízení, od čehož se v dnešní době upouští kvůli jejich negativnímu dopadu na ozonovou vrstvu. Ke skleníkovým plynům můžeme zařadit také vodní páru, jejíž koloběh je antropologicky ovlivněn [2].

Fyzikální podstatu celého děje můžeme shrnout následovně: krátkovlnná složka dopadajícího záření je částečně pohlcena atmosférou a zeslabována rozptylem, zatímco podíl neabsorbovaný atmosférou pokračuje dál až k povrchu Země. Poté dojde k emisi dlouhovlnného infračerveného záření zemským povrchem a následnému zachycení radiace právě vodní parou, CO₂ a dalšími plyny [1]. Důsledkem zvyšujícího se obsahu CO₂ vzrůstá teplotní účinek dlouhovlnného záření, čímž se zvyšuje i teplota vzduchu na naší planetě. Přítomnost skleníkových plynů způsobuje tedy ohřátí zemského povrchu, který následně vyzařuje více energie do atmosféry než poté atmosféra do vesmíru ze svých chladnějších, výše položených vrstev. Dochází proto k narušení radiační bilance Země a vzrůstá teplota přízemních vrstev ovzduší [5].

V koncentracích skleníkových plynů došlo od industrializace k rapidním změnám. V období před průmyslovou revolucí činila koncentrace CO_2 asi 280 µmol mol⁻¹, CH_4 700 nmol mol⁻¹ a konečně N₂O 260 nmol mol⁻¹ [3]. Množství obsahu těchto základních plynů se v atmosféře viditelně zvýšilo, a to v případě CO_2 na 390 µmol mol⁻¹, CH_4 na 1 700 nmol mol⁻¹ a N₂O na hodnotu 285 nmol mol⁻¹ [3]. I když je koncentrace methanu a oxidu dusného menší než oxidu uhličitého, jejich termický účinek je mnohokrát větší.

2.3 Změny koncentrace CO₂

Změny klimatu a koncentrace CO_2 spolu velmi úzce souvisí už od čtvrtohor [2]. Pro dobu ledovou byla charakteristická hodnota koncentrace CO_2 180 µmol mol⁻¹, přičemž doba meziledová se vyznačuje nárůstem obsahu CO_2 v atmosféře, a to na hodnotu 280–300 µmol mol⁻¹. Rozdíl v množství CO_2 v ovzduší se vysvětluje uvolněním několika set Gt uhlíku z moří a oceánů do atmosféry.

Na základě analýz vzorků vzduchu z antarktických ledovců v Law Dome, které provedli Etheridge et al. [3], máme k dispozici hodnoty koncentrací oxidu uhličitého, které činily v letech 1000–1550 přibližně 280–284 µmol mol⁻¹. V rozmezí let 1550–1800 došlo k poklesu o 6 μ mol mol⁻¹ [3] a počátkem 19. století vzrostla koncentrace ke stejným hodnotám jako v letech 1000–1550. Od počátku průmyslové revoluce koncentrace CO₂ v atmosféře pozvolna stoupá, přičemž znatelná je i dynamika ročních nárůstů. Canadell et al. [6] zaznamenali v období 1970–1979 roční nárůst 1,3 μ mol mol⁻¹, zatímco nárůst v letech 2000–2006 činil 1,9 μ mol mol⁻¹. V současnosti dosahuje koncentrace CO₂ hodnoty 390 μ mol mol⁻¹, což přesahuje hodnoty z preindustriálního období o 35 %.

S rozvojem průmyslu pokračoval nárůst emisí CO₂ kvůli spalování fosilních paliv. Další antropogenní vlivy na globální cyklus uhlíku představují změny ve využívání půdy, např. odlesňování a přeměna na zemědělsky využívané plochy, dále využívání dopravy a také energetického průmyslu. Při odlesňování v tropických oblastech dochází k zvýšené produkci CO₂ na základě oxidace organického uhlíku, z čehož usuzujeme, že neodlesněné plochy slouží a budou sloužit jako sink, neboli úložiště atmosférického uhlíku zajišťující útlum dopadů lidské činnosti.

Podle výsledků přesných měření, která začala v roce 1958 v lokalitě Mauna Loa na Havajských ostrovech [3], dochází na severní polokouli k sezónnímu kolísání koncentrace CO_2 . To je způsobeno kromě fotosyntézy a respirace terestrických ekosystémů také emisemi z fosilních paliv. Na jaře, kdy dochází k rozvoji vegetace, se koncentrace CO_2 vlivem fotosyntézy snižuje a naopak na počátku podzimního období se začíná koncentrace CO_2 v atmosféře postupně zvyšovat, jelikož nastává útlum fotosyntetické aktivity vegetace. Tento roční cyklus a s ním narůstající koncentrace CO_2 jsou doprovázeny stále se zvyšující amplitudou. Keeling et al. [3] prokázali, že se vlivem zvyšující teploty a následným prodloužením vegetačního období zmiňovaná amplituda zvýšila od roku 1960 o 20 % na Havajských ostrovech a o 40 % v oblasti Arktidy.

2.3.1 Vliv zvýšené koncentrace CO₂ na rostliny

Po dlouhou dobu byla fotosyntéza základem dynamické rovnováhy mezi obsahem CO₂ a kyslíku v atmosféře. Jedná se o jev, při kterém z anorganického uhlíku, v podobě atmosférického CO₂, vzniká organický uhlík a pro člověka a další heterotrofní organismy životně důležitý kyslík. Fotoautotrofní rostliny asimilovaly oxid uhličitý a následně uvolňovaly ekvivalentní množství kyslíku do ovzduší. Anorganický uhlík, který se stal po přeměně součástí organických sloučenin, sloužil jako zdroj organických látek pro heterotrofní organismy.

Oxid uhličitý je základní živinou pro fotosyntézu. Proto na základě zvyšující se koncentrace CO_2 v atmosféře roste rychlost fotosyntézy a naopak dochází k útlumu fotorespirace. Průběh těchto fyziologických procesů vede ke zvýšené produkci asimilátů, zvýšené rychlosti růstu rostlin a tvorbě jejich biomasy [2]. To, jaká je depoziční kapacita biosféry pro atmosférický uhlík je otázkou, avšak jako dočasné úložiště zpomaluje dopady antropologických vlivů.

Jsou známy dva přímé fyziologické účinky oxidu uhličitého. V první řadě se účastní, tzv. karbamylace, při které působí jako aktivátor primárního enzymu Krebsova cyklu ribulosa-1,5bisfosfátkarboxylasy/oxygenasy (Rubisco). Aktivace proběhne navázáním jedné molekuly CO₂ na molekulu inaktivního enzymu. Kationt Mg²⁺ se naváže na molekulu enzymu, aktivovanou v předchozím kroku a tím vzniká aktivovaný komplex. Katalyzátorem procesu je enzym Rubisco-aktivasa. Za druhé je oxid uhličitý významný také jako vstupní substrát enzymatické reakce – karboxylace, kde jeho primárním akceptorem je ribulosa-1,5-bisfosfát (RuBP). Počátek karboxylace je spojen s karbamylací, díky které je zpřístupněno aktivní místo Rubisco, kde se váže molekula CO₂. Vzniká Rubisco_{akt} – CO₂ komplex, který reaguje s RuBP a následně dochází k formování primárních produktů Krebsova cyklu – triosafosfátů. Na základě těchto poznatků můžeme konstatovat, že CO₂ vystupuje jako substrát i aktivátor fotosyntézy [2].

Při krátkodobé aplikaci dvojnásobné koncentrace CO₂ dochází k nárůstu intercelulární koncentrace CO₂ a navýšení rychlosti asimilace povrchem listu, za působení intenzivního slunečního záření. Vlivem vyššího poměru mezi CO2 a O2 v atmosféře se zvýšenou koncentrací CO2 stoupá pravděpodobnost molekuly CO2 vázat se na aktivní místo Rubisco, čímž je karboxylační aktivita enzymu preferována před oxygenázovou, a to vede k potlačení fotorespiračního cyklu. Zvýšená dostupnost ATP a NADPH, na základě redukce fotorespirace, stimuluje fotosyntézu a zajišťuje transport jejích produktů, přičemž dochází k omezení možnosti zpětnovazebné limitace asimilace. Vzhledem k těmto poznatkům při krátkodobém působení zvýšené koncentrace CO2, považujeme potlačení fotorespirace za hlavní příčinu nárůstu rychlosti asimilace CO2 u vyšších rostlin. Kultivací rostlin v atmosféře obohacené o CO₂ jsou potlačovány také respirační procesy, přičemž variabilita odezvy dýchání na zvýšenou koncentraci CO2 je vysoká. Tkví především: 1) ve změně kvantity nestrukturních sacharidů, 2) ve změně struktury, složení a rychlosti růstu rostlinné biomasy, 3) v interakci enzymů dýchacího řetězce a CO₂, 4) v přímé vazbě CO₂ na buněčné komponenty, 5) v míře temnostní fixace CO₂ a 6) v míře biosyntézy ethylenu [2]. V neposlední řadě dochází vlivem nárůstu intercelulární koncentrace CO₂ k přivření průduchové štěrbiny listu a poklesu její průduchové vodivosti pro příjem CO₂ a výdej vodní páry. Snížení průduchové vodivosti se podle rostlinného druhu a pěstebních podmínek pohybuje v rozmezí 20-60 %.

