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Abstract
Chemical bonding in transition metal diborides and Ni2MnGa alloy was studied in
terms of energy resolved COHP visualization tool. The electronic structure of studied
systems was calculated using the first principles calculations with the help of projector
augmented-wave method. Concerning transition metal diborides, we found dependence
of the strongest boron-boron bond on the charge transfer from metal to boron atoms.
The stability of diborides with the α structure decreases with higher number of metal
valence electrons due to on-site contribution to the band energy near the Fermi level.

Ni2MnGa shape memory alloy was treated by DFT+ U corrective method in order
to describe localized electrons more accurately. The effect of U on Ni resides in desta-
bilization of the cubic austenite and stabilization of the tetragonal NM martensite.
On the contrary, U on Mn destabilizes martensite. The bond analysis shows that the
strongest bond in the alloy is Ni-Ga with covalnet character. Increased localization of
Mn valence electrons makes Mn-Ni bond more covalent and Ni-Ni bond more metallic.
The localization of Ni electrons results in more metallic Mn-Ni bond.

Abstrakt
Pomocou COHP analýzy sme študovali chemickú väzbu v diboridoch prechodných kovov
ako aj v zliatine Ni2MnGa. Elektrónová štruktúra študovaných materiálov bola vypočí-
taná použitím výpočtov z prvých princípov pomocou metódy PAW. V prípade dibori-
dov tranzitných kovov z výsledkov vyplýva, že sila väzby bór-bór je silne závislá od
transferu elektrónov na atómy bóru. Zvyšujúci sa počet valenčných elektrónov v kove
spôsobuje destabilizáciu α štruktúry kvôli vzájomnej interakcii elektrónov prislúchajú-
cich jednému atómu (on-site interakcie) v blízkosti Fermiho hladiny.

Pre zliatinu s tvarovou pamäťou Ni2MnGa bola použitá metóda DFT+ U upravu-
júca popis lokalizácie elektrónov. V prípade použitia parametra U na Ni dochádza
k destabilizácii kubického austenitu a k stabilizácii tetragonálneho nemodulovaného
martenzitu. Naopak, zvýšenie lokalizácie elektrónov mangánu martenzit destabilizuje.
Analýza väzieb ukázala, že najsilnejšou väzbou je Ni-Ga s kovalentným charakterom.
Zvýšená lokalizácia valenčných elektrónov Mn zvyšuje podiel kovalentnosti Mn-Ni väzby
a kovový charakter Ni-Ni väzby. Vplyvom zvýšenej lokalizácie Ni elektrónov sa Mn-Ni
väzba stáva viac kovovou.

Key words
Transition metal diborides, COHP, DFT+ U, bonding analysis, Ni2MnGa
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Diboridy prechodných kovov, COHP, DFT+ U, analýza chemických väzieb, Ni2MnGa
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INTRODUCTION

Introduction
Before the invention of quantum mechanics, prediction of material’s properties was

solely dependent on results of experiments. Nowadays electronic structure calculations
are possible from the first principles that means without any need for empirical input.
Besides many other applications, first principles calculations can be used for chemical
bonding analysis. In this thesis we investigate inter-atomic interactions and chemical
bonding in terms of Density of states (DOS), Crystal Orbital Hamiltonian Population
(COHP) and Crystal Orbital Overlap Population (COOP). The later two functions
separate DOS into pair interactions with distinguished bonding, non-bonding and an-
tibonding interactions. Mentioned analytic tools are incorporated in the LOBSTER
software package that was used here. The work aims to understand inter-atomic in-
teractions in transition metal diborides as well as in Ni2MnGa ferromagnetic Heusler
alloy.

Transition metal diborides (TMD) are non-oxide ceramics that are used mainly for
their high toughness as cutting tools or armor and shielding as well as refractory mate-
rials. Transition metal diborides serve as hard protective coating for highly loaded tools
to increase performance, endurance and corrosion resistance. These materials compete
in tools coating application with nitrides and carbides successfully reaching comparable
or better hardness and fracture toughness. TMDs exhibit complex interatomic inter-
actions with three types of chemical bonding - covalently bonded boron layers, ionic
and covalent mixed transition metal (TM) - boron bonds and metallic bonding between
metal atoms. Besides bonding analysis in relaxed structures we study shear deforma-
tion along the boron layer and resulting changes in bond strength of all group 4 to
group 7 TMDs.

In the second part our goal is to study implementation of the corrective DFT+ U
approach on Ni2MnGa alloy exhibiting large magnetic field-induced strain (MFIS) and
magnetic shape memory effect (MSM). The accuracy of DFT calculations is dependent
on the level of approximation of the exchange-correlation electron interaction. Good
precision is achieved by the local density approximation (LDA) or generalized gradient
approximation (GGA), however these functionals tend to over-delocalize mainly d and
f electrons. This drawback is within Hubbard corrective approach, denoted as DFT+
U method, surpassed by an additive term in the Hamiltonian acting only on mentioned
orbitals. Here we investigate the effect of the corrective approach on stability of cubic
austenite and non-modulated martensite. Furthermore we study the effect of electron
localization on bonds in correlation with various implementation of U parameter.

The thesis is organized in the following manner - the first chapter briefly summarizes
theory behind first principles calculations, in the second chapter we review transition
metal diborides and Ni2MnGa alloy. Results in the third chapter are summarized in
two sections, first of which presents study of inter-atomic interactions within TMDs
and in second we show DFT+ U study of Ni2MnGa alloy.
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1. Theoretical background
This chapter briefly describes the theory behind the ab initio approach used in the

computational materials science that is essential for purposes of this thesis. Modern
computational software packages allow up to predict material properties from the first
principles i.e. without the necessity of any empirical input. Revealing of the knowledge
of the electronic structure, particle interactions and energetics requires a solution of
the Schrödinger equation that, unfortunately, has to be approximated. Probably the
most important concept that makes demanding calculations possible even for extended
systems is the Density Functional theory [1], famously introduced by Hohenberg and
Kohn in 1964 that will be briefly discussed in section 1.3.

1.1. Quantum mechanical approach
One of the key changes quantum mechanics introduced, as opposed to the classical the-
ory, is the wave character of elementary particles with the corresponding wave function
that fully describes any state of a particle - in the case of computational solid-state
physics of an electron. In general, the wave function is a complex function of position
and time. Time evolution of a wave function is given by the fundamental Schrödinger
equation [2], [3] that is a quantum mechanical analogy to the classical equation of
motion. The time dependent one-particle Schrödinger equation has the form

ih̄
∂Ψ(xxx, t)

∂ t
=

[
− h̄2

2m
∂ 2

∂x2 +V (xxx, t)
]

Ψ(xxx, t)≡ ĤΨ(xxx, t), (1.1)

where i is the imaginary unit, h̄ is the Planck’s constant, Ψ(xxx, t) is the wave function,
m is mass of a particle and V (xxx, t) stands for a potential felt by the particle. Two terms
in the square brackets are the kinetic and potential energy which together form the
Hamiltonian operator Ĥ (the hat symbol denotes an operator). In order to solve this
partial differential equation we search for the solution of the wave function that is a
product of one variable functions (function of spatial coordinate ψ(xxx) and function of
time ψ(t)). Separation of variables leads to the form

Ĥψ(xxx)ψ(t) = Eψ(xxx)e−i E
h̄ t . (1.2)

where time dependence is comprised within the phase factor e−i E
h̄ t . The time-dependent

Schrödinger equation describes electron excitation events, interaction with light, quan-
tum tunneling and more. The time-independent Schrödinger equation obtained after
the separation of variables represents the most fundamental problem in computational
materials science. By neglecting the time-dependence we simplify the problem to a
static calculation of the ground state properties. The time-independent eigenvalue
problem is formulated as

12



1. THEORETICAL BACKGROUND

Ĥψ(xxx) = Eψ(xxx), (1.3)

where E is the total energy of a system and the Hamiltonian is the energy operator.
The Born probabilistic interpretation of the wave function implies that its square is

proportional to the probability density of finding a particle in a specified space [3], [4].
Integration of the wave function over all space equals one, meaning that the particle
indeed exists somewhere in the space. This property is called normality. Other prop-
erties of a wave function are that it has to be continuous, single-valued and finite. For
fermions a wave function must satisfy the antisymmetry with respect to particle inter-
change, that is its sign changes upon the interchange of particle coordinates. Fermions
are particles that are govern by the Fermi-Dirac statistics and they posses half-integer
spin. Electrons, protons, neutrons or neutrinos are examples of fermions [5].

Systems studied by first principles are arrangements of billions of interacting elec-
trons and nuclei. The Hamiltonian for such a many-body problem has to include nu-
merous interactions. Its general form expressed in the Gaussian units is

Ĥ =− h̄2

2me

N

∑
i

∇2
i −

h̄2

2MI

L

∑
I

∇2
I +

e2

4πε0

[
N,L

∑
i,I

ZI

|rrriii −RRRIII|
+

1
2

N

∑
i̸= j

1
|rrriii − rrr jjj|

+
1
2

L

∑
I ̸=J

ZIZJ

|RRRIII −RRRJJJ|

]
,

(1.4)
where electrons are denoted by the lower case subscript and nuclei by the upper case
subscript. Here, me and MI are the masses of an electron and of a nucleus, ∇2 is the
Laplace operator, e is the elementary charge, ε0 is the dielectric constant of vacuum, Z is
the atomic number, rrr and RRR are positions of electrons and nuclei, N and L denote number
of electrons and nuclei in the system. Terms within the Hamiltonian are from left to
right the kinetic energy of electrons and the kinetic energy of nuclei, electron-nucleus
interaction, electron-electron interaction and nucleus-nucleus interaction [6]. The inter-
particle interactions, namely electron-electron ones, become impossible to be solved
exactly already for relatively small systems, due to tremendous number of particles in
consideration. Therefore, in order to perform quantum mechanical calculations of real
systems, numerous approximations to the treatment of interactions have to be made.

If we consider that protons and neutrons are both more than 1800 times heavier
than electrons [7], it is clear that the nuclear kinetic energy term in Equation 1.4 is
neglectable compared to the electronic kinetic energy. Hence for electrons, nuclei are
static and play the role of a constant external potential. This approach is known as
the Born-Oppenheimer (B-O) or adiabatic approximation [6], [8]. Consequently we can
spit the many-body wave function of a system into the nuclear and the antisymmetric
electronic part where the latter depends on nuclear coordinates only parametrically.
The Schrödinger equation can be then solved for electrons and nuclei separately, the
first is a standard problem in calculation of electronic structure and the second is used
for lattice dynamics and electron-phonon interaction calculations.
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1.1. QUANTUM MECHANICAL APPROACH

The Hamiltonian within the Born-Oppenheimer approximation is expressed simi-
larly as in Equation 1.4 only that the nuclear kinetic energy term is neglected in B-O
approximation. This practice can be abbreviated as

Ĥ = T̂e +V̂ext +V̂int +EII, (1.5)

here T̂e is the kinetic energy operator for the electrons, V̂ext is the operator for electron-
nucleus interactions (interactions with an external field due to nuclei), V̂int accounts
for the electron-electron interaction (internal interactions) and EII is the interaction
between nuclei that is an additive term. The Hamiltonian depends only on nuclear
coordinates, that produce an external field for electrons, atomic numbers of nuclei
and on the number of electrons. Different compounds are defined by Hamiltonian in
Equation 1.5 where only these three parameters change.

In quantum mechanics, any observable (any measurable physical quantity) can be
evaluated as an expectation value of a corresponding operator. The operator for energy
is the Hamiltonian and its expectation value can be expressed, in Dirac bra-ket notation,
as

⟨Ĥ⟩= ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

=

∫
ψ∗Ĥψdrrr∫
ψ∗ψdrrr

= E ≥ E0, (1.6)

where ⟨ψ| and |ψ⟩ are called bra and ket, the asterisk denotes a complex conjugate
and the integration goes over all space and coordinates. The purpose of ab initio
calculations is in the first place to find the ground state with a corresponding ground
state wave function and energy. The search of a proper wave function is governed by
the variational principle, which says that the ground state is characterised by the lowest
possible energy, as expressed in Equation 1.6, where E0 is the ground state energy [6],
[9].

Calculations of electronic structure of extended structures in materials science, that
is pretty much all the solid-state systems, are practically impossible to perform even
after the B-O approximation. Solution to this problem for periodic structures is given
by the Bloch’s theorem [10], [11] that takes advantage of the translational symmetry
of a lattice. The potential that electrons feel in a periodic crystal is translationally
invariant with the period od the crystal and the Hamiltonian therefore doesn’t change
for coordinates separated by a lattice vector. We can also deduce that the crystal wave
function is periodic accordingly to the crystal

ψ(rrr+TTT ) = eikkkTTT ψ(rrr), (1.7)
ψ(rrr) = eikkkTTT uk(rrr), (1.8)

where TTT is a lattice vector and kkk is a wave vector in the reciprocal space. The wave vector
equals kkk = 2πli

Li
in a direction i, using Born-von Kármán periodic boundary conditions

14



1. THEORETICAL BACKGROUND

[11], with li equals 0, ±1, ±2, ..., ni
2 and Li the length of the crystal in i direction in

real coordinates (Li = nia, ni = number of unit cells, a = lattice vector in i direction).
Wave function in the periodic potential of a crystal can be treated as a modulated plane
wave composed of a function with the periodicity of the lattice uk(rrr) and a phase factor
eikkkTTT . Translation by a lattice constant changes a crystal wave function by a fixed phase,
expressed by a quantum number k. The consequence of the Bloch theorem is that we
can restrict calculations of periodic systems to a infinitely repeated unit cell. In the
reciprocal space (k-space) the smallest repeating unit cell is called the first Brillouin
zone (1.BZ), partitioned into k points that are identical upon the translation by the
reciprocal lattice vector. With increasing crystal size, the spacing between the k points
become negligible because the number of k points within the first Brillouin zone equals
to the number of unit cells in the crystal. The Schrödinger equation solved for every k
point within the 1.BZ results into a set of eigenvalues giving rise to the band structure
of the crystal [10], [11].

1.2. Methods to solve electronic structure problem
The most problematic term in the Hamiltonian is the non-classical electron-electron
interaction. This term has to account for the electronic exchange and correlation,
both difficult to solve exactly. The correlation term is a Coulombic repulsion that
affects all pairs of electrons regardless of their spins and treats the correlated motion of
electrons. The exchange is a consequence of the Pauli exclusion principle that restricts
two electrons (or fermions) of the same spin to occupy the same orbital. This interaction
is also responsible for the orbital filling summarized in the Hund’s rules, which state
that orbitals are first half filled by electrons with parallel spins. This is caused by the
exchange hole around each electron, the region where no other electron of the same spin
can be found. Electrons with the same spin produce less shielding from the nucleus
than electrons with antiparallel spin what results in lower energy of the system due to
increased electron-nucleus attraction [12]–[14].

The simplest computational approach is to neglect both exchange and correlation.
This is the choice in the Hückel theory used by the molecular computational chemistry,
using the Linear combination of atomic orbitals method (LCAO) to construct the many-
body wave function [9], [15]. Within the semi-empirical Hückel theory, the diagonal
Hamiltonian matrix elements that are results of the secular equation are set equal to the
experimental negative ionization energies and the off-diagonal terms are also derived
from experimental data or equal zero. Hamiltonian matrix elements are products of
variational minimization of energy, more detailed discussion is in the section 1.4. The
overlap of neighbouring orbitals is neglected within the simplest Hückel theory. The
feature that is common with the following methods is that the many-body wave function
is treated as a combination of single electron wave functions [9], [12].

15



1.2. METHODS TO SOLVE ELECTRONIC STRUCTURE PROBLEM

The so called Hartree method [16] deals with the exchange through the average
effective potential that electrons feel. Electron-electron interactions are approximated
by an electron in a potential created by all the other electrons without considering the
correlation. This method is known as a independent particle approach and the Hartree
method is also called the non-interacting method. Since we assume non-interacting
electrons, the wave function can be constructed as a combination of one-electron wave
functions, so called Hartree product. Partial energies are calculated for each electron
and summed up to form the total energy. The one-electron Hamiltonian has the same
kinetic energy and a nuclear attraction as in Equation 1.4, inter-electron interactions
are partially described by the added interaction potential Vi

Vi(rrriii) =
e2

4πε0
∑
i ̸= j

∫ ρ j(rrr j)

rrri j
drrr jjj, (1.9)

where an electron i interacts with all the other electrons j, ρ j is the charge density of
an electron j defined as a square magnitude of its orbital wave function. The position
of two electrons is defined by the vector rrri j. Within this approximation the electron
spin is not accounted for, only selection rule is that each orbital can be filled by two
electrons. The solution of the Hartree method is obtained by the self-consistency cycle,
starting with trial LCAO orbital wave functions for which an interaction potential is
constructed. The one-electron Schrödinger equation is solved for every electron using
the variational principle (Equation 1.6). Calculated Hamiltonian and overlap matrix
elements are used to determine basis function coefficients, from which new improved
orbitals are constructed and the cycle continues until the old and the new wave function
do not differ (differ less than by a convergence criterion) [6], [9], [12], [17]. A major
drawback of this approximation is that it fails to fulfill one of the defining characteristics
of electron wave function - antisymmetry.

Better description of the electronic interaction is obtained by the Hartree-Fock (HF)
method that works with the exact exchange integrals and properly antisymmetrized
wave function, written as a Slater determinant. The Slater determinant consists of
single spin-orbitals that are functions of a position and a spin. The Slater determinant
is organized in the way that each row belongs to one-electron and each column represent
one orbital. An interchange of two electrons is the same as a swap of two rows what leads
to a sign change of the determinant what satisfies the antisymmetry rule. Also having
two electrons with the same spin in the same orbital is the same as having two equal
columns in the determinant which means the determinant is zero, satisfying the Pauli
principle. The Hartree-Fock approximation is, as well, an independent particle method
where electrons interact through an average potential. Electron-electron interactions
are divided into a spin independent direct interaction and a spin mediated or exchange
interaction. The eigenvalue problem in the Hartree-Fock approximation for a single
Slater determinant wave function is of the form
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1. THEORETICAL BACKGROUND

F̂(i)ψσ
i (rrri) = εiψσ

i (rrri), (1.10)

where F̂(i) is the Fock operator, ϕ σ (xi) is a one-electron i-th spin-orbital and εi is the
eigenvalue (energy level) of the i-th spin-orbital (electron). The Fock operator is written
as

F̂(i) = T̂ +V̂ext +V̂ σ
HF(i), (1.11)

where the first two terms are defined in Equation 1.4 and the last term is the Hartree-
Fock potential, defied as

V̂ σ
HF(i) =

e2

4πε0

[
∑
j,σ j

∫ ρσ j
j (rrr jjj)

rrri j
drrr jjj −

(
∑

j

∫ ψσ∗
j (rrr j)ψσ

i (rrr j)

rrri j
drrr jjj

)
ψσ

j (rrri)

ψσ
i (rrri)

]
. (1.12)

The positive term is a direct coulomb interaction (also called the Hartree term) between
electrons of any spin σ and the negative term is the exchange interaction between
electrons of the same spin. Solution of the Hartree-Fock approximation contains the
exact exchange energy, however the correlation is completely left out. Another difficulty
is that the variation leads to the Roothan equations that contain double integrals and
the number of integrals for calculation scales with the fourth power of the number of
basis functions [6], [9], [15], [17].

