
V1: Architecture, Design and Threat Modeling

Requirements
V1.1 Secure Software Development Lifecycle

Requirements

V1 Architecture 1.1.1

V1 Architecture 1.1.2

V1 Architecture 1.1.3

V1 Architecture 1.1.4

V1 Architecture 1.1.5

V1 Architecture 1.1.6

V1 Architecture 1.1.7

V1.2 Authentication Architectural Requirements

V1 Architecture 1.2.1

V1 Architecture 1.2.2

V1 Architecture 1.2.3

V1 Architecture 1.2.4

V1.4 Access Control Architectural Requirements

V1 Architecture 1.4.1

V1 Architecture 1.4.2

Section

FINCA Classification - Unclassified (Public Use)

V1 Architecture 1.4.3

V1 Architecture 1.4.4

V1 Architecture 1.4.5

V1.5 Input and Output Architectural Requirements

V1 Architecture 1.5.1

V1 Architecture 1.5.2

V1 Architecture 1.5.3

V1 Architecture 1.5.4

V1.6 Cryptographic Architectural Requirements

V1 Architecture 1.6.1

V1 Architecture 1.6.2

V1 Architecture 1.6.3

V1 Architecture 1.6.4

V1.7 Errors, Logging and Auditing Architectural

Requirements

V1 Architecture 1.7.1

V1 Architecture 1.7.2

V1.8 Data Protection and Privacy Architectural

Requirements

FINCA Classification - Unclassified (Public Use)

V1 Architecture 1.8.1

V1 Architecture 1.8.2

V1.9 Communications Architectural Requirements

V1 Architecture 1.9.1

V1 Architecture 1.9.2

V1.10 Malicious Software Architectural

Requirements

V1 Architecture 1.10.1

V1.11 Business Logic Architectural Requirements

V1 Architecture 1.11.1

V1 Architecture 1.11.2

V1 Architecture 1.11.3

V1.12 Secure File Upload Architectural Requirements

V1 Architecture 1.12.1

V1 Architecture 1.12.2

V1.14 Configuration Architectural Requirements

V1 Architecture 1.14.1

V1 Architecture 1.14.2

FINCA Classification - Unclassified (Public Use)

V1 Architecture 1.14.3

V1 Architecture 1.14.4

V1 Architecture 1.14.5

V1 Architecture 1.14.6

V2: Authentication Verification Requirements

V2.1 Password Security Requirements

V2 Authentication 2.1.1

V2 Authentication 2.1.2

V2 Authentication 2.1.3

V2 Authentication 2.1.4

V2 Authentication 2.1.5

V2 Authentication 2.1.6

V2 Authentication 2.1.7

V2 Authentication 2.1.8

V2 Authentication 2.1.9

V2 Authentication 2.1.10

V2 Authentication 2.1.11

FINCA Classification - Unclassified (Public Use)

Control

Verify the use of a secure software development lifecycle that addresses security in all stages of

development.

Verify the use of threat modeling for every design change or sprint planning to identify threats, plan for

countermeasures, facilitate appropriate risk responses, and guide security testing.

Verify that all user stories and features contain functional security constraints, such as "As a user, I

should be able to view and edit my profile. I should not be able to view or edit anyone else's profile"

Verify documentation and justification of all the application's trust boundaries, components, and

significant data flows.

Verify definition and security analysis of the application's high-level architecture and all connected

remote services.

Verify implementation of centralized, simple (economy of design), vetted, secure, and reusable security

controls to avoid duplicate, missing, ineffective, or insecure controls.

Verify availability of a secure coding checklist, security requirements, guideline, or policy to all

developers and testers.

Verify the use of unique or special low-privilege operating system accounts for all application

components, services, and servers.

Verify that communications between application components, including APIs, middleware and data

layers, are authenticated. Components should have the least necessary privileges needed.

Verify that the application uses a single vetted authentication mechanism that is known to be secure,

can be extended to include strong authentication, and has sufficient logging and monitoring to detect

account abuse or breaches.

Verify that all authentication pathways and identity management APIs implement consistent

authentication security control strength, such that there are no weaker alternatives per the risk of the

application.

Verify that trusted enforcement points such as at access control gateways, servers, and serverless

functions enforce access controls. Never enforce access controls on the client.

Verify that the chosen access control solution is flexible enough to meet the application's needs.

FINCA Classification - Unclassified (Public Use)

Verify enforcement of the principle of least privilege in functions, data files, URLs, controllers, services,

and other resources. This implies protection against spoofing and elevation of privilege.

Verify the application uses a single and well-vetted access control mechanism for accessing protected

data and resources. All requests must pass through this single mechanism to avoid copy and paste or

insecure alternative paths.

Verify that attribute or feature-based access control is used whereby the code checks the user's

authorization for a feature/data item rather than just their role. Permissions should still be allocated

using roles.

Verify that input and output requirements clearly define how to handle and process data based on type,

content, and applicable laws, regulations, and other policy compliance.

Verify that serialization is not used when communicating with untrusted clients. If this is not possible,

ensure that adequate integrity controls (and possibly encryption if sensitive data is sent) are enforced to

prevent deserialization attacks including object injection.

Verify that input validation is enforced on a trusted service layer.

Verify that output encoding occurs close to or by the interpreter for which it is intended.

([C4](https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Nu mbering))

Verify that there is an explicit policy for management of cryptographic keys and that a cryptographic key

lifecycle follows a key management standard such as NIST SP 800- 57.

Verify that consumers of cryptographic services protect key material and other secrets by using key

vaults or API based alternatives.

Verify that all keys and passwords are replaceable and are part of a well-defined process to re-encrypt

sensitive data.

Verify that symmetric keys, passwords, or API secrets generated by or shared with clients are used only

in protecting low risk secrets, such as encrypting local storage, or temporary ephemeral uses such as

parameter obfuscation. Sharing secrets with clients is clear-text equivalent and architecturally should be

treated as such.

Verify that a common logging format and approach is used across the system.

Verify that logs are securely transmitted to a preferably remote system for analysis, detection, alerting,

and escalation.

FINCA Classification - Unclassified (Public Use)

http://www.owasp.org/index.php/OWASP_Proactive_Controls
http://www.owasp.org/index.php/OWASP_Proactive_Controls

Verify that all sensitive data is identified and classified into protection levels.

Verify that all protection levels have an associated set of protection requirements, such as encryption

requirements, integrity requirements, retention, privacy and other confidentiality requirements, and

that these are applied in the architecture.

Verify the application encrypts communications between components, particularly when these

components are in different containers, systems, sites, or cloud providers.

Verify that application components verify the authenticity of each side in a communication link to

prevent person-in-the-middle attacks. For example, application components should validate TLS

certificates and chains.

Verify that a source code control system is in use, with procedures to ensure that check-ins are

accompanied by issues or change tickets. The source code control system should have access control and

identifiable users to allow traceability of any changes.

Verify the definition and documentation of all application components in terms of the business or

security functions they provide.

Verify that all high-value business logic flows, including authentication, session management and access

control, do not share unsynchronized state.

Verify that all high-value business logic flows, including authentication, session management and access

control are thread safe and resistant to time-of-check and time-of-use race conditions.

Verify that user-uploaded files are stored outside of the web root.

Verify that user-uploaded files - if required to be displayed or downloaded from the application - are

served by either octet stream downloads, or from an unrelated domain, such as a cloud file storage

bucket. Implement a suitable content security policy to reduce the risk from XSS vectors or other attacks

from the uploaded file.

Verify the segregation of components of differing trust levels through well-defined security controls,

firewall rules, API gateways, reverse proxies, cloud-based security groups, or similar mechanisms.

Verify that if deploying binaries to untrusted devices makes use of binary signatures, trusted

connections, and verified endpoints.