Experimenty dokazují, že dlouhodobá kultivace rostlin v podmínkách zvýšené koncentrace CO₂ způsobuje vyšší produkci biomasy, ale po určité době se nárůst biomasy zpomaluje. Příčinou je tzv. aklimační deprese fotosyntézy, tedy stav, při kterém dochází, vlivem zvýšené koncentrace CO₂, k porušení rovnováhy mezi produkcí a akumulací asimilátů, čímž se snižuje počáteční stimulace fotosyntézy. Poněvadž je uhlíkový cyklus dokonale propojený, nabízí se otázka, zda současná biota, současné autotrofní organismy jsou schopny vyrovnat se s nárůstem tohoto důležitého skleníkového plynu. Obecně můžeme odpovědět ano, jelikož podstata fotosyntézy je relativně jednoduchá - čím více substrátu, tím rychlejší proces asimilace. Nejde však o proces izolovaný, proto existuje řada zpětnovazebných limitací asimilace. To úzce souvisí s existencí místa intenzivní spotřeby asimilátů - úložiště (sinku). Silný sink, například při jarní tvorbě listů, indikuje silný efekt stimulace CO₂, zatímco v průběhu ukončení vývoje listoví není síla sinku přítomna, proto dochází k limitaci. Výsledný vliv zvýšené koncentrace CO₂ na tvorbu biomasy je závislý na množství dostupných živin, zejména dusíku. Nedostatek dusíku prohlubuje aklimační depresi fotosyntézy a stres způsobený nedostatečnou minerální výživou může zcela eliminovat pozitivní účinek zvýšené koncentrace CO₂ [2]. Naopak kultivace rostlin při zvýšené koncentraci CO₂ vyvolává redukci obsahu dusíku v pletivech listů nebo tzv. "zředění", tedy nárůst biomasy beze změny množství dusíku. Enzym Rubisco, který obsahuje 25–50 % listového dusíku [2], je rovněž ovlivněn působením zvýšené koncentrace CO₂. U mnoha rostlinných druhů dochází k poklesu jeho množství a aktivity *in vitro*. Nestrukturní sacharidy – glukosa a sacharosa, deaktivují Rubisco potlačením genové exprese, stejně jako snížená aktivita enzymu karbonátdehydratasy. V případě lokálního nedostatku anorganického fosfátu P_i dochází k snížení aktivity Rubisco-aktivasy, což způsobuje pokles schopnosti Rubisco podílet se na procesu karboxylace.

2.3.2 Vliv zvýšené koncentrace CO₂ na pšenici

Z roku 1987 máme záznamy o vlivu hustoty porostu na produkci sušiny [3]. Pro hustší porost byla naměřena vyšší hodnota výnosu sušiny, což pravděpodobně tkví v odlišném mechanismu asimilace CO₂. Autoři stanovili, že řidší porost pšenice zvětší povrch listů, zatímco hustší zvýší pokryvnost listoví, čímž se působení dvojnásobné koncentrace CO₂ projeví výrazněji.

V roce 1999 provedli Dijkstra et al. [7] pokus, ve kterém zkoumali chování pšenice v rozdílných podmínkách. Z výsledků měření usuzují, že nízká odezva pšenice na zvýšenou koncentraci CO_2 v měsících leden – duben, byla způsobena nízkou teplotou a nízkým stupněm ozáření. Na konci jara byl zaznamenán pokles obsahu dusíku a zároveň nárůst koncentrace nestrukturních sacharidů. Tyto změny vysvětlili spolupůsobením teploty, záření a zvýšené koncentrace CO_2 .

Batts et al. [8] se zabývali studiem změn ve vývoji a fotosyntetických charakteristikách dvou kultivarů pšenice. Vlivem zvýšené koncentrace CO₂ docházelo k rozdílům mezi kultivary, které byly zpozorovány pouze na počátku vegetačního období. Autoři uvedli jako hlavní odlišnosti průběh vývoje a stupeň odnožování, což je důležitá růstová fáze u obilovin. Zvýšená koncentrace CO₂ podnítila intenzivnější odnožování odrůd pšenice. Důsledkem byla vyšší asimilace a urychlení vývoje porostů.

Manderscheid a Weigl [9] pozorovali účinek zvýšené koncentrace CO_2 na šesti vyšlechtěných odrůdách jarní pšenice obecné. Porovnávali rychlost fotosyntézy, následný růst a fyziologické charakteristiky starších a novějších kultivarů. V důsledku změn vyvolaných zvýšenou koncentrací CO_2 vzrostla produkce sušiny rostlin a obilek u mladších kultivarů o 28 %. Pěstební podmínky měly pozitivnější vliv na starší kultivary, u kterých byl výnos navýšen o 46 %. Během působení CO_2 bylo na základě vyšší rychlosti fotosyntézy navýšeno odnožování, a proto se zvětšila plocha porostu využitelná pro asimilaci. Následně stoupl počet obilek a jejich hmotnosti v klasu, čímž se vliv zvýšené koncentrace CO_2 projevil jako kladný.

Monje a Bugbee [10] pozorovali porosty pšenice při standardní a zvýšené koncentraci CO₂. Zajímali se o fotosyntetické charakteristiky při dostatku minerálních živin. Zvýšená koncentrace CO₂ měla pozitivní vliv na výnos pšeničného zrna, který se zvýšil o 13 % a vyšší byl i podíl hmotnosti sušiny podzemní části z celkové hmotnosti rostliny. Kořenová část porostu tvořila nově využitelný sink, a proto byla podpořena rychlost fotosyntézy. Tím byla navýšena rychlost růstu rostlin, která za příznivých podmínek může přetrvávat po celou dobu

vegetace. Pro dlouhodobou kultivaci je zapotřebí dostatečná kapacita sinku, aby nedošlo ke zpětnovazebné inhibici fotosyntézy [3].

Wolf [11] se ve svém experimentu s pšenicí jarní zaměřil na souvislosti mezi vybranými minerálními prvky a zvýšenou koncentrací CO₂. Zvolil 7 různých kombinací lišících se v množství dusíku, draslíku a fosforu, přičemž ve všech variantách byl zřejmý nárůst hmotnosti sušiny nadzemních orgánů i sušiny obsažené v obilkách. Nižší navýšení hmotnosti sušiny se projevilo deficitem fosforu a dusíku. U převážné většiny rostlin pěstovaných při zvýšené koncentraci CO₂ vypozoroval naopak výrazný pokles minerálních živin.

Stále narůstající množství atmosférické koncentrace CO₂ vede k zvýšené produkci biomasy a změně biochemického složení rostlinných tkání [12]. V experimentu Wiesera et al. [13] byla ozimá pšenice pěstována za podmínek normální koncentrace CO₂ a ve volném ovzduší obohacovaném CO₂, tedy při zvýšené koncentraci CO₂. Dalším sledovaným prvkem byl stupeň hnojení, kdy v jednom z případů byla dávka dusíkatých látek o polovinu nižší. Analýza byla zaměřena na obsah hrubé bílkoviny, nelepkových a lepkových proteinů. Zvýšená koncentrace CO₂ způsobila výrazné snížení hrubé bílkoviny a všech proteinových frakcí s výjimkou albuminů a globulinů. Účinky byly zřetelnější u vzorků pšenice, kterým bylo dodáváno normální množství dusíkatého hnojiva. Hrubá bílkovina poklesla o 14 % při normální dusíkaté výživě (N⁺) a 9 % při snížené dusíkaté výživě (N⁻). Gliadiny o 20 % (N⁺) a 13 % (N⁻) a gluteniny o 19 % (N⁺) a 16 % (N⁻). Konkrétně u gliadinů byl méně redukován obsah frakcí α a γ než ω . V případě gluteninů, byly vysokohmotnostní podjednotky redukovány více než nízkohmotnostní. Z těchto výsledků autoři usoudili, že mouka z obilí pěstovaného za zvýšené koncentrace CO₂ může mít značně sníženou pekařskou jakost.

2.4 Pšeničné proteiny

Pšenice je dominantní obilovinou v mnoha zemích světa včetně ČR. Z hlediska výživy je pro člověka nejdůležitější částí této rostliny pšeničné zrno, které se skládá ze tří hlavních částí. Vnější část nestravitelného charakteru tvoří otruby, následuje vnitřní jádro neboli endosperm a poslední částí je zárodek nesoucí genetickou informaci. Pšeničné zrno je významné díky svému jedinečnému chemickému složení. Otruby obsahují vlákninu, která se skládá z celulosy, hemicelulosy a ligninu, dále pak vitaminy a minerální látky. Endosperm tvoří 80–85 % celkové hmotnosti obilky a je vyplněn ze ³/₄ škrobem. Svrchní vrstva endospermu se nazývá aleuron a je tvořena buňkami bohatými na bílkoviny a minerální látky. Zárodek neboli embryo představuje část bohatou na lipidy. Z nutričního hlediska je nejdůležitější obsah kvalitních bílkovin.