All methods mentioned in this section are used mainly for molecular computational
chemistry. A notable step towards quantum mechanical calculations applicable to solid
state materials is the density functional theory (DFT).

1.3. Density Functional Theory
As its name suggests, within the DFT we abandon the many-body wave function that is
dependent on 3N spatial variables (N = number of electrons) and use electronic density
instead, which depends only on three spacial variables. Hohenberg and Kohn shown in
1964 that the electronic density can be used as an functional argument in calculation
of any property of a system [1], [18]. The electron density is calculated from single
electron wave functions

n(rrr) =
N

∑
i
|ψi(rrr)|2, (1.13)

where ψi(rrr) are the one-electron orbitals. The total number of electrons N is obtained
by integration of density over all space

N =
∫

n(rrr)dr. (1.14)
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The main idea of the DFT is that we don’t need the full many-body wave function to
obtain the total energy and to reproduce vast number of system’s properties. Instead,
we can obtain the same results from the knowledge of the electron density. However,
the exact functional dependence of the energy on the density is unknown and we still
need to make approximation of electron-electron interactions.

1.3.1. The Hohenberg-Kohn theorems
The applicability of the electron density as a fundamental parameter within first princi-
ples calculation is reasoned in two theorems [1] that are at the foundation of DFT. The
first Hohenberg-Kohn theorem says that for any system of interacting particles, the ex-
ternal potential, up to an additive constant, can be determined uniquely by the ground
state particle density n0(rrr). This means that there is a one to one correspondence
between the ground state density and the external potential. Since the Hamiltonian
is defined by the external potential, we can state that given the ground state electron
density, all ground state properties of the system can be determined. A simple proof
for degenerate ground state energy as well as more general proof given by Levy and
Lieb can be found in ref. [6].

The second theorem proposed by Hohenberg and Kohn says that for energy, an uni-
versal functional of the electron density can be defined, valid for any external potential.
The exact ground state is then the global minimum value of this functional and the
density that minimizes the energy functional most is the ground state density. The
second theorem basically establishes the variational principle in DFT. This means that
we only need an exact energy functional to determine both the ground state energy and
electron density by a self-consistent cycle.

The Hohenberg-Kohn theorems can be summarised into a statement that a mapping
from a ground state density to an external potential exists (that is felt by electrons due
to nuclei, basically defines a crystal), the existence of a universal energy functional of
electron density and the variational principle with respect to the density.

1.3.2. The Kohn-Sham equations
The ansatz proposed by Kohn and Sham replaces the original many-body problem with
an auxiliary independent particle problem [6], [19] that is easier to solve. The ansatz
assumes that the ground state density of the original real system of interacting particles
is the same as the one of a chosen non-interacting particles. These independent particle
equations - the Kohn-Sham (KS) equations - are exactly solvable and all many-body
terms are contained within the new exchange-correlation functional. The Hamiltonian
can be written as a sum of one-particle operators, the many-body wave function is
a Slater determinant of single-electron eigenfunctions (orbitals) and the total energy
is a sum of partial one-electron eigenvalues. Single electron eigenfunctions have no
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particular physical meaning, they just serve as a mathematical tool for construction of
the charge density and for solving the Schrödinger equation to obtain single-electron
energies.

The total energy within DFT is defined as a functional of the electron density with
components

E[n] = TS[n]+Eext [n]+EH [n]+EII +Exc[n], (1.15)

the n in the square brackets denotes functional of the electron density. The first term
is the kinetic energy of a system of non-interacting particles given by the expectation
value of the kinetic energy operator

TS[n] = ⟨ψi[n]|T̂s|ψi[n]⟩=− h̄2

2m

N

∑
i

∫
ψ∗

i (rrr)∇
2ψi(rrr)drrr. (1.16)

Due to the independent nature of particles, the total kinetic energy is a simple sum of
single particle kinetic energies. The subscript S reminds us that this kinetic energy is
not an exact one but of a system of non-interacting particles that reproduce the true
ground state density. The kinetic energy is a implicit density functional (the density is
not a variable of the kinetic energy functional) but it is an explicit orbital functional
and orbitals depend on density.

The second term in Equation 1.15 is the energy of interaction of electrons with the
external potential of nuclei, which has the form

Eext [n] =
∫

V̂extn(rrr)dr =−e2 ∑
R

ZR

∫ n(rrr)
|rrr−RRR|

drrr, (1.17)

what is the external potential operator is defined in Equation 1.4 expressed using the
density.

The third term in Equation 1.15 is the Hartree energy of classical electron-electron
interactions. It’s formulation in terms of density is

EH [n] =
e2

2

∫∫ n(rrr)n(rrr′′′)
|rrr− rrr′′′|

drrrdrrr′′′. (1.18)

The nuclear interaction EII has an additive character and the last term Exc[n] is
the exchange-correlation energy. This energy term comprises the difference between a
real system and a system of non-interacting particles and incorporates errors made by
using the kinetic energy of non-interacting electrons and by treating the inter-electron
interaction classically. Operator for this energy is the only one that is not explicitly
known and the precision of calculations depends on the level of approximation of this
term.
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The solution for the Kohn-Sham system can be looked at as a minimization of the
energy functional with respect one-electron orbitals. The minimization of energy can
be expressed as

δE[n]
δψ∗

i (rrr)
=

δTS[n]
δψ∗

i (rrr)
+

[
δEext [n]
δn(rrr)

+
δEH [n]
δn(rrr)

+
δExc[n]
δn(rrr)

]
δn(r)

δψ∗
i (rrr)

= 0, (1.19)

δTS[n]
δψ∗

i (rrr)
=− h̄

2m
∇2ψi(rrr);

δn(rrr)
δψ∗

i (rrr)
= ψi(rrr). (1.20)

Here the minimization is done with respect to ψ∗
i (rrr) but ψi(rrr) gives the same result.

Now we can define the energy functional variation through potentials

δE[n]
δψ∗

i (rrr)
=

δTS[n]
δψ∗

i (rrr)
+ [v(rrr)+ vH(rrr)+ vxc(rrr)]

δn(rrr)
δψ∗

i (rrr)
= 0, (1.21)

where v(rrr) is the external potential, vH(rrr) is the Hartree potential and vxc(rrr) is the
exchange-correlation potential. The sum of these potentials is an effective potential
vs(rrr), so that

δE[n]
δψ∗

i (rrr)
=− h̄

2m
∇2ψi(rrr)+ vs(rrr)ψi(rrr) = 0. (1.22)

The one-electron Kohn-Sham equation then has the form[
− h̄

2m
∇2 + vs(rrr)

]
ψi(rrr) = εiψi(rrr). (1.23)

A set of Kohn-Sham equations for non-interacting electrons within an effective po-
tential is solved in a self consistent cycle resulting in the ground state density n0(rrr) and
the ground state energy EKS. This solution is exact as soon as we use exact exchange-
correlation potential.

The necessity for the self consistency is given by the fact that the output of the
Kohn-Sham equations (wave function) defines its input (electron density). The starting
point of the self consistent cycle resides in guessing an initial density to form all the
functionals for which the KS equations are solved. By solving them (diagonalization of
the the Hamiltonian matrix) we obtain a new set of occupied orbitals (corresponding to
the N lowest eigenvalues) which then form a new density that is more or less different
from the initial one. This procedure continues iteratively until the accuracy condition
is satisfied. The work diagram of a self consistent cycle is sketched in Figure 1.1.

1.3.3. Exchange and correlation
The exchange-correlation functional incorporates the difference between an approxima-
tion and the exact solution and is the factor defining the accuracy of a calculation. Both

20



1. THEORETICAL BACKGROUND
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Figure 1.1: Graphical interpretation of the self consistent cycle solution for stable
electronic structure and geometry. Considering electronic structure calculation, we first
have to choose a basis set (mathematical formulation used for construction of orbitals),
the cycle starts with a guessed initial density for which KS equations are constructed
and solved. New density is built and the cycle continues until the convergence. Diagram
taken from [9].

exchange and correlation describe mutual electron repulsion hence we can assign them
the role of a region around each electron where other electrons (or part of electrons)
have zero probability density. This region is called the exchange hole (Fermi hole) and
the correlation hole (Coulomb hole) [20], [21]. To describe such behavior of electrons we
introduce the pair density, that is obtained by integration of the full N-electron wave
function over the spatial and spin coordinates of electrons 3 to N

n(rrr1,rrr2) =
N(N −1)

2

∫
...
∫

Ψ∗[n](rrr1,rrr2, ...,rrrN)Ψ[n](rrr1,rrr2, ...,rrrN)dσ1dσ2drrr3...rrrN .

(1.24)
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1.3. DENSITY FUNCTIONAL THEORY

Its interpretation is the probability density of finding one-electron at rrr1 and simultane-
ously a second electron at rrr2 [20], [22], [23]. The pair density can be rewritten in terms
of exchange-correlation hole as follows

n(rrr1,rrr2) = n(rrr1)[n(rrr2)+nxc(rrr1,rrr2)], (1.25)

where n(rrr1,rrr2) is the pair density, n(rrr1) and n(rrr2) are one-electron densities and nxc(rrr1,rrr2)

is the exchange-correlation hole density. If we expand terms in brackets in Equa-
tion 1.25, we get the multiplication of one particle densities what represents indepen-
dent particle interaction, as in the Hartree term 1.18, plus the exchange-correlation pair
density n(rrr1)nxc(rrr1,rrr2) [22], [23].
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Figure 1.2: Schematic interpretation of a) exchange hole where the pair density of
electrons with the same spin is lowered around electron at rrr1 and b) correlation hole
around an electron.

The exchange-correlation energy functional can be expressed in the form

Exc[n] =−e2

2

∫∫ n(rrr1)nxc(rrr1,rrr2)

|rrr1 − rrr2|
=
∫

n(rrr1)εxc[n](rrr1)drrr1, (1.26)

where εxc[n] is an energy per electron at point rrr that depends only on the density in
the vicinity of rrr. The exchange-correlation energy is the energy of the electrostatic
interaction between an electron and its exchange-correlation hole.

We can treat Exc[n] as the sum of exchange Ex[n] (repulsion of the same spin electrons
due to the Pauli principle) and correlation Ec[n] (more complex term, defined as a
difference between HF and exact energy, instantaneous electron-electron interactions)
terms which both lower the total energy. The exchange-correlation hole as well can be
separated into exchange and correlation holes nxc(rrr1,rrr2) = nx(rrr1,rrr2)+ nc(rrr1,rrr2). The
exchange hole around an electron, Figure 1.2a, is always negative, it integrates to -1
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1. THEORETICAL BACKGROUND

(it excludes one-electron) and relation nx(rrr1,rrr2)≥−n(rrr2) applies. The correlation hole
(Figure 1.2b) density integrates to zero.

A crucial part of any ab initio method for solving the electronic structure of matter is
an accurate approximation to the exchange-correlation functional. One of the simplest
approaches used within DFT is the local density approximation (LDA) introduced by
Kohn and Sham [19] used when electron density varies slowly with position. Being
local means that it in principle can be calculated at some position rrr exclusively from
the value of n(rrr) at that position. It is expressed as

ELDA
xc [n] =

∫
n(rrr)εuni f

xc [n]drrr, (1.27)

where εuni f
xc [n] is the exchange-correlation energy per electron of the infinite uniform

electron gas with the density n. This is a system of interacting electrons with spatially
constant density. Within the LDA, the exchange-correlation of an inhomogeneous sys-
tem of electrons is approximated for each space point by the exchange-correlation of
the uniform electron gas of the same density. The exchange part can be calculated
analytically

εuni f
x [n] =−3

4

(
3
π

) 1
3

n(rrr)
1
3 . (1.28)

The correlation part has to be obtained numerically for a number of densities using
quantum Monte Carlo simulations [22], [24]. LDA works surprisingly well also for sys-
tems with strongly varying electron density (highly inhomogeneous) even though it
poorly describes the electron pair density and the exchange hole. The electron interac-
tion is however dependent only on the spherical average of the pair density and LDA
predicts reasonable spherical average pair density and exchange hole [12], [23].

The electron density in real systems is in general dissimilar to spatially uniform
density of an homogeneous electron gas. An improvement of Exc is gained by using the
generalized gradient approximation (GGA) [25] that improves the exchange-correlation
by making it depend not only on density at each point but also on the magnitude
of the gradient of the density, that is how does the density change locally. There-
fore GGA is dubbed a semi-local approximation. Most of GGA approximations use a
correction additive term to the LDA. In comparison with LDA, GGA improves total
energies, atomization energies, energy barriers and structural energy differences. Some
of widespread GGA parametrizations are B88 (Becke) [26], LYP (Lee-Yang-Parr) [27],
PW91 [28] or PBE [6], [9], [12], [29].

Even though LDA and GGA provide impressive and accurate results in most cases,
they tend to incorrectly describe ground state properties of some materials. Such ex-
amples are underestimated band gap width of semiconductors, prediction of metallic
character of Mott insulators and overdelocalization of valence electrons. This tendency
to delocalize electrons results in promotion of metallic character what is problematic
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1.3. DENSITY FUNCTIONAL THEORY

for highly correlated systems. Such systems contain localized electrons including d and
f orbital electrons. Another intrinsic error within the DFT is the self-interaction er-
ror contained in Coulombic density (electron-electron) interaction that is not cancelled
exactly by the exchange-correlation term. There are some methods that are trying to
address these drawbacks like hybrid functionals or corrective Hubbard model, latter of
which is discussed in the next section.

1.3.4. DFT+U
One of the corrective approaches is the implementation of Hubbard-like U parameters
which account for the underestimated Coulomb interactions between electrons. The
DFT+U method should better describe the electronic structure of strongly correlated
electrons, involving d or f orbitals, by implementation of an additional Coulomb re-
pulsion acting on electrons on the same atom that leads to enhanced localization of
electrons [30]–[32]. Within this method, less correlated valence electrons are treated
by standard LDA or GGA approximation and more localized orbitals are treated by
additional on-site Coulomb interaction that hinders the hopping of electrons between
neighbouring sites and therefore localizes them[33]. The total energy is corrected by an
additive term containing the Hubbard energy functional EHub

EDFT+U [n] = EDFT [n]+EHub[nIσ
mm′ ]−Edc[nIσ ], (1.29)

where EDFT is the energy from the standard DFT calculation and Edc is a double-
counting term that has to be subtracted because of the additive nature of the correction
term. The Hubbard energy functional depends on the occupational number nIσ

mm′ usually
defined as

nIσ
mm′ = ∑

k, j
f σ
k j⟨ψ

σ
k j|ϕ

I
m′⟩⟨ϕ I

m|ψσ
k j⟩, (1.30)

here ψσ
kv are occupied Kohn-Sham orbitals where k represent k-points (sampling of

1.BZ) and j band indexes, ϕ I
m are states of a localized basis set. Index m labels the

localized states (magnetic quantum number) on the atomic site I, σ is the spin and f σ
k j

are given by the Fermi-Dirac occupation distribution of the Kohn-Sham orbitals. In
Equation 1.29 nIσ = ∑m nIσ

mm′ . The occupation number is calculated as the projection of
occupied Kohn-Sham orbitals on the states of a localized basis set that is then treated
separately by the corrective term. The simplest DFT+U energy functional has the form

EDFT+U = EDFT +∑
I

[
U I

2 ∑
m,σ ̸=m′,σ ′

nIσ
m nIσ ′

m′ −
U I

2
nI(nI −1)

]
, (1.31)

where Hubbard U I is the effective electronic interaction on atom I, nIσ
m are the localized

orbitals occupation numbers. Terms in the square brackets are the Hubbard and the
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double-counting terms. The Hubbard potential is repulsive for less than half filled
orbitals and attractive for more than half filled. This decreases the tendency to partially
fill orbitals which lowers the tendency of orbital hybridization with neighboring atoms.
Another consequence of this is a favored electron localization and energy gap opening
when the on-site repulsion exceeds the kinetic energy minimization due to delocalization
[34], [35]. The formulation in Equation 1.31 is not invariant under the rotation of atomic
orbital basis set used to determine the occupation numbers what causes a dependence
of results on the choice of the localized basis set. In a rotationally invariant formulation
the orbital dependence of EHub is inspired by the HF method [36] and its simplified
application was introduced by Dudarev et al. [37].

The values of U parameter can be obtained in a semiempirical way by fitting calcu-
lated results to experimental data or from ab initio calculations using the linear-response
theory [38], [39]. The advantage of DFT+U approach over other correction methods,
like hybrid functionals, is the low computational cost, just slightly more expensive than
the standard LDA or GGA method.

1.3.5. Plane wave basis set
In order to solve the KS equations and determine the electron density we need to
assign a functional form to one particle orbitals. Mathematical functions that construct
wavefuctions are called basis functions. Two types of basis functions widely used are
localized atomic basis sets (Gaussian, Slater type, Muffin-Tin orbitals) centered around
a nucleus or delocalized plane wave basis sets. The use of the plane wave basis set is very
convenient especially for periodic lattices, their advantages are efficiency (fast Fouruer
transform is easy to perform), they are not centered on an atom and can be used for
any atomic type. However, we need a large number or plane waves to approximate
orbitals and representation of chemical (bonding) information is not straightforward.

The KS orbitals expanded in the plane wave basis are written as

ψi(rrr) =
1√
Ω ∑

GGG
ci(GGG)eiGGG···rrr, (1.32)

here GGG is a reciprocal lattice vector, ci(GGG) are expansion coefficients, rrr and Ω are real
space coordinates and volume of the primitive cell. The number of plane waves used
for the expansion is defined by the cutoff energy

h̄2

2me
|GGG|2 ≤ Ecut . (1.33)

Since we need plenty of plane waves to approximate even relatively smooth functions,
the real potential close to the nucleus where wave function is defined by rapid oscillations
is replaced by a pseudopotential in which no original features the wave function are
kept. Wave function in the valence region is unchanged. The necessary size of the
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Figure 1.3: Sketch of a pseudopotential and a corresponding pseudo-wave function.
Pseudopotentials substitute region around nuclei in order to smoothen the wave function
in the core region, from [40].

plane wave basis set is remarkably lowered, another advantage of this approximation is
the fact that we get rid of the singularity in potential at position of nucleus, which is
captured in Figure 1.3. Pseudoatoms formed this way must preserve the same scattering
behavior as original atoms. Pseudopotentials reduce number of electrons for which KS
equations have to be evaluated to valence electrons solely, this however results in a loss
of information. [41], [42].