FINCA Classification - Unclassified (Public Use)

Verify that the build pipeline warns of out-of-date or insecure components and takes appropriate

actions.
Verify that the build pipeline contains a build step to automatically build and verify the secure

deployment of the application, particularly if the application infrastructure is software defined, such as

cloud environment build scripts.

Verify that application deployments adequately sandbox, containerize and/or isolate at the network

level to delay and deter attackers from attacking other applications, especially when they are performing

sensitive or dangerous actions such as deserialization.

Verify the application does not use unsupported, insecure, or deprecated client-side technologies such

as NSAPI plugins, Flash, Shockwave, ActiveX, Silverlight, NACL, or client-side Java applets.

Verify that user set passwords are at least 12 characters in length.

Verify that passwords 64 characters or longer are permitted.

Verify that passwords can contain spaces and truncation is not performed. Consecutive multiple spaces

MAY optionally be coalesced.

Verify that Unicode characters are permitted in passwords. A single Unicode code point is considered a

character, so 12 emoji or 64 kanji characters should be valid and permitted.

Verify users can change their password.

Verify that password change functionality requires the user's current and new password.

Verify that passwords submitted during account registration, login, and password change are checked

against a set of breached passwords either locally (such as the top 1,000 or 10,000 most common

passwords which match the system's password policy) or using an external API. If using an API a zero

knowledge proof or other mechanism should be used to ensure that the plain text password is not sent

or used in verifying the breach status of the password. If the password is breached, the application must

require the user to set a new non-breached password.

Verify that a password strength meter is provided to help users set a stronger password.

Verify that there are no password composition rules limiting the type of characters permitted. There

should be no requirement for upper or lower case or numbers or special characters.

Verify that there are no periodic credential rotation or password history requirements.

Verify that "paste" functionality, browser password helpers, and external password managers are

permitted.

FINCA Classification - Unclassified (Public Use)

V2 Authentication 2.1.12

V2.2 General Authenticator Requirements

V2 Authentication 2.2.1

V2 Authentication 2.2.2

V2 Authentication 2.2.3

V2 Authentication 2.2.4

V2 Authentication 2.2.5

V2 Authentication 2.2.6

V2 Authentication 2.2.7

V2.3 Authenticator Lifecycle Requirements

V2 Authentication 2.3.1

V2 Authentication 2.3.2

V2 Authentication 2.3.3

V2.4 Credential Storage Requirements

FINCA Classification - Unclassified (Public Use)

V2 Authentication 2.4.1

V2 Authentication 2.4.2

V2 Authentication 2.4.3

V2 Authentication 2.4.4

V2 Authentication 2.4.5

V2.5 Credential Recovery Requirements

V2 Authentication 2.5.1

V2 Authentication 2.5.2

V2 Authentication 2.5.3

V2 Authentication 2.5.4

V2 Authentication 2.5.5

V2 Authentication 2.5.6

V2 Authentication 2.5.7

V2.6 Look-up Secret Verifier Requirements

V2 Authentication 2.6.1

V2 Authentication 2.6.2

V2 Authentication 2.6.3

V2.7 Out of Band Verifier Requirements

V2 Authentication 2.7.1

V2 Authentication 2.7.2

FINCA Classification - Unclassified (Public Use)

V2 Authentication 2.7.3

V2 Authentication 2.7.4

V2 Authentication 2.7.5

V2 Authentication 2.7.6

V2.8 Single or Multi Factor One Time Verifier

Requirements
V2 Authentication 2.8.1

V2 Authentication 2.8.2

V2 Authentication 2.8.3

V2 Authentication 2.8.4

V2 Authentication 2.8.5

V2 Authentication 2.8.6

V2 Authentication 2.8.7

V2.9 Cryptographic Software and Devices Verifier

Requirements
V2 Authentication 2.9.1

V2 Authentication 2.9.2

V2 Authentication 2.9.3

V2.10 Service Authentication Requirements

V2 Authentication 2.10.1

V2 Authentication 2.10.2

V2 Authentication 2.10.3

V2 Authentication 2.10.4

FINCA Classification - Unclassified (Public Use)

V3: Session Management Verification Requirements

V3.1 Fundamental Session Management

Requirements

V3 Session 3.1.1

V3.2 Session Binding Requirements

V3 Session 3.2.1

V3 Session 3.2.2

V3 Session 3.2.3

V3 Session 3.2.4

V3.3 Session Logout and Timeout Requirements

V3 Session 3.3.1

V3 Session 3.3.2

V3 Session 3.3.3

V3 Session 3.3.4

V3.4 Cookie-based Session Management

V3 Session 3.4.1

V3 Session 3.4.2

V3 Session 3.4.3

V3 Session 3.4.4

V3 Session 3.4.5

V3.5 Token-based Session Management

V3 Session 3.5.1

V3 Session 3.5.2

V3 Session 3.5.3

V3.6 Re-authentication from a Federation or Assertion

FINCA Classification - Unclassified (Public Use)

V3 Session 3.6.1

V3 Session 3.6.2

V3.7 Defenses Against Session Management Exploits

V3 Session 3.7.1

V4: Access Control Verification Requirements

V4.1 General Access Control Design

V4 Access 4.1.1

V4 Access 4.1.2

V4 Access 4.1.3

V4 Access 4.1.4

V4 Access 4.1.5

V4.2 Operation Level Access Control

V4 Access 4.2.1

V4 Access 4.2.2

V4.3 Other Access Control Considerations

V4 Access 4.3.1

V4 Access 4.3.2

V4 Access 4.3.3

V5: Validation, Sanitization and Encoding Verification

Requirements
V5.1 Input Validation Requirements

V5 Validation 5.1.1

FINCA Classification - Unclassified (Public Use)

V5 Validation 5.1.2

V5 Validation 5.1.3

V5 Validation 5.1.4

V5 Validation 5.1.5

V5.2 Sanitization and Sandboxing Requirements

V5 Validation 5.2.1

V5 Validation 5.2.2

V5 Validation 5.2.3

V5 Validation 5.2.4

V5 Validation 5.2.5

V5 Validation 5.2.6

V5 Validation 5.2.7

V5 Validation 5.2.8

V5.3 Output encoding and Injection Prevention

Requirements
V5 Validation 5.3.1

V5 Validation 5.3.2

V5 Validation 5.3.3

FINCA Classification - Unclassified (Public Use)

V5 Validation 5.3.4

V5 Validation 5.3.5

V5 Validation 5.3.6

V5 Validation 5.3.7

V5 Validation 5.3.8

V5 Validation 5.3.9

V5 Validation 5.3.10

V5.4 Memory, String, and Unmanaged Code

Requirements
V5 Validation 5.4.1

V5 Validation 5.4.2

V5 Validation 5.4.3

V5.5 Deserialization Prevention Requirements

V5 Validation 5.5.1

V5 Validation 5.5.2

V5 Validation 5.5.3

V5 Validation 5.5.4

V6: Stored Cryptography Verification Requirements

V6.1 Data Classification

V6 Cryptography 6.1.1

V6 Cryptography 6.1.2

FINCA Classification - Unclassified (Public Use)

V6 Cryptography 6.1.3

V6.2 Algorithms

V6 Cryptography 6.2.1

V6 Cryptography 6.2.2

V6 Cryptography 6.2.3

V6 Cryptography 6.2.4

V6 Cryptography 6.2.5

V6 Cryptography 6.2.6

V6 Cryptography 6.2.7

V6 Cryptography 6.2.8

V6.3 Random Values

V6 Cryptography 6.3.1

V6 Cryptography 6.3.2

V6 Cryptography 6.3.3

V6.4 Secret Management

V6 Cryptography 6.4.1

V6 Cryptography 6.4.2

V7: Error Handling and Logging Verification

Requirements

FINCA Classification - Unclassified (Public Use)