Pšeničné proteiny se výrazně liší od ostatních rostlinných proteinů. Obecně se jejich molekulová hmotnost pohybuje v rozmezí 30 000 až více než 10 milionů [14]. Proteiny je možno klasifikovat na základě jejich rozpustnosti. T. B. Osborne rozdělil bílkoviny podle rozpustnosti do pěti frakcí: (1) albuminy jsou rozpustné ve vodě, (2) globuliny v roztocích solí, (3) gliadiny v 70% ethanolu, (4) gluteniny v roztocích kyselin nebo zásad, (5) nerozpustný zbytek [15]. Ačkoli je tato frakcionace zřídkakdy přesná, využívá se, vzhledem ke své relativní jednoduchosti, jako první separační krok ve studiích týkajících se proteinového složení.

Z funkčního hlediska je možné rozlišovat dvě základní skupiny. První skupinu tvoří albuminy a globuliny (15–20 % celkového pšeničného proteinu), které se vyskytují především ve vnějších vrstvách pšeničné obilky a v minimálním množství v endospermu. Jedná se většinou o monomerní fyziologicky aktivní nebo strukturální bílkoviny. Druhou skupinu (80-85 %), významnou při pekařských procesech, tvoří lepek. Nachází se ve zralém pšeničném zrnu, kde je součástí aleuronové vrstvy obklopující převážně škrobový endosperm. Lepkové proteiny jsou nerozpustné ve vodě a ve zředěných roztocích solí. Skládají se ze dvou frakcí, a to: monomerních gliadinů a polymerních gluteninů. V pšenici se nacházejí obvykle ve vzájemném poměru 2:3 [16], avšak množství lepku je silně ovlivňováno genotypem (odrůdou) a úrodností půdy [14]. Gliadiny jsou vysoce polymorfní a jejich molekulová hmotnost se pohybuje mezi 30 000–80 000 [17]. Snadno se rozpouští ve vodných roztocích alkoholů. Gluteniny jsou heterogenní směs polymerů s molekulovou hmotností v rozmezí od 80 000 do několika milionů [17]. Na rozdíl od gliadinů, jen velmi malá část, což odpovídá nejmenším polymerům, je rozpustná ve vodných roztocích alkoholů. Větší část je rozpustná ve zředěných kyselinách.

2.4.1 Albuminy, globuliny

Nelepkové proteiny, mezi které řadíme albuminy a globuliny jsou enzymatické, syntetické a metabolické proteiny. Kromě toho mají také nutriční význam a vliv na technologické vlastnosti pšeničných výrobků. Obsah esenciálních aminokyselin – lysinu, argininu, threoninu a tryptofanu, výrazně ovlivňuje kvalitu těchto bílkovin [18]. Molekulové hmotnosti (MW) albuminů a globulinů jsou většinou nižší než 25 000, i když významná část proteinů má MW mezi 60 000 a 70 000 [19]. Struktura albuminů a globulinů je rozdílná, což ovlivňuje jejich rozpustnost. Albuminy jsou velmi dobře rozpustné ve vodě, díky malým rozměrům jejich molekul. Naopak globuliny, které mají větší molekuly, jsou rozpustné především ve vodných roztocích solí.

2.4.2 Lepek

Pšeničné zrno má unikátní chemické složení v podobě klíčové komponenty, kterou je proteinový komplex, tzv. lepek. Ten je tvořen stovkami bílkovinných složek, které jsou přítomny ve formě monomerů nebo polymerů propojených disulfidovými vazbami. Vzhledem k tomu rozlišujeme lepkové proteiny podle struktury na dvě frakce, a to: na monomerní gliadiny a polymerní gluteniny, jak již bylo zmíněno v úvodu této kapitoly. Podle elektroforetické pohyblivosti byly identifikovány čtyři typy gliadinů – α , β , γ a ω . Gluteniny se dělí na dvě skupiny, gluteniny s vysokou relativní molekulovou hmotností (HMW, M_r = 65 000–90 000) a s nízkou molekulovou hmotností (LMW, M_r = 30 000–60 000).

Alternativní klasifikace rozděluje gliadiny a gluteniny podle obsahu síry. První skupinu tvoří proteiny bohaté na síru – α -, β -, γ -gliadiny, B- a C-LMW gluteniny [20], jejichž molekulová hmotnost se pohybuje okolo 50 kDa. Druhou skupinu zastupují proteiny chudé na síru – ω gliadiny a D-LMW gluteniny, rovněž s molekulovou hmotností 50 kDa. Do poslední skupiny patří proteiny s vysokou molekulovou hmotností – HMW gluteniny mající dvakrát vyšší molekulovou hmotnost než předchozí dvě skupiny (MW ~ 100 kDa, obr. 1).

Obr. 1: Klasifikace lepkových proteinů z roku 1986 [16]

Gliadiny a gluteniny představují primární zásobní proteiny, které jsou uloženy a syntetizovány v endospermu vyvíjejícího se pšeničného zrna. Zdá se, že jedinou, avšak významnou funkcí těchto proteinů je poskytovat rezervu aminokyselin během období klíčení. Vlhkost, která aktivuje klíčící proces, nemá vliv na přítomnost těchto frakcí v zrně, jelikož jsou ve vodě nerozpustné. V nativním stavu se vyskytují jako oligomery různých polypeptidových řetězců obsahujících více než 35 % hydrofobních aminokyselinových zbytků - fenylalanin, izoleucin, leucin, prolin, tryptofan, tyrosin a valin [16], přičemž množství přítomného prolinu činí 6–12 %. Studie [21] prokazují vysokou heterogenitu jak ve složení, tak v molekulové hmotnosti těchto látek. Pšeničné proteiny jsou obvykle bohaté na glutamin, asparagin, arginin nebo prolin a v nižším množství pak obsahují nutričně významný lysin, tryptofan a methionin [22]. Cystein, ačkoli je jednou z vedlejších aminokyselin lepku a jeho zastoupení je poměrně malé (~2 %) [16], je nesmírně důležitý z hlediska struktury a funkce lepkových proteinů, jelikož má schopnost vytvářet disulfidové vazby jak mezi proteiny, tak intramolekulárně, tedy uvnitř jednotlivých řetězců. Lepek, jako komplexní protein, má rozmanité vazby. Kromě kovalentních vazeb, obsahuje také vazby iontové a nekovalentní hydrofobní a vodíkové vazby. Přestože jsou jednotlivé vodíkové vazby slabé, zajišťují stabilitu těsta během jeho vývoje, kdy jich vzniká velké množství.

V pekařském průmyslu hraje lepek klíčovou roli při určování vlastností těsta, jakými jsou síla, tažnost a stabilita. Základním faktorem je poměr gluteninů a gliadinů. Obě frakce výrazně zvyšují reologické vlastnosti těsta, ale jejich funkce jsou divergentní. Hydratované gliadiny mají nízkou elasticitu a jsou méně kohezivní než gluteniny, proto přispívají zejména k viskozitě a roztažnosti těsta [23]. Naproti tomu, hydratované gluteniny jsou jak soudržné, tak pružné. Tím zodpovídají za pevnost a pružnost těsta. Pro zjednodušení si můžeme lepek představit jako "dvousložkové lepidlo", kde gliadiny chápeme jako "změkčovadlo" gluteninů. K dosažení náležitých vlastností a kvality konečného produktu je nezbytná směs vhodného poměru obou složek.

2.4.3 Gliadiny

Gliadiny zastupují 30–40 % z celkového množství proteinů v pšeničné mouce. Prostřednictvím intramolekulárních disulfidických vazeb jsou monomery gliadinů spojovány a vytváří polymorfní směs [16]. Co se týká sekundární struktury, v případě α -, β -, γ -gliadinů je typický α -helix a β -skládaný list. Zatímco u ω - gliadinů je α -helix a β -skládaný list nahrazen tzv. " β -turn" konformací [24]. Aminokyselinové složení α -, β -, γ - a ω -gliadinů je velmi podobné, avšak ω -gliadiny se vyznačují nejvyšším obsahem glutaminu, prolinu a fenylalaninu, které dohromady představují asi 80 % celkového složení [16]. Naproti tomu, obsahují ω -gliadiny pouze malé množství základních aminokyselin a pro tvorbu disulfidických vazeb důležitý cystein, respektive methionin. Metodou SDS-PAGE byly v pšeničných genotypech zjištěny vysoké koncentrace α -, β -, γ -gliadinů a naopak nízký obsah ω -gliadinů [24]. Poměr těchto složek ovlivňuje přítomnost aminokyselin obsahujících síru, kvalitu pšeničné bílkoviny, strukturu a funkčnost lepku. SDS-PAGE byla využita i ke stanovení molekulové hmotnosti α -, β -, γ - a ω -gliadinů, která odpovídá rozmezí 30–74 kDa. Molekulové hmotnosti ω -gliadinů se pohybují mezi 52 a 74 kDa, přičemž α -, β - a γ gliadiny mají nižší M_r, v rozmezí od 30 do 51 kDa [25].