A more precise description of wave function in the core region can be obtained by the
projector augmented wave method (PAW) [43]. This method transforms the full wave
function onto an auxiliary smooth wave function that can be represented in a plane
wave expansion. Within the PAW, the wave function is divided and treated separately
in core and valence region, core electrons are projected using a slowly varying local
basis set, as Figure 1.4 shows. A plane wave based PAW wave function is expressed as

|ψ j⟩= |ψ̃ j⟩+∑
µ

(
|ϕµ⟩− |ϕ̃µ⟩

)(
⟨p̃µ |ψ̃ j⟩

)
, (1.34)

here |ψ̃ j(kkk)⟩ is a pseudo-space function that fits the wave function outside the core
sphere and the sum represents the augmentation part that treats orbitals within the
core sphere. The pseudo-space wave function has the form of Equation 1.32. The
augmentation part is composed of the all-electron partial waves ϕµ and the pseudo
waves ϕ̃µ . The projector functions p̃µ probe the character of the pseudo wave function
and its nodeless character is replaced by the correct function. Projector functions are
localized within their own core region and their functional form depend on orbital type.

The advantage of the PAW is that it keeps the full wave function with all electrons
only that the integrals are evaluated as a combination of integrals of smooth functions
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in the interstitial region and radial integration of localized functions of core electrons
[6], [41]–[44].

= + -

| i = || |˜ i + | 1 ˜1
i| |i |

Figure 1.4: Scheme of the PAW wave function, the black curve is the real wave function,
the blue curve represents the pseudo wave function that behaves well in the interstitial
region, red and green wave functions are defined only within the augmentation region,
from [45], modified.

The core electrons are usually pre-calculated in an atomic environment and kept
unchanged throughout the calculation, this is called the frozen core method. The
density and the energy of the core electrons are calculated and imported from the
corresponding isolated atoms. The frozen core approximation is justified by the fact
that core electrons do not directly contribute to bonding between atoms [41].

1.4. Chemical bonding analysis
Plane wave basis sets are very convenient choice for electronic structure calculations of
periodic structures where Bloch’s theorem is valid. However, plane waves do not posses
intuitive bonding information due to their delocalized character. To obtain chemical
information we have to transform the wave function into a local basis set centered
around every atom. A quite obvious approach used to describe a wave function with a
local basis set is the linear combination of atomic orbitals (LCAO) [46].

1.4.1. LCAO
Within the LCAO a wavefuntion is expanded in terms of local basis functions with
character of isolated atom orbitals as

ψi(rrr) = ∑
A

n

∑
µ=1
µ∈A

cµiφµ(rrr), (1.35)

where atomic orbitals φµ(rrr) are multiplied by expansion coefficients cµi and summed (n
is a number of basis functions used) to produce i-th molecular (crystal) orbital located
on atom A. The subscript µ denotes a basis function. In order to construct LCAO
wave function, we need to find coefficients cµi such that the wave function corresponds
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to the lowest energy of a system. Energy is evaluated as an expectation value of the
Hamiltonian as

Ei =
∑A ∑B ∑µ ∑ν⟨cµiφµ |Ĥ|cν iφν⟩
∑A ∑B ∑µ ∑ν⟨cµiφµ |cν iφν i⟩

=
∑A ∑B ∑µ ∑ν c∗µicν iHµν

∑A ∑B ∑µ ∑ν c∗µicν iSµν
. (1.36)

Integrals in 1.36 result in Hamiltonian matrix elements Hµν (result of resonance
integrals in the numerator) and overlap matrix elements Sµν (result of overlap integrals
in the denominator). In order to determine the coefficients, energy minimization is
performed by differentiation of Equation 1.36 with respect to all coefficients ∂Ei

∂cki
= 0 (k

runs through all n coefficients), what gives a set of equations

n

∑
µ

cccµi(Hµk −EiSµk) = 0, (1.37)

where n is a number of basis functions used to approximate the wave function, cccµi is the
vector of the expansion coefficients, Hµk and Sµk are matrix elements defined in 1.36.
The variation (minimization) process leaves us with the set of n equations for every
orbital energy Ei. In order to find roots of Equation 1.37, we have to solve a set of n
equations in n unknowns. In matrix notation, a non-trivial solution can be obtained
if the determinant of the matrix containing Hamiltonian and overlap elements equals
zero. This determinant is the so called secular determinant and its solution gives us
a set of n coefficients for every energy Ei. Consequently the LCAO wave function is
defined by the lowest n

2 energies (degenerate states) [9], [47].

1.4.2. Electron population analysis
Chemical bonding as we characterize it depends on spatial distribution of electron
density in material. One of the partitioning schemes is the Mulliken analysis that
divides overall electron density into atomic contributions and bonding electrons. Using
the LCAO approach, the total number of electrons in a system is given by the expression

N =
m

∑
i

∫
ψ∗

i (rrr)ψi(rrr)drrr =
m

∑
i

∫
∑
A

∑
µ

µ∈A

cµiφ∗
µ(rrr)∑

B
∑
ν

µ∈B

cν iφν(rrr)drrr, (1.38)

where we sum through all occupied orbitals m. Since we use normalized atomic orbitals
basis set

∫
|φµ |2 = 1 (probability density of finding an electron somewhere in space is

1) and for µ ̸= ν the integral
∫

φµφν = Sµν equals off-diagonal overlap matrix elements,
we can write

N = ∑
A

∑
µ

µ∈A

m

∑
i

fi

c2
µi + ∑

A̸=B
∑
ν

ν∈B

ficµicν iSµν

 , (1.39)

28



1. THEORETICAL BACKGROUND

where the last term is the Mullikken overlap population [47]–[49]. In 1.39 fi is the
occupation number of i-th orbital with possible values 0, 1 or 2 in the spin-restricted
approach that is spin up and down electrons occupy the same orbitals. Mulliken analysis
fraction electrons to those including only squares of single atomic orbital (they belong
to single atom) and electrons including product of different atomic orbitals (shared
electrons) that are responsible for bonding if those orbitals are centered on different
atoms. In Equation 1.39 the first term describe atom-centered electrons and is called
the net population, the second term is the overlap population. We can further assign
shared electrons to atoms by simply adding exactly half of the overlap population to
on-site electrons, what is then called the gross population [9], [47].

The use of non-orthogonal basis set in the Mulliken analysis can lead to unphysical
results like negative population of orbitals. Also, within the Mulliken analysis, we
divide the overlap population equally between atoms which is usually a bad assumption
namely for compounds that consist of different elements where electron distribution can
significantly vary from an even distribution. Another population analysis proposed by
Löwdin works with atomic orbitals first transformed into an orthonormal set of basis
functions using symmetric orthogonalization scheme

χµ = ∑
ν

S
− 1

2
µν φν , (1.40)

where µ and ν run over all basis functions and S
− 1

2
µν is the inverse of the square root

of the overlap matrix [50], [51]. New wave function is formulated as LCAO of the new
basis functions χµ and new coefficients are determined from original coefficients cµi.
After orthogonalization, the overlap matrix becomes the unit matrix, meaning that
diagonal terms equal one and off-diagonal terms are zero. Therefore, we don’t have to
split shared electrons but we already obtain population for individual atoms [9].

1.4.3. Bonding indicator functions
To analyze orbital overlap in crystals, we have to consider consequences of the Bloch’s
theorem, that is a dependence on new quantum mechanical variable k represented by
a vector residing within the first Brillouin zone. Crystal orbitals are built as a linear
combination of Bloch functions (defined as atomic orbitals multiplied by the periodic
phace factor) using k-dependent coefficients cµi(k) [52]. We can define a k-dependent
electron density matrix as

Pµν(kkk) =
m

∑
i

fic∗µi(kkk)cν i(kkk), (1.41)

and the k-averaged density matrix Pµν as an integration of k-dependent density matrix
Pµν(kkk) over all k vectors [47].
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The band structure of crystals is usually too complex for a simple interpretation
and analytic tool for more intuitive interpretation is necessary. Density of states (DOS)
function provides directionless averaged information about the electronic structure of
materials as it assigns the number of one-electron states to an infinitely small energy
interval. An useful remark is that DOS is given as a inverse slope of a given energy
band. By differentiation of the density matrix

Pµν =
∫ εF

Pµν(E)dE, (1.42)

we obtain the density of states matrix Pµν(E) that expands the electronic structure
and the electron distribution in terms of energy. Equation 1.39 can be written in terms
of Pµν(E) as

N =
∫ εF

∑
A

∑
µ

µ∈A

Pµµ(E)+ ∑
A ̸=B

∑
ν

ν∈B

Re[Pµν(E)Sµν ]

dE, (1.43)

where Re is the real part of the off-diagonal terms. The second term in brackets in 1.43
is the overlap population weighted density of states that provides information about
electrons that participate on the bond formation. Technique based on this information
is so called crystal orbital overlap population (COOP)

COOPµν(E,kkk) = ∑
i

Re[Pµν(kkk)Sµν(kkk)]δ (ε − εi(kkk)); [µ ∈ A,ν ∈ B,A ̸= B] . (1.44)

COOP function for a specified pair interaction is defined basically by multiplication
of the DOS function by the electron overlap of chosen orbitals positioned on different
atoms, summed over all energy bands i. In order to get COOP of the inter-atomic
interaction we have to sum COOP over all pairs of orbitals centered on interacting pair
of atoms. This method partitions interactions into bonding for which COOP is positive,
antibonding for which COOP is negative and nonbonding for which COOP function is
zero [47], [53].

Another approach to obtain information about bonds is to determine energies of
interaction instead of the overlap of orbitals. If, in contrast with COOP, we examine
Hamilton matrix elements weighted density of states, we get the crystal orbital Hamilton
population (COHP) function [54]

COHPµν(E,kkk) = ∑
i

Re[Pµν(kkk)Hµν(kkk)]δ (ε − εi(kkk)); [µ ∈ A,ν ∈ B,A ̸= B] . (1.45)

Off-diagonal Hamilton matrix elements provide analysis of pair interactions in terms
of energy contribution. As in the case of COOP, the bond analysis is based on COHP
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summed over all off-site Hamilton matrix elements calculated for orbitals centered on
interacting atoms. We define stabilizing (bonding) interactions as negative COHP and
destabilizing (antibonding) as positive COHP. The strength of a bond is given by the
value of integrated COHP (ICOHP) up to the Fermi level. [47], [53].

Generalized COHP function called density of energy (DOE) sums up all off-site
(inter-atomic) as well as on-site (atomic) contributions into one function. The integra-
tion of DOE up to the Fermi level yields the band structure energy

Eband =
∫ εF

DOE(E)dE = ∑
A

∑
µ

µ∈A

∑
ν

ν∈B

ICOHPµν = ∑
i

εi, (1.46)

Etot = Eband −EHartree +Exc −
∫

vxc(rrr)ρ(rrr)drrr. (1.47)

The sum of all on-site and off-site ICOHPs gives the band structure energy or the
sum of the Kohn-Shan eigenvalues εi, this, however, is not equal to the total energy
of the system as 1.47 shows. Negative values of DOE are stabilizing and positive
values indicate destabilizing states. This function allows us to analyze the effect of
on-site interactions of electrons and the role of electrons that do not form bonds. The
contribution of on-site interactions might be obtained by subtracting COHP summed
over all interactions from the DOE function. This way we obtain a more comprehensive
picture of electronic interaction on the stability of studied system [47], [53], [55], [56].

1.4.4. The LOBSTER package
The LOBSTER package (Local-Orbital Basis Suite Towards Electronic-Structure Re-
construction) was designed to calculate the COHP and other analytic tools mentioned
in the previous section as an extension compatible with DFT and PAW codes [57].
However, these methods by definition require a local basis functions, therefore are not
applicable for delocalized plane wave basis sets. The COHP is defined through the
expansion coefficients of local atomic orbitals that form density matrix elements, hence
the plane waves have to be projected on a local basis set [58], [59]. Projected density
matrix element for band i must be obtained at every k-point as

Ppro j
µν i (kkk) = T ∗

iµ(kkk)Tiν(kkk), (1.48)

where Tiµ(kkk) and Tiν(kkk) are elements of the transfer matrix that are defined as overlap
between the i-th plane wave crystal band φi(kkk) and the local orbitals ψµ(rrr) F

Tiµ(kkk) = ⟨φi(kkk)|ψµ(rrr)⟩. (1.49)
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The choice of the local basis set is arbitrary. Expansion coefficients of the local basis
set that we needed in the first place can be derived from the transfer matrix. More
detailed procedure of the projection from PAW wave functions can be found in ref. [58].
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2. Review of studied materials
A high demand for faster production and lower maintenance costs are driving forces

in the material research oriented towards the engineering industry. From the materials
point of view, the performance of highly loaded tools can be besides other enhanced
by an application of protective surface layers. Nowadays, all extremely loaded tools
regardless of used material are produced with a protective surface layer that increases
their lifespan, enables higher work rates and temperatures, provides a better corro-
sion resistance and better friction properties. Some of the most important mechanical
properties required form milling, drilling, cutting and other highly loaded tools are the
toughness and the hardness. These tools are manufactured from materials like sintered
carbides or tool steels and shielded with protective layers deposited on their surface. In
this section the most widely used refractory coating materials are presented as well as
promising boron based materials that are central to this thesis.

2.1. Conventional protective coatings
Research of the wear resistant coatings started in 1950s with titanium carbide TiC
and titanium nitride TiN deposition on steel substrates [60] however TiN coating were
first studied as protective layers in the 70s [61]. This material, with some composition
changes or in combination with other coating materials, is still widely used today.
Titanium nitride crystallizes in the B1 structure (NaCl lattice type) with density 5.22
g/cm3 and a high temperature of melting around 2930 °C [62]. Advantageous properties
of TiN are excellent adhesion, chemical inertness, resistance to higher temperatures,
high hardness at least 2000 HV (Vickers hardness) [62], [63], low coefficient of friction
and decorative gold color.

Development of hard protective coatings advaned with an introduction of multilay-
ered films based on TiN and TiC or the carbonitride TiCN. Multilayered or gradient
coatings combine qualities of different coating materials in order to increase the perfor-
mance of the final film, for example a combination of high hardness lower layer and low
friction upper layer. Another option for an increase of mechanical properties are smaller
crystal size controlled by deposition conditions and the alternation in composition by
doping that offers numerous possibilities [64].

Widely used modification of TiN with an addition of aluminium is TiAlN protective
coating. Comparing to TiN, TiAlN has both better high temperature stability and oxi-
dation resistance [65], higher hardness [66] and better abrasive wear resistance [67]. The
structure of Ti1−xAlxN is the cubic B1 up to 60 at.% of Al (x = 0.6) and hexagonal B4
(wurtzite) above 70 at.% of Al which is the structure of AlN. The hardness continually
increases with addition of Al up to 60 at.% of Al due to the solid solution hardening
and starts to decrease with higher fraction of B4 structure [63], [64], [68]. Annealing at
temperatures higher than 900 °C supports a spinodal decomposition of the solid solu-
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tion into coherent TiN and AlN phases that together form a nanocomposite structure.
The hardness of the film depends on the grain size and its orientation, in the ideal case
the microhardness can reach up to 47 GPa [68] (if the microhardness exceeds 40 GPa
the coating can be called superhard). The spinodal decomposition is a consequence of
thermodynamically metastable FCC TiAlN solid solution. The oxidation resistance at
work temperatures (up to 1000 °C) is enhanced due to a formation of Al2O3 on the
surface of the coating.

Research in the field of hard protective coatings aims to produce films with improved
performance of various characteristics like mechanical properties, wear and temperature
resistance, adhesion, friction coefficient etc. This can be obtained by multi-component
coatings, multi-layer structures or by adjustment of deposition parameters. The coat-
ing materials research continues also with exploration of systems other than nitrides,
carbides or oxides. One of the interesting family of high-hardness materials are borides
and especially diborides of transition metals that are the subject of this thesis.

2.2. Hard coatings based on borides
Boron based technical ceramics are used in polishing and lapping or as a loose abrasive
in cutting applications, ballistic armor, aerospace, military application and other. Mag-
nesium diboride, for example, is a high temperature superconductor with the critical
temperature Tc = 39 K [69]. Another significant property of boron and boron based
ceramics is the neutron absorption with the application for neutron sensors, shielding
and nuclear reaction control. The absorption is a property of 10B isotope with high ab-
sorption cross section even for higher energy neutrons. This isotope is naturally present
in boron, for example in boron carbide at 19.9 at.%. Thanks to high hardness and high
temperature of melting, borides are excellent option as a hard coating or refractory
material. On the other hand, preparation of boron based technical ceramics is costly
due to difficult densification and low diffusion coefficient, therefore high sintering tem-
perature, pressure and long time are necessary. A drawback of this material group is
a high affinity of boron to oxygen what results in oxide impurities on grain boundaries
and limits high temperature use of borides in oxidizing atmospheres [70].

The structure of borides can be characterized by the arrangement of boron atoms
depending on the ratio between boron and other constituents. In the case of two
component borides (we will consider metal borides) with the boron-metal ratio less that
one, the structure is composed of isolated boron atoms in interstitial positions that are
not bonded with other boron atoms (Mn4B, Re3B, Fe2B etc.) or isolated boron-boron
(B-B) pairs distributed within the structure (Ni3B, Nb3B2, V3B2 etc.). The B-B chains
along one or two crystallographic axes are formed for the ratio 1.0 - 1.3 (FeB, CrB, MoB,
V2B3 etc.). With increasing boron content, 2D nets are formed within structures with
stoichiometries between M2B3 and MB4 where M denotes a metal. Boron atoms form 3D
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structures of different complexity within crystal structures with typical stoichiometries
MB4, MB6, MB12 or MB66.