V7.1 Log Content Requirements

V7 Error 7.1.1

V7 Error 7.1.2

V7 Error 7.1.3

V7 Error 7.1.4

V7.2 Log Processing Requirements

V7 Error 7.2.1

V7 Error 7.2.2

V7.3 Log Protection Requirements

V7 Error 7.3.1

V7 Error 7.3.2

V7 Error 7.3.3

V7 Error 7.3.4

V7.4 Error Handling

V7 Error 7.4.1

V7 Error 7.4.2

V7 Error 7.4.3

V8: Data Protection Verification Requirements

V8.1 General Data Protection

V8 Data 8.1.1

V8 Data 8.1.2

FINCA Classification - Unclassified (Public Use)

V8 Data 8.1.3

V8 Data 8.1.4

V8 Data 8.1.5

V8 Data 8.1.6

V8.2 Client-side Data Protection

V8 Data 8.2.1

V8 Data 8.2.2

V8 Data 8.2.3

V8.3 Sensitive Private Data

V8 Data 8.3.1

V8 Data 8.3.2

V8 Data 8.3.3

V8 Data 8.3.4

V8 Data 8.3.5

V8 Data 8.3.6

V8 Data 8.3.7

V8 Data 8.3.8

V9: Communications Verification Requirements

V9.1 Communications Security Requirements

FINCA Classification - Unclassified (Public Use)

V9 Communication s 9.1.1

V9 Communication s 9.1.2

V9 Communication s 9.1.3

V9.2 Server Communications Security Requirements

V9 Communication s 9.2.1

V9 Communication s 9.2.2

V9 Communication s 9.2.3

V9 Communication s 9.2.4

V9 Communication s 9.2.5

V10: Malicious Code Verification Requirements

V10.1 Code Integrity Controls

FINCA Classification - Unclassified (Public Use)

Verify that the user can choose to either temporarily view the entire masked password, or temporarily

view the last typed character of the password on platforms that do not have this as native functionality.

Verify that anti-automation controls are effective at mitigating breached credential testing, brute force,

and account lockout attacks. Such controls include blocking the most common breached passwords, soft

lockouts, rate limiting, CAPTCHA, ever increasing delays between attempts, IP address restrictions, or

risk-based restrictions such as location, first login on a device, recent attempts to unlock the account, or

similar. Verify that no more than 100 failed attempts per hour is possible on a single account.

Verify that the use of weak authenticators (such as SMS and email) is limited to secondary verification

and transaction approval and not as a replacement for more secure authentication methods. Verify that

stronger methods are offered before weak methods, users are aware of the risks, or that proper

measures are in place to limit the risks of account compromise.

Verify that secure notifications are sent to users after updates to authentication details, such as

credential resets, email or address changes, logging in from unknown or risky locations. The use of push

notifications - rather than SMS or email - is preferred, but in the absence of push notifications, SMS or

email is acceptable as long as no sensitive information is disclosed in the notification.

Verify impersonation resistance against phishing, such as the use of multi-factor authentication,

cryptographic devices with intent (such as connected keys with a push to authenticate), or at higher AAL

levels, client-side certificates.

Verify that where a credential service provider (CSP) and the application verifying authentication are

separated, mutually authenticated TLS is in place between the two endpoints.

Verify replay resistance through the mandated use of OTP devices, cryptographic authenticators, or

lookup codes.

Verify intent to authenticate by requiring the entry of an OTP token or user-initiated action such as a

button press on a FIDO hardware key.

Verify system generated initial passwords or activation codes SHOULD be securely randomly generated,

SHOULD be at least 6 characters long, and MAY contain letters and numbers, and expire after a short

period of time. These initial secrets must not be permitted to become the long term password.

Verify that enrollment and use of subscriber-provided authentication devices are supported, such as a

U2F or FIDO tokens.

Verify that renewal instructions are sent with sufficient time to renew time bound authenticators.

FINCA Classification - Unclassified (Public Use)

Verify that passwords are stored in a form that is resistant to offline attacks. Passwords SHALL be salted

and hashed using an approved one-way key derivation or password hashing function. Key derivation and

password hashing functions take a password, a salt, and a cost factor as inputs when generating a

password hash.

Verify that the salt is at least 32 bits in length and be chosen arbitrarily to minimize salt value collisions

among stored hashes. For each credential, a unique salt value and the resulting hash SHALL be stored.

Verify that if PBKDF2 is used, the iteration count SHOULD be as large as verification server performance

will allow, typically at least 100,000 iterations.

Verify that if bcrypt is used, the work factor SHOULD be as large as verification server performance will

allow, typically at least 13.

Verify that an additional iteration of a key derivation function is performed, using a salt value that is

secret and known only to the verifier. Generate the salt value using an approved random bit generator

[SP 800-90Ar1] and provide at least the minimum security strength specified in the latest revision of SP

800-131A. The secret salt value SHALL be stored separately from the hashed passwords (e.g., in a

specialized device like a hardware security module).

Verify that a system generated initial activation or recovery secret is not sent in clear text to the user.

Verify password hints or knowledge-based authentication (so-called "secret questions") are not present.

Verify password credential recovery does not reveal the current password in any way.

Verify shared or default accounts are not present (e.g. "root", "admin", or "sa").

Verify that if an authentication factor is changed or replaced, that the user is notified

of this event.

Verify forgotten password, and other recovery paths use a secure recovery mechanism, such as TOTP or

other soft token, mobile push, or another offline recovery mechanism.

Verify that if OTP or multi-factor authentication factors are lost, that evidence of identity proofing is

performed at the same level as during enrollment.

Verify that lookup secrets can be used only once.

Verify that lookup secrets have sufficient randomness (112 bits of entropy), or if less than 112 bits of

entropy, salted with a unique and random 32-bit salt and hashed with an approved one-way hash.

Verify that lookup secrets are resistant to offline attacks, such as predictable values.

Verify that clear text out of band (NIST "restricted") authenticators, such as SMS or PSTN, are not offered

by default, and stronger alternatives such as push notifications are offered first.

Verify that the out of band verifier expires out of band authentication requests, codes, or tokens after 10

minutes.

FINCA Classification - Unclassified (Public Use)

Verify that the out of band verifier authentication requests, codes, or tokens are only usable once, and

only for the original authentication request.

Verify that the out of band authenticator and verifier communicates over a secure independent channel.

Verify that the out of band verifier retains only a hashed version of the authentication code.

Verify that the initial authentication code is generated by a secure random number generator,

containing at least 20 bits of entropy (typically a six digital random number is sufficient).

Verify that time-based OTPs have a defined lifetime before expiring.

Verify that symmetric keys used to verify submitted OTPs are highly protected, such as by using a

hardware security module or secure operating system based key storage.

Verify that approved cryptographic algorithms are used in the generation, seeding, and verification.

Verify that time-based OTP can be used only once within the validity period.

Verify that if a time-based multi factor OTP token is re-used during the validity period, it is logged and

rejected with secure notifications being sent to the holder of the device.

Verify physical single factor OTP generator can be revoked in case of theft or other loss. Ensure that

revocation is immediately effective across logged in sessions, regardless of location.

Verify that biometric authenticators are limited to use only as secondary factors in conjunction with

either something you have and something you know.

Verify that cryptographic keys used in verification are stored securely and protected against disclosure,

such as using a TPM or HSM, or an OS service that can use this secure storage.

Verify that the challenge nonce is at least 64 bits in length, and statistically unique or unique over the

lifetime of the cryptographic device.

Verify that approved cryptographic algorithms are used in the generation, seeding, and verification.

Verify that integration secrets do not rely on unchanging passwords, such as API keys or shared

privileged accounts.

Verify that if passwords are required, the credentials are not a default account.