2.4.4 A-PAGE

Základní a velmi efektivní metodu pro dělení složek gliadinů představuje A-PAGE, tedy kyselá elektroforéza v polyakrylamidovém gelu. Při této metodě se hodnota pH pohybuje většinou kolem 3,0. Díky tomu jsou postranní řetězce aminokyselin protonizovány a jejich celkový náboj se stává kladným, což ovlivní orientaci pohybu separovaných proteinů, a to směrem ke katodě. A-PAGE umožňuje separaci molekul jak podle velikosti, tak podle tvaru a velikosti náboje, jelikož probíhá za nativních podmínek. To znamená, že molekuly nejsou denaturovány, a proto je zachována jejich sekundární i terciární struktura. Pro stanovení proteinů touto metodou jsou vhodnými příklady některé hydrofobní a zásadité proteiny, jejichž analýza je možná pouze v kyselých gelech. Naproti tomu nukleové kyseliny, peptidy a snadno rozpustné kyselé proteiny mohou být separovány jako anionty v zásaditých pufrech, jelikož postrádají pozitivní náboj a v elektrickém poli se pohybují směrem k anodě, což je jedna z hlavních odlišností SDS-PAGE a A-PAGE [26].

3 EXPERIMENTÁLNÍ ČÁST

3.1 Materiál

Czech Globe, Centrum výzkumu globální změny Akademie věd ČR, vybudovalo v rámci výzkumu budoucího klimatu unikátní experimentální stanici. Pracoviště se nachází v Českomoravské vrchovině, konkrétně v Domanínku u Bystřice nad Pernštejnem, kde nadmořská výška dosahuje 590 m. n. m. Tato lokalita je charakteristická průměrnou roční teplotou, která se pohybuje okolo 7,2 °C a průměrným úhrnem srážek, jenž činí 609 mm za rok.

Zkoumané rostliny jsou pěstovány ve 24 komorách poskytujících různé simulace počasí. Díky propracovanému systému lze regulovat vliv zvýšené koncentrace CO_2 , dusíkaté výživy, sucha či UV záření. Komory o půdorysu šestiúhelníku s délkou úhlopříčky 4 m sahají do výšky 2 m. Stříška je tvořena rotujícími lamelami, které prostřednictvím signálu ze srážkoměru zajišťují regulaci srážek. Jako materiál pro výrobu komor byl zvolen transparentní akrylát, přičemž jeden ze dvou typů je propustný pro UV-A i UV-B záření, zatímco druhý nepropouští radiaci typu UV-B. Ventilační systém, který je znázorněn na obr. 2 (vlevo), rozhání vzduch obohacený o CO_2 po celém obvodu komory.

Obr. 2: Kultivační komory na experimentální stanici v Domanínku u Bystřice nad Pernštejnem [27]

Pro experiment byla použita ozimá pšenice odrůdy Bohemia, jejíž vysetí proběhlo na podzim 2014, v hustotě 4 MKS na ha (milion klíčivých semen). V polovině května, tedy v růstové fázi poloviny sloupkování, byla započata fumigace zvýšenou koncentrací $CO_2 - 700 \mu mol mol^{-1}$. Plocha uvnitř komor byla rozdělena na dvě "políčka" (obr. 2 – vpravo), z nichž jedno bylo obohacováno 200 kg N ha⁻¹. Konkrétně byl použit vápenatý ledek, a to na konci odnožování. Druhá polovina plochy zůstala bez hnojení. Kombinace všech zkoumaných parametrů byly sledovány na 48 "políčkách", přičemž každá kombinace byla ve třech opakováních. Sklizeň zrna byla provedena ručně s následným výmlatem pomocí maloparcelní sklízecí mlátičky (Wintersteiger).

3.2 Stanovení obsahu gliadinové frakce metodou A-PAGE

Stanovení bylo provedeno podle metody Polišenské et al. [28] a ČSN 46 1085-2 [29].

3.2.1 Přístroje

Analytické váhy HR-120-EC, firma A&D INSTRUMENTS LTD. Centrifuga 5430 R, firma EPPENDORF Vortex – stuart, firma MERCI Chladnička s mrazicí částí, firma GORENJE Aparatura pro vertikální elektroforézu s možností chlazení - Owl Seperation Systems, Inc., Portsmouth, NH USA Zdroj – Major Science MP-500P Třepačka LT2, firma KAVALIER

3.2.2 Chemikálie

Akrylamid (SIGMA ALDRICH) Bis-akrylamid (SIGMA ALDRICH) Coomassie Brilliant Blue R-250 (SIGMA ALDRICH) Coomassie Brilliant Blue G-250 (SERVA) 2-chlorethanol (SIGMA ALDRICH) Glycin (SIGMA ALDRICH) Kyselina askorbová (LACH-NER) Kyselina octová – ledová (SIGMA ALDRICH) Kyselina trichloroctová (SIGMA ALDRICH) Močovina (LACHEMA) Peroxodisíran amonný (SIGMA ALDRICH) Pyronin G (SIGMA ALDRICH) Síran železnatý heptahydrát (LACHEMA) TEMED – N,N,N',N'- tetramethylethylendiamin (SIGMA ALDRICH)

3.2.3 Příprava roztoků

0,15% vodný roztok síranu železnatého: 0,014 g heptahydrátu síranu železnatého bylo rozpuštěno v 5,0 ml destilované vody. Roztok byl připraven vždy těsně před každým použitím.

10% vodný roztok peroxodisíranu amonného: 0,1 g peroxodisíranu amonného bylo rozpuštěno v 1,0 ml destilované vody. Roztok byl připraven vždy těsně před každým použitím.

Extrakční roztok pro gliadiny: 25 ml 2-chlorethanolu a 0,05 g pyroninu G bylo doplněno destilovanou vodou do 100 ml. Roztok se uchovává při teplotě 4 °C.

Elektrodový tlumivý roztok: 4,0 ml ledové kyseliny octové a 0,4 g glycinu byly doplněny destilovanou vodou do 1 000 ml. Roztok se uchovává při teplotě 4 °C a lze jej použít pouze jednou.

Gelový tlumivý roztok: K 20 ml ledové kyseliny octové a 1,00 g glycinu bylo přidáno 1 000 ml destilované vody. Roztok se uchovává při teplotě 4 °C.

Fixační roztok: 100 g kyseliny trichloroctové bylo doplněno destilovanou vodou do 1 000 ml. *Barvicí roztok*: 0,50 g Coomassie Brilliant Blue R-250 a 0,50 g Coomassie Brilliant Blue G-250 bylo rozpuštěno v ethanolu a doplněno ethanolem na celkový objem 100 ml.

3.2.4 Příprava polyakrylamidového gelu

Do cca 60 ml gelového tlumivého roztoku bylo přidáno 10,00 g akrylamidu, 0,40 g bisakrylamidu, 6,00 g močoviny, 0,10 g kyseliny askorbové a 3,4 ml roztoku síranu železnatého. Směs byla promíchána a doplněna do objemu 100 ml gelovým tlumivým roztokem. Poté byla tato směs vychlazena v mrazicí části chladničky na teplotu cca 6 °C. Do vychlazeného roztoku bylo současně přidáno 0,2 ml roztoku peroxodisíranu amonného a 0,3 ml TEMEDu. Tento roztok byl ihned nalit až po okraj do gelové kazety, která byla předem vychlazena také na teplotu 6 °C. Do horní části kazety byl umístěn hřeben, aby se vytvořily prohlubně pro dávkování vzorků. Polymerace by měla proběhnout během 5 minut. Gel je možné použít cca po 60 minutách od zpolymerování v kazetě nebo je možné jej uchovat do druhého dne v chladničce.

3.2.5 Příprava vzorku

Pro extrakci gliadinů bylo do mikrozkumavky Eppendorf o objemu 1,5 ml naváženo cca 50 mg pšeničné mouky, což zhruba odpovídá hmotnosti jednoho zrna. K navážce bylo přidáno 0,3 ml extrakčního roztoku pro gliadiny. Obsah byl důkladně promíchán na vortexu a v uzavřené mikrozkumavce byl ponechán přes noc v chladničce. Poté byla směs odstředěna při 10 000 otáčkách za minutu po dobu 5 minut při 20 °C. Supernatant byl použit pro elektroforézu. Hotové extrakty byly uchovávány v mrazničce při teplotě -18 °C.

3.2.6 Elektroforéza

Poté co byl hřeben vytažen z gelu, byly vzniklé prohlubně promyty elektrodovým tlumivým roztokem. Aparatura na elektroforézu byla naplněna elektrodovým tlumivým roztokem. Zdroj byl připojen tak, aby elektroforetické dělení probíhalo od horní elektrody, kterou je anoda, k záporné elektrodě ve spodní části aparatury. Po dobu 60 minut byla spuštěna elektroforéza na prázdno bez vzorků (tzv. "předelektroforéza") při konstantním napětí 480 V. Po uplynutí této doby byla elektroforéza vypnuta a do jamek byly nadávkovány připravené extrakty v množství 10 μ l. Přístroj byl znovu zapnut, přičemž elektroforéza probíhala za stejných podmínek po dobu 4 hodin. Vzhledem k velikosti vloženého napětí je nutné elektrodový tlumivý roztok v průběhu elektroforézy chladit.