2.3. Transition metal diborides
Specific type of borides are transition metal diborides (TMD) that are represented by
high hardness and high melting point compounds what makes them interesting candi-
dates for hard coating application. The diboride structure of a particular importance
is the so called AlB2 or α structure type described as a sequence of alternating metal
and boron layers of hexagonal symmetry with AHAH... stacking of close packed metal
(A) and boron (H) layers. The metal atoms form a hexagonal unit cell whereas boron
forms 2D planar hexagonal network. The boron atoms are situated in the center of
trigonal prisms of metal atoms, every metal has 12 boron neighbors, boron atoms have
6 equally distanced metal and 3 boron neighbours. The α structure belongs to the
P6/mmm space group and is the most common for borides with stoichiometry ranging
from M2B3 to MB4. Other boride structures can be derived from the AlB2 structure by
introducing shifted metal layers to positions B and C (in analogy to stacking in HCP
or FCC lattice) and puckered boron layers (K, K’) [71] what is shown in Figure 2.1.

A, B, C H H′

K′K

B above plane

B below plane

B in plane

metal atom

Figure 2.1: Flat planes of metal atoms (big blue circles) and flat boron planes (white
small circles) are typical of the α structure. In puckered boron layers black lattice sites
are below and grey sites are positioned above the flat plane. All planes that are shown
are parallel (0001) type. From [72], modified.

Besides the AlB2 structure with alternating flat metal layers and boron layers (Fig-
ure 2.2a, some TMDs crystallize in structures containing puckered boron layers K’ like
W2B5 structure sometimes denoted as ω shown in Figure 2.2c, stable for tungsten di-
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Figure 2.2: The crystal structure and plane stacking of a) AlB2 (α) structure, b) W2B5
(ω) structure and c) ReB2 structure.

boride. The stacking sequence for the ω structure is AHAK’-BHBK’... with alternation
of puckered and flat boron layers belonging to the P63/mmc space group. Diborides like
ReB2 or TcB2 are characterized by the ReB2 structure with AK’BK’... stacking where
only puckered boron layers are present between metal layers Figure 2.2b also from the
P63/mmc space group [71].

The comparative work on transition metal diborides by Moraes et al. [73] studied
the stability of α and ω structures with the use of first principles calculations. The
comparison of heat of formation of both crystallographic structures for every TMD is
presented in Figure 2.3. The heat of formation equals the amount of energy (enthalpy)
that is obtained during the reaction of reacting constituents in the standard state. The
lower the heat of formation the more stable the compound is, positive values indicate
thermodynamically unstable systems. Figure 2.3 shows that the α structure tends to
be more stable for early transition metal diborides whereas the ω structure is more
stable for diborides of higher TMs as well as for those with higher atomic number. The
stability of diborides of either structure drops linearly as we move along the long row of
the periodic table. Higher transition metals crystallize in different structures or do not
form diborides at all. On the other hand, older experimental findings say that the α
structure is stable for group 4 and 5 TMDs as well as for CrB2, MoB2 and MnB2 [71].

2.3.1. Electronic structure
Mechanical and physical properties of materials are directly dependent on the electronic
structure, interactions of constituent atoms and resulting chemical bonding. Within
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Figure 2.3: Calculated heat (energy) of formation compared between α and ω structure
TMDs. Structure lower in energy is more stable. From [73].

binary TMDs three types of bonding are formed, those are boron-boron, metal-boron
(TM-B) and metal-metal (TM-TM). Mechanical properties important for hard coating
application result from the strong covalent bonding between boron atoms in the layer of
hexagons. Thermal and electric conductivity arise mainly due to TM-TM bonding that
mediate some amount of metallic bonding. The bond between metal and boron atoms
is partially ionic. The combination of covalent, metallic and ionic bondings within
transition metal diborides result in complex structural, physical and chemical character
of this material group.

The electronic configuration of boron is 2s2 2p1 that allows transition towards more
stable sp2 configuration (hybridization of fully occupied s orbital with a single p elec-
tron) that is responsible for the graphite like hexagonal structure where each boron
atom is bonded covalently to three boron neighbors. B-B bond is the strongest single
bond present in TMDs and is therefore considerably affects the hardness of TMDs.
The boron sublattice is electron deficient with the sp2 + px electron structure. The
empty p orbital has a strong tendency to be occupied by electrons donated by atoms
of metal what generates additional π bonding which further increases the strength of
this bond. The Hardness of TMDs is therefore to some extend dependent on the donor
capability of a transition metal. This property of d metals can be explained by the
configurational model of matter [74], [75] that correlates behavior or the material with
its tendency to form stable electronic configurations. Stable configurations are charac-
terized by unfilled, half-filled or fully filled orbitals, that means s2, hybrid sp3, s2 p6;
d0, d5, d10; f 0, f 7, f 14. A measure of how close is the configuration of a compound to
the nearest stable state is given by the statistical weight of atom with stable configura-
tion (SWASC). In the case of transition metals, their properties depend on statistical
weights of d0 and d5 states if the occupation of the outermost d orbital nd is lower
than 5 and on statistical weights of d5 and d10 states if nd > 5. A willingness of a
metal to donate its electrons to boron sublattice is significant for high SWASC of d0
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when transition metal prefers empty d orbital and d electrons are more delocalized (in
a collective state). On the contrary, the donor ability of metal decreases with higher
SWASC of d5 state what is associated with enhanced electron localization. Statistical
weight of d5 state increases with the number of electrons in d orbital i.e. for elements
from higher groups and periods. Higher transition metals tend to prefer the half-filled
configuration which is reflected by increasing ionization potential towards the middle of
the transition metal long row in the periodic table. The strongest electron transfer from
a metal to boron occurs in TiB2 which has the highest hardness among the diborides
[74]. Properties of transition metal diborides are mainly determined by hybrid states
of boron that depends on the donor ability of metal atoms.

Table 2.1: Temperature of melting Tm, Vickers hardness HV, density ρ , electric resis-
tivity ρe (for group 4 and 5 TMDs from [76]), Young modulus E. The last four columns
represent a) SWASCTM for d0, pure transition metals, b) SWASCTM for d5, pure tran-
sition metals, both from [77], c) SWASCTMD d5, for transition metal in diboride, d)
SWASCTMD sp2+ px, for boron in diboride, both from [78]. All values without reference
are from [79]. Asterisk denotes calculated values.

Tm HV ρ ρe E a) b) c) d)
[°C] [kg.dm−3] [µΩ.cm] [GPa] [%] [%] [%] [%]

TiB2 3225 3370 4.52 9.0 - 26.0 551 57 43 21.2 98.7
ZrB2 3245 3400 6.09 9.7 - 29.7 506 48 52 24 95
HfB2 3380 2900 11.19 10.6 - 43.2 500 45 55 26.6 93.7

VB2 2747 2630[80] 5.07 22.7 - 68.8 577*[80] 37 63 56 87.5

NbB2 2900 2210[81] 6.97 25.7 - 50.8 637 24 76 64.6 86.2

TaB2 3200 2500[82] 12.54 32.5 - 75.5 551[80] 19 81 68 83.7

CrB2 2100 1800 5.20 21 417*[80] 27 73 72 83.7

MoB2 2230[83] 2560[80] 7.78 45 470[84] 12 88 86 78.2

WB2 2365[85] 2600[80] 10.77[86] 23 - 92[87] 504[80] 0 96 - -

MnB2 1968[88] 1240[89] 5.51[90] 40[91] 559*[90] - - - -

ReB2 2400[72] 3070[92] 12.70 40[72] 712[80] 0 94 - -

The delocalization of metal electrons enhances the TM-B inter-layer bond that has
a covalent component due to the formation of the hybrid spd configuration between
metal and excess p electrons on boron. This interaction is also partially ionic due to
the electron transfer from a metal to boron and it should be stronger in the case of
greater charge transfer from metal atoms. Both covalent and ionic bond components
should weaken with increasing atomic number and higher SWASC for d5 associated
with smaller charge transfer and consequent localization of electrons on metal atoms.
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The weakening of TM-B bond causes an isolation of metal and boron lattices what
is reflected by almost five times larger lattice parameter in the c axis of WB2 (with
alternating puckered and flat boron layers) in comparison with TiB2. On the other
hand, an increase of SWASC for half filled configuration as we advance in the periodic
table to the right and down supports the TM-TM bond which becomes stronger and
its covalent character grows [74].

The diborides of group 4 to 6 transition metals are mostly paramagnetic, ZrB2 is
diamagnetic. Diborides of Cr to Ni have complicated ferromagnetic, antiferromagnetic
or more complex magnetic structures [71].

2.3.2. Mechanical properties
As mentioned previously, hardness of diborides is governed by the strongest B-B bond
which strength depends on the electron transfer from a metal to boron and the extend
of sp2 + px hybridization. The bond strength increases with the high statistical weight
of sp2 + px configuration of boron and low SWASC for d5 of a metal. In Table 2.1 there
are SWASC values for d0 and d5 states calculated for pure metallic compounds. The
higher the statistical weight of d5 the higher localization and lower donor capability.
It is apparent that tendency to localize electrons increases with increasing period and
group number. The SWASC for d5 state of a transition metal in diboride (column c)
in Table 2.1) has lower values than in the pure metal and the SWASC for sp2 + px

configuration has high probability. This describes a strong tendency for boron layer to
accommodate larger amount of electrons. We can correlate statistical weight for sp2

+ px configuration of boron with hardness well for the group 4 (see Figure 2.4b for
hardness) where both decrease from TiB2 to HfB2. As we move to the fifth group, we
first see decrease in the hardness from VB2 to NbB2, however, trend changes as we
continue to TaB2 which is caused by considerable increase of statistical weight of d5

state of the metal accompanied with localization of d electrons and stronger Ta-Ta or
Ta-B interaction overcomes the effect of B-B weakening. On the contrary groups 6 and
7 transition metal dibordes get harder with increasing principal quantum number of
valence electrons as the importance of the statistical weight of d5 states increases and
the hardness is affected probably by the consequent increase in strength of TM-TM
bonds.

The trend of weaker bonding in group 5 comparing to group 4 is supported by the
thermal expansion coefficient that equals 4.5 - 6.3 10−6 K−1 for TiB2 - HfB2, its values
for group 5 transition metal diborides is around 7.9 10−6 K−1 [76] and α = 10.5 10−6

K−1 for CrB2 [93]. Larger thermal expansion coefficient reflects easier distortion and
elongation of bonds due to increased temperature which can be defined as a consequence
of weaker bonding.

The melting temperature Tm is on the other hand dependent on the weaker TM-
B and TM-TM bonds. It follows from Figure 2.4a that the melting point of diborides
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Figure 2.4: Available melting point a) and the Vickers hardness b) of group 4 to 7
transition metal diborides. Experimental values are collected in Table 2.1 with corre-
sponding sources.

within the same group increases with period. This behavior is due to increasing SWASC
for d5 configuration of a metal and consequent strengthening of metal-metal bonding.
As we go from the group 4 to 7 the temperature of melting gradually decreases because
of TM-B strength decrease resulting from lower charge transfer to boron.

Not only hardness but also resistance to the cracking is an important requirement
for highly loaded hard coatings. In [73] the ductility of diborides was estimated based
on the calculated elastic tensors and semi-empirical criteria of the Cauchy pressure (C12

- C44 elastic constants) called the Pettifor criterion, the Pugh criterion (ductile if G/B
< 0.57, G and B are shear and bulk moduli) and the Frantsevich criterion (Poisson
ratio more than 0.26). These criteria are summarized in Figure 2.5. Ductility of the α
structure diborides increases with TM from higher groups where the electron donation
to boron is weaker and electrons stick to orbitals of metal. However, all α diborides in
the ductile section are unstable in this structure. The situation with the ω structure is
not so straightforward, for example ZrB2 is predicted to be the most ductile and ReB2

the most brittle even though the latter should comprise the most electrons in orbitals
of metal atoms among group 4 - 7 TMDs. The stable ω structure diborides are on the
boundary between ductile and brittle behavior.

An increase of hardness but also fracture toughness and thermal stability of tran-
sition metal diborides can be obtained by doping. Resulting ternary transition metal
diborides like (WTa)B2 [94], [95] or (TiW)B2 [96] are potential materials for high per-
formance protective coatings.

2.3.3. Transport properties
All transition metal diborides are electric conductors with excellent thermal properties
thanks to the metal bonding contribution. The electrical resistivity is influenced by the
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Figure 2.5: Prediction of ductility of α and ω structure TMDs. From [73].

density of carriers and their mobility. Electrons from stable configurations d5 and d10

are not involved in charge transfer due to their strong localization. Electrical conduc-
tion is possible thanks to the delocalized d electrons with intermediate configurations
dk/5+k where k = 1 to 4 or thanks to s or sp valence electrons. The density of free
elctrons responsible for the conductivity is characterized by DOS near the Fermi level
and influenced by the degree of localization. The charge mobility is determined by the
mean free path of electrons (depends on an intensity of lattice vibrations) expressed
by the scattering time and the effective mass of an electron. High mobility of carriers
is characteristic for the group 4 diborides along with a low carrier density. For higher
group diborides the conduction band is more filled what increases the carrier density
and lowers the mobility. Lower mobility of charge carriers is a sign of lower rigidity of
the lattice. The fourth group TMDs have lower resistivities (Table 2.1) and thermal
expansion coefficients [76].

Group 4 transition metals have high capability of electron donation that are trans-
ferred to boron atoms which then form rigid B-B bond. A consequence of this behavior
is low density of carriers with high mobility and low resistivity. Diborides formed by
higher groups transition metals have weaker B-B bond because of lower donor capability
of TM (SWASC for d5 increases) which is accompanied with higher intensity of lattice
vibration and consequent reduction of electron mobility due to additional scattering.

Resistivity of TMDs has a linear dependence on temperature. At higher tempera-
tures, resistivity increases because of carrier scattering of the lattice thermal vibrations
and the electron-electron scattering within the d band. As the temperature is raised,
electrons are redistributed in the conduction band what results in lowered DOS at the
Fermi level, an increase in the statistical weight for d5 configuration and lesser carrier
scattering in the TM-TM band. The governing factor in the temperature dependence
of the resistivity is the DOS at the Fermi level rather than the scattering by thermal
vibrations. The decrease of the temperature coefficient of the resistivity (resistance
change factor per degree of temperature) for higher group TMDs is a result of higher
DOS at the Fermi level of these compounds [76].
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2.4. Ni2MnGa
Ni2MnGa is one of the most studied materials exhibiting magnetic field induced strain
and related effects. In this section basic properties and the most important character-
istics of this alloy are described.

2.4.1. Structural properties
Ni2MnGa belongs to the group of Heusler alloys named after Friedrich Heusler, who re-
ported the fabrication of ferromagnetic alloy by alloying constituents neither of which is
ferromagnetic [97]. Alloys in this group are defined as ternary intermetallic compounds
characterized by strong relationship between the chemical order, composition and mag-
netic properties. Typical of Heusler alloys is the cubic L21 crystal structure of Fm3̄m
space group and the stoichiometric composition X2YZ where X and Y are transition
metals whereas Z is typically an element from group 13 to 15. The L21 structure shown
in Figure 2.6 is constructed by four overlapping FCC sublattices two of which are oc-
cupied by the X element and the other two by Y and Z elements. Sublattices originate
at (0, 0, 0), (1/4, 1/4, 1/4), (1/2, 1/2, 1/2) and (3/4, 3/4, 3/4) in the conventional
unit cell [98]. If all four sublattices are occupied, an alloy is called the full-Heusler
however, structure with one vacant sublattice is called the half-Heusler alloy with the
composition XYZ and corresponding C1b lattice.

Ni2MnGa solidifies from melt into the A2 structure at around 1100 °C. Atoms in
the A2 structure are completely disordered therefore it has BCC symmetry. Upon
cooling, the L21 structure is formed directly from A2 or through the partially ordered
intermediate B2 structure. Within the B2 lattice, one sublattice is occupied by Ni
atoms and the second one by randomly distributed Mn and Ga atoms. We can look at
the B2 lattice of Ni2MnGa as the L21 structure with two sublattices filled with Ni atoms
and two other sublatties are occupied with randomly distributed Mn and Ga atoms.
Below the ordering temperature of 750-800 °C the long range ordered L21 structure
is stable. High cooling rates can result in quenched alloys with residual disorder of
Mn and Ga atoms what has significant impact on properties especially the magnetic
properties. Usually annealing is necessary to allow for diffusion of Mn and Ga atoms
in order to obtain ordered structures [99]–[101].

2.4.2. Phase transformations
Of great importance for its properties and application is the ferromagnetism of Ni-
Mn-Ga alloys. Usually stated net magnetic moment is 4.17 µB per formula unit at
4.2 K reported by Webster et al. [102] however lower [103]–[105] as well as higher
values (more that 4.5 µB) [106], [107] have been reported. Relatively large range of
measured magnetic moments is caused by the disorder between Ga and Mn sublattices,
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Figure 2.6: Cubic L21 structure of Ni2MnGa austenite.

by the sample preparation or due to departure from the stoichiometric composition.
Manganese is the main contributor to the net magnetic moment but Mn atoms on the
Ga sublattice are ordered antiferromagnetically to those on the Mn sublattice [108]
what greatly decreases the net magnetization even for low excess of Mn. The magnetic
moment of Ni is less than 0.3 µB and Ga exhibits negligible magnetic moment [102].
The Curie temperature of the magnetic transformation for the stoichiometric Ni2MnGa
is TC = 376 K [102]. The picture of the magnetic structure is a complicated one with
the majority of magnetization on Mn sites due to the exclusion of minority-spin (spin
down) electrons from the Mn 3d shell above the Fermi level. The ferromagnetic exchange
responsible for the stability of the magnetic ordering between Mn atoms cannot be direct
because of large distances between Mn lattice sites. Instead the exchange interaction
between Mn d localized orbitals are mediated by interaction with conduction Ni d and
Ga p electrons described by the Ruderman-Kittel-Kasuya-Yosida (RKKY) theory of
exchange interaction mediated by free electrons [109], [110].

The high temperature cubic austenite with L21 structure undergoes a first order
martensitic phase transition at temperature around TM = 200 K [102]. There have been
found several martensitic structures in the Ni-Mn-Ga alloys - non-modulated tetragonal
martensite (NM) with tetragonality c/a ≈ 1.2, tetragonal five-layered (10M or 5M)
with c/a ≈ 0.94 or monoclinic seven-layered (14M or 7M) with a > b > c and c/a ≈
0.89 [112], [113]. The lattice of 10M martensite is shuffled along the (110) [11̄0] system
with shuffling period of five whereas the 14M martensite is shuffled along the same
crystallographic system with a period of seven. The fourth theoretically predicted
structure of the martensite is the orthorhombic 4O structure [111]. Martensite variants
are depicted in Figure 2.7. Before the martensitic transformation Ni2MnGa undergoes
a transformation to premartensite at TPM = 261 K [114] that keeps cubic symmetry but
exhibits 3 fold modulation therefore is called 6M. Different theories have been postulated
to explain martensitic transformation like the Jahn-Teller distortion [103], [115], phonon
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Figure 2.7: Schematic representation of martensite structures in Ni2MnGa. From [111].

softening [116], [117], Fermi surface nesting [117]–[119] or electron-phonon coupling.
The Jahn-Teller distortion in the crystal field of a lattice breaks the degeneracy of
d orbitals near the Fermi level and the subsequent redistribution of charge lowers the
total energy [103]. Phase transformations are also explained by the softening of the TA2

phonon mode along the [110] direction that arise around TPM [118] and is accompanied
by softening of the shear elastic constant c′ = 1

2(c11 - c12). This phonon anomaly, also
known as the Kohn anomaly, is closely related to the topology of the Fermi surface
through the nesting vector that is identical with the vector of the phonon softening.
There is a strong coupling between electrons and phonons at the nesting vector leading
to a strong screening response from electrons due to atomic displacements at this wave
vector. The nesting vector matches the modulation of premartensite and martensite
phases in Ni2MnGa [119]. There however are structures where neither Jahn-Teller nor
Fermi surface nesting was observed in the martensite therefore electron-phonon coupling
is presumably the leading factor for austenite structure instability [119], [120].