Verify that passwords are stored with sufficient protection to prevent offline recovery attacks, including

local system access.

Verify passwords, integrations with databases and third-party systems, seeds and internal secrets, and

API keys are managed securely and not included in the source code or stored within source code

repositories. Such storage SHOULD resist offline attacks. The use of a secure software key store (L1),

hardware trusted platform module (TPM), or a hardware security module (L3) is recommended for

password storage.

FINCA Classification - Unclassified (Public Use)

Verify the application never reveals session tokens in URL parameters or error messages.

Verify the application generates a new session token on user authentication.

Verify that session tokens possess at least 64 bits of entropy.

Verify the application only stores session tokens in the browser using secure methods such as

appropriately secured cookies (see section 3.4) or HTML 5 session storage.

Verify that session token are generated using approved cryptographic algorithms.

Verify that logout and expiration invalidate the session token, such that the back button or a

downstream relying party does not resume an authenticated session, including across relying parties.

If authenticators permit users to remain logged in, verify that re-authentication occurs periodically both

when actively used or after an idle period.

Verify that the application terminates all other active sessions after a successful password change, and

that this is effective across the application, federated login (if present), and any relying parties.

Verify that users are able to view and log out of any or all currently active sessions and devices.

Verify that cookie-based session tokens have the 'Secure' attribute set.

Verify that cookie-based session tokens have the 'HttpOnly' attribute set.

Verify that cookie-based session tokens utilize the 'SameSite' attribute to limit exposure to cross-site

request forgery attacks.

Verify that cookie-based session tokens use " Host-" prefix (see references) to provide session cookie

confidentiality.

Verify that if the application is published under a domain name with other applications that set or use

session cookies that might override or disclose the session cookies, set the path attribute in cookie-

based session tokens using the most precise path possible.

Verify the application does not treat OAuth and refresh tokens - on their own - as the presence of the

subscriber and allows users to terminate trust relationships with linked applications.

Verify the application uses session tokens rather than static API secrets and keys, except with legacy

implementations.

Verify that stateless session tokens use digital signatures, encryption, and other countermeasures to

protect against tampering, enveloping, replay, null cipher, and key substitution attacks.

FINCA Classification - Unclassified (Public Use)

Verify that relying parties specify the maximum authentication time to CSPs and that CSPs re-

authenticate the subscriber if they haven't used a session within that period.

Verify that CSPs inform relying parties of the last authentication event, to allow RPs to determine if they

need to re-authenticate the user.

Verify the application ensures a valid login session or requires re-authentication or secondary

verification before allowing any sensitive transactions or account modifications.

Verify that the application enforces access control rules on a trusted service layer, especially if client-side

access control is present and could be bypassed.

Verify that all user and data attributes and policy information used by access controls cannot be

manipulated by end users unless specifically authorized.

Verify that the principle of least privilege exists - users should only be able to access functions, data files,

URLs, controllers, services, and other resources, for which they possess specific authorization. This

implies protection against spoofing and elevation of privilege.

Verify that the principle of deny by default exists whereby new users/roles start with minimal or no

permissions and users/roles do not receive access to new features until access is explicitly assigned.

Verify that access controls fail securely including when an exception occurs.

Verify that sensitive data and APIs are protected against direct object attacks targeting creation, reading,

updating and deletion of records, such as creating or updating someone else's record, viewing

everyone's records, or deleting all records.

Verify that the application or framework enforces a strong anti-CSRF mechanism to protect

authenticated functionality, and effective anti-automation or anti-CSRF protects unauthenticated

functionality.

Verify administrative interfaces use appropriate multi-factor authentication to prevent

unauthorized use.

Verify that directory browsing is disabled unless deliberately desired. Additionally, applications should

not allow discovery or disclosure of file or directory metadata, such as Thumbs.db, .DS_Store, .git or .svn

folders.

Verify the application has additional authorization (such as step up or adaptive authentication) for lower

value systems, and / or segregation of duties for high value applications to enforce anti-fraud controls as

per the risk of application and past fraud.

Verify that the application has defenses against HTTP parameter pollution attacks, particularly if the

application framework makes no distinction about the source of request parameters (GET, POST,

cookies, headers, or environment variables).

FINCA Classification - Unclassified (Public Use)

Verify that frameworks protect against mass parameter assignment attacks, or that the application has

countermeasures to protect against unsafe parameter assignment, such as marking fields private or

similar.

Verify that all input (HTML form fields, REST requests, URL parameters, HTTP headers, cookies, batch

files, RSS feeds, etc) is validated using positive validation (whitelisting).

Verify that structured data is strongly typed and validated against a defined schema including allowed

characters, length and pattern (e.g. credit card numbers or telephone, or validating that two related

fields are reasonable, such as checking that suburb and zip/postcode match).

Verify that URL redirects and forwards only allow whitelisted destinations, or show a warning when

redirecting to potentially untrusted content.

Verify that all untrusted HTML input from WYSIWYG editors or similar is properly sanitized with an HTML

sanitizer library or framework feature.

Verify that unstructured data is sanitized to enforce safety measures such as allowed characters and

length.
Verify that the application sanitizes user input before passing to mail systems to protect against SMTP or

IMAP injection.

Verify that the application avoids the use of eval() or other dynamic code execution features. Where

there is no alternative, any user input being included must be sanitized or sandboxed before being

executed.

Verify that the application protects against template injection attacks by ensuring that any user input

being included is sanitized or sandboxed.

Verify that the application protects against SSRF attacks, by validating or sanitizing untrusted data or

HTTP file metadata, such as filenames and URL input fields, use whitelisting of protocols, domains, paths

and ports.

Verify that the application sanitizes, disables, or sandboxes user-supplied SVG scriptable content,

especially as they relate to XSS resulting from inline scripts, and foreignObject.

Verify that the application sanitizes, disables, or sandboxes user-supplied scriptable or expression

template language content, such as Markdown, CSS or XSL stylesheets, BBCode, or similar.

Verify that output encoding is relevant for the interpreter and context required. For example, use

encoders specifically for HTML values, HTML attributes, JavaScript, URL Parameters, HTTP headers,

SMTP, and others as the context requires, especially from untrusted inputs (e.g. names with Unicode or

apostrophes, such as ã?ã?“ or O'Hara).

Verify that output encoding preserves the user's chosen character set and locale, such that any Unicode

character point is valid and safely handled.

Verify that context-aware, preferably automated - or at worst, manual - output escaping protects against

reflected, stored, and DOM based XSS.

FINCA Classification - Unclassified (Public Use)

Verify that data selection or database queries (e.g. SQL, HQL, ORM, NoSQL) use parameterized queries,

ORMs, entity frameworks, or are otherwise protected from database injection attacks.

Verify that where parameterized or safer mechanisms are not present, context-specific output encoding

is used to protect against injection attacks, such as the use of SQL escaping to protect against SQL

injection.

Verify that the application projects against JavaScript or JSON injection attacks, including for eval

attacks, remote JavaScript includes, CSP bypasses, DOM XSS, and JavaScript expression evaluation.

Verify that the application protects against LDAP Injection vulnerabilities, or that specific security

controls to prevent LDAP Injection have been implemented.

Verify that the application protects against OS command injection and that operating system calls use

parameterized OS queries or use contextual command line output encoding.

Verify that the application protects against Local File Inclusion (LFI) or Remote File Inclusion (RFI) attacks.

Verify that the application protects against XPath injection or XML injection attacks.

Verify that the application uses memory-safe string, safer memory copy and pointer arithmetic to detect

or prevent stack, buffer, or heap overflows.

Verify that format strings do not take potentially hostile input, and are constant.

Verify that sign, range, and input validation techniques are used to prevent integer overflows.

Verify that serialized objects use integrity checks or are encrypted to prevent hostile object creation or

data tampering.