3.2.7 Fixace a vizualizace bílkovin

Po skončení elektroforézy byl gel uvolněn do misky s destilovanou vodou. Voda z misky byla vylita a gel byl převrstven 300 ml fixačního roztoku, ke kterému bylo přidáno 15 ml barvicího roztoku. Gel musí být zcela ponořen. Barvení bylo ukončeno po 24 hodinách. Delší čas nemá na barvení vliv. Kvůli odstranění barviva byl gel promyt vodou z vodovodu. Gel byl uchováván na skle zabalený do potravinářské fólie, která jej chrání před vyschnutím, při teplotě 4 °C.

3.2.8 Vyhodnocení gelů

Hotové gely byly naskenovány a kvantifikace gliadinových podjednotek byla provedena počítačovou denzitometrií (program FUJIFILM, Science Lab 2006, Multi Gauge, verze 3.1). Zóny jednotlivých podjednotek byly převedeny na píky a integrací byla vypočítána jejich plocha. Kvůli nedostupnosti standardu nebyly tyto plochy píků přepočteny na koncentraci. Pro porovnání jednotlivých variant byly tedy použity příslušné plochy píků.

4 VÝSLEDKY

Po separaci gliadinů metodou A-PAGE bylo na gelu u pšenice seté odrůdy Bohemia identifikováno nejméně 18 zón, mezi kterými bylo možno rozlišit frakce ω -1,2, ω -5, γ , β a α (obr. 3).

Obr. 3: Rozdělení gliadinových proteinů pomocí A-PAGE s popisem jednotlivých frakcí u pšenice seté odrůdy Bohemia

Počítačovou denzitometrií byly jednotlivé zóny převedeny na píky (obr. 4), jež byly kvantitativně hodnoceny.

Obr. 4: Převedení zón v gelu na píky

Obr. 5: Porovnání obsahu gliadinů frakce ω -1,2 1 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

U první frakce ω -1,2 gliadinů byl zjištěn průkazný vliv dusíkatého hnojení při interakci s UV zářením. U varianty UV⁺ N⁺ EC byl obsah ω -1,2 1 gliadinů vyšší o 67 % ve srovnání s variantou N⁻, u varianty UV⁺ N⁺ AC o 31 % proti N⁻ (obr. 5). Naproti tomu při odstíněném UV záření nebyl významný vliv dusíkatého hnojení prokázán. Rovněž nebyl zjištěn statisticky významný vliv zvýšené koncentrace CO₂.

Obr. 6: Porovnání obsahu gliadinů frakce ω -1,2 2 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

ω-1,23

Obr. 7: Porovnání obsahu gliadinů frakce ω -1,2 3 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Výsledky u druhé frakce ω -1,2 gliadinů byly analogické jako u první frakce, pouze rozdíly mezi variantami UV⁺ N⁺ a UV⁺ N⁻ byly větší (obr. 6).

U třetí frakce ω -1,2 gliadinů (obr. 7) byl prokázán významný vliv dusíkatého hnojení při normální i zvýšené koncentraci CO₂ u varianty UV⁺, méně výrazný rozdíl byl zjištěn u varianty UV⁻. U varianty UV⁺ AC N⁺ byl nárůst proteinů této frakce 71 %, u varianty UV⁺ EC N⁺ činil tento nárůst 44 % proti nehnojené variantě. Rovněž byl zjištěn významný vliv zvýšené koncentrace CO₂ u hnojené varianty. U varianty UV⁺ N⁺ AC byl obsah frakce ω -1,2 3 vyšší o 17 % než u varianty UV⁺ N⁺ EC, u varianty UV⁻ N⁺ AC činil nárůst rovněž 17 % ve srovnání s UV⁻ N⁺ EC. U nehnojené varianty byla patrně rozhodující limitace dusíkem, a proto se vliv zvýšené koncentrace CO₂ neprojevil.

ω-51

Obr. 8: Porovnání obsahu gliadinů frakce ω -5 1 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Z obr. 8 vyplývá průkazný vliv dusíku na frakci ω -5 1, a to jak při normální, tak při zvýšené koncentraci CO₂ za současného působení UV záření. V obou případech došlo k navýšení množství proteinů, a to o 87 % (AC) a 107 % (EC).

Obr. 9: Porovnání obsahu gliadinů frakce ω -5 2 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

ω-53

Obr. 10: Porovnání obsahu gliadinů frakce ω -5 3 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Na obr. 9 byl také zjištěn průkazný vliv dusíkatého hnojení na obsah frakce ω -5 2 za podmínek působení UV záření při normální i zvýšené koncentraci CO₂, čímž se zvýšilo množství gliadinů o 64 %, resp. o 46 %. Při vyloučení UV záření nebyly zjištěny významné rozdíly v obsahu ω -5 2 proteinů mezi variantami N⁺ a N⁻ ani mezi variantami AC a EC.

U třetí frakce ω -5 gliadinů (obr. 10) byl zjištěn významný rozdíl mezi variantami AC a EC při hnojení dusíkem a současném působení UV-A i UV-B záření. U varianty AC N⁺ byl vyšší obsah proteinů této frakce o 34 %. U varianty UV⁻ nebyl vliv zvýšené koncentrace CO₂ prokázán.

Obr. 11: Porovnání obsahu gliadinů frakce ω -5 4 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení $-N^{-}$ vs. s dusíkatým hnojením $-N^{+}$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^{+}$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Výsledky u frakce ω -5 4 (obr. 11) jsou analogické frakci ω -5 3. U varianty UV⁺ EC byl opět zjištěn pokles obsahu gliadinů ω -5 4 o 31 % vzhledem k variantě AC. Vliv dusíkatého hnojení se stejně jako u frakce ω -5 3 projevil pouze u varianty AC.

Obr. 12: Porovnání obsahu gliadinů frakce γ 1 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení – N vs. s dusíkatým hnojením – N⁺, odstíněné UV-B záření – UV vs. neodstíněné UV-B záření – UV⁺. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Obr. 13: Porovnání obsahu gliadinů frakce $\gamma 2$ těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

γ2

U frakce γ 1 (obr. 12) byl zjištěn průkazný vliv dusíkatého hnojení v podmínkách normální i zvýšené koncentrace CO₂ za současného působení UV záření. Nárůst množství proteinů činil 35 % (AC) a 59 % (EC).

V rámci druhé frakce γ -gliadinů (obr. 13) byl zaznamenán vliv dusíkatého hnojení při normální i zvýšené koncentraci CO₂ za působení UV záření a také v podmínkách normální koncentrace a vyloučení UV záření. V případě normální a zvýšené koncentrace CO₂ se jednalo o nárůst obsahu proteinů o 61 % resp. 41 %. Vliv UV záření byl ve všech variantách příčinou zvýšeného obsahu γ 2 gliadinů.

Obr. 14: Porovnání obsahu gliadinů frakce γ 3 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

V případě γ -3 gliadinů (obr. 14) byl zjištěn průkazný vliv dusíkatého hnojení ve všech sledovaných variantách. Naopak vliv zvýšené koncentrace CO₂ se zde vůbec neprojevil.

Obr. 15: Porovnání obsahu gliadinů frakce γ 4 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Obr. 16: Porovnání obsahu gliadinů frakce β 1 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

β1

γ4

U frakce γ 4 (obr. 15) byl markantní limitující vliv nedostatku dusíku při interakci s UV zářením. Snížení obsahu proteinů frakce γ 4 za těchto podmínek činilo 44 % u AC a 26 % u EC. Vliv zvýšené koncentrace CO₂ na obsah proteinů této frakce nebyl prokázán.

V rámci první frakce β gliadinů (obr. 16) byl zjištěn průkazný vliv dusíkatého hnojení u všech variant. U varianty UV⁺ N⁺ byl zjištěn nárůst obsahu proteinů této frakce v průměru o 38 % vzhledem k variantě UV⁺ N⁻. Statisticky významný vliv dusíkatého hnojení byl zjištěn i u varianty UV⁻. Vliv zvýšené koncentrace CO₂ se projevil pouze u varianty UV⁻ N⁺.

Obr. 17: Porovnání obsahu gliadinů frakce β 2 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

U druhé frakce β -gliadinů (obr. 17) byl vypozorován vliv dusíkatého hnojení v podmínkách normální i zvýšené koncentrace CO₂ při působení UV záření, kdy nárůst proteinů byl stanoven na 48 %, respektive 27 %. Dusíkatá výživa zvýšila obsah gliadinové frakce také při zvýšené koncentraci CO₂ v prostředí bez UV záření, avšak o pouhých 8 %.

Obr. 18: Porovnání obsahu gliadinů frakce β 3 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Obr. 19: Porovnání obsahu gliadinů frakce β 4 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

β4

Průkazný vliv dusíkatého hnojení byl zjištěn i u třetí frakce β-gliadinů (obr. 18), a to při normální i zvýšené koncentraci CO₂ a působení UV záření. Výživa dusíkem zvýšila množství proteinů této frakce o 26 % (AC) a 40 % (EC). U varianty UV⁻ nebyly zjištěny rozdíly mezi AC a EC, ani mezi N⁺ a N⁻.