2.4.3. Magnetic shape memory effect
The property of Ni-Mn-Ga alloys that brings them the most attention is the magnetic
shape memory (MSM) effect [121]. The deformation occurs if an external field is ap-
plied, though it is not negligible only in single crystal samples. For example, there
was observed a magnetic field induced strain (MFIS) in 10M and 14M single crystals
up to 6% [122] and 10% [123] respectively. Characteristic of the martensite phase is
a twinned structure with highly mobile twin boundaries. MSM effect can be caused
by two phenomena - magnetically induced reorientation (MIR) that includes the twin
boundary motion, and magnetically induced transformation between the austenite and
the martensite. Ni-Mn-Ga alloys exhibit large MSM effect based on MIR for which
the existence of martensitic transformation, a martensite with twinned structure and
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a high magnetic anisotropy i.e. a strong connection between the magnetization vector
and a preferential crystallographic direction or plane are crucial. The applied magnetic
field gradually rotates the magnetization vector to the direction parallel to the external
magnetic field. When the energy of the rotation surpasses the energy required for the
MIR, the microstructure changes by nucleation and growth of those twin variants that
posses the smallest angle between their easy magnetization axis and the direction of
the applied field. In modulated martensite the easy axis is parallel with the c axis and
since the unit cell of martensite is not uniform in all directions (c/a < 1 in modulated
martensite) the growth of more favorable twin variants up to the magnetic saturation
is accompanied with a macroscopic change of sample’s shape. This reorientation is
permanent unless a restoring force acts on the material. The magnetization process
is strongly dependent on the orientation of the field and shows hysteresis. MSM ma-
terials are applicable as actuator, vibration damping, various sensors, cooling systems
(application of magnetocaloric effect) or, theoretically, as a source of electricity [101].

Magnetic field

H
H=0

Figure 2.8: Principle of MSM effect. After martensitic transformation there are multiple
twin variants, red arrows show magnetic moment direction in twin variants (lower left
corner). When sufficiently large magnetic field is applied MIR occurs and magnetic
moments become aligned with the magnetic field what is accompanied by distortion
(lower right corner). The thermal shape memory effect occurs after heating back to
austenitic structure. After [124], modified.

After the martensitic transformation the structure consists of several twin variants.
A single twin variant can be forced by applied constraints during the martensitic trans-
formation like compressive stress or magnetic field. For the 10M and NM martensite
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there are three twin variants with different c-axis orientation and four different twin
planes {101} in each variant, for 14M there are six twin variants. For MSM the exis-
tence of mobile twin boundaries is required. The mobility is quantified by the twinning
stress parameter obtained form the stress-strain measurements. This is a stress needed
for the movement or nucleation of twin boundaries and its typical value for Ni-Mn-Ga
alloys is less than 3MPa [101].

The martensitic phase transformaton is thermoelastic thus Ni-Mn-Ga alloys also
display the thermal shape memory effect and superelasticity. Magnetocaloric effect is
a phenomenon characteristic to magnetic materials that heat up during the magne-
tization due to spin alignment. Ni-Mn-Ga alloys on the other hand exhibit inverse
magnetocaloric effect when the temperature of material decreases in applied magnetic
field. This is caused by magnetically induced transformation from martensite to austen-
ite. Absorbed latent heat of transformation exceeds heating due to magnetic ordering.
Magnetocaloric effect offers environmentally friendly refrigeration capable of cooling
down to cryogenic temperatures below 1 K [125].

The work temperature of Ni-Mn-Ga based alloys is restricted by TM and TC. To
produce a significant MIR effect, the material has to operate in temperature range of
ferromagnetic martensitic structure. Especially TM of the stoichiometric alloy is way
below the room temperature. Research is therefore focused on increase of both trans-
formation temperatures. One of the ways to improve characteristics of the Ni2MnGa
is the stoichiometry adjustment by changing the concentration ratio of the three basic
constituents. For example the martensitic transformation temperature increases with
increasing content of Ni up to 330 K for 55 at.% of Ni, however, TC is not affected by
this modification. Positive effect on TM has substitution of Ga by Mn and replacement
of Ni with Ga, both lower TM. The Curie temperature increases when Ni atoms are
replaced by Mn [101].

Second option how to move transformation temperatures towards higher values and
possibly to enhance physical properties is doping. For example, simultaneous doping
by Cu and Co results in increase in both transformation temperatures above the room
temperature (TM = 330 K, TC = 393 K) as well as in the increase of MFIS up to 12%,
caused by lowering the twinning stress [126]. Furthermore, doping on the Ga-sublattice
with Cu concentration of 5 at.% increases TM up to 500 K, but decreases TC to around
300 K [127]. Doping with Fe increases TC but decreases TM [101].

As mentioned in the subsection 1.3.4 about the Hubbard +U correction, d or f
electrons tend to be over-delocalized by planewave based ab-initio codes. Since all
constituents of Ni2MnGa contain electrons in d orbital and Mn atoms exhibit high
magnetic moment due to localized d electrons, the employment of DFT+ U functional
for this system seems natural. There are some reports of calculations with +U correction
on Mn atoms. Value of the U parameter for Mn calculated in ref. [110] using the linear
response approach is 5.97 eV what seems to be an exaggerated for partially metallic
system. The use of the Hubbard correction increases magnetic moment on Mn sites
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which results from more localized d electrons of manganese. This behavior results from
stronger exchange splitting of spin up and down states which is visible in DOS plots.
Importantly, large U on Mn leads to destabilization of NM martensite energy minimum
on the tetragonal deformation path. This is due to weakening of exchange interaction
of Mn atoms since the energy magnetic interactions in simple GGA stabilizes the NM
martensite. This weakening is caused by stronger Coulomb repulsion in the case of
DFT+ U.

The U parameter in ref. [128] was determined semi-emprically as a fit to experi-
mental bulk modulus. The values obtained in this work are 3.93 eV on Mn and 0eV
on Ni. This value is sufficiently low to keep the NM martensite minimum even though
it is metastable. DFT+ U approach was recently applied to the prediction of elastic
constants [129] and magnetocrystalline anisotropy [130] of Co and Cu doped Ni-Mn-Ga
alloys using U = 1.8 eV on Mn.
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3. Results
3.1. Computational details
The results were obtained using the density functional theory on the basis of the
projected-augmented wave potentials (PAW) [43] and the plane wave basis set as
implemented in the Vienna Ab-initio Simulation Package (VASP) [131], [132]. The
exchange-correlation term was approximated using the Perdew-Burke-Ernzerhof (PBE)
approximation [29]. The first Brillouin zone (BZ) was sampled by the gamma-centered
Monkhorst-Pack grid of 968 to 1560 k-points distributed on an automatically generated
mesh in the case of transition metal diborides. Unit cells of TMDs were described by
supercells of 24 atoms, that is 2 x 2 x 2 primitive unit cells. An anisotropic k-mesh gen-
erated for DFT+ U calculations of Ni2MnGa consisted of 15×15×11 k-points since we
used tetragonal computational cell containing eight atoms. Both k-meshes were tested
for convergence. The Gaussian smearing method for integration over the BZ was used
with a 0.1 eV smearing width for diborides and the terahedron method with Blöchl
corrections was applied to Ni2MnGa. The electronic orbitals were expanded in a plane
wave basis set with a cut-off energy of 600 eV for diborides and 500 eV Ni2MnGa. Va-
lence electrons used for TMDs were 2s 2p for boron, transition metals were calculated
with semi-core states (n-1)p, ns, (n-1)d with exception of Zr where only ns and (n-1)d
states were used, n denotes the principal quantum number or period in which TM re-
sides. Valence electrons for Ni2MnGa were set to Ni 3p6 3d9 4s1, Mn 3p6 3d6 4s1 and
Ga 3d10 4s2 4p1. The total energy convergence criterion was 10−5 eV per unit cell for
all calculations. All computational cells were relaxed with 10−4 eV break condition for
the ionic relaxation loop.

The DFT+ U calculations were performed within the Dudarev’s approach [37] with
the effective U applied on Ni and Mn since localized d electrons play an important role
in the structural and magnetic properties of Ni-Mn-Ga alloys. In previous works on
Ni2MnGa, the U parameter on Mn was set to 5.97 eV and 3.93 eV, calculated with
the use of linear response approach [110] and a semiempirical adjustment to elastic
constants [128], respectively. In works on doped Ni-Mn-Ga alloys concerning elastic
constants and magnetocrystalline anisotropy was U = 1.8 eV applied to Mn d orbitals
to fit experimental c/a ratio in tetragonally distorted lattice [129], [130]. In the present
work, we use U in the range of 1−5 eV separately on Ni, Mn, and using the same value
of U on both Ni and Mn simultaneously.

Bond analysis was performed with the use of LOBSTER-4.0.0 package. Wave func-
tions expressed in terms of plane waves were projected onto localized functions using
the pbeVaspFit2015 basis set. Gaussian smearing was set to 0.15 eV.
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3.2. Characteristic examples of chemical bonding
Chemical bonding in molecules and solids is intuitively divided into three main cate-
gories - ionic, covalent and metallic bonding. The character of bonds in real materials
is usually a combination of these bonding types. TMDs are specific structures since all
three types of bonding can be found within them. As a first step, we briefly characterize
three typical bonding types in terms of DOS, COHP, COOP, DOE as well as charge
density distribution.

3.2.1. Ionic bonding
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Figure 3.1: a) The ionic bonding analysis, b) unit cell and charge density plot of NaCl.
DOE is compared with COHP summed over all nearest and second nearest neighbours.
Negative COHP and DOE curves are plotted to match COOP bonding and antibonding
interactions with sign.

The ionic bonding occurs in structures where constituent atoms differ in electroneg-
ativity. The higher the electronegativity difference the stronger ionic bond is formed.
Electrons of the less electronegative element are attracted by the element with high
electron affinity and fill its atomic orbitals in order to obtain more stable electronic
configuration. This way the structure is composed of ions of opposite charge what
causes a electrostatic Coulomb attraction of the nearest neighbours. The electrostatic
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attraction is the most important contribution to the binding energy of ionic compounds
and is denoted as the Madelung energy that depends on the Madelung constant, which
comprises the geometry of the lattice. Since the Coulomb interaction is of a long range,
the Madelung constant has to consider pair interactions of all constituent ions in a
crystal. Ionic bonding is typical only for solids.

A common representative example of the ionic bonding is NaCl with 0.94 fractional
ionic character [10]. The charge distribution in Figure 3.1b is spherical around ions with
transition of Na 3s electron to Cl 3p orbital what results in both ions having stable
electronic configuration of the nearest noble gas. DOS in Figure 3.1a is composed of
separate peaks what indicates localization of electrons with almost no overlap between
orbitals. DOS at the Fermi level (EF), marked by the dashed line, is zero and the
presence of the nearest unoccupied orbital is more than 5 eV above EF which confirms
that NaCl is an insulator. It is difficult to study ionic bonds in terms of orbital overlap
since in theory there is none between interacting atoms. The stabilizing contribution to
the band energy due to Na-Cl interaction and very small portion of Na-Na stabilizing
interaction at -12.5 eV can be distinguished by the negative COHP (-COHP is plotted
to match COOP bonding states therefore negative COHP corresponds to plotted pos-
itive values in all grphs). Cl-Cl interactions have symmetric bonding and antibonding
contribution therefore do not affect the energy of the system in the selected energy
range. Analysis of the orbital overlap (COOP) indicates some localized bond formation
between Na and Cl. On-site interactions of lower energy orbitals seem to have crucial
effect on the stability of structures as DOE shows (generalized COHP with all off-site
and on-site interactions included). The fact that DOE is negative in the whole range
suggests that electrons localized on atoms do not increase the total energy of the system
what agrees with the localized nature of the ionic bond.

3.2.2. Covalent bonding
Non-metallic single component materials or combination of elements with alike elec-
tronegativity typically form covalent bonds. The idea of covalent bond is based on
valence electrons shared by bonded atoms forming electron pairs. As atoms approach
each other and their atomic orbitals overlap, the molecular orbital is formed with equal
number of electrons from each atom in the way that alignment of electrons’ spins in the
molecular orbital is antiparallel. Two new molecular orbitals are produced - stabilizing
or bonding orbital in the case of overlap of electron wave functions with the same sign
(molecular orbital energy is lower than the atomic orbital energy) and destabilizing or
antibonding orbital with higher energy. In the case of solids with plenty of bonded
atoms, molecular orbitals become bands that together define the band structure of a
crystal. The covalent bond, opposite to ionic or metallic bonding, is strongly directional
which leads to open structures like diamond.
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Figure 3.2: a) Bond analysis of typical covalent bonding in Si and b) charge density
maps in the unit cell.

In Figure 3.2 we present the bonding analysis of silicon with the diamond structure.
We can see that the charge distribution is non-zero in between Si atoms what is a sign of
evenly shared electrons (Figure 3.2b). In comparison to the ionic bonding DOS exhibits
wider, not strictly separated orbital peaks that are, however, still well distinguishable.
The overlap of 3s and 3p orbitals results in sp3 hybridization responsible for tetrahedral
configuration of Si atoms. COHP and COOP also show wide overlapping peaks of
hybridized orbitals between nearest neighbours atoms bonded by the sigma bond. All
interactions forming the shortest bond are bonding below the Fermi level what supports
the stability of the structure. Values of COOP for Si are higher than in the case of
ionic bonding what is an indication of the large orbital overlap.

3.2.3. Metallic bonding
In metallic bonding electrons participating on interactions are shared between all atoms
of the crystal. These electrons are not localized between bonded atoms as in the covalent
bonding but they exist in free-like collective state. Electrons that can move within the
crystal are called conduction electrons and mediate attractive interaction with cations
at crystal lattice sites. The delocalization of valence electrons over large space (within
a crystal) leads to a lowering of their kinetic energy. Because of the non-local character
of this bond, metals crystallize in close packed structures without any directionality.
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Figure 3.3: Metallic bonding in a) sodium and b) copper.

Transition metals are bonded by a combination of conduction electrons and covalently
bonded inner shell electrons what makes bonds stronger what makes these metals harder
[10].

Figure 3.3a shows bcc sodium with continuous exponential like growth of DOS to-
wards EF that is typical of the free electron gas. Finite DOS at EF correctly identifies
Na as a conductor. COHP and COOP are broad with overlapping states in the whole
range of occupied energies typical for the metallic character. Interactions become anti-
bonding close to EF which is a sign of instability and possibly related to low temperature
of melting and poor mechanical properties. DOE shows stabilizing contribution from
both inter-atomic and on-site interactions since it is negative at almost all energies.

Transition metal representative Cu has broad metallic DOS though less uniform
as in the case of Na. COHP contains large destabilizing peak just below EF. The
stability of this system would be higher with lower number of electrons, that is why
metals with lower atomic numbers have higher temperatures of melting (with exception
of Mn). Negative DOE below EF indicates that on-site electron interactions introduce
negative contributions to the band energy. On-site interactions are typically much more
important to the band energy that inter atomic interactions. However, the integral of
DOE up to EF , in other words the band energy, is negative mostly thanks to on-site
interactions of the lower lying core electrons.
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3.3. Transition metal diborides
For the sake of comparison all TMDs studied within this thesis were assumed in the
α (AlB2) structure where all boron layers are flat (Figure 2.2a and Figure 3.4b). In
Figure 3.4 is shown a part of the periodic table with transition metals whose diborides
are studied in this thesis. Electron configuration of transition metals and the stable
structure of their diborides calculated in ref. [73] and known from experimental data
according to ref. [71] are stated as well. The α structure is preferred in diborides of
early transition metals.
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Figure 3.4: a) Transition metals of groups 4 to 7 with the electron configuration. Green
color is used for TMs that form diborides with stable α structure and pink color is used
for ω structure according to the heat of formation calculation [73], thick line windows
represent TM whose diboride has the α structure according to experimental data in
[71]. Tc and Re are left blank since their diborides crystalize in ReB2 structure, b)
interactions being subject to the bond analysis marked in the α structure unit cell.

Computed lattice parameters, unit cell volumes and the fraction of ionic bonding
based on the difference of Pauling electronegativity are compared in Table 3.1. The unit
cell volume decreases within each period, however, its trend within groups changes. In
group 4 and 5 the largest volume have period 5 TMDs (ZrB2 and NbB2) but within
groups 6 and 7 the volume increases with increasing period of TM as expected. Very
similar is the trend of c/a. The elongation of the crystal structure in the direction of
c axis is present within all groups as we proceed from the top of the periodic table to
the bottom with the exception of HfB2 and TaB2. We can assume that the strength
of the TM-B inter-layer bond increases markedly in HfB2 and TaB2. This TM-B bond
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strengthening might be caused by the increased ionic contribution or by redistribution
of charge on B atoms in favor of TM-B bond. The increasing c/a in periods 5 and
6 between groups 5 to 7 TMDs points towards TM-B weakening peaking with TcB2

and ReB2. The lattice parameter a, affected mainly by B-B in plane bonds, increases
within groups and decreases within periods as we proceed from top to bottom and left
to right within the periodic table. We can assign that to B-B weakening within groups
and strengthening within periods.

Table 3.1: Calculated lattice constants, unit cell volume and corresponding c/a ratio
as well as fraction of ionic bond based on the difference of the Pauling electronegativity
in Pauling units χr of 4-7 group transition metal diborides with AlB2 structure.