Verify that the application correctly restricts XML parsers to only use the most restrictive configuration

possible and to ensure that unsafe features such as resolving external entities are disabled to prevent

XXE.

Verify that deserialization of untrusted data is avoided or is protected in both custom code and third-

party libraries (such as JSON, XML and YAML parsers).

Verify that when parsing JSON in browsers or JavaScript-based backends, JSON.parse is used to parse the

JSON document. Do not use eval() to parse JSON.

Verify that regulated private data is stored encrypted while at rest, such as personally identifiable

information (PII), sensitive personal information, or data assessed likely to be subject to EU's GDPR.

Verify that regulated health data is stored encrypted while at rest, such as medical records, medical

device details, or de-anonymized research records.

FINCA Classification - Unclassified (Public Use)

Verify that regulated financial data is stored encrypted while at rest, such as financial accounts, defaults

or credit history, tax records, pay history, beneficiaries, or de- anonymized market or research records.

Verify that all cryptographic modules fail securely, and errors are handled in a way that does not enable

Padding Oracle attacks.

Verify that industry proven or government approved cryptographic algorithms, modes, and libraries are

used, instead of custom coded cryptography.

Verify that encryption initialization vector, cipher configuration, and block modes are configured

securely using the latest advice.

Verify that random number, encryption or hashing algorithms, key lengths, rounds, ciphers or modes,

can be reconfigured, upgraded, or swapped at any time, to protect against cryptographic breaks.

Verify that known insecure block modes (i.e. ECB, etc.), padding modes (i.e. PKCS#1 v1.5, etc.), ciphers

with small block sizes (i.e. Triple-DES, Blowfish, etc.), and weak hashing algorithms (i.e. MD5, SHA1, etc.)

are not used unless required for backwards compatibility.

Verify that nonces, initialization vectors, and other single use numbers must not be used more than once

with a given encryption key. The method of generation must be appropriate for the algorithm being

used.

Verify that encrypted data is authenticated via signatures, authenticated cipher modes, or HMAC to

ensure that ciphertext is not altered by an unauthorized party.

Verify that all cryptographic operations are constant-time, with no 'short-circuit' operations in

comparisons, calculations, or returns, to avoid leaking information.

Verify that all random numbers, random file names, random GUIDs, and random strings are generated

using the cryptographic module's approved cryptographically secure random number generator when

these random values are intended to be not guessable by an attacker.

Verify that random GUIDs are created using the GUID v4 algorithm, and a cryptographically-secure

pseudo-random number generator (CSPRNG). GUIDs created using other pseudo-random number

generators may be predictable.

Verify that random numbers are created with proper entropy even when the application is under heavy

load, or that the application degrades gracefully in such circumstances.

Verify that a secrets management solution such as a key vault is used to securely create, store, control

access to and destroy secrets.

Verify that key material is not exposed to the application but instead uses an isolated security module

like a vault for cryptographic operations.

FINCA Classification - Unclassified (Public Use)

Verify that the application does not log credentials or payment details. Session tokens should only be

stored in logs in an irreversible, hashed form.

Verify that the application does not log other sensitive data as defined under local privacy laws or

relevant security policy.

Verify that the application logs security relevant events including successful and failed authentication

events, access control failures, deserialization failures and input validation failures.

Verify that each log event includes necessary information that would allow for a detailed investigation of

the timeline when an event happens.

Verify that all authentication decisions are logged, without storing sensitive session identifiers or

passwords. This should include requests with relevant metadata needed for security investigations.

Verify that all access control decisions can be logged and all failed decisions are logged. This should

include requests with relevant metadata needed for security investigations.

Verify that the application appropriately encodes user-supplied data to prevent log injection.

Verify that all events are protected from injection when viewed in log viewing software.

Verify that security logs are protected from unauthorized access and modification.

Verify that time sources are synchronized to the correct time and time zone. Strongly consider logging

only in UTC if systems are global to assist with post-incident forensic analysis.

Verify that a generic message is shown when an unexpected or security sensitive error occurs,

potentially with a unique ID which support personnel can use to investigate.

Verify that exception handling (or a functional equivalent) is used across the codebase to account for

expected and unexpected error conditions.

Verify that a "last resort" error handler is defined which will catch all unhandled exceptions.

Verify the application protects sensitive data from being cached in server components such as load

balancers and application caches.

Verify that all cached or temporary copies of sensitive data stored on the server are protected from

unauthorized access or purged/invalidated after the authorized user accesses the sensitive data.

FINCA Classification - Unclassified (Public Use)

Verify the application minimizes the number of parameters in a request, such as hidden fields, Ajax

variables, cookies and header values.

Verify the application can detect and alert on abnormal numbers of requests, such as by IP, user, total

per hour or day, or whatever makes sense for the application.

Verify that regular backups of important data are performed and that test restoration of data is

performed.
Verify that backups are stored securely to prevent data from being stolen or corrupted.

Verify the application sets sufficient anti-caching headers so that sensitive data is not cached in modern

browsers.

Verify that data stored in client side storage (such as HTML5 local storage, session storage, IndexedDB,

regular cookies or Flash cookies) does not contain sensitive data or PII.

Verify that authenticated data is cleared from client storage, such as the browser DOM, after the client

or session is terminated.

Verify that sensitive data is sent to the server in the HTTP message body or headers, and that query

string parameters from any HTTP verb do not contain sensitive data.

Verify that users have a method to remove or export their data on demand.

Verify that users are provided clear language regarding collection and use of supplied personal

information and that users have provided opt-in consent for the use of that data before it is used in any

way.

Verify that all sensitive data created and processed by the application has been identified, and ensure

that a policy is in place on how to deal with sensitive data.

Verify accessing sensitive data is audited (without logging the sensitive data itself), if the data is collected

under relevant data protection directives or where logging of access is required.

Verify that sensitive information contained in memory is overwritten as soon as it is no longer required

to mitigate memory dumping attacks, using zeroes or random data.

Verify that sensitive or private information that is required to be encrypted, is encrypted using approved

algorithms that provide both confidentiality and integrity.

Verify that sensitive personal information is subject to data retention classification, such that old or out

of date data is deleted automatically, on a schedule, or as the situation requires.

FINCA Classification - Unclassified (Public Use)

Verify that secured TLS is used for all client connectivity, and does not fall back to insecure or

unencrypted protocols.

Verify using online or up to date TLS testing tools that only strong algorithms, ciphers, and protocols are

enabled, with the strongest algorithms and ciphers set as preferred.

Verify that old versions of SSL and TLS protocols, algorithms, ciphers, and configuration are disabled,

such as SSLv2, SSLv3, or TLS 1.0 and TLS 1.1. The latest version of TLS should be the preferred cipher

suite.

Verify that connections to and from the server use trusted TLS certificates. Where internally generated

or self-signed certificates are used, the server must be configured to only trust specific internal CAs and

specific self-signed certificates. All others should be rejected.

Verify that encrypted communications such as TLS is used for all inbound and outbound connections,

including for management ports, monitoring, authentication, API, or web service calls, database, cloud,

serverless, mainframe, external, and partner connections. The server must not fall back to insecure or

unencrypted protocols.

Verify that all encrypted connections to external systems that involve sensitive information or functions

are authenticated.

Verify that proper certification revocation, such as Online Certificate Status Protocol (OCSP) Stapling, is

enabled and configured.

Verify that backend TLS connection failures are logged.

FINCA Classification - Unclassified (Public Use)

10.1.1

10.2.1

10.2.2

10.2.3

10.2.4

10.2.5

10.2.6

10.3.1

10.3.2

10.3.3

11.1.1

11.1.2

V10 Malicious Verify that a code analysis tool is in use that can detect potentially malicious code, such as time

functions, unsafe file operations and network connections.