U čtvrté β -gliadinové frakce (obr. 19) byl vypozorován průkazný vliv hnojení dusíkem za podmínek normální i zvýšené koncentrace CO₂ při působení UV záření, kdy nárůst množství proteinů odpovídal 46 % (AC) a 45 % (EC). Změny způsobené vlivem zvýšené koncentrace CO₂ nebyly detekovány, stejně jako u třetí frakce β -gliadinů.

α1

Obr. 20: Porovnání obsahu gliadinů frakce α 1 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Průkazný vliv dusíku byl zjištěn za normální a zvýšené koncentrace CO₂ za současného působení UV záření, kde nárůst množství gliadinové frakce činí 38 % (AC) a 23 % (EC). Při odstíněném UV záření nebyl významný vliv dusíkatého hnojení prokázán, stejně jako vliv zvýšené koncentrace CO₂.

Obr. 21: Porovnání obsahu gliadinů frakce α 2 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Obr. 22: Porovnání obsahu gliadinů frakce α 3 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

α3

V rámci druhé frakce α -gliadinů (obr. 21) lze pozorovat průkazný rozdíl v obsahu proteinů při dostatku a nedostatku dusíku za podmínek UV záření při normální i zvýšené koncentraci CO₂. Rozdíly jsou procentuálně velmi podobné, přičemž při normální koncentraci CO₂ byl rozdíl stanoven na 59 % a při zvýšené koncentraci CO₂ na 64 %. Vliv zvýšené koncentrace CO₂ nebyl u této frakce pozorován.

U poslední gliadinové frakce α 3 (obr. 22) byl zjištěn průkazný vliv dusíku u variant pěstovaných v podmínkách normální a zvýšené koncentrace CO₂ za působení UV záření. Za uvedených podmínek, a také při zvýšené koncentraci CO₂ s vyloučením UV záření, bylo zaznamenáno navýšení obsahu proteinové frakce. Nejvýraznější nárůst – 72 % byl dosažen v podmínkách normální koncentrace CO₂ a UV záření. Zvýšená koncentrace CO₂ průkazně ovlivnila množství gliadinových proteinů pouze u varianty UV⁺ a nedostatku dusíku (pokles o 21 % při AC).

Gliadiny 2015 celkem

Obr. 23: Porovnání celkového obsahu gliadinových proteinů 2015 těchto variant: normální koncentrace $CO_2 - AC$ vs. zvýšená koncentrace $CO_2 - EC$, bez dusíkatého hnojení -N vs. s dusíkatým hnojením $-N^+$, odstíněné UV-B záření -UV vs. neodstíněné UV-B záření $-UV^+$. Aritmetický průměr je znázorněn sloupci a směrodatná odchylka (SD), ze dvou nebo tří opakování, chybovými úsečkami

Na obr. 23 je znázorněno celkové shrnutí působení jednotlivých parametrů na množství gliadinů přítomných v pšenici seté odrůdy Bohemia. Při působení UV záření byl vliv dusíkatého hnojení jednoznačně prokázán jak za normální, tak za zvýšené koncentrace CO_2 . Nárůst obsahu proteinů při normální koncentraci CO_2 byl stanoven na 47 %, zatímco při zvýšené koncentraci CO_2 činil 44 %. Významný vliv zvýšené koncentrace CO_2 nebyl prokázán, zatímco vliv UV záření při dostatku dusíkaté výživy způsobil nárůst gliadinových proteinů v průměru o 44 %.

5 DISKUSE

Výsledky námi provedeného experimentu vypovídají o obsahu a složení gliadinových proteinů ozimé pšenice pěstované za různých podmínek. Byl sledován vliv dusíkatého hnojení, zvýšené koncentrace CO₂ a také UV záření, přičemž nejvýraznější změny byly zaznamenány při zvýšené dusíkaté výživě, která způsobuje statisticky významný nárůst množství jednotlivých gliadinových podjednotek v interakci s normálním UV zářením. Naopak je tomu v prostředí s odstíněným UV-B zářením, kde došlo jen k nepatrnému navýšení obsahu, a to pouze u vybraných frakcí: ω -1,2 3 a γ 3 při normální i zvýšené koncentraci CO₂, dále pak ω -5 3 a β -2 pouze při zvýšené koncentraci CO₂ a frakce γ 2 při normální koncentraci CO₂.

Nárůst dusíkatých látek v důsledku vyšší dodávky dusíku potvrzují např. práce [13, 30, 31, 32]. Daniel a Triboi [33] také studovali účinky dusíku na obsah proteinů, zejména na obsah a složení gliadinů, přičemž zjistili, že množství ω - a γ -gliadinů narůstá, zatímco obsah α - a β -gliadinů klesá. Wieser et al. [13] udávají výraznější účinek zvýšené dodávky dusíku na gliadiny oproti gluteninům, s tím, že podíl ω -5, ω -1,2 a HMW typů je zvyšován a γ - a LMW typů snižován. Obdobné výsledky uvádějí i další autoři [34, 35, 36]. Wieser et al. vysvětlují vyšší produkci ω -gliadinů vyšší dostupností dusíku.

Působení vyšší koncentrace CO₂ se v rámci celkového množství gliadinů neprojevilo, avšak úbytek proteinů vlivem zvýšené koncentrace CO₂ byl zaznamenán, konkrétně u frakcí: ω -1,2 3, ω -5 1, ω -5 3, ω -5 4 a β 1. Gliadinová frakce ω -1,2 3 reagovala při dostatečné dusíkaté výživě za podmínek působení i odstínění UV záření, ω -5 1 a β 1 pouze při odstíněném UV záření a frakce ω -5 3 a ω -5 4 naopak jen za přítomnosti UV záření. Nejvýraznější pokles činil v průměru 29 % u frakcí ω -5 3, ω -5 4. Naproti tomu působení UV záření se v rámci celkového množství gliadinů projevilo, a to nárůstem obsahu gliadinů za podmínek normální i zvýšené koncentrace CO₂ při dostatku dusíku. U frakcí ω -5 3 a ω -5 4 byl zaznamenán nárůst proteinů v prostředí se zvýšenou koncentrací CO₂ bez dusíkatého hnojení namísto prostředí s EC a N⁺, načež frakce ω -1,2 3 reagovala navíc v podmínkách EC a N⁻ a γ 3 v podmínkách AC N⁻.

Výsledky experimentu Wiesera et al. [13] prokazují změny v podílech jednotlivých typů proteinů v důsledku působení zvýšené koncentrace CO₂. Zatímco množství albuminů a globulinů nebylo ovlivněno, množství lepkových proteinů bylo redukováno. Kromě toho se ukázalo, že došlo ke snížení obsahu ω -5, ω -1,2 a α gliadinů o více než 20 % při zvýšené dodávce dusíku, což vypovídá o úzké souvislosti vlivu CO₂ s obsahem glutaminu v proteinech. Tento fakt je v souladu s našimi výsledky, především pro gliadinové frakce ω -1,2 3, ω -5 1, ω -5 3, ω -5 4. Na základě článku Högy et al. [37] způsobuje zvýšená koncentrace CO₂ pokles gliadinových proteinů v pšeničném zrně. Z tohoto důvodu atmosféra obohacená o CO₂ snižuje kvalitu pšeničného zrna v důsledku změny poměru obsahu C/N. Kimball et al. [38] a Pleijel et al. [39] dospěli k závěru, že negativní dopady zvýšené koncentrace CO₂ mohou být zmírněny další aplikací dusíkatého hnojiva, přičemž Fangmeier [40] s tímto tvrzením nesouhlasí a vysvětluje, že interakce dusíkatého hnojení se zvýšenou koncentrací CO₂ vede spíše k větší produkci biomasy a výnosu, než k lepší redistribuci dusíku do zrn.

6 ZÁVĚR

Cílem této bakalářské práce bylo prozkoumat vliv zvýšené koncentrace CO₂, dusíkatého hnojení a UV záření na obsah gliadinových proteinů v zrně ozimé pšenice.

Pro experiment byly použity vzorky ozimé pšenice odrůdy Bohemia kultivované ve 24 komorách poskytujících regulaci vlivu zvýšené koncentrace CO_2 , dusíkaté výživy, sucha či UV záření. Prostor uvnitř komor byl rozdělen na dvě "políčka", přičemž jedno z nich bylo obohacováno 200 kg N ha⁻¹, zatímco druhé zůstalo nehnojeno. Polovina rostlin byla pěstována v atmosféře s normální koncentrací CO_2 , druhá polovina byla vystavena zvýšené koncentraci CO_2 (700 µmol mol⁻¹). Kromě toho polovina rostlin byla pěstována při normálním UV záření a druhá polovina při odstíněném UV-B záření. Vysetí ozimé pšenice, v hustotě 4 MKS na ha, proběhlo na podzim 2014. Sklizeň zralého zrna probíhala ručně v letních měsících.