Group a c V c/a Ionicity
[Å] [Å] [Å3] [-] [χr]

TiB2 3.03 3.23 25.73 1.07 6.1
4 ZrB2 3.17 3.56 31.06 1.12 11.8

HfB2 3.15 3.49 29.89 1.11 12.8

VB2 3.00 3.03 23.62 1.01 4.1
5 NbB2 3.11 3.32 27.84 1.07 4.7

TaB2 3.10 3.33 27.75 1.07 7.0

CrB2 2.96 3.03 23.05 1.03 3.6
6 MoB2 3.03 3.34 26.62 1.10 0.4

WB2 3.02 3.38 26.74 1.12 2.5

MnB2 2.97 2.92 22.27 0.99 5.8
7 TcB2 2.96 3.40 25.89 1.15 0.5

ReB2 2.95 3.49 26.38 1.18 0.5

In Figure 3.5 are summarized DOS plots of all studied TMDs obtained thanks to
LOBSTER package. This method is convenient for very precise local density of states
(LDOS) plots that are in VASP evaluated only within defined Wigner-Seitz atomic
radius. On the other hand, LOBSTER calculates DOS from the projected local basis
set and LDOS comprises information about the interstitial space as well. DOS of
different diborides in Figure 3.5 resemble each other well and the often used rigid band
model, in which different materials are represented by shifted position of EF on the same
DOS plot based on the number of electrons, can be justified for TMDs. The common
characteristics is the opening of the pseudogap resulting from the hybridization of B p
and TM d orbitals what creates new energy states with lower energy separated from
the rest of TM d states by the pseudogap [133]. This is supported by the overlaying
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Figure 3.5: Density of states of group 4 to 7 transition metal diborides. CrB2 and MnB2
have magnetically ordered structures hence have different spin up and down branches.
The y axis in all graphs represents DOS.

LDOS of B p and TM d what creates distinct peak below EF. Group 4 and 5 TMDs
have higher contribution of B p LDOS than of the TM d in the region of overlapping
LDOS what indicates non negligible B-B interaction of B p orbitals. This difference
fades as we proceed to higher group TMDs.

The position of the pseudogap with respect to EF has significant influence on the
stability of a compound. Group 4 diborides TiB2 - HfB2 have EF positioned directly
at the pseudogap minimum, however within higher group TMDs, the Fermi level is
shifted to the region with higher DOS on the right from the pseudogap. This results
in lower stability of the α structure whereas other structures like ω , ReB2 structure
or other are energetically favorable for diborides of transition metals from the group 6
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and higher. The region of B s electrons partially overlaps with B p states what predicts
their hybridization. In the case of diborides, sp2 hybrid orbitals are formed thanks to
which boron creates a stack of graphene like sheets.

Magnetization of CrB2 and MnB2 is caused by the exchange splitting of Cr and Mn
d states and consequent formation of unpaired spin up peak below the Fermi level. A
non-zero net magnetic moment was calculated for CrB2 and MnB2 with 1.11 µB/ f .u.
and 1.79 µB/ f .u. respectively. Transition metals solely contribute to the magnetization
in both cases. All studied diborides have non-zero DOS at the Fermi level what agrees
with good electric conductivity of these materials. Conductive electrons are mostly TM
d but some B p states are present at EF as well.

The bond analysis was performed for all diborides of groups 4 to 7 using the LOB-
STER package that outputs DOS, COHP, COOP, DOE and electron population anal-
ysis. For selected pair of atoms, COHP recognises stabilizing and destabilizing in-
teractions based on their contribution to the band energy. COHP integrated up to
EF (ICOHP) is a parameter that reflects the strength of a bonds, the more negative
ICOHP the stronger the bond should be. Since different systems have different band
energies we cannot directly compare ICOHP values of different diborides. However, we
can compare contribution of bonds to the total ICOHP summed over all interactions
defined in the calculation. The bond analysis in this thesis was performed for interac-

Table 3.2: ICOHP percentage contribution of five shortest bonds to the total ICOHP
summed over all interactions between atoms with separation lower than 5 Å and corre-
sponding bond lengths, all calculated for the α structure.

Group nearest neighbours second nearest neighbours
B-B TM-B TM-TM B-B TM-TM

TiB2 53.1 (1.75 Å) 39.8 (2.38 Å) 2.5 (3.03 Å) 1.7 (3.03 Å) 0.5 (3.23 Å)
4 ZrB2 46.1 (1.83 Å) 46.5 (2.55 Å) 4.8 (3.17 Å) 0.7 (3.17 Å) 0.6 (3.56 Å)

HfB2 40.0 (1.82 Å) 50.7 (2.52 Å) 5.8 (3.14 Å) 0.6 (3.14 Å) 0.6 (3.49 Å)

VB2 51.9 (1.73 Å) 41.5 (2.30 Å) 2.0 (3.00 Å) 1.9 (3.00 Å) 0.6 (3.03 Å)
5 NbB2 43.6 (1.80 Å) 48.2 (2.45 Å) 4.0 (3.11 Å) 0.9 (3.11 Å) 0.7 (3.32 Å)

TaB2 39.0 (1.79 Å) 51.8 (2.44 Å) 5.0 (3.10 Å) 0.8 (3.10 Å) 0.7 (3.33 Å)

CrB2 53.7 (1.71 Å) 38.7 (2.29 Å) 1.6 (2.96 Å) 1.3 (2.96 Å) 0.2 (3.03 Å)
6 MoB2 47.0 (1.75 Å) 44.2 (2.42 Å) 3.7 (3.03 Å) 1.4 (3.03 Å) 0.4 (3.34 Å)

WB2 45.3 (1.74 Å) 44.9 (2.43 Å) 4.5 (3.02 Å) 1.4 (3.02 Å) 0.4 (3.38 Å)

MnB2 55.9 (1.71 Å) 36.0 (2.25 Å) 0.4 (2.92 Å) 2.3 (2.92 Å) 0.9 (2.97 Å)
7 TcB2 52.5 (1.71 Å) 40.2 (2.41 Å) 3.6 (2.96 Å) 2.1 (2.96 Å) 0.5 (3.40 Å)

ReB2 49.3 (1.70 Å) 40.4 (2.44 Å) 4.5 (2.95 Å) 2.0 (2.95 Å) 0.2 (3.49 Å)
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tions between two nearest neighbors of both boron and transition metal, in the case of
Table 3.2 for three nearest neighbors.

In Table 3.2 contribution of five shortest bonds to the total bonding are compared
between all studied diborides in the α structure. Two strongest interactions are the
in plane B-B bond and TM-B bonds that holds boron and metal planes together (see
Figure 3.4b). The largest contribution of B-B bond is typical for the fourth period
transition metals peaking with 55.9% in MnB2. The general trend is that within each
group the strength (energy lowering contribution) of B-B bond decreases with increasing
principal quantum number of valence electrons. This is also supported by increasing
boron-boron inter-atomic distance. The decrease in strength of nearest B-B bonds is
accompanied by the strengthening of TM-B and TM-TM bonds. On the other hand,
with an exception of group 5, the B-B contribution increases within periods as we move
to higher group TMs what is in contradiction with predicted decreasing capability of
electron donation to boron atoms. The energy lowering contribution of TM-B bond is
the highest in HfB2 and TaB2 what is in agreement with conclusions made in previous
section.

The bonding in diborides is closely related to the charge transfer between metal and
boron atoms. In Table 3.3 are summarized calculated orbital occupations and related
charge transfer from transition metals to boron. Electrons from s orbital of TM are
transferred both to TM d orbital as well as to B p orbital. Except from the sixth group
TMDs, electron donation to boron decreases within groups. The donor capability of
TMs in period does not obey such a simple rule. The electron transfer in period 4 and
5 (Ti - Mn and Zr - Tc) decreases with increasing atomic number. An exception to
this trend are group 7 TMDs where the charge transfer grows mainly due to donation
of TM d electrons, which contradicts the idea of stable half filled d shell. In period 6
(Hf - Re) electron transfer increases with higher atomic number of TM which is exactly
opposite behavior of expected. In comparison to Table 3.2 the strength of B-B bond is
proportional to the charge transfer from TM. As the charge transfer drops, B-B bonds
weaken probably due to weaker B-B π bond. The opposite can be said about TM-TM
bond which becomes stronger thanks to higher amount of charge on metal atoms. The
decrease of importance of B-B interaction between period 4 and 6 diborides is smaller
in TMDs of higher groups. Also charge transfer difference between period 4 and 6
diborides decreases in higher groups. More significant loss of the charge transfer to
boron layer within groups 4 and 5 weakens B-B interaction and simultaneously the
TM-B bond becomes overall stronger. Even though the sum over all TM-B bonds
becomes more stabilizing than B-B contribution, single in-plane boron bond is always
the strongest one. The DOS plots in Figure 3.5 show emergence of new peaks within
period 5 and 6 transition metal diborides where B p and TM d orbitals are aligned
which reflects new inter-layer bonds that are responsible for increased importance of
TM-B bonds. We can conclude that B-B interaction is the most stabilizing when there
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3.3. TRANSITION METAL DIBORIDES

Table 3.3: Mulliken and Löwdin population analysis and the electron transfer from
transition metals to boron in group 4 - 7 transition metal diborides.

Mulliken Löwdin Charge transfer
TM B TM B Mulliken Löwdin

TiB2 4s0.173d2.58 2s0.912p2.71 4s0.293d2.70 2s0.742p2.77 -1.25 -1.01
4 ZrB2 5s0.154d2.72 2s0.972p2.60 5s0.284d2.90 2s0.762p2.65 -1.13 -0.82

HfB2 6s0.625d2.56 2s0.882p2.54 6s0.455d2.79 2s0.732p2.65 -0.82 -0.76

VB2 4s0.203d3.63 2s0.882p2.70 4s0.293d3.74 2s0.732p2.76 -1.17 -0.97
5 NbB2 5s0.194d3.92 2s0.862p2.58 5s0.284d4.07 2s0.692p2.63 -0.89 -0.65

TaB2 6s0.555d3.55 2s0.832p2.60 6s0.435d3.73 2s0.702p2.71 -0.86 -0.83

CrB2 4s0.133d4.88 2s0.842p2.65 4s0.263d4.98 2s0.692p2.69 -0.99 -0.76
6 MoB2 5s0.194d4.92 2s0.842p2.61 5s0.294d4.82 2s0.692p2.65 -0.89 -0.69

WB2 6s0.335d4.54 2s0.832p2.73 6s0.355d4.68 2s0.702p2.78 -1.13 -0.97

MnB2 4s0.073d5.61 2s0.882p2.78 4s0.263d5.68 2s0.732p2.80 -1.32 -1.06
7 TcB2 5s0.184d5.73 2s0.862d2.68 5s0.304d5.82 2s0.712p2.73 -1.09 -0.88

ReB2 6s0.365d5.55 2s0.822p2.72 6s0.395d5.66 2s0.702p2.78 -1.09 -0.96

is large charge transfer to boron and TM-B interaction strengthens with lower charge
transfer.

The charge transfer from TM atoms suggests that the largest ionic contribution to
the bonding should be characteristic for MnB2 with the largest charge transfer and not
for HfB2 as electronegativities predict. The ionicity of TM-B bond was calculated for
some diborides in ref. [134] and it should decrease in the order of Mn, Cr, Zr, Hf, Nb,
Ta, V and Ti diborides from the highest to the lowest ionic contribution. This order
does not fully correspond to our calculated charge transfer if we assume that the larger
charge transfer the more ionic TM-B bond.

3.3.1. ELF and charge density analysis
To get an insight into the electronic structure and electron transfer between metal
and boron we have plotted the electron localization function (ELF) and charge density
difference between TiB2 and HfB2 as well as between TiB2 and ReB2. Using these two
examples we can study the differences in the charge distribution within diborides of TM
from both the same group and from the higher group. ELF and charge density maps
are plotted in Figure 3.6 and 3.7, in all cases we subtracted electron distribution from
the one of TiB2. That means that in red regions there is an excess of ELF or charge
density in TiB2 and in blue regions there is an excess in HfB2 or ReB2. The ELF uses
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the conditional pair density to determine regions with high density of localized electrons
and therefore comprises, among others, information about the covalent bonding.
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Figure 3.6: ELF and charge density difference maps, comparison of TiB2 and HfB2.
Red dashed rectangle represents the (112̄0) plane cut, regions pointed at by arrows are
discussed in the text with corresponding number.

Figure 3.6 depicts the ELF difference between diborides of Ti and Hf. It is apparent
that the π bond between boron atoms is weaker in HfB2 (arrow 1). Electrons in TiB2

are more localized in between boron atoms above and below the σ bond what is visible
also in (112̄0) plane cut. This is a consequence of a smaller electron transfer from Hf to
B which is supported by lower B-B bond strength in HfB2. In HfB2 electrons are more
localized on boron atoms and their localization in between TM and B is surprisingly
lower than in TiB2 (arrow 2). This should mean less covalent Hf-B bond, however, as
indicated in Table 3.2, Hf-B interaction is more stabilizing hence stronger than Ti-B.
The regions with more localized electrons in between Hf atoms (arrow 3) correspond to
boron positions and the localization of electrons above and below B atoms. This hints
towards a stronger inter-layer interaction of B pz orbitals, however such long interaction
between boron atoms is not probable. Possible is interaction with some of the metal’s
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in-plane d orbitals (xy and [x2-y2]). Overlay of exactly these orbitals can be found
in LDOS and projected DOS of HfB2 shown in Appendix A. Formation of this bond
could be responsible for TM-B bond strengthening. The charge density difference map
between TiB2 and HfB2 in Figure 3.6b indicates uniform metallic distribution of charge
in metallic planes parallel to the boron layers in both diborides (arrow 4) with somewhat
higher density in HfB2 thanks to lower charge transfer. In the boron layer charge is
slightly more localized on and between boron atoms in the case of HfB2 (arrow 5) which
is the same behavior that we can see in the ELF difference map.
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Figure 3.7: ELF and charge density difference maps, comparison of TiB2 and ReB2.
Red dashed rectangle represents the (112̄0) plane cut, arrows with corresponding num-
ber are explained in the text.

Similar trends can can be recognized when we compare TiB2 and ReB2. The ELF
difference between TiB2 and ReB2 is plotted in Figure 3.7a. Electron localization in
ReB2 is lower in π bonds of boron (arrow 1) as predicted from comparison of LDOS
of early and middle TM diborides. This fact indicates weaker B-B bond in ReB2.
Localization between Re atoms across the boron layer (arrow 2) is also lower which is
probably related to boron excess of charge in TiB2 rather than to TM-TM interaction,
even though the second nearest neighbors Re-Re bond is slightly weaker than Ti-Ti
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(see Table 3.2 for relative bond strengths). On the other hand, Re-Re shortest in-plane
bond becomes stronger and is partially of covalent nature as there is localization of
electrons between Re-Re atoms (arrow 3). ELF difference in the basal plane suggests
more directional character of Re-Re bonds and higher electron localization in region
between Ti atoms in TiB2. The charge density difference map in Figure 3.7b shows
higher density of electrons between boron atoms (arrows 4) and somewhat lower density
in out of plane π boron orbitals in ReB2. Charge density distribution around Re atoms
is elongated in the direction of nearest neighbors with notable density in between Re
atoms (arrow 5). Higher electron density is located between Re atoms and the middle
of the B-B short bond (arrow 6) on the contrary, the charge density directly between
Re and B is lower in ReB2 than it is in TiB2 (arrow 7).
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Figure 3.8: Comparison of DOS, negative COHP, COOP and negative DOE calculated
for three different crystal structures typical for transition metal diborides. Thick line
curves within COHP and COOP represent proportionally averaged interactions of iden-
tical type. DOE is compared with the COHP summed over all interactions shorter than
5 Å plotted as thick color line and with the on-site interaction contributions, obtained
by subtracting summed COHP from DOE. COHP and COOP curves are are plotted in
units per bond.
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3.3.2. Bonding analysis and shear deformation
Bonding in materials plays an important role in the stability of structures. As an
example, we have calculated ReB2 within three typical crystal structures of diborides.
Calculations have shown that the most stable is the ReB2 structure in which all boron
layers are puckered (Figure 2.2b), the total energy of the ω structure (Figure 2.2c) is
higher by 0.32 eV/atom and the total energy of the α structure (Figure 2.2a) is higher
by 0.64 eV/atom. From results summarized in Figure 3.8, DOS supports the stability
of the ReB2 structure since the number of states on EF is the lowest among these three
structures. In LDOS of the stable structure we can see the overlap of almost identical B
p and Re d orbitals indicating stronger hybridization than in the other two structures,
which creates new states with lower energy filled by electrons that in remaining two
structures would occupy states around EF. The stronger interaction corresponds to
greater Re-B COHP peak (red curve) around -5 eV in the stable structure. This bond is
also shortest in the stable structure. The strengthening of Re-B bond occurs at expense
of B-B strength what is manifested by the COHP minimum opening in B-B interaction
at the same energy region. There aren’t any pronounced antibonding interactions near
EF in neither of compared structures, however, the sum of -COHP over all calculated
interactions (thick blue line in the DOE plot) is not positive at EF (not destabilizing)
only in the case of the stable structure. Since DOE comprises contributions from
both off-site (between electrons on different atoms) and on-site interactions (between
electrons on the same atom), its positive values within the plotted range are caused
by the destabilizing on-site interactions. Nevertheless, the integral of DOE up to EF
(i.e. bthe band energy, not shown in Figure 3.8) is negative for all structures thanks
to strong stabilizing effect of core electrons. Bonds for which COHP and COOP were
calculated are shown in Figure 3.4b.

The total energy as a function of deformation of diborides with the α structure is
plotted in Figure 3.9. Both shear deformation (Figure 3.9a) as well as tensile defor-
mation (Figure 3.9b) were calculated using constant volume for all deformation values.
The steepness of these lines indicates the energy demandingness of the corresponding
deformation and therefore structure’s resistance to this deformation mode. In the case
of the shear deformation, the deformation value characterized by the x axis in Fig-
ure 3.9a changes from the undeformed alpha structure at 0% to 50% shear where atoms
in every third metal layer are shifted by a half of the basal lattice vector along the
[21̄1̄0] direction (direction of the lattice vector a). We can see that diborides of group 4
and 5 transition metals (Ti - Hf and V - Ta) are energetically the most difficult to shear
and and should be the most resilient to this deformation mode. We can deduce from
Figure 3.9a that the most difficult to shear is TiB2 whereas the easiest to shear is the α
structure ReB2. The stable ReB2 structure of rhenium diboride responds to shear with
more resistance, this is expressed by the dark violet line with empty triangle symbols.
If we assume that shear resistance is mostly related to inter-layer TM-B bonds, we
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can deduce that this bond is strongest in group 4 TMDs and decreases within higher
groups. This trend agrees with lower charge transfer to boron atoms from higher group
transition metals.
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Figure 3.9: Total energy as a function of a) shear deformation and b) deformation
along the c lattice vector.