V10.2 Malicious Code Search

V10 Malicious Verify that the application source code and third party libraries do not contain unauthorized phone

home or data collection capabilities. Where such functionality exists, obtain the user's permission for it

to operate before collecting any data.

V10 Malicious Verify that the application does not ask for unnecessary or excessive permissions to privacy related

features or sensors, such as contacts, cameras, microphones, or location.

V10 Malicious Verify that the application source code and third party libraries do not contain back doors, such as hard-

coded or additional undocumented accounts or keys, code obfuscation, undocumented binary blobs,

rootkits, or anti-debugging, insecure debugging features, or otherwise out of date, insecure, or hidden

functionality that could be used maliciously if discovered.

V10 Malicious Verify that the application source code and third party libraries does not contain time bombs by

searching for date and time related functions.

V10 Malicious Verify that the application source code and third party libraries does not contain malicious code, such as

salami attacks, logic bypasses, or logic bombs.

V10 Malicious Verify that the application source code and third party libraries do not contain Easter eggs or any other

potentially unwanted functionality.

V10.3 Deployed Application Integrity Controls

V10 Malicious Verify that if the application has a client or server auto-update feature, updates should be obtained

over secure channels and digitally signed. The update code must validate the digital signature of the

update before installing or executing the update.

V10 Malicious Verify that the application employs integrity protections, such as code signing or sub- resource integrity.

The application must not load or execute code from untrusted sources, such as loading includes,

modules, plugins, code, or libraries from untrusted sources or the Internet.

V10 Malicious Verify that the application has protection from sub-domain takeovers if the application relies upon DNS

entries or DNS sub-domains, such as expired domain names, out of date DNS pointers or CNAMEs,

expired projects at public source code repos, or transient cloud APIs, serverless functions, or storage

buckets (autogen-bucket- id.cloud.example.com) or similar. Protections can include ensuring that DNS

names used by applications are regularly checked for expiry or change.

V11: Business Logic Verification Requirements

V11.1 Business Logic Security Requirements

V11 BusLogic Verify the application will only process business logic flows for the same user in sequential step order

and without skipping steps.

V11 BusLogic Verify the application will only process business logic flows with all steps being processed in realistic

human time, i.e. transactions are not submitted too quickly.

FINCA Classification - Unclassified (Public Use)

11.1.3

11.1.4

11.1.5

11.1.6

11.1.7

11.1.8

12.1.1

12.1.2

12.1.3

12.2.1

12.3.1

12.3.2

12.3.3

12.3.4

V11 BusLogic Verify the application has appropriate limits for specific business actions or transactions which are

correctly enforced on a per user basis.

V11 BusLogic Verify the application has sufficient anti-automation controls to detect and protect against data

exfiltration, excessive business logic requests, excessive file uploads or denial of service attacks.

V11 BusLogic Verify the application has business logic limits or validation to protect against likely business risks or

threats, identified using threat modelling or similar methodologies.

V11 BusLogic Verify the application does not suffer from "time of check to time of use" (TOCTOU) issues or other race

conditions for sensitive operations.

V11 BusLogic Verify the application monitors for unusual events or activity from a business logic perspective. For

example, attempts to perform actions out of order or actions which a normal user would never attempt.

V11 BusLogic Verify the application has configurable alerting when automated attacks or unusual activity is detected.

V12: File and Resources Verification Requirements

V12.1 File Upload Requirements

V12 Files Verify that the application will not accept large files that could fill up storage or cause a denial of service

attack.

V12 Files Verify that compressed files are checked for "zip bombs" - small input files that will decompress into

huge files thus exhausting file storage limits.

V12 Files Verify that a file size quota and maximum number of files per user is enforced to ensure that a single

user cannot fill up the storage with too many files, or excessively large files.

V12.2 File Integrity Requirements

V12 Files Verify that files obtained from untrusted sources are validated to be of expected type based on the file's

content.

V12.3 File execution Requirements

V12 Files Verify that user-submitted filename metadata is not used directly with system or framework file and

URL API to protect against path traversal.

V12 Files Verify that user-submitted filename metadata is validated or ignored to prevent the disclosure,

creation, updating or removal of local files (LFI).

V12 Files Verify that user-submitted filename metadata is validated or ignored to prevent the disclosure or

execution of remote files (RFI), which may also lead to SSRF.

V12 Files Verify that the application protects against reflective file download (RFD) by validating or ignoring user-

submitted filenames in a JSON, JSONP, or URL parameter, the response Content-Type header should be

set to text/plain, and the Content- Disposition header should have a fixed filename.

FINCA Classification - Unclassified (Public Use)

12.3.5

12.3.6

12.4.1

12.4.2

12.5.1

12.5.2

12.6.1

13.1.1

13.1.2

13.1.3

13.1.4

13.1.5

13.2.1

13.2.2

V12 Files Verify that untrusted file metadata is not used directly with system API or libraries, to protect against

OS command injection.

V12 Files Verify that the application does not include and execute functionality from untrusted sources, such as

unverified content distribution networks, JavaScript libraries, node npm libraries, or server-side DLLs.

V12.4 File Storage Requirements

V12 Files Verify that files obtained from untrusted sources are stored outside the web root, with limited

permissions, preferably with strong validation.

V12 Files Verify that files obtained from untrusted sources are scanned by antivirus scanners to prevent upload of

known malicious content.

V12.5 File Download Requirements

V12 Files Verify that the web tier is configured to serve only files with specific file extensions to prevent

unintentional information and source code leakage. For example, backup files (e.g. .bak), temporary

working files (e.g. .swp), compressed files (.zip, .tar.gz, etc) and other extensions commonly used by

editors should be blocked unless required.

V12 Files Verify that direct requests to uploaded files will never be executed as HTML/JavaScript content.

V12.6 SSRF Protection Requirements

V12 Files Verify that the web or application server is configured with a whitelist of resources or systems to which

the server can send requests or load data/files from.

V13: API and Web Service Verification Requirements

V13.1 Generic Web Service Security Verification

Requirements

V13 API Verify that all application components use the same encodings and parsers to avoid parsing attacks that

exploit different URI or file parsing behavior that could be used in SSRF and RFI attacks.

V13 API Verify that access to administration and management functions is limited to authorized administrators.

V13 API Verify API URLs do not expose sensitive information, such as the API key, session tokens etc.

V13 API Verify that authorization decisions are made at both the URI, enforced by programmatic or declarative

security at the controller or router, and at the resource level, enforced by model-based permissions.

V13 API Verify that requests containing unexpected or missing content types are rejected with appropriate

headers (HTTP response status 406 Unacceptable or 415 Unsupported Media Type).

V13.2 RESTful Web Service Verification Requirements

V13 API Verify that enabled RESTful HTTP methods are a valid choice for the user or action, such as preventing

normal users using DELETE or PUT on protected API or resources.

V13 API Verify that JSON schema validation is in place and verified before accepting input.

FINCA Classification - Unclassified (Public Use)

13.2.3

13.2.4

13.2.5

13.2.6

13.3.1

13.3.2

13.4.1

13.4.2

14.1.1

14.1.2

14.1.3

14.1.4

V13 API Verify that RESTful web services that utilize cookies are protected from Cross-Site Request Forgery via

the use of at least one or more of the following: triple or double submit cookie pattern (see references),

CSRF nonces, or ORIGIN request header checks.

V13 API Verify that REST services have anti-automation controls to protect against excessive calls, especially if

the API is unauthenticated.

V13 API Verify that REST services explicitly check the incoming Content-Type to be the expected one, such as

application/xml or application/JSON.