Jednotlivé gliadinové frakce byly separovány metodou A-PAGE podle Polišenské et al. [28] a ČSN 46 1085-2 [29] a následně kvantifikovány počítačovou denzitometrií.

Ze všech sledovaných parametrů mělo nejvýraznější vliv na množství gliadinových proteinů dusíkaté hnojení. Téměř všechny frakce gliadinů reagují výrazným navýšením na působení UV-B záření při normální i zvýšené koncentraci CO₂, zatímco při jeho odstínění dochází jen k nepatrnému nárůstu gliadinů, a to pouze u vybraných frakcí: ω -1,2 3 a γ 3 při normální i zvýšené koncentraci CO₂, ω -5 3 a β -2 pouze při zvýšené koncentraci CO₂ a frakce γ 2 při normální koncentraci CO₂.

Vliv zvýšené koncentrace CO₂ se v rámci celkového množství gliadinů neprojevil, avšak u vybraných frakcí se snížil obsah proteinů. V prostředí s dostatkem dusíkaté výživy při působení UV záření i jeho odstínění byl zaznamenán pokles frakce ω -1,2 3, při odstíněném UV záření s dostatkem dusíku ω -5 1, β 1 a za působení UV záření s dostatkem dusíku ω -5 3, ω -5 4. Vliv UV záření se naopak v rámci celkového množství gliadinových proteinů projevil jejich navýšením v prostředí normální i zvýšené koncentrace CO₂ při dostatečné dusíkaté výživě. U frakcí ω -5 3 a ω -5 4 byl zaznamenán nárůst proteinů v podmínkách zvýšené koncentrace CO₂ bez dusíkatého hnojení namísto podmínek zvýšené koncentrace CO₂ s dodávkou dusíku, načež frakce ω -1,2 3 reagovala navíc v podmínkách EC a N⁻ a γ 3 v podmínkách AC N⁻.

Na základě výsledků našeho experimentu lze usoudit, že samotný účinek dusíkatého hnojení pozitivně ovlivňuje obsah gliadinových proteinů. Vliv koncentrace CO₂ se celkově neprojevil, avšak při interakci se zvýšenou dodávkou dusíku došlo k poklesu některých gliadinových frakcí.

7 SEZNAM POUŽITÝCH ZDROJŮ

- [1] KRÄUCHI, N. Potential impacts of a climate change on forest ecosystems [online].
 [cit. 2016-05-05]. DOI: 10.1111/j.1439-0329.1993.tb00804.x. ISBN 10.1111/j.1439-0329.1993.tb00804.x. Dostupné z: http://doi.wiley.com/10.1111/j.1439-0329.1993.tb00804.x
- [2] MAREK, M. V. *Uhlík v ekosystémech České republiky v měnícím se klimatu*. Vyd. 1. Praha: Academia, 2011. Živá příroda. ISBN 978-80-904351-1-7.
- [3] NÁTR, L. *Koncentrace CO₂ a rostliny*. Vyd. 1. Praha: ISV, 2000. Přírodní vědy (ISV). ISBN 80-858-6662-5.
- [4] HONISCH, B., N. G. HEMMING, D. ARCHER, M. SIDDALL a J. F. MCMANUS. Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition. *Science* [online]. 2009, 324(5934), 1551-1554 [cit. 2016-05-05]. DOI: 10.1126/science.1171477. ISSN 0036-8075. Dostupné z: http://www.sciencemag.org/cgi/doi/10.1126/science.1171477
- [5] RAMANATHAN, V. The Greenhouse Theory of Climate Change: A Test by an Inadvertent Global Experiment. *Science*. 1988, 240(4850), 293-299. DOI: 10.1126/science.240.4850.293. ISSN 0036-8075.
 Dostupné také z: http://www.sciencemag.org/cgi/doi/10.1126/science.240.4850.293
- [6] CANADELL, J. G., C. LE QUERE, M. R. RAUPACH, et al. Contributions to accelerating atmospheric CO₂ growth from economic activity, carbon intensity, and efficiency of natural sinks. *Proceedings of the National Academy of Sciences* [online]. 2007, 104(47), 18866-18870 [cit. 2016-04-24]. DOI: 10.1073/pnas.0702737104. ISSN 0027-8424. Dostupné z: http://www.pnas.org/cgi/doi/10.1073/pnas.0702737104
- [7] DIJKSTRA, P., AD. H. M. C. SCHAPENDONK, KO. GROENWOLD, M. JANSEN a S. C. VAN DE GEIJN. Seasonal changes in the response of winter wheat to elevated atmospheric CO₂ concentration grown in Open-Top Chambers and field tracking enclosures. *Global Change Biology* [online]. 1999, 5(5), 563-576 [cit. 2016-04-07]. DOI: 10.1046/j.1365-2486.1999.00249.x. ISSN 13541013.
- [8] BATTS, G. R., J.I.L. MORISON, R. H. ELLIS, P. HADLEY a T. R. WHEELER. Effects of CO₂ and temperature on growth and yield of crops of winter wheat over four seasons. *Developments in Crop Science*. 1997, vol. 25, s. 67-76. DOI: 10.1016/S0378-519X(97)80009-8.

Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0378519X97800098

[9] MANDERSCHEID, R. a H. J. WEIGEL. Photosynthetic and growth responses of old and modern spring wheat cultivars to atmospheric CO₂ enrichment. *Agriculture, Ecosystems.* 1997, 64(1), 65-73. DOI: 10.1016/S0167-8809(97)00020-0. ISSN 01678809.

Dostupné také z: http://linkinghub.elsevier.com/retrieve/pii/S0167880997000200

- [10] MONJE, O. a B. BUGBEE. Adaptation to high CO₂ concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency. *Plant, Cell and Environment* [online]. 1998,21(3), 315-324 [cit. 2016-05-05]. DOI: 10.1046/j.1365-3040.1998.00284.x. ISSN 0140-7791. Dostupné z: http://doi.wiley.com/10.1046/j.1365-3040.1998.00284.x
- [11] WOLF, J. Effects of nutrient supply (NPK) on spring wheat response to elevated atmosperic CO₂. *Plant and Soil* [online]. 1996, 185(1), 113-123 [cit. 2016-04-09]. DOI: 10.1007/BF02257568. ISSN 0032-079x. Dostupné z: http://link.springer.com/10.1007/BF02257568
- [12] COTRUFO, M. F., P. INESON a A. SCOTT. Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Global Change Biology* [online]. 1998, 4(1), 43-54 [cit. 2016-04-09]. DOI: 10.1046/j.1365-2486.1998.00101.x. ISSN 1354-1013. Dostupné z: http://doi.wiley.com/10.1046/j.1365-2486.1998.00101.x
- [13] WIESER, H., R. MANDERSCHEID, M. ERBS a H.-J. WEIGEL. Effects of Elevated Atmospheric CO₂ Concentrations on the Quantitative Protein Composition of Wheat Grain. *Journal of Agricultural and Food Chemistry* [online]. 2008, 56(15), 6531-6535
 [cit. 2016-04-09]. DOI: 10.1021/jf8008603. ISSN 0021-8561. Dostupné z: http://pubs.acs.org/doi/abs/10.1021/jf8008603
- [14] SIVAM, A. S., D. SUN-WATERHOUSE, S.Y. QUEK a C. O. PERERA. Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. *Journal of Food Science* [online]. 2010, 75(8), R163-R174 [cit. 2016-04-09]. DOI: 10.1111/j.1750-3841.2010.01815.x. ISSN 00221147. Dostupné z: http://doi.wiley.com/10.1111/j.1750-3841.2010.01815.x
- [15] OSBORNE, T. B. The vegetable proteins. Pp. xiii 154. 2nd edition. Monographs on Biochemistry. London: Longmans green and Co. 1924. Pric 9s. net. *Journal of the Society of Chemical Industry* [online]. 1924, 43(17), 440-440 [cit. 2016-04-09]. DOI: 10.1002/jctb.5000431704. ISSN 03684075. Dostupné z: http://doi.wiley.com/10.1002/jctb.5000431704
- [16] WALTER, D. B. *Gluten: sources, composition and health effects* [online]. New York: Nova Biomedical, c2013 [cit. 2016-04-11]. Food science and technology series (Nova Science Publishers). ISBN 1626183430.
- [17] GOESAERT, H., K. BRIJS, W.S. VERAVERBEKE, C.M. COURTIN, K. GEBRUERS a J.A. DELCOUR. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. *Trends in Food Science* [online]. 2005, 16(1-3), 12-30 [cit. 2016-04-09]. DOI: 10.1016/j.tifs.2004.02.011. ISSN 09242244. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0924224404001906

- [18] MERLINO, M., P. LEROY, C. CHAMBON a G. BRANLARD. Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.). *Theoretical and Applied Genetics* [online]. 2009, 118(7), 1321-1337 [cit. 2016-04-09]. DOI: 10.1007/s00122-009-0983-8. ISSN 0040-5752. Dostupné z: http://link.springer.com/10.1007/s00122-009-0983-8
- [19] VERAVERBEKE, W. S. a J. A. DELCOUR. Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking Functionality. *Critical Reviews in Food Science and Nutrition* [online]. 2002, 42(3), 179-208 [cit. 2016-04-09]. DOI: 10.1080/10408690290825510. ISSN 1040-8398. Dostupné z: http://www.tandfonline.com/doi/abs/10.1080/10408690290825510
- SHEWRY, P. R., A. S. TATHAM, J. FORDE, M. KREIS a B. J. MIFLIN. *The classification and nomenclature of wheat gluten proteins: A reassessment* [online].
 [cit. 2016-04-10]. DOI: 10.1016/S0733-5210(86)80012-1. ISBN 10.1016/S0733-5210(86)80012-1.
 Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0733521086800121

[21] WRIGLEY, C. W., F. BÉKÉS a W. BUSHUK. Gliadin and glutenin: the unique balance of wheat quality [online]. St. Paul, Minn.: AACC International, c2006 [cit. 2016-04-10]. ISBN 978-189-1127-519.