The response to the compression and elongation along the c lattice vector calculated
with a constant volume for all deformation steps is plotted in Figure 3.9b. Here the
x axis represents in percents the deformation of the c lattice vector compared to the
undeformed structure. In compression TM-B bonds are squeezed and B-B or shortest
TM-TM bonds are elongated, in tension the other way around. In the case of compres-
sion, the most resistant are group 4 and 5 TMDs followed by diborides of group 6 and
7 transition metals. The most resistant is HfB2 and the least resistant is TcB2 in the α
structure. The elongation is energetically most difficult for group 7 TMDs (ReB2 and
TcB2). On the other hand the least difficult to deform in tension are group 5 TMDs.
Experimentally, ReB2 is known as one of the most incompressible materials [92], this
however is not supported by the energy dependence of the compression deformation. A
probable cause of this inconsistency is the metastable α structure used in calculations.

The effect of the shear deformation on the bond stabilizing contribution to the
band energy of the three shortest bonds is plotted in Figure 3.10. Each diboride is
represented by three columns that from left to right indicate 0%, 24% and 50% shear
deformation (deformation notation is explained in previous paragraphs). The fraction of
B-B contribution decreases within each group, the largest difference is present between
HfB2 and TiB2. Surprisingly, the portion of B-B bond increases for higher group TMDs.
The first observation agrees with decreased charge transfer to boron atoms, the second
does not. However, besides possible B-B bond strengthening that is not probable due
to lower electron transfer from TM, increased B-B contribution of higher group TMDs
might be caused by TM-B bond weakening. In general the strength of B-B bond
decreases as result of the shear along the a lattice vector. On the other hand TM-B
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summed over all interactions shorter than 5 Å in group 4 - 7 transition metal diborides.
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and in some cases TM-TM bonds get stronger due to the shear deformation. Decreased
strength of B-B bonds as result of shear deformation is in correlation with lower charge
transfer from TM in sheared structures. The charge transfer according to Mulliken and
Löwdin as a function of shear is summarized in Figure 3.11. Electron transfer is in all
diborides is lowered due to shear deformation.
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Figure 3.11: Charge transfer from TM to boron as a function of shear deformation
calculated using a) Mulliken population analysis and b) Löwdin population analysis.
Unit cell was sheared along the a lattice vector that is [100] or [21̄1̄0].
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As mentioned before, the ICOHP values cannot be directly compared for different
structures, however, COOP integrated up to EF (ICOOP) can be compared between
diborides since COOP integrates to the number of electrons participating on interaction.
This quantity therefore reflects amount of shared electrons between atoms forming a
bond and we can assume that the higher the ICOOP the more covalent the interaction
is. ICOOP dependence on the shear is plotted in Figure 3.12a for B-B interaction and in
Figure 3.12b for TM-B interaction. As expected, B-B interaction is the most covalent
in period 4 transition metal diborides (Ti - Mn) for which the charge transition to
boron is the most pronounced. ICOOP decreases with deformation in all TMBs, what
is consistent with ICOHP in Figure 3.10. In the case of TM-B the largest covalent
fraction can be assigned to NbB2 and ZrB2. The lowest covalency of this bond was
obtained for MnB2 where the charge transfer to boron is the largest and the ionic
contribution should be the most important among studied TMDs. The second largest
charge transfer from TM atoms was calculated for TiB2, however, this diboride shares
more electrons in TM-B bond than few other diborides with lower charge transfer.
This means that lower charge transfer does not weaken TM-B and B-B bonds evenly
in all TMDs. Except from CrB2 and MoB2, TM-B orbital overlap decreases at higher
deformation.
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Figure 3.12: Integrated COOP of a) B-B and b) TM-B bonds as a function of shear
deformation.

To analyze the effect of the shear deformation on the bonding in diborides, we
compared TiB2 and ReB2 whose transition metals are the furthest away from each other
in the periodic table. We compare DOS, COHP, COOP and DOE for both undeformed
structure and sheared along the a lattice vector. In Figure 3.13 are presented results for
TiB2. Bonds analyzed in undeformed structure are highlighted in the unit cell in Figure
3.4b. The DOS of the undeformed structure is separated into orbital projected DOS
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(PDOS) to distinguish different spatially oriented p and d orbitals. The boron s orbital
hybridizes with degenerate in-plane px and py to form strong stabilizing sp2 orbital.
The sum of px and py orbitals have more or less featureless character around -5 eV and
these orbitals are responsible for further B-B interactions. The pz orbital perpendicular
to the boron layer seems to be responsible for TM-B interaction and contributes little
to B-B bonding. This is supported by COHP of the B-B interaction that is prominent
in energy range where B s and B px/y are present and the B pz peak at -3 eV is not
reflected in B-B curve but can be clearly distinguished in TM-B COHP. The crystal
field in the case of TM splits d orbitals into degenerate in-plane (xy + [x2 − y2]) and
perpendicular (xz + yz) as well as nondegenerate z2 orbital that is perpendicular to
the boron layer as well. We can see that the non zero DOS at EF is mainly due to
(xy + [x2 − y2]) and (xz + yz) d orbitals what suggests conductivity in both directions
parallel and perpendicular to boron layers. The strong localization of the dz2 orbital
above EF was explained as a consequence of avoided band crossing of B π and TM dz2

bands [135]. The distinct DOS peak at -3 eV results mainly from the interaction of B
pz and d(xz+yz) orbitals. The broad character of in-plane d(xy+[x2−y2]) between -4 eV and
EF indicates a self interaction between Ti atoms presumably of the metallic character.
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Figure 3.13: Bond analysis of the α structure TiB2 in undeformed and sheared lattice.
The average COHP and COOP of B-B and Ti-B in deformed structure are plotted with
thick line.
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The same but in smaller scale can be said about dz2 orbitals that mediate interactions
of metal atoms across the boron layer. These interactions were assumed to contribute
to destabilization of the α structure in higher group transition metal diborides.

The shear deformation breaks degeneracy of TM d orbitals therefore for clarity only
LDOS is plotted. New states emerge on EF in Figure 3.13 due to the deformation which
is the sign of structure destabilization. Even though the peak at -3 eV is not as distinct
as in the undeformed structure, the over all TM-B interaction becomes stronger what
might be associated with new interaction directly at EF, what can be seen from the DOS
and COHP plots. The shear deformation splits B-B bond into shorter and longer bonds
compared to the undeformed lattice in 1:2 ratio in favor of the shorter bond. In the case
of Ti-B there are three bonds of different lengths that are represented equally in the
deformed state. These branches are represented by thin lines in Figure 3.13 and 3.14,
thick lines are their proportional averages. COOP and COHP show strong covalent
TM-TM interaction at EF is the sheared lattice. The main difference can be seen,
besides DOS, in the DOE plot. The average COHP is more negative in the deformed
state, however, the on-site interactions (thin color line in DOE plots) are much more
destabilizing in the deformed state.

0

5

10

15

20

D
O

S

Re d[xy+(x
2
-y

2
)]

Re d[xz+yz]
Re d[z

2
]

B p[x+y]
B p [z]

Undeformed structure

Re d
B p
B s

50% shear deformation

0

0.5

1

- 
C

O
H

P

B-B (1.70Å)
Re-B (2.44Å)
Re-Re (2.95Å)
B-B (2.95Å)

B-B (1.61Å)
B-B (1.92Å)
Re-B (2.12Å)
Re-B (2.48Å)
Re-B (2.99Å)
Re-Re(2.95Å)
B-B (2.95Å)

-0.05

0

0.05

0.1

C
O

O
P

-15 -10 -5 0 5
Energy [eV]

-200

-100

0

- 
D

O
E

DOE
 Σ COHP
DOE -  Σ COHP

-15 -10 -5 0 5
Energy [eV]

Figure 3.14: Bond analysis of ReB2 with the α structure, comparison of undeformed
state (0%) and lattice sheared along basal unit cell vector (50%).
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The influence of shear deformation on bonding in ReB2 is compared with the unde-
formed structure in Figure 3.14 in the same way as in the case of TiB2. The increased
number of electrons results in the shift of EF to higher DOS on the right side of the
pseudogap. The projected DOS indicates more complex interactions between B p and
Re d than in TiB2. Here the B pz orbital interacts not only with (xz + yz) but also with
(xy + [x2 − y2]) d orbitals that lie in the metal plane. The COHP shows higher values
(more stabilizing) for TM-TM bond and its spread smooth shape indicates metallic
character, however in COOP we can see peaks around -5 eV so this bond has some
covalent contribution as well. Filling of states above the pseudogap results in antibond-
ing TM-TM and TM-B interactions above -2 eV. The shear deformation of already not
stable ReB2 unit cell doesn’t lead to emergence of significant destabilization features
in DOS COHP or DOE what is reflected in low energy requirements for deformation
Figure 3.9a. Throughout this chapter we use deformation up to 50% that is far beyond
experimentally reachable values. However only exaggeration of deformation allows us
to observe changes in the electronic structure and bonding at noticeable scale. Bond
analysis of all group 4-7 TMDs in the undeformed lattice can be found in Appendix A.
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3.4. Ni2MnGa
In the case of Ni2MnGa we study energetics of bonds and the effect of corrective Hub-
bard U parameter on inter-atomic interactions and structural stability of austenite and
NM martensite. As already mentioned, here we go beyond the usual approach when
U is applied on Mn atoms solely and in addition we elaborate cases with U on Ni as
well as on both Ni and Mn at the same time. In all three cases we used U = 1, 3 and
5 eV. When used on Ni and Mn together the U value was the same on both elements.
Results of structural and magnetic properties are listed in Table 3.4 compared with
experimental data.

Standard GGA calculation without U corrections predicts slightly smaller lattice
parameter of the cubic phase than the experiment what is consistent with previous
works. Our relaxed structure and magnetic moments reproduce published computed
results very well [136]. With U on Ni the lattice parameter first slightly decreases
and then for U (Ni) = 5 increases to value larger that obtained by standard GGA.
This change in trend is probably caused by the competition of different structure and
magnetic variants whose energy approach each other at higher U. The net magnetization
increases as U grows in both austenite and martensite within all three types of U
implementation. In the case of U applied to Mn atoms the lattice parameter and the
local magnetization of Mn both increase with U. Lattice parameters are somewhat

Table 3.4: Calculated lattice parameters of cubic austenite aA, tetragonality c/a, total
and local magnetic moments µ in austenite and martensite with different U values
compared with experiment [102], [112]. Experimental value of martensite tetragonality
refers to 10M variant.

AUSTENITE MARTENSITE
Method aA c/a > 1 c/a ≤ 1 µtot µMn µNi µtot µMn µNi

[Å] [-] [-] [µB/f.u.] [µB/f.u.]

U (Ni) = 1 5.802 1.245 0.937; 1 4.18 3.40 0.41 4.21 3.32 0.49
U (Ni) = 3 5.791 1.193 0.936 4.55 3.47 0.57 4.42 3.35 0.60
U (Ni) = 5 5.824 1.111 0.981 4.95 3.47 0.81 4.74 3.42 0.76
U (Mn) = 1 5.828 1.203 1 4.31 3.66 0.34 4.46 3.64 0.43
U (Mn) = 3 5.875 1.130 1 4.60 4.06 0.28 4.79 4.07 0.37
U (Mn) = 5 5.917 - 1 4.76 4.32 0.22 - - -

U (NiMn) = 1 5.833 1.188 0.943; 1 4.45 3.69 0.40 4.61 3.68 0.49
U (NiMn) = 3 5.865 1.113 0.957 5.12 4.09 0.54 5.07 4.07 0.55
U (NiMn) = 5 5.927 1.046 1.023 5.89 4.33 0.83 5.48 4.32 0.66

GGA 5.804 1.261 1 4.11 3.41 0.36 4.10 3.32 0.42
Experiment 5.825 - 0.939 2.86 4.17
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smaller than 5.93 Å with U (Mn) = 3.93 eV reported in [128]. The growth of the local
magnetic moment of Mn is accompanied by the decrease of Ni contribution as if Ni
electrons became more delocalized in attempt to mediate stronger interaction of Mn
atoms with more localized d electrons. When U is applied on both Ni and Mn we
can see an increase of the unit cell volume as well as of the net magnetization which
results from combination of magnified local magnetic moments of Ni and Mn. The best
agreement with experimental lattice parameter is obtained with U (Ni) = 5 eV, U (Mn)
= 1 eV and U (NiMn) = 1 eV.

In order to study effect of the U correction on the stability of NM tetragonal marten-
site we calculated energy of Ni2MnGa as a function of tetragonality. Resulting curves
for the three types of U implementation considered in this work are summarized in
Figure 3.15, in Table 3.4 are listed corresponding c/a ratios of present energy minima.
Curves plotted in Figure 3.15 were calculated using the constant volume of the austen-
ite unit cell for every c/a, Figs. a), b), c) are plotted relative to the energy of cubic
structure.

Figure 3.15a and 3.15b represent energy and total magnetic moment along the
tetragonal deformation path when U was applied to Ni atoms. The well known shape of
the GGA energy curve with a metastable minimum at c/a = 1 and a stable minimum at
c/a ≈ 1.25 is partially disturbed already at U (Ni) = 1 eV when two distinct minima are
present one with c/a above and other below the cubic ratio. There is also a very shallow
minimum at c/a = 1. As we increase U (Ni) to 3, the austenite minimum disappears
completely and we are left with a metastable structure with tetragonality lower than
1 and the stable NM martensite with c/a > 1. Energy difference between these two
structures and the austenite increases and the tetragonality of the NM martensite gets
lower compared to U (Ni) = 1 eV. Interesting is the appearance of the second minimum
with c/a< 1 since experimentally observed structures have tetragonality lower than one,
however their stability is provided by modulations of crystallographic planes. Previously
smooth E ∼ c/a dependence is separated into two minima with a much sharper crossing
what is visible also at the magnetization. For U (Ni) = 5 eV the situation changes what
is probably related also to a sudden increase of the lattice parameter (see Table 3.4).
We can notice two completely separated minima, the metastable minimum is positioned
at c/a slightly lower than 1. The effect of U on Ni atoms resides in destabilization of
austenite, in lowering of c/a ratio of the stable NM martensite and in the emergence of
new meta-stable structure with c/a < 1 as well as in the increase of the net magnetic
moment.

The effect of U correction applied to Mn electrons on structural stability of Ni2MnGa
is plotted in Figure 3.15c and 3.15d. On the contrary to U on Ni, the trend of changes
is the same for all values of U. NM martensite becomes energetically meta-stable for
U (Mn) = 3 eV and for U (Mn) = 5 eV the only present minimum is the austenite.
This is consistent with previously calculated tetragonal deformation energy curve [110].
The total magnetization increases with U as Mn d electrons become more localized,
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however, the shape of magnetization vs. tetragonality curve is the same for all tested
values of U. This is different behavior from U on Ni (Figure 3.15b)) and supports the
idea that even though Mn is a strong source of magnetic moment in the system, the
magnetic structure is mediated by Ni and Ga. The application of U on Mn results in
stabilization of the cubic structure and the increase of the net magnetic moment thanks
to increasing Mn local magnetic moment.
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Figure 3.15: Energy and total magnetic moment as a function of c/a compared between
different applications of U parameter.

Figure 3.15e and 3.15f show results of calculations with U on both Ni and Mn, as
expected the effect of this correction is a combination of U on Ni and U on Mn. We can
see destabilization of austenite and emergence of energy minimum with tetragonality
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lower than one. Energy curves along the tetragonal deformation resemble the situation
in Figure 3.15a where U correction is assumed on Ni atoms. The effect caused by U
on Mn is lower energy difference between austenite and martensite. Compared to U on
Ni, in the case of U (NiMn) = 5 eV the energy of NM martensite is closer to the energy
of austenite than in lower U curves. When we apply U (NiMn) = 5 eV the energy
curve splits into two distinct minima, the metastable structure with a higher magnetic
moment what is in Figure 3.15f represented by distinct net magnetization curve above
the one of the stable structure. The tetragonal deformation curve calculated with U
(NiMn) = 1 eV still keeps a very shallow minimum at c/a = 1. The total magnetization
in the case of U (NiMn) reaches the highest values as both local magnetic moment
contributors Mn and Ni increase their magnetic moments due to enhanced localization
of electrons which is summarized in Table 3.4 as well. From Figure 3.15 we can deduce
that the effect of U on Ni is stronger than the effect of U on Mn which is apparent in the
case of U (NiMn). If we compare DFT+ U results with GGA calculation, we obtained
much higher total magnetization and decrease of tetragonality of the NM martensite
with the corrected functional. The best agreement of the metastable structure with
experimental 10M c/a ratio was calculated with U (Ni) = 1 eV, U (Ni) = 3 eV and U
(NiMn) = 1 eV.

Figure 3.16 covers DOS plots calculated using the LOBSTER package, GGA results
are compared with results corrected by U = 3 eV in all three cases. Lower stability of
austenite compared to NM martensite is usually reasoned by the presence of the peak
on EF in the spin down DOS channel. Tetragonal deformation shifts the Fermi level
into the region of pseudogap created thanks to the Janh-Teller effect. Consequent lower
DOS at EF is related to a greater stability of distorted structure. The ferromagnetism is
caused by uneven distribution of occupied electron states in up and down spin branches
which is more apparent in the case of Mn electrons that are responsible for the large net
magnetic moment. If we consider GGA results, LDOS spin up branches of Mn and Ni
in austenite overlay very well around -1 eV and their shapes are even more alike around
-3.5 eV which suggests strong interaction of these orbitals. The situation in martensite
is somewhat more complex due to further d orbital splitting in the tetragonal crystal
field however shape and peak distribution of both LDOS remain similar. Overall shape
of DOS and presence of the pseudogap hint towards some degree of covalent bonding
in this alloy.

The use of U on Ni atoms results in wider pseudogap in spin down DOS channel what
is in austenite accompanied by shift of the Ni peak directly on the Fermi level causing
instability of the cubic phase. Also in NM martensite (c/a = 1.19) the psedogap is wider
compared to GGA what agrees with pronounced stability of the martensite phase. The
spin up branch of Ni LDOS is affected only slightly, peaks situated above -4 eV in GGA
are slightly shifted towards lower energies. Mn states are mostly unaffected only peaks
around -1.5 eV possess somewhat higher DOS.
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Figure 3.16: Effect of U correction on DOS and LDOS when applied to different atoms.
In all cases U = 3 eV apart from GGA where U = 0 eV. Martensite in all cases has
c/a> 1. LDOS of Ga is left out because of its low contribution in selected energy range.