V13 API Verify that the message headers and payload are trustworthy and not modified in transit. Requiring

strong encryption for transport (TLS only) may be sufficient in many cases as it provides both

confidentiality and integrity protection. Per-message digital signatures can provide additional assurance

on top of the transport protections for high-security applications but bring with them additional

complexity and risks to weigh against the benefits.

V13.3 SOAP Web Service Verification Requirements

V13 API Verify that XSD schema validation takes place to ensure a properly formed XML document, followed by

validation of each input field before any processing of that data takes place.

V13 API Verify that the message payload is signed using WS-Security to ensure reliable transport between client

and service.

V13.4 GraphQL and other Web Service Data Layer

Security Requirements
V13 API Verify that query whitelisting or a combination of depth limiting and amount limiting should be used to

prevent GraphQL or data layer expression denial of service (DoS) as a result of expensive, nested

queries. For more advanced scenarios, query cost analysis should be used.

V13 API Verify that GraphQL or other data layer authorization logic should be implemented at the business logic

layer instead of the GraphQL layer.

V14: Configuration Verification Requirements

V14.1 Build

V14 Config Verify that the application build and deployment processes are performed in a secure and repeatable

way, such as CI / CD automation, automated configuration management, and automated deployment

scripts.

V14 Config Verify that compiler flags are configured to enable all available buffer overflow protections and

warnings, including stack randomization, data execution prevention, and to break the build if an unsafe

pointer, memory, format string, integer, or string operations are found.

V14 Config Verify that server configuration is hardened as per the recommendations of the application server and

frameworks in use.

V14 Config Verify that the application, configuration, and all dependencies can be re-deployed using automated

deployment scripts, built from a documented and tested runbook in a reasonable time, or restored

from backups in a timely fashion.

FINCA Classification - Unclassified (Public Use)

14.1.5

14.2.1

14.2.2

14.2.3

14.2.4

14.2.5

14.2.6

14.3.1

14.3.2

14.3.3

14.4.1

14.4.2

14.4.3

14.4.4

14.4.5

14.4.6

14.4.7

V14 Config Verify that authorized administrators can verify the integrity of all security-relevant configurations to

detect tampering.

V14.2 Dependency

V14 Config Verify that all components are up to date, preferably using a dependency checker during build or

compile time.

V14 Config Verify that all unneeded features, documentation, samples, configurations are removed, such as sample

applications, platform documentation, and default or example users.

V14 Config Verify that if application assets, such as JavaScript libraries, CSS stylesheets or web fonts, are hosted

externally on a content delivery network (CDN) or external provider, Subresource Integrity (SRI) is used

to validate the integrity of the asset.

V14 Config Verify that third party components come from pre-defined, trusted and continually maintained

repositories.
V14 Config Verify that an inventory catalog is maintained of all third party libraries in use.

V14 Config Verify that the attack surface is reduced by sandboxing or encapsulating third party libraries to expose

only the required behaviour into the application.

V14.3 Unintended Security Disclosure Requirements

V14 Config Verify that web or application server and framework error messages are configured to deliver user

actionable, customized responses to eliminate any unintended security disclosures.

V14 Config Verify that web or application server and application framework debug modes are disabled in

production to eliminate debug features, developer consoles, and unintended security disclosures.

V14 Config Verify that the HTTP headers or any part of the HTTP response do not expose detailed version

information of system components.

V14.4 HTTP Security Headers Requirements

V14 Config Verify that every HTTP response contains a content type header specifying a safe character set (e.g., UTF-

8, ISO 8859-1).

V14 Config Verify that all API responses contain Content-Disposition: attachment; filename="api.json" (or other

appropriate filename for the content type).

V14 Config Verify that a content security policy (CSPv2) is in place that helps mitigate impact for XSS attacks like

HTML, DOM, JSON, and JavaScript injection vulnerabilities.

V14 Config Verify that all responses contain X-Content-Type-Options: nosniff.

V14 Config Verify that HTTP Strict Transport Security headers are included on all responses and for all subdomains,

such as Strict-Transport-Security: max-age=15724800; includeSubdomains.

V14 Config Verify that a suitable "Referrer-Policy" header is included, such as "no-referrer" or "same-origin".

V14 Config Verify that a suitable X-Frame-Options or Content-Security-Policy: frame-ancestors header is in use for

sites where content should not be embedded in a third-party site.

FINCA Classification - Unclassified (Public Use)

14.5.1

14.5.2

14.5.3

14.5.4

MADE EASY

V14.5 Validate HTTP Request Header Requirements

V14 Config Verify that the application server only accepts the HTTP methods in use by the application or API,

including pre-flight OPTIONS.

V14 Config Verify that the supplied Origin header is not used for authentication or access control decisions, as the

Origin header can easily be changed by an attacker.

FO Ow us ON in
SECURITY & PRIVACY

V14 Config Verify that the cross-domain resource sharing (CORS) Access-Control-Allow-Origin header uses a strict

white-list of trusted domains to match against and does not support the "null" origin.

V14 Config Verify that HTTP headers added by a trusted proxy or SSO devices, such as a bearer token, are

authenticated by the application.

Source: OWASP Application Security Verification Standard v4.0

DID YOU LIKE OUR DOCUMENT AND

DO YOU NEED MORE

FINCA Classification - Unclassified (Public Use)

Verify that a code analysis tool is in use that can detect potentially malicious code, such as time

functions, unsafe file operations and network connections.

Verify that the application source code and third party libraries do not contain unauthorized phone

home or data collection capabilities. Where such functionality exists, obtain the user's permission for it

to operate before collecting any data.

Verify that the application does not ask for unnecessary or excessive permissions to privacy related

features or sensors, such as contacts, cameras, microphones, or location.

Verify that the application source code and third party libraries do not contain back doors, such as hard-

coded or additional undocumented accounts or keys, code obfuscation, undocumented binary blobs,

rootkits, or anti-debugging, insecure debugging features, or otherwise out of date, insecure, or hidden

functionality that could be used maliciously if discovered.

Verify that the application source code and third party libraries does not contain time bombs by

searching for date and time related functions.

Verify that the application source code and third party libraries does not contain malicious code, such as

salami attacks, logic bypasses, or logic bombs.

Verify that the application source code and third party libraries do not contain Easter eggs or any other

potentially unwanted functionality.

Verify that if the application has a client or server auto-update feature, updates should be obtained

over secure channels and digitally signed. The update code must validate the digital signature of the

update before installing or executing the update.

Verify that the application employs integrity protections, such as code signing or sub- resource integrity.

The application must not load or execute code from untrusted sources, such as loading includes,

modules, plugins, code, or libraries from untrusted sources or the Internet.

Verify that the application has protection from sub-domain takeovers if the application relies upon DNS

entries or DNS sub-domains, such as expired domain names, out of date DNS pointers or CNAMEs,

expired projects at public source code repos, or transient cloud APIs, serverless functions, or storage

buckets (autogen-bucket- id.cloud.example.com) or similar. Protections can include ensuring that DNS

names used by applications are regularly checked for expiry or change.

Verify the application will only process business logic flows for the same user in sequential step order

and without skipping steps.

Verify the application will only process business logic flows with all steps being processed in realistic

human time, i.e. transactions are not submitted too quickly.

FINCA Classification - Unclassified (Public Use)

Verify the application has appropriate limits for specific business actions or transactions which are

correctly enforced on a per user basis.

Verify the application has sufficient anti-automation controls to detect and protect against data

exfiltration, excessive business logic requests, excessive file uploads or denial of service attacks.

Verify the application has business logic limits or validation to protect against likely business risks or

threats, identified using threat modelling or similar methodologies.

Verify the application does not suffer from "time of check to time of use" (TOCTOU) issues or other race

conditions for sensitive operations.

Verify the application monitors for unusual events or activity from a business logic perspective. For

example, attempts to perform actions out of order or actions which a normal user would never attempt.