- SHEWRY, P. R. Improving the protein content and composition of cereal grain [online]. [cit. 2016-04-10]. DOI: 10.1016/j.jcs.2007.06.006. ISBN 10.1016/j.jcs.2007.06.006.
 Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S073352100700118X
- [23] WIESER, H. Chemistry of gluten proteins. *Food Microbiology* [online]. 2007, 24(2), 115-119 [cit. 2016-04-12]. DOI: 10.1016/j.fm.2006.07.004. ISSN 07400020. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0740002006001535
- [24] ŽILIĆ, S., D. DODIG, V. Hadži-Tašković ŠUKALOVIĆ, M. MAKSIMOVIĆ, G. SARATLIĆ a B. ŠKRBIĆ. Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities [online]. [cit. 2016-04-12]. DOI: 10.1111/j.1365-2621.2010.02251.x. ISBN 10.1111/j.1365-2621.2010.02251.x. Dostupné z: http://doi.wiley.com/10.1111/j.1365-2621.2010.02251.x
- [25] ABDEL-AAL, E.-S. M., D. A. SALAMA, P. HUCL, F. W. SOSULSKI a W. CAO. Electrophoretic Characterization of Spring Spelt Wheat Gliadins. *Journal of Agricultural and Food Chemistry* [online]. 1996, 44(8), 2117-2123 [cit. 2016-04-12]. DOI: 10.1021/jf950752q. ISSN 0021-8561.
 Dostupné z: http://pubs.acs.org/doi/abs/10.1021/jf950752q
- [26] Acetic Acid-Urea Polyacrylamide Gel Electrophoresis. In: *Molecular Info*® [online].
 2011 [cit. 2016-04-22]. Dostupné z: http://www.molecularinfo.com/MTM/G/G1/G1-3.html
- [27] http://www.cas.cz/sd/novinky/oblast-II/130709-pozoruhodny-experiment-simuluje-rostlinam-budouci-klima.html

- [28] POLIŠENSKÁ, I., L. NEDOMOVÁ a S. CUPÁK. Charakterizace genotypů ovsa s využitím elektroforézy aveninů v polyakrylamidovém gelu (A-PAGE): [metodika]. Kroměříž: Agrotest fyto, 2010. ISBN 978-80-904594-2-7.
- [29] ČSN 46 1085-2. Pšenice obecná a ječmen Stanovení odrůdové pravosti a odrůdové čistoty Část 2: Elektroforéza bílkovin v polyakrylamidovém gelu (PAGE). Praha: Český normalizační institut, 1998. 12 s.
- [30] WROBLEWITZ, S., L. HÜTHER, R. MANDERSCHEID, H.-J. WEIGEL, H. WÄTZIG a S. DÄNICKE. *Effect of Rising Atmospheric Carbon Dioxide Concentration on the Protein Composition of Cereal Grain* [online]. [cit. 2016-05-10]. DOI: 10.1021/jf501958a. ISBN 10.1021/jf501958a.
 Dostupné z: http://pubs.acs.org/doi/abs/10.1021/jf501958a
- [31] WIESER, H. Comparative investigations of gluten proteins from different wheat species [online]. [cit. 2016-05-10]. DOI: 10.1007/s002170000165. ISBN 10.1007/s002170000165. Dostupné z: http://link.springer.com/10.1007/s00217000016
- [32] ERBS, M., R. MANDERSCHEID, G. JANSEN, S. SEDDIG, A. PACHOLSKI a H.-J. WEIGEL. Effects of free-air CO₂ enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation [online]. [cit. 2016-05-10]. DOI: 10.1016/j.agee.2009.11.009. ISBN 10.1016/j.agee.2009.11.009.
 Dostupná z: http://linkinghub.alsovier.com/retriava/pii/S0167880000003405

Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0167880909003405

- [33] DANIEL, C., E. TRIBOI, G. JANSEN, S. SEDDIG, A. PACHOLSKI a H.-J. WEIGEL. Effects of Temperature and Nitrogen Nutrition on the Grain Composition of Winter Wheat: Effects on Gliadin Content and Composition [online]. [cit. 2016-05-10]. DOI: 10.1006/jcrs.2000.0313. ISBN 10.1006/jcrs.2000.0313. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0733521000903138
- [34] DUPONT, F. M., W. J. HURKMAN, W. H. VENSEL, R. CHAN, R. LOPEZ, C. K. TANAKA a S. B. ALTENBACH.Differential accumulation of sulfur-rich and sulfurpoor wheat flour proteins is affected by temperature and mineral nutrition during grain development: Effects on Gliadin Content and Composition [online]. [cit. 2016-05-10]. DOI: 10.1016/j.jcs.2006.04.003. ISBN 10.1016/j.jcs.2006.04.003. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0733521000903138
- [35] DUPONT, F. M., W. J. HURKMAN, W. H. VENSEL, C. TANAKA, K. M. KOTHARI, O. K. CHUNG a S. B. ALTENBACH. Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature [online]. [cit. 2016-05-10]. DOI: 10.1016/j.eja.2006.04.003. ISBN 10.1016/j.eja.2006.04.003.

Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S1161030106000414

- [36] ALTENBACH, S. B., C. K TANAKA, W. J HURKMAN, L. C WHITEHAND, W. H VENSEL, F. M DUPONT a S. B. ALTENBACH. Differential effects of a postanthesis fertilizer regimen on the wheat flour proteome determined by quantitative 2-DE: Effects of mineral nutrients and high temperature [online]. [cit. 2016-05-10]. DOI: 10.1186/1477-5956-9-46. ISBN 10.1186/1477-5956-9-46. Dostupné z: http://www.proteomesci.com/content/9/1/46
- [37] HÖGY, P. a FANGMEIER. *Journal of Cereal Science* [online]. 2008, 48(3), 580-591
 [cit. 2016-05-12]. DOI: 10.1016/j.jcs.2008.01.006. ISSN 07335210. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0733521008000428
- [38] KIMBALL, B. A., C. F. MORRIS, P. J. PINTER, et al. Elevated CO₂, drought and soil nitrogen effects on wheat grain quality. *New Phytologist* [online]. 2001, 150(2), 295-303 [cit. 2016-05-12]. DOI: 10.1046/j.1469-8137.2001.00107.x. ISSN 0028-646x. Dostupné z: http://doi.wiley.com/10.1046/j.1469-8137.2001.00107.x
- PLEIJEL, H., J. GELANG, E. SILD, et al. Effects of elevated carbon dioxide, ozone [39] on spring wheat growth yield. Physiologia and water availability and Plantarum [online]. 2000, 108(1), 61-70 [cit. 2016-05-12]. DOI: 10.1034/j.1399-3054.2000.108001061.x. ISSN 0031-9317. Dostupné Z: http://doi.wiley.com/10.1034/j.1399-3054.2000.108001061.x
- [40] FANGMEIER, A., L. DE TEMMERMAN, L MORTENSEN, et al. Effects on nutrients and on grain quality in spring wheat crops grown under elevated CO₂ concentrations and stress conditions in the European, multiple-site experiment 'ESPACE-wheat'. *Physiologia Plantarum* [online]. 2000, 108(1), 61-70 [cit. 2016-05-12]. DOI: 10.1016/S1161-0301(99)00012-X. ISBN 10.1016/S1161-0301(99)00012-X. ISSN 0031-9317. Dostupné z:

http://linkinghub.elsevier.com/retrieve/pii/S116103019900012X

8 SEZNAM POUŽITÝCH ZKRATEK

AC	normální koncentrace CO ₂
ATP	adenosintrifosfát
A-PAGE	kyselá elektroforéza v polyakrylamidovém gelu
ČSN	česká technická norma
DTT	dithiothreitol
EC	zvýšená koncentrace CO ₂
HMW	vysokomolekulární podjednotky gluteninů
LMW	nízkomolekulární podjednotky gluteninů
MKS	miliony klíčivých semen
MW	molekulová hmotnost
NADPH	nikotinamidadenindinukleotidfosfát
NOAA	National Oceanic & Atmospheric Administration
P _i	anorganický fosfát
Rubisco	ribulosa-1,5-bisfosfátkarboxylasa/oxygenasa
RuBP	ribulosa-1,5-bisfosfát
SD	směrodatná odchylka
UV	ultrafialové záření