In the case of correction on Mn d electrons, strong exchange splitting of Mn states is
apparent since the energy difference between two main peaks in up and down branches
increases to around 6.5 eV. This and lower LDOS in the spin down branch cause increase
of local magnetic moment of Mn atoms calculated using this setup. Ni states are
changed in smaller extend, we can see redistribution of their spin up peaks towards
higher energies which creates an energy gap at -3.5 eV in both austenite and martensite.
Resulting DOS consists of almost two separate energy levels of Mn and Ni. This distinct
localization of Mn electrons probably weakens the Mn-Ni interaction. The tetragonal
distortion doesn’t sufficiently shift the Ni spin down peak above EF . This is related
with predicted of metastable NM martensite for U (Mn) = 3 eV.

The third implementation of U uses the correction on both Mn and Ni. We can
see a joint effect of separate correction use, apparent is localization of both Ni and Mn
LDOS, the exchange splitting of Mn states is even a little bit stronger that in the case
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of U on Mn. The spin down Ni peak is completely shifted above EF thanks to the
tetragonal distortion which results in stable NM martensite.

3.4.1. Bond analysis
The shortest inter-atomic distances in Ni2MnGa are between Ni and either one of Mn or
Ga. Nickel atoms can be considered as being positioned within a tetrahedral interstitial
position of Mn and Ga sublattices. The length of these two bonds in austenite is 2.51
Å compared to the lattice vector a = 5.80 Å (both GGA). Second shortest neighbours
are Mn-Ga and Ni-Ni atoms distanced 2.90 Å (GGA). Formation of Ni2MnGa causes
the charge redistribution between sublattices, Ga becomes an anion with charge equal
to -1.44 per atom that is donated by Mn (+0.62/atom) and Ni (+0.41/atom). This is
caused by tendency of Ga to half-fill its 4p orbitals with 4s electrons donated mostly
from other two constituents. These circumstances suggest some degree of hybridization
of Ga s and p orbitals that are involved in bonding and partially ionic interaction
with other two components. Calculated Mulliken and Löwdin charges are almost equal
therefore we don’t distinguish them in this case.

Overlap of crystal orbitals is qualified by the COOP function in Figure 3.17, calcu-
lated with GGA (without U). In the case of magnetically ordered materials the DOS is
no longer degenerate for both electron spins and we have to distinguish between up and
down channels. Due to this also COOP or COHP split into up and down contributions.
Figure 3.17 shows large antibonding overlap in both spin channels of all four shortest
interactions. The shape of DOS and COOP curves indicates partially covalent character
of these bonds. We can see strong antibonding regions in all four bonds which lowers
the ICOOP close to zero or even to negative values in some cases. The spin down DOS
peak at EF that destabilizes austenite corresponds to antibonding Ni-Ni interaction of
eg orbitals arising from the octahedral crystal field. This orbital consists of degenerate
dx2−y2 and dz2 . As mentioned before, the tetragonal distortion shifts this peak above
EF what lowers the amount of antibonding interactions in the material that is a sign of
higher stability.

Four shortest bonds were analyzed using COHP similarly to the section on transi-
tion metal diborides. Results obtained with different U application are summarized in
Figure 3.18 - 3.21. COHP curves calculated without the U correction are summarized
alongside DOS and DOE in Figure 3.18. The most stabilizing hence the strongest in-
teraction is formed between Ni and Ga atoms (see Figure 3.22). The broad metallic
like COHP stabilizing interaction in Ni-Ga between -7 and -10 eV is composed mainly
of Ga s interacting with Ni s and a small portion of Ni d electrons. Second bonding
peak present in both spin channels at -5.5 eV consists mainly of Ga p interacting with
Ni s and d orbitals. Interactions below -3.5 eV are bonding in COOP as well, on the
other hand for higher energies COOP predicts antibonding interactions in both spins.
This is not the case in COHP at least in the spin up channel where these states are
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Figure 3.17: COOP curves of four shortest interactions in Ni2MnGa. Calculated
without U correction.

mostly non-bonding i.e. their interaction does not contribute to the band energy and
has no effect on stability of the structure. Physically wave functions of these electrons
have antibonding overlap but they do not interact strongly. In the spin down channel
there are destabilizing contributions above -3 eV that are identical to the DOS region
around the pseudogap. Formation of the pseudogap seems to be closely related to Ga-Ni
interaction. In martensite destabilizing portion of COHP in Ga-Ni bond is decreased.
The antibonding peak, positioned at EF in austenite, also contains significant Ni-Ni
destabilizing contribution. The tetragonal deformation shifts this peak over the Fermi
level what lowers the number of occupied destabilizing states. In austenite, all three
interactions that contain Ni have destabilizing contributions below EF. This might also
be the reason why increasing concentration of Ni in off-stoichiometric alloys results in
higher martensite transformation temperature due to further destabilization of austen-
ite. On the other hand, lower concentration of Ni should result in lower amount of
destabilizing interactions which stabilize the cubic phase [101].
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Stabilizing interactions identified by COPH in Mn-Ni and Mn-Ga bonds are par-
tially antibonding according to COOP. In the Mn-Ga interaction there is stabilizing
interaction on EF that is mainly in NM martensite a very distinct bonding peak just
above the Fermi level. This interaction is formed between Mn and Ga atoms that are
brought closet to each other after the deformation. It is probable that small increase
of Mn and Ga concentration (more Mn since its contribution to this peak is stronger)
should cause the transformation temperature to grow. Indeed the offstoichiometric al-
loy with excess of Mn has higher TM and replacement of Ni with Ga also affects TM

in a positive way [101]. Mn-Ni bond seems to be the most metallic one according to
COHP function shape.

Figure 3.19 shows the situation when U = 3 eV was applied to Ni electrons. As
already mentioned, U on Ni widens the pseudogap in the spin down channel what is said
to be related to a stronger covalency. The COHP curves are mostly similar to the GGA
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Figure 3.18: DOS, DOE and COHP of four shortest interactions in austenite and NM
martensite using GGA. DOE and summed COHP are sums of spin up and spin down
contributions. Summed COHP is multiplied by the factor of 2.
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Figure 3.19: COHP curves of four shortest bonds calculated with U = 3 eV on Ni, com-
pared with DOS and DOE functions. NM martensite corresponds to a stable minimum
at c/a = 1.19. Summed COHP is multiplied by the factor of 2.

case. The antibonding region around the pseudogap (spin down) in austenite within
Ga-Ni interaction is slightly less destabilizing than in GGA. Also Mn-Ga interaction
have less destabilizing effect in the spin up channel around -1.5 eV. The same can be
said about Ni-Ni destabilizing interactions around -2 eV. The only clue hinting towards
destabilization of austenite is the antibonding peak in Ni-Ni interaction that is present
precisely of EF. In martensite all interactions have less destabilizing character compared
to simple GGA.

Situation in Figure 3.20 represents calculation with correction U = 3 eV on d elec-
trons of Mn. The gap is formed in spin up channel of Ga-Ni interaction between bonding
states at -4 eV what is exactly where the big Mn peak in DOS is positioned. At the same
energy a large peak is present in Mn-Ni bond. Ni electrons that were in GGA employed
in Ga-Ni bond are redistributed and interact almost solely with Mn orbitals in this
energy range. This preferential interaction with Ni is caused by the strong exchange
splitting that moves spin up LDOS of Mn to more negative energies which is accompa-
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nied by the non-bonding region in Ga-Ni bond at this energy. As Figure 3.15c shows
the stable structure in this case is cubic austenite and NM martensite is a metastable
structure. The evidence of this behavior is the antibonding Ni-Ni peak directly at EF

in NM martensite.
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Figure 3.20: COHP curves of four shortest bonds calculated with U = 3 eV on Mn,
compared with DOS and DOE. NM martensite at this value of U is metastable. Summed
COHP is multiplied by the factor of 2.

Figure 3.21 shows results of the COHP analysis computed with the use of U = 3
eV on both Ni and Mn at the same time. As expected, U (Ni&Mn) produces results
that are a combination of U (Ni) and U (Mn). In the case of Ga-Ni bond in austenite,
the effect of U on Ni is smoothens the sharp destabilizing peak in spin down channel
around -1.5 eV, U on Mn creates a gap between stabilizing states in the spin up channel
around -4.5 eV. Mn-Ni interaction in austenite has localized stabilizing peak in the spin
down channel thanks to U on Ni and large localized and stabilizing peak in the spin
up channel just above -4.5 eV due to U on Mn. Destabilizing interaction is introduced
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Figure 3.21: COHP curves of four shortest bonds calculated with U = 3 eV on Ni and
Mn, compared with DOS and DOE functions. NM martensite corresponds to a stable
minimum at c/a = 1.11. Summed COHP is multiplied by the factor of 2.

in the spin up channel of Mn-Ga interaction as an effect of U on Mn. The Ni-Ni
interaction is affected almost solely by U on Ni, it moves the destabilizing spin up peak
to lower energies as well as spin down destabilizing peak to higher energies (to EF) which
destabilizes austenite. In martensite we can distinguish more or less the same trends as
in austenite. The stability of NM martensite according to the austenite is lower when
using U (Ni&Mn) than in the case of U on Ni which can be seen in Figure 3.15a and
3.15e. This is caused by the Ni-Ni antibonding peak in NM martensite close below the
Fermi level (around -1 eV) when using U (Ni&Mn).

All four bonds calculated with different setup are compared within Appendix B.
From the analysis above, we conclude that localization on either Ni or Mn mostly af-
fects interactions in which corrected atom doesn’t participate. In the case of U on Ni,
Mn-Ni interaction becomes more metallic and Mn-Ga more covalent. When we used U
on Mn, Ga-Ni became more covalent, Mn-Ni less metallic and Ni-Ni more metallic. In
general, the martensitic transformation decreases destabilizing contributions in inter-
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Figure 3.22: ICOHP as a function of U parameter. Martensite calculated with U (Mn)
has only three points since it becomes unstable at U (Mn) = 5 eV.

actions and COHP curves become smoother what hints towards less covalent character
in NM martensite.

According to ICOHP analysis, the strongest (the most energy stabilizing) is the
shortest Ga-Ni bond in both cubic and tetragonal phase. Mn-Ni interaction follows as
a little bit stronger than Mn-Ga and the weakest is the Ni-Ni bond (Figure 3.22). When
U is used on Ni, the strongest Ga-Ni bond slightly weakens in austenite with increasing
U which is to some extend balanced by Mn-Ga bond that for U (Ni) = 5 eV becomes
stronger than Mn-Ni. In the case of U on Mn, the Ga-Ni bond gets stronger with
increasing U at expense of Mn-Ni and Mn-Ga bonds that become weaker. Difference
in martensite is that GGA predicts Mn-Ga interaction to be stronger than Mn-Ni, also
Ni-Ni bond slightly weakens with increasing U in all cases.
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Figure 3.23: a) ELF map calculated using GGA functional, b) unit cell with compu-
tational tetragonal cell marked by red lines.
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3.4.2. Electron localization analysis
In this section we compare ELF maps of Ni2MnGa alloy obtained with GGA and Hub-
bard correction to the electronic structure. In Figure 3.23a is shown the ELF map in
computational cell as calculated by uncorrected GGA. Relation of the tetragonal com-
putational cell to the conventional unit cell is pointed out in Figure 3.23b. According
to the ELF distribution the largest space with high electron localization is around Ga
atoms (arrow 1). Around Mn atoms the higher localization is pointing towards next
Ga atoms. This is caused partly by the size of Ga atoms (filled 3d shell) and partly
by electrons transfer from Mn and Ni. The highest electron localization is also around
Ga atoms, peaking in (001) plane towards Mn atoms (arrow 2). Electron localization
around Ni and Mn atoms is almost spherical with region of low localization around
them (arrow 3) that is mostly uniform in all directions.
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Figure 3.24: ELF difference map, ELF of GGA is subtracted from EFL of DFT+ U
with correction U = 3 eV on Ni.

The difference between ELF calculated using U (Ni) = 3 eV and GGA is shown in
Figure 3.24. Red regions describe higher electron localization in ELF calculated with U
on Ni, on the contrary in blue regions the localization is stronger in GGA result. Higher
localization around Ni atoms (arrow 1) can be expected from the nature of DFT+ U
method. Localization between Ni atoms in all directions is lower in the corrected
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calculation (arrow 2) that suggests less metallic interaction. Higher localization in
corrected calculation is between Mn and Ga (arrow 3). Figure 3.22 presents bond
strength changes due to Hubbard corrective approach. We can see that in the case of U
on Ni interactions Ga-Ni and Mn-Ni become weaker, presumably due to localization of
Ni d electrons. Contrarily, Mn-Ga interaction becomes more stabilizing and stronger.
Charge difference maps can be found in Appendix C.

Figure 3.25 captures electron localization difference between U (Mn) = 3 eV and
GGA calculation. In this case localization is higher around Mn atoms (arrow 1) that at
the same time are separated from other atoms by the region of lower electron localization
(arrow 2) what seems to have effect on Mn-Ga bond that weakens with increasing
U on Mn. Localization is in the corrected case higher between Ga and Ni (arrow
3). Both strengthening of Ga-Ni bond and weakening of Mn-Ga bond are supported
by Figure 3.22 ICOHP comparison. Both U (Mn) and U (Ni) correction seem to
strengthen bonds in which participate atoms that are not corrected. An exception
is Ni-Ni interaction strength of which is unaffected by the U parameter. Contrary to
U (Ni), localization of Mn electrons has effect on charge distribution among atoms. In
the case of U (Mn) = 3 eV, according to Mulliken population analysis, Ga accepts more
electrons (with charge -1.51/atom) than what GGA predicts donated mainly by Mn
(+0.78/atom) and partially by Ni (+0.36/atom).
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with correction U = 3 eV on Mn.
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Conclusions
This master’s thesis dealt with an analysis of inter-atomic interactions in selected

progressive materials with wide application possibilities. All presented results were
obtained using the planewave based VASP code utilizing the ab initio calculations ap-
proach. Interactions and bonds in studied structures were characterized and compared
within the scope of COHP, COOP and DOS functions that are accessible through the
application of the LOBSTER package, compatible with optimized electronic structure
calculated by VASP. Described methodology was applied to diborides of transition met-
als from groups 4 - 7 and to Ni2MnGa Heusler alloy.

In all diborides there are two main bonds responsible for cohesion - the strongest
boron-boron covalent bond and metal-boron covalent bond with ionic contribution.
The first bond mediates formation of hexagonal layer of boron and the second one
keeps metal and boron layers together. The creation of a diboride is accompanied with
a charge transfer from transition metal to boron that to a large extent affects atomic
interactions. Large charge transfer to boron atoms supports strong B-B interaction due
to additional π bonding, lower charge transfer strengthens metal-boron bond. Lower
charge transfer from transition metal also makes metal-metal interaction stronger.

Reaction of diborides to shear deformation as well as to elongation and compression
alond the c lattice vector was discussed according to energetic demandingness of these
deformation modes. The most difficult to shear along the basal lattice vector is TiB2

and other group 4 and group 5 transition metal diborides. Shear deformation does
not distort B-B in plane bond and should hint towards TM-B bond strength. We
can see that shear deformation weakens B-B interaction and at the same time supports
stability of averaged TM-B interaction which is related to lowered electron transfer from
metal atoms in sheared structures. In compression and tension we deform both bonds
parallel and perpendicular to the direction of elongation or compression. Group 4 and
5 transition metal diborides are the most difficult to compress, that means shrinkage of
TM-B and elongation of B-B bonds is difficult. On the other hand, the most difficult
to deform in tension, that means elongation of TM-B and compression of B-B bonds,
are ReB2 and TcB2.

Ni2MnGa alloy was studied using DFT + U corrective approach with U on Ni and
Mn. The Hubbard model was compared with uncorrected GGA to understand effects
of electron localization on structure and bonding. The effect of U on Ni resides in
destabilization of cubic austenite and stabilization of NM martensite. Correction of Ni
d electrons results in the prediction of a new metastable structure with c/a < 1. On the
other hand, application of U on Mn strongly destabilizes NM martensite. With U =
3 eV on Mn is austenite more sable than NM martensite. Hubbard correction applied
on both Ni and Mn mostly resembles the case with U on Ni. U correction increases
net magnetic moment in all examined combinations. We conclude that correction of Ni
electrons affects structural stability and magnetic properties more than modification of
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Mn electronic structure therefore we can say that the role of Ni in the alloy is more
important than of Mn concerning some properties.

COHP analysis of inter-atomic interactions detected Ni-Ga as the most stabilizing
hence the strongest bond within this alloy. The character of COHP and COOP func-
tions calculated for four shortest interactions (Ga-Ni, Mn-Ni, Mn-Ga, Ni-Ni) suggests
that Ga-Ni and Ni-Ni bonds are mostly covalent. The most metallic character has
Mn-Ni interaction. The spin down peak near the Fermi level usually explained as a
result of Jahn-Teller effect responsible for destabilization of austenite is composed of
antibonding Ni-Ni and Ni-Ga interactions. Enhanced localization of Ni electrons moves
this peak closer to EF in austenite what causes its destabilization. Application of U
on Ni promotes metallic character of Mn-Ni, U on Mn increases covalent charactrer of
Mn-Ni interaction and metallic character of Ni-Ni interaction. Enhanced localization
of Mn or Ni d electrons strengthens bonds in which corrected atoms do not participate.
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DFT+ U Hubbard correction to density functional theory
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APPENDIX

Appendix A
DOS, COHP, COOP and DOE analysis of all studied transition metal diborides.

Integrated DOE up to the Fermi level (band energy) is compared with integrated COHP
(contribution of inter-atomic interactions shorter than 5 Å to the band energy).
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Figure 26: Group 4 transition metal diborides. ZrB2 was calculated without semi-core
Zr p electrons therefore IDOE and ICOHP are not stated (COHP and DOE is basis
dependent).
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Figure 27: Group 5 transition metal diborides.
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Figure 28: Group 6 transition metal diborides.
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Figure 29: Group 7 transition metal diborides.
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Appendix B
COHP comparison of four shortest bonds in Ni2MnGa, calculated with GGA and

DFT+ U with U = 3 eV on different atoms.
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Figure 30: COHP analysis of Ga-Ni interaction, comparison of different U applications.
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Figure 31: COHP analysis of Mn-Ni interaction, comparison of different U applications.
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Figure 32: COHP analysis of Mn-Ga interaction, comparison of different U applications.
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Figure 33: COHP analysis of Ni-Ni interaction, comparison of different U applications.
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Appendix C
Charge density difference map, comparison between GGA and DFT+ U with U =

3 eV on Ni and Mn.
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Figure 34: Charge difference between GGA and DFT+ U with U = 3 eV on Ni.
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Figure 35: Charge difference between GGA and DFT+ U with U = 3 eV on Mn.
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