Verify the application has configurable alerting when automated attacks or unusual activity is detected.

Verify that the application will not accept large files that could fill up storage or cause a denial of service

attack.

Verify that compressed files are checked for "zip bombs" - small input files that will decompress into

huge files thus exhausting file storage limits.

Verify that a file size quota and maximum number of files per user is enforced to ensure that a single

user cannot fill up the storage with too many files, or excessively large files.

Verify that files obtained from untrusted sources are validated to be of expected type based on the file's

content.

Verify that user-submitted filename metadata is not used directly with system or framework file and

URL API to protect against path traversal.

Verify that user-submitted filename metadata is validated or ignored to prevent the disclosure,

creation, updating or removal of local files (LFI).

Verify that user-submitted filename metadata is validated or ignored to prevent the disclosure or

execution of remote files (RFI), which may also lead to SSRF.

Verify that the application protects against reflective file download (RFD) by validating or ignoring user-

submitted filenames in a JSON, JSONP, or URL parameter, the response Content-Type header should be

set to text/plain, and the Content- Disposition header should have a fixed filename.

FINCA Classification - Unclassified (Public Use)

Verify that untrusted file metadata is not used directly with system API or libraries, to protect against

OS command injection.

Verify that the application does not include and execute functionality from untrusted sources, such as

unverified content distribution networks, JavaScript libraries, node npm libraries, or server-side DLLs.

Verify that files obtained from untrusted sources are stored outside the web root, with limited

permissions, preferably with strong validation.

Verify that files obtained from untrusted sources are scanned by antivirus scanners to prevent upload of

known malicious content.

Verify that the web tier is configured to serve only files with specific file extensions to prevent

unintentional information and source code leakage. For example, backup files (e.g. .bak), temporary

working files (e.g. .swp), compressed files (.zip, .tar.gz, etc) and other extensions commonly used by

editors should be blocked unless required.

Verify that direct requests to uploaded files will never be executed as HTML/JavaScript content.

Verify that the web or application server is configured with a whitelist of resources or systems to which

the server can send requests or load data/files from.

Verify that all application components use the same encodings and parsers to avoid parsing attacks that

exploit different URI or file parsing behavior that could be used in SSRF and RFI attacks.

Verify that access to administration and management functions is limited to authorized administrators.

Verify API URLs do not expose sensitive information, such as the API key, session tokens etc.

Verify that authorization decisions are made at both the URI, enforced by programmatic or declarative

security at the controller or router, and at the resource level, enforced by model-based permissions.

Verify that requests containing unexpected or missing content types are rejected with appropriate

headers (HTTP response status 406 Unacceptable or 415 Unsupported Media Type).

Verify that enabled RESTful HTTP methods are a valid choice for the user or action, such as preventing

normal users using DELETE or PUT on protected API or resources.

Verify that JSON schema validation is in place and verified before accepting input.

FINCA Classification - Unclassified (Public Use)

Verify that RESTful web services that utilize cookies are protected from Cross-Site Request Forgery via

the use of at least one or more of the following: triple or double submit cookie pattern (see references),

CSRF nonces, or ORIGIN request header checks.

Verify that REST services have anti-automation controls to protect against excessive calls, especially if

the API is unauthenticated.

Verify that REST services explicitly check the incoming Content-Type to be the expected one, such as

application/xml or application/JSON.

Verify that the message headers and payload are trustworthy and not modified in transit. Requiring

strong encryption for transport (TLS only) may be sufficient in many cases as it provides both

confidentiality and integrity protection. Per-message digital signatures can provide additional assurance

on top of the transport protections for high-security applications but bring with them additional

complexity and risks to weigh against the benefits.

Verify that XSD schema validation takes place to ensure a properly formed XML document, followed by

validation of each input field before any processing of that data takes place.

Verify that the message payload is signed using WS-Security to ensure reliable transport between client

and service.

Verify that query whitelisting or a combination of depth limiting and amount limiting should be used to

prevent GraphQL or data layer expression denial of service (DoS) as a result of expensive, nested

queries. For more advanced scenarios, query cost analysis should be used.

Verify that GraphQL or other data layer authorization logic should be implemented at the business logic

layer instead of the GraphQL layer.

Verify that the application build and deployment processes are performed in a secure and repeatable

way, such as CI / CD automation, automated configuration management, and automated deployment

scripts.

Verify that compiler flags are configured to enable all available buffer overflow protections and

warnings, including stack randomization, data execution prevention, and to break the build if an unsafe

pointer, memory, format string, integer, or string operations are found.

Verify that server configuration is hardened as per the recommendations of the application server and

frameworks in use.

Verify that the application, configuration, and all dependencies can be re-deployed using automated

deployment scripts, built from a documented and tested runbook in a reasonable time, or restored

from backups in a timely fashion.

FINCA Classification - Unclassified (Public Use)

Verify that authorized administrators can verify the integrity of all security-relevant configurations to

detect tampering.

Verify that all components are up to date, preferably using a dependency checker during build or

compile time.

Verify that all unneeded features, documentation, samples, configurations are removed, such as sample

applications, platform documentation, and default or example users.

Verify that if application assets, such as JavaScript libraries, CSS stylesheets or web fonts, are hosted

externally on a content delivery network (CDN) or external provider, Subresource Integrity (SRI) is used

to validate the integrity of the asset.

Verify that third party components come from pre-defined, trusted and continually maintained

repositories.
Verify that an inventory catalog is maintained of all third party libraries in use.

Verify that the attack surface is reduced by sandboxing or encapsulating third party libraries to expose

only the required behaviour into the application.

Verify that web or application server and framework error messages are configured to deliver user

actionable, customized responses to eliminate any unintended security disclosures.

Verify that web or application server and application framework debug modes are disabled in

production to eliminate debug features, developer consoles, and unintended security disclosures.

Verify that the HTTP headers or any part of the HTTP response do not expose detailed version

information of system components.

Verify that every HTTP response contains a content type header specifying a safe character set (e.g., UTF-

8, ISO 8859-1).

Verify that all API responses contain Content-Disposition: attachment; filename="api.json" (or other

appropriate filename for the content type).

Verify that a content security policy (CSPv2) is in place that helps mitigate impact for XSS attacks like

HTML, DOM, JSON, and JavaScript injection vulnerabilities.

Verify that all responses contain X-Content-Type-Options: nosniff.

Verify that HTTP Strict Transport Security headers are included on all responses and for all subdomains,

such as Strict-Transport-Security: max-age=15724800; includeSubdomains.

Verify that a suitable "Referrer-Policy" header is included, such as "no-referrer" or "same-origin".

Verify that a suitable X-Frame-Options or Content-Security-Policy: frame-ancestors header is in use for

sites where content should not be embedded in a third-party site.

FINCA Classification - Unclassified (Public Use)

Verify that the application server only accepts the HTTP methods in use by the application or API,

including pre-flight OPTIONS.

Verify that the supplied Origin header is not used for authentication or access control decisions, as the

Origin header can easily be changed by an attacker.

FO Ow us ON in

Verify that the cross-domain resource sharing (CORS) Access-Control-Allow-Origin header uses a strict

white-list of trusted domains to match against and does not support the "null" origin.

Verify that HTTP headers added by a trusted proxy or SSO devices, such as a bearer token, are

authenticated by the application.

Source: OWASP Application Security Verification Standard v4.0

FINCA Classification - Unclassified (Public Use)

FINCA Classification - Unclassified (Public Use)

FINCA Classification - Unclassified (Public Use)

FINCA Classification - Unclassified (Public Use)

FINCA Classification - Unclassified (Public Use)

FINCA Classification - Unclassified (Public Use)

FO Ow us ON in

Source: OWASP Application Security Verification Standard v4.0

FINCA Classification - Unclassified (Public Use